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Abstract An accurate analytical method is normally the preferred choice in engineering 

practice since this approach usually does not require additional software and can be applied 

for different situations. A number of analytical methods have been proposed for the air 

bending process, however, none of them has the capacity to deal with large radius bending. 

Large radius bending is characterized by a high ratio of the punch radius to the die opening 

and it is often applied for high-strength steels because of their limited bendability. This 

bending mode is used to fulfill the imposed level of maximum strain during the forming 

process. This contribution develops an analytical solution based on the assumption that the 

bent plate profile can be represented by two straight lines and a circular segment. Three 

different hardening laws – linear, Swift, and Aerens - are used for the bending moment 

calculation. Unit moment measurements are used in order to avoid extrapolation of 

hardening curves obtained by tensile testing. The model is compared with a wide range of 

experiments using the coefficient of determination, relative and absolute average errors, in 

addition to the mean standard error. The analytical prediction based on the circular 

approximation is found to be an accurate and robust tool for the calculation of the major 

bending characteristics for large radius air bending of high-strength steels. 

1 Introduction 

Air bending is a well-known process in sheet metal forming. For common materials, air bending is mostly 

used with small radius punches. This process is called conventional or small radius bending. The 

increasing industrial utilization of high-strength steels is causing a shift to the use of large radius 

punches. Based on tooling dimensions, large radius bending is defined as the forming process where the 

ratio of a punch radius to a die opening is larger than 1/4 [1]. The high-strength steels have limited cold 

formability, and the use of large radius punches is inevitable to restrict the strain level during forming. 

Despite the availability of different calculation solutions, such as numerical and regression models, 

engineers in practice prefer analytical solutions. Analytical methods calculate the required parameters 

without finite element commercial software for the case of numerical calculations, or without a 

prerequisite in the form of an extensive experimental database, which is necessary for regression 

models. In addition, analytical models usually provide a solution in a fraction of the time of expensive 

finite element solutions. 

Several researchers have modeled the air bending process by means of analytical methods. The theory 

and practice of the bending process are covered in the classical textbooks by Marciniak [2] and Lange 

[3], or in a more recent textbook by Altan and Tekkaya [4]. Altan et al. developed a computer code 

which takes into account the evolution of material characteristics throughout the bending process [5-8]. 

Aerens and Masselis studied a wide range of problems in air bending and discussed the concept of the 
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circular approximation [9]. De Vin et al. developed a process model for air bending and introduced the 

importance of variation of material parameters in small batch manufacturing [10,11]. Elkins and Sturges 

[12] developed a control method for small radius bending based on an analytical bending model. 

However, these research contributions do not take into account some of the peculiarities of large radius 

bending. In particular, the gradual change of the loading scheme due to the multi-breakage effect is not 

properly addressed. The authors already investigated the problem of large radius bending by means of 

experimental [1,13,14], numerical [15-17], and regression approaches [18,19]. 

This contribution aims to develop a simple analytical method that predicts the bending characteristics in 

a fast and reliable way. The following structure is used in order to achieve this aim. Section 2 describes 

major characteristics of large radius bending. The next section presents the analytical formulas based on 

the circular approximation with particular attention to contact points position in Section 3.1, bending 

moment in Section 3.2, bending force in Section 3.3, springback in Section 3.4, and bend allowance in 

Section 3.5. Section 4 briefly introduces an experimental procedure used for the data acquisition. 

Comparison of calculated values for all considered bending characteristics with experimental results and 

discussion of the prediction accuracy are presented in Section 5. The last section provides the final 

remarks and conclusions. 

2 Bending characteristics 

The focus of this work is on the analytical determination of the most important bending characteristics, 

namely: bending force, springback, and bend allowance. During the bending process with large radius 

punches the loading scheme changes gradually due to the multi-breakage effect [20], this effect is 

important and must be taken into account in the prediction model because it drastically affects the 

bending moment and consequently the bending force and springback. This effect is described by the 

distance lc between the contact points (Figure 1a) and by the distribution of the bending moment, as 

represented in Figure 2. The bending force is an important indicator for the user. It characterizes the 

required capacity of the press brake and it warns the user in case of tooling damage. 

Springback Δβ (Figure 1b) is considered as the most important bending characteristic as it characterizes 

the final shape of the bent plate. Springback is the change of angle due to the release of the elastic 

deformation after the forming process, it is defined as the difference between the final product angle β’ 

and the imposed bending angle β. Finally, the bend allowance BA allows to determine the initial 

dimensions of the flat pattern before forming. This bending characteristic is calculated as the difference 

between the initial length of the blank l0 and the sum of the bent flanges l1 and l2 (Figure 1c). 

3 Circular approximation model 

For conventional bending, i.e. with a small punch radius, the punch is in contact with the plate in a 

narrow area and the neutral line of the plate follows a specific curve, which can be approximated by a 

spline or by a piecewise function. However, for large radius bending, the punch is in contact with the 

plate over a relatively wide arc and next to this curved segment, the plate maintains a much flatter 

shape. This observation seems to justify a circular approximation of the large radius bending, an 

assumption that will be investigated in this contribution. 
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The circular model approximates the bent shape as the union of two straight lines with a circular 

segment in between. The projections of the contact points on the neutral line are the points that split 

the bent plate into these two distinct regions. Examples of bent samples are shown in Figure 3. The 

circular approximation does not provide a perfect fit, but for the construction steel St-37 (Figure 3a) and 

for the high-strength steel Strenx 1300 (Figure 3b), this approximation closely resembles the real bent 

shape. Other materials used in this work revealed the similar observations. Therefore, this shape is used 

in the analytical model. 

The profile description of the circular approximation model is shown in Figure 4a. The reaction forces 

and their levers are given in Figure 4b. This paper further refers to the angles θ and θ’ as half of the 

complement to the bending angle β and the product angle β’ respectively. For the calculation of the 

bending characteristics, the neutral fiber is assumed to lie in the middle of the plate [4] throughout the 

forming process. 

The curved part of the plate is modeled as a circle segment, therefore the radius of curvature of the 

neutral line RA is equal to the punch radius Rp plus half the thickness of the plate. Figure 4a shows that 

the circular la and straight ld segments can be calculated as: 

 𝑙𝑎 = 𝜃 · 𝑅𝐴 ( 1 ) 

 𝑙𝑑 =
𝑤

2 𝑐𝑜𝑠𝜃
− (𝑅𝑑 + 𝑡 2⁄ + 𝑅𝐴) ∙ 𝑡𝑎𝑛𝜃 ( 2 ) 

where w is the distance between the centers of the die shoulders, which (see Figure 4c) can be 

evaluated as a function of the commercial definition of the die opening w0: 

 𝑤 = 𝑤0 + 2𝑅𝑑 𝑡𝑎𝑛(45 −
𝛼𝑑

4
) ( 3 ) 

where Rd is the die radius and αd the die angle in degrees. 

3.1 Contact points position 

In the assumption that the plate is wrapped around the punch, the position of the contact points (Figure 

1a) for the circular approximation is found by the simple equation: 

 𝑙𝑐 = 𝜃 ∙ 𝑅𝑝 ( 4 ) 

In addition to the loading scheme, the value of the measured contact length is important for the 

validation of  the circular approximation model. 

3.2 Determination of the bending moment 

The value of the bending moment is the key parameter for the validity of the prediction of the bending 

characteristics. Assuming that the neutral fiber lies in the middle of the plate, the bending moment per 

unit width 𝑀′𝑏 along the cross-section can be obtained as: 

 𝑀′𝑏 = 2 ∫ 𝜎𝑥(𝑦) · 𝑦 · 𝑑𝑦
𝑡/2

0
 ( 5 ) 

where t is the plate thickness, y the coordinate through the plate thickness (having as origin the middle 

of the plate) and σx(y) the stress normal to the section. 

Since the stress is expressed as a function of the strain, it is convenient to switch from variable y to 

variable strain 𝜀𝑥. As 𝑦 =  𝜀𝑥 ∙ 𝑅𝐴, the bending moment per unit width in point A can be written as: 
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 𝑀′𝐴 =
𝑡2

2𝜀𝑏
2 ∫ 𝜎𝑥(𝜀𝑥)

𝜀𝑏

0
𝜀𝑥  𝑑𝜀𝑥 ( 6 ) 

where 𝜀𝑏 = 𝑡/(2𝑅𝐴) is the bending strain. 

The unit moment σA
∗  (Equation 7) can be obtained by dividing Equation 6 by t2. In this case on the left 

side of Equation 7, besides the bending moment, we obtain only plate dimensions (width and thickness) 

and on the right side, there are only material parameters. The unit moment can be measured directly. 

 𝜎𝐴
∗ =

𝑀𝐴
′

𝑡2 =
𝑀𝐴

𝑏 𝑡2 =
1

2𝜀𝑏
2 ∫ 𝜎𝑥(𝜀𝑥)

𝜀𝑏

0
𝜀𝑥  𝑑𝜀𝑥 ( 7 ) 

Since bending occurs in a plane strain configuration, assuming a Von Mises criterion and neglecting the 

radial stress 𝜎𝑦 [2], we have: 

 𝜎𝑥 =
2

√3
𝜎𝑓 ( 8 ) 

 𝜀𝑥 =
√3

2
𝜀𝑓 ( 9 ) 

where 𝜎𝑓 and 𝜀𝑓 are the flow stress and the representative plastic strain respectively, which are identical 

to the stress σ and strain ε measured during tensile testing i.e. the hardening law σ(ε). 

One of the simplest representations of the hardening behavior is the linear law (Equation 10 and Figure 

5a). Despite its simplicity, it allows describing the hardening behavior of some materials like AISI 304 and 

Strenx 700 MC, as can be seen in Figure 7 and Figure 8. The Swift model (Equation 11 and Figure 5b) 

allows describing the hardening behavior of the construction and stainless steels accurately, as 

illustrated in Figure 6 and Figure 7. 

Figure 9 shows that the Swift model does not allow to provide an accurate approximation for Strenx 

1300 and thus another model should be applied. We propose to use the Aerens model, which is a 

modified Swift model: it allows to describe the hardening curve taking into account the smooth 

transition between the elastic and plastic zones; it has the form of Equation 12. Figure 8 and Figure 9 

show the possible fit of the tensile data with the three above-mentioned hardening laws. The Aerens 

model shows clear superiority for the fitting of the hardening behavior of Strenx 1300 in comparison 

with the Swift model. This model should not be applied to the construction steel St-37 and the stainless 

steels AISI 304 and AISI 316L because these materials show no or only a negligible transition zone. Using 

this law for these materials brings about an unnecessary complexity (in this case, k = ∞ which reduces 

Equation 12 to the Swift model), and thus its usage is inappropriate. 

Further, the Swift and linear models are applied to all materials, and the Aerens model is used only for 

the high-strength steels Strenx 700 MC and Strenx 1300. Table 1 and  

Table 2 present the material parameters for the above-mentioned hardening models, and the stabilized 

value of the secant elasticity modulus Esec. The linear model reads 

 𝜎 = 𝐴 + 𝐵 · 𝜀 ( 10 ) 

where A and B are the material parameters for the linear law. 

The Swift model reads 

 𝜎 = 𝐾𝑆 ∙ (𝜀 + 𝜀0𝑆)𝑛𝑆 ( 11 ) 
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where KS is the strength coefficient, nS the hardening exponent, ε0S the initial strain. 

The Aerens model reads 

 𝜎 = [1 − 𝑒−𝑘∙(𝜀−𝜀𝑒𝑙)][𝐾𝐴 ∙ (𝜀 + 𝜀0𝐴)𝑛𝐴 − 𝜎𝑒𝑙] + 𝜎𝑒𝑙 ( 12 ) 

where KA is the strength coefficient, nA the hardening exponent, ε0A the initial strain, εel the elastic strain 

limit, σel the elastic stress limit, and k is defined as: 

 𝑘 =
𝐸

𝐾𝐴∙(𝜀𝑒𝑙+𝜀0𝐴)𝑛𝐴−𝜎𝑒𝑙
 ( 13 ) 

After the integration of Equation 7 with the linear hardening law (Equation 10) and the Swift law 

(Equation 11), and taking into account the plane strain state (Equation 8 and Equation 9), the resulting 

equations for the unit moment at point A (Figure 4a) can be found as: 

 𝜎𝐴
∗ =  

𝐴

2√3
+

2

9
𝐵𝜀𝑏 ( 14 ) 

 𝜎𝐴
∗ = (

2

√3
)

𝑛𝑆+1 𝐾𝑆

2∙𝜀𝑏
2 ∙ (

(𝜀𝑏+𝜀0𝑆)𝑛𝑆+2−𝜀
0𝑆

𝑛𝑆+2

𝑛𝑆+2
−

𝜀0𝑆∙((𝜀𝑏+𝜀0𝑆)𝑛𝑆+1−𝜀
0𝑆

𝑛𝑆+1
)

𝑛𝑆+1
) ( 15 ) 

According to [9], Equation 15 can be simplified: 

 𝜎𝐴
∗ = (

2

√3
)

𝑛𝑆+1 𝐾𝑆

2(𝑛𝑆+2)
∙ (𝜀𝑏 + 𝜀𝑑)𝑛𝑆  ( 16 ) 

 𝜀𝑑 = 𝜀0𝑆 ∙ (1 + 𝑛𝑆 2⁄ )1 𝑛𝑆⁄  ( 17 ) 

With the Aerens model (Equation 12), Equation 7 cannot be integrated analytically; therefore, its 

integration has to be performed numerically in order to obtain the value of the unit moment. 

As it can be seen from Figure 8 and Figure 9, the hardening curves for Strenx 700 MC and Strenx 1300 

stop at strains of about 4%, as this is the limit of the achieved plastic strain by means of tensile testing. 

However, for the bending tests conducted in this work, strains up to 28% could be achieved, thus it was 

necessary to directly measure the unit moment in order to have reliable data for the high-strength 

materials. As practice shows, the level of the strain in the unit moment measurement is a lot higher than 

for the tensile testing. The usage of the unit moment allows avoiding undesirable issue of extrapolation. 

For the measurement of the unit moment specific equipment is required [22-24]. The unit measurement 

device has been developed by R. Aerens [9,22] and has been used to perform measurements for Strenx 

700 MC (Figure 10) and Strenx 1300 (Figure 11). The measured unit moment curves have the same 

appearance as the tensile curves. Therefore, the unit moment curves have been fitted according to 

Swift-like and Aerens-like hardening laws. The Swift-like equation is Equation 16 and the Aerens-like 

equation is Equation 18. 

 𝜎𝐴
∗ = [1 − 𝑒−𝑘𝑏 (𝜀𝑏−𝜀𝑏 𝑒𝑙)][𝐶" (𝜀𝑏 + 𝜀𝑑)𝑛 − 𝜎𝑒𝑙

∗ ] + 𝜎𝑒𝑙
∗  ( 18 ) 

where kb is defined as: 

 𝑘𝑏 =
𝐸𝑏

𝐶"(𝜀𝑏 𝑒𝑙+𝜀𝑑)𝑛−𝜎𝑒𝑙
∗  ( 19 ) 

where εb el is the limit of elastic bending strain, σ*el is the limit of elastic unit moment, Eb is the slope of 

the elastic unit moment. 
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The corresponding material characteristics are reported in  

Table 3 and  

Table 4 with the corresponding curves are depicted in Figure 10 and Figure 11. 

3.3 Bending force 

The normal and tangential forces and their levers from point C are shown in Figure 4b. In the 

assumption that the plate is wrapped around the punch, the curvature of the plate is constant between 

points A and C, and thus the levers can be found as: 

 𝑏𝑙𝑒𝑣 ≡ 𝑙𝑑 ( 20 ) 

 𝑏𝑙𝑒𝑣2 ≡ 𝑡/2 ( 21 ) 

The bending moment that is required for this magnitude of deformation is constant in the plate segment 

between points A and C: 

 𝑀𝐴 = 𝐹𝑛𝑏𝑙𝑒𝑣 + 𝐹𝑡𝑏𝑙𝑒𝑣2 ( 22 ) 

Considering the Coulomb friction model with a friction coefficient μ, the relation between Ft and Fn is 

specified as: 

 𝐹𝑡 = 𝜇𝐹𝑛 ( 23 ) 

The value of the normal force can be found by inserting Equation 23 into Equation 22: 

 𝐹𝑛 =
𝑀𝐴

𝑏𝑙𝑒𝑣+𝜇 𝑏𝑙𝑒𝑣2
 ( 24 ) 

Finally, the sum of projections of the friction (Equation 23) and normal (Equation 24) forces on the 

vertical axis defines the bending force in the form of: 

 𝐹𝑏 = 2𝐹𝑛 𝑐𝑜𝑠 𝜃 ∙ (1 + 𝜇 𝑡𝑎𝑛 𝜃) ( 25 ) 

3.4 Springback 

The springback angle is calculated with the elastic formula: 

 ∆𝛽 =
1

𝐸′𝐼
∫ 𝑀

𝑙𝑡𝑜𝑡

0
𝑑𝑙 ( 26 ) 

where l is a curvilinear axis formed by the neutral line, I=bt3/12 the second moment of area about the 

middle axis and E’=E/(1-ν2) the elasticity modulus in the plane strain mode where ν is the Poisson ratio. 

The circular approximation assumes that the elastic deformations are zero on a circular segment and 

that only elastic strains are present in both straight segments. Taking into account these assumptions, 

plastic strains in straight segments are zero, whereas plastic deformations are constant along the 

circular segment. Given this difference in the plastic strain level, it is reasonable to assume that these 

regions should have been assigned different values of the elasticity modulus based on the plastic pre-

strain. The change of the elasticity modulus due to pre-strain showed a significant influence on the 

accuracy of the springback prediction [25,26]. Figure 12 shows the deformation scheme and bending 

moment diagram, which are used for the springback prediction. 
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The drop of elasticity modulus due to previously applied deformation or pre-strain is approximated 

using the so-called secant elasticity modulus, as defined in Figure 13. The evolution of the secant 

elasticity modulus versus the pre-strain in the case of Strenx 700 MC, as example, is given in Figure 14 

[17]. 

Finally, the springback according to the circular approximation can be calculated by integration of 

Equation 26 and using the elasticity modulus corresponding to the predefined regions (Figure 12b) and 

using the bending moment per unit width or the unit moment: 

 ∆𝛽 =
12∙𝑀𝐴

′

𝑡3 (
2∙𝑙𝑎

𝐸𝑠𝑒𝑐
′ +

𝑙𝑑

𝐸′) ( 27 ) 

where 𝑀𝐴
′  is the bending moment per unit width in A. 

 ∆𝛽 =
12∙𝜎𝐴

∗

𝑡
(

2∙𝑙𝑎

𝐸𝑠𝑒𝑐
′ +

𝑙𝑑

𝐸′) ( 28 ) 

where 𝜎𝐴
∗ is the unit moment in A. 

3.5 Bend allowance 

The bend allowance is the difference between the original length and the sum of the lengths of the bent 

flanges. However, according to the circular approximation, the plate outside the contact points is 

straight, and thus for the bend allowance calculation, we can consider only the region between the two 

contact points (Figure 15). 

The inner radius of the bent plate before the springback is known and equal to the punch radius; 

however, the inner radius after springback is unknown. Assuming that the same region remains 

deformed after springback, we can calculate the final plate radius by equating the arc length of the bent 

plate la before (Figure 15a) and after (Figure 15b) springback. As the result, the radius after the 

springback is equal to: 

 𝑅𝐵𝐴 = 𝑅𝐴
𝜃

𝜃′ ( 29 ) 

The difference between the middle line of the circular segment la and the line lBA provides the value of 

the bend allowance (Figure 15b). This value is calculated as follows: 

 𝐵𝐴 = 2𝜃′𝑅𝐵𝐴 − 2(𝑅𝐵𝐴 + 𝑡/2) ∙ 𝑡𝑎𝑛 𝜃′ ( 30 ) 

This is the well-known formula from DIN 6935 in the case of the neutral fiber lying in the middle of the 

plate. 

4 Experimental investigation 

This section provides a brief description of used plates, materials and tooling. The complete description 

is available in [1] where experimental procedure, measurement methods, variability and reproducibility 

of the large radius bending is discussed in detail. A full factorial test plan with one repetition per test 

case has been implemented. For some test cases several repetitions have been executed in order to 

study process variability. In case of several repetitions, the average values have been used as the 

resulting values. 



8 
MANU-18-1183, Vorkov et al. 

Large radius bending is most often applied to high-strength steels with limited cold formability. Two 

materials of this type are selected for validation purposes: Strenx 700 MC and Strenx 1300. In addition 

to high-strength steels, the standard construction steel St-37 (or S235JR), and the stainless steels 

AISI 304 and AISI 316L have been used in this study to verify the applicability of the analytical model for 

common sheet metal steels. This selection of materials allows for the evaluation of the quality of the 

analytical prediction based on the circular approximation model. The Coulomb friction coefficient 

(Equation 25) of 0.2 has been selected for all materials except Strenx 1300 for which the value of 0.3 has 

been chosen. This choice is based on the previous calculations [1] and measurements performed on 

coarse and smooth materials [9]. 

In addition to the different materials, punches with different radii, dies with different openings, and 

plates with different thicknesses have been selected for verification purposes. Figure 16 presents an 

overview of the tooling and plates. Experiments are restricted to configurations that are physically 

possible (e.g. a die opening should be bigger than a punch diameter). In most combinations, four 

bending angles β (Figure 1a) have been executed: 90°, 110°, 130°, and 150°.  

Table 5 presents an experimental plan that results in 515 bending tests. For some cases, repetitions are 

included to be able to assess the reproducibility of the experiments. The complete description of the 

experimental procedure can be found in [1], and the complete experimental data are available via the 

Dataverse scientific data repository in [27]. 

It should be mentioned that air bending, in general, has a rather large variation of the resulting bending 

characteristics. This variation is usually caused by an imperfect measuring procedure [1,28] and by the 

natural scatter of the material properties [10,29]. For instance, a variation of 1° for the bending angles is 

quite common for high-strength steels. This aspect should also be taken into account when assessing 

the prediction quality of the developed model. More detailed information about variability and 

reproducibility the reader can find in [1,28] and maximal standard errors for each bending characteristic 

is listed in  

Table 7. 

5 Results and discussion 

In order to estimate the accuracy of the circular approximation model used for the prediction of large 

radius bending, the calculated results were compared to 515 experimental points ( 

Table 5) [1,27]. The accuracy of the proposed approach has been measured with three indicators: the 

coefficient of determination R2, the average absolute error εav (Equation 31), and the relative error εrel 

(Equation 32). Additionally, in order to estimate the bias of the prediction model, the average error 𝜀𝑎̅𝑣 

(Equation 33) and the standard error of the mean 𝜎𝜀̅𝑎𝑣
 (Equation 34) have been calculated. 

 𝜀𝑎𝑣 = (∑ |𝑣𝑖
𝐸𝑥𝑝

− 𝑣𝑖
𝐴|𝑛

𝑖=1 )/𝑛 ( 31 ) 

where 𝑣𝑖
𝐸𝑥𝑝

 and 𝑣𝑖
𝐴 are experimental and analytical data respectively, n the number of comparisons. 
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 𝜀𝑟𝑒𝑙 = ∑ |𝑣𝑖
𝐸𝑥𝑝

− 𝑣𝑖
𝐴|𝑛

𝑖=1 / ∑ 𝑣𝑖
𝐸𝑥𝑝𝑛

𝑖=1  ( 32 ) 

 𝜀̅𝑎𝑣 = (∑ 𝑣𝑖
𝐸𝑥𝑝

− 𝑣𝑖
𝐴𝑛

𝑖=1 )/𝑛 ( 33 ) 

 𝜎𝜀̅𝑎𝑣
= 𝑠/𝑛 ( 34 ) 

where s is the sample standard deviation. 

The verification procedure includes four different attributes of the bending process, namely the position 

of the contact points, the magnitude of bending force, the magnitude of springback and the bend 

allowance. The final correlation criterion is the bias of the prediction model. Prediction models based on 

the unit moment measurement are used with “UM” label further in the text. 

5.1 Contact points position 

Equation 4 provides a prediction of the contact points position. The comparison parameters show that 

the assumption of the circular approximation is valid for the determination of the loading scheme in 

large radius air bending. Figure 17 and Figure 18 show examples of the comparison between 

experimental data and prediction according to Equation 4.  

Table 7 provides an overview of the comparison parameters. 

5.2 Bending force 

Equation 25 provides a prediction of the bending force. It almost always gives slightly overestimated 

values and this overestimation allows for a conservative and safe prediction. 

For construction and stainless steels, the Swift and linear models give a comparable prediction. This is 

explained by very similar approximations of the hardening behavior (Figure 6 and Figure 7). For high-

strength steels, the Aerens and Swift models based on tensile tests and unit moment tests give a better 

prediction compared to the linear model. This is confirmed by the larger value of R2 and smaller values 

of the average absolute error εav and relative error εrel. 

The results for unit moment models are a lot better for Swift UM model than the results for Swift based 

on tensile tests: 9.9% of εrel instead of 18.4% for Strenx 700 MC. Also, the Aerens model with unit 

moment curve is also performed better than the extrapolated Aerens model: 16.6% of εrel instead of 

19.6%. R2 in this case can be misleading, since its value almost equal and very high for all cases. And as 

was state before, all methods show the significant overestimation bias. 

The summary of the prediction quality parameters for the bending force is presented in  

Table 8 and examples of comparison between experiments and calculated values are shown in Figure 19 

and Figure 20. 

5.3 Springback 

Figure 21 and Figure 22 present examples of the comparison between calculated and measured values 

for the springback. Equation 27 assumes the moment distribution depicted in Figure 12b, which is only a 

hypothesis. Still, for the high-strength steels, the model with this kind of the moment distribution 

delivers results with high values of coefficient of determination R2: Strenx 700 MC – 0.93, Strenx 1300 –

0.98, with the average error εav below 0.6°. The Swift model based on the tensile curves again 

outperformed by the Swift UM model: εrel 15.8% and 4.01% correspondingly for Strenx 1300. Both 
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Aerens models deliver similar prediction values for springback angle and additionally show virtually no 

bias of the prediction error. 

For the conventional steels, the values of R2 are lower (St-37 – 0.82, stainless – 0.90), but the average 

absolute errors are less or slightly more than 1° and taking into account the variability and 

reproducibility [1,28] of air bending, these values can be accepted. These errors can be caused, for 

instance, by the difference in material properties of the bending samples. 

Prediction of the springback is a notoriously intricate task, and it is usually assumed that for a correct 

prediction, an elaborate material characterization is required. However, the developed model provides 

an accurate prediction based only on a limited number of materials parameters obtained from standard 

tensile testing. Equation 27 offers a prediction of the springback and Table 9 provides an overview of the 

comparison parameters for different materials. 

5.4 Bend allowance 

Table 10 presents an overview of the comparison between experimental results and predicted values 

according to Equation 30. The bend allowance is highly affected by the springback (Equation 29) since 

the determination of the resulting bending radius requires the knowledge of the final angle. Therefore, 

inaccurate values of the springback increase the error in the bend allowance prediction. Figure 24 and 

Figure 25 show examples of the comparison for St-37 and Strenx 1300 respectively. 

The strength (e.g. yield strength) and the hardening exponent of the considered material also play 

important roles in the bend allowance calculation. Figure 23 shows clear tendencies for these two 

parameters: lower hardening exponent and higher yield strength result in lower relative errors. These 

trends are indicated by the dashed lines in Figure 23. 

Table 10 shows that the values of the average absolute errors are smaller for the high-strength steels 

with high values of yield stresses and lower values of hardening exponents. It seems that the 

assumption of straight lines outside of the deformation zone has a better correspondence to reality for 

these steels. The added error for the conventional steels is brought about by the additional deformation 

of the segments outside of the contact zone. Therefore, the prediction for St-37 and AISI 304/AISI 316 

steel is rather inaccurate, since the error is less than 1.3 mm for these steels and may not be suitable for 

process planning or CAM purposes. 

For the high-strength steels, the analytical formula provides more accurate values for the bend 

allowance: for Strenx 700 MC, an average error less than 0.9 mm, and for Strenx 1300, an average error 

less than 0.4 mm. Again, the superior prediction quality for Strenx 1300 seems to be due to the lower 

deformation of the straight segments. Additionally, high-strength steels show limited overestimation 

bias below 0.5 mm. 

6 Conclusions 

This contribution describes an analytical prediction model for large radius bending with a circular 

approximation. This analytical model delivers a robust and accurate prediction tool for large radius 

bending of high-strength steels for all major bending characteristics: bending force, springback, and 

bend allowance. This is confirmed by comparing the developed model with a wide range of 

experimental results. The model accuracy also justifies a circular approximation as a valid assumption 
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for the prediction of the large radius bending for high-strength steels. It should be mentioned that for 

conventional materials, the prediction is not always satisfactory, thus the developed model is advisable 

to apply for high-strength steels. 

The model validation is based on the R2 statistics and on the average absolute and relative errors. 

Moreover, the bias of the prediction model has been analyzed for all bending characteristics. Based on 

the circular approximation assumption, the values of the contact points position is mostly always 

overestimated. This overestimation consequently leads to enlarged bending moment. The prediction of 

the bending force is also overestimated, as confirmed by the negative values of the average error 

parameter. However, springback and bend allowance of high-strength steels show very little bias given 

the correct estimation of the bending moment by Aerens law. 

Estimation of the bending moment is a crucial parameter for the prediction of the bending 

characteristics. For the correct calculation of the bending moment, an appropriate hardening model and 

valid hardening curves are required. Aerens law allows to fit the hardening behavior of high-strength 

steels accurately including the transition zone between elastic and plastic regions. Additionally, the 

bending moment based on unit moment measurements allows to avoid extrapolation of hardening 

curves and deliver more accurate and reliable results when compare to bending moment calculated 

from extrapolated values. 

The proposed model delivers an analytical solution, which requires only limited information about the 

material, which is contained in the stress-strain response from the common tensile testing procedure. 

These data can be requested from the material supplier or they can routinely be obtained in almost any 

material testing laboratory. 
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Figure list 

 

Figure 1 – Bending characteristics: a) contact point positions; b) forming angles and springback; c) bend allowance, 
where l0 is the initial plate length. 

 

 

Figure 2 – Contact point positions and their influence on the bending moment. 

 

 

Figure 3 – The circular model closely resembles the bent profile for the construction steel St-37 (a) and for the high-
strength steel Strenx 1300 (b). 
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Figure 4 - Circular approximation model for large radius bending: a) geometrical scheme; b) forces and their levers; 
c) die opening calculation. 

 

 

Figure 5 – Representation of the stress distribution through the thickness for different models of work hardening. 

 

 

Figure 6 – Stress-strain curves for St-37. 
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Figure 7 – Stress-strain curves for AISI 304. 

 

 

Figure 8 – Stress-strain curves for Strenx 700 MC. 

 

 

Figure 9 – Stress-strain curves for Strenx 1300. 
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Figure 10 – Unit moment for Strenx 700 MC. 

 

 

Figure 11 – Unit moment for Strenx 1300. 

 

 

Figure 12 – a) Division of the bent plate according to the strain levels; b) approximation of the bending moment for 
the large radius air bending, with the depiction of the assigned values of the elasticity modulus. 
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Figure 13 – Definition of secant elasticity modulus Esec and initial elasticity modulus Einit. 

 

 

Figure 14 – Evolution of Esec versus the pre-strain. 

 

 

Figure 15 – Scheme for the determination of the bend allowance. The plate shape (a) before and (b) after 
springback. 
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Figure 16 – Overview of used plates and tooling. 

 

 

Figure 17 – Comparison of results for contact points position between analytical model and experimental data. 
Plate: AISI 316L; thickness: 8 mm; die opening: 50 mm; punch radius: 10 mm. 

 

 

Figure 18 – Comparison of results for contact points position between analytical model and experimental data. 
Plate: Strenx 700 MC; thickness: 6 mm; die opening: 80 mm; punch radius: 40 mm. 
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Figure 19 – Comparison of results for the bending force between analytical model and experimental data. Plate: 
St-37; thickness: 2 mm; die opening: 40 mm; punch radius: 20 mm. 

 

 

Figure 20 – Comparison of results for the bending force between analytical model and experimental data. Plate: 
Strenx 1300; thickness: 4 mm; die opening: 60 mm; punch radius: 30 mm. 

 

 

Figure 21 – Comparison of results for the springback angle between analytical model and experimental data. 
Plate: AISI 316L; thickness: 4 mm; die opening: 40 mm; punch radius: 10 mm. 
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Figure 22 – Comparison of results for springback angle between analytical model and experimental data. Plate: 
Strenx 700 MC; thickness: 4 mm; die opening: 60 mm; punch radius: 30 mm. 

 

 

Figure 23 – Bend allowance depends on the hardening exponent and yield strength. 

 

 

Figure 24 – Comparison of results for bend allowance position between analytical model and experimental data. 
Plate: St-37; thickness: 8 mm; die opening: 80 mm; punch radius: 20 mm. 
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Figure 25 – Comparison of results for bend allowance position between analytical model and experimental data. 
Plate: Strenx 1300 MC; thickness: 6 mm; die opening: 60 mm; punch radius: 20 mm. 
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Table list 

Table 1 
Material parameters according to the linear and Swift laws. 

Material E, GPa Esec, GPa A, MPa B, MPa KS, MPa nS ε0S t, mm 

St-37 [9] 220 162 333.1 699.3 659 0.220 0.021 2, 4, 6 and 8 
AISI 304 [9] 220 145 362.2 1771.2 1491 0.511 0.044 2 
AISI 316L [21] 193 134 339.6 1571.4 1337 0.504 0.048 4, 6 and 8 
Strenx 700 MC [17] 205 188 786.7 2134.1 1088 0.073 0.007 4 and 6 
Strenx 1300 [17] 197.5 182 1299.3 9503.6 2540 0.133 0.000 4 and 6 

 

Table 2 
Material parameters according to the Aerens law. 

Material KA, MPa nA ε0A σel, MPa εel t, mm 

Strenx 700 MC [17] 1253 0.140 0.034 702.8 0.0034 4 and 6 
Strenx 1300 [17] 2138 0.081 0.000 1098.4 0.0056 4 and 6 

 

Table 3 
Material parameters defined by unit moment coefficients of the Swift-like law. 

Material C", MPa n εd 

Strenx 700 MC 331.4 0.148 0.000 
Strenx 1300 495.0 0.050 0.000 

 

Table 4 
Material parameters defined by unit moment coefficients of the Aerens-like law. 

Material C", MPa n εd Eb , MPa σ*el εb el 

Strenx 700 MC 302.0 0.109 0.008 37546 112.6 0.003 
Strenx 1300  450.0 0.000 0.000 36123 180.6 0.005 

 

Table 5 
Scheme of experimental plan. 

Material 
Parameter 

St-37 
AISI 304/ 
AISI 316 

Strenx 700 MC Strenx 1300 

Bending anglea 4 4 4 4b 
Thickness 4 4 2 (4 and 6 mm) 2 (4 and 6 mm) 
Punch radius 4 4 4 4 
Die opening 4 4 4 4 

Total 174 174 87 80 

a – 110°, 130°, 150° for t = 6 mm, Rp = 20 mm, w0 = 40 mm due to geometrical restrictions 
b – 130°, 150° for t = 6 mm, Rp = 10 mm due to lack of cold formability 
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Table 6 
Maximal standard errors for the selected test cases [28]. 

Bending characteristic Number of repetitions Mean value ± Standard error 

Contact points position 5 15.25 ±0.77 mm 
Springback 3 11.64 ±0.71° 
Bending force 3 1677.13 ±24.24 kN/m 
Bend allowance 3 -10.55 ±0.55 mm 

 

Table 7 
Overview of comparison of the analytical model with experimental data for the contact points position 
(Equation 4). 

Comparison 

parameter 

Material    

St-37 AISI 304/AISI 316 Strenx 700 MC Strenx 1300 

R2 0.9663 0.9616 0.9745 0.9719 
εav, mm 1.2662 1.4251 0.9710 1.0218 
εrel, % 12.804 14.788 9.2460 9.9587 
𝜀𝑎̅𝑣, mm -0.4504 -0.7331 0.2107 -0.4303 
𝜎𝜀̅𝑎𝑣

, mm 0.1149 0.1208 0.1284 0.1403 
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Table 8 
Overview of comparison of the analytical model with experimental data for the bending force (Equation 25). 

Model 
Comparison 
parameter 

Material    

St-37 AISI 304/AISI 316 
Strenx 700 
MC 

Strenx 1300 

 R2 0.9814 0.9719 0.9687 0.9249 
 εav, kN/m 68.074 118.11 174.39 680.74 
Linear εrel, % 22.344 33.443 29.881 65.471 
 𝜀𝑎̅𝑣, kN/m -64.490 -116.69 -174.38 -680.74 
 𝜎𝜀̅𝑎𝑣

, kN/m 5.1722 10.358 10.888 48.731 

 R2 0.9811 0.9741 0.9846 0.9893 
 εav, kN/m 71.222 132.01 107.49 380.60 
Swift εrel, % 23.378 37.504 18.418 36.605 
 𝜀𝑎̅𝑣, kN/m -68.091 -131.33 -106.64 -380.60 
 𝜎𝜀̅𝑎𝑣

, kN/m 5.4164 11.272 5.8606 20.749 

 R2 - - 0.9821 0.9911 
 εav, kN/m - - 62.704 203.43 
Aerens εrel, % - - 10.744 19.565 
 𝜀𝑎̅𝑣, kN/m - - -47.133 -203.43 
 𝜎𝜀̅𝑎𝑣

, kN/m - - 5.9515 10.210 

 R2 - - 0.9815 0.9907 
 εav, kN/m - - 57.755 152.92 
Swift UM εrel, % - - 9.8962 14.707 
 𝜀𝑎̅𝑣, kN/m - - -38.211 -152.81 
 𝜎𝜀̅𝑎𝑣

, kN/m - - 6.1823 8.1802 

 R2 - - 0.9840 0.9890 
 εav, kN/m - - 58.214 172.82 
Aerens 
UM 

εrel, % 
- - 9.9749 16.621 

 𝜀𝑎̅𝑣, kN/m - - -39.458 -172.72 
 𝜎𝜀̅𝑎𝑣

, kN/m - - 5.8406 9.4727 
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Table 9 
Overview of comparison of the analytical model with experimental data for springback (Equation 27). 

Model 
Comparison 
parameter 

Material    

St-37 AISI 304/AISI 316 Strenx 700 MC Strenx 1300 

 R2 0.8118 0.8976 0.9127 0.7874 
 εav, ° 0.9395 0.9335 1.3845 5.2548 
Linear εrel, % 22.875 17.322 19.262 37.417 
 𝜀𝑎̅𝑣, ° -0.4025 -0.7775 -1.3429 -5.2547 
 𝜎𝜀̅𝑎𝑣

, ° 0.0987 0.0821 0.0848 0.0282 

 R2 0.8228 0.9092 0.9330 0.9752 
 εav, ° 0.9043 1.0167 0.8196 2.2191 
Swift εrel, % 22.019 18.865 11.403 15.801 
 𝜀𝑎̅𝑣, ° -0.4004 -0.0898 -0.7168 -2.2190 
 𝜎𝜀̅𝑎𝑣

, ° 0.0918 0.0756 0.0779 0.1017 

 R2 - - 0.9271 0.9800 
 εav, ° - - 0.4358 0.5252 
Aerens εrel, % - - 6.0634 3.7400 
 𝜀𝑎̅𝑣, ° - - 0.0257 -0.2428 
 𝜎𝜀̅𝑎𝑣

, ° - - 0.0716 0.0736 

 R2 - - 0.9254 0.9752 
 εav, ° - - 0.4480 0.5634 
Swift UM εrel, % - - 6.2324 4.0117 
 𝜀𝑎̅𝑣, ° - - 0.1349 0.2747 
 𝜎𝜀̅𝑎𝑣

, ° - - 0.0729 0.0752 

 R2 - - 0.9316 0.9751 
 εav, ° - - 0.4370 0.5887 
Aerens UM εrel, % - - 6.0797 4.1921 
 𝜀𝑎̅𝑣, ° - - 0.0785 0.0055 
 𝜎𝜀̅𝑎𝑣

, ° - - 0.0692 0.0877 
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Table 10 
Overview of comparison of the analytical model with experimental data for the bend allowance (Equation 30). 

Model 
Comparison 
parameter 

Material    

St-37 AISI 304/AISI 316 Strenx 700 MC Strenx 1300 

 R2 0.9260 0.9222 0.9153 0.9714 
 εav, mm 1.2355 1.2940 1.0039 0.8221 
Linear εrel, % 18.256 19.587 17.546 19.974 
 𝜀𝑎̅𝑣, mm -1.0189 -1.1016 -0.7191 -0.7132 
 𝜎𝜀̅𝑎𝑣

, mm 0.1439 0.1415 0.1787 0.0828 

 R2 0.9268 0.9228 0.9198 0.9811 
 εav, mm 1.2332 1.3079 0.9389 0.5466 
Swift εrel, % 18.222 19.797 16.410 13.280 
 𝜀𝑎̅𝑣, mm -1.0180 -1.1215 -0.6323 -0.3787 
 𝜎𝜀̅𝑎𝑣

, mm 0.1435 0.1419 0.1734 0.0638 

 R2 - - 0.9143 0.9822 
 εav, mm - - 0.8959 0.3798 
Aerens εrel, % - - 15.686 9.2270 
 𝜀𝑎̅𝑣, mm - - -0.5026 -0.1131 
 𝜎𝜀̅𝑎𝑣

, mm - - 0.1714 0.0524 

 R2 - - 0.9135 0.9829 
 εav, mm - - 0.8915 0.3850 
Swift UM εrel, % - - 15.581 9.3536 
 𝜀𝑎̅𝑣, mm - - -0.4833 -0.0478 
 𝜎𝜀̅𝑎𝑣

, mm - - 0.1712 0.0503 

 R2 - - 0.9158 0.9830 
 εav, mm - - 0.8883 0.3665 
Aerens UM εrel, % - - 15.525 8.9044 
 𝜀𝑎̅𝑣, mm - - -0.4975 -0.0926 
 𝜎𝜀̅𝑎𝑣

, mm - - 0.1703 0.0516 

 


