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Abstract

A defender wants to detect as quickly as possible whether some attacker is secretly conduct-
ing a project that could harm the defender. Security services, for example, need to expose
a terrorist plot in time to prevent it. The attacker, in turn, schedules his activities so as to
remain undiscovered as long as possible. One pressing question for the defender is: which of
the project’s activities to focus intelligence efforts on? We model the situation as a zero-sum
game, establish that a late-start schedule defines a dominant attacker strategy, and describe
a dynamic program that yields a Nash equilibrium for the zero-sum game. Through an
innovative use of cooperative game theory, we measure the harm reduction thanks to each
activity’s intelligence effort, obtain insight into what makes intelligence effort more effec-
tive, and show how to identify opportunities for further harm reduction. We use a detailed
example of a nuclear weapons development project to demonstrate how a careful trade-off
between time and ease of detection can reduce the harm significantly.

1 Introduction

In response to the terrorist attacks in Paris early 2015, a number of European countries, notably
France and Belgium, decided to deploy soldiers on the streets for guarding against new aggres-
sions. Referring to the field manual of the Belgian operation, Lasoen (2018) reports that the
objective is “to prevent, deter and defeat threats or aggression by terrorists by providing assis-
tance to the police [...] in order to buy time for the latter to intervene.” But in the whole chain
of events preceding a terrorist attack, troops on the streets are only able to intervene at the very
last step: the attack itself. And even though soldiers successfully prevented an attack in Brussels
by shooting a suspected terrorist (Rawlinson et al. 2017), Lasoen (2018) mentions that “the
threat should have been neutralized long before defensive action or consequence management is
necessary.”

Various groups, organizations, and even state actors conduct covert operations that need
to be exposed in time to limit the harm they inflict. A hostile state’s suspected development
of a nuclear weapon has to be discovered as soon as possible to interdict it, a terrorist plot
must be detected in time to prevent an attack, and a major batch of synthetic drugs needs to
be intercepted before it reaches the market. Even in a corporate environment, the ability to
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anticipate a competitor’s market entrance or new product launch can determine firm survival.
One common feature of these covert operations is that they all consist of different steps that,
together, form a project: Harney et al. (2006) describe the tasks necessary to produce a nuclear
weapon, Stewart (2012) structures the events preceding a terrorist attack into a “terrorist attack
cycle,” and Chiu et al. (2011) examine the steps to manufacture illicit drugs. When the project’s
activities differ in time and ease of detection, a pressing question becomes: which activities to
focus intelligence efforts on?

In this paper, we study a defender who wants to detect whether some attacker is secretly
conducting a project that could harm the defender. As soon as the defender learns about the
project’s existence, she can start taking harm-reducing countermeasures, and thus she wants to
discover the project as early as possible. The defender can raise the probability for detecting
a task through additional monitoring : satellites can attempt to register nuclear weapons tests,
social workers can try to detect radicalization, or the police can screen the supply of drug
precursors. Given that the defender has only a limited budget for monitoring and that the
attacker takes into account the defender’s decisions when planning his project, the question of
which activities to monitor becomes an important yet non-trivial one.

The goal of this paper is twofold. Firstly, we aim to determine how the defender should
allocate her limited resources for monitoring. By doing so, we follow up on the research question
posed by Kaplan (2012b) of “what is the best way to allocate intelligence resources across the
many competing areas of intelligence concern?” Secondly, we want to evaluate the performance
of each task’s intelligence effort and explain why performance may differ. Thus, we respond to the
suggestion of Kaplan (2012b) to “develop methods for the performance evaluation of intelligence
activity.”

To reach our first goal, we introduce a zero-sum game – the secret project game – between the
defender and attacker; establish that a late-start schedule defines a dominant attacker strategy;
and describe a dynamic program that, given the attacker’s schedule and the defender’s limited
budget, identifies the optimal set of tasks to monitor. Although the problem is NP-hard, our
pseudo-polynomial-time dynamic program can handle realistically-sized instances, and thus it
yields an effective method for identifying a Nash equilibrium for the zero-sum game. To the best
of our knowledge, we are the first to model a defender’s decision with respect to which activities
to monitor in order to expose an attacker’s project.

For our second goal, we introduce a cooperative monitoring game that captures the reduction
in expected harm when monitoring a set of tasks; the Banzhaf value (Banzhaf 1964) of a task
in this game then measures the harm reduction thanks to monitoring a task. By means of an
intuitive expression for this Banzhaf value, we show how the defender can quantify the influence
of a task’s starting time and discovery probability on the harm reduction. Our use of cooperative
game theory to obtain insight into an optimization problem appears to be novel.

After reviewing the literature in Section 2, we formalize and determine a Nash equilibrium for
a secret project game in Section 3. Next, we define and analyze monitoring games in Section 4
and, in Section 5, we apply our methods to the nuclear weapons development project of Harney
et al. (2006). Section 6 concludes and proposes further research.

2 Related work

Our work combines concepts from project management with a probabilistic discovery process
inspired by the literature on counter-terrorism and the monitoring decision from the literature
on inspection games. Below, we briefly review these domains and position our work.

A number of articles within the field of project management study the problem of planning
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(Pinker et al. 2013, 2014), interdicting (Brown et al. 2005, 2009), or estimating the progress
(Godfrey et al. 2007, Godfrey & Mifflin 2009) of a secret project. The main difference with our
work is that these articles do not explicitly model the defender’s decision of monitoring tasks
and do not consider a probabilistic discovery process. Most closely related is the article of Pinker
et al. (2013), who were the first to study the problem of planning a secret project. They consider
an attacker who can use “a combination of deception, task scheduling and crashing” in order to
minimize the length of the time window between project discovery and completion. The authors
assign a detection weight to each task and assume that discovery occurs when the cumulative
weight of all initiated tasks exceeds a certain threshold. They show that the problem is NP-hard
and describe an integer program to solve it. In Pinker et al. (2014), the same authors analyze
the complexity status for different variants of the problem. Our finding that a late-start schedule
defines a dominant attacker strategy reinforces the results of Pinker et al. (2013, 2014), who have
also identified conditions under which a late-start schedule is optimal.

A second strand of related literature contains a wide range of probabilistic models for counter-
terrorism. These articles do take into account the stochastic nature of discovery, but, contrary
to our work, model the threat as a single event rather than as a project. Atkinson & Wein
(2010) examine how a government should allocate its resources over the inspection of terror and
criminal networks to exploit the finding of Smith et al. (2006) that, prior to an attack, terrorists
frequently participate in crimes such as theft or procuring explosives. Other articles address
problems such as predicting the number of undetected terror threats (Kaplan 2010), estimating
the duration of a terrorist plot (Kaplan 2012a), locating terrorists (Alpern & Lidbetter 2013,
Atkinson et al. 2016), processing intelligence (Dimitrov et al. 2016), and predicting the goal of
a suspected terrorist (Tsitsiklis & Xu 2018). In particular, Atkinson et al. (2016) consider a
searcher who, based on a stream of unreliable intelligence about a target’s location, needs to
decide whether to engage or to wait for more information. If the searcher waits too long, an
attack may occur before having identified the target; if she engages too soon, she might pick the
wrong location.

The literature on inspection games, finally, studies an ‘inspector’ that needs to verify whether
some ‘inspectee’ adheres to certain regulations, as in the follow-up of compliance with an arms
control treaty. We refer to Avenhaus et al. (2002) and, for the more recent work, von Stengel
(2016) for an excellent and detailed overview. Our work differs from inspection games in three
main aspects. Firstly, inspection games focus on the inspection of one single activity, whereas we
study a project consisting of multiple activities. Secondly, we assume that monitoring pertains
to structural measures that, contrary to single-period inspections, take place during the entire
planning horizon. Thirdly, with the notable exception of Avenhaus & Canty (2005), most authors
do not take into account the benefit of discovery in an early stage of the attacker’s project.

3 Secret project games

In this section, we define the zero-sum game between the defender and attacker (Section 3.1)
and show that a late-start schedule describes a dominant strategy for the attacker (Section 3.2).
Next, we develop a dynamic program to identify a Nash equilibrium for the zero-sum game
(Section 3.3).

3.1 Problem statement

Let N := {1, . . . , n} collect the n tasks that the attacker needs to execute to complete his project;
examples are the tasks necessary to develop a nuclear weapon, to prepare a terrorist attack, or
to manufacture a batch of synthetic drugs. Each task i ∈ N has a duration di ≥ 0 and the strict

3



partial order A ⊂ N ×N on N models the precedence constraints. Here, (i, j) ∈ A indicates that
task j can only start after i’s completion and we assume that task n constitutes the project’s
(unique) final task: (i, n) ∈ A for each i ∈ N \ {n}.

The way in which the project harms the defender depends on the specific context: it could
reflect the damage in geopolitical power if another state obtains a nuclear weapon, the number of
casualties due to a terrorist attack, or the amount of synthetic drugs reaching the market. As soon
as the defender learns about the project’s existence, however, she can take harm-reducing counter-
actions such as imposing diplomatic, economic, or military sanctions; or infiltrating/dismantling
the terrorist/drug network. The more time the defender has to react, the more effectively she can
take counteractions, and the lower the harm will be. Thus, we can model the harm by a function
h : R≥0 → R that is non-increasing in the length of the time window between project discovery
and completion. Pinker et al. (2013) call this time window the exposed time. The highest possible
harm h(0) occurs if the project remains secret until completion. As the exposed time increases,
the harm decreases because the defender obtains more time to take counteractions.

The defender discovers the project if she detects one of its tasks, and she can increase the
probability of such detection by monitoring tasks. Without monitoring, task i ∈ N exposes
the project with probability p0

i ∈ [0, 1], which reflects that exposure can still occur through, for
example, a whistle-blower that leaks a task’s execution or a bomb that accidentally explodes
during its production. By actively monitoring the task, in turn, the defender can increase this
discovery probability to p1

i ∈ [p0
i , 1]. We denote the complementary probabilities by q0

i := 1− p0
i

and q1
i := 1 − p1

i , and we assume independence between different tasks’ discovery probabilities.
Monitoring task i ∈ N leads to a cost ci ∈ N and the defender’s total budget equals b ∈ N. Since
monitoring pertains to structural measures, we assume it takes place continuously during the
entire planning horizon. Finally, we suppose detection occurs at a task’s initiation, although our
model readily generalizes to discovery at a fixed time fi ≥ 0 after the initiation of task i ∈ N .

Our assumption that the defender responds as soon as she can link a single task’s execution
to the project reflects the, often realistic, situation where she cannot afford to wait for more
evidence. For example, empirical research based on terrorist plots in the United States between
1980 and 2004 reveals that, on average, authorities only registered 1.7 activities directly related
to an attack’s preparation before an incident occurred (Smith et al. 2006).

The above model, summarized by the tuple S :=
(
N,A, (di, p

0
i , p

1
i , ci)i∈N , b, h

)
, constitutes a

secret project situation. We initially assume that S is common knowledge, but show in Section 3.2
that, as long as the objective function is non-increasing in the exposed time, the attacker’s optimal
strategy depends on the project network (N,A, (di)i∈N ) only.

i Description p0
i p1

i ci

1 Assemble team 0.05 0.35 3
2 Produce nerve agent 0.10 0.40 4
3 Develop delivery method 0.05 0.10 2
4 Prepare equipment 0.06 0.20 2
5 Select target 0.01 0.05 1
6 Attack target 0.01 0.99 1

Table 1: Tasks for preparing a nerve agent attack.

Example. An intelligence agency (the defender) wants to detect whether some terrorist organi-
zation (the attacker) is planning to commit a nerve agent attack. Table 1 displays the necessary
tasks for doing so and Figure 1 the associated project network. The project network is based on a
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Figure 1: Project network for the nerve agent attack. Nodes represent tasks, arcs precedence
constraints, and task durations (in weeks) appear above the nodes.

(fictional) example from Godfrey et al. (2007) and we have selected values for the remaining pa-
rameter ourselves. An unanticipated attack causes h(0) = 50 casualties and with t ≥ 0 weeks time
for trying to infiltrate and neutralize the terrorist network this reduces to h(t) = max{0, 50−2t}
casualties. Table 1’s third and fourth column show that without additional effort, the nerve
agent’s production can still be detected with a 10% probability (for example through a civilian
that signals suspicious behavior) and that the intelligence agency can increase this probability
to 40% (for example by monitoring the supply of a crucial ingredient). The fifth column shows
the costs of monitoring (in million euros) and we assume a budget of b = 6 million euros. 4

Since the defender needs to decide which set of tasks S ⊆ N to monitor given her limited
budget, the set B := {S ⊆ N :

∑
i∈S ci ≤ b} describes her strategy set. The attacker, in turn,

chooses when to start which task. Let a schedule s := (si)i∈N specify a starting time si ≥ 0 for
each task i ∈ N and call it feasible if it respects the precedence constraints, then the set F of all
such feasible schedules represents the attacker’s strategy set.

For a given schedule s ∈ F , discovery at the initiation of task i ∈ N leads to an exposed time

τi(s) := sn + dn − si. (1)

Let Pi(s) collect all tasks j ∈ N \ {i} for which sj < si, or with sj = si and j < i, then the
expected harm H(s, S) when the attacker initiates his tasks according to schedule s ∈ F and the
defender monitors tasks S ⊆ N equals

H(s, S) =
∑
i∈N

 ∏
j∈Pi(s)

qSj

 pSi h (τi(s)) +

(∏
i∈N

qSi

)
h (0) . (2)

Here, pSi := p1
i if i ∈ S and pSi := p0

i if i /∈ S, and similarly for the complementary probabilities.
Term i ∈ N captures the event that task i exposes the project, combining this event’s probability
with the resulting harm. The final term reflects the case where the project remains secret until
completion.

Example (Continued.). Suppose the attacker initiates each task as late as possible while at-
taining a completion time of 22 weeks. Figure 2 displays the Gantt chart for this late-start
schedule sλ. If task 3 exposes the project, then the exposed time equals τ3(sλ) = 22− 12 = 10
and the attack would cause h(10) = 50 − (2 × 10) = 30 casualties. Task 3 exposes the project
if the defender detects it and if the tasks in P3(sλ) = {1, 2} pass unnoticed; when the defender
monitors tasks S? = {1, 3, 6}, this occurs with probability q1

1q
0
2p

1
3 = 0.0585. Thus, term i = 3 in
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Figure 2: Gantt chart for late-start schedule sλ.

Equation (2) equals 0.0585 × 30 = 1.755. A similar computation for the other terms yields an
expected number of H(sλ, S?) = 30.1 casualties due to the nerve agent attack. 4

We define a secret project game as the two-player zero-sum game (F ,B, H) between the
attacker and defender with payoff function H, and strategy sets F and B. The attacker chooses
a schedule to maximize the expected harm, whereas the defender decides which activities to
monitor in order to minimize it.

3.2 Dominant attacker strategy: late-start schedule

A late-start schedule sδ := (sδi )i∈N initiates each task as late as possible while attaining a given
project completion time δ ≥ 0 (Kelley 1961). We obtain its value recursively via sδn = δ − dn
and sδi = min{sδj − di : (i, j) ∈ A} for i ∈ N \ {n}. The completion time δ reflects the planned
attack time and, to be feasible, it cannot be smaller than the project’s earliest possible completion
time λ.

Proposition 1 shows that no matter which tasks the defender monitors and no matter which
planned attack time the attacker chooses, the resulting late-start schedule maximizes the expected
harm. Thus, every feasible late-start schedule constitutes a dominant attacker strategy. The key
to this result is that for a given task leading to project discovery, the exposed time is minimal
under the late-start schedule (Lemma 1).

Lemma 1. τi(s
δ) ≤ τi(s) for every s ∈ F , i ∈ N , and δ ≥ λ.

Proof. Take arbitrary s ∈ F and δ ≥ λ, and define a schedule ŝ by shifting s such that it
attains δ as completion time: ŝi := si + sδn − sn for each i ∈ N . We obtain that, for each i ∈ N ,

τi(s) = sn + dn − si = sδn + dn − ŝi ≥ sδn + dn − sδi = τi(s
δ),

where the inequality uses that, by definition of ŝ and the late-start schedule, ŝi ≤ sδi .

Proposition 1. H(sδ, S) = maxs∈F H(s, S) for every S ⊆ N and δ ≥ λ.

Proof. Take arbitrary δ ≥ λ. It suffices to show that, for every a ∈ R, the probability that the
harm exceeds a is maximal under the late-start schedule. That is, it suffices to show that for
every feasible schedule, the harm under the late-start schedule is ‘stochastically larger’ than the
one under that schedule; see e.g. Ross (1982). For s ∈ F and a ∈ R, let

N(a | s) := {i ∈ N : h(τi(s)) ≤ a} (3)

collect the activities whose discovery leads to a harm not larger than a under schedule s. The
harm exceeds a if and only if all tasks i ∈ N(a | s) pass without discovery and, for S ⊆ N , this
occurs with probability

π(a | s, S) :=
∏

i∈N(a|s)

qSi . (4)
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Take arbitrary s ∈ F , S ⊆ N , and a ∈ R. By Equation (3), Lemma 1, and the fact that h
is non-increasing in the exposed time, N(a | sδ) ⊆ N(a | s). Since qSi ∈ [0, 1] for all i ∈ N ,
Equation (4) then implies that π(a | sδ, S) ≥ π(a | s, S). Thus, for each a ∈ R, the harm
exceeds a with maximal probability under the late-start schedule.

Proposition 1 holds for every function h that is non-increasing in the exposed time and
regardless of the specific values for (p0

i , p
1
i , ci)i∈N or b. To determine an optimal strategy, the

attacker thus only needs to know that the project network is given by (N,A, (di)i∈N ) and that
his objective function is non-increasing in the exposed time. Moreover, since any choice for the
planned attack time δ results in the same (maximum) expected harm, the defender can presume
that the attacker follows the late-start schedule sλ with a planned attack time equal to the
earliest possible completion time λ. In the remainder of this paper, we also assume that the
planned attack time equals λ when referring to the late-start schedule.

3.3 Which tasks should the defender monitor?

Given that the attacker follows late-start schedule sλ, the defender needs to solve the following
optimization problem in order to determine which tasks she should monitor:

min
S∈B

H(sλ, S). (Π)

Below, we describe a dynamic program that solves this ‘Optimization Problem Π’ in pseudo-
polynomial time, show that the problem is NP-hard, and explain how it yields a Nash equilibrium.

To simplify notation, index the tasks in N such that sλ1 ≤ . . . ≤ sλn; task i is then the ith one
to be initiated in the late-start schedule. Moreover, let hi := h(τi(s

λ)) denote the harm in case
discovery occurs at the initiation of task i ∈ N and write H(S) := H(sλ, S) for every S ⊆ N .

As the dynamic program’s value function, define vi(r) as the minimum expected harm at the
start of task i ∈ N with remaining budget r ∈ {0, . . . , b}; we refer to i and r as the stage and state
respectively. Let Ai(r) := {a ∈ {0, 1} : cia ≤ r} collect the possible actions in stage i and state r,
where a = 1 indicates that the defender monitors task i. After taking action a ∈ Ai(r) in stage i
and state r, the defender discovers the project with probability pai , which would then result in
harm hi. With complementary probability qai , she proceeds to the next task’s starting time,
i.e. to stage i + 1, with remaining budget r − cia. We obtain that vi(r) satisfies the optimality
equation

vi(r) = min
a∈Ai(r)

{pai hi + qai vi+1(r − cia)} (5)

with boundary condition vn+1(r) := h(0) for all r ∈ {0, . . . , b}. Since, by definition of vi(r),

v1(b) = min
S∈B

H(S),

Equation (5) defines a dynamic program that solves Optimization Problem Π.

Example (continued). Table 2 shows the result of the dynamic program with boundary condition
h(0) = 50. The minimum expected number of casualties equals 30.10 and it is optimal to monitor
tasks 1, 3, and 6. Since the expected number of casualties without monitoring equals 43.45, the
defender expects to save 13.35 lives thanks to her monitoring. 4

With n stages and b + 1 states, the dynamic program runs in time O(nb), which is pseudo-
polynomial because of parameter b. Below, we show that Optimization Problem Π is NP-hard,
which implies that no polynomial-time algorithm exists unless P = NP (Garey & Johnson 1979).
The proof uses a reduction from the NP-complete Partition problem by exploiting the budget
constraint in the defender’s strategy set B. First, however, we need the following lemma.
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r\i 1 2 3 4 5 6

0 43.45 45.43 48.47 49.44 49.92 49.98
1 41.97 43.87 46.74 47.62 47.98 48.02?

2 41.85 43.74 46.60 47.47 47.82? 48.02?

3 31.63? 43.07 45.86? 46.78? 47.82? 48.02?

4 30.61? 36.28? 45.72? 46.66? 47.82? 48.02?

5 30.53? 35.24? 45.11? 46.66? 47.82? 48.02?

6 30.10? 35.16? 44.99? 46.66? 47.82? 48.02?

Table 2: Minimum expected harm vi(r) for each stage i and state r. An asterisk (?) indicates
that monitoring task i is optimal in stage i and state r .

Lemma 2. Let r ∈ N and a1, . . . , ar ∈ R, then

r∏
i=1

(1− ai) = 1−
r∑
i=1

ai +

r∑
i=1

r∑
j=i+1

aiaj

r∏
k=j+1

(1− ak). (6)

Proof. The proof goes through induction on r. For r = 1, the result is immediate. As the
induction hypothesis, suppose Equation (6) holds for a given r ∈ N, then

r+1∏
i=1

(1− ai) =

r∏
i=1

(1− ai)− ar+1

r∏
i=1

(1− ai)

= 1−
r∑
i=1

ai +

r∑
i=1

r∑
j=i+1

aiaj

r∏
k=j+1

(1− ak)

− ar+1 + ar+1

r∑
i=1

ai −
r∑
i=1

r∑
j=i+1

aiajar+1

r∏
k=j+1

(1− ak)

= 1−
r+1∑
i=1

ai +

r∑
i=1

aiar+1 +

r∑
i=1

r∑
j=i+1

aiaj

r+1∏
k=j+1

(1− ak)

= 1−
r+1∑
i=1

ai +

r+1∑
i=1

r+1∑
j=i+1

aiaj

r+1∏
k=j+1

(1− ak)

and Equation (6) holds for r + 1 as well.

Proposition 2. Optimization Problem Π is NP-hard.

Proof. Consider the Partition problem, where given a finite set U and a positive integer
ui for every i ∈ U the question is whether there exists a set S? ⊆ U with

∑
i∈S? ui =∑

i∈U\S? ui. For an arbitrary Partition instance (U, (ui)i∈U ), we construct a secret project

situation
(
N,A, (di, p

0
i , p

1
i , ci)i∈N , b, h

)
as follows. Take N = U ; choose precedence constraints

A such that (i, i + 1) ∈ A for every i ∈ N \ {n}; and let (di, p
0
i , p

1
i , ci) = (1, 0, ui/M, ui) for all

i ∈ N , where M := (nū)2 and ū := maxi∈U ui. Next, take b = d(
∑
i∈U ui)/2e, and let h(t) = 0

for every t > 0 and h(0) = 1. All terms but the last one in Equation (2) then become zero and,
for S ⊆ N ,

H(S) =
∏
i∈N

qSi =
∏
i∈S

(
1− ui

M

)
. (7)
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Below, we show that the answer to the Partition instance is ‘yes’ if and only if

min
S∈B

H(S) < 1− b

M
+

1

M
. (8)

Since Partition is NP-complete, this reduction would prove that Optimization Problem Π is
NP-hard.

Let S ⊆ N , expanding Equation (7) by using ai := ui/M in Lemma 2 then yields that

H(S) = 1− 1

M

(∑
i∈S

ui

)
+

1

M
Q(S), (9)

where
Q(S) :=

∑
i∈S

∑
j∈σ(i,S)

uiuj
M

∏
k∈σ(j,S)

(
1− uk

M

)
(10)

and σ(i, S) := S ∩{i+ 1, . . . , n} for each i ∈ N . Our choice for M guarantees that 0 ≤ Q(S) < 1
since for every i ∈ S, j ∈ σ(i, S), and k ∈ σ(j, S) it holds that

0 ≤ uiuj
M
≤ 1

n2
, 0 ≤

(
1− uk

M

)
≤ 1,

and Q(S) contains |S|(|S| − 1)/2 < n2 terms.
If the answer to the Partition instance is ‘yes’, then there exists an S? ⊆ N with

∑
i∈S? ui =

b. Since S? ∈ B, Equation (9) yields

min
S∈B

H(S) ≤ H(S?) = 1− b

M
+

1

M
Q(S?) < 1− b

M
+

1

M
. (11)

Conversely, if the answer to the Partition instance is ‘no’, then
∑
i∈S ui < b for each S ∈ B.

Since b, u1, . . . , un are all integer, this implies
∑
i∈S ui ≤ b− 1 and, together with Equation (9),

we obtain that for every S ∈ B it holds that

H(S) ≥ 1− b− 1

M
+

1

M
Q(S) ≥ 1− b

M
+

1

M
. (12)

Thus, the answer to the Partition instance is ‘yes’ if and only if Inequality (8) holds.

For each S? ∈ B attaining the minimum in Optimization Problem Π, we have that (sλ, S?)
describes a Nash equilibrium: given that the attacker follows the late-start schedule, it is optimal
for the defender to monitor the tasks in S? and, vice versa, given that the defender monitors
the tasks in S?, it is optimal for the attacker to follow the late-start schedule. In spite of the
problem’s NP-hardness, the dynamic program can easily solve realistically-sized instances (see
Section 5) and thus provides an effective method for identifying a Nash equilibrium for a secret
project game. This equilibrium is not unique, but since we are dealing with a zero-sum game,
all Nash equilibria result in the same expected harm; see e.g. Peters (2008).

4 The value of monitoring a task

In most practical settings, the defender not only wants to know which tasks she should mon-
itor, she also needs to explain why some tasks are included and others are not. For example,
intelligence agencies must be able to justify their expenses to the government. Moreover, un-
derstanding what exactly renders a task more desirable to monitor is key to identifying avenues
for further harm reduction. In this section, we use cooperative game theory to evaluate the
performance of each task’s intelligence effort and to explain why performance may differ.
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4.1 Monitoring games

A cooperative game (N, v) is defined by a setN of players and a characteristic function v : 2N → R
that assigns to each coalition S ⊆ N a real number v(S), with v(∅) = 0. Here, v(S) reflects the
payoff that coalition S can attain and is also called the worth of S. For a detailed introduction
to cooperative games, see for example Peters (2008).

Given a secret project situation, let each activity i ∈ N correspond to a player, then we say
that a cooperative game (N, v) is a monitoring game if the worth v(S) equals the decrease in
expected harm when monitoring tasks S ⊆ N , compared to the situation without monitoring
(i.e. when S = ∅). More formally, we require that

v(S) = H(∅)−H(S) (13)

for every S ⊆ N . Here, the expected harm H(S) := H(sλ, S) is as defined in Section 3 and the
definition excludes budget and costs because these do not affect the expected harm.

One central theme in cooperative game theory is the question how to distribute the payoff
of a coalition amongst its members in a way that reflects each player’s contribution. Since the
contribution of a player’s cooperation in a monitoring game reflects the harm reduction thanks
to monitoring the corresponding task, solution concepts from cooperative game theory measure
this harm reduction and, as such, the performance of intelligence effort.

S : ∅ {1} {2} {1, 2} {1, 3, 6} N

H(S) : 43.5 31.6 34.8 25.7 30.1 24.3
v(S) : 0.0 11.8 8.7 17.8 13.4 19.1

Table 3: Expected harm and worth when monitoring different sets of tasks.

Example (continued). Table 3 shows the expected harm H(S) and the worth v(S) for six of
the 26 = 64 possible sets S ⊆ N of tasks to monitor for the monitoring game based on Section 3’s
example secret project situation. The worth v({1, 2}) equals 43.45 − 25.68 and reflects that
monitoring tasks 1 and 2 decreases the expected number of casualties by 17.77 compared to
the situation without monitoring. Since v({1, 2}) ≤ v({1}) + v({2}), the harm reduction when
monitoring both tasks 1 and 2 is less than the sum of the individual reductions; this is because
of the possibility that both tasks 1 and 2 would lead to project discovery at their initiation. 4

Our interpretation of a player deviates from the traditional one in cooperative game theory:
we treat each activity as if it were an independent player, whereas there is in fact only one
player, i.e. the defender, who decides which tasks to monitor. This implies that some traditional
game-theoretic concepts such as the core have no real interpretation in our setting. Nevertheless,
as will become clear below, modeling the situation as a cooperative game does yield insight into
what exactly makes a task more or less desirable to monitor.

4.2 What makes a task desirable to monitor?

For a monitoring game (N, v), the marginal contribution of task i ∈ N given that the defender
already monitors S ⊆ N \ {i} equals

mi(S) := v(S ∪ {i})− v(S) = H(S)−H(S ∪ {i}). (14)
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Thus, mi(S) captures the expected harm reduction when monitoring task i in addition to the
tasks in S. Below, we derive an intuitive expression for the marginal contribution and show (i)
that the harm reduction thanks to monitoring a task decreases as more tasks are being monitored
and (ii) that a task is more desirable to monitor if it has an earlier late-start time sλi and a lower
ratio of non-discovery probabilities q1

i /q
0
i .

Let ρk := hk+1 − hk capture the increase in harm when the defender fails to discover the
project at the kth task’s initiation and has to wait until the start of task k + 1, with k ∈
{1, . . . , n− 1}. Similarly, ρn := h(0)−hn reflects the increase in harm when the defender fails to
discover the project at task n’s initiation and thus does not discover the project at all. Denoting
P (k) := {1, . . . , k} for every k = 1, . . . , n and using pSi = 1 − qSi , we obtain from Equation (2)
that

H(S) = h1 +

n∑
k=1

 ∏
j∈P (k)

qSj

 ρk (15)

for every S ⊆ N . Substituting this into Equation (14) yields, for i ∈ N and S ⊆ N \ {i},

mi(S) =
(
q0
i − q1

i

) n∑
k=i

 ∏
j∈P (k)\{i}

qSj

 ρk. (16)

Since q0
i − q1

i = p1
i −p0

i , we can thus interpret this expression for mi(S) as the increase in task i’s
discovery probability thanks to monitoring the task times the expected harm occurring after
task i’s initiation given that i passes undiscovered and the tasks in S are being monitored.

Proposition 3 below shows that the harm reduction thanks to monitoring a task decreases as
more tasks are being monitored. Formally, a monitoring game (N, v) is concave, see e.g. Peters
(2008), if mi(S) ≥ mi(T ) for each i ∈ N and S ⊆ T ⊆ N \ {i}. One managerial implication
of this concavity is that if the defender already monitors many tasks, increasing the budget to
decrease the harm even further is relatively ineffective.

Proposition 3. Monitoring games are concave.

Proof. Let (N, v) be a monitoring game and take arbitrary i ∈ N and S ⊆ T ⊆ N \ {i}. Since
S ⊆ T and q0

j ≥ q1
j for all j ∈ N , we obtain that, for each k = i, . . . , n,∏

j∈P (k)\{i}

qSj ≥
∏

j∈P (k)\{i}

qTj .

Equation (16) and the non-negativity of q0
i − q1

i and ρk for all k = i, . . . , n then yield the
result.

We now show that a task is more desirable to monitor if it has an earlier late-start time sλi
and a lower ratio of non-discovery probabilities q1

i /q
0
i . Let i, j ∈ N be two tasks with sλi ≤ sλj

and suppose the defender is doubting whether to monitor i or j given that she already monitors
S ⊆ N \ {i, j}. That is, she wants to know whether mi(S) ≥ mj(S). Task i is more attractive
because of its earlier starting time: the reduction in expected harm that occurs between the
initiation of task i and j when monitoring i instead of j equals

Bij(S) := (q0
i − q1

i )

j−1∑
k=i

 ∏
l∈P (k)\{i}

qSl

 ρk. (17)
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Here, q0
i − q1

i equals the increase in discovery probability when monitoring task i and the expres-
sion’s second part reflects the expected harm occurring between the initiation of tasks i and j.
Since the tasks’ discovery probabilities may differ, monitoring task j could still be preferable:
the reduction in expected harm that occurs after task j’s initiation when monitoring i instead
of j equals

Qij(S) :=
(
q0
i q

1
j − q1

i q
0
j

) n∑
k=j

 ∏
l∈P (k)\{i,j}

qSl

 ρk. (18)

Here, (q0
i q

1
j − q1

i q
0
j ) equals the difference in discovery probability when monitoring i instead of j

and the expression’s second part represents the expected harm occurring from task j’s initiation
until project completion. The next result shows that a comparison of Expressions (17) and (18)
determines which task’s monitoring produces the highest harm reduction.

Proposition 4. Let (N, v) be a monitoring game, then

mi(S)−mj(S) = Bij(S) +Qij(S)

for each i, j ∈ N with sλi ≤ sλj and S ⊆ N \ {i, j}.

Proof. Take arbitrary i, j ∈ N with sλi ≤ sλj and S ⊆ N \ {i, j}. Since i, j /∈ S, sλi ≤ sλj , and

(q0
i − q1

i )q0
j − (q0

j − q1
j )q0

i = q0
i q

1
j − q1

i q
0
j ,

the result follows from computing mi(S)−mj(S) by means of Equation (16).

Thus, Proposition 4 reveals two key drivers that influence the desirability of monitoring a
task i ∈ N : the starting time sλi and the ratio q1

i /q
0
i . The lower sλi and q1

i /q
0
i , the more attractive

monitoring i becomes; the next corollary summarizes this finding.

Corollary 1. Let (N, v) be a monitoring game and i, j ∈ N two tasks with q0
i and q0

j non-zero,

then mi(S) ≥ mj(S) for every S ⊆ N \ {i, j} if sλi ≤ sλj and q1
i /q

0
i ≤ q1

j /q
0
j .

Proof. Take arbitrary S ⊆ N \ {i, j}. Since Bij(S) is always non-negative and Qij(S) is non-
negative if q0

i q
1
j − q1

i q
0
j ≥ 0, the result follows from Proposition 4.

Example (continued). From Table 1 and Figure 2, we find that monitoring task 3 always leads
to a higher harm reduction than task 5 since sλ3 = 12 ≤ 19 = sλ5 and q1

3/q
0
3 = 0.95 ≤ 0.96 = q1

5/q
0
5 .

For tasks 3 and 4, in turn, the two key drivers conflict since sλ4 = 18 > sλ3 and q1
4/q

0
4 = 0.85 <

q1
3/q

0
3 . In the next section, we propose the Banzhaf value as a measure to indicate whether, on

average, monitoring task 3 leads to a higher harm reduction than monitoring 4 does. 4

4.3 The Banzhaf value of monitoring games

The Banzhaf value for a player i ∈ N in a cooperative game (N, v) is defined as (Penrose 1946,
Banzhaf 1964)

Ψi(v) :=
1

2n−1

∑
S⊆N\{i}

mi(S). (19)

For a monitoring game, it captures the average decrease in expected harm when monitoring task
i ∈ N , averaged over all possible S ⊆ N \ {i}. Originally proposed to measure a player’s power
in a voting game, the Banzhaf value has become one of the most popular methods for measuring
players’ relative importance (Leech 2002). Although the problem of computing the Banzhaf value
is #P complete in general (Prasad & Kelly 1990), the following proposition gives an intuitive and
polynomial-time-computable expression for the Banzhaf value of a task in a monitoring game.

12



Proposition 5. Let (N, v) be a monitoring game, then

Ψi(v) = (q0
i − q1

i )

n∑
k=i

 ∏
j∈P (k)\{i}

q0
j + q1

j

2

 ρk (20)

for every task i ∈ N .

Proof. Let i ∈ N be a task in the monitoring game (N, v). By Equations (16) and (19),

Ψi(v) =
q0
i − q1

i

2n−1

n∑
k=i

 ∑
S⊆N\{i}

∏
j∈P (k)\{i}

qSj

 ρk. (21)

Using induction on |T |, we obtain that for every T ⊆ N :∑
S⊆T

∏
j∈T

qSj =
∏
j∈T

(q0
j + q1

j ). (22)

Now take arbitrary k ∈ {i, . . . , n}, then substituting P (k)\{i} for T in Equation (22), and using
that N \ {i} = (N \ P (k)) ∪ (P (k) \ {i}) and |{S : S ⊆ N \ P (k)}| = 2n−k yields:∑

S⊆N\{i}

∏
j∈P (k)\{i}

qSj = 2n−k
∏

j∈P (k)\{i}

(
q0
j + q1

j

)
.

In combination with Equation (21), this proves the result.

i Description Banzhaf Optimal

1 Assemble team 10.04 Yes
2 Produce nerve agent 6.87 -
3 Develop delivery method 0.54 Yes
4 Prepare equipment 0.53 -
5 Select target 0.10 -
6 Attack target 0.92 Yes

Table 4: Banzhaf value as a measure for the decrease in expected harm thanks to monitoring a
task.

Example (continued). Table 4 shows that within the optimal set S? = {1, 3, 6}, task 1 is by
far the most important one: its monitoring leads to 10.04 less casualties on average, whereas
for tasks 3 and 6 this is only 0.54 and 0.92 respectively. We observe that tasks 3 and 4 have
equal costs (see Table 1) and a very similar Banzhaf value. Hence, if monitoring task 3 suddenly
becomes impossible because, for instance, a crucial informant withdraws from the operation,
then the defender knows that task 4 provides a reasonable substitute. The high Banzhaf value
of task 2, in turn, signals that if the defender could decrease task 2’s monitoring cost or increase
the budget, this would reduce the harm considerably. Indeed, one could verify that for c2 = 3 or
b = 7, the optimal set of tasks to monitor becomes S? = {1, 2} and the expected harm decreases
from 30.10 to 25.68 casualties. 4
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Substituting (q0
j + q1

j )/2 for qSj in Equation (16) yields Equation (20). This leads to the
following intuitive interpretation of the Banzhaf value in a monitoring game: Ψi(v) gives the
decrease in the expected harm when monitoring task i while all other tasks j ∈ N \ {i} are at
their average discovery probability. Let i, j ∈ N be two tasks with sλi ≤ sλj , then, in analogy to
Equations (17) and (18), the quantity

Bij := (q0
i − q1

i )

j−1∑
k=i

 ∏
l∈P (k)\{i}

q0
l + q1

l

2

 ρk

captures the benefit of i’s earlier starting time and

Qij :=
(
q0
i q

1
j − q1

i q
0
j

) n∑
k=j

 ∏
l∈P (k)\{i,j}

q0
l + q1

l

2

 ρk

reflects the difference because of task i and j their possibly different discovery probabilities. An
analogous argument as the one leading to Proposition 4 and Corollary 1 then yields:

Proposition 6. Let (N, v) be a monitoring game, then for every two tasks i, j ∈ N with i < j:

Ψi(v)−Ψj(v) = Bij +Qij .

Thus, for q0
i and q0

j non-zero, Ψi(v) ≥ Ψj(v) if sλi ≤ sλj and q1
i /q

0
i ≤ q1

j /q
0
j .

Example (continued). Monitoring task 1 instead of 6 decreases the expected harm with B1,6 =
9.86 because of task 1’s earlier starting time and with Q1,6 = −0.74 because of task 6’s lower ratio
q1
6/q

0
6 . This distinction reveals that the attractiveness of monitoring task 1 originates from its

earlier starting time and the relatively small effect of the difference in discovery probabilities. 4

In sum, our model for evaluating the performance of a task’s intelligence effort leads to
multiple insights. Firstly, the Banzhaf value indicates which activities within the optimal set of
tasks to monitor are relatively more important. This not only supports all involved parties in
justifying their share in the budget, but it also indicates which tasks the defender should pay
most attention to. Secondly, the defender can use Proposition 6 to explain why some tasks are
relatively more important than others by trading off (i) the starting time and (ii) the relative
influence of monitoring on the discovery probability. Thirdly, analyzing tasks excluded from
the optimal set of tasks to monitor indicates promising avenues for further harm reduction. An
excluded task with a relatively high Banzhaf value, for instance, suggests that its monitoring is
currently too expensive and that the expected harm could decrease considerably if the defender
found a way to increase the budget or to decrease the task’s monitoring cost.

Although in this paper we focus on the Banzhaf value, multiple other allocation indices exist
in the rich literature on cooperative games (Peters 2008). We have also conducted an analysis
of other semivalues (Dubey et al. 1981) and, in particular, the Shapley value (Shapley 1953).
This led to results very similar to those for the Banzhaf value, and since the latter allows for an
intuitive expression, we do not include the generalization towards semivalues in this text.

5 Numerical example: developing a first nuclear weapon

Under the Comprehensive Nuclear-Test-Ban Treaty, considerable attention goes to the monitor-
ing of nuclear tests (The Economist 2015). While these tests are relatively easy to detect, Kemp
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(2016) rightfully points out that “for many security objectives, detecting a nuclear detonation
comes too late” and that “[m]ore useful would be an ability to detect nuclear weapon programs
well before the achievement of a nuclear device.” In this section, we use the nuclear weapons
development project of Harney et al. (2006) to demonstrate how our methods support defending
countries in trading off time and ease of detection when deciding which activities to monitor.

5.1 Project description

Harney et al. (2006) describe the tasks necessary to produce “a first small batch of nuclear
weapons” together with their durations and precedence constraints. The project – which has
also served as an example in Brown et al. (2009), Pinker et al. (2013), and Gutin et al. (2014) –
consists of 124 non-dummy tasks that can be grouped into five main parts as listed in Table 5.
Harney et al. (2006) provide three alternative methods for enriching uranium, but we have
focused on the so-called ‘Aerodynamic enrichment process’ (AE) only; the findings for the other
two enrichment methods are similar. Since our model does not allow for expediting activities, we
only consider the tasks’ normal durations. Dummy tasks are used to transform all precedence
constraints to the finish-start type (Elmaghraby 1977). The table’s third and fourth column give
each part’s start and end time (in weeks) under the late-start schedule with a deadline equal
to the project’s minimum makespan of 468 weeks. We refer to Harney et al. (2006) for a more
detailed description of the project network.

Part Description Start End

1 Diversion of yellowcake 116 332
2 Production of uranium hexafluoride from yellowcake 36 332
3 Uranium enrichment 0 356
4 Conversion of highly enriched uranium hexafluoride 200 356
5 Design and construction of the actual weapons 208 468

Table 5: Main parts of the example nuclear weapons development project provided by Harney
et al. (2006) with their late-start and end times (in weeks).

Since Harney et al. (2006) do not specify discovery probabilities or a harm function, we
assign values to these parameters ourselves. Given our limited expertise in the domain of nuclear
weapons, these values are only illustrative; our main purpose is to show how someone who does
possess authentic data can apply our analysis. Table 14, included in appendix, displays the
complete output for the numerical example.

We interpret the harm as the probability that the hostile state succeeds in obtaining a nuclear
weapon. The higher the exposed time, the more time the defender has to take counteractions,
and the lower this probability becomes. We consider the following three different harm functions
(see also Figure 3):

h1(t) = 1− exp(−0.02(δ − t));
h2(t) = 1− t/δ;
h3(t) = exp(−0.02t).

Here, δ equals the planned attack time, which we assume to be equal to the minimum makespan
of 468 weeks. The concave harm function captures the situation where it is crucial to discover
the project early on (high exposed time), whereas for a convex harm function the harm only
becomes significant when the exposed time is relatively small.

15



0 100 200 300 400 500

0

0.5

1

exposed time

h
a
rm

h1 h2 h3

Figure 3: Concave, linear, and convex functional form for the harm function.

Class Description p0
i p1

i

1 Suspicious; effective monitoring 0.05 0.25
2 Suspicious; ineffective monitoring 0.05 0.10
3 Innocent 0.00 0.01

Table 6: Description of the classes and the associated discovery probabilities.

To select the discovery probabilities, we assign each task to one of the three classes of Ta-
ble 6. Pinker et al. (2013) classify the activities of the nuclear weapons project into two groups:
innocent and suspicious. Tasks related to the diversion of yellowcake, for example, are innocent
because they could also serve for producing nuclear energy, but tasks related to the design and
construction of the actual weapon are suspicious because they lack a dual use. We complement
this partitioning of Pinker et al. (2013) by randomly subdividing the set of suspicious tasks in
another two groups depending on the degree to which monitoring influences the discovery prob-
ability: we assign a suspicious task with a 20% chance to the first class and with 80% to the
second one. Table 7 contains the resulting number of tasks for each part and class. Next to this
20/80-division, we have also experimented with a 10/90- and 30/70-division, which led to similar
findings. Figure 4 displays the percentage of tasks initiated in each class as a function of time
under the late-start schedule. Most innocent tasks occur relatively early in the project, whereas
the suspicious tasks accumulate during the later parts of the project. Thus, the defender faces a
trade-off between time and ease of detection.

We consider three different values b ∈ {10, 15, 20} for the budget and assume ci = 1 for each

Part

Class 1 2 3 4 5

1 0 2 0 1 10
2 0 0 6 4 50
3 3 17 10 9 12

Table 7: Number of tasks per part and class.
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Figure 4: Percentage of tasks initiated in each class as a function of time under late-start schedule.

i ∈ N . Under these assumptions, the defender monitors those b tasks that, combined, produce
the most harm reduction.

All experiments were performed with an Intel Core i7-4790 processor with 3.60 GHz CPU
speed and solving an instance took 0.006 seconds on average. This demonstrates that our methods
can indeed easily handle realistically-sized instances. Table 14, included in appendix, displays
the complete output for the numerical example.

5.2 Analysis of the optimal tasks to monitor

For a linear harm function and a budget b = 10, the defender should monitor the ten tasks
displayed in Table 8. The vast majority of the tasks are suspicious (class 1-2), but also two
innocent tasks (class 3) appear because they occur early in the project. The resulting probability
that the hostile state succeeds in obtaining a nuclear weapon equals 40.64%, whereas additional
computations show that this expected harm would be 45.04% if the defender monitored the ten
earliest-occurring tasks from class 1. This demonstrates that taking into account the timing of an
eventual detection can reduce the expected harm significantly. Thus, our quantitative methods
corroborate the critique on the Comprehensive Nuclear-Test-Ban Treaty for its focus on the
monitoring of – easily detectable, but late occurring – nuclear tests (The Economist 2015).

ID Description Class sλi Banzhaf

25 Assemble and integrate FP 1 164 0.0235
82 Assemble research devices 2 60 0.0153
83 Test and evaluate research devices 2 84 0.0127
26 Operate FP 1 212 0.0103

110 Integrate components 1 260 0.0050
92 Assemble production devices 2 172 0.0048
78 Design basic AE enrichment device 3 0 0.0041
80 Vortex unit 3 12 0.0039
93 Integrate enrichment cascade 2 188 0.0037

125 Acquire AP site 1 280 0.0034

Table 8: Optimal tasks to monitor for linear harm function and b = 10.
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Concave Linear Convex

Class b = 10 b = 15 b = 20 b = 10 b = 15 b = 20 b = 10 b = 15 b = 20

1 2 2 2 4 4 4 8 9 9
2 2 3 3 4 7 11 2 6 11
3 6 10 15 2 4 5 0 0 0

Table 9: Number of tasks included in the optimal set to monitor for each class.

h b = 10 b = 15 b = 20

Concave 0.9126 0.9097 0.9076
Linear 0.4064 0.3924 0.3824
Convex 0.0184 0.0148 0.0121

Table 10: Minimum expected harm.

The Banzhaf value (Table 8, final column) sheds light on which activities within the optimal
set of tasks to monitor are most important. Given our interpretation of the harm as the nuclear
weapons project’s success rate, task 25’s Banzhaf value of 0.0235 expresses that additional effort
for detecting the assembly and integration of a fluoridation plant (FP) reduces the nuclear
weapons project’s success rate by 2.35 percentage points on average. Thus, task 25 is much more
important than task 125, whose monitoring decreases the success rate by only 0.34 percentage
points on average.

Since the ten tasks that are optimal to monitor also have the highest Banzhaf value amongst
all activities, we conclude that the Banzhaf value measures the harm reduction thanks to moni-
toring a task quite well. Further numerical experimentation in Section 5.3 indicates that, while
not always exact, the optimal set of tasks to monitor is highly similar to the b activities with the
highest Banzhaf value.

The harm function’s shape considerably affects the choice of tasks to monitor (Table 9). With
a concave harm function, the defender needs to discover the project early on and should focus on
the project’s earliest-initiated tasks, even if these are mainly innocent: with b = 10, the defender
monitors six innocent tasks (class 3) and additional budget primarily serves to monitor more
innocent tasks. With a convex harm function, in turn, the defender can wait for the initiation
of suspicious tasks because the major part of the harm occurs later on in the project: class 1
contains eight out of the ten monitored tasks for b = 10 and the defender uses additional budget
exclusively for monitoring suspicious tasks. With a linear harm function, finally, the trade-off
between discovery time and probability is most outspoken and the second class dominates.

As Table 10 reveals, the nuclear weapons project’s minimum success rate highly depends on
the harm function’s shape and less so on the budget: with b = 10 the success rate is 91.26% for
the concave and 1.84% for the convex case, while with b = 20, these rates decrease only slightly
to 90.76% and 1.21% respectively. Since h1(t) ≥ h2(t) ≥ h3(t) for each t (see Figure 3), it is not
surprising that the same relation holds for the minimum expected harm. Proposition 3, in turn,
explains the modest influence of additional budget: the marginal harm reduction diminishes
when monitoring more tasks.
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5.3 Sensitivity analysis

Below, we first investigate how sensitive the optimal set of tasks to monitor is to perturbations in
the discovery probabilities. Next, we consider the possibility that a task has been misclassified,
i.e. assigned to an incorrect class, and examine the optimal set’s sensitivity to such misclassifi-
cation. Finally, we evaluate how well the Banzhaf value measures the harm reduction thanks to
monitoring a task by comparing the optimal set of tasks to monitor with the b activities with
the highest Banzhaf value (remember that ci = 1 for each i ∈ N). We use the optimality gap

ϕ(S) :=
H(S)−H(S?)

H(S?)

to assess by how much the expected harm when monitoring S ⊆ N exceeds the minimum expected
harm H(S?) = minS∈BH(S).

Perturbation in the discovery probabilities. To perturb the discovery probabilities, we
use the same instance as in Table 14 but multiply each discovery probability with a random
factor. That is, for every i ∈ N , we draw two random numbers α and β uniformly form the
interval [l, u] and take αp0

i and βp1
i as task i’s new discovery probabilities. We only consider

small perturbations with l, u ∈ R such that 0 ≤ αp0
i ≤ βp1

i ≤ 1 for all α, β ∈ [l, u]. Let So

be the optimal set of tasks to monitor for the original, unperturbed, instance. The optimality
gap ϕ(So) then reflects how well the original solution performs in the perturbed instance and
thus indicates how robust the original solution is against small perturbations in the discovery
probabilities.

Concave Linear Convex

Interval b = 10 b = 15 b = 20 b = 10 b = 15 b = 20 b = 10 b = 15 b = 20

[0.95, 1.05] 0.0000 0.0000 0.0001 0.0000 0.0009 0.0001 0.0005 0.0062 0.0039
[0.90, 1.10] 0.0000 0.0000 0.0001 0.0001 0.0021 0.0009 0.0072 0.0186 0.0131
[0.85, 1.15] 0.0001 0.0000 0.0002 0.0008 0.0032 0.0018 0.0162 0.0334 0.0218
[0.80, 1.20] 0.0001 0.0001 0.0003 0.0017 0.0042 0.0032 0.0260 0.0454 0.0335

Table 11: Average optimality gap for different perturbations in the discovery probabilities.

Table 11 shows the average optimality gap resulting from repeating the above procedure 100
times for the different harm functions and budgets. With the average gap never higher than
4.54 percent, the optimum is quite robust against small perturbations; for the concave and linear
harm function the gap decreases even further. This robustness is especially reassuring because
the discovery probabilities might be hard to estimate accurately in practice.

Misclassification of activities. In Table 12, we examine how well the original optimal so-
lution performs when a number of tasks have been misclassified. Starting from the instance of
Table 14, we randomly decide for each task whether or not to change its class according to the
probability given by Table 12’s first column. Next, we assign each misclassified task to one of
the other two classes with equal probability and compute the optimality gap. Repeating this
procedure 100 times and averaging then leads to the displayed numbers.

With the highest average optimality gap equal to 63.3%, misclassifying a task affects the opti-
mal solution significantly more than perturbing the discovery probabilities does. This underlines
the importance of paying sufficient attention to a correct classification of the tasks.
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Concave Linear Convex

Probability b = 10 b = 15 b = 20 b = 10 b = 15 b = 20 b = 10 b = 15 b = 20

0.02 0.0019 0.0014 0.0010 0.0277 0.0232 0.0204 0.1079 0.1102 0.0966
0.04 0.0037 0.0028 0.0021 0.0495 0.0435 0.0403 0.1871 0.1924 0.1848
0.06 0.0070 0.0049 0.0030 0.0780 0.0735 0.0671 0.3406 0.3597 0.3338
0.08 0.0085 0.0068 0.0040 0.1141 0.0952 0.0867 0.4585 0.4740 0.4426
0.10 0.0100 0.0070 0.0044 0.1370 0.1167 0.1056 0.5897 0.6329 0.5967

Table 12: Average optimality gap for different probabilities that a task has been misclassified.

Evaluation of the Banzhaf value. Since we have assumed a unit cost ci = 1 for each
activity i ∈ N , the defender should monitor those b tasks that, combined, produce the largest
harm reduction. Thus, if the Banzhaf value measures the harm reduction thanks to monitoring
a task well, the optimal set of tasks to monitor should be sufficiently similar to those b tasks
having the highest Banzhaf value. Let SΨ ⊆ N contain the b tasks with the highest Banzhaf
value, then a small optimality gap ϕ(SΨ) corroborates the Banzhaf value as a good measure for
the harm reduction thanks to monitoring a task.

Concave Linear Convex

p0
susp p1

eff b = 10 b = 15 b = 20 b = 10 b = 15 b = 20 b = 10 b = 15 b = 20

0.03 0.09 0.0000 0.0000 0.0000 0.0008 0.0001 0.0002 0.0051 0.0074 0.0057
0.03 0.15 0.0002 0.0000 0.0000 0.0021 0.0002 0.0006 0.0029 0.0046 0.0050
0.03 0.21 0.0000 0.0000 0.0000 0.0014 0.0018 0.0023 0.0001 0.0009 0.0018

0.05 0.15 0.0000 0.0000 0.0000 0.0015 0.0001 0.0002 0.0163 0.0186 0.0165
0.05 0.25 0.0002 0.0000 0.0000 0.0007 0.0005 0.0010 0.0595 0.0591 0.0336
0.05 0.35 0.0001 0.0000 0.0000 0.0010 0.0009 0.0022 0.0440 0.0402 0.0183

0.07 0.21 0.0000 0.0000 0.0000 0.0005 0.0002 0.0004 0.0076 0.0059 0.0045
0.07 0.35 0.0002 0.0000 0.0000 0.0003 0.0005 0.0023 0.0246 0.0241 0.0196
0.07 0.49 0.0002 0.0000 0.0000 0.0008 0.0006 0.0019 0.0351 0.0290 0.0157

Table 13: Average optimality gap with Banzhaf value for different discovery probabilities.

Table 13 displays the average optimality gap ϕ(SΨ) for nine alternative settings for the
discovery probabilities corresponding to each of the three classes of Table 6, averaged over 100
repetitions of the suspicious tasks’ random subdivision into the first two classes. For the innocent
tasks, we use the same discovery probabilities as in Table 6 and for the suspicious ones we
consider p0

susp ∈ {0.03, 0.05, 0.07} as the exposure probabilities without monitoring. To obtain
the discovery probabilities with monitoring, we multiply p0

susp by two for the case of ineffective
monitoring and by either 3, 5, or 7 for effective monitoring; we denote this latter probability
by p1

eff. Table 6 then corresponds to p0
susp = 0.05 and p1

eff = 0.25.
With an optimality gap never exceeding 5.95%, our computational results suggest that the

Banzhaf value constitutes a good measure for the harm reduction by monitoring a task. We have
also experimented with the Shapley value instead of the Banzhaf value and obtained very similar
findings.
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6 Discussion

In this paper, we have introduced a new problem setting in which a defender wants to discover
whether some attacker is conducting a covert project that would harm the defender. Although
reality is too complex to apply our results without modification, our model does capture the key
dynamics of the defender’s problem setting while being sufficiently tractable to yield insights. As
such, our findings provide a quantitative basis that, we hope, will spur further discussions and
will lead to better-informed decision making.

We have formalized a novel zero-sum game – the secret project game – and derived a Nash-
equilibrium for this game. Despite the problem’s NP-hardness, our pseudo-polynomial-time
dynamic program can handle realistically-sized instances, and thus it effectively supports the
defender in determining how to allocate her limited intelligence resources. Through an innovative
use of cooperative game theory, we were able to evaluate the performance of different tasks’
intelligence effort and to understand why this performance may differ. In particular, we have
introduced and analyzed a cooperative game – the monitoring game – and derived an intuitive
and polynomial-time-computable expression for its Banzhaf value as a measure for the harm
reduction thanks to monitoring a task.

Our main insights are that (i) the late-start schedule is a dominant attacker strategy, (ii) the
marginal contribution of monitoring a task decreases as more tasks are being monitored, and
(iii) a task is more desirable to monitor if it has an earlier late-start time sλi and a lower ratio
of non-discovery probabilities q1

i /q
0
i . Thus, when estimating the progress (Godfrey et al. 2007)

or duration (Kaplan 2012a) of a terrorist plot, intelligence services should take into account
terrorists’ tendency to start activities as late as possible. Additionally, if the defender already
monitors many tasks, increasing the budget is relatively ineffective; instead, the defender could
employ the budget to improve the response after eventual discovery (Brown et al. 2009). The
third finding, finally, advocates for not only focusing on those activities that are easiest to detect,
but to take into account also the timing of eventual detection. This contrasts with recent efforts
in both counter-terrorism (Lasoen 2018) and the non-proliferation of nuclear weapons (Kemp
2016), where considerable attention goes to monitoring tasks that are relatively easy to detect
but occur late in the project.

This paper is only the first to consider which activities to monitor in order to expose a com-
petitor’s project, and still many dimensions of the problem remain unexplored. For example, it
would be interesting to enrich the attacker’s strategy set by allowing for deception and crashing
(Pinker et al. 2013). Other extensions include allowing for uncertain activity durations, incorpo-
rating resource constraints for the attacker, or considering a whole portfolio of projects instead
of only a single one. An additional dimension in this latter case would be to superimpose a
social network to exploit the relation between individuals that are involved in multiple projects
(Atkinson & Wein 2010).

Another potential for further research lies in considering a more general discovery process.
Building on the model of Pinker et al. (2013), one could assign a detection weight to each task
and assume that discovery occurs if the total weight of detected tasks exceeds a given threshold.
In line with the article of Atkinson et al. (2016), an important question then arises: how much
evidence should the defender collect before engaging? An additional concern is how to deal
with false-positive detections. More generally, detecting a task may increase the general level
of alertness, which could then affect other tasks’ discovery probabilities (Pinker 2007, Bakshi &
Pinker 2018), and another issue becomes how to update the discovery probabilities. We believe
that there is considerable research potential in trying to incorporate such considerations.
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Appendix: Full instance description

ID Description Part Class sλi S?1 Ψ1 S?2 Ψ2 S?3 Ψ3

3 Design yellowcake plant modifications 1 3 116 · ? ? 0.06 · · · 0.18 · · · 0.01
4 Modify yellowcake plant 1 3 164 · · · 0.02 · · · 0.10 · · · 0.01
5 Divert yellowcake 1 3 212 · · · 0.00 · · · 0.04 · · · 0.01
7 Design fluoridation plant (FP) 2 3 36 ? ? ? 0.42 · ? ? 0.33 · · · 0.01
8 Acquire FP site 2 3 116 · ? ? 0.06 · · · 0.18 · · · 0.01
9 Prepare FP site (internal modifications) 2 3 140 · · · 0.03 · · · 0.14 · · · 0.01

11 Stainless steel mixing vessel 2 3 128 · · ? 0.05 · · · 0.16 · · · 0.01
12 Distilled water system 2 3 128 · · ? 0.05 · · · 0.16 · · · 0.01
13 Nitric acid storage tank 2 3 128 · · ? 0.05 · · · 0.16 · · · 0.01
14 Stainless steel boiler 2 3 128 · · ? 0.05 · · · 0.16 · · · 0.01
15 Thermal decomposition vessel 2 3 128 · · ? 0.05 · · · 0.16 · · · 0.01
16 Drying kiln 2 3 128 · · · 0.05 · · · 0.16 · · · 0.01
17 Gas/solid high-temperature reaction vessel 2 3 128 · · · 0.05 · · · 0.16 · · · 0.01
18 Hydrogen gas (or ammonia) storage tank 2 3 128 · · · 0.05 · · · 0.16 · · · 0.01
19 Stainless steel reaction vessel 2 3 128 · · · 0.05 · · · 0.16 · · · 0.01
20 Hydrogen fluoride storage tank 2 3 128 · · · 0.05 · · · 0.16 · · · 0.01
21 Gas/solid ultrahigh temperature reaction vessel 2 3 128 · · · 0.05 · · · 0.16 · · · 0.01
22 Fluorine storage tank 2 3 128 · · · 0.05 · · · 0.16 · · · 0.01
23 Hexafluoride condensing vessel 2 3 128 · · · 0.05 · · · 0.16 · · · 0.01
24 Pumps and piping 2 3 128 · · · 0.05 · · · 0.16 · · · 0.01
25 Assemble and integrate FP 2 1 164 ? ? ? 0.37 ? ? ? 2.35 ? ? ? 0.30
26 Operate FP 2 1 212 ? ? ? 0.06 ? ? ? 1.03 ? ? ? 0.26
78 Design basic AE enrichment device 3 3 0 ? ? ? 0.94 ? ? ? 0.41 · · · 0.01
80 Vortex unit 3 3 12 ? ? ? 0.72 ? ? ? 0.39 · · · 0.01
81 Pumps and piping 3 3 36 ? ? ? 0.42 · ? ? 0.33 · · · 0.01
82 Assemble research devices 3 2 60 ? ? ? 1.30 ? ? ? 1.53 ? ? ? 0.08
83 Test and evaluate research devices 3 2 84 ? ? ? 0.74 ? ? ? 1.27 ? ? ? 0.08
84 Design production devices 3 3 104 ? ? ? 0.09 · · ? 0.20 · · · 0.01
85 Design enrichment cascade 3 3 112 ? ? ? 0.07 · · · 0.19 · · · 0.01
86 Design of enrichment plant (EP) 3 3 120 · ? ? 0.06 · · · 0.17 · · · 0.01
87 Acquire EP site 3 3 124 · ? ? 0.05 · · · 0.17 · · · 0.01
88 Prepare EP site 3 3 148 · · · 0.03 · · · 0.13 · · · 0.01
90 Vortex unit 3 3 164 · · · 0.02 · · · 0.10 · · · 0.01
91 Pumps and piping 3 3 132 · · · 0.04 · · · 0.15 · · · 0.01
92 Assemble production devices 3 2 172 · ? ? 0.07 ? ? ? 0.48 · ? ? 0.07
93 Integrate enrichment cascade 3 2 188 · · · 0.04 ? ? ? 0.37 · ? ? 0.07
94 Cascade loading 3 2 220 · · · 0.01 · · · 0.21 · · · 0.06

Table 14: Detailed output for nuclear weapons project based on Harney et al. (2006). S?k indicates
whether it is optimal to monitor the task and Ψk gives the Banzhaf value (×100). The subscript
k = 1, 2, 3 refers to the concave, linear, and convex harm function respectively. For S?k , an
asterisk (?) in position r = 1, 2, 3 indicates that it is optimal to monitor the task with budget
b = 10, 15, 20 respectively.
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ID Description Part Class sλi S?1 Ψ1 S?2 Ψ2 S?3 Ψ3

95 Produce enriched and depleted material 3 2 332 · · · 0.00 · · · 0.02 · · · 0.02
97 Design metal plant (MP) 4 3 200 · · · 0.00 · · · 0.06 · · · 0.01
98 Acquire MP site 4 3 212 · · · 0.00 · · · 0.04 · · · 0.01
99 Prepare MP site 4 3 236 · · · 0.00 · · · 0.03 · · · 0.01

101 Gas-phase reactor with particulate collection 4 2 232 · · · 0.01 · · · 0.18 · · · 0.06
102 Hydrogen storage tank 4 3 232 · · · 0.00 · · · 0.03 · · · 0.01
103 Metallurgical furnace 4 3 232 · · · 0.00 · · · 0.03 · · · 0.01
104 Hafnia crucibles 4 3 232 · · · 0.00 · · · 0.03 · · · 0.01
106 Gas-phase reactor with particulate collection 4 2 232 · · · 0.01 · · · 0.18 · · · 0.06
107 Hydrogen storage tank 4 3 232 · · · 0.00 · · · 0.03 · · · 0.01
108 Metallurgical furnace 4 3 232 · · · 0.00 · · · 0.03 · · · 0.01
109 Hafnia crucibles 4 3 232 · · · 0.00 · · · 0.03 · · · 0.01
110 Integrate components 4 1 260 · · · 0.01 ? ? ? 0.50 ? ? ? 0.21
111 Produce natural uranium metal 4 2 292 · · · 0.00 · · · 0.06 · · · 0.04
112 Produce depleted/enriched uranium metal 4 2 332 · · · 0.00 · · · 0.02 · · · 0.02
115 Gun 5 2 208 · · · 0.02 · ? ? 0.25 · ? ? 0.06
116 Propellant 5 3 208 · · · 0.00 · · · 0.05 · · · 0.01
118 Fissionable receiver 5 2 208 · · · 0.02 · ? ? 0.25 · ? ? 0.06
119 Fissionable projectile 5 2 208 · · · 0.02 · · ? 0.25 · · ? 0.06
120 Tamper 5 2 208 · · · 0.02 · ? ? 0.25 · · ? 0.06
121 Initiator 5 2 208 · · · 0.02 · · ? 0.25 · · ? 0.06
122 Safety and arming devices 5 2 208 · · · 0.02 · · ? 0.25 · · ? 0.06
123 Fuse 5 2 208 · · · 0.02 · · ? 0.25 · · ? 0.06
124 Design weapon assembly plant (AP) 5 2 256 · · · 0.00 · · · 0.12 · · · 0.05
125 Acquire AP site 5 1 280 · · · 0.01 ? ? ? 0.34 ? ? ? 0.18
126 Prepare AP site 5 2 296 · · · 0.00 · · · 0.05 · · · 0.04
128 Large-diameter precision lathe 5 3 284 · · · 0.00 · · · 0.01 · · · 0.01
129 Inert-gas environment precision milling machine 5 3 300 · · · 0.00 · · · 0.01 · · · 0.01
130 Metallurgical furnace 5 3 292 · · · 0.00 · · · 0.01 · · · 0.01
131 Hafnia crucibles 5 3 300 · · · 0.00 · · · 0.01 · · · 0.01
132 Inert-gas environment casting system 5 3 300 · · · 0.00 · · · 0.01 · · · 0.01
134 High-strength steel cylinder 5 3 308 · · · 0.00 · · · 0.01 · · · 0.01
135 Double-base propellant powder 5 3 308 · · · 0.00 · · · 0.01 · · · 0.01
136 Polonium 5 2 308 · · · 0.00 · · · 0.04 · · · 0.03
137 Beryllium powder 5 2 308 · · · 0.00 · · · 0.04 · · · 0.03
138 Detonator and explosive train components 5 2 308 · · · 0.00 · · · 0.04 · · · 0.03
140 Gun barrel 5 2 332 · · · 0.00 · · · 0.02 · · · 0.02
141 Breech mechanism 5 2 332 · · · 0.00 · · · 0.02 · · · 0.02
142 Cast uranium components 5 2 340 · · · 0.00 · · · 0.01 · · · 0.02
143 Cast uranium tamper 5 2 348 · · · 0.00 · · · 0.01 · · · 0.01
144 Machine uranium receiver 5 1 348 · · · 0.00 · · · 0.03 ? ? ? 0.06
145 Machine uranium projectile 5 2 348 · · · 0.00 · · · 0.01 · · · 0.01
146 Machine uranium tamper 5 2 348 · · · 0.00 · · · 0.01 · · · 0.01
147 Initiator 5 2 348 · · · 0.00 · · · 0.01 · · · 0.01
148 Propellant charge 5 1 348 · · · 0.00 · · · 0.03 ? ? ? 0.06
149 Detonator and explosive train 5 1 348 · · · 0.00 · · · 0.03 ? ? ? 0.06
150 Assemble research devices (natural uranium prototype) 5 2 352 · · · 0.00 · · · 0.01 · · · 0.01
152 High-strength steel cylinder 5 3 332 · · · 0.00 · · · 0.00 · · · 0.00
153 Double-base propellant powder 5 3 332 · · · 0.00 · · · 0.00 · · · 0.00

Table 14: Detailed output for nuclear weapons project based on Harney et al. (2006) (continued).
S?k indicates whether it is optimal to monitor the task and Ψk gives the Banzhaf value (×100).
The subscript k = 1, 2, 3 refers to the concave, linear, and convex harm function respectively.
For S?k , an asterisk (?) in position r = 1, 2, 3 indicates that it is optimal to monitor the task with
budget b = 10, 15, 20 respectively.
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ID Description Part Class sλi S?1 Ψ1 S?2 Ψ2 S?3 Ψ3

154 Polonium 5 2 332 · · · 0.00 · · · 0.02 · · · 0.02
155 Beryllium powder 5 1 332 · · · 0.00 · · · 0.07 ? ? ? 0.08
156 Detonator and explosive train components 5 2 332 · · · 0.00 · · · 0.02 · · · 0.02
158 Gun barrel 5 2 356 · · · 0.00 · · · 0.01 · · · 0.01
159 Breech mechanism 5 2 356 · · · 0.00 · · · 0.01 · · · 0.01
160 Casting of enriched uranium components 5 2 356 · · · 0.00 · · · 0.01 · · · 0.01
161 Cast depleted uranium tamper 5 2 372 · · · 0.00 · · · 0.00 · · · 0.01
162 Machine enriched uranium receiver 5 1 364 · · · 0.00 · · · 0.02 · ? ? 0.04
163 Machine enriched uranium projectile 5 2 364 · · · 0.00 · · · 0.00 · · · 0.01
164 Machine depleted uranium tamper 5 2 364 · · · 0.00 · · · 0.00 · · · 0.01
165 Initiator 5 2 372 · · · 0.00 · · · 0.00 · · · 0.01
166 Propellant charge 5 2 372 · · · 0.00 · · · 0.00 · · · 0.01
167 Detonator and explosive train 5 2 372 · · · 0.00 · · · 0.00 · · · 0.01
168 Assemble research devices (enriched uranium prototype) 5 2 368 · · · 0.00 · · · 0.00 · · · 0.01
170 Verify critical mass 5 2 384 · · · 0.00 · · · 0.00 · · · 0.01
171 Verify gun velocity 5 2 372 · · · 0.00 · · · 0.00 · · · 0.01
172 Delivery vehicle compatibility mock-up 5 2 396 · · · 0.00 · · · 0.00 · · · 0.01
173 Test full-scale device (not required) 5 2 420 · · · 0.00 · · · 0.00 · · · 0.00
174 Finalize production-weapon design 5 2 380 · · · 0.00 · · · 0.00 · · · 0.01
176 High-strength steel cylinder 5 3 396 · · · 0.00 · · · 0.00 · · · 0.00
177 Double-base propellant powder 5 3 396 · · · 0.00 · · · 0.00 · · · 0.00
178 Polonium 5 2 396 · · · 0.00 · · · 0.00 · · · 0.01
179 Beryllium powder 5 2 396 · · · 0.00 · · · 0.00 · · · 0.01
180 Detonator and explosive train components 5 2 396 · · · 0.00 · · · 0.00 · · · 0.01
182 Gun barrel 5 1 420 · · · 0.00 · · · 0.00 · · · 0.01
183 Breech mechanism 5 2 420 · · · 0.00 · · · 0.00 · · · 0.00
184 Cast enriched uranium components 5 1 444 · · · 0.00 · · · 0.00 · · · 0.01
185 Cast depleted uranium tamper 5 2 396 · · · 0.00 · · · 0.00 · · · 0.01
186 Machine enriched uranium receiver 5 2 420 · · · 0.00 · · · 0.00 · · · 0.00
187 Machine enriched uranium projectile 5 1 420 · · · 0.00 · · · 0.00 · · · 0.01
188 Machine depleted uranium tamper 5 1 420 · · · 0.00 · · · 0.00 · · · 0.01
189 Initiator 5 2 420 · · · 0.00 · · · 0.00 · · · 0.00
190 Propellant charge 5 2 420 · · · 0.00 · · · 0.00 · · · 0.00
191 Detonator and explosive train 5 2 420 · · · 0.00 · · · 0.00 · · · 0.00
192 Fuse 5 2 420 · · · 0.00 · · · 0.00 · · · 0.00
193 Safety and arming device 5 2 420 · · · 0.00 · · · 0.00 · · · 0.00
194 Weapon case and structure 5 2 420 · · · 0.00 · · · 0.00 · · · 0.00
195 Assemble weapon components 5 2 444 · · · 0.00 · · · 0.00 · · · 0.00

Table 14: Detailed output for nuclear weapons project based on Harney et al. (2006) (continued).
S?k indicates whether it is optimal to monitor the task and Ψk gives the Banzhaf value (×100).
The subscript k = 1, 2, 3 refers to the concave, linear, and convex harm function respectively.
For S?k , an asterisk (?) in position r = 1, 2, 3 indicates that it is optimal to monitor the task with
budget b = 10, 15, 20 respectively.
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