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Abstract

The composite quantile estimator is a robust and efficient alternative to the least-squares

estimator in linear models. However, it is computationally demanding when the number

of quantiles is large. We consider a model-averaged quantile estimator as a computation-

ally cheaper alternative. We derive its asymptotic properties in high-dimensional linear

models and compare its performance to the composite quantile estimator in both low- and

high-dimensional settings. We also assess the effect on efficiency of using equal weights,

theoretically optimal weights, and estimated optimal weights for combining the different

quantiles. None of the estimators dominates in all settings under consideration, thus leaving

room for both model-averaged and composite estimators, both with equal and estimated

optimal weights in practice.

Keywords: Quantile regression; model averaging; composite estimation; penalized esti-

mation; weight choice.

1 Introduction

For low-dimensional linear regression models, ordinary least squares (OLS) estimation is the com-

mon approach. Under standard assumptions, OLS provides the minimum-variance (a.k.a. best)

estimator in the class of linear unbiased estimators. However, it may misbehave when the error

distribution has heavy tails. This motivated the seminal Koenker and Bassett (1978) paper that

introduced quantile regression as a robust alternative to OLS. Unsurprisingly, robustness does

not come at zero cost; the quantile estimator is relatively less efficient than its OLS counterpart

for certain light-tailed distributions such as the Gaussian. Efforts to find robust yet efficient

estimators have persisted. Koenker (1984) considered weighted composite quantile regression

(weighted CQR) and weighted model-averaged quantile regression (weighted MAQR) as more

efficient alternatives to the regular single-quantile estimator. He showed that both estimators

are more efficient than the single-quantile one, and that both achieve the same lower bound of

asymptotic variance, given a suitable choice of weights that depend on the error distribution.

The origins of MAQR can be found already in Koenker and Bassett (1978), while the idea of

CQR was proposed by R.V. Hogg in 1979; see (Koenker, 1984, 2005). The literature has con-

tinued expanding on the composite quantile regression (see Zou and Yuan, 2008; Bradic et al.,

2011; Jiang et al., 2012, 2014). Meanwhile, the model-averaged quantile regression has garnered

little attention (with a recent exception of Zhao and Xiao, 2014), although it is computationally
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cheaper than CQR, and the difference in the computational cost becomes prohibitive when the

number of quantiles employed is larger than about ten.

For high-dimensional models, only the composite estimator has been considered (Bradic

et al., 2011). We introduce its model-averaged counterpart, obtain optimal weights for the

different quantiles under a given error distribution, and compare CQR and MAQR in terms of

asymptotic relative efficiency and finite-sample performance. We also draw attention to the fact

that when the error distribution is unknown, theoretically optimal weights are unavailable. They

need to be estimated from the data and thus become random variables. Therefore, optimality

results for plug-in versions of the theoretically optimal weights may change. This is similar in

spirit to the forecast combination puzzle (e.g. Claeskens et al., 2016, and references therein)

where estimated optimal weights in forecast combinations may yield poorer results than equal

weights. Moreover, the asymptotic distributions of the CQR and MAQR estimators under

estimated optimal weights are less straightforward to obtain than under fixed weights. We

examine in simulations whether estimated optimal weights or equal weights perform better in

practice.

In Section 2 we first review the composite and model-averaged linear quantile estimators

in low-dimensional regression models. We contribute with a theoretical comparison of equal

weights and optimal weights for both types of estimators. Section 3 proceeds with composite and

model-averaged estimation in high-dimensional regression models under a sparsity assumption.

We obtain the limiting asymptotic distribution of a high-dimensional model-averaged quantile

estimator and use the distribution to propose a vector of optimal weights. A simulation study

in Section 4 and a data example in Section 5 show the estimators’ performance in practice.

2 Low-dimensional linear quantile regression

Consider a linear model Y = Xβ + ε, with a n × 1-vector Y of dependent variables and a

n × p matrix X of fixed regressors. For the errors ε = (ε1, . . . , εn)> we denote the cumulative

distribution of εj by F , and its density function by f . We assume the errors are independent

and identically distributed.

Given a single quantile level 0 < τ < 1, an estimator of the 100τ% quantile of the response

Y in the linear model is defined as

(b̂τ , β̂
>
τ ) = arg min

bτ ,β

n∑
i=1

ρτ (Yi − bτ −X>i β), (1)

where b̂τ is the estimator of the quantile intercept bτ , β̂τ is the estimator of the slopes β, and

ρτ (z) = τI(z ≥ 0)z + (τ − 1)I(z < 0)z. The true 100τ% quantile of Y given Xi is X>i β + bτ ,

where bτ = F−1(τ) is the 100τ% quantile of the distribution of the error term ε. Hence, the

only regression parameter that depends on the quantile level is the quantile intercept bτ , while

the true slopes β are the same for all quantiles.
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2.1 Composite and model-averaged estimators

For multiple quantile levels 0 < τ1 < . . . < τk < 1, the equally-weighted CQR estimator is

defined as

(b̂τ1,comp, . . . , b̂τk,comp, β̂
>
comp)(1k/k) = arg min

bτ1 ,...,bτk ,β

k∑
l=1

n∑
i=1

ρτl(Yi − bτl −X
>
i β), (2)

the vector (b̂τ1,comp, . . . , b̂
>
τk,comp, β̂comp) depending on the weights 1k/k, where 1k is a vector of

length k consisting of ones. In (2), the estimating functions from the single quantile regression

models as in equation (1) are simply summed, or equivalently, all given the same weight. A

more general result, see Koenker (1984) and Koenker (2005, Sec. 5.5), is to allow for different

weights ν = (ν1, . . . , νk), resulting in the weighted CQR estimator

(b̂τ1,comp, . . . , b̂τk,comp, β̂
>
comp)(ν) = arg min

bτ1 ,...,bτk ,β

k∑
l=1

νl

n∑
i=1

ρτl(Yi − bτl −X
>
i β).

This approach of getting composite estimators by linearly combining the estimating func-

tions has become quite popular, especially in quantile regression. Zou and Yuan (2008) consider

equally-weighted penalized CQR in a high-dimensional setting as an alternative to penalized

least squares estimation. They develop an oracle estimator that is at worst 30% less efficient

than the penalized least squares estimator but in other cases can be arbitrarily more efficient.

For example, it works well when the variance of the error distribution is infinite, where the

penalized least squares estimator fails. Bradic et al. (2011) consider a weighted penalized CQR

estimator and its oracle properties when the error distribution is unknown. They build on an

idea that the loss function of the CQR with data-driven adaptive weights can approximate the

true likelihood of the error distribution well and as such can lead to efficient estimation. Jiang

et al. (2012) extend the research on robust yet efficient estimation and model selection in high

dimensions to nonlinear models. They use weighted CQR and achieve consistent model selection

together with estimation efficiency that is near that of the maximum likelihood estimator. Jiang

et al. (2014) consider weighted CQR estimator for autoregressive conditionally heteroskedastic

models and demonstrate its robustness and efficiency.

Model averaging is an alternative to composite estimation. Focusing only on the slopes β,

one may obtain different quantile estimators β̂τl , l = 1, . . . , k, from equation (1) and take their

weighted average, to arrive at a weighted MAQR estimator

β̂mod.avg(ω) =
k∑
l=1

ωlβ̂τl ,

where ω = (ω1, . . . , ωk)
> is a vector of weights. In model averaging, one usually restricts the

weights to sum to one,
∑k

l=1 ωl = 1. Another restriction that one might or might not impose is

that the weights lie within [0, 1]. This estimator has recently been considered by Zhao and Xiao

(2014) in a low-dimensional setting.
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The main question we wish to investigate is, which approach is preferred: (1) separate

estimation using different quantile levels τl, l = 1, . . . , k, which is a simple procedure, followed

by a weighted average of the estimators to arrive at β̂mod.avg, or (2) a single, though more

complicated, estimation with a weighted loss function that immediately results in an estimator

β̂comp?

2.2 Asymptotic relative efficiency

For the low-dimensional case, part of the answer to this question has been given by Koenker

(1984), see also Koenker (2005, Th. 5.2). Under the assumption that
∑k

l=1 νl = 1 to guaran-

tee consistency, and some additional assumptions to ensure the distribution of errors and the

regressors are well behaved, he obtains that for n → ∞ there is a limiting mean-zero normal

distribution for
√
n(β̂comp(ν)− β) with asymptotic covariance matrix

Q−1
∑k

l,l′=1 νlνl′ min(τl, τl′){1−max(τl, τl′)}
{
∑k

l,l′=1 νlνl′f(bτl)f(bτl′ )}2
= Q−1ν>Aν/(ν>f)2,

where f is the density function corresponding to F , Q = limn→∞{ 1nX
>X},

f = (f(bτ1), . . . , f(bτk))>, ν = (ν1, . . . , νk)
> and the k × k matrix A is formed by the entries

all′ = min(τl, τl′){1−max(τl, τl′)} for l, l′ = 1, . . . , k.

In order to study the asymptotic distribution of the model-averaged estimator we need

the joint limiting distribution of the estimators β̂τl for l = 1, . . . , k. Koenker and Bassett (1978)

obtain the limiting normal distribution of a vector of quantile regression estimators

√
n{(β̂>τ1 , . . . , β̂

>
τk

)− (β>, . . . , β>)}.

This limiting distribution has mean zero and a covariance matrix Ω ⊗ Q−1 where ⊗ denotes

the Kronecker product and where the k× k matrix Ω has l, l′ entry equal to all′/{f(bτl)f(bτl′ )}.
This immediately leads to the asymptotic normality of β̂mod.avg. Denote the vector of weights

ω = (ω1, . . . , ωk)
>. It follows that, when n→∞, with β̃ = (

∑k
l=1 ωl)β,

√
n(β̂mod.avg(ω)− β̃)

d→ N(0, ω>ΩωQ−1). (3)

When the weights sum to 1, β̃ = β and both the CQR and the MAQR estimators are

asymptotically unbiased. A comparison of the asymptotic mean squared error (MSE) values of

β̂mod.avg and β̂comp boils down to comparing the asymptotic variances. The asymptotic relative

efficiency (ARE) of the model-averaged and the composite estimators is

ARE{β̂mod.avg(ω), β̂comp(ν)} =
asyVar β̂mod.avg(ω)

asyVar β̂comp(ν)
=

k∑
l,l′=1

ωlωl′
al,l′

f(bτl)f(bτl′ )

{
∑k

j=1 νjf(bτj )}2∑k
j,j′=1 νjνj′aj,j′

.

Using inequalities related to eigenvalues of the matrix A, Koenker (2005, Th. 5.2, Cor. 5.1)

explains that there exists a choice of the weight vectors ω and ν such that both estimators,
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β̂mod.avg(ω) and β̂comp(ν), achieve the same lower bound for the asymptotic variance, asyVar =

(f>A−1f)−1. That is, both estimators can achieve the same efficiency and with optimal weights

the ARE of the two estimators is 1. The optimal choices of the weights ω and ν follow expressions

ωopt = (f>A−1f)−1diag(f)A−1f and νopt = A−1f .

Consequently, one may conclude that both approaches are worth pursuing, each with its own

optimal choice of weights depending on the choice of the quantile levels τl, l = 1, . . . , k and on

the true error distribution f .

Note that some components of the optimal weight vectors ωopt and νopt may be negative.

From the perspective of estimation algorithms, this causes no difficulty for the MAQR estimator

as the weighting is done after having estimated the individual regressions for each quantile.

However, it is a bigger problem in the composite regression setting. There, negative weights lead

to nonconvexity of the objective function and thus conventional convex optimization algorithms

cannot be applied. In practice this may be prohibitive and may effectively prevent the use of

the CQR estimator when some of the weights are negative.

2.3 Weights: theoretically optimal versus estimated optimal versus equal

The optimal weights ωopt and νopt are often not computable due to an incompletely specified

density function f , which may be either entirely unknown in a nonparametric setting, or partly

unknown in a parametric setting. When estimators replace unknown quantities in the compu-

tation of optimal weights, the resulting estimated weights ω̂ and ν̂ are obviously random. While

ωopt and νopt minimize the asymptotic variance of, respectively, β̂mod.avg(ω) and β̂comp(ν), no

such guarantee can be given for their estimated counterparts ω̂ and ν̂. In fact, it might well be

the case that an equally-weighted estimator yields a lower mean squared error than its counter-

part with estimated optimal weights. This phenomenon is known as the ‘forecast combination

puzzle’ (e.g., Smith and Wallis, 2009). Claeskens et al. (2016) worked out first and second mo-

ments of the forecast combination with estimated weights and showed that such a phenomenon

may take place when estimation uncertainty is neglected while deriving the optimal weights.

Whereas explicit formulas of moments are harder to obtain for the quantile estimators, it is

immediately clear that the same problem may occur. Indeed, for the model-averaged estimator

with estimated optimal weights,

E[β̂mod.avg(ω̂)] =
k∑
l=1

E[ω̂lβ̂τl ],

Var[β̂mod.avg(ω̂)] =
k∑
l=1

Var[ω̂lβ̂τl ] + 2
k∑
l=1

k∑
l′=1, l′<l

Cov[ω̂lβ̂τl , ω̂l′ β̂τl′ ].

Both quantities depend on the joint distribution of the weight vector ω̂ and the vector of quan-

tile estimators (β̂τ1 , . . . , β̂τk). A similar argument holds for the composite quantile estimator

with estimated weighs ν̂. Since ωopt and νopt are the theoretical minimizers of the fixed-weight
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asymptotic variances, using estimated weights ω̂ and ν̂ of course results in values of the asymp-

totic variance that are at least as large as the minimal variance. Moreover, the asymptotic

variance of the estimator with estimated weights may exceed its counterpart with equal weights.

Hence, when the joint distribution of the estimated weights and the estimated quantile slopes

is not available, one might as well resort to employing the simpler equal weights. A simu-

lated comparison of equally-weighted versus optimally-weighted MAQR estimator is offered in

Section 4.

To avoid the estimation of optimal weights when the error distribution is unknown, we

might use the equally-weighted MAQR estimator where ωl = 1/k for l ∈ {1, . . . , k}; or the

equally-weighted CQR estimator (2) of Zou and Yuan (2008). First, we find the choice of the

weights ω of the model-averaged estimator that achieves the same ARE as the equally-weighted

composite estimator with ν = 1k/k. The equally-weighted composite estimator gains precisely

the same asymptotic variance as a weighted model-averaged estimator with weights proportional

to the density f(bτl), denoted ω
[1]
l , that is, ω

[1]
l = f(bτl)/{

∑k
j=1 f(bτj )}. Thus more weight is

assigned to the quantile estimator b̂τl for which the density f(bτl) is larger. Indeed, it can be

verified that

ARE{β̂mod.avg(ω[1]), β̂comp(1k/k)} = 1.

Meanwhile, taking equal weights for the model-averaged estimator corresponds to the

same asymptotic variance as when using the perhaps less intuitive weights ν
[1]
l = 1/f(bτl) for

the composite estimator, since it is readily verified that

ARE{β̂comp(ν[1]), β̂mod.avg(1k/k)} = 1.

Here, for the composite estimator to get the same efficiency as the equally-weighted model-

averaged estimator, one should weight inversely proportional to the density, thus giving higher

weights to the low-density areas.

Replacing optimal weights by equal weights will generally lead to a less efficient estima-

tor, and the effect will vary depending on the error distribution and the number of quantiles

under consideration. Figure 1 contains the asymptotic relative efficiency of the equally-weighted

MAQR estimator and the equally-weighted CQR estimator to their respective optimally-weighted

counterparts. Hence, the vertical axis measures the values of the asymptotic relative efficiencies

ARE({β̂mod.avg(1k/k), β̂mod.avg(ωopt)} and ARE({β̂comp(1k/k), β̂comp(νopt)}. Different panels

correspond to different error distributions, and a range of equally-spaced quantiles k = 1, . . . , 20

is used on the horizontal axis. Note that the optimal asymptotic variance is the same for both

the composite and the model-averaged cases.

Comparing the equally-weighted MAQR estimator to its optimally-weighted counterpart,

we find that the loss in efficiency generally grows with the number of quantiles k, but the growth

rate differs considerably across the different distributions. The loss is negligible for the normal

and the logistic distribution, e.g. at k = 15 the variance ratio equals 1.001 for the normal

distribution and 1.037 for the logistic distribution. Meanwhile, for distributions with heavier

tails, the losses in efficiency are larger, e.g. the variance ratio is 6.017 for the t(1) distribution

and 13.461 for the exponential distribution at k = 15.
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Figure 1: Asymptotic variance of the equally-weighted model-averaged estimator (solid line)

and the equally-weighted composite estimator (dotted line) over the optimal variance for various

distributions and different numbers k of equally-spaced quantiles.

The loss in efficiency of the equally-weighted CQR estimator in relation to its optimally-

weighted counterpart grows with the number of quantiles as well. For the light-tailed normal

distribution the loss is small, e.g. some 3%. This is more than for the MAQR estimator but not

by much. The estimator is fully efficient for the logistic distribution. Unlike its model-averaged

counterpart, the equally-weighted composite estimator is quite efficient for the heavy-tailed

distributions; the variance ratio is only 1.618 for t(1) at k = 15.

For the skewed distributions in the example, exponential and Weibull, there is a significant

loss in efficiency for both equally-weighted methods relative to the optimally-weighted cases.

In general, algebraic calculations reveal the following relationship between the equally-
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weighted composite and model-averaged estimators:

ARE{β̂mod.avg(1k/k), β̂comp(1k/k)} < 1⇔
(f
f

)>
·A · f

f
< 1>k ·A · 1k, (4)

where f/f = (f/f(bτ1), . . . , f/f(bτk))> and f =
∑k

l=1 f(bτl)/k. If this condition holds, the

equally-weighted model-averaged estimator is more efficient than its equally-weighted composite

counterpart. Condition (4) can be verified for different error distributions. For mean-zero

normal distributions, regardless of the variance, and for Student t-distributions with a large-

enough degrees of freedom, the condition is satisfied, implying that model-averaged estimators

with equal weights are more efficient than equally-weighted composite estimators. For example,

for the t(10) distribution when k ≤ 4, model-averaged estimation is better than composite

estimation when both methods use equal weights. For t distributions with 5, 3 and 1 degree of

freedom, model-averaged estimation is equally efficient as composite estimation only for k = 2,

while for values of k ≥ 3 the composite estimation method is better. For the skewed distributions

(exponential and Weibull), the condition fails under all values k ≥ 1, implying that the equally-

weighted composite estimator is the better choice.

3 Weighted quantile estimators in high dimensions

Consider now a sparse high-dimensional linear model as in Bradic et al. (2011),

Y = Xβ + ε (5)

with independent and identically distributed mean-zero errors ε and with p, the number of

columns of X large relative to the sample size n, allowing for an exponential order such that

log(p) = O(nδ) with δ ∈ (0, 1). The number of nonzero components of β, or sparsity, is assumed

to be s = O(nα0) with α0 ∈ (0, 1). Under such circumstances, penalized estimation is employed.

3.1 Penalized composite quantile estimator

Bradic et al. (2011) consider a penalized composite quantile estimator

(b̂τ1,comp,pen, . . . , b̂τk,comp,pen, β̂
>
comp,pen)(ν) (6)

= arg min
bτ1 ,...,bτk ,β


k∑
l=1

n∑
i=1

ρl(Yi − bτl −X
>
i β) + n

p∑
j=1

γλ(|β(0)j |)|βj |


where ρl(z) = τlI(z ≥ 0)z + (τl − 1)I(z < 0)z. For the penalty term, β

(0)
j is an initial slope

estimator and γλ is some function, e.g. the derivative of some penalty function, allowing for

(adaptive) lasso (Tibshirani, 1996; Zou, 2006) where γλ(u) = λ|u|−a for some constant a ≥ 0

and SCAD (Fan and Li, 2001) where γλ(u) = λ[I(u ≤ λ) + max(aλ− x, 0)I(x > λ)/{(a− 1)λ}]
for a > 0.
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A related work of Jiang et al. (2012) addresses estimation of a high-dimensional nonlinear

regression model of the form Y = h(X;β) + ε with a known function h under the assumption

that p = pn is such that p3/n → 0 for n → ∞. They consider penalized estimation using

lasso and SCAD. From Jiang et al. (2012), the weight vector that minimizes the asymptotic

variance of the weighted composite quantile estimator is given by, using the same notation as in

Section 2.2,

ν = (f>A−2f)−1/2A−1f .

These weights may be negative, as the authors explicitly mention.

In Bradic et al. (2011), the optimal value of the weights is given by ν = A−1f to achieve

the lower bound for the variance, (f>A−1f)−1. While such weights may be negative and thus

lead to a nonconvex objective function that is hard to optimize, an alternative weight vector

ν+ is obtained by minimizing ν>Aν subject to having all weights nonnegative and f>ν = 1.

There is no explicit expression for the nonnegative optimal weights ν+. The authors show by

simulations that both types of optimal weights outperform the equally-weighted estimator.

Noteworthy, Bradic et al. (2011) comment upon the computational complexity of the

composite quantile estimation method with a large number of quantiles, but report that usually

k ≤ 10 suffices. Jiang et al. (2012) also suggest that k = 10 is large enough to get close-to-optimal

efficiency.

3.2 Model-averaged penalized quantile estimator

To our knowledge, a model-averaged quantile regression estimator has not yet been investigated

in the high-dimensional setting. We define the estimator as follows,

β̂mod.avg,pen(ω) =

k∑
l=1

ωlβ̂τl,pen,

where

(b̂τl , β̂
>
τl,pen

) = arg min
bτl ,β


n∑
i=1

ρτl(Yi − bτl −X
>
i β) + n

p∑
j=1

γλl(|β
(0)
j |)|βj |

 . (7)

Note that different penalization constants can be used for the separate quantile estimators,

allowing for high flexibility. A major advantage of using the model-averaged penalized quantile

estimator is that optimization is carried out for a single quantile at a time, which makes the

estimator simple and fast to compute.

We now derive, under the same assumptions as in Bradic et al. (2011) the asymptotic

distribution of the penalized model-averaged quantile estimator. We divide the design matrix

X into two parts, X = (Xa, Xb) where the columns of Xa are the columns of X for which the

corresponding components of the coefficient vector β are nonzero. Hence, Xa is the ‘active’

part of the design matrix, with accompanying vector βa. Likewise, Xb is the non-active part,

concomitant to βb, the latter vector consisting of zero components only. Due to the sparsity
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assumption, the dimension of Xa is n × s. When performing model averaging, the estimators

β̂τl,pen, l ∈ {1, . . . , k} may contain different components that are estimated nonzero for different

quantiles τl. Under such a scenario, it is not possible to average the estimated active components

of β. Therefore, instead of the estimators β̂τl,pen we consider predictions of a linear combination

u>β constructed with each of the estimated vectors β̂τl,pen for the different values of l, where u

is a known vector.

Given the assumptions of Bradic et al. (2011, Th. 1), since a single estimation is a special

case of composite estimation, we obtain (i) the existence, (ii) model selection consistency, and

(iii) sign consistency of the estimators β̂τl,pen for l ∈ {1, . . . , k}.
Likewise, with some adaptations to the prediction setting, we arrive at the asymptotic

normality of the model-averaged predictions under the assumptions of Bradic et al. (2011, Th. 2),

including their assumption of perfect asymptotic model selection where only the active variables

are estimated as nonzero. Care is required since the matrix corresponding to the active set,

Qa = limn→∞
1
nX
>
a Xa, has growing dimension when n→∞. As the dimension of β also grows

with the sample size n, a correct limiting statement for the distribution of the estimators can be

obtained by considering the limiting distribution of their linear combination. For this purpose,

let Ua be any design matrix of dimension r × s, containing the information about which r ≥ 1

predictions we wish to make.

Proposition 1. Under the above-mentioned assumptions and the assumptions of Theorem 2 of

Bradic et al. (2011), for the model-averaged penalized quantile predictions it holds that

√
n(

1

n
UaX

>
a XaU

>
a )−1/2{ω1Ua(β̂a,τ1,pen − βa) + . . .+ ωkUa(β̂a,τk,pen − βa)}

→d Nr(0, (ω
>Ωω)Ir)

where β̂a,τl,pen is the τl-quantile estimator of the active parameters βa, for l = 1, . . . , k.

Proof. We make use of Kronecker products to rewrite the model-averaged estimator as

k∑
l=1

ωl{β̂a,τl,pen − βa} = (ω> ⊗ Is)(β̂a,τ,pen − 1k ⊗ βa),

where β̂a,τ,pen = (β̂>a,τ1,pen, . . . , β̂
>
a,τk,pen

)>. For vectors of fixed length, β̂a,τ,pen is jointly asymp-

totically normal (Ruppert and Carroll, 1980, Cor. 1). For a growing length, we consider either

linear combinations with a unit vector e in Rs to state the limiting result as

et
√
n(

1

n
X>a Xa)

−1/2(ω ⊗ Is)(β̂a,τ,pen − 1k ⊗ βa)→d N(0, ω>Ωω),

or predictions using a prediction matrix U of fixed dimension r × s to obtain the asymptotic

normality of the model-averaged predictions

k∑
l=1

ωlUa{β̂a,τl,pen − βa} = (ω> ⊗ U)(β̂a,τ,pen − 1k ⊗ βa),

10



by the convergence in distribution of
√
n( 1

nUaX
>
a XaU

>
a )−1/2Ua(ω ⊗ Is)(β̂a,τ,pen − 1k ⊗ βa) to

Ns(0, (ω
>Ωω)⊗Ir). Under the assumption that α0 ∈ [0, 2/3), the estimation bias asymptotically

disappears (Bradic et al., 2011, Th. 2).

Note that here we make the same assumptions as in Bradic et al. (2011), namely, the

effect of the penalty disappears, there is no shrinkage bias, and the asymptotic results are for

the part of the coefficient vector corresponding to the true active set. Hence, there is no selection

uncertainty.

The optimal weights for this scenario can be found by noting the resemblance with the

low-dimensional case (3), from which we readily arrive at the following expression:

ωopt = (f>A−1f)−1diag(f)A−1f .

We might restrict the weights to be nonnegative to mimick the case of the CQR estimator with

nonnegative optimal weights.

To make the model-averaged prediction well defined in practical computations, we define

the prediction matrix U in dimension r×p and denote by Ual the restriction of U to the estimated

active set for the lth penalized quantile estimator. We end up with the model-averaged prediction∑k
l=1 ωlUal β̂al,τl,pen instead of

∑k
l=1 ωlUaβ̂a,τl,pen.

4 Simulation study

4.1 Quantile estimators in low dimensions

Since the low-dimensional case has been well-studied, we restrict our attention to the lesser

known model-averaging estimator and to comparing its equally- versus optimally-weighted ver-

sions. In the simulation study in low dimensions, we consider a linear model

Y = Xβ + ε, where X ∼ N (0,ΣX) and (ΣX)i,j = (0.5)|i−j|, i, j ∈ {1, . . . , p}. (8)

The number of columns in X is set at p = 3, and the coefficient vector at β = (3, 1.5, 2)>.

The number of observations in one simulated sample is n = 100. The error distribution varies

from symmetric to asymmetric and from light- to heavy-tailed: normal N (0, 1); t distribution

with degrees of freedom equal to 1, 2, 3 and 5 (t1, t2, t3 and t5); Beta(3,5); Weibull(1.5, 1);

Logistic(0, 1); and Exponential(1). The simulation is repeated 1000 times for each error dis-

tribution. The design matrix X is generated once by random sampling and is fixed across the

simulation runs.

We implement the equally-weighted composite and model-averaged estimators as well as

the (unrestricted) optimally-weighted model-averaged estimator. The (unrestricted) optimally-

weighted composite estimator could not be implemented due to the nonconvexity of the objective

function in presence of negative weights. We use the R package quantreg (Koenker, 2017).

The equally-weighted estimation is carried out in one step for the CQR estimator and in two

steps for the MAQR estimator; there, first the individual models for the different quantiles are
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estimated, and then the estimators from these models are averaged. The optimally-weighted

MAQR estimation is done as follows:

1. Apply OLS to equation (8) to obtain the residuals. Estimate the optimal weights from the

empirical distribution of the residuals.

2. Estimate individual quantile regressions for all quantiles.

3. Obtain a weighted average of the individual estimators above.

A variation to this scheme uses median regression in step 1, with similar results. We

present the simulation results in Tables 1 and 2. Table 1 shows the ratios of the empirical mean

squared errors of the estimated coefficient vectors β̂ from the equally-weighted MAQR estimator

to the equally-weighted CQR estimator. Simplifying the ratio of MSEs to the ratio of variances is

not possible here, unlike in the previous section, since the two estimators may be biased in finite

samples. MSE ratios below one favour the model-averaged estimator, while those above one

favour the composite one. Apparently, the composite estimator dominates almost everywhere

except for low numbers of quantiles for t1 and t2 distributions. There, the differences in MSEs

are up to 18% to the advantage of the model-averaged estimator, while elsewhere the composite

estimator dominates by up to 64%. The differences in performance are quite small for t3, t5,

and logistic distributions but larger for normal, Beta, Weibull, and exponential distributions.

Additional simulation results at larger sample sizes (n = 103 and 104, not shown) exhibit the

same trend.

f(ε)
/

k : 2 3 4 5 6 7 8 9 10
N (0, 1) 1.22 1.13 1.09 1.07 1.06 1.05 1.04 1.03 1.02
t5 1.10 1.05 1.03 1.03 1.03 1.03 1.03 1.03 1.03
t3 1.02 1.00 1.01 1.02 1.02 1.02 1.03 1.05 1.06
t2 0.96 0.97 0.98 1.01 1.03 1.05 1.08 1.10 1.12
t1 0.82 0.90 0.99 1.11 1.21 1.32 1.43 1.54 1.64

Logistic(0,1) 1.12 1.08 1.06 1.05 1.05 1.04 1.04 1.04 1.04
Beta(3,5) 1.39 1.26 1.19 1.16 1.14 1.12 1.10 1.09 1.08

Weibull(1.5,1) 1.29 1.21 1.17 1.15 1.14 1.13 1.12 1.12 1.12
Exp(1) 1.33 1.31 1.30 1.30 1.31 1.33 1.34 1.35 1.35

Table 1: Simulated relative efficiency of the equally-weighted model-averaged estimator com-

pared to the equally-weighted composite estimator for different distributions and numbers of

quantiles. Ratios less than 1 (colored in gray) indicate that the model-averaged estimator has

lower simulated MSE than the composite estimator.

Table 2 contains ratios of the MSEs of the estimated coefficient vectors β̂ from the

optimally-weighted MAQR estimator to the equally-weighted MAQR estimator. Ratios below

one suggest that the optimally-weighted estimator is more efficient than its equally-weighted

counterpart, while ratios above one signal the opposite. We see that the optimally-weighted

estimator is superior for t2, t3, Beta, and especially Weibull and exponential distributions. For

the latter distribution, the simulated MSEs of the optimally-weighted estimator are up to six or
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f(ε)
/

k : 2 3 4 5 6 7 8 9 10
N (0, 1) 1.00 1.00 1.01 1.01 1.01 1.02 1.02 1.02 1.02
t5 1.00 1.01 1.01 1.01 1.00 1.00 1.00 0.99 0.99
t3 1.00 0.99 0.98 0.96 0.95 0.94 0.93 0.92 0.91
t2 1.01 0.98 0.94 0.91 0.88 0.85 0.84 0.82 0.81
t1 1.04 1.12 1.20 1.32 1.48 1.53 1.55 1.52 1.50

Logistic(0,1) 1.00 1.01 1.00 1.00 1.00 1.01 1.01 1.01 1.01
Beta(3,5) 0.98 0.97 0.95 0.94 0.94 0.93 0.92 0.92 0.92

Weibull(1.5,1) 0.85 0.75 0.68 0.64 0.60 0.57 0.55 0.53 0.52
Exp(1) 0.58 0.40 0.31 0.26 0.23 0.20 0.18 0.16 0.15

Table 2: Simulated relative efficiency of the optimally-weighted model-averaged estimator to the

equally-weighted model-averaged estimator for different distributions and numbers of quantiles.

Ratios less than 1 (colored in gray) indicate that the optimally-weighted estimator has lower

simulated MSE than the equally-weighted estimator.

seven times lower than for the estimator with equal weights. The difference in performance be-

comes larger at larger numbers of quantiles k. On the contrary, the optimally-weighted estimator

underperforms for the t1 distribution with MSEs up to 55% above those of the equally-weighted

estimator. For normal, t5, and logistic distributions, the performance of the two estimators is

on par. Results at larger sample sizes (n = 103 and n = 104) are similar.

An additional simulation (not shown) using the theoretical optimal weights and large

sample sizes reveals a close correspondence to the theoretically expected ratios. Substituting

the OLS by a quantile regression at the median in the first stage of the optimally-weighted

MAQR estimation causes no important difference. Hence, the differences between the results in

Table 2 and the asymptotic analysis are mainly due to the use of estimated weights instead of

theoretically optimal weights. The theoretical results do not take the randomness of the weights

into account and might therefore be unrealistic for practical use. A deeper study of the finite

sample estimation effects is an interesting topic for further research.

4.2 Quantile estimators in high dimensions

In the simulation study for the high-dimensional case, we consider a linear model given in (8),

as in Bradic et al. (2011). We set the dimension p = 150; the number of observations n = 100;

and the true coefficient vector β = (3, 1.5, 0, 2, 0, . . . , 0)>. The error distributions considered are

the same as in the low-dimensional case. The design matrix X is generated once by random

sampling, then fixed thereafter. The simulation is repeated nsim = 1000 times for each error

distribution.

We implement penalized composite and penalized model-averaged estimators using equal

weights and nonnegative optimal weights, while the case of unrestricted optimal weights is

skipped due to the nonconvexity of the objective function of the composite quantile regression.

Equally-spaced quantiles ( 1
k+1 , . . . ,

k
k+1) for k = 2, . . . , 10 are used for all estimators. Estimating

the penalized composite and model-averaged estimators with nonequal weights follows a 2-step
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procedure:

1. Apply penalized estimation, e.g. Lasso or penalized quantile regression, on the model in

(5) to obtain initial slope estimates β̂(0) and residuals; Lasso with 5-fold cross-validation

is considered for the initial estimation here. Estimate the quantile intercepts b̂
(0)
τl as the

empirical τl-level quantile of the residuals. Obtain the nonnegative optimal weights for

the composite estimator as νopt+ = arg minν{ν>Aν/(ν>f)2} subject to ν > 0 and for the

model-averaged estimator as ωopt+ = arg minω{ω>diag(f)−1 ×Adiag(f)−1ω} subject to

ω > 0 as in Sections 3.1 and 3.2, respectively.

2. Optimize the objectives in (6) and (7) using a local linear approximation of the SCAD

penalty with the starting values β(0) and b
(0)
τl for the slope and intercept estimators, re-

spectively. Employ 5-fold cross validation to find the optimal tuning parameters.

The relative efficiency of the penalized composite estimator compared to the model-

averaged estimator is calculated as the ratio of the trace of the empirical MSEs of the two

estimators where we consider the full vector, including the components that are estimated as

zero,

RE{β̂comp.pen(ν), β̂mod.avg.pen(ω)} =

∑nsim
r=1

∑p
j=1{β̂rcomp.pen,j(ν)− βj}2∑nsim

r=1

∑p
j=1{β̂rmod.avg.pen,j(ω)− βj}2

.

The superscript r indicates that the estimator is obtained in the rth simulation run. Similarly,

the relative efficiency of the equally-weighted estimators compared to nonnegative optimally-

weighted estimators is calculated as

RE{β̂pen(1k/k), β̂pen(νopt+)} =

∑nsim
r=1

∑p
j=1{β̂rpen,j(1k/k)− βj}2∑nsim

r=1

∑p
j=1{β̂rpen,j(νopt+)− βj}2

,

which is applicable to both the MAQR and the CQR estimator (thus the subscripts in the

formula above are not specific to either).

The relative efficiency of the composite estimator compared to the model-averaged es-

timator using equal weights and nonnegative optimal weights is reported in Tables 3 and 4,

respectively. Furthermore, the relative efficiency of the equally-weighted estimators compared

to the nonnegative optimally-weighted estimators is presented in Tables 5 and 6. From Tables 3

and 4, we observe that the relative efficiency of the model-averaged estimator compared to the

composite estimator, using equal or nonnegative optimal weights, is rarely close to 1, but none

of the estimators generally dominates the other. Also, for a particular distribution, the relative

efficiency is not necessarily a monotone function of the number of quantiles k.

The performance of the equally-weighted MAQR estimator in relation to its CQR coun-

terpart (Table 3) is superior for Beta, Weibull and exponential distributions with up to 1.64-fold

gains in efficiency; but inferior for t(1) and t(2) distributions with up to 2.18-fold losses, except

for the case of only two quantiles. The cases of normal, logistic, t(3) and t(5) are mixed. There,

having a small or a large number of quantiles favours the model-averaged estimator while having

a medium number of quantiles favours the composite estimator.
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f(ε)
/

k : 2 3 4 5 6 7 8 9 10
N (0, 1) 0.92 0.97 1.01 1.06 1.01 0.97 0.85 0.78 0.70
t5 0.89 0.98 1.08 1.09 1.10 1.02 0.97 0.88 0.78
t3 0.88 1.07 1.10 1.23 1.22 1.15 1.08 0.99 0.90
t2 0.92 1.13 1.31 1.32 1.49 1.39 1.36 1.22 1.16
t1 0.98 1.17 1.72 1.73 1.98 2.07 2.01 2.03 2.18

Logistic(0,1) 0.86 0.99 1.16 1.21 1.25 1.11 1.06 0.97 0.87
Beta(3,5) 0.95 0.90 0.86 0.87 0.84 0.79 0.77 0.70 0.64

Weibull(1.5,1) 0.94 0.92 0.86 0.87 0.82 0.77 0.73 0.68 0.61
Exp(1) 0.89 1.02 0.99 1.01 0.96 0.95 0.89 0.80 0.73

Table 3: Simulated relative efficiency of the equally-weighted model-averaged estimator com-

pared to the equally-weighted composite estimator for different distributions and numbers of

quantiles. Ratios less than 1 (colored in gray) indicate that the model-averaged estimator has

lower simulated MSE than the composite estimator.

f(ε)
/

k : 2 3 4 5 6 7 8 9 10
N (0, 1) 0.99 0.99 1.01 0.93 0.97 0.99 0.93 0.86 0.89
t5 0.95 0.92 0.88 0.92 0.79 0.77 0.71 0.74 0.77
t3 0.98 0.89 0.78 0.77 0.73 0.66 0.66 0.64 0.65
t2 1.09 0.83 0.72 0.61 0.65 0.58 0.58 0.53 0.53
t1 1.06 0.60 0.59 0.51 0.48 0.43 0.52 0.40 0.42

Logistic(0,1) 0.91 0.87 0.83 0.79 0.73 0.73 0.72 0.73 0.67
Beta(3,5) 1.12 1.16 1.21 1.23 1.29 1.29 1.29 1.30 1.30

Weibull(1.5,1) 1.03 1.11 1.18 1.20 1.25 1.25 1.30 1.29 1.32
Exp(1) 0.99 1.09 1.27 1.29 1.48 1.48 1.61 1.63 1.76

Table 4: Simulated relative efficiency of the model-averaged estimator compared to the composite

estimator, both with nonnegative optimal weights, for different distributions and numbers of

quantiles. Ratios less than 1 (colored in gray) indicate that the model-averaged estimator has

lower simulated MSE than the composite estimator.

The MAQR estimator with estimated nonnegative optimal weights is favoured over the

corresponding CQR estimator by logistic and all t distributions (with the exception of k = 2)

with gains in efficiency of up to 2.38 times; the converse is true for Beta, Weibull and exponential

distributions with up to 1.76-fold losses in efficiency (Table 4).

Considering estimated nonnegative optimal weights against equal weights, we confirm that

using equal weights can lead to higher estimation efficiency for both MAQR and CQR, just as the

forecast combination puzzle suggests. The MAQR estimator with estimated weights is compared

to its equally-weighted counterpart in Table 5, where we see a rather mixed picture. Estimated

nonnegative optimal weights are clearly superior in the case of Weibull and exponential distri-

butions; the converse is true for normal, t(5), logistic, and Beta distributions; while t(1), t(2),

and t(3) favour either of the estimators depending on the number of quantiles considered.

The CQR estimator with estimated nonnegative optimal weights outperforms its equally-

weighted counterpart for Beta, Weibull and exponential distributions, and the gains in efficiency
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f(ε)
/

k : 2 3 4 5 6 7 8 9 10
N (0, 1) 1.02 1.14 1.26 1.23 1.27 1.29 1.32 1.25 1.32
t5 1.08 1.23 1.28 1.36 1.22 1.22 1.18 1.18 1.21
t3 0.97 1.11 1.10 1.10 1.10 1.05 1.04 0.98 0.95
t2 1.19 1.17 1.05 1.00 0.97 0.97 0.93 0.87 0.90
t1 1.22 0.95 0.95 0.87 0.78 0.84 0.82 0.81 0.82

Logistic(0,1) 1.08 1.19 1.24 1.25 1.23 1.30 1.24 1.22 1.25
Beta(3,5) 1.13 1.15 1.25 1.26 1.29 1.29 1.30 1.31 1.29

Weibull(1.5,1) 0.88 0.85 0.85 0.83 0.84 0.83 0.82 0.82 0.81
Exp(1) 0.60 0.54 0.51 0.49 0.47 0.45 0.44 0.43 0.42

Table 5: Simulated relative efficiency of the nonnegative optimally-weighted model-averaged esti-

mator to the equally-weighted model-averaged estimator for different distributions and numbers

of quantiles. Ratios less than 1 (colored in gray) indicate that the estimator with nonnegative

optimal weights has lower simulated MSE than the equally-weighted estimator.

f(ε)
/

k : 2 3 4 5 6 7 8 9 10
N (0, 1) 0.94 1.12 1.26 1.41 1.33 1.26 1.21 1.13 1.04
t5 1.00 1.31 1.57 1.62 1.69 1.62 1.60 1.40 1.22
t3 0.87 1.34 1.54 1.74 1.84 1.84 1.70 1.51 1.32
t2 1.00 1.60 1.91 2.17 2.24 2.30 2.18 2.02 1.95
t1 1.13 1.83 2.75 2.97 3.20 4.03 3.19 4.09 4.29

Logistic(0,1) 1.02 1.35 1.75 1.91 2.09 1.98 1.84 1.61 1.61
Beta(3,5) 0.97 0.89 0.89 0.89 0.84 0.79 0.77 0.71 0.64

Weibull(1.5,1) 0.80 0.70 0.62 0.60 0.54 0.51 0.46 0.43 0.37
Exp(1) 0.53 0.50 0.39 0.39 0.31 0.29 0.24 0.21 0.17

Table 6: Simulated relative efficiency of the nonnegative optimally-weighted composite estimator

to the equally-weighted composite estimator for different distributions and numbers of quantiles.

Ratios less than 1 (colored in gray) indicate that the estimator with nonnegative optimal weights

has lower simulated MSE than the equally-weighted estimator.

increase with the number of quantiles. It underperforms under normal, logistic and t distribu-

tions, except for the case of only two quantiles. The losses in efficiency are the largest for t(1),

t(2), and logistic distributions. The effect of changing the number of quantiles is nonmonotonic.

Tables 3 to 6 show the relative performance of pairs of estimators (model-averaged against

composite, and optimally-weighted against equally-weighted). But which estimator is the overall

best for a given distribution and a given number of quantiles? Table 7 provides a summary.

On the whole, composite estimation (denoted by hollow symbols) tends to dominate model-

averaged estimation (denoted by filled-in symbols). Next, equal weights (denoted by circles)

tend to dominate estimated nonnegative optimal weights (denoted by triangles). However, each

estimator gets to be the best at least in a few cases, thus there is room for all of them in

practice. The underperformance of the model-averaged estimator should be weighted against

its computational efficiency, such that in order to save time less accurate estimation could

sometimes be acceptable. Also, over a fixed time interval the model-averaged estimator with
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f(ε)
/

k : 2 3 4 5 6 7 8 9 10 30
N (0, 1)   # # #      
t5   # # # #     
t3 N # # # # # # N N N
t2  # # # # # # # # N
t1  # # # # # # # # N

Logistic(0,1)   # # # # #    
Beta(3,5)  M       M  

Weibull(1.5,1) M M M M M M M M M N
Exp(1) N M M M M M M M M N

Table 7: Estimator with the lowest simulated MSE among the four estimators for different dis-

tributions and numbers of quantiles. #– composite estimator with equal weights; M– composite

estimator with estimated nonnegative optimal weights;  – model-averaged estimator with equal

weights; N– model-averaged estimator with estimated nonnegative optimal weights. The last

column only considers the model-averaged estimators with equal and estimated nonnegative

optimal weights because the composite estimators are too expensive to compute for k = 30.

many quantiles would be competing against a composite estimator with few quantiles. Therefore,

for some distributions a relatively higher efficiency of the model-averaged estimator against the

composite one could be expected as compared to the values indicated in the tables.

We have repeatedly noted the computational advantages of the MAQR estimator over the

CQR estimator. A quantitative assessment of the high-dimensional case is given in Table 8.

While the computational time does not differ much for k = 2 quantiles, the MAQR estimator is

between 2 and 9 times faster for k = 10, depending on the distribution. For MAQR the compu-

tation time increases linearly with the number of quantiles, while the increase in execution time

may be more rapid for CQR (the precise speed depends on the algorithms used for optimizing

the CQR objective). In our example with the Weibull distribution, CQR estimation takes 6.4

seconds at k = 2 and 514.7 seconds at k = 30. On the other hand, MAQR takes 7.7 seconds for

k = 2 and only 63.9 seconds for k = 30.

4.3 Model-averaged estimator in yet higher dimensions

The computational simplicity of the MAQR estimator allows examining its performance in even

higher dimensions. In this section, we analyze the same linear model (8) as before, but increase

the column dimension of the design matrix X to p = 500 and the number of observations to

n = 200. We compare three levels of sparsity defined by the number of nonzero elements in

the coefficient vector β: a high-sparsity case of s = 3, a medium-sparsity case of s = 100 and a

low-sparsity case of s = 200. The error distributions and the numbers of quantiles considered

are the same as before. The nonzero components of the true coefficient vector are generated once

by randomly sampling s values from 500 independent realizations of a standard normal random

variable (the seed number for the random sampling is set to 1 in R software). The simulation is

repeated nsim = 1000 times for each error distribution, and the results are reported in Table 9.

In the high-sparsity case of s = 3, the estimated nonnegative optimal weights outperform

17



(Unit: s) k = 2
N (0, 1) t5 t3 t2 t1 Logistic(0,1) Beta(3,5) Weibull(1.5,1) Exp(1)

CQR 6.8 11.5 9.4 20.2 17.5 6.7 10.0 6.4 6.7
MAQR 7.1 8.5 9.6 11.4 13.5 7.9 9.2 7.7 8.8

k = 10
N (0, 1) t5 t3 t2 t1 Logistic(0,1) Beta(3,5) Weibull(1.5,1) Exp(1)

CQR 119.6 193.0 201.9 339.7 283.6 153.3 80.0 103.2 69.3
MAQR 28.2 38.2 42.0 50.1 54.7 31.0 36.0 32.4 35.1

k = 30
N (0, 1) t5 t3 t2 t1 Logistic(0,1) Beta(3,5) Weibull(1.5,1) Exp(1)

CQR 784.1 304.2 643.6 816.7 950.0 765.6 346.1 541.7 337.2
MAQR 65.8 72.5 84.3 99.3 94.6 59.2 71.8 63.9 68.3

Table 8: Execution time (in seconds) for the nonnegative optimally-weighted composite and

model-averaged estimators for different error distributions using 2, 10, and 30 quantiles (average

over three runs). We use an Intel i7-6700 (Quad-core 3.40GHz) processor to carry out the

experiment.

s = 3
f(ε)

/
k : 2 3 4 5 6 7 8 9 10

N (0, 1) 1.02 1.05 1.05 1.06 1.07 1.06 1.05 1.04 1.05
t5 1.04 1.06 1.07 1.06 1.05 1.05 1.06 1.05 1.05
t3 1.03 1.05 1.03 1.03 1.02 1.01 1.00 0.99 0.98
t2 1.02 0.99 0.94 0.92 0.90 0.89 0.88 0.87 0.85
t1 1.12 0.80 0.75 0.70 0.68 0.65 0.65 0.64 0.63

Logistic(0,1) 1.02 1.07 1.06 1.06 1.04 1.04 1.02 1.02 1.02
Beta(3,5) 1.09 1.13 1.16 1.20 1.20 1.22 1.26 1.27 1.26

Weibull(1.5,1) 0.87 0.82 0.78 0.77 0.79 0.78 0.78 0.77 0.80
Exp(1) 0.73 0.65 0.64 0.64 0.64 0.63 0.63 0.64 0.63

s = 100
f(ε)

/
k : 2 3 4 5 6 7 8 9 10

N (0, 1) 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01
t5 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01
t3 1.00 1.01 1.00 1.00 1.01 1.01 1.01 1.01 1.02
t2 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.02 1.02
t1 1.02 1.00 0.99 0.99 0.99 0.98 0.98 0.98 0.98

Logistic(0,1) 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.02 1.02
Beta(3,5) 1.00 1.03 1.03 1.02 1.02 1.02 1.02 1.02 1.03

Weibull(1.5,1) 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
Exp(1) 1.00 1.01 1.01 1.00 1.01 1.01 1.01 1.01 1.01

Table 9: Simulated relative efficiency of the nonnegative optimally-weighted model-averaged

estimator to its equally-weighted counterpart for different distributions and numbers of quantiles,

under high and medium sparsity (s = 3 and s = 100) of the true slope coefficient vector. Ratios

less than 1 (colored in gray) indicate that the estimator with nonnegative optimal weights has

lower simulated MSE than the equally-weighted estimator.
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the equal weights for t(1) and t(2) distributions for all numbers of quantiles but k = 2, also for

t(3) with k = 9 and 10, and for Weibull and logistic distributions. Equal weights are superior

elsewhere. The results are similar to these in Section 4.2, Table 5. This is not surprising as

the sparsity level considered there is also relatively high with 3 out of 150 true slope coefficients

being nonzero.

Meanwhile, in the medium-sparsity case of s = 100, the dominance of the estimated

nonnegative optimal weights disappears for t(2), t(3), Weibull and exponential distributions

and shrinks for t(1) distribution. On the other hand, equal weights are just barely superior in

all other cases, with asymptotic relative efficiency never increasing above 1.03.

In the low-sparsity case of s = 200, the relative efficiency varies in a narrow band between

1.00 and 1.03 (not shown), indicating that equal weights are the better choice, though only

marginally so. A comparison across the different levels of sparsity suggests that the difference in

performance between MAQR estimators with estimated nonnegative optimal weights and equal

weights grows with the level of sparsity but is negligible when most of the true slope coefficients

in the model are nonzero.

5 Quantile estimation for Riboflavin data

In this section, we consider the Riboflavin dataset from Bühlmann and van de Geer (2011)

available in R package hdi (Dezeure et al., 2015). We aim to predict the logarithm of riboflavin

production rate in Bacillus subtilis using a linear model where the regressors are log-transformed

expression levels of 4088 genes. CQR and MAQR with different weight choices are employed for

estimating the linear model, and their performance is compared via prediction errors.

In the first step, we follow the pre-selection procedure in Bühlmann and van de Geer

(2011) for reducing the computational burden; we select the top 150 genes with the highest

variance. This results in a sub-dataset of p = 150 genes; the number of observations is n = 71.

In the second step, we randomly split the dataset into a training subsample with 61 observations

and a test subsample with the remaining 10 observations. This is done 200 times to assess the

variability of the results arising from the random splitting. The training set is used to estimate

the slopes and intercepts of the CQR and MAQR with equal weights and nonnegative optimal

weights. The estimation follows the two-step procedure described in Section 4, except that the

Lasso is replaced by penalized quantile regression at the median for obtaining the initial slope

estimator β(0). We employ three equally spaced quantiles (k = 3).

The 10 observations in the test set are used for calculating prediction errors, and on their

basis, three measures of accuracy. In addition to the mean squared prediction error,

MSPEτ =
n∑
i=1

(Yi − b̂τ −Xiβ̂)2/n, τ ∈ {1/(k + 1), . . . , k/(k + 1)},

we consider the median absolute prediction error from Xu et al. (2014),

MAPEτ = median{|Yi − b̂τ −Xiβ̂|, i = 1, . . . , n}, τ ∈ {1/(k + 1), . . . , k/(k + 1)},
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and the prediction error from Wang and Wang (2016),

PEτ =
n∑
i=1

ρτ (Yi − b̂τ −Xiβ̂), τ ∈ {1/(k + 1), . . . , k/(k + 1)},

the latter two measures being perhaps more relevant than MSPE for this dataset.

MSPE MAPE PE

Equal weights Optimal weights Equal weights Optimal weights Equal weights Optimal weights

τ CQR MAQR CQR MAQR CQR MAQR CQR MAQR CQR MAQR CQR MAQR

0.25 1.103 1.200 1.099 1.196 0.750 0.754 0.763 0.772 3.415 2.998 3.383 3.162

(0.724) (0.606) (0.723) (0.605) (0.281) (0.241) (0.278) (0.263) (1.309) (0.941) (1.328) (1.084)

0.50 1.005 0.905 1.001 0.900 0.639 0.565 0.652 0.612 3.759 3.407 3.798 3.619

(0.754) (0.592) (0.752) (0.590) (0.270) (0.205) (0.277) (0.237) (1.241) (0.939) (1.275) (1.100)

0.75 1.186 1.200 1.182 1.196 0.670 0.623 0.670 0.654 3.135 2.606 3.086 2.820

(0.715) (0.606) (0.715) (0.605) (0.247) (0.187) (0.249) (0.236) (1.319) (0.779) (1.310) (0.947)

Table 10: Accuracy measures MSPE, MAPE and PE at different quantile levels for CQR and

MAQR averaged over 200 different splits of the dataset. Values in parentheses are standard

deviations.

Table 10 shows the accuracy measures of CQR and MAQR with estimated nonnegative

optimal and equal weights. We first compare the performance of composite and model-averaged

estimators under the same type of weights. The accuracy measures of MAQR averaged over

200 sample splits are slightly better than those of CQR in 6 out of 9 cases, i.e. with MAPE at

the median and the third quartile, PE at all three quantiles, and MSPE at the median. The

standard errors of the accuracy measures of MAQR are consistently smaller than those of CQR,

suggesting that the performance of MAQR is more stable.

Comparing the prediction accuracy due to estimated nonnegative optimal versus equal

weights, we observe that the latter lead to lower MAPE values for all three quantiles and for

both estimators. Equal weights also lead to lower values of PE in four cases out of six. Regarding

the MSPE, both weight choices produce almost equivalent results, with a slight advantage of

estimated nonnegative optimal weights.

It is also interesting to look at the estimated weights themselves since they are not cov-

ered in our theoretical analysis, unlike the case of theoretically optimal weights. Figure 2 shows

boxplots of the estimated weights for CQR and MAQR. We observe that CQR assigns larger

weights to the 25% and 75% quantiles, while MAQR focuses more on the median. The in-

terquartile ranges of the weights for CQR are smaller than those for MAQR; hence, the weights

vary less across subsamples for CQR than for MAQR. Curiously, the high variation in estimated

weights of MAQR is in contrast to the method’s low standard errors of accuracy measures.

In summary, the empirical example illustrates that MAQR is competitive with CQR and

that equal weights are competitive with estimated nonnegative optimal weights. In light of the

more relevant accuracy measures for this dataset, MAPE and PE, MAQR and equal weights

slightly outperform CQR and estimated weights, respectively.
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Figure 2: Boxplots of the non-negative optimal weights for CQR (left) and MAQR (right). In

each boxplot, weights for 25%, 50% and 75% quantile levels are placed from left to right.

6 Discussion and possible extensions

We have compared model-averaged and composite quantile estimators in linear quantile re-

gression models. Such a comparison is possible also for nonlinear models of the form Yi =

h(Xi;β) + εi, including the linear model as a special case when h(Xi;β) = Xt
iβ. For non-

penalized estimators, Oberhofer and Haupt (2016) phrased quite weak assumptions regarding

dependence of the errors and heterogeneity and obtained consistency and asymptotic normality

of a single nonlinear quantile regression estimator. This extends their earlier work (Oberhofer

and Haupt, 2005) where under stronger assumptions also the asymptotic distribution of a vector

of such quantile estimators has been derived. This may serve as a starting point for obtaining

the asymptotic distribution of a model-averaged nonlinear quantile estimator under weak as-

sumptions on the errors. Also of interest would be deriving results of the composite quantile

estimator under such error assumptions to further compare both types of estimators.

In the case of penalized estimators, Jiang et al. (2012) studied the composite nonlinear

quantile regression estimator. An essential difference between the linear and nonlinear estimator

is in the expression of the asymptotic variance. Jiang et al. (2012) could be the starting point

for studying the joint distribution of a vector of nonlinear quantile estimators under penalization

in order to obtain results for a model-averaged estimator in a high-dimensional setting.

Our current research includes investigation of a proper weight choice in high dimensions

by taking the shrinkage effects of the penalized estimators into account. This relates to the topic

of post-selection inference where setting a parameter to zero is considered an act of selection.

The currently available asymptotic properties of penalized quantile estimators only provide

asymptotic normality for the parameter estimators corresponding to the true active set. To take

the selection uncertainty into account, one possibility is to use debiasing results as in van de Geer

et al. (2014) or Javanmard and Montanari (2014). Then, different sets of weights are expected

to be preferable than under the assumption of perfect variable selection.
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