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Abstract 
 

In the 21st century, stress and mental health have become major concerns 

worldwide. Yet, a continuous, quantitative measurement technique, allowing 

just-in-time interventions to reduce stress, is lacking. Therefore, research has 

focused on exploiting the sympathetic nervous system’s (SNS) fight-or-flight 

response, by investigating physiological signals for monitoring stress. Research 

has focused on developing machine learning models for stress detection, based 

on physiological signals such as heart rate (HR), skin conductance (SC), skin 

temperature (ST) and respiration. These have shown to be reliable indicators 

of stress in well-controlled laboratory conditions, but large-scale ambulatory 

validation is missing. 

The goal of this research is to identify physiological sensing priorities and 

machine learning techniques for physiological stress detection and next, to 

deploy these on a large population in real-life, ambulatory conditions.  

To this end, this dissertation focuses on three objectives. 

 

First, we aim to identify the most suitable markers for physiological 

stress detection. We set up a trial, including stress-inducing stimuli in a 

controlled, laboratory environment with 20 healthy subjects. The data is used 

to identify physiological sensing priorities, compare machine learning 

techniques and investigate inter-person variability. We conclude that, on 

average, SC and HR related features are more important than ST and 

respiration related features. However, on a personal level, physiological 

sensing priorities differ across subjects, favoring a multi-sensor approach. 

Based on the comparison of six machine learning techniques, we conclude that 

for generalized models (i.e. including all subjects), support vector machines 

(SVMs) perform best, for personalized models (i.e. based on one subject), 

dynamic Bayesian networks perform best. Overall, personalized models 

outperform generalized models. The selection of the most optimal technique 

depends on the context of the application. 

 

Second, we aim to differentiate between healthy subjects and patients 

based on their physiological stress response, towards disease prevention 
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and interception. We repeat the previous experiment with 12 patients with 

stress-related complaints and use an exploratory methodology to classify 

healthy subjects and patients. Our results show the potential of using 

physiological signals for the interception of stress-related diseases (e.g. 

burnout) and contain large value towards prevention. 

 

Third, we aim to investigate the physiological stress response on a 

large scale in ambulatory conditions. We present the SWEET study: 

world’s largest ambulatory stress detection study, including 1,002 subjects 

who are continuously monitored during 5 days. We present a protocol 

including physiological sensing, baseline psychological information, self-

reported stress and contextual sensing based on smartphone information. 

Results highlight the need for personalized models to detect stress, based on 

the development of digital phenotypes, i.e. personas for stress detection based 

on digital information including physiological, contextual and psychological 

baseline data. Further, we present a methodology to use subject-specific 

information, based on the physiological response to a specific stress task in an 

ambulant environment, towards a personalized calibration for ambulant stress 

detection models. 

 

The results of this dissertation provide a first step towards personalized stress 

detection, and more generally towards precision medicine and 

personalized healthcare. In the future, physiological stress detection, 

including context information, could enable just-in-time adaptive intervention 

strategies, towards early detection and prevention of stress-related diseases 

and cause a paradigm shift from treatment to disease prevention and 

interception. 
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Samenvatting 
 

Stress en mentale gezondheid zijn in de 21ste eeuw wereldwijd een belangrijke 

bekommering geworden. Toch is er een gebrek aan continue, kwantitatieve 

meettechnieken, die stressreductie interventies op het juiste moment 

toelaten. Daarom worden fysiologische signalen, die veranderen ten gevolge 

van de vecht-of-vluchtreactie van het sympathische zenuwstelsel, onderzocht 

voor stressdetectie. Eerder onderzoek heeft gefocust op de ontwikkeling van 

machine learning modellen voor stressdetectie, gebaseerd op fysiologische 

signalen zoals hartslag (HR), huidgeleiding (SC), huidtemperatuur (ST) en 

ademhaling. In gecontroleerde labo-omgevingen zijn deze signalen 

betrouwbare indicatoren voor stress gebleken, maar grootschalige, ambulante 

validatie ontbreekt. 

Het doel van dit onderzoek is om de belangrijkste fysiologische signalen en 

machine learning technieken voor stressdetectie te identificeren en vervolgens 

toe te passen op een grootschalige populatie in ambulante condities. 

Daartoe beoogt deze thesis drie doelstellingen. 

 

Vooreerst beogen we de meest geschikte markers voor fysiologische 

stressdetectie te identificeren. We zetten een onderzoek op met 20 

gezonde deelnemers, die we onderwerpen aan stress inducerende stimuli in 

een gecontroleerde labo-omgeving. De data wordt gebruikt om de 

belangrijkste fysiologische signalen en machine learning technieken te bepalen 

en om interpersoonlijke variabiliteit te onderzoeken. We besluiten dat, 

gemiddeld genomen, SC en HR gerelateerde variabelen belangrijker zijn dan 

ST en ademhaling gerelateerde variabelen. Echter, op een persoonlijk niveau 

verschilt het belang van fysiologische signalen, waardoor een multimodale 

sensor aanpak aangewezen is. We vergelijken zes machine learning technieken 

en besluiten dat voor algemene modellen (waarbij alle deelnemers inbegrepen 

zijn), support vector machines (SVMs) het beste presteren, en voor 

gepersonaliseerde modellen (gebaseerd op de data van slechts een 

deelnemer), dynamische Bayesiaanse netwerken het beste presteren. 

Algemeen presteren gepersonaliseerde modellen beter dan algemene 

modellen. De keuze van de machine learning techniek is afhankelijk van de 

context waarin deze gebruikt zal worden. 
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Ten tweede, beogen we gezonde mensen en patiënten te 

onderscheiden op basis van hun fysiologische stressrespons, met als 

doel ziekte preventie en interceptie. We herhalen het vorige experiment met 

12 patiënten die last hebben van stress gerelateerde klachten en gebruiken een 

exploratieve methodologie om gezonde mensen en patiënten te 

onderscheiden. Onze resultaten tonen het potentieel van fysiologische 

signalen voor de interceptie van stress gerelateerde ziektes (bv. Burnout) en 

zijn van grote waarde in de richting van preventie. 

 

Ten derde, beogen we een grootschalig onderzoek naar de fysiologische 

stressrespons in ambulante condities. We stellen de SWEET studie voor: 

‘s werelds grootste studie rond ambulante stressdetectie, bij 1002 deelnemers 

die gedurende 5 dagen continu gemonitord worden. We presenteren een 

protocol met fysiologische metingen, baseline psychologische informatie, zelf-

gerapporteerde stress en context metingen op basis van smartphone 

informatie. De resultaten benadrukken de nood aan gepersonaliseerde 

modellen voor stressdetectie, op basis van de ontwikkeling van digitale 

fenotypes, dit zijn personas voor stressdetectie op basis van digitale informatie 

waaronder fysiologische, contextuele en psychologische baseline data. Verder, 

presenteren we een methodologie om persoonsgebonden informatie, 

gebaseerd op de fysiologische respons op een stresserende taak in een 

ambulante omgeving, te gebruiken voor gepersonaliseerde kalibratie voor 

ambulante stressdetectie. 

 

De resultaten van deze thesis bieden een eerste stap richting 

gepersonaliseerde stressdetectie en meer algemeen richting precisie 

geneeskunde en gepersonaliseerde gezondheidszorg. In de toekomst, 

zou fysiologische stressdetectie, gecombineerd met contextuele informatie, 

gebruikt kunnen worden om adaptieve interventiestrategieën aan te bieden op 

het juiste moment. Dit zou vroege detectie en preventie van stress 

gerelateerde ziektes mogelijk kunnen maken en een paradigmaverschuiving 

teweeg kunnen brengen van ziekte behandeling naar ziekte preventie en 

interceptie. 
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Nomenclature 
 

AbsDiff2 Absolute second difference of the skin conductance signal 

ACC Acceleration  

ACTH Adrenocorticotropic hormone 

ADR Average detection rate 

AI Artificial intelligence 

ANN Artificial neural network 

ANS Autonomous nervous system 

AVP Arginine vasopressin 

BMI Body mass index 

BN Bayesian network 

BP Blood pressure 

BVP Blood volume pulse 

CI Confidence interval 

CK Cohen-Kappa 

CNS Central nervous system 

CRF Corticotropin-releasing factor 

DASS Depression anxiety stress scale 

dBN Dynamic Bayesian network 

DT Decision tree 

EB1 Energy band 0-0.1 Hz 

EB2 Energy band 0.1-0.2 Hz 

EB3 Energy band 0.2-0.3 Hz 

EB4 Energy band 0.3-0.4 Hz 

ECG Electrocardiography 

EMA Ecological momentary assessment 

EMG Electromyography 

ERI Effort reward imbalance 

HPA Hypothalamic pituitary adrenal 

HF High frequency band of the RR intervals (0.15-0.4 Hz) 

HR Heart rate 

HRV Heart rate variability 

JDC Job demands-control 
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JDCS Job demands-control-support 

JDR Job demands-resources 

JITAI Just-in-time adaptive intervention 

KNN K-Nearest Neighbors 

LDA Linear Discriminant Analysis 

LPDS Leuven postprandial distress scale 

LF Low frequency band of the RR intervals (0.04-0.15 Hz) 

LFHF Low frequency over high frequency bands of the RR 

intervals 

LR Logistic regression 

meanRSP Mean respiration frequency 

mHR Mean heart rate 

mPhasic Phasic component of the skin conductance signal (0.16-

2.1 Hz) 

mT Mean skin temperature 

mTonic Tonic component of the skin conductance signal (0-0.16 

Hz) 

MINI Mini international neuropsychiatric interview 

MIST Montreal imaging stress task 

ML Machine learning 

NrPeaks Number of peaks of the skin conductance signal 

OLS Ordinary least squares 

OPD Ohmic perturbation duration 

PAM Partitioning around medoids 

PCA Principal component analysis 

pNN20 Proportion of the successive normal to normal beat 

intervals that differ more than 50ms 

pNN20 Proportion of the successive normal to normal beat 

intervals that differ more than 20ms 

PNS Parasympathetic nervous system 

PPG photoplethysmography 

PSS Perceived stress scale 

PSQI Pittsburg sleep quality index 

PTSD Posttraumatic stress disorder 

PVN Paraventricular nucleus 

QI Quality indicator 
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RDR Rest detection rate 

RF Random forest 

RMSSD Root mean square of the successive RR differences 

RSA Respiratory sinus arrhythmia 

SAM Sympathetic adrenal medullary 

SAM Self-assessment manikin 

sBN Static Bayesian network 

SC Skin conductance 

SCL Skin conductance level (mean) 

SCL-90 Dutch symptom checklist-90 

SD Standard deviation 

SDNN Standard deviation of the normal to normal beat intervals 

SDR Stress detection rate 

SNS Sympathetic nervous system 

ST Skin temperature 

slopeT Slope of the skin temperature 

stdT Standard deviation of the skin temperature 

SVM Support vector machine 

SVR Support vector regression 

SWEET Stress in the work environment 

TSST Trier social stress test 
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Chapter 1:  Introduction 
 

In the 21st century, stress and mental health at work have become major 

concerns for organizations worldwide [1]. The American Psychological 

Association states that in 2015 in the US 24% of adults reported extreme 

stress [2]. In 2013 in Europe 51% of the working population reports that cases 

of work-related stress are common in their workplaces, with most important 

causes of stress being job reorganization or job insecurity and hours worked 

or workload [3]. 

Research has already extensively discussed the negative consequences of 

stress [4, 5, 6, 7]. For example, observational data suggest an average 50% 

increased risk for coronary heart disease among employees with work stress 

[8]. Besides these personal health effects, also at the level of organizations 

increased stress levels can have a negative impact. It has been shown that 

people perform worse under excessive stress [4]. Many studies have tried to 

estimate the cost of stress and while quantitative data is scarce, a report of 

the European Agency for Safety and Health at Work states that in 2002 the 

cost of work-related stress for Europe was estimated at €20 billion [9]. A 

more recent study in 2013 estimates the cost of work-related depression in 

Europe at €617 billion annually [10]. This total is a combination of costs due 

to absenteeism and presenteeism (€272 billion), loss of productivity (€242 

billion), health care costs (€63 billion) and social welfare costs (€39 billion). 

Although the accuracy of these numbers is debatable as outcomes vary heavily 

on measurement techniques, they show that prevention and detection of 

stress at work in an early stage are of utmost importance for both welfare and 

economy. 

Due to this large cost of stress, already in 1999 in Belgium a legislation to 

prevent stress at work has been drafted (‘Collectieve Arbeidsovereenkomst 

nr. 72’ [11]). Also at European level a framework directive was drafted in 1989 

to guarantee minimum safety and health requirements throughout European 

member states (Directive 89/391 EEC [12]). In both legislations, companies 

are encouraged to detect and evaluate employees’ work-related stress.  

Currently the most widely used method and current gold-standard to assess 

stress is by means of questionnaires, e.g. the Perceived Stress Scale [13]. 
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However, these questionnaires are qualitative, time-consuming and reflect 

subjective responses collected during spot-checks. Therefore, research has 

focused on finding objective, continuous and quantitative physiological markers 

of stress [14], which change due to the sympathetic nervous system’s (SNS) 

fight-or-flight response [15], i.e. the bodily response to stress.  

The most-frequently investigated physiological signals for monitoring stress 

are the skin conductance (SC) (changes in SC by sweat-gland innervation), the 

electrocardiogram (ECG) (changes in heart rate (HR) and heart rate variability 

(HRV)), the electromyogram (EMG) (electrical activity of skeleton muscles), 

blood pressure (BP) and skin temperature (ST) [16]. These have shown to be 

reliable indicators of stress in laboratory conditions [16]. 

In recent years, the growing availability of wearable sensors has led to 

increased research towards continuous, ambulatory monitoring of stress. 

However, still many gaps in research can be identified. Most ambulatory 

studies have been executed on a small population (i.e. 20-50 participants). 

Although these studies provide valuable insights, in order to develop models 

that are generalizable on a large scale, large datasets are needed. Further, in 

the majority of ambulatory trials, participant background knowledge is not 

taken into account. It should be investigated how demographics (e.g. gender) 

and psychological baseline information (e.g. self-reported anxiety and 

depression levels) contribute to physiological stress detection. Also context 

information (e.g. location) is often ignored, although it could be used to 

provide much more actionable feedback [17]. 

 

Baring these observations in mind, the goal of this research is to gain more 

insight in physiological sensing priorities and machine learning 

techniques for physiological stress detection and next to deploy 

these on a large population in real-life, ambulatory conditions. 

Three objectives for this thesis have been formulated: 

 

1. The identification of the most suitable markers for physiological stress 

detection in a controlled laboratory environment on healthy subjects, to 

translate this knowledge to the ambulant environment. 

a. Identify the best performing machine learning techniques, in terms of 

accuracy, for physiological stress detection 
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b. Evaluate if personalized models (i.e. one model per subject) outperform 

generalized models (i.e. one model for all subjects) 

 

First, we focus on the detection of stress in a controlled environment. We 

submit 20 healthy subjects to a stress test in laboratory conditions, allowing 

us to control stress and relax periods. We investigate the use of different 

physiological signals for stress detection and identify the most relevant 

physiological features. 

Further, we compare several machine learning techniques for physiological 

stress detection and investigate if personalized models (i.e. one model per 

subject) outperform generalized models (i.e. one model for all subjects). These 

findings will aid in the selection of physiological signals for an ambulatory trial 

and provide insights in machine learning techniques for stress detection. 

 

2. The differentiation between healthy subjects and patients based on 

their physiological stress response, towards disease prevention and interception. 

 

The same controlled experiment on 20 healthy subjects is repeated for 12 

patients with stress complaints. This is needed because in the future, it might 

be the goal to use continuous, ambulatory stress detection for disease 

prevention and interception. Therefore, first, the difference in physiological 

response between healthy subjects and patients must be established. We 

propose a new exploratory methodology that can be used to differentiate 

healthy subjects and patients based on their physiological response to a stress 

task in laboratory settings. 

 

3. The large-scale investigation of the physiological stress response in 

ambulatory conditions, including demographics and context information 

towards digital phenotypes for personalized and continuous stress detection. 

a. Set-up of a large-scale study (>1000 subjects) in the work environment, 

to grasp inter-subject variability 

b. Differentiate subjects according to their digital phenotypes for stress 

detection, towards personalized physiological stress detection 

c. Identify a personalized physiological calibration methodology using a 

short stress test, towards ambulant model performance improvement 
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We present the SWEET study: world’s largest ambulatory stress detection 

study. Over a period of more than two years, we included 1,002 subjects who 

were continuously monitored during 5 days using a wristband and chest patch 

for physiological sensing and a smartphone for annotations. A protocol is 

presented including physiological sensing, baseline psychological information, 

self-reported stress and contextual sensing based on smartphone information. 

In terms of size, this study is at least 10 times larger than any previous study 

related to ambulatory psychophysiological stress detection. In terms of scope, 

it features an unprecedented combination of multi-sensor data sources, 

allowing more insight into the link between physiological stress and subjects’ 

context and background information.  

Based on this information, we develop models for ambulatory, continuous 

stress detection and investigate digital phenotypes for physiological stress 

detection, i.e. how subjects with different demographics and context 

information differ in their physiological stress response.  

Last but not least, we propose a methodology to use a short stress test to 

increase personalization and improve stress detection models performance. 

 

By conducting these three studies, we aim to provide the research community 

with more insights on a) the capability of machine learning techniques for 

stress detection and physiological sensing priorities, b) the physiological 

difference in stress response between healthy subjects and patients and c) the 

potential of digital phenotyping for personalized stress detection in ambulatory 

conditions.  

We hope these insights will form the basis for future research to enable highly 

personalized, just-in-time interventions for preventive health and stress 

reduction. 

 

1.1. Chapter-by-chapter overview 
 

In Chapter 2 we discuss the background related to the problem of stress and 

stress detection. We focus on definitions for stress and its physiological 

pathway. Further, we discuss different machine learning techniques and their 

advantages and disadvantages for physiological stress detection. 
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In Chapter 3 we focus on the first objective of the thesis: the identification of 

the most suitable markers for physiological stress detection in a controlled 

laboratory environment on healthy subjects. We present the study protocol, 

compare multiple machine learning techniques and investigate inter-person 

variability. 

In Chapter 4 we focus on the second objective of the thesis: the differentiation 

between healthy subjects and patients based on their physiological stress 

response. We present the study protocol, introduce an exploratory 

methodology to calculate physiological features and develop a model to 

differentiate between healthy subjects and patients. 

In Chapters 5-7 we focus on the third objective of the thesis: The large-scale 

investigation of the physiological stress response in ambulatory conditions, 

including demographics and context information towards digital phenotypes 

for personalized and continuous stress detection. In Chapter 5 we present the 

protocol of the SWEET study and results regarding compliance and data 

quality. 

In Chapter 6 we use the data collected in the SWEET study, including 

demographics, psychological background information, physiological and 

contextual information to infer behavior patterns and digital phenotypes for 

stress detection. In Chapter 7 we introduce a methodology to use subject-

specific information, based on the physiological response to the Montreal 

Imaging Stress Task (MIST), a short stress test which was conducted as part 

of the SWEET study, to improve ambulant classification performance.   

In Chapter 8 we discuss the conclusions of this thesis and propose relevant 

future work. 
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Chapter 2: Background 
 

This chapter explains the problem of stress and stress detection and discusses 

background research in this domain. First, we focus on the definition of stress. Second, 

the physiological pathway of stress is explained. Based on this pathway three stress 

detection techniques are identified and discussed: questionnaires, biochemical 

indicators and physiological indicators. Third, the most frequently used machine 

learning techniques for stress detection based on physiology are discussed. The 

content of this chapter is partially submitted to IEEE Journal of Biomedical and Health 

Informatics. 

 

2.1. Definition of stress 
 

Stress has first been described by Hans Selye [18] based on an experiment 

with rats. Selye found that rats, when exposed to a critical situation (e.g. cold 

or injury), express a typical reaction which he called the ‘general adaptation 

syndrome’ and later renamed as the ‘stress response’ [19]. Since then, many 

definitions of stress have been formulated. The Oxford dictionary currently 

defines stress as “a state of mental or emotional strain or tension resulting 

from adverse or very demanding circumstances”. This definition however only 

focuses on the negative attributes of stress. To emphasize the fact that stress 

can be both positive and negative, Selye additionally defined ‘eustress’ or good 

stress and ‘distress’, depending on differences in the subject’s perception and 

emotional reaction [19]. According to Selye, the individual defines whether 

the stressor causes eustress or distress. Another approach called the ‘Yerkes-

Dodson Law’ states that increasing stress leads to increasing performance until 

some maximum point is reached, after which performance will decrease with 

increasing stress, also known as the inverted-U diagram [20] as can be seen in 

Figure 2-1. 
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Figure 2-1: Yerkes-Dodson Law [21] 

It is interesting to note that Yerkes and Dodson [22] in their original model 

never mentioned stress and performance levels. They observed an inverted-U 

relation between stimulus strength and habit formation of mice. Only later, 

Eysenck [23] hypothesised the relationship would hold true between anxiety 

and task performance in humans. However, there is no empirical evidence 

confirming this hypothesis, yet this model is often used in managerial 

psychology [24]. Research suggests the relationship of the Yerkes-Dodson law 

is too simplistic to account for the complex relationship between cognitive 

functions (e.g. performance) and emotional arousal (or stress) [25]. It is argued 

that context can play an important role and should be taken into account. 

Besides these general definitions, also several models have been developed 

that aim to define stress in the work environment. A commonly used model 

is the Job Demands-Control (JDC) model of Karasek [26], also called the Job 

strain model (Figure 2-2). This model states that the combination of high job 

demands and low decision latitude results in high strain or stress (line A in 

Figure 2-2). Additionally, high demands combined with high levels of decision 

latitude result in learning and development of new behavior (line B in Figure 

2-2). The model hypothesizes that job decision latitude (control) can moderate 

the negative effects of high demands on well-being (also called the ‘buffer 

hypothesis’). 
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Figure 2-2: Job Demands-Control model of Karasek [26] 

Later Johnson and Hall [27] added a social dimension to the model, resulting 

in the Job Demands-Control-Support (JDCS) model, stating that increased 

control buffers the negative effects of high job demands best under conditions 

of high social support [28]. The review of Häusser et al. [28] investigated 237 

studies between 1998-2007 using the JDC model and found support for the 

model in 80 % of the studies. Additionally they compared 144 studies using the 

JDCS model, for which they found support in 61 % of the studies. It can be 

concluded that there is a strong evidence base for the JDC model. 

Another widespread model is the Effort-Reward Imbalance (ERI) model of 

Siegrist [29] (Figure 2-3), which puts emphasis on rewards rather than on 

control. Rewards can be given in three ways: money, esteem and job 

security/career prospects. Additionally, also personal characteristics are 

included and the term ‘overcommitment’ is introduced. People who are 

characterized by overcommitment, have a strong desire of being approved and 

tend to exaggerate their efforts and underestimate the challenge [30]. A cross-

sectional study with more than 11,000 participants shows independent 

cumulative effects of both the JDC model and the ERI model on employee 

well-being [30]. Additionally, the study shows that overcommitted people have 

higher risks at poor well-being.  
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Figure 2-3: Effort-Reward Imbalance model of Siegrist [29] 

Finally, Demerouti et al. [31] defined the Job Demands-Resources (JDR) model 

based on strengths and weaknesses of the JDC and ERI models. It is stated 

that a major weakness of the JDC and ERI models is that they are static, for 

the JDC model only autonomy is included as resource, while for the ERI model 

only money, esteem and status control are included. However, it could be 

possible that in different jobs, different types of resources might be more 

important. Therefore the JDR model was developed under the assumption 

that every occupation might have their own risk factors associated with job 

stress and their own resources [32]. The model states that high job demands 

lead to strain and impaired health, and that high resources lead to increased 

motivation and higher productivity (Figure 2-4). The results of 16 cross-

sectional studies show strong evidence for the model’s assumptions [33]. 

 
Figure 2-4: Job Demands-Resources model of Demerouti [31].  

Signs indicate the direction of the effect, (+) indicates an increase, (-) a decrease, e.g. high job demands 

lead to higher strain which leads to more negative outcomes. 
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Overall, these models and definitions of stress can be subdivided into three 

categories. The first category mainly focuses on stressors as part of the 

environment, e.g. the JDC model of Karasek. The second category focuses on 

the individual response, including the physiological and subjective levels of 

distress, e.g. the definition of Selye. The third category defines stress as an 

interaction between subject and environment, e.g. the ERI model of Siegrist, 

including both extrinsic and intrinsic aspects of effort and rewards.  

Literature is not conclusive on which model or category is most correct. In 

this thesis, the JDC model of Karasek is used to identify the subjective stress 

response, i.e. we investigate the physiological and subjective effect of different 

stressors, changing the environmental demands, on a subject. 

 

2.2. The physiological stress response 
 

The human body responds to stress using two response systems: a fast 

response to sudden stress following the sympathetic adrenal medullary (SAM) 

axis and a slow response to chronic stress following the hypothalamic pituitary 

adrenal (HPA) axis [34].  

The autonomic nervous system (ANS) exists of three subsystems: the 

sympathetic nervous system (SNS), the parasympathetic nervous system (PNS) 

and the enteric nervous system. Most tissues are innervated by both SNS and 

PNS with opposing effects as can be seen in Figure 2-5. 
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Figure 2-5: The Autonomic Nervous System (ANS) [35] 

When the brain encounters a stressor, i.e. an internal or external stimulus that 

disrupts the body’s internal balance, the paraventricular nucleus (PVN) of the 

hypothalamus will activate the SNS. The SNS in its turn will signal the adrenal 

medulla to secrete epinephrine  and norepinephrine (SAM axis) [15]. This 

activation results in an increase of heart rate, blood pressure, pupil dilation, 

etc., which is sustained by the presence of epinephrine and norepinephrine. 

The body is preparing for a ‘fight-or-flight’ response. Simultaneously, the PVN 

will release two hormones: corticotropin-releasing factor (CRF) and arginine 

vasopressin (AVP) [36]. Both hormones are sent to the pituitary gland 

(hypophysis) through blood vessels, where they stimulate the production and 

secretion of adrenocorticotropic hormone (ACTH). ACTH in its turn induces 

the synthesis and release of glucocorticoids from the adrenal cortex (HPA 

axis). In humans the most important glucocorticoid is cortisol, which has a 

wide array of regulatory influences. It plays a key role in the central nervous 

system (CNS), where it is involved in learning, memory and emotion 

regulation; in the metabolic system, where it regulates the use and storage of 
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glucose; and in the immune system, where it regulates the magnitude and 

duration of the inflammatory response [37]. Cortisol levels reach a peak in the 

blood about 30 minutes after acute stress exposure [38]. 

The stress response system is regulated by a negative feedback loop at the 

level of the pituitary, where it reduces the release of ACTH; the hypothalamus, 

where it reduces the activity of the PVN; and the hippocampus, which has a 

stimulating effect on the production of CRF in the absence of cortisol, this 

activity is depressed in the presence of cortisol [15]. Through the reduced 

activity of the PVN both SAM and HPA axes are attenuated and levels of 

epinephrine will decrease. It is important to notice that the main driver of the 

fight-or-flight response is the SAM axis and presence of epinephrine. The HPA 

axis and presence of cortisol do not stimulate the stress response, but rather 

regulate it. Without cortisol no negative feedback loop would be possible and 

stress responses would have damaging effects on the body [15]. 

 

2.3. Methods for stress detection 

2.3.1. Questionnaires 
 

Currently the most widespread method and de facto the gold standard to 

measure stress is by means of questionnaires, e.g. the Job Content 

Questionnaire [39]. These questionnaires are qualitative, time consuming, 

conducted on spot-check basis only and their answers are subjective. 

Emotional arousal does not necessarily reach the level of consciousness and 

the extent to which it does and whether one wants to share this information 

can vary from person to person [40]. Therefore the answers of employees to 

these questionnaires are not always a good representation of their wellbeing 

in the organization [41]. Verkuil et al. [42] suggest that persons with lower 

emotional awareness might have to rely on different indicators of stress 

compared to persons with higher emotional awareness. Furthermore, even 

when a person is consciously aware of and willing to share his stress levels, 

questionnaires are subject to recall bias (“a systematic error due to differences 

in accuracy or completeness of recall to memory of past events or 

experiences” [43]) and in repeated assessments often within-person variability 

over time and across contexts is lost [44]. A possible solution to this problem 

is provided by ecological momentary assessments (EMAs). EMAs capture real-
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time data on momentary states in the natural environment, often using 

electronic diaries, e.g. on a smartphone [44]. These questionnaires are sent at 

random or specific times throughout the day to prompt the subject for 

immediate feedback. However, these prompts may be experienced as highly 

interruptive and become a source of stress itself [45].  

 

2.3.2. Biochemical stress indicators 
 

Research has focused on finding objective, non-intrusive, continuous and 

quantitative ways to detect stress. Based on the physiological pathway of stress 

(see 2.2) both biochemical and physiological indicators can be used for stress 

detection. 

The most common biochemical stress indicator is cortisol, which can be 

measured in the blood, sweat, tears, urine or saliva for acute stress detection 

[46]. Measurement techniques are tedious and time-consuming. To obtain 

saliva samples, subjects need to swap their mouths or spit into a container, 

once up to eight times a day, depending on the experimental set-up of the 

study [47]. Next, these samples are analyzed in a laboratory using 

immunoassays, i.e. biochemical tests [48] to detect cortisol through the use of 

antibodies. This is a challenging approach since many steroids are structurally 

similar to cortisol, which makes the selection of entirely specific antibodies 

difficult [48]. For example, in saliva the presence of cortisone can significantly 

reduce the specificity. 

In several studies salivary cortisol is also used to assess chronic stress, 

however, long-term exposure is difficult to evaluate due to inherent circadian 

variations of cortisol (i.e. morning increase and evening decrease), therefore 

hair cortisol (i.e. cortisol extracted from the roots of the hair) is suggested for 

measurement of chronic stress [46]. Less frequently epinephrine and salivary 

alpha amylase, both markers for SNS activation, are measured for acute stress 

detection [49]. Review analyses have shown that acute stressors can elicit a 

cortisol response [50]. However, results are rarely consistent and there is a 

substantial degree of variability in the magnitude of the cortisol effect, which 

varies depending on the characteristics of the stressor. A review of 208 studies 

has shown that stressors high in uncontrollability as well as social threats cause 

a stronger cortisol response [50]. Further, the cortisol stress reactivity can 

also vary across different psychiatric disorders and gender, e.g. women with a 
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major depressive disorder or an anxiety disorder show blunted cortisol stress 

responses to psychological stress, whereas men show increased cortisol 

responses [51]. Although cortisol is often suggested as stress detection 

technique, it still cannot be measured in a continuous, non-intrusive way. 

Therefore research has investigated physiological stress detection. 

 

2.3.3. Physiological stress indicators 
 

Research focusing on the physiological detection of stress has been conducted 

under different types of conditions. Historically, most research has been 

conducted in laboratory settings (Figure 2-6a), where both stressor (timing, 

frequency, duration) and context can be rigorously controlled [52]. With the 

increasing use of wearables, many opportunities are emerging for a continuous, 

ambulatory monitoring of stress and research in this field has increased 

substantially over the last five years. In ambulatory monitoring two types of 

conditions are used, either context specific (Figure 2-6b), e.g. stress 

monitoring while driving a car [53] or in a call center [54], or daily living 

settings (Figure 2-6c) in which different types of stressors can influence the 

subject and the context of the stressors is unknown. 

 

 
Figure 2-6: Conditions for physiological stress detection [52] 

In controlled settings the potential of physiological signals to detect 

psychological stress has already widely been demonstrated. Several stress 

inducement stimuli have been used, e.g. the Stroop color word test, mental 



16 

 

arithmetic, public speaking, computer work or a cold pressor test [55]. Also 

multiple physiological signals have been investigated, the most commonly 

studied signals are explained in further detail below. In Table 2-6 an overview 

of current research on physiological stress detection is presented. 

 

Electrocardiogram 
 

The electrocardiogram (ECG) measures the electrical activity of the heart. A 

sample from a typical ECG is depicted in Figure 2-7. The P-wave is associated 

with the contraction of the atria. The QRS complex is associated with the 

contraction of the ventricles. The T/U waves are associated with the 

repolarization of the ventricles [56]. The R-R distance (or R-R interval) is the 

time between two R peaks and is used in the calculation of the heart rate (HR) 

and heart rate variability (HRV). ECG signals from different individuals can 

exhibit personalized traits such as the relative timing of the peaks but can also 

exhibit responses to stress and activity. 

 

 
Figure 2-7: Sample of a normal ECG [56] 

In resting conditions the heart is under inhibitory control of the PNS. This 

results in a low HR and high HRV, since the PNS adapts the HR to the 

breathing phase (inspiration versus expiration), i.e. Respiratory Sinus 

Arrhythmia (RSA) [57]. In stressful situations, PNS control is decreased 

resulting in a disinhibition of the SNS and an increased SNS activation through 

the SAM pathway (see 2.2), which causes the HR to increase and the HRV to 
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decrease since SNS modulation of HR reacts too slow to respond to the 

respiratory phase.  

HR and HRV have already widely been investigated in stress-related research. 

Karthikeyan et al. [58] found a 79.17% classification accuracy for binary stress 

classification (i.e. rest versus stress) based on HRV. Gomes et al. [59] found a 

68% association of HRV with self-perception of stress for fire fighters in real 

emergency situations and Michels et al. [60] and Rieger et al. [61] found 

significant correlations of HRV with perceived stress. Widjaja et al. [62] 

showed that by removing the influence of the RSA (i.e. the influence of 

respiration on HR and HRV), the classification accuracy for a binary stress 

detection could be improved from 57.13% to 97.88%. 

HR and HRV are also influenced by physical activity [59], drugs (e.g. beta-

blockers, estrogens, vitamin E and coenzyme Q10 increase HRV, progestins 

and nifedipine decrease HRV [63]), nutrient uptake (e.g. fasting increases HRV 

[63], sodium restriction decreases HRV [64]), personal attributes (e.g. 

smoking and alcohol intake reduce HRV [65], evening types have a lower HRV 

than morning types [66]) and time of the day (HRV is influenced by a circadian 

rhythm with high HRV before waking up and lower HRV after [67]). 

In general, the measurement of HR and HRV is noninvasive and easy to 

perform, it has a relatively good reproducibility and there is already a large 

body of research supporting the link with psychological stress [65]. 

 

Skin conductance 
 

Skin conductance (SC), also called, galvanic skin response or electrodermal 

activity, reflects the production of sweat caused by activation of the SNS. 

Three types of sweat glands exist: eccrine, apocrine and apoeccrine [68] [69] 

[70]. The eccrine glands are already present at birth and are located over the 

entire body, although most concentrated in forehead, palms, soles, axilla and 

scalp (e.g. 600-700 glands/cm² on palms compared with 64 glands/cm² on the 

back [69]). The apocrine glands are small and inactive until puberty, then they 

become large and secrete a solution thicker than sweat, localized at axilla, 

areola of the nipples and perineum. The apoeccrine glands combine the 

characteristics of eccrine and apocrine glands. There are two types of 

sweating: thermoregulatory, in which eccrine glands over the whole body are 
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involved, and emotional, in which apocrine and eccrine glands in face, axilla, 

palms and soles are involved [68]. Emotional sweating is controlled by the SNS, 

which normally has norepinephrine as a postganglionic neurotransmitter, but 

for sweat production this is acetylcholine (normally the postganglionic 

neurotransmitter of the PNS). Wilke et al. [70] stated that eccrine sweat glands 

are also triggered by norepinephrine but that this effect is much smaller than 

acetylcholine. In Figure 2-8 the pathway of thermoregulatory and emotional 

sweating is presented. The left part of the figure represents the input of 

thermoregulatory sweating, for emotional sweating the input is stress at the 

level of the brain. These inputs are both processed in the brain and a response 

is sent to the sweat glands through the neurotransmitter acetylcholine. 

 

 
Figure 2-8: Pathway of thermoregulatory and emotional sweating [71] 

Van Dooren et al. [69] stated that the best locations to measure SC are at the 

fingertip, foot and shoulders. However, these locations are not practical in 
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terms of user comfort for ambulatory studies. Therefore, in practice mostly 

the wrist is used to measure SC in ambulant conditions. 

Multiple studies have already indicated the correlation between SC 

measurement and stress. Svetlak et al. [72] showed that 93.4% out of 106 

subjects had a higher SC during a Stroop task on left and right hand compared 

with the rest situation. 88.7% of the subjects had a higher SC on the left hand 

and 89.6% on the right hand. Villarejo et al. [73] found a 76.56% success rate 

on detecting different stress states based on a newly developed sensor using 

SC. A comparison of healthy subjects and subjects with posttraumatic stress 

disorder (PTSD) showed that both groups respond to a stressor with 

increased SC with larger responses for subjects suffering from PTSD [74]. 

Several contextual conditions can influence the SC signal. Contradicting 

findings exist on the influence of temperature on SC. Vetrugno et al. [71] stated 

that high ambient temperatures increase the effect of stress on SC and low 

ambient temperatures can erase the effect of stress on SC. However, Harrison 

et al. [75] found no significant difference in SC between infants based on 

temperature. Further several drugs can block the effect of stress on SC (e.g. 

Botulinum toxin [71]), but as opposed to HR and HRV, beta-blockers have no 

significant effect on SC [76], which makes it an interesting signal for people 

suffering from a heart condition. Further, absolute values of SC can differ 

largely among persons [77] and depending on the handedness of a person the 

SC signal can differ significantly between left and right hand [78], although this 

is contradicted by the findings of Svetlak et al. [72]. Finally, although Vertrugno 

et al. [71] indicated that different sweat glands are activated due to physical 

activity as compared to stress, Villarejo et al. [73] stated that in practice it is 

difficult to differentiate a sweat response as being due to stress or due to 

physical activity. 

In general, SC has widely been used to detect stress and a positive link has 

been established. It is a relatively easy to measure signal with a good 

reproducibility. Due to its independence of circulatory regulations it can 

provide complementary information with HR and HRV, especially for subjects 

suffering from heart conditions.  
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Electromyography 
 

The electromyography (EMG) measures the electrical activity of the muscles. 

During the stress response the SNS will be activated and prepare for the fight-

or-flight response, therefore energy will be mobilized to the muscles. The 

EMG shows a higher muscle activity during stress as compared to rest 

situations. A typical location to measure muscle activity due to stress is in the 

upper trapezius muscle (between neck and shoulder) [79]. 

Wijsman et al. [80] showed that the EMG amplitudes of the trapezius muscles 

are 2.6% higher during stress compared to rest and there is 14.3% less time 

between EMG gaps during stress. Further, EMG correlated significantly with 

subjectively indicated stress levels [80]. Karthikeyan et al. [79] found a 

classification accuracy of 71.25% on distinguishing binary stress levels in a 

laboratory environment, based on trapezius muscle EMG. Finally, Schleifer et 

al. [81], Lundberg et al. [82] and Krantz et al. [83] found a significant increase 

in trapezius muscle EMG activity when mental stress is present. 

Not all muscles are equally responsive to stress, with trapezius and facial 

muscles being the most sensitive locations [84]. Further also physical activity 

[80] and fatigue [85] have a strong influence on EMG. Veldhuizen et al. [85] 

found that EMG activity decreases during the workday due to fatigue. Finally, 

also personal attributes such as gender and trait anxiety can influence EMG.  

Although EMG has less been studied than HR and SC, it has been shown to be 

a reliable measure for physiological stress in laboratory conditions. It is 

especially an interesting measure since neck pain is a frequent cause of 

absenteeism in office workers. 30% of office workers report back pain, of 

which neck and shoulder are the most affected areas [86]. Since the main 

causes of pain include biomechanical exposure and stress [87], the 

measurement of EMG at the trapezius muscle and the reduction of stress 

could provide benefits in prevention of these musculoskeletal disorders [80]. 

 

Other physiological signals 
 

Blood pressure (BP) increases when the SNS is activated. Under normal 

conditions BP is controlled through the baroreflex feedback system, as 

represented in Figure 2-9. When the BP increases in the vessels (1), this is 

sensed by the baroreceptor (2) and the signal is sent to the vasomotor center 
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in the brain (3). This causes a decrease in activity in the sympathetic nerve (4) 

which leads to a reduced HR and therefore a reduced BP in the vessels (5) 

[88]. In stressful situations the SNS is activated and the baroreflex is, 

temporarily, overruled. After some time (4 min according to Zhao et al. [89]) 

sympathetic activity decreases and the baroreflex is again in control of BP. 

 
Figure 2-9: Baroreflex control of BP [88] 

Carroll et al. [90], Zhao et al. [89] and Matthews et al. [91] all found a significant 

increase in systolic (pressure when the heart beats) and diastolic (pressure 

between heart beats) BP to a mental stress task. However, most of these 

studies are longitudinal (e.g. Carroll et al. [90]), to investigate the negative 

effect of stress on high BP and therefore high risk at cardiovascular diseases. 

Few studies focus on the effect of acute stress on BP. A recent study of 

Ottaviani et al. [92] showed a significant increase in BP after a perseverative 

cognition task, i.e. rumination about the past and worrisome thoughts about 

the future, and after a problem solving task, using a continuous BP cuff. The 

main reason why BP is not frequently measured is the lack of a practical 

measurement system. In ambulatory conditions, subjects still have to wear a 

device on the waist connected via tubing to an inflatable cuff on the arm [93]. 

Another less frequently used signal, although easy to measure, is skin 

temperature (ST). When the SNS is activated, ST will decrease due to 

vasoconstriction. Kistler et al. [94] state that when fingertip temperature is 

initially higher than 32°C and the vasoconstriction due to sympathetic 

activation lasts longer than 5 s, fingertip temperature decreases with a lag 
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phase of 15 s. Karthikeyan et al. [95] found a 75.32% classification accuracy 

based on armpit ST measurements in stress and no-stress classes. 

Also pupil diameter and eye blinks can be used to detect stress. This is 

relatively easy to measure when subjects perform computer work (by use of 

a camera), but it is less straightforward to measure in daily life settings. Partala 

and Surakka [96] state that pupil size increases significantly in both negative 

and positive emotional states compared with neutral situations. Zhai and 

Barreto [97] found a stress classification accuracy based on measurements of 

blood volume pulse, SC, pupil diameter and ST of 90.10%, leaving pupil 

diameter out this drops to 61.45%. Wilson [98] found that eye blink rate tends 

to decrease with increased visual demands in a dynamic flight environment for 

pilots (i.e. a stressful situation). 

 

Combining physiological signals 
 

Previous research discussed mainly laboratory studies using only one 

physiological signal for stress detection. However, in recent years the focus 

has shifted towards multi-sensor, ambulatory research. 

First, the advantage of the multi-signal approach has been investigated in 

laboratory environments. In many studies HRV and respiration rate are 

measured together to control the HRV signal for respiratory influences [53] 

[99] [100] [101]. In many other studies a combination of HR, SC and/or EMG 

is used to improve classification accuracy. Sandulescu et al. [102] used SC and 

HRV to detect binary stress levels of subjects during the Trier social stress 

test (TSST) (i.e. a public speaking task) and reached a classification accuracy of 

79% in 0.1 s time intervals. De Vries et al. [103] combined SC, HR and 

respiration signals to classify binary stress levels in 5 min intervals with a 

classification accuracy of 88%. De Santos Sierra et al. [104] even found 

classification accuracies of more than 99% for a binary stress classification using 

HR and SC signals in 10 s intervals. However, this large accuracy is probably 

due to the choice of stressor, i.e. a hyperventilation task, which is rather a 

physiological challenge than a psychological challenge such as the TSST. 

Also promising classification accuracies have been obtained in ambulatory 

settings. The research of Healey and Picard [53] in 2005 was one of the first 

studies to leave the laboratory and do measurements in a real-world driving 

task. Although participants still had to drive on a set route, this was a first step 
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towards physiological stress detection in uncontrolled conditions. They 

reached a classification accuracy of 97% in a 5 min interval based on HR, SC, 

EMG and respiration. The main challenge to detect stress in ambulatory 

conditions is the presence of physical activity which can mask the effect of 

stress on the physiological signal(s) [105]. Additionally, ambulatory 

measurements are more susceptible to (motion) artefacts, which imposes the 

need for accurate signal processing techniques and signal quality indicators 

[106]. A new approach, combining information from laboratory and 

ambulatory settings, was suggested in the cStress model [107]. In this 

approach, first a model per subject is trained based on physiological data (HR 

and respiration) during a laboratory stress test. Then, this model is applied on 

ambulatory data, using the acceleration signal to include the physiological 

changes due to physical activity. An average classification accuracy for 20 

subjects of 72% was reached, classifying into binary stress levels in 1 min time 

intervals. 

In recent research not only physiological signals, but also smartphone 

information is used to increase classification performance. Muaremi et al. [17] 

measured HRV and smartphone features (e.g. GPS location, microphone, calls, 

battery status, etc.) of 35 employees in their daily lives during 4 months. They 

used self-reported stress from EMAs to classify each day into three stress 

levels and found a classification accuracy of 55% using only smartphone-related 

features, 59% using only HRV features and 61% using a combination of both. 

 

2.4. Overview of machine learning techniques 
 

Different machine learning (ML) techniques have been used in literature to 

predict mental stress based on physiology. Below the most frequently used 

techniques are described. 

 

2.4.1. Logistic regression 
 

In logistic regression (LR) the probability of the outcome of the stress vs rest 

classification is modeled as a function of the features weighed by coefficients 

[108]. A classical linear regression aims to explain a dependent variable as a 

function of multiple independent variables. The model is estimated with 
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ordinary least squares (OLS), a technique to select the model parameters 

which minimize the sum of squared errors between true and predicted 

outcome [109]. However, OLS can only be used under certain assumptions 

such as homoscedasticity (i.e. “the error term is the same across all values of 

the independent variables” [110]), linearity and normality. These assumptions 

are violated when the output variable has only two or three response 

categories (e.g. stress vs rest). Therefore, LR is a variation of linear regression, 

using the maximum likelihood estimation, transforming the dependent variable 

into a logit (log of the odds of falling into the “1” category, i.e. stress) [111]. 

Where the “maximum likelihood estimates yield parameters such that the 

likelihood of being able to use those parameters to replicate the actual data is 

maximized” [109] 

 The difference between the linear model, where b0 and b1 are estimated using 

OLS, and a logistic model, where b0 and b1 are estimated using maximum 

likelihood, is presented in Figure 2-10. The y-axis represents the probability of 

a point with independent variable x to belong to the “1” class (i.e. stress). The 

weights b0, b1, ..., bn, where n represents the number of features, can be used 

to identify feature importance. The higher absolute value of the feature weight, 

to more important the feature. This information can provide additional insight 

in which features are more or less influenced by stress. 

 
Figure 2-10: Logistic regression [112] 

LR is one of the most common approaches for classification problems. They 

are easily interpretable, but can underperform when decision boundaries are 

non-linear or more complex [113]. 
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Table 2-1: Strengths and weaknesses of logistic regression [113] 

Strengths Weaknesses 

- Provides estimates of the strength 

of the relationships among features 

and the outcome 

- Only works with numeric 

features, so categorical data 

requires extra processing 

 - Tends to underperform when 

there are multiple or non-linear 

decision boundaries. 

 

2.4.2. Support vector machines 
 

Support vector machines (SVMs) search for an optimal hyperplane to separate 

the data between features of stress and rest [114]. SVM uses a geometrical 

transformation that projects the features into an infinite dimensional space 

where a linear separation is found. The optimal hyperplane separates the 

positive from the negative examples with the largest margin (see Figure 2-11). 

The training points that lie exactly on the edges of the margin and whose 

removal would change the solution found, are called support vectors 

(indicated with arrows in Figure 2-11) [114].  

 
Figure 2-11: Support vector machines [115] 

For linearly separable data quadratic optimization is used to find the largest 

margin [113]. If the relationship between variables is non-linear, kernels can 

be used, to map them into a higher dimensional space into linearly separable 
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classes. Essentially, the kernel trick involves a process of adding new features 

that express mathematical relationships between different variables [113].  

These are powerful classifiers, although they have some drawbacks such as 

high computational complexity and being black box models, which means the 

structure behind the model and the importance of features cannot be 

interpreted [113]. An overview of advantages and drawbacks is presented in 

Table 2-2. 

 

Table 2-2: Strengths and weaknesses of kernel-based SVMs [113] 

Strengths Weaknesses 

- Not overly influenced by noisy 

data and not very prone to 

overfitting 

- Finding the best model requires 

testing of various combinations of 

kernels and model parameters 

- Gaining popularity due to its high 

accuracy and high-profile wins in 

data mining competitions 

- Can be slow to train, particularly if 

the input dataset has a large 

number of features or examples 

 - Results in a complex black box 

model that is difficult if not 

impossible to interpret 

  

 

2.4.3. Decision trees and random forests 
 

Decision trees (DTs) learn structures underlying the data using hierarchical 

partitioning [116]. Nodes of the tree represent splits, which test the value of 

an expression of the attributes. The final branches (i.e. leaves) represent the 

outcomes of the test. Each leaf node has a class label associated with it. DTs 

are built based on recursive partitioning, also known as the ‘divide and 

conquer’ approach, because based on the feature values the data is 

consecutively split into smaller subsets of similar classes [113]. From the root 

node, representing the entire dataset, the algorithm chooses the feature which 

is most predictive of the target class to make the first split. It continues this 

approach until the stopping criterion is reached. This might occur at a node if 

all of the examples at the node have the same class, all the features have been 

used or the three has reached a predefined size limit [113]. 
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Essentially, a DT represents a flowchart which makes it highly traceable and 

applicable in scenarios where the classification mechanism needs to be 

transparent. Although for stress detection this is no requirement, the insight 

of features used in the model and importance of the features can generate 

additional knowledge on the mechanisms of stress. Other strengths and 

weaknesses of DTs are presented in Table 2-3. 

 

Table 2-3: Strengths and weaknesses of DTs [113] 

Strengths Weaknesses 

- Highly-automatic learning process 

can handle numeric or nominal 

features, missing data 

- DT models are often biased 

toward splits on features having a 

large number of levels 

- Uses only the most important 

features 

- It is easy to overfit or underfit the 

model 

- Can be used on data with 

relatively few training examples or a 

very large number 

- Small changes in training data can 

result in large changes to decision 

logic 

- Results in a model that can be 

interpreted without a mathematical 

background (for relatively small 

trees) 

- Large trees can be difficult to 

interpret and the decisions they 

make may seem counterintuitive 

  

 

The classification performance of DTs can significantly be improved by growing 

an ensemble of trees and letting them vote for the most popular class [117]. 

This ensemble of trees is also called a random forest (RF), where different 

techniques can be used to grow the ensemble. A frequently used technique is 

bootstrap aggregating (bagging), where each tree is built using a random 

selection of data and features [117]. This way the variance of the results can 

be reduced. Another often used technique is boosting (e.g. AdaBoost 

algorithm), which is similar to bagging, but in a sequential approach where data 

points that were misclassified in the previous tree have a higher chance to be 

selected to build the next tree. 

An important characteristic of the RF is the number of estimators (i.e. trees) 

that are grown. More trees results in higher accuracy, but also longer 
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computational time. Furthermore, there usually is a threshold after which the 

accuracy no longer increases with increasing number of trees. Therefore 

usually the out of bag classification error is defined for different numbers of 

trees, using a subset of the training data. The ideal number of trees is at the 

cut-off point after which the out of bag error does not reduce significantly 

anymore by adding more trees. Although RFs are less transparent than DTs, 

still feature importance can be investigated, by averaging the relative 

contribution of each feature to the different DTs in the RF [118]. 

 

2.4.4. Artificial neural networks 
 

Artificial neural networks (ANNs) are based on our biological understanding 

of how neural networks work in our brain [113]. Where our brain exists of a 

network of interconnected cells (i.e. neurons), an ANN uses a network of 

artificial neurons (i.e. nodes). In the brain, incoming signals are processed by 

the cell’s dendrites, through a chemical process which allows the cell to weigh 

the importance of the impulse. Different impulses accumulate in the cell and 

when a threshold is reached, it fires an output which is transmitted via an 

electrochemical process down the axon. At the axon’s terminal the signal is 

processed and passed to the neighbouring neurons through the synapse. 

Similarly Figure 2-12 represents an ANN where the dendrites (i.e. the nodes) 

receive inputs X1, X2 and X3, which are weighed by W1, W2, and W3 and 

summed in the node. The signal is passed on according to an activation function 

f to generate output y [113]. 

 
Figure 2-12: Artificial neural network [113] 

ANNs are mainly defined by three characteristics: an activation function, which 

transforms the combination of input signals to one output signal that is 

transferred further in the network; a network topology, describing the number 
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of nodes, layers and the manner in which these are connected; and a training 

algorithm based on which the weights are defined [113]. The most commonly 

used training technique is back-propagation, which iterates through multiple 

cycles of a forward phase, in which neurons are activated from input to output 

signal through the different layers, and a backward phase, in which the output 

signal is compared to the true value and the error is propagated backwards 

through the network to update the weights [113]. ANNs are very strong ML 

techniques, although they also contains some weaknesses such as being 

computationally intensive and a black box model (Table 2-4). 

 

Table 2-4: Strengths and weaknesses of ANNs [113] 

Strengths Weaknesses 

- Among the most accurate 

modeling approaches 

- Reputation of being 

computationally intensive and slow 

to train, particularly if the network 

topology is complex 

- Makes few assumptions about the 

data’s underlying relationships 

- Easy to overfit or underfit training 

data 

 - Results in a complex black box 

model that is difficult if not 

impossible to interpret 

 

2.4.5. Naive Bayes and Bayesian networks 
 

Bayesian methods are based on the idea that the estimated likelihood of an 

event should be based on the available evidence across multiple trials [113]. 

Therefore, the relationship between different dependent variables (e.g. stress 

and HR) can be described using the Bayes’ theorem as shown in Eq.(1.1). This 

theorem states that the probability of an event A to occur given that event B 

has occurred (i.e. a conditional probability) equals the proportion of trials in 

which A occurred together with B out of all trials in which B occurred. For our 

stress example this means that the probability of having stress (A) while having 

a high HR (B) equals the proportion of trials in which subjects had high stress 

while having a high HR out of all trials in which subjects had a high HR.  
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𝑃(𝐴|𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
 

Eq.(1.1) 

 

After applying some algebra, Eq.(1.1) can be reformed to Eq.(1.2). In this 

equation the probability of the event B to occur given that A has occurred (i.e. 

𝑃(𝐵|𝐴)) is called the likelihood, which can be defined based on a frequency 

table in which this combination of events can be counted based on examples 

(trials). The probability that A occurs is known as the prior probability (e.g. 

the general probability that a subject is stressed). The probability that B occurs 

is known as the marginal likelihood (e.g. the general probability that a person 

has a high HR). 

 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

Eq.(1.2) 

 

The Naive Bayes algorithm is the most common application of the Bayes’ 

theorem, frequently used in text classification problems (e.g. identifying spam 

e-mails based on content). The largest weakness is that the method assumes 

that all features are independent and equally important, which in most real-

world problems is not the case [113]. 

Other strengths and weaknesses of this algorithm are listed in Table 2-5.  

 
Table 2-5: Strengths and weaknesses of Naive Bayes algorithms [113] 

Strengths Weaknesses 

- Easy to obtain the estimated 

probability for a prediction 

- Relies on an often-faulty 

assumption of equally important 

and independent features 

- Does well with noisy and missing 

data 

- Not ideal for datasets with many 

numerical features 

- Requires relatively few examples 

for training, but also works well 

with very large numbers of 

examples 

- Estimated probabilities are less 

reliable than the predicted classes 

- Simple, fast and very effective  
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Bayesian networks (BNs) are more complex models based on the Bayes’ 

theorem. These are directed acyclic graphs, where each node represents a 

random variable (e.g. the features and stress levels), and edges represent direct 

correlations between the variables. Each node is characterized by a conditional 

probability distribution of the variable given its parents [119]. BNs are static 

or dynamic. Dynamic BNs are identical to the static BNs, but additionally 

model the temporal relation of variables [120]. Therefore an additional edge 

is placed between the stress level at time t-1 and time t. An example of a static 

BN is presented in Figure 2-13, which represents the BN developed by Sun et 

al. [105] to represent the combined influence of physical activity and mental 

stress on physiology. 

 

 
Figure 2-13: Example of a static Bayesian network [105] 

2.4.6. Comparison of classification techniques 
 

The results of stress detection, obtained with different classification 

techniques, are difficult to compare, since across literature also protocol, 

physiological signals used, etc. might differ. In Table 2-6 an overview of papers 

focusing on physiological stress detection and machine learning is presented. 

It is a representative yet not exclusive list of current research using 

physiological sensors for stress detection up to September, 2018. Most 

frequently used techniques are SVM [54] [97], BN [99], decision trees and RFs 

(most frequently AdaBoost) [105]. Less frequently used approaches include 

Fisher projection and linear discriminant analyses, and neural networks.  

Several studies have compared the classification performance of different 

models. In their review, Sharma and Gedeon [16] concluded that best 

accuracies could be obtained using SVMs and ANNs. Han et al. [121] compared 

the classification accuracies of four models for a three-class stress 

classification: SVM, Linear Discriminant Analysis (LDA), Adaboost and K-
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Nearest Neighbors (KNN). The highest classification accuracy of 84% was 

reached for the SVMs, followed by LDA with 80%, Adaboost with 79% and the 

lowest accuracy of 72% was reached for KNN [121]. Similar models were 

compared by Mozos et al. [122] where highest accuracies for a binary stress 

classification were reached for Adaboost (94%) and SVM classifiers with a 

radial basis function kernel (93%). The lowest accuracy was reached for KNN 

(87%) and SVM classifiers with a linear kernel (85%) [122]. Sun et al. [105] 

compared the classification accuracies for a binary stress classification of SVM, 

BN and decision trees and found the highest accuracy of 92.4% for decision 

trees.  

Based on these results it is not clear which machine learning technique is most 

appropriate for physiological stress detection. Additionally, in most 

comparisons, only classification performance is used to compare different 

models. However, also other considerations should be taken into account. For 

example, techniques such as SVMs and ANNs are black box models and do 

not provide insight in how the link between physiology and stress is established. 

This could be interesting to investigate in order to formulate new hypothesis 

for psychological research based on artificial intelligence (AI). Further, 

computational complexity is another important aspect to take into account 

when deciding on which ML technique to choose. This is often overlooked in 

laboratory research, but becomes more important when developing models 

for ambulatory research which needs to make real-time predictions and which 

might be deployed on smartphones or smart watches instead of on computers. 

In general SVMs and ANNs, the best performing algorithms for stress 

detection according to Sharma and Gedeon [16], are also the most 

computationally intensive techniques. In ambulatory research it might become 

more important to take this model characteristic into account. 

Finally, current overview has only focused on supervised stress detection 

techniques, where the model is developed based on a training set including 

examples of features (e.g. physiology) and output variable (e.g. stress). It could 

also be interesting to investigate unsupervised techniques to identify stress vs. 

rest, without having to use subjectively reported stress levels. This has been 

explored by using self-organizing maps, obtaining a stress classification 

accuracy of 79% [123]. 
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Table 2-6: Current research on physiological stress detection and machine learning techniques. 

Ref. Laboratory (L) 

Ambulant (A)  

Semi-ambulant (SA) 

Nr. Of 

participants 

Physiological 

signals 

Analysis technique Nr of 

classification 

levels 

Classification 

performance 

[53] SA (driving on a set 

route) 

9 (24 drives) ECG, SC, EMG, 

respiration 

Fisher projection and 

linear discriminant 

3 97% (accuracy) 

[58] L 10 ECG KNN 2 94.58% 

(accuracy) 

[59] A 4 (94h of 

data) 

ECG Correlation 3 68% 

(correlation) 

[29]  L 40 ECG, 

respiration 

SVMs 2 97.88% 

(accuracy) 

[35] SA (controlled 

driving task) 

100 SC Chi-square test 2 / 

[105] L 20 ECG, SC Decision Tree 

BN 

SVM 

2 92.4% 

(accuracy, 

decision tree) 

[79] L 10 EMG KNN 2 90.70% 

(accuracy) 
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[80] L 30 EMG Friedman test 

Wilcoxon signed 

rank test 

2 / 

[81] L 23 ECG,EMG, 

CO2 

Friedman test 2 / 

[82] L 17 ECG, EMG t-test 2 / 

[92] L 65 BP General linear 

models 

Continuous / 

[94] L 20 BVP, SC, 

respiration, ST 

t-test 2 / 

[95] L 40 ECG, SC, EMG, 

ST 

KNN 

Probabilistic NN 

2 93.75% 

(accuracy) 

[97] L 32 BVP, SC, pupil 

diameter, ST 

SVMs 2 90.10% 

(accuracy) 

[122] L 18 BVP, SC, 

sociometric 

badge (e.g. 

body 

movement, 

speech) 

SVMs 

AdaBoost 

KNN 

2 94% (accuracy, 

AdaBoost) 
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[121] L 39 ECG, 

respiration 

SVMs 

LDA 

AdaBoost 

KNN 

Binary vs. 

three-class 

84% (accuracy, 

SVM, three-

class) 

94% (accuracy, 

SVM, binary) 

[124] SA (driving on a set 

route) 

13 ECG, SC, 

respiration, 

driver events 

(e.g. GPS) 

BN 2 96% (accuracy) 

[125] L + A 21 (Lab) 

17 

(Ambulant) 

ECG, 

respiration 

Decision tree 

AdaBoost 

SVMs 

2 90% (accuracy, 

lab, AdaBoost) 

0.72 

(correlation 

with self-

reported stress, 

ambulant) 

[107] L + A 21 (Lab) 

26 

(Ambulant) 

ECG, 

respiration 

SVMs (lab) 

BN (ambulant) 

2 95.3% (median 

accuracy, lab) 

72% (accuracy, 

ambulant) 

[126] A 10 SC, ST / 5 / 
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[127] A 10 ECG, SC, 

respiration 

RF 

Lasso 

SVR 

KNN 

continuous 1.5 (mean 

squared error, 

SVR) 

[17] A 35 ECG, 

smartphone 

(audio, social, 

physical) 

LR 3 61% (accuracy) 
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2.5. Conclusion 
 

In this literature study we discussed three main topics: stress definition, the 

physiological stress response and machine learning techniques for stress 

detection. 

Stress can be defined focusing on the subject, the environment, or the 

interaction between subject and environment. Although there is no consensus 

on which definition or theoretical framework is most correct, we do not aim 

to focus on that part of research in this thesis. We choose to use the JDC 

model of Karasek, defining stress as a combination of high job demands and 

low decision latitude. 

The most commonly studied physiological signals and machine learning 

techniques for stress detection were discussed. However, important 

information is lacking in literature. First, it is not clear which physiological 

signals and features, or which combination of physiological signals and features, 

provide the highest accuracy for stress detection. Although review articles 

have tried to provide an answer, results are inconclusive due to differences in 

protocols, stressors and analysis techniques. Second, most studies have been 

executed in controlled laboratory conditions. It should be investigated 

whether insights based on these studies can be extended to the ambulant 

environment. Third, it is not clear which machine learning techniques are most 

suitable for physiological stress detection and whether a one-model-fits-all 

solution is feasible or whether models should be personalized. 

 

Current work aims to provide answers to these problems, which are 

fundamental towards the goal of continuous, physiological stress detection in 

daily life. We investigate physiological sensing priorities in both laboratory and 

ambulant conditions, primarily focusing on physiological signals that can be 

monitored continuously in an ambulant environment, i.e. SC, ST, HR and HRV. 

Further, we investigate which machine learning techniques are most suitable, 

by comparing their performance in a controlled laboratory study on healthy 

subjects. We compare performances of LR, SVM, DT, RF and BN. Additionally, 

we compare personalized versus generalized models, both in laboratory and 

ambulant conditions and investigate the influence of different digital 
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phenotypes, including personal demographics and baseline psychological stress 

levels, on ambulant physiological stress detection.   

These insights are fundamental towards daily-life stress detection and will form 

the basis for future research to enable highly personalized, just-in-time 

interventions for stress reduction. 
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Chapter 3: Physiological 

stress detection in a 

controlled environment 
 

In this chapter we address the first objective of the thesis: the identification of the 

most suitable markers and machine learning techniques for physiological stress 

detection in a controlled laboratory environment on healthy subjects. 

A protocol was set up and a dataset was collected and analysed by Elena Smets with 

promotor Chris Van Hoof. The data was used to compare multiple physiological 

signals and machine learning techniques and investigate inter-person variability. First, 

we conclude that, on average, SC and HR related features are more important than 

ST and respiration related features. Second, we conclude that for generalized models 

(i.e. including all subjects), SVMs perform best (average detection rate = 82.7%), for 

personalized models (i.e. based on one subject), dynamic BNs perform best (average 

detection rate = 84.6%). The content of this chapter is based on research presented 

at the MindCare conference [128]1. 

 

3.1. Problem statement 
 

Previous research has indicated that physiological signals can be used to detect 

mental stress in laboratory settings (see Chapter 2). There is however no 

consensus on the optimal algorithm for this detection. Large differences exist 

among classification accuracies from different studies. This is mainly due to 

three aspects of the studies being the experimental design, the sensor quality 

and the analysis methods. The focus of the current study is on the latter aspect. 

In many research linear discriminants, generalized estimation equations or 

support vector machines have been used to classify rest and stress states [53] 

[97] [129] [130]. Other, more recent, research has focused on probabilistic 

machine learning techniques such as Bayesian networks [124] [120]. Sharma 

                                                
1 The final publication is available at Springer via https://doi.org/10.1007/978-3-319-

32270-4_2 
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and Gedeon [16] report an overview of different computational techniques 

for stress classification based on results from different studies conducted 

under different experimental designs, sensors and physiological parameters. 

Although this comparison can provide significant insight in which are good 

modeling techniques, up to our knowledge there is no direct comparison of 

modeling techniques that result in the optimal algorithm to employ for stress 

detection. Furthermore, in most research one general model is developed for 

all subjects. Literature and experts however agree that physiological responses 

to a stressor differ among subjects, e.g. the difference according to gender 

[131].  

 

This study sought to compare several computational techniques for classifying 

stress based on physiological parameters within the same study design. 

Additionally, both generic and personalized models are compared.  

The main contributions are:  

a) We evaluate physiological sensing priorities for stress detection 

b) We evaluate and compare the results of different machine learning 

techniques for stress modeling in comparison to rest 

c) We compare the results of generalized and personalized models 

for stress detection. 

 

3.2. Materials and methods 
 

A controlled experiment was conducted to investigate the effect of stress on 

physiological parameters. The Medical Ethical Committee of KU Leuven 

approved the protocol and analysis methods of the experiment (protocol ID: 

S57066). In this section, the protocol and the sensing modalities are described. 

Furthermore, the feature list used for detection is described. 

 

3.2.1. Data collection 

Experimental Protocol 

  
Twenty healthy participants, 10 males and 10 females volunteered to 

participate (mean age= 40 ± 10 years). Subjects were recruited in two 
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companies in Belgium and did not receive any compensation for their 

participation. Subjects were included if they were healthy employees with a 

mainly sedentary job. This was evaluated through an intake questionnaires, 

including, for example, questions related to whether subjects suffer or have 

suffered from psychosis, hyperventilation, depression, epilepsy, panic attacks, 

and burn-out. Subjects who answered ‘yes’ to any of these questions were 

excluded. Experiments were conducted in a quiet room using a standard 

desktop computer.  

Figure 3-1 presents the timeline of the experiment. During the preliminary 

phase, the participant completed some general questionnaires and the sensors 

were attached. The test phase included three stress tasks of two minutes each. 

As a first task, a Stroop Color-Word test [132] was presented. Color words 

were written in an incongruously ink color, e.g., the word red was written in 

the color blue. Participants had to respond with the real ink color, e.g., blue in 

the previous example. A math test was performed as second task. In the third 

task, participants were instructed to tell about an emotional or stressful event 

in their life. To induce additional stress the experimenter could intervene by 

saying ‘wrong’ or ‘faster’ during the first two tasks. To control for the 

physiological response due to speaking, an additional counting task was 

included where the participant had to count out loud from zero to hundred. 

This task was performed twice: once before the Stroop test and once after 

the stress talk, separated by a two minutes rest phase. All parts during the test 

phase take two minutes, except for the counting blocks which are dependent 

of the participant’s pace of counting and the first resting block which serves as 

a baseline and takes four minutes. During the finishing phase the participant 

completed a retrospective questionnaire where his/her stress levels during 

each task were rated on a five-point Likert scale. 

 
Figure 3-1: Experimental protocol 
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Physiological recordings 
 

Two sensors were used. The first was the imec Necklace (Figure 3-2a), a 

wireless electrocardiography (ECG) sensor for research use developed by 

imec [133]. With this sensor single-lead ECG in a lead-one configuration was 

recorded at a sampling frequency of 256 Hz. The second sensor was the 

NeXus 10 – MK II (Mind Media, Herten, The Netherlands) (Figure 3-2b). This 

is not a wearable device, it is merely portable, though highly accurate. This 

sensor was used for the measurement of SC (Figure 3-2c) and temperature 

(Figure 3-2d) at the fingertip and respiration using a chest belt (Figure 3-2e). 

All NeXus signals were measured at a sampling frequency of 32 Hz. 

 

 (a) 

  
(b) 

 

(c) 

  
(d) 

 

(e) 

  

Figure 3-2: Necklace (a) for ECG recording and NeXus 10 – MK II (b-e) for SC, ST and respiration 

recordings 
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3.2.2. Feature computation 
 

Data from Nexus and Necklace were merged based on their timestamps and 

stored in Matlab files. Next, a comprehensive set of 22 features has been used, 

corresponding to the most frequently used features in earlier publications on 

the expression of stress. For each sensing modality, features have been 

calculated on a sliding window of 30 seconds with 29 seconds overlap. ECG 

has been characterized with HR and HRV, the latter considered in both time 

and frequency domain. SC features are based on tonic and phasic responses. 

ST has been characterized using the mean value and standard deviation for 

each window, and the corresponding slope. Finally, respiration has been 

characterized as energy of several frequency bands. The complete list of 

features is reported in Table 3-1. 

 
Table 3-1: List of features computed for each sensing modality 

Nr. Feature Abbreviation Extracted 

from 

Ref. 

1 The root of the mean of the sum 

of the squares of differences 

between normal to normal beat 

intervals 

RMSSD ECG [58] 

2 Proportion of the successive 

normal to normal beat intervals 

that differ more than 50 ms 

pNN50 ECG [58] 

3 Proportion of the successive 

normal to normal beat intervals 

that differ more than 20 ms 

pNN20 ECG [58] 

4 Mean HR mHR ECG [129] 

5 Standard deviation of the normal 

to normal beat intervals 

SDNN ECG [129] 

6 Low frequency band (0.04-0.15 

Hz) 

LF ECG [129] 

7 High frequency band (0.15-0.4 

Hz) 

HF ECG [129] 
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8 Low frequency over high 

frequency band 

LFHF ECG [129] 

9 Absolute second difference AbsDiff2 SC [129] 

10 SC level SCL SC [129] 

11 Ohmic perturbation duration OPD SC [129] 

12 Number of peaks Nrpeaks SC [63] 

13 Tonic component (0-0.16 Hz) mTonic SC [63] 

14 Phasic component (0.16-2.1 Hz) mPhasic SC [63] 

15 Mean ST mT ST [95] 

16 Standard deviation of the ST stdT ST [95] 

17 Slope of the ST slopeT ST [97] 

18 Mean respiration frequency meanRsp Resp [129] 

19 Energy band 0-0.1 Hz EB1 Resp [53] 

20 Energy band 0.1-0.2 Hz EB2 Resp [53] 

21 Energy band 0.2-0.3 Hz EB3 Resp [53] 

22 Energy band 0.3-0.4 Hz EB4 Resp [53] 

 

3.2.3. Analysis methods 
 

A binary classification problem was considered with classes corresponding to 

rest and stress periods. In theory a multi-class classification would also be 

possible (e.g. low, medium and high stress), but is here not feasible due to the 

low sample size and the lack of subjective feedback. The reference stress 

profile contains stress during the three different stress tasks and rest in the 

remainder of the experiment, including the counting parts. A feature selection 

methodology based on correlation was used to eliminate features that are not 

useful but can negatively affect the classification performance. For every 

feature the correlation with the reference stress levels was calculated and all 

features with an absolute coefficient higher than 0.5 were retained. The feature 

selection procedure was performed only on the training set. To guarantee 

independent predictors, variables with an absolute correlation higher than 0.8 

were eliminated. 

Six machine learning algorithms were considered for evaluating the 

classification performance. The selection aims to cover a comprehensive set 

of algorithms with both conventional, linear techniques and more novel 
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approaches (for a detailed explanation of the techniques see 2.4). We built six 

models: 

1. logistic regression (LR) (Matlab ‘mnrfit’) 

2. support vector machines (SVMs) (Matlab ‘fitcsvm’, using a linear 

kernel),  

3. decision trees (DTs) (Matlab ‘fitctree’),  

4. random forests (RFs) (Matlab ‘TreeBagger’, using 20 trees based on 

out-of-bag samples),  

5. static Bayesian networks (sBNs) (Matlab ‘Bayes Net Toolbox’ [134]), 

6. dynamic Bayesian networks (dBNs) (Matlab ‘Bayes Net Toolbox’ 

[134]) 

For the LR, SVMs, DTs and RFs, standard hyperparameters available in Matlab 

were used. To learn the structure of the BN, a greedy search algorithm was 

employed, the conditional distributions were calculated using maximum 

likelihood estimation. Junction tree inference was used for classification of the 

test set. 

For every machine learning algorithm, two models were trained, one using 

data from all subjects, i.e., a generalized model, and one using only data of a 

specific subject, i.e., a personalized model.  

For the generalized models, a leave-one-out validation procedure was used. 

The models were trained on the data of all, but one, participant and evaluated 

on the data of this participant. For the personalized models a different 

approach was used. Since stress accumulates over time and its physiological 

response does not return immediately to the original baseline [135], we have 

trained our models on the first two stress tests and evaluated their 

performance on the last stress test, including the stress talk. Using this 

validation approach instead of the usual cross-validation we have been able to 

take the time-dependent nature of stress into account and to provide more 

trustworthy performance indicators of the models. 

Sensitivity (Stress Detection Rate) and specificity (Rest Detection Rate) were 

considered as performance measures. These two measures will give a good 

understanding of the classification performance in case of an unbalanced 

amount of rest and stress examples. As overall performance measure, the 

average of these two measures was taken instead of the usual classification 

accuracy. We define this measure as Average Detection Rate (ADR). 
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3.3. Results 
 

First a correlation-based feature selection was performed. For generalized 

models, 4 features were selected, mHR from ECG and SCL, mTonic and 

mPhasic from SC. For personalized models, the features selected varied 

according to person. On average 8 features were selected per person. The 5 

features selected for most participants are mHR and mPhasic (84% of 

participants), SCL and mTonic (80% of participants) and AbsDiff2 (74% of 

participants). For no participant the following 5 features were selected: LF, 

LFHF, EB1, EB2 and EB4. This indicates that mainly SC and ECG-related 

features have high importance, and respiration-related features have lower 

importance. 

Figure 3-3 represents the SC of one participant. The orange bars indicate the 

counting periods, which have been included to control for the response due 

to speech, the red bars indicate the stress tests. SC reacts in both areas which 

underlines the importance of including a control for speech. The figure also 

highlights the time-dependent nature of stress as after each task the SC does 

not return to baseline. This aspect is shown in further detail for the entire 

population in the boxplots of Figure 3-4. We show the increasing trend for all 

subjects in normalized SCL during the consecutive rest phases. This trend was 

found significant for SDNN (p<.001), HF (p=.03), LFHF (p=.005), SCL (p=.02), 

EB1s (p=.001) and EB3s (p=.01). 

 

 
Figure 3-3: SC response of one participant 
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Figure 3-4: Boxplot with increasing rest (R1-R6) response of the normalized SC level (SCL) 

The classification results obtained by generalized and personalized models are 

reported in Table 3-2 and Table 3-3 respectively and are graphically 

represented in Figure 3-5. The average and standard deviation for rest 

detection rate (RDR), stress detection rate (SDR) and average detection rate 

(ADR) are presented. Most of the misclassifications for the rest condition are 

situated in the counting task, due to the physiological response to speech. 

Results indicate that overall the highest ADR is reached using personalized 

dBN (84.6%) and generalized SVM (82.7%). Besides for dBN the personal 

approach did not perform better than the general. 

 

Table 3-2: Classification accuracy for generalized models (RDR = rest detection rate, SDR = stress 

detection rate, ADR = average detection rate). 

 LR SVM DT RF sBN dBN 

RDR (%) 93.2±2.8 93.4±3.2 88.6±4.4 90.7±4.1 91.2±3.6 58.3±14.8 

SDR (%) 68.2±13.6 72.0±10.4 65.4±8.1 67.6±8.4 70.5±14.0 90.2±14.1 

ADR (%) 80.7±7.3 82.7±5.8 77.0±4.9 79.2±5.1 80.9±7.8 74.3±10.3 

 

Table 3-3: Classification accuracy for personalized models (RDR = rest detection rate, SDR = stress 

detection rate, ADR = average detection rate). 

 LR SVM DT RF sBN dBN 

RDR (%) 79.5±20.4 77.5±20.2 78.3±18.7 79.1±19.0 81.3±21.2 87.7±10.4 

SDR (%) 72.5±25.2 74.8±25.8 69.2±24.4 72.0±25.4 77.0±25.3 81.5±21.9 

ADR (%) 76.0±10.7 76.1±11.3 73.7±12.6 75.6±12.9 79.2±13.7 84.6±9.8 
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Figure 3-5: Classification accuracy for generalized models (left) and personalized models (right) 

3.4. Discussion 
 

To correct for the inherent physiological response due to speech, a counting 

task was introduced before the first and after the last stress task. Classification 

performances showed that we could successfully differentiate between rest 

and stress, although most misclassifications for the rest condition were 

situated during the speech task. This emphasizes the importance of including 

regular speech in the experimental protocol for stress detection. Further, the 

feature selection procedure indicated that mainly SC-based features together 

with the mHR are interesting with respect to the detection of stress in a 

controlled environment. We also showed the cumulative effect of different 

successive stress tasks on physiology, with an increased baseline over the 

different rest periods. This indicates that the two minutes rest phase which 

was selected, might not be enough for full physiological recovery of a stress 

task. Further, it indicates that the physiological stress response is a relative 

measure and we need intelligent models to differentiate between rest and 

stress. Models incorporating a time dimension, such as the dBNs, could benefit 

since these are inherently relative and take previous information into account 

to predict current stress levels.  

Comparison of the results in Table 3-2 and Table 3-3 does not confirm the 

hypothesis that a personal approach renders higher average detection rates 

(ADR) than a general approach. This is only the case for dynamic Bayesian 

networks. However it can be observed that generalized models have relatively 

low stress detection rate, compared to rest detection rate. In most 
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applications the main goal is to detect stress. Therefore models with higher 

stress detection rates should be preferred. Furthermore it can be observed 

that standard deviations for the personal approach are much higher than for 

the general approach. This means that for some participants a very high ADR 

could be reached, where for others the ADR was very low. Further analysis 

revealed that the datasets with high and low ADR are not the same for 

different modelling techniques. Future research should therefore investigate 

whether a further personalization in terms of machine learning algorithm 

selection could be beneficial. Another improvement could be made by merging 

the generalized approach with a subject-dependent feature calculation as 

suggested in [136]. Finally a personalized method is capable of giving more 

insight into the personal physiological stress response, e.g., the correlation-

based feature selection can give an indication of the person’s principal stress 

physiology. This can be interesting for targeted treatment and relaxation 

techniques in order to overcome the detrimental effects of stress on the 

human body.  

The best classification results, for this experiment, were obtained for the 

personalized dynamic (dBN) Bayesian networks and the generalized support 

vector machines (SVM), with ADR of 84.6 % and 82.7 % respectively. It can be 

expected that dBN profit most from a personal approach, as they are 

probabilistic, adapting models. On the other hand SVM are models which are 

more most capable of generalization as compared to the other techniques and 

therefore can perform better in a general approach. The calculation of the 

dBN however is quite time consuming and computationally heavy. The SVM 

method is much less effortful and still gives reasonably good classification 

results. The downside of this approach however is that it can be considered a 

complete black-box. This is not a problem in terms of classification, but it 

becomes a problem when the goal is to gain insight in the physiological stress 

response. For that purpose BN are much more suited, due to their graphical 

character.  

Therefore in the future a distinction should be made based on the purpose of 

the analysis. If the goal is to develop a fast algorithm for real-time stress 

detection, where only information about stress or no stress is required, the 

SVM technique should be considered the best choice. If the goal is to gain 

insight into a person’s stress response a better option is to use dBNs. 
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Furthermore future research should investigate whether the conclusions 

drawn from this controlled study also hold for ambulatory studies. 

 

3.5. Conclusion 
 

The goal of the study was to identify the optimal physiological signals and 

computational methods for stress detection in a controlled environment. An 

experiment was conducted in a laboratory environment where participants 

had to fulfill three different stress tests. To control for the physiological 

response to speech a counting task was introduced before the first and after 

the last stress task. Four physiological signals and six machine learning 

techniques were investigated using a general and personal approach.  

First, it can be concluded that SC and HR related features outperform ST and 

respiration related features. Second, we conclude from this study that 

personalized dynamic Bayesian networks and generalized support vector 

machines render the best average classification results with 84.6% and 82.7% 

respectively. Based on characteristics inherent to the methods, it is suggested 

to use dynamic Bayesian networks when insight in the model is necessary and 

to use support vector machines when it is not. 
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Chapter 4: Comparison of 

the physiological stress 

response of healthy subjects 

and patients 
 

The content of this chapter addresses the second objective of this thesis: the 

differentiation between healthy subjects and patients based on their physiological 

stress response. The goal is to develop a model to differentiate between healthy 

subjects and patients which could serve as a first step towards disease prevention 

and interception. We repeated the experiment conducted in Chapter 3 with patients 

with stress-related complaints. The dataset protocol was set up and the analysis was 

done by Elena Smets with promotor Chris Van Hoof, the data was collected by the 

therapists of Tumi Therapeutics. We used an exploratory methodology to calculate 

features and develop a model to differentiate between healthy subjects and patients. 

We achieved a classification accuracy of 78% based on response-related features, 

including all physiological signals and using SC-related features only. The content of 

this chapter is published in Health Science Reports [137]2. 

 

4.1. Problem statement 
 

Many studies have revealed the harmful influence of chronic stress on mental 

and physical health. For example, Stansfeld and Candy [138] concluded from a 

meta-analysis, that work stressors are prospective risk factors for common 

mental health disorders, including depressive and anxiety disorders. Rosengren 

et al. [139] have shown that psychosocial stressors increase the risk of acute 

myocardial infarction. Furthermore, associations have been established 

between psychological stress and depression, cardiovascular disease and the 

course of HIV/AIDS [34]. Another review concluded that both acute and 

chronic stress research reveal extensive data concerning the stressors’ 

                                                
2 The final publication is available via https://doi.org/10.1002/hsr2.60 
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contributions to deteriorated health, including sudden death and myocardial 

infarction [140]. Together, these findings highlight the need for affordable and 

effective early detection of stress problems and preventive interventions of 

stress-related mental health disorders. 

Stress-related health problems can be conceptualized into three areas along 

the stress continuum [141]: stress-related complaints, overstrain, and burnout. 

A main differentiator between these three areas is the chronicity of the 

complaints. For stress-related complaints, the time since the onset of the 

complaints is less than three months, whereas for overstrain this is more than 

three months and for burnout it is more than six months [141]. Furthermore, 

persons categorized in the stress-related complaints group do not yet feel any 

substantial limitation in their social or professional functioning, whereas this is 

increasingly the case both for overstrained and burnout patients [141]. 

Physiological signals such as HR, BP, and SC have been investigated to detect 

stress-related health problems. Studies on autonomous nervous system 

(re)activity in the context of stress-related health problems have focused 

especially on the last stage in the stress continuum, i.e. burnout. May et al. 

[142] found that school burnout was associated with decreased baseline heart 

rate variability (HRV). Contradictory, Morgan et al. [143] showed that persons 

who score higher on the Maslach Burnout Inventory have significantly higher 

HRV. De Vente et al. [144] found that burnout patients show higher resting 

HR than healthy controls. Other studies investigating the hypothalamic-

pituitary-adrenocortical (HPA) activity concluded that burnout patients and 

controls do not show differences in HPA outcomes [145]. Although 

preliminary, such research is promising for the detection of burnout. 

However, in terms of prevention it could be more valuable to detect stress-

related health problems already in an earlier stage of the stress continuum. To 

date, no validated questionnaires exist to identify individuals with stress 

complaints, who are vulnerable to develop overstrain and burn-out. 

In the current study, we therefore sought to focus on persons with stress-

related complaints who are not yet limited in their social or professional 

functioning, i.e. the first stage of the stress continuum. Analogous to previous 

studies, focusing on burnout [144], we aimed to investigate the patient’s 

autonomic nervous system responses to and recovery from an acute stressor, 

as especially these measures and reactivity patterns may have a great potential 

for ambulatory stress monitoring and dynamically tailored, direct feedback and 
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just-in-time behavioral interventions. However, in contrast with most studies 

in this field, we opted for a less conventional, fundamentally different approach 

of the data. Traditionally, psychophysiological studies are hypothesis driven, 

which means that a study is specifically designed to answer a question [146]. 

The analysis therefore is confirmatory rather than exploratory. However, as 

technology is continuously improving and wearables become widespread, the 

amount and nature of psychophysiological data that is available has 

exponentially grown and calls for complementary approaches that allow to 

maximally explore the wealth of data that is nowadays available. Data scientists 

have already moved towards more exploratory data-mining techniques to 

develop classification algorithms that can unravel new knowledge hidden in the 

data [146]. In this study we will explore and apply this more exploratory 

approach to analyze the data and differentiate persons with stress-related 

complaints from healthy subjects. 

Previous studies have mainly investigated single physiological parameters 

independently (e.g. [143] [144]), while combinations of multiple physiological 

parameters and comparisons between single markers should preferably be 

investigated. Furthermore, previous studies have focused mainly on static 

features, i.e. the comparison of mean HR in rest and stress tasks. However, 

both physical fitness and stress research strongly suggests that dynamic 

features such as response and recovery time, can provide additional 

information regarding physical condition determination [147]. Based on the 

research of McEwen [148] failure to shut off allostatic activity after a stress 

response, is one type of allostatic load. This could be reflected in a longer 

recovery time of the physiological signals after a stressor for patients. It is 

therefore needed to investigate if such dynamic features can also improve the 

detection of persons with stress-related complaints. 

In this study we aimed to explore a multi-parameter classification model that, 

based on the physiological response to and recovery from three standardized 

laboratory stress tasks, can differentiate between healthy subjects and persons 

with stress-related complaints. We also assessed which physiological signal(s) 

are most suitable for the characterization of persons with stress-related 

complaints. We included three commonly used physiological signals for stress 

detection being HR, SC and ST. We hypothesize that a classification model 

combining all three physiological signals will outperform models based on the 

individual signals separately. Furthermore, we compared classification 
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performances based on response and recovery related features. We 

hypothesize, based on the suggestion of Linden et al. [149], that recovery 

related features could provide additional insight in the difference between 

healthy subjects and persons with stress-related complaints and therefore can 

increase classification performance. Finally, we used both static and dynamic 

features for classification. We hypothesize, based on earlier findings in physical 

fitness research [147], that dynamic features can improve classification 

performance. The findings will enhance our understanding of the physiological 

differences between healthy subjects and persons with stress-related 

complaints and may advise further strategies to use physiological signals for 

the early detection of stress-related health problems.  

 

4.2. Materials and methods 
 

A controlled experiment was conducted to investigate the difference in 

physiological stress response between healthy subjects and patients with 

stress-related complaints. Therefore, the experiment presented in Chapter 3 

for healthy subjects, was here repeated for patients with stress-related 

complaints. The Medical Ethical Committee of KU Leuven approved the 

protocol and analysis methods of the experiment (protocol ID: S57469). In 

this section, the protocol, sensing modalities and the feature list used for 

detection are described. 

 

4.2.1. Data collection 

Participants 
 

A controlled laboratory study was conducted with the approval of the Medical 

Ethical Committee of the UZ Leuven. All subjects signed an informed consent 

form before participating in the study. In this study, 32 subjects, of which 20 

healthy subjects (10 women, 10 men, , Mean age=39.8 years, age range: 26-57 

years) and 12 persons with stress-related complaints (7 women, 5 men, Mean 

age=38 years, age range: 23-56 years), participated. The data of the healthy 

subjects is the same as for Chapter 3. An additional data collection was set-up 

to acquire data from persons with stress-related complaints. The focus of this 

research is on early detection of stress-related health problems, therefore, 
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only persons with stress-related complaints, but without formal diagnosis of 

any clinical mental health disorder were included.  

For inclusion and exclusion criteria of the healthy subjects we refer to Chapter 

3. Persons with stress-related complaints were recruited at Tumi 

Therapeutics, a multidisciplinary ambulatory diagnostic and treatment centre 

specialized in stress-related symptoms and syndromes. In return for 

participation, patients received the psychophysiological diagnostics, which 

involved the stress tests, free of charge. In addition to the stress test and as 

part of the standard intake procedure at Tumi Therapeutics, patients also 

completed a set of questionnaires. Only patients with stress-related 

complaints (first phase of the stress continuum) were included. Specifically, the 

following inclusion criteria were applied: a) the patient experienced somatic 

complaints, and b) the complaints started less than three months before 

consultation and c) the patient did not feel limited in his or her personal or 

professional life, and d) the patient did not suffer from any psychiatric disorder 

or organic disease. To assess the somatic complaints, the Dutch Symptom 

Checklist-90 (SCL-90) [150] was used. This questionnaire is often used in 

clinical practice and research for initial evaluation of patients at intake. The 

test measures eight primary symptom levels, i.e. sleep difficulties, agoraphobia, 

hostility, somatization, interpersonal sensitivity, anxiety, cognitive-

performance deficits and depression. The results can be compared with a 

healthy and clinical norm group for female and male subjects separately [151]. 

The mean results for the selected patients are reported in Table 4-1. Numbers 

indicate the severity of the complaint, based on patients’ answers to 

questionnaires. The included patients scored higher on the subscales than the 

healthy norm group, but lower than the clinical norm group, for all scales, 

except for somatization and sleep difficulties for which they scored higher than 

the average clinical norm group.
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Table 4-1: Average scores for male and female patients on the different scales of the SCL-90, , 

compared with a healthy and clinical norm population [151] 

SCL-90 scale Male Female 

 Patients 
Healthy 

population 

Clinical 

population 
Patients 

Healthy 

population 

Clinical 

population 

Somatization 25.6±7.7 15 24 32.2±7.7 16 26 

Cognitive-

performance 

deficits 

19.8±9 12 20 20.3±9.3 13 21 

Interpersonal 

sensitivity 
28.4±7.4 23 35 35±12.6 23 38 

Depression 29.6±6.2 18 37 34±7.1 21 44 

Anxiety 17.4±3.1 11 23 22±2.6 13 27 

Hostility 9.4±2.8 6 10 15.8±7.3 6 10 

Agoraphobia 9±2.2 7 11 11.5±4.4 7 12 

Sleep 

difficulties 
6.2±1.5 3 5 8.2±3.7 4 7 

 

The Nijmegen questionnaire for hyperventilation [152] was used to assess 

several singular stress complaints such as chest pain, being short of breath, 

blurred vision. Included subjects scored positive on the Nijmegen 

questionnaire for hyperventilation, having 18 points or more. All subjects 

confirmed their complaints started less than three months before consultation 

and all subjects were still capable of fully functioning in their social and 

professional lives. Further, a clinical interview based on the Mini International 

Neuropsychiatric Interview (MINI), which is based on DSM-IV criteria [153] 

[154] was conducted to exclude the existence of any psychiatric disorders. 

Organic diseases were excluded based on doctor’s reports, physical 

examination, medical tests and self-reporting. The healthy subjects did not 

report any physical or psychological disease or complaint.  

 

Procedures 
 

The protocol is based on the protocol explained in Chapter 3. It consists of 

three stress tests of two minutes each: a Stroop Color-Word test, a math test 

and a stress talk, each separated by rest phases of two minutes. The main 

difference with the protocol for patients is that the counting task, performed 

by healthy subjects at the beginning and end of the protocol, was eliminated 
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for patients. In Chapter 3, we showed that a stressful task with speech can be 

distinguished from a non-stressful speaking task, i.e. counting. For this reason 

and to reduce the experimental time, the counting task was removed for the 

patients. The adjusted protocol is presented in Figure 4-1. To align the two 

protocols, the two counting tasks executed by the healthy subjects and the 

first rest phase executed by both healthy subjects and patients were excluded 

from further analysis. 

 
Figure 4-1: Adjusted experimental protocol for healthy subjects and patients (no counting) 

Physiological recordings 
 

Three physiological signals were measured using the NeXus 10 – MK II 

hardware (Mind Media, Herten, The Netherlands) (same as in Chapter 3, see 

Figure 3-2). SC was recorded at 32 Hz from the distal phalanx of the index 

and middle finger of the nondominant hand using Ag/AgCl electrodes 

embedded in Velcro straps. Skin temperature (ST) was recorded at 32 Hz 

from the distal phalanx of the little finger of the nondominant hand using a 

thermistor. This is a small point probe, secured by placing tape over the 

measuring tip to avoid signal contamination by air flow. Heart rate (HR) was 

measured at 128 Hz using a blood volume pulse (BVP) sensor at the ring finger 

of the nondominant hand. The sensor used photoplethysmography which is a 

light-based technology to sense the rate of blood flow as controlled by the 

heart beats. Based on this signal, instant HR was detected in real-time by the 

NeXus software. For healthy subjects additionally HR was measured using the 

Necklace (see Figure 3-2), but in current analysis only NeXus-based HR was 

used, since it reduced the number of sensors needed for the patients (only 

using NeXus). Participants were asked to keep the hands still, as all signals are 

susceptible to motion artefacts. Physiological channels were simultaneously 
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streamed to disk and displayed on a PC monitor. Offline, all channels were 

visually inspected to ensure good quality. 

 

4.2.2. Feature computation 
 

Whereas for physiological stress detection already many features have been 

proven successful in previous research (see 3.2.2. Feature computation), this 

is not the case for differentiating healthy subjects and patients. Therefore, we 

aimed to expand the number of existing features by exploring new features, 

selected based on results in other fields of research, as is explained below. We 

applied an exploratory approach towards the signal analysis and feature 

computation, meaning the outcome for each feature is not hypothesized 

beforehand, but rather explored.  

Before feature extraction, data from both populations, i.e. healthy and patient, 

were merged and stored in data frames in Python (version 2.7), using the 

Pandas library. The physiological signals were standardized with zero mean and 

unit variance per subject to obtain time series on the same scale. Then the 

time series were divided into rest and stress blocks of two minutes each, 

according to the task performed in each segment. This resulted in a total of 

seven blocks, four rest blocks (R1, R2, R3 and R4) and three stress blocks (S1, 

S2 and S3). The first rest block (R1) was excluded since for the healthy subjects 

this task was preceded by a counting task, whereas for the patients this was 

the start of the experiment. Next, two types of features were calculated: static 

and dynamic features.  

The static features describe the distribution of the physiological signals, e.g. 

the mean and standard deviation, in each block. For each signal 18 static 

features were calculated, including the mean and standard deviation, as well as 

differences of means between pairs of rest or stress blocks (see Table 4-2). 

These trends were calculated to explore whether healthy subjects and patients 

differ in the cumulative effect of consecutive stress tasks. 

The dynamic features represent the transition between different blocks, e.g. 

the transition from rest to stress as response features and the transition from 

stress to rest as recovery features. These type of features have been shown 

valuable in physical fitness research [147], we investigate whether they can 

bring additional value for detecting persons with stress-related complaints. For 

each signal 24 dynamic features were calculated. Previous research has 
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indicated that HR and SC increase [53] and ST decreases [94] as response to 

a stressor. Therefore, for each stress block the response time was calculated 

as the time to reach the maximum value for HR and SC and the minimum 

value for ST starting from the onset of the stress task. Similarly, for each rest 

block the recovery time was calculated as the time to reach the minimum value 

for HR and SC and the maximum value for ST starting from the onset of the 

resting phase. Additionally, for all the blocks a straight line was fitted through 

the signal and the slope was calculated. To investigate the cumulative effect of 

the different stress tasks, also the trends across the slopes and the response 

or recovery times over the different pairs of rest and stress phases were 

calculated, e.g. a positive value for the trend of HR slopes means an increase 

in steepness of response, a positive value for the trend of HR response times 

means an increase in response time after different stress tests. In Figure 4-2 

the SC response to the three stress tests, indicated in red, is shown. The 

recovery time, recovery slope, response time and response slope are 

graphically represented. An overview of all the features is presented in Table 

4-2. 

 

 
Figure 4-2: Dynamic feature calculation including recovery time, recovery slope, response time and 

response slope.  

Red bars represent stress phases, white are rest. The example signal is SC from one subject, the same 

features are calculated for ST and HR. 
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Table 4-2: Overview of the static and dynamic features, calculated for each physiological signal 

(Rx=stress block x, Sx = stress block x). 

 Nr.   Feature 

name 

Blocks Static or 

dynamic 

Explanation of features 

 1-6   Mean R2, R3, R4, 

S1, S2, S3 

Static Mean of the physiological 

signal in the rest/stress 

block 

 7-12   Standard 

deviation 

R2, R3, R4, 

S1, S2, S3 

Static Standard deviation of the 

physiological signal in the 

rest/stress block 

 13-15   Trend 

means of 

stress  

S4 – S2, S4 

– S3, S3 – 

S2 

Static Difference between the 

means of different stress 

phases e.g. S4 – S2 

 16-18   Trend 

means of 

rest  

R4 – R2, 

R4 – R3, 

R3 – R2 

Static Difference between the 

means of different rest 

phases e.g. R4 – R2 

 19-21   Response 

time 

S1, S2, S3 Dynamic Time in seconds to reach 

the maximum (HR and SC) 

/ minimum (ST) starting 

from the onset of the 

stress task 

 22-24   Recovery 

time 

R1, R2, R3 Dynamic Time in seconds to reach 

the minimum (HR and SC) / 

maximum (ST) starting 

from the onset of the rest 

phase 

 25-30   Slope R2, R3, R4, 

S1, S2, S3 

Dynamic Slope of a straight line 

fitted through physiological 

signal in the rest/stress 

block 

 31-33   Trend 

response 

times 

S4 – S2, S4 

– S3, S3 – 

S2 

Dynamic Difference between the 

response times of different 

stress phases e.g. S4 – S2 

 34-36   Trend 

recovery 

times 

R4 – R2, 

R4 – R3, 

R3 – R2 

Dynamic Difference between the 

recovery times of different 

rest phases e.g. R4 – R2 

 37-39   Trend 

slopes of 

stress  

S4 – S2, S4 

– S3, S3 – 

S2 

Dynamic Difference between the 

slopes of different stress 

phases e.g. S4 – S2 
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 40-42   Trend 

slopes of 

rest  

R4 – R2, 

R4 – R3, 

R3 – R2 

Dynamic Difference between the 

slopes of different rest 

phases e.g. R4 – R2 

 

4.2.3. Analysis methods 
 

The goal of this study is to develop a classifier that can distinguish between 

healthy subjects and persons with stress-related complaints.  

In Chapter 3 we have shown that SVMs and dBNs provide the highest 

classification accuracies. However, in current research we aim to gain insight 

in the feature importances and model structure, therefore SVMs are not 

suitable. Additionally, dBNs are not appropriate because there is no dynamic 

component in separating healthy subjects and patients (as opposed to 

detecting rest and stressful events successively). Therefore, logistic regression 

(LR) using the Scikit-learn library of Python 2.7 with default hyperparameters 

was used for the analysis [118]. In LR the probability of the outcome of the 

healthy subjects versus patients is modeled as a function of the features 

weighed by coefficients obtained with a training set [108].  

A total of 126 features were calculated (i.e. 18 static and 24 dynamic features 

for 3 physiological signals). To avoid overfitting unsupervised feature selection 

using principal component analysis (PCA) was applied. We calculated the 

principal components of the features and selected the number of components 

which explained 95% of the variance of the dataset (20 components). Then, 

we calculated the correlation of each feature with each principal component 

and retained the features with a correlation higher than 0.6 with at least one 

component. This reduced the dataset from 126 to 38 features. Next, to 

minimize feature redundancy, we calculated the correlation between all 

features and removed those with a correlation higher than 0.6, reducing the 

dataset to 26 features. 

To compare the classification performance of separate physiological signals 

and of recovery versus response signals, six feature sets were separated based 

on the reduced feature set: a) a combination of all features derived from all 

physiological signals i.e. SC, HR and ST (26 features), b) all features derived 

from SC (8 features), c) all features derived from HR (8 features), d) all 

features derived from ST (10 features), e) all recovery-related features derived 
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from all physiological signals (13 features) and f) all response-related features 

derived from all physiological signals (13 features).  

The performance of each classifier was assessed using a leave-one-out cross-

validation. The models were trained on the data of all, but one, participant and 

evaluated on the data of this participant, this was repeated until all participants 

had been evaluated exactly once. To evaluate the model performance 

specificity, or true negative rate (healthy), sensitivity, or true positive rate 

(patient), and accuracy were calculated. 

To further investigate the contribution of separate features of different 

physiological signals to the model, the feature importance was calculated for 

the model with the highest performance (accuracy). In a LR model, more 

important features have higher weights. Therefore, the feature importance 

was calculated by ranking the weights of the model. For the most important 

features also a t-test was performed. For features with significant differences, 

i.e. p<.05, also the effect size (Cohen’s d) was calculated [155].  

 

4.3. Results 
 

To identify healthy controls and persons with stress-related complaints, 

classifiers using LR based on six feature sets were developed. After 

unsupervised feature reduction, based on PCA and correlation analysis, 26 

features were retained, 10 static and 16 dynamic. The accuracy, sensitivity and 

specificity for each set are presented in Figure 4-3. The best performance was 

obtained for the response and SC feature sets (accuracy = .78, sensitivity = 

.75, specificity = .80). The worst performance was obtained for the ST feature 

set (accuracy = .59, sensitivity = .50, specificity = .65) and recovery feature set 

(accuracy = .63, sensitivity = .50, specificity = .70). An intermediate 

performance was found for the single-parameter feature set with HR features 

(accuracy = .66, sensitivity = .50, specificity = .75) and feature set with all 

features (accuracy = .72, sensitivity = .75, specificity = .70).  
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Figure 4-3: Classification performance for each feature set using a LR model.  

The performance is evaluated using F-score, sensitivity and specificity. Classification based on the 

response and SC features give the best performance. 

 

For the model based on the response feature set (highest accuracy, including 

all physiological signals), the relative feature importance was further 

investigated. Features were ranked based on their relative contributions to the 

model predictions. The result is shown in Figure 4-4. 

 
Figure 4-4: Feature importance of the response feature set based on the relative contribution to the LR 

model (SD = standard deviation).  

Feature names contain 3 parts, separated by a space: (1) the physiological signal for which the feature 

was computed, i.e., HR, SC, or ST; (2) the feature (see Table 4-2); and (3) the stress task(s) for which 

the feature was computed: S1 = stress task 1 (i.e., Stroop Color‐Word test), S2 = stress task 2 (i.e., 

math test), S3 = stress task 3 (i.e., stress talk). 
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Significant differences for the t-test and medium to large effect sizes based on 

Cohen’s d were found for the five most important features (others did not 

show significant differences). These include four ST and one SC related 

features. The t-test was found significant for p<.05 and an effect size d>0.5 was 

considered medium and d>0.8 large [155]. In Figure 4-5 the boxplots of these 

features are shown comparing the standardized feature values of healthy 

subjects and patients. The stars indicate statistically significant differences.  

 

 
Figure 4-5: Boxplots of the five most important features of the response feature set for healthy subjects 

and patients.  

Features are represented as standardized values. *, p<.05 vs. healthy subjects. Feature names contain 
3 parts, separated by a space: (1) the physiological signal for which the feature was computed, ie, HR, 

SC, or ST; (2) the feature (see Table 4-2); and (3) the stress task(s) for which the feature was computed: 

S1 = stress task 1 (i.e., Stroop Color‐Word test), S2 = stress task 2 (i.e., math test), S3 = stress task 3 

(i.e., stress talk). 

The trend of the ST means from the first to second stress task, i.e. Stroop test 

to math test, was close to zero for patients and significantly lower, i.e. more 

negative, for healthy subjects (p=.007, d=1.06). Since the trend is the difference 

of S2 and S1, this indicates that healthy subjects have a lower ST in the second 

stress task compared to the first, while this difference is less distinct for 

patients. The mean ST from the second stress task, i.e. the math test, was 

significantly higher for patients compared to healthy subjects (p=.02, d=0.90). 

The slope of the ST during the first stress task, i.e. the Stroop test, was 
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significantly higher for patients compared to healthy subjects (p=.02, d=0.87). 

Since both slopes are negative (based on the not normalized values), this 

indicates a stronger ST decrease for healthy subjects. The standard deviation 

of the ST from the third stress task, i.e. the stress talk, was significantly lower 

for patients compared to healthy subjects (p=.04, d=0.80). Finally, the trend of 

the SC slopes from the first to the third stress tasks, i.e. Stroop test to stress 

talk, was significantly higher for patients compared to healthy subjects (p=.05, 

d=0.73). This indicates a stronger increase in SC slopes (i.e. a stronger SC 

response) for patients. 

 

4.4. Discussion 
 

We investigated the acute physiological response to and recovery from a 

stress task for early detection of stress-related complaints. Subjects with 

stress-related complaints could be distinguished from healthy subjects with an 

accuracy of 78%, sensitivity of 75% and specificity of 80%. Whether these 

results generalize to a larger population, patients with clinical diagnoses such 

as burnout, chronic fatigue syndrome, etc., or to other types of stressors 

requires further study. 

Our analysis also points to several conclusions with respect to physiological 

sensing priorities. In previous reports, mainly cardiovascular or SC features 

have been used separately as physiological markers of stress-related diseases. 

Our analysis indicated that the best results can be obtained using SC related 

features. The classification performance using only features related to ST or 

HR was much lower. However, by combining the response features of HR, SC 

and ST the performance can be increased and insights from all physiological 

signals can be obtained. Since all three are standard measurements, readily 

available in many state-of-the art sensors, e.g. NeXus 10 – MK II, and in 

multiple wearables such as Empatica E4 (Empatica, Milan, Italy), it is advised to 

focus further research on the combination of these signals, rather than 

investigating them separately.  

Furthermore, when only using the recovery related features, the accuracy was 

reduced by 15% as compared to using response related features. These 

findings are in disagreement with the suggestion of Linden et al. [149] that 

recovery features can unravel additional information to distinguish healthy 
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subjects and patients. Our findings indicate that these two groups differ more 

in their response to stress than in their recovery from a stress task. A possible 

explanation could lie in the timeframe of the analysis. In our research the 

immediate stress response and recovery were analysed in a timeframe of two 

minutes during and after the stress task. It is possible that differences become 

more apparent after a longer period. Further, we focused our research on 

persons with stress-related complaints for less than three months before 

consultation. It is possible that if the chronicity of the complaints increases, 

e.g. burnout patients with complaints for more than six months, also the 

difference in recovery phase becomes more pronounced. This hypothesis is 

supported in the meta-analysis of Miller et al. [37] who state that when chronic 

stress first begins, the HPA axis is activated, whereas prolonged chronic stress, 

which is the case for burnout patients, leads to diminished activity. In a follow-

up study it could therefore be interesting not only to investigate healthy 

controls versus subjects with stress-related complaints, but also subjects with 

stress-related complaints versus overstrain versus burnout patients. 

In our analysis, we also investigated which type of features, static or dynamic, 

is more important for classification purposes. We showed that both types are 

needed to reach the reported classification performances, with a higher 

number of dynamic features selected. In previous research towards 

identification of stress-related mental health problems, the focus has been on 

static features. In other research branches, such as the identification of physical 

condition, as opposed to mental, dynamic features have been already 

incorporated in the analysis [147]. We suggest that future research in the area 

of mental and physical health may benefit from including more dynamic 

features in the analysis. In our study, a linear approach was used to calculate 

the slopes, which, as can be seen in Figure 4-2, might not be the best 

representation. Therefore, in Lim et al. [156] an exponential approach was 

proposed. Additionally in Figure 4-2 it can be noticed that the onset of the 

physiological response already starts a few seconds before the start of the 

stress test. This could be due to anticipation of the test and could also be an 

interesting parameter for future research, e.g. anticipation effects could be 

more pronounced for patients as compared to healthy subjects. 

Detailed investigation of the most important features for the model based on 

response related features, revealed that mainly feature slopes and trends are 

important (Figure 4-4). The five most important features showed significant 
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differences and medium to large effect sizes for the healthy subjects compared 

to the patients. A general observation of the results shows that patients often 

show a more rigid response to stress compared to healthy subjects (i.e. less 

variation between rest and stress). This could reflect one type of allostatic 

load, being the inadequate response of the allostatic systems as described by 

McEwen [148]. These results highlight the opportunities of using physiological 

stress responses as a means to discover new insights regarding the process of 

stress-related health disorders. 

The current study was a methodological pilot study which was executed in a 

laboratory setting and with a limited number of patients (n=12). Results might 

be changed if more patients will be recruited in the future. Further, a possible 

application of this methodology could be large-scale population screenings for 

early detection of stress-related health problems. Therefore, to use this 

methodology in practice, it should be investigated whether similar results can 

be obtained in real-life conditions, outside the laboratory. To this end, 

wearables such as Empatica E4 (Empatica, Milan, Italy) could be used for 

ambulatory physiological measurement of HR, SC, and ST. Additional 

challenges will be related to signal quality [106]. In current study only persons 

with stress-related complaints were included. All patients confirmed their 

complaints started less than three months before consultation and all patients 

were still capable of fully functioning in their social and professional lives. 

However, since this information is based on self-report, it could be incorrect 

as patients might be unaware of problems in their functioning. Further,  we 

suggest additional research to investigate whether the results generalize to 

larger populations and patients on different areas along the stress continuum 

(i.e. overstrain and burn-out). We aimed with this methodological pilot study 

to bring attention to new exploratory methodologies; further research is 

needed to validate and replicate the results. 

 

4.5. Conclusion 
 

We conclude that our pilot study demonstrated the potential of physiological 

signals during the response to a stress task to discriminate healthy subjects 

from persons having stress-related complaints. Our analysis also showed that 

a multi-parameter classification model based on response-related features can 
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outperform models based on single parameters (HR and ST) and models based 

on recovery-related features only. Investigation of the separate features can 

provide more insights and enhance our understanding of the physiological 

differences between healthy subjects and persons at risk of stress-related 

health problems. Although further research is needed to investigate if these 

conclusions generalize to a larger population and to multiple clinical diagnoses, 

these results highlight the potential of using physiological signals and an 

exploratory approach to gain more insight into the difference between healthy 

subjects and patients. Further longitudinal research using wearable technology 

to investigate the development of the three stages on the stress continuum, 

could provide a powerful technique for better understanding the development 

of stress-related disorders. Such research could unravel early detection points 

for early diagnosis and prevention.   
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Chapter 5: The SWEET 

study: A large-scale, multi-

sensor trial for stress 

detection in the work 

environment 
 

This chapter addresses the third objective of this thesis: The large-scale investigation 

of the physiological stress response in ambulatory conditions, including demographics 

and context information towards digital phenotypes for personalized and continuous 

stress detection. More specifically, this chapter focuses on the set-up of a large-scale 

study for “Stress detection in the Work EnvironmEnT” (SWEET). We present a trial, 

including 1,002 subjects, containing subject’s demographics and baseline 

psychological information and five consecutive days of free-living physiological and 

contextual measurements. The dataset protocol was set up by Elena Smets with 

promotor Chris Van Hoof, the data collection was performed by Elena Smets and Jan 

Cornelis at 11 companies across Flanders and the Netherlands. We present the data 

collection protocol and results regarding compliance and data quality. In the next 

chapters we will analyse these data further towards a personalized stress detection 

model. The content of this chapter is submitted to npj Digital Medicine. 

  

5.1. Problem statement 
 

In recent years, the growing availability of wearable sensors has led to 

increased research towards the continuous, ambulatory monitoring of stress. 

However, detecting stress in daily life poses multiple challenges: First, the 

presence of physical activity can mask the effect of stress on the physiological 

signals [157]. Second, ambulatory measurements are more susceptible to 

(motion) artifacts, which imposes the need for accurate artifact-handling 
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techniques and signal-quality indicators [106]. Third, the lack of an objective 

stress reference. While cortisol has been reported as the main stress 

hormone, there is no unobtrusive cortisol measurement technique and it is 

often omitted in ambulant recordings. Instead, Ecological Momentary 

Assessments (EMAs), repetitive stress self-reports closely timed throughout 

the day, are the most commonly used [158].  

So far, mainly small-scale studies, often underpowered, of 20-50 subjects have 

been conducted [53] [17] [107]. Multiple findings suggest that physiological 

responses to stress tend to be person-dependent [157, 128]. Therefore, in 

order to grasp variability among subjects and develop models that are 

generalizable on a large scale, large datasets are needed. Further, in the 

majority of ambulatory trials, subject’s demographics, psychological baseline 

profiles (e.g. self-reported anxiety and depression levels) [53] [17], and 

context information [107] are not taken into account although these could 

improve personalization and classification performance, and provide actionable 

insights [14, 17]. 

We present the SWEET study (Stress in the Work EnvironmEnT): a 

comprehensive dataset to monitor stress responses in a free-living 

environment. From 1,002 subjects, we collected baseline psychological 

information (e.g. self-reported anxiety and depression levels) through an intake 

questionnaire, five consecutive days of free-living physiological data through 

wearables and smartphone-based contextual measurements (e.g. location), 

self-reported stress through EMAs and data from an application-based stress 

test.  

 

5.2. Materials and methods 
 

An experiment was conducted to investigate the physiological stress response 

in a free-living environment. The Medical Ethical Committee of KU Leuven 

approved the protocol and analysis methods of the experiment (protocol ID: 

S57916). In this section, the protocol and the sensing modalities are described. 

Further, the implementation of two quality indicators for SC and ECG is 

presented. 
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5.2.1. Data collection 

Protocol 
 

The trial was conducted with 1,002 subjects (484 male, 451 female, 67 NA: 

did not fill in questionnaire correctly), aged 39.4 ± 9.8, recruited in 11 

technology-oriented, banking and public sector companies. Subjects were 

included if they were active employees at the time of the study, no other 

inclusion or exclusion criteria were applied. The experiment was conducted 

over a time span of two years and lasted five days per subject. The timeline of 

the study is depicted in Figure 5-1. 

 

 
Figure 5-1: SWEET study protocol 

Subjects were recruited through internal communication within the included 

companies. Detailed information about the experiment was given through a 

website and several info sessions. Persons willing to participate could subscribe 

on the website, where they could choose the week during which they wanted 

to participate to the experiment and leave their e-mail address. On Monday 

the week before the start of the experiment, subjects received an 

automatically generated e-mail with a reminder that the experiment would 

take place during the next week. On Monday in the week of the experiment 

subjects received an e-mail with the information to fill out intake questionnaire 

on the website (see Sensing modalities - Questionnaires). This needed to be done 

by Wednesday evening. If the information was still missing by Tuesday evening 

an e-mail with a reminder was sent automatically. On Thursday morning the 

subjects collected the sensors. For every subject a sensor package was 

prepared, containing the sensors for physiological measurements, a printed 
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user manual and a USB-stick with the user manual and a movie on how to 

apply the sensors. 

The experiment took place from Thursday morning until Monday evening. The 

weekend was included to investigate the differences between a weekend and 

a working day. A smartphone application was used to trigger participants to 

fill out stress-related questionnaires and to collect contextual data (i.e. 

location, smartphone usage, audio-features, etc...) whenever participants gave 

permission. During the experiment the goal was to measure stress levels 

during daily life, therefore no interventions that could influence the subject’s 

stress levels took place.  

To assess individual physiological stress responses to a known common 

stressor, a short stress test was included in the smartphone application. The 

subject had to do this stress test during the first day of the experiment 

(Thursday) at a moment that fitted best (i.e. when he had time and was in a 

quiet environment). The stress test used was the Montreal Imaging Stress Task 

(MIST), which is based on the well-known Trier Social Stress Test and is 

explained in detail in [159].The MIST contains a series of computerized mental 

arithmetic challenges, along with social evaluative threat components that are 

built into the program (i.e. the application) [159]. The test consists of a five 

minute rest period (relaxing music and images), a five minute control period 

(simple mathematic tasks, no time restrictions or social control), five minute 

stress task (mathematic tasks with time restrictions and social control) and 

again five minute rest period (relaxing music and images). The flow of the MIST 

is depicted in Figure 5-2.  

 
Figure 5-2: Montreal Imaging Stress Task (MIST) 
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On Monday evening the subsequent week participants had to return the 

sensor package. After the experiment, participants had to complete a 

questionnaire about sensor comfort on the website and a year later a reminder 

was sent to retake part of the intake questionnaire. 

 

Sensing modalities 
 

Three types of sensing modalities were used: questionnaires, as a gold standard 

for self-reported stress levels and for subject demographics and psychological 

background information; physiological recordings, to detect the physiological 

response to stress; and smartphone-based recordings, to measure context 

information and behavior which could be linked to stress, subject 

demographics and psychological background information. 

 

Questionnaires – Three types of questionnaires were used: an intake 

questionnaire, annotation during the experiment and a follow-up 

questionnaire. All information and questionnaires were available in three 

languages, Dutch, French and English, to encourage multi-nationality among 

subjects. The intake and follow-up questionnaires were presented via the 

website, the annotation during the experiment via a smartphone application. 

Before the start of the experiment an intake questionnaire was completed on 

the website. The first part inquired personal information such as age, gender, 

health problems, work situation, etc. Thereafter, four validated psychological 

questionnaires were used to assess baseline stress, depression, anxiety, sleep 

and general health levels. The first questionnaire was the Perceived Stress 

Scale (PSS) [13] which is a 10-item questionnaire, rated on a 5-point Likert 

scale for information about a person’s perceived stress level over the last 

month. The second questionnaire was the Pittsburgh Sleep Quality Index 

(PSQI) [160]. This is a 10-item questionnaire for information about a person’s 

sleep quality. This is of interest since research has shown that job stress can 

lead to poor sleep quality [161]. As third questionnaire the 21-item 

Depression Anxiety Stress Scale (DASS) [162] was used to measure the three 

related emotional states of depression, anxiety and stress. Finally the 36-item 

RAND-36 [163] questionnaire was used as health-related quality of life 

questionnaire. An overview of all questions with average population responses 

is presented in Appendix A. 
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During the five days of experiment, Ecological Momentary Assessments 

(EMAs) on a mobile application were used to assess self-reported stress. An 

overview of the EMAs is presented in Figure 5-3. Previous research has shown 

correlations between stress and sleep efficiency [164] and between stress and 

digestive diseases (e.g. irritable bowel syndrome) [165]. Therefore, each 

morning the sleep quality of the previous night was inquired (e.g. at what time 

did you go to bed? How long did it take to fall asleep?) and each evening gastro-

intestinal symptoms were inquired based on the Leuven Postprandial Distress 

Scale [166]. Throughout the day the application sent twelve alarms for stress 

annotation. The alarms were sent at random times, but at least thirty minutes 

apart. When the subject did not fill out the annotation, one reminder was sent 

ten minutes later. If after forty minutes the annotation was still ignored, the 

questionnaire closed and missing values were assigned. The annotation existed 

of four short questions. The first was the Self-Assessment Manikin (SAM) [167] 

which is a visual scale to assess pleasure, arousal and dominance, i.e. affective 

emotions related to stress. The pleasure level could be used to differentiate 

“good” stress from “bad” stress, i.e. eustress vs. distress, where eustress 

reflects the transition of the body to a lower allostatic load (i.e. “the price the 

body pays for being forced to adapt to unfavorable psychosocial or physical 

situations” [168]) and distress to a higher allostatic load [168]. The next screen 

contained a drop-down menu to indicate the maximum stress level over the 

last hour on a 5-point scale (i.e. not at all, slightly, moderately, very and 

extremely stressed). Since eating and drinking behavior and physical activity 

can influence physiology [157] [65], the third and fourth questions were used 

to indicate food and beverage consumption (i.e. caffeine, alcohol, soft drinks, 

breakfast, lunch, dinner, snack or none) and activity levels (i.e. lying down, 

sitting, standing, walking, running, biking , driving the car or something else), 

for which subjects could select multiple answers. 
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Figure 5-3: Overview of Ecological Momentary Assessments (EMAs). 

Left: once per day sleep quality and gastro-intestinal symptoms, right: 12 times per day SAM, stress, 

food and activity annotation. 

Two follow-up questionnaires were used. The first was presented to the 

subject right after the experiment and inquired about the sensor comfort. The 

second questionnaire was a copy of the DASS, presented a year after 

participation on the study. This questionnaire can be used to assess chronic 

stress and clinical outcomes such as depression. 

 

Physiological recordings – Two sensors were used for physiological 

recordings (Figure 5-4). The first sensor is a chest patch to measure the 

electrocardiogram (ECG) and acceleration (ACC). It contained a sensor node 

designed to monitor ECG at 256 Hz and ACC at 32 Hz continuously for seven 

successive days. Subjects wore the patch the entire day and night. The sensor 

is not waterproof, so subjects received a waterproof cover to be able to take 

a shower without removing the patch. While practicing sports, subjects were 

advised to remove the sensor to avoid sweat from damaging the device. The 

second sensor is the imec’s Chillband, a wrist worn device, designed for the 

measurement of skin conductance (SC), skin temperature (ST) and ACC. The 

SC was sampled at 256 Hz, ST at 1 Hz and ACC at 32 Hz. Subjects wore the 

sensor the entire day, but could take it off during the night. Subjects were 

asked to remove the band while taking a shower or during vigorous activities. 

The battery life of both sensors exceeded the duration of the experiment. 

Although both devices featured wireless connectivity, data were recorded on 

internal SD cards and uploaded to a central data platform at the end of the 

experiment.   
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Figure 5-4: Physiological recordings.  

Left: chest patch for ECG and ACC, right: Chillband for SC, ST and ACC measurement 

Smartphone recordings – The smartphone application used for the self-

reporting (see Questionnaires), was also used for the measurement of context 

information. Subjects could choose to either use their own smartphone or to 

borrow one. This information is marked in the dataset, since it can influence 

phone use. Context information was only collected if subjects gave explicit 

additional consent. If not the app was only used for EMA annotation. The first 

context signal that was recorded is activity. Literature has shown that physical 

activity can decrease stress levels [169]. Since people often carry their 

smartphone with them, it can be investigated if activity measured from the 

acceleration sensors inside the smartphone is correlated with the 

detected/reported stress levels. Second, audio features were recorded. Many 

research has already indicated that social support has a large influence on 

stress and health related effects caused by stress [170]. Audio features can be 

used to detect conversations and social interaction. To ensure privacy, only 

audio-related features were stored (e.g. noise level), not the actual 

conversation. Third, location could be recorded. Based on the location it is 

possible to detect if a person is at work, at home, in the car, etc. The goal is 

to find the correlation between detected/reported stress levels and locations. 

To investigate this correlation, the coordinates of the smartphone location 

were saved every time the person answered a questionnaire and if battery life 

allowed, every 15 minutes. The actual coordinates of the location were 

anonymized by applying a random translation and rotation to the coordinates, 

distances between coordinates remained unchanged. Locations were clustered 

as unique stay locations, i.e. average location in more than 60 min within a 

radius of 1km and commuting. Fourth, if both the company and participant 
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allowed, also the timestamps of incoming and outgoing e-mails were stored. 

These can be used as a possible measure for workload. Finally, the app could 

monitor smartphone use, such as screen on or off, environment light and if 

the phone was locked or unlocked. 

 

5.2.2. Quality indicators 
 

Raw sensor data and subject self-assessments were synchronized using UTC 

timestamps. Data were stored as HDF5 files containing all synchronized 

physiological information3. Quality indicators were applied subsequently. 

Assessing the quality of the ECG and SC signals is necessary since these signals 

are prone to artifacts due to motion or incorrect sensor attachment.  

The ECG quality indicator4 is based on Orphanidou et al. [171] , which has 

shown a sensitivity for artifact detection of 94% and a specificity of 97%, and 

consists out of three rules and a template matching, verified on 10-second 

segments of ECG data: first, the extracted HR should be within 40 and 180 

bpm. Second, the maximum gap between successive R-peaks cannot exceed 3 

s. Third, the ratio of the maximum beat-to-beat interval to the minimum beat-

to-beat interval within the segment should be less than 2.2. If all rules are 

satisfied, an adaptive QRS template matching is performed. The 10-second 

segment is either classified as of good or of bad quality.  

In the SC quality indicator [126] for each 5-second window the ratio of lost 

versus overall signal is calculated. The signal is deemed lost if its value is below 

0.001µS. If this ratio is above 0.9, the signal is classified as of bad quality. Next, 

the algorithm searches for anomalies. For each second the maximum increase 

of a signal value is set to 20% and the maximum decrease to 10%, as suggested 

by Boucsein et al. [172]. If SC values within the segment do not satisfy these 

conditions the segment is classified as of bad quality.  

Previous research defined the ST range at the wrist between 20-40°C [173]. 

Therefore, ST values outside this range are classified as of bad quality. 

 

 

                                                
3 The data processing pipeline was implemented by Imen Chakroun 
4 The ECG quality indicator was implemented by Bishal Lamichhane 
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5.3. Results 
 

The aim of current chapter is to investigate dataset quality and compliance. 

We used three sensing modalities: questionnaires, smartphone-based 

recordings and physiological recordings.  

An overview of the intake questionnaire is available in Appendix A. Further, 

EMA was used to capture self-reported stress. A total of 23,429 stress reports 

were collected for 920 subjects, on average 25 (range: 1 – 54) per subject 

(Figure 5-5). This corresponds to an average compliance rate of 42% (range: 

2%-90%). Further, self-reported stress levels are highly imbalanced: 53.4% no 

stress, 32.3% light stress, 11.4% moderate stress, 2.6% high stress and 0.3% 

extremely high stress. 

 

 
Figure 5-5: Self-reported stress levels of 1,002 subjects 

From Thursday until Sunday subjects reported stress on average 6 (SD=2.68) 

to 6.20 (SD=2.86) times respectively, while on Monday compliance dropped 

to 4.7 times (SD = 2.14, Wilcoxon ranksum p < 0.001) as can be seen in Figure 

5-6. 
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Figure 5-6: Annotation compliance throughout the five day experiment 

When subjects approved, we used the smartphone application to collect 

contextual data. 720 subjects gave permission to monitor their location, for 

612 subjects, due to battery lifetime restrictions, the location was only 

monitored while the app was open for answering a questionnaire, resulting in 

an average of 35 (range: 1-72) data points per subject (covering 0.02-1.2% of 

the time). One data point reflects one minute of information. The average 

coverage is calculated by dividing the number of data points (represented in 

timeframes of minutes) by the total time of the study in minutes. For 312 of 

these subjects location was monitored every 15 minutes, with an average of 

452 (range: 1-3292) data points per subject (covering 0.02-52.8% of the time). 

Location information was more often available during the day than during night 

hours. On average, subjects spent time in 5 unique locations. Further, 501 

subjects gave permission to monitor audio features. Of these only for 240 

subjects actual data was recorded, due to additional phone privacy settings, 

with an average of 51 (range: 1-503) data points per subject (covering 0.02-

8.1% of the time). No actual conversations were recorded, rather informative 

features such as amplitude and variance of the sound signal and likelihood of 

voice activity. Call and SMS logs were available for 183 and 201 subjects 

respectively, with an average of 14 (range: 1-78) call logs and 23 (range: 1-154) 

SMS logs. Information on ambient light was available for 490 subjects, 

temperature for 4 subjects, air pressure for 50 subjects and screen mode 

(on/off) for 569 subjects. An overview of these data are presented in Table 

5-1. 
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Table 5-1: Overview of smartphone-based sensor data 

 Nr of 

subjects 

with at 

least one 

datapoint 

recorded 

Average nr of 

data points per 

subject 

Average coverage 

across 5 days of 

trial 

Unique 

locations 

per 

subject 

Location 

recorded when 

app was open 

612 Mean = 35, 

range:  1-72 

Mean = 0.6%, 

range: 0.02-1.2% 

5 

Location 

recorded 

continuously 

312 Mean = 452, 

range: 1-3292 

Mean = 7.2%, 

range: 0.02-52.8% 

5 

Audio features 240 Mean = 51, 

range: 1-503 

Mean = 0.8%, 

range: 0.02-8.1% 

NA 

SMS Logs 201 Mean = 23, 

range: 1-154 

NA NA 

Call Logs 183 Mean = 14, 

range: 1-78 

NA NA 

Ambient light 490 Mean = 557, 

range: 1-3540 

Mean = 8.9%, 

range: 0.02-56.7% 

NA 

Air pressure 50 Mean = 1180, 

range: 1-5427 

Mean = 18.9%, 

range: 0.02-87.0% 

NA 

Temperature 4 Mean = 106, 

range: 3-307 

Mean = 1.7%, 

range: 0.05-4.9% 

NA 

Screen mode 

(on/off) 

569 Mean = 1220, 

range: 1-6152 

Mean = 19.6%, 

range: 0.02-98.6% 

NA 

 

To capture their physiology, subjects wore a chest patch and a wristband 

(Chillband). 845 subjects wore both sensors, 61 only wore the chest patch, 60 

only wore the Chillband, 36 subjects did not wear the sensors and only 

recorded smartphone data. The chest patch was worn continuously and data 

of 4356 days and 2979 nights were collected, across all subjects. For the 

Chillband, data of 4366 days and 1744 nights was collected. When wearing the 

sensors the chest patch had on average 86.3 ± 8.2% good quality data, the 

Chillband 96.4 ± 2.2% (Table 5-2). In Figure 5-7 two examples of an ECG and 

SC signal with and without quality indicator applied are shown. It can be seen 

that abnormal signals (outliers) are efficiently removed. However, due to the 
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10s window segment, also some high quality signals are falsely removed, as 

indicated by the red box. 

773 subjects gave feedback on sensor comfort: 18% estimated it likely they 

would wear the Chillband daily in the future, while only 8% would wear the 

chest patch daily. The main reasons for not wearing the Chillband were that 

the band was too big (69.4%) and not comfortable (45.6%); the chest patch 

was found not comfortable (67.3%, 14% of the subjects rated their level of 

irritation 8 or higher, scale of 1-10), too visible (39.1%) or too big (38.2%). 

 

 
Figure 5-7: ECG and SC signals, raw (blue) and with quality indicator (green).  

The red box indicates the falsely removed high quality signals. 

Table 5-2: Overview sensor quality Chillband and chest patch  

Sensor Chillband 

(n = 905) 

Chest patch 

(n = 924) 

Days - mean (range) 4.5 (1 – 5) 4.4 (1 – 6) 

Hours - mean (range) 107 (1 – 130) 97 (1 – 184) 

QI (0 - 100) - mean (range) 96.4 (82.6 – 99.9) 86.3 (31.5 – 98.8) 

 

 

 



82 

 

5.4. Discussion 
 

The results have indicated several lessons learned for future use of EMA and 

physiological sensing in large-scale studies. We have seen that compliance to 

the EMAs was 42%, which is less than commonly reported rates between 65-

85% [174]. Earlier research has shown that compliance during longitudinal 

trials drops when the novelty aspect disappears [175]. A possible solution to 

increase adherence is to provide feedback. However, to avoid influencing 

subjects’ behavior, no feedback was provided during this study. Further, the 

dataset has also been shown to be highly imbalanced in terms of self-reported 

stress responses, as was also found in previous ambulatory stress research 

[107]. A possible solution to improve both adherence and retrieve more 

balanced datasets is the use of context-aware EMAs. These permit more 

sophisticated event-based sampling where algorithms are used to detect 

specific events (e.g. HR increase, running,...) and can provide the signaling cue 

[176]. This way the situation of interest (i.e. stress) can be monitored without 

unnecessarily burdening the subject. Although this technique already exists 

more than a decade, it is still rarely implemented in ambulatory studies (e.g. 

using location-based notifications for smokers [177] and alcoholics [178]). 

Another approach is to eliminate traditional questionnaires and use the 

subject’s digital footprint (i.e. smartphone use, facebook profiles, Twitter, etc.) 

which may provide a convenient and reliable way to measure psychological 

traits at a low cost [179]. Such automated assessment could prove to be more 

accurate and less prone to cheating and misrepresentation than traditional 

questionnaires. 

Further, it can be seen that both physiological and contextual data streams 

contain missing data. A first cause are privacy considerations, about 70% of 

subjects gave permission to record their location and 50% gave permission to 

record audio information. Researchers need to take the increasing awareness 

and legislation regarding data privacy and data protection (e.g. the General 

Data Protection Regulation of the EU) [180] into strong consideration when 

developing trials and mobile health (mHealth) solutions. Other causes of 

missing data are sensor-related such as sensor/smartphone breakdown, 

incorrect sensor use or the termination of sensor use. We investigated the 

data quality when wearing the sensor, which was on average 86.3% for the 

chest patch and 96.4% for the Chillband. Based on Figure 5-7 it could be seen 
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that outliers were efficiently removed. However, also some high quality ECG 

signals were falsely removed due to the 10s window segment. Improvements 

on the quality indicators could be made by using shorter time windows and 

applying a continuous quality indicator scale rather than a discrete (i.e. good 

vs bad). A new approach for an ECG quality indicator is suggested by 

Moeyersons et al. [181]5.  

We also asked subjects to rate the sensor comfort. About 20% of subjects 

estimated it likely they would wear the wristband on a daily basis in the future, 

which is in line with a report of Forbes mentioning in 2016 one in six 

consumers owned and used wearable technology [182]. It has also been shown 

that worldwide most users are young (48 % between 18-34) [182] and about 

a third of owners of smart wearables stops using them within six months after 

purchase [183]. This calls for action of technology developers and researchers, 

our survey showed that most subjects would not wear the sensors because 

they are too big or not comfortable, less than 10% indicated they found the 

sensors not useful. Although these numbers could be biased due to the fact 

that subjects participating in this study are probably more interested in 

wearable technology compared to the general population, they do signal that 

focus of research should be on design and comfort of wearables, next to 

performance (which is currently the primary focus). 

 

5.5. Conclusion 
 

To assess stress we collected a dataset of 1,002 subjects during five 

consecutive days, including a wide variety of subject background information, 

physiological data in ambulatory settings and smartphone-based self-reports 

and contextual information. Investigation of the data underlines the 

importance of feedback and motivation to increase compliance to the EMAs. 

Overall, we presented a large-scale study with high quality physiological and 

self-reported stress data which can be used to develop models for stress 

detection and to investigate the link between behavior and health indicators. 

 

  

                                                
5 This publication is currently under consideration at Computer Methods and 

Programs in Biomedicine 
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Chapter 6: Linking behavior, 

health indicators and 

physiology: towards digital 

phenotyping 
 

In Chapter 5 we presented the SWEET study protocol and dataset quality. In current 

chapter we use the demographics, psychological background information, 

physiological and contextual information to infer behavior patterns. Current analysis 

was performed by Elena Smets with promotor Chris Van Hoof in collaboration with 

Emmanuel Rios Velazquez and Giuseppina Schiavone. Figures 6-1 to 6-4 were 

produced by Emmanuel Rios Velazquez, Figure 6-5 was produced by Giuseppina 

Schiavone, Figure 6-6 was produced by Elena Smets. We present multiple 

interactions between behavior and health, confirming findings in earlier studies. 

Significant differences are found between physiological signals during self-reported 

stress levels, confirming for the first time on a large scale the potential of physiological 

stress detection in daily life. We highlight the need for personalized models to detect 

stress, based on the development of digital phenotypes. The content of this chapter 

is submitted to npj Digital Medicine. 

 

6.1. Problem statement 
 

A phenotype is “The set of observable characteristics of an individual resulting 

from the interaction of its genotype with the environment” [184]. In 2015, Jain 

et al. [185] introduced the ‘digital phenotype’. Through social media, wearable 

technologies and mobile devices, there is a wide variety of health-related data 

that can extend our assessment of human illness beyond traditional 

examinations. These data can fundamentally change our understanding of 

diseases and provide new insights and hypotheses. It can be used for disease 

interception, treatment and chronic disease management. For example, 
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Health-Map is a public website, created in 2006 by a team of data scientists, 

epidemiologists and researchers, which utilizes informal online information for 

disease outbreak monitoring (e.g. the flu) and real-time assessment of public 

health threats [186].  

Digital phenotypes could be useful to detect stress and even more to prevent 

and intercept co-morbidities linked to stress on a large scale. These include an 

increased risk at cardio-vascular disease, gastro-intestinal disorders such as 

irritable bowel syndrome, obesity and a variety of neurological disorders 

including Alzheimer’s disease [187]. 

Although the term ‘digital phenotype’ is fairly new, the concept has been 

introduced already for a longer time. The use of wearables to detect stress is 

also a form of digital phenotyping. However, current research has mainly 

focused on using only one type of digital technology, e.g. using wearables for 

physiological stress detection [107], or using pressure-sensitive key-boards to 

discriminate between relax and stress in computer users [188]. Although the 

importance of personalization in stress detection has already been highlighted 

[157, 128], so far very few studies have actually incorporated subject 

background or context information to improve stress detection performance 

and to gain more insight in digital phenotypes for stress detection.  

In the SWEET study we collected a wide variety of digital and non-digital 

information, defining a subject’s personal traits, behavior and physiology. In 

current chapter we present the connection between behavior and health 

indicators, between stress and physiology, and we present an approach 

towards digital phenotypes for psychophysiological stress detection. 

 

6.2. Materials and methods 
 

The data collection protocol of the SWEET study has been presented in 

Chapter 5. In this section we further elaborate on physiological feature 

computation and analysis methods. 

 

6.2.1. Feature computation 
 

In Chapter 3, we investigated 22 physiological features in a laboratory setting. 

Based on the results of Chapter 3 and based on new findings in literature, 
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including research specifically focusing on ambulatory stress detection, 18 

physiological features [17] [101] [189] [97] [103] [95] [53] [130] [63] [129] 

were included in our study: 6 features for ECG, including mean HR and time 

and frequency domain HRV features, 8 SC features, including tonic and phasic 

features, and 4 ST features. For accelerometer-based activity we included the 

standard deviation of the accelerometer magnitude (ACC SD) [190]. To 

compute HR and HRV, R peaks were detected from the ECG signal using the 

beat detector for ambulatory cardiac monitoring developed by Romero et al. 

[191] with a sensitivity of 99.86% for an ECG dataset with high levels of activity. 

A complete list of all features is available in Table 6-1. Features were calculated 

in a window of 5 minutes with 4 minutes overlap. This is the minimum window 

required to calculate HRV features such as the root mean squared difference 

of successive RR intervals (RMSSD) [192] due to the inherent regulation 

periodicity [193]. The 4 minutes overlap was set to obtain a resolution of 

smoothed processed data of one sample per minute. 

 
Table 6-1: List of features computed for each sensing modality (SWEET study) 

Nr. Feature Abbreviation Reference 

1 Mean heart rate (HR) ECG mean 

HR 

[101] [189] [97] 

2 Standard deviation of RR 

intervals 

ECG SDNN [97] [103] [17] 

3 Root mean square of successive 

RR differences 

ECG RMSSD [103] [17] 

4 Low frequency signal (power in 

the 0.04-0.015 Hz band) 

ECG LF [101] [189] [103] 

[17] [95] 

5 High frequency signal (power in 

the 0.15-0.4 Hz band) 

ECG HF [101] [189] [103] 

[17] [95] 

6 Ratio of low and high frequency  ECG LFHF [101] [189] [97] 

[103] [17] [95]  

7 SC level – average SC SC mean [97] [103] [130] 

8 Phasic SC – signal power of the 

phasic SC signal (0.16-2.1 Hz) 

SC phasic [63] 
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9 SC response rate – number of 

SC responses in window divided 

by the total length of the 

window (i.e. responses per 

second) 

SC RR [103] 

10 SC second difference - signal 

power in second difference from 

the SC signal 

SC diff2 [129] 

11 SC response - number of SC 

responses 

SC R [97] [103] [130] 

[63] [53] 

12 SC magnitude - the sum of the 

magnitudes of SC responses 

SC mag [97] [103] [130] 

[63] [53] 

13 SC duration - the sum of the 

duration of SC responses in 

seconds 

SC dur [97] [103] [63] 

[53] 

14 SC area - the sum of the area of 

SC responses in seconds. The 

area is defined using the 

triangular method (1/2*SC 

mag*SC dur) 

SC area [53] 

15 Mean ST ST mean [95] 

16 Median ST ST median / 

17 Standard deviation ST ST SD [95] 

18 Slope of the ST – slope of a 

straight line fitted through the 

data 

ST slope [97] 

19 Standard deviation of the 

magnitude of accelerometer 

signal – a measure for 

movement intensity 

ACC SD [190] 

 

6.2.2. Analysis methods 
 

Statistical tests were performed using the nonparametric Wilcoxon ranksum 

test for continuous variables. To assess differences of continuous variables 

across multiple demographic groups we used the Kruskal-Wallis test. The X2 

test was used for comparisons of categorical variables. Two-sided p-values of 
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<0.05 were considered statistically significant. All statistical tests requiring 

multiple comparisons were corrected based on the Benjamini-Hochberg 

procedure. 

Associations between longitudinal data (e.g. questionnaires presented 12 times 

per day, or continuous wearable data) were assessed using linear mixed effects 

models,  using the lme4 R package [194], with self-reported pleasure or 

continuous wearable feature data as fixed effects and the subjects as random 

effect. A gaussian family was used to model continuous variables (e.g. ACC 

SD), while a Poisson family was used to model stress responses. An ANOVA 

test was used to assess whether model parameters differed significantly from 

zero by comparing the change in model performance (Akaike’s information 

criterion52) when a fixed effect (e.g. pleasure) was excluded from the model. 

Correlations between stationary data (e.g. questionnaires with single 

responses) were calculated using the Spearman correlation coefficient (r). 

Location data were anonymized based on a random translation and rotation. 

Locations were clustered as unique stay locations, i.e. average location in more 

than 60 min within a radius of 1km and commuting. 

A machine learning model was developed to predict self-reported stress levels 

based on physiological responses. Only good quality physiological data (good 

QI in ≥80% of data points in the 5 minutes window) were used and features 

were normalized (z-normalization) per subject. Redundant features were 

removed based on correlations (max r = 0.7), resulting in a reduced feature 

set. Since self-reported stress responses (based on the maximum stress during 

the last hour, i.e. Q2 inFigure 5-3) were highly imbalanced (Figure 5-5), the 

three highest stress levels were merged, representing 14.3% of the data, so 

that three, instead of five, levels of stress (S1 = no stress, S2 = light stress, S3 

= high stress) were considered.  

Based on these data, associations between physiological features and self-

reported stress levels were investigated. For each stress level the average of 

the normalized features across the entire population was calculated. 

Additionally, the average during the night (N) (00-06 am) was included as 

baseline. For each feature, the differences between averages of different states 

were computed: N-S1, N-S2, N-S3, S1-S2, S2-S3 and S1-S3. A Wilcoxon-test 

was performed to investigate significant differences and corrected for multiple 

comparisons.  
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Additionally, machine learning models were calculated. Subjects reporting only 

one stress level (e.g. only ‘no stress’) were discarded. Since self-reported 

stress levels reflect the situation of the last hour, the stress value reported 

was registered for the 60 data points pertaining to that entire hour. We 

included only data for windows of at least 10 minutes of good quality and low 

physical activity (ACC SD ≤ 0.04, based on [190] and adapted according to 

subject’s self-reported activity levels). A false discovery rate supervised feature 

selection was applied on the training set, according to the Benjamini-Hochberg 

procedure (python scikit-learn, alpha=0.05). We trained Random Forest (RF) 

models with 100 trees (based on out-of-bag samples) and balanced class 

weight, in a leave-one-subject-out approach (python scikit-learn, 

RandomForestClassifier). This means a model was trained based on the data 

of all subjects but one and tested on the data of that subject. This procedure 

was repeated until all subjects were tested exactly once. RF models were 

chosen based on their relatively high performance in Chapter 3 and based on 

an initial comparison on current dataset in which RF models outperformed 

SVMs and LR. We used the F1-score, a weighted average between precision 

and recall, to evaluate the model’s performance on the left-out-subject. As 

comparison, we also calculated the F1-score for all subjects if the RF model 

classified all samples as the majority class, i.e. S1.  

We further evaluated subject’s physiological response, demographics and 

psychological information based on individual model performance. Subjects 

were categorized in groups of low performance, with F1-score < 0.33 

(performance as good as random), medium performance, with 0.33 < F1-score 

< 0.66 and high performance, with F1-score > 0.66. For each group we 

evaluated three characteristics: first, we evaluated the imbalance of the self-

reported stress levels, as a higher imbalance (e.g. mainly reporting S1), could 

lead to a higher classification performance. Second, we investigated the 

average dynamic range of each group, where the dynamic range represents the 

average difference per physiological feature of each group between low (S1) 

and high (S3) self-reported stress levels. A higher dynamic range could be 

beneficial for model performance, as the feature can better differentiate 

between low and high stress. Third, we investigated subject’s demographics 

and psychological information based on the intake questionnaire. A Wilcoxon 

ranksum test was performed to investigate significant differences across low 
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and high performance groups, we corrected for multiple comparisons. All data 

analyses were performed using Python (version 2.7). 

 

6.3. Results and discussion 
 

6.3.1. Associations between physiology, context and 

behavior 
 

We aim to use this comprehensive dataset to investigate correlations between 

physiology, context and behavior in order to improve our understanding of 

stress in daily life.  

Through EMAs we daily asked questions related to stress, activity, food and 

beverage consumption, sleep quality and gastro-intestinal symptoms. Based on 

self-reported wake-up and bed times, circadian rhythms are evident, with 

lower mean HR and higher mean SC and ST during the night as compared with 

during the day. The average values for the population are presented in Table 

6-2, with significant differences for all physiological signals (Wilcoxon ranksum 

p < 0.001).  

 

Table 6-2: Day and night time physiology. 

 Day (06am-23:59pm) Night (00:06am) 

Mean HR 74.6±12.7 63.0±10.2 

Mean SC 1.7±2.7 2.8±3.4 

Mean ST 31.4±2.09 33.1±2.6 

 

During weekdays (i.e. Thursday, Friday and Monday) consumption of 

caffeinated beverages or breakfast corresponded to higher stress levels 

(caffeine: 1.84±0.81, breakfast: 1.87±0.81, average: 1.77±0.83, Wilcoxon 

ranksum p < 0.001), while dinner or alcohol consumption, corresponded to 

lower stress levels (dinner: 1.51±0.71, alcohol: 1.30±0.64, average: 1.77±0.83, 

Wilcoxon ranksum p < 0.001). During the weekend (i.e. Saturday and Sunday), 

the consumption of alcohol was associated with lower stress levels (alcohol: 

1.34±0.66, average: 1.45±0.71, Wilcoxon ranksum p = 0.001), other reported 

consumptions did not show significant differences. A possible confounder here 
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is time of the day since breakfast is consumed most in the morning (82% of 

reports between 6-10h), and alcohol and dinner most in the evening (alcohol: 

61% of reports between 18-22h, dinner: 65% of reports between 18-22h), 

caffeine was reported equally throughout the day, but less during the evening 

(32% of reports between 6-10h, 37% between 10-14h, 23% between 14-18h 

and 7% between 18-22h).  

Further, linear mixed effects models were computed to investigate 

associations between repeated measures. A significant negative association 

between self-reported stress and self-reported pleasure (based on the SAM, 

see Figure 5-3) was observed, with higher levels of self-reported stress 

corresponding to decreasing levels of pleasure (Table 6-3). It can be speculated 

that rating of high self-reported stress is likely associated to the feeling of 

distress (negative stress) rather than eustress (positive stress). The standard 

deviation of the magnitude of acceleration (ACC SD), was associated with 

intensity of movement as ACC SD was higher during self-reported high-

intensity activities (low-intensity, i.e. lying, sitting and standing: 0.0175±0.0089, 

high-intensity, i.e. walking, running, biking, driving car and other activities: 

0.0189±0.0096; kruskal-wallis p < 0.001) and HR and SC features increased 

with ACC SD (Table 6-3) while ST decreased with ACC SD (Table 6-3). This 

illustrates the challenge of differentiating physiological changes caused by 

physical activity from those caused by stress. Therefore, to account for the 

cofounding effect of physical activity on physiology and stress, we excluded 

segments of high activity in the subsequent analysis.  

Finally, increasing activity levels (ACC SD), decreased the quality of 

physiological signals (Table 6-3), an issue inherent to the free-living nature of 

the study.  

A representative instance of five days of measurements of physiological data, 

acceleration, self-reports and smart-phone sensor data is shown in Figure 6-1. 
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Table 6-3: Effects of repeated measures. 

Results of the linear mixed effects models for repeated measures. For each model, the fixed effect coefficient is presented with standard error (B±SE) and inferential 

statistics on the significance of the effect, which were calculated by testing the change in model performance (based on Akaike’s information criterion) when a given 

predictor (e.g. pleasure) was excluded from the model using an ANOVA test. 

Formula B±SE 
Inferential statistics 

Test statistic and df p-value significance 

Stress ~ Pleasure + (1 | subject) -0.22±0.01 X²(2,3)=1353.5 <0.001 * 

SC mean ~ ACC SD + (1 | subject) 0.93±0.02 X²(3,4)=2448.6 <0.001 * 

HR mean ~ ACC SD + (1 | subject) 12.04±0.02 X²(3,4)=488051 <0.001 * 

ST mean ~ ACC SD + (1 | subject) -5.61±0.02 X²(3,4)=87378 <0.001 * 

SC Quality ~ ACC SD + (1 | subject) -0.23±0.0008 X²(3,4)=90652 <0.001 * 

ECG Quality ~ ACC SD + (1 | subject) -0.33±0.0009 X²(3,4)=115642 <0.001 * 
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Figure 6-1: Physiology and context timeline of one subject.  

Timeline over 5 days of measurements depicting daily profiles of one feature per physiological signal, activity and context data. For ECG, SC and ST signals, only good 

quality data (QI > 0.8) are shown. For visual inspection, these physiological signals as well as ACC SD were smoothed. Self-reported annotations (stress, pleasure, activity, 

consumptions and wake up/bed times) as well as location are indicated with vertical lines when available. Location data are indicated as unique stay locations or commuting 

locations. An online version of this figure can be downloaded from: https://drive.google.com/open?id=1-qhskpGn1pVefyFI4MUadTu6ubn7XC_e. 
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6.3.2. Associations between questionnaire-based lifestyle 

and health indicators 
 

In the past mostly non-digital, questionnaire-based information has been used 

to assess lifestyle and health. In our study we collected such information in the 

intake questionnaire. Here we investigate if findings based on these 

questionnaires confirm existing literature linking lifestyle to health. 

Data on lifestyle, general health and health indicators (validated psychological 

questionnaires, i.e. PSQI, DASS, PSS and RAND-36) was available for 932 

subjects. Associations between several aspects of the subject's lifestyle (sports, 

diet and habits) and health indicators (RAND-36, PSS and PSQI) are 

investigated. 

RAND-36 taps eight health concepts, ranging from physical functioning to 

emotional well-being and social functioning perceptions [163]. We found a 

positive correlation between energy levels and emotional wellbeing (r=0.66), 

with increased levels of both health indicators for subjects who more often 

practice sports (>5 weekly sports hours; emotional well-being: 78.0±14.0; 

energy: 69.2±16.3) compared to subjects who do not exercise often (0-1 

weekly sports hours; emotional well-being: 70.0±14.5; energy: 56.9±17.8; 

kruskal-wallis p = 0.004, Figure 6-2A). This positive relation between sports 

and emotional wellbeing has long been recognized and is here confirmed [195]. 

Furthermore, self-perceived stress (based on PSS) was negatively correlated 

(r = -0.75) with emotional wellbeing. PSS was higher for subjects who reported 

medication intake (15.2±6.4), compared to subjects with no medication 

(14.0±5.9, ranksums p = 0.013, Figure 6-2B).  
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A 

 

B 

 
Figure 6-2: Associations between questionnaire-based lifestyle and health indicators – emotional 

wellbeing.  

A) Correlation between emotional wellbeing and energy reinforced by practicing sports. B) Correlation 

between perceived stress and emotional well-being, reinforced by medication intake. 

 

Subjects who smoke tended to report higher levels of self-perceived stress 

(PSS), and tended to rate their lifestyle as being less healthy (RAND36 General 

Health: 35.0±7.1) than those who do not smoke and feel less stressed 

(RAND36 General Health: 68.4±16.3; kruskal-wallis p = 0.07, Figure 6-3A). 

These results are in line with earlier reports indicating that a one-unit increase 

in PSS results in a 5% increased odds of smoking [196], and that people who 

smoke rate their lifestyle as less healthy than people who do not [197]. 

We found no correlation between BMI and general health (r = -0.12); 

however, we observed decreasing general health values with increasing 

number of take-out food times through the week (No take-out: 70.4±15.9 vs 

≥5 times: 62.5±18.1; kruskal-wallis p = 0.008; Figure 6-3B).  
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A 

 

B 

 
Figure 6-3: Associations between questionnaire-based lifestyle and health indicators – general health.  

A) Negative correlation between perceived stress and general health, reinforced by smoking. B) No 

significant correlation between BMI and general health, but worse general health levels for people who 

eat more take-out food. 

 

There was no correlation between caffeinated beverages consumption and 

PSQI scores (PSQI scores higher than 5 indicate worse sleep quality; Figure 

6-4A), although literature indicates that people with lower sleep quality on 

average consume more caffeine [198]. Women tend to have inferior sleep 

quality than men (5.2±2.8 vs 4.7±2.4, respectively; ranksums p = 0.023), as is 

reported previously [199]. We also found a negative correlation between 

energy levels and PSQI, indicating that subjects with inferior sleep quality have 

lower energy (r=-0.47). There was no significant difference on PSQI with 

alcohol intake (ranksums p = 0.13; Figure 6-4B). Literature suggests that for 

non-dependent alcohol users (e.g. light/occasional, habitual weekend use), 

alcohol consumption just before bedtime can reduce sleep quality [200]. 

However, the impact of afternoon or early evening alcohol consumption on 

sleep quality is not yet well understood [200]. 
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A 

 

B 

 
Figure 6-4: Associations between questionnaire-based lifestyle and health indicators – PSQI. 

A) No significant correlation between PSQI and caffeine consumption, women showed worse sleep 

quality. B) Negative correlation between energy and PSQI, not linked to alcohol consumption. 

 

All together these findings represent a large-scale verification supporting 

previous work and confirm the value of data sampled with validated 

questionnaires: lifestyle and health indicators are strongly linked, underlining 

the need for behaviour change interventions that support preventive health. 

 

6.3.3. Associations between physiological signals and self-

reported stress levels 
 

We aim to use physiological patterns to develop models for 

psychophysiological stress detection. Therefore, we show here a landscape of 

the associations between physiological features and self-reported stress levels, 

in a heathy population. An overview of all physiological features calculated is 

presented in Table 6-1. Mean differences of independent physiological features 

(r < 0.7), normalized per subject, across self-reported daytime stress levels 

(S1, S2 and S3) and nighttime (00-06 am, N), included as a baseline rest 

condition, are shown in Figure 6-5. Population variations (averages and 95% 

CI) of all physiological features across self-reported stress levels and nighttime 

are presented in Table 6-4. 

For all the time instances, S1 to S3 and N, only periods in which the activity 

level was lower than the empirical threshold (ACC SD < 0.04) and good quality 

(Quality > 0.8) data were considered to exclude artifacts and physiology 
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variations due to physical activity. All features, except ECG LF and ECG HF 

were significantly different during nighttime (N) compared to during daytime 

self-reported stress levels (S1, S2, S3) (Figure 6-5). ECG LFHF, mean HR, SC 

area and ST SD were lower at night. The slope and median ST and SC phasic 

were higher at night. 

Additionally, mean HR was significantly lower in S1 as compared to S3. Mean 

HR has a strong negative correlation with RMSSD (mean HR, RMSSD: r = -

0.99), which is significantly higher in S1 as compared to S3 (see Table 6-4). 

These results confirm findings in laboratory studies reporting an increase in 

HR and decrease in HRV with increasing stress levels [201] [202] [203]. The 

frequency domain HRV features, i.e. the LF signal, HF signal and the ratio of 

LF and HF signals, did not change significantly during S1 as compared to S2 and 

S3. In literature, the HF component is thought to represent the cardiac 

parasympathetic nerve activity, which is active during rest conditions, and the 

LF component to represent the sympathetic system, which is active during 

stress conditions [204]. The LF and LFHF components are therefore expected 

to be higher during stress conditions and the HF component lower [204]. 

However, varying results have been reported in literature and in general 

RMSSD has been reported to be more reliable than LFHF [205] [204], in 

particular because of the mechanical effects of respiration on HF power and 

the influence of the prevailing heart rate on LF power [204]. Furthermore, SC 

area was lower in S1 compared to S3, as reported previously in [206]. SC 

phasic was lower in S1 compared to S2 and S3, as expected based on previous 

laboratory research [63] [207], indicating that higher stress levels are 

associated with higher power of the phasic SC component. Finally, the ST 

median and ST SD were higher in S1 compared to S2 and S3, which indicates 

that ST amplitude and variation decrease with stress [94]. For most of the 

features no significant differences were found between S2 and S3. This could 

either indicate that in general subjects have difficulties in making distinctions 

between light and high stress levels or that physiological features cannot 

distinguish between these levels at a population level. 

Overall, the physiological signals measured in daily life showed significant 

differences between night and different stress levels, in line with previous 

findings of laboratory studies. These results confirm on a large scale the 

potential of physiological signals for detecting stress in daily life. 
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Figure 6-5: Associations between physiological features and self-reported stress levels. 

Each row represents a physiological feature, columns represent the difference of normalized features 

during the night (N) (00-06 am) and stress levels (S1, S2 and S3). Colors indicate positive (blue) or 

negative (red) differences. For example, SC phasic is significantly higher blue) during the night as 

compared to during all reported stress levels, and significantly lower (red) during S1 as compared to S3. 

Symbols: *=p<0.05, **=p<0.005,***=p<0.0005.  
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Table 6-4: Physiological features across self-reported stress levels. Population mean and 95% 

confidence interval (CI) of all physiological features during the night (00-06 am) and different stress 

levels (S1, S2 and S3). 

 Night (mean, 

95% CI) 

S1 (mean, 

95% CI) 

S2 (mean, 

95% CI) 

S3 (mean, 

95% CI) 

ECG mean HR 62.1  
(48.5 - 78.2) 

72.4  
(55.7 - 88.8) 

73.0  
(56.0 - 90.7) 

74.7  
(56.3 - 94.8) 

ECG SDNN 77.1  
(39.9 - 132) 

71.2  
(39.4 - 117) 

72.0  
(38.6 - 120) 

71.5  
(38.7 - 118) 

ECG RMSSD 993 
(772 - 1257) 

853  
(684 - 1090) 

845  
(666 - 1078) 

824  
(638 - 1070) 

ECG HF (x10-3) 0.78  
(0.11 - 3.0) 

0.67  
(0.11 - 2.2) 

0.71 
(0.09 - 2.3) 

0.68  
(0.09 - 2.2) 

ECG LF (x10-3) 1.2  
(0.27 - 3.2) 

1.1  
(0.25 - 2.8) 

1.2  
(0.23 - 2.8) 

1.2  
(0.24 - 3.1) 

ECG LFHF 3.3  
(0.65 - 9.6) 

3.6  
(1.0 - 9.5) 

3.6  
(1.0 - 9.4) 

3.5  
(0.85 - 9.6) 

SC mean 1.9  
(0.018 - 8.0) 

1.4  
(0.05 - 6.5) 

1.4  
(0.044 - 6.0) 

1.6  
(0.027 - 7.9) 

SC phasic 12.4  
(0 - 78.6) 

8.4  
(0 - 57.3) 

8.7  
(0 - 62.2) 

9.6  
(0 - 75.0) 

SC RR (x10-2) 2.3  
(0 - 7.8) 

2.7  
(0.11 - 7.9) 

2.8  
(0.097 - 9.2) 

3.1  
(0.026-12.1) 

SC diff2 (x10-9) 20.5  
(0.0010 - 103) 

34.1  
(0.022 -257) 

33.3  
(0.011 -238) 

51.8  
(0.010 -293) 

SC R 5.8  
(0 - 34.5) 

14.3  
(0.31 - 51.2) 

13.8  
(0.098-60.4) 

15.8  
(0.044-74.4) 

SC mag 64.1  
(0 - 274) 

141  
(1.3 - 714) 

129  
(0.32 - 729) 

145  
(0.044-1000) 

SC dur 545 
(0 - 3315) 

1377  
(32.9 -4961) 

1362  
(10.2 -5522) 

1533  
(3.2 - 7068) 

SC area 0.57  
(0 - 2.9) 

2.7  
(0 - 14.8) 

2.6  
(0 - 18.1) 

2.8  
(0 - 20.0) 

ST mean 31.9  
(22.5 - 34.8) 

31.5  
(28.7 - 33.5) 

31.8  
(28.4 - 33.6) 

31.1  
(28.0 - 33.7) 

ST median 31.9  
(22.5 - 34.8) 

31.5  
(28.7 - 33.5) 

31.8  
(28.4 - 33.6) 

31.1  
(28.0 - 33.7) 

ST SD 0.13  
(0.01 - 0.39) 

0.14  
(0.03 - 0.28) 

0.13  
(0.01 - 0.29) 

0.14  
(0 - 0.41) 

ST slope (x10-3) 0.37  
(-0.49 - 3.1) 

0.38  
(-0.24 - 1.4) 

0.38  
(-0.34 - 1.8) 

0.41  
(-0.82 - 2.7) 
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6.3.4. Digital phenotypes in physiological stress detection 
 

We used a data-driven approach to uncover digital phenotypes of subjects’ 

daily life stress responses. We developed random forest models using a leave-

one-subject-out cross-validation to link physiological features to self-reported 

stress. We used the classifiers’ performances to identify and characterize 

digital phenotypes representing subjects with similar psychological baseline, 

physiological responses to stress and health indicators. 

Only good quality (Quality > 0.8) and low activity (ACC SD < 0.04) data were 

included for 568 subjects, with complete data (i.e. simultaneous continuous 

recording from wearables and EMAs). The remaining subjects had missing data 

in one of the two sensors or lacked mobile EMA data, and were not included 

in this analysis. The classification performance, as calculated using the average 

F1-score across all subjects, was 0.43 (95% CI: 0.05-0.86), which is slightly 

better than the F1-score of 0.36, obtained when all samples are classified as 

the majority class (i.e. S1). Subjects were categorized in groups of low 

performance (n=216), with F1-score < 0.33 (performance as good as random), 

medium performance (n=249), with 0.33 < F1-score < 0.66 and high 

performance (n=103), with F1-score > 0.66. We compared three aspects of 

each group: self-reported stress imbalance, physiological dynamic range and 

demographics and psychological background information.  

Subjects in the high performance group had on average a more imbalanced 

dataset (86% no stress, 12% light stress and 2% high stress), compared to the 

low performance group (26% no stress, 45% light stress and 29% high stress). 

This imbalance could provide an explanation for the difference between low 

and high performance. 

However, we also found that for 15 out of 18 features, the high performance 

group has a higher dynamic range (i.e. a larger average difference per 

physiological feature between low and high stress) as compared to the low 

performance group. In Appendix B we show that this effect is significantly 

different as compared to dividing subjects randomly in three groups. Examples 

for mean HR, phasic SC and median ST, are shown in Figure 6-6A, B and C 

respectively; a complete summary for all features is provided in Appendix C.  

To account for possible confounders we further investigated subjects' 

demographics and psychological information, based on the intake 

questionnaire, in the three groups. There was no difference in gender in all 
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three groups (X2 low-high performance: p=0.62, X2 low-medium 

performance: p=0.41, X² medium-high performance: p=0.92). On average 

subjects in the high performance group reported a healthier lifestyle and lower 

baseline depression, anxiety and stress levels than subjects in the low 

performance group (Figure 6-6D, E and F). They report to eat less take-out 

(low performance group: 1.1±1.3 times per week, high performance group: 

0.8±0.9 times per week, kruskal-wallis p=.04), to practice more sports (low 

performance group: 26% does not practice sports, high performance group: 

18% does not practice sports, X²=0.01), they have higher sleep quality based 

on the Pittsburgh Sleep Quality Index (PSQI scores higher than 5 indicate 

worse sleep quality; low performance group: 5.3±2.5, high performance group: 

4.1±2.3, kruskal-wallis p<.001) and score lower on depression scale 

(Depression Anxiety Stress Scale (DASS) – depression scale; low performance 

group: 3.5±3.4, high performance group: 1.4±2.1, kruskal-wallis p<.001), 

anxiety scale (DASS – anxiety scale; low performance group: 2.6±2.9, high 

performance group: 1.0±1.7, kruskal-wallis p<.001) and stress scales (DASS – 

stress scale; low performance group: 6.5±3.9, high performance group: 

3.1±3.2; Perceived Stress Scale (PSS); low performance group: 17.1±5.6, high 

performance group: 10.5±5.5, kruskal-wallis p<.001) as compared to subjects 

in the low performance group. Subjects in the high performance group are also 

significantly older (low performance group: 38.6±10.0, high performance 

group: 41.7±10.0, kruskal-wallis p=.007). 
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Figure 6-6: Comparison of subjects with low, medium and high classification performance.  

In A, B and C average features ECG mean HR, SC phasic and ST median are shown respectively for 

low (red), medium (yellow) and high performance (green) groups and compared with the entire 

population average in phases of no, light and high stress. In D, E, and F baseline psychological 

information of subjects in low, medium and high performance groups are compared. The high 

performance group has a larger dynamic range and a lower average score on the PSS, PSQI and DASS-

Depression scale than the low performance group. 

 

6.4. Conclusion 
 

To assess stress we collected a dataset of 1,002 subjects during five 

consecutive days, including a wide variety of subject background information, 

physiological data in ambulatory settings and smartphone-based self-reports 

and contextual information. We found significant differences between 

physiological features for ECG, SC and ST between different stress levels and 

nighttime baseline, confirming laboratory findings and indicating the potential 

of psychophysiological stress detection in daily life.  

Additionally, we compared digital phenotypes based on wearable and self-

reported data emerging from a data-driven analysis. We found that 

physiological responses to stress strongly differ among subjects, distinguishing 

groups with small and large dynamic ranges of the physiological features. These 

groups are also characterized by different psychological baselines and 

demographics, where the group with a more blunted physiological stress-

reactivity (small dynamic range) tend to report a less healthy lifestyle and 
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higher depression, anxiety and stress scores than the more responsive group 

(large dynamic range). These findings suggest that self-reported poor health 

and high depression scores are negatively correlated to physiological reactivity. 

Similar findings have been reported previously in laboratory research [208], 

but to date no studies have investigated this relationship in real-life ambulatory 

physiological recordings.  

These results provide a baseline for large-scale ambulatory population 

monitoring to uncover blunted physiological responses to stress and provide 

personalized disease interception. Furthermore, these findings have important 

implications related to stress modeling strategies, indicating that stress 

detection models should be tailored to phenotypes by including multi-sensor 

data sources, as subjects with different health statuses, display different 

physiological responses to stress. This study exemplifies how large-scale, data-

driven analytics can be used to derive digital phenotypes and generate new 

insights into stress detection and disease interception in general. Continuous 

stress detection will form the basis to enable highly personalized, just-in-time 

interventions to enable preventive health. 
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Chapter 7: The MIST as 

calibration towards 

personalized stress detection 
 

In previous chapters we have shown that the physiological stress response is person-

dependent. In the current chapter we introduce a methodology to use subject-specific 

information, based on the physiological response to the Montreal Imaging Stress Task 

(MIST), to improve ambulant classification performance. The methodology is 

developed by Elena Smets with promotor Chris Van Hoof. We validate, for the first 

time, the application of the MIST in an uncontrolled, daily-life environment. Next, we 

show that models developed based on a personalized normalization outperform a 

generalized normalization, confirming findings in earlier studies and highlighting the 

person-dependent nature of the physiological stress response. Finally, we compared 

three ambulant modeling approaches in which the subject-specific information based 

on the MIST was used in a different way. Although none of the approaches improved 

classification performance significantly, we showed a relation between model 

performance and feature importances found during the MIST and during daily-life 

settings, highlighting the potential of this methodology, in which subject-specific 

information based on the MIST is transferred for learning ambulant models. The 

content of this chapter is submitted to IEEE Transactions on Affective Computing. 

 

7.1. Problem statement 
 

In Chapter 3 and Chapter 6 we have shown that the physiological stress 

response is person dependent. In Chapter 3 we developed personalized 

models, which were trained and tested individually per subject. In Chapter 6 

we identified digital phenotypes characterized by self-reported poor health 

indicators and high depression, anxiety and stress scores that are associated 

to blunted physiological responses to stress. 

Several studies have already tried to improve physiological stress detection by 

including personalized techniques in the data processing. A first, commonly 
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used, approach, is to normalize the physiological signals based on the subject’s 

baseline recordings to remove subject-specific components [107, 53]. Second, 

Giakoumis et al. [136] suggested a subject-dependent feature calculation. An 

adaptive filtering is applied using “rest signatures”, which are developed based 

on the subject’s baseline physiology and represent a personalized deviation 

from standard rest templates. The proposed subject-dependent features reach 

a stress detection accuracy of 95%, which is a significant improvement as 

compared to the accuracy of 85 % using subject-independent features [136]. 

A third suggestion is to use personalized models, which are trained and tested 

individually per subject, as presented in Chapter 3. This technique improved 

classification accuracy when using Bayesian Networks.  

These methods have provided significant improvement for stress detection in 

laboratory settings. In free-living conditions however it is not trivial to identify 

the baseline needed for normalization or subject-dependent feature 

calculations. Furthermore, in free-living conditions an objective stress 

reference is lacking and the stressor causing the stress response is often 

unknown. Therefore, not only baseline physiology is missing, but also a 

signature stress response to a known stressor. 

To tackle these issues, we explore a methodology to identify this baseline and 

signature stress response through a standardized stress test on a smartphone 

application, which can be executed in uncontrolled settings, outside the 

laboratory. We investigate whether subject-specific information retrieved 

from such an application-based stress test can improve ambulatory stress 

detection. 

In the SWEET study, we collected data of 1,002 subjects of which 660 subjects 

executed the Montreal Imaging Stress Task (MIST, see Chapter 5.2.1 Data 

Collection), a social stress test where subjects solve arithmetic tasks under 

time pressure [159]. Additionally for these subjects, we collected five days of 

ambulatory physiological measurements, complemented with self-reported 

stress levels. 

To our knowledge, this is the first time such a stress test is conducted in free-

living environments, a fully uncontrolled setting. Therefore, the first goal was 

to compare participant performance metrics with reported metrics in 

laboratory studies to validate the stress test. Second, we compared 

classification performances of three approaches towards personalized models 

for ambulatory physiological stress detection: 
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a) A reference approach training and testing the models based on 

ambulatory data 

b) A truly personalized approach training, for each subject, a model 

on the MIST data and testing it on the subject’s ambulatory data 

c) A hybrid approach, clustering subjects based on the feature 

importance of their personal MIST model and training and testing 

ambulant models for each cluster separately. 

 

We hypothesize that a more personalized approach ((b) and (c)) will 

outperform the reference approach. 

 

7.2. Materials and Methods 
 

7.2.1. Data collection 
 

The analysis is based on data collected in the SWEET study. A detailed 

explanation of the protocol can be found in Chapter 5.2.1. Data Collection. In 

short, we collected five days of physiological data, combined with self-reported 

stress levels. On the first day of the experiment, subjects had to complete the 

MIST: an application-based stress test including a five minute rest period 

(relaxing music and images), a five minute control period (simple mathematic 

tasks, no time restrictions or social control), five minute stress task 

(mathematic tasks with time restrictions and social control) and again five 

minute rest period (relaxing music and images). 

The MIST was initially developed by Dedovic et al. [159] to induce moderate 

stress levels in a functional imaging setting to study the effects of stress on 

physiology and brain activation. It is derived from the Trier Social Stress Test, 

and comprises multiple social threat elements included in a program with 

computerized arithmetic challenges. In current study the MIST was chosen 

because it is a validated computerized stress test, which allows us to use it in 

an ambulatory environment. 

The MIST was built in such a way that during the stress task the subject could 

not give three successive correct answers, regardless of his or her ability to 

solve mathematic tasks. When the subject gave two correct answers, the time 

to give the next answer was reduced and/or the difficulty of the arithmetic was 
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increased [159]. When the subject gave an incorrect answer, the screen 

displayed ‘wrong’ (Figure 7-1b), when the time was up the screen displayed 

‘time’s up’ (Figure 7-1c). Additionally, a social component was added: subjects 

were told they could increase their chances to win a travel voucher or dinner 

if they scored high on the test. On the right side of the screen, subjects saw 

their average score (~50%) as compared to the fake average score of the other 

participants (~90%) (Figure 7-1a). 

 

a) Social component 

 

b) Feedback ‘wrong’ 

 

c) Feedback ‘time’ 

 
Figure 7-1: MIST stress task. Three stress components were introduced: a) a social component, b) 

feedback ‘wrong’ and c) feedback ‘time’s up’. 

In total, 1,002 subjects participated on the SWEET study of which 342 subjects 

did not start the MIST. Additionally, 306 subjects did not fully complete the 

MIST, e.g. they only completed the rest and control part, but not the stress. 

These subjects were excluded from the analysis, leaving 354 subjectfs with a 

fully completed MIST.  

For the physiological signals quality indicators and features were calculated as 

presented in Chapter 5.2.2. Quality indicators and Chapter 6.2.1. Feature 

computation. For current analysis features were calculated in a time window of 

1 minute without overlap. Only high quality features (QI > 0.8) were retained 

for analysis. Subjects with less than two high quality data points, each 

representing one minute of data, in each five minute segment of the MIST (i.e. 

rest, control, stress and rest) were removed for analysis, resulting in 199 

subjects that were included with high quality data and a fully completed MIST. 
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The remainder of the analysis is subdivided into two parts: MIST and ambulant 

data analysis.  

For the MIST analysis, first, we investigated subject performance metrics, i.e. 

the number of correct responses on MIST and time to respond in control and 

stress tasks. The goal was to validate the stressful effect of the tasks, in 

uncontrolled conditions (i.e. outside the laboratory). Second, we used Random 

Forests (RFs) to train and test two physiological models for the MIST: a model 

based on personalized normalization and a model based on generalized 

normalization. The goal was to verify if a personalized normalization increases 

performance as is suggested in laboratory research [107, 53]. Third, we 

trained, for each subject, a RF model based on the MIST data and clustered 

subjects with similar feature importance. We hypothesize that these models 

and clusters can be used to improve the performance of the ambulatory stress 

detection. 

For the ambulant analysis, first, we computed a reference classification 

performance by training and testing RF models based on the ambulatory data. 

Second, we compared the classification performance of the reference model 

with the classification performance when applying the models trained on the 

MIST data, on the ambulant data. Third, we subdivided the subjects in the same 

clusters as identified based on the subject’s MIST model’s feature importance. 

For each cluster the ambulant data was then used to train and test RF models 

for physiological stress detection. We compared the classification 

performance of the reference model with the classification performance when 

training and testing models per cluster. 

A schematic overview of the analysis is shown in Figure 7-2. 
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Figure 7-2: Schematic of analysis.  

Four Random Forest (RF) models based on the MIST were developed (a-c, e) and one clustering based on subject’s model feature importance (d). A reference RF model 

was developed based on the ambulant data (f), subject-specific MIST models were applied on the ambulant data (g) and subjects were subdivided in clusters based on 

(d) and RF models were developed per cluster (i). Three locations of Information transfer from MIST to ambulant data are indicated with red arrows. Outcomes are the 

comparison of model performance (accuracy and Cohen-Kappa score) between models (a), (b) and (e) and between (f), (g) and (i). 
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7.2.2. MIST analysis 

MIST validation in free-living environments 
 

The goal was to validate the use of the MIST in fully uncontrolled, free-living 

environments. Therefore, we compared performance metrics of the MIST in 

control and stress test, where we expect a reduced performance during the 

stress test as a consequence of the social threat components and time 

pressure [159]. 

Two performance metrics were measured during the control and stress task 

of the MIST: time to respond to the question and number of correct answers 

versus number of incorrect or out of time (only for stress task) answers. We 

performed a Wilcoxon ranksum test, with significance level at 0.05, to 

compare the performance metrics in control and stress task. We hypothesize 

the time to answer the question is reduced in the stress task and the number 

of incorrect answers is increased.  

 

Model development 
 

We considered a binary classification model in which the control and stress 

phase of the MIST were combined to represent activation of the ANS, here 

denoted as stress, the two rest phases at the start and end of the MIST 

represent rest.  

Quality indicators and features were calculated as presented in Chapter 5.2.2. 

Quality indicators and Chapter 6.2.1. Feature computation, in a time window of 

one minute without overlap. Only high quality features (QI > 0.8) were 

retained for analysis.  

Two normalization techniques were compared: personalized vs. generalized 

normalization. In the personalized approach, for each subject, the mean and 

standard deviation (SD) for each feature during the entire MIST were used to 

normalize the data (z-normalization). For the generalized approach, for each 

feature, the mean and SD of the entire MIST dataset, including all subjects, 

were used to normalize the data. Since the personalized approach removes 

subject-specific components (e.g. baseline HR), we hypothesize the 

classification performance of the models based on personalized normalization 

will outperform the performance based on the generalized normalization. 
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A feature reduction step was introduced on the entire dataset, removing 

correlated features (r=0.7). Then, the data was split in training and test set, 

using a five-fold cross-validation on the subjects. This means that 80% of 

subjects was considered as training and 20% as test set. This approach was 

repeated five times, so that each subject was exactly once in the test set. A 

false discovery rate supervised feature selection was applied on the training 

set, according to the Benjamini-Hochberg procedure (python scikit-learn, 

alpha=0.05). RF models of 100 trees, based on out-of-bag error, and a balanced 

class weight were trained (python scikit-learn, RandomForestClassifier). 

As classification performance metrics the accuracy and Cohen-Kappa (CK) 

score were computed. The accuracy measures the percentage of correctly 

classified samples. The CK score helps in the interpretation of the prediction 

performance of a classifier when the dataset is not perfectly balanced, it is a 

measure of the relative improvement of the model as compared to a random 

classification [209].  

 

Clustering 
 

Next to the five-fold cross-validation, also personalized models were 

developed and subjects were clustered based on their feature importances 

(Figure 7-2, models (c) and (d)).  

For the personalized model development the same approach was used as 

described above, using personalized normalized features. However, instead of 

splitting the subjects based on a five-fold cross-validation, RF models were 

trained based on the data of each subject separately, resulting in 199 models, 

one for each subject.  

For each model the feature importances were computed (python scikit-learn, 

RandomForestClassifier. feature_importances_, higher values represent 

higher importance), resulting in a matrix with subjects in the rows and feature 

importances for all features in the columns. An example for some features of 

two subjects is shown in Table 7-1. The total sum of all feature importances 

per subject adds up to one. 
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Table 7-1: Feature importance matrix. 

 Mean 

SC 

SC 

RR 

Mean 

ST 

ST 

slope 

... Mean 

HR 

ECG 

RMSSD 

User0091 0.10 0.01 0.10 0.005 ... 0.14 0.21 

User0092 0.09 0.06 0.004 0.002 ... 0.23 0.20 

 

Based on this matrix an unsupervised KMeans clustering was used to cluster 

groups of subjects with similar feature importances, indicating that similar 

features are responsive to stress. The number of clusters ranged between 2-

7, the silhouette score was used to identify the most optimal number of 

clusters. The silhouette score is calculated as the mean inter-cluster and mean 

intra-cluster distance for each sample [118]. The best value is 1 and the worst 

value is -1. Values near zero indicate overlapping clusters. Negative values 

indicate that a sample has been assigned to the wrong cluster, as a different 

cluster is more similar [118]. 

To evaluate if the clustering approach could improve model performance, we 

computed RF models using a five-fold subject cross-validation for each cluster. 

We compared classification performances (accuracy and CK) between clusters 

and with the average performance of the models developed on the entire MIST 

dataset (Figure 7-2 (a) and (b)). 

 

7.2.3. Ambulant analysis 
 

The pre-processing of the data for the ambulant analysis is similar to the MIST. 

Signal quality indicators and features were computed according to Chapter 

5.2.2. Quality indicators and Chapter 6.2.1. Feature computation, in a time window 

of one minute without overlap. Only high quality features (QI > 0.8) and low 

activity data (ACC SD < 0.04) were retained for analysis.  

As stress reference the self-reported EMAs were used, in which subjects 

indicated on a 5-point Likert scale their stress levels, ranging from 1 ‘not at all 

stressed’ to 5 ‘extremely stressed’. A binary classification problem was 

considered of rest (including stress level 1) versus stress (including stress levels 

2-5).  
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The data were normalized based on the subject mean and SD of the MIST 

features, introducing a personalized normalization based on the MIST. 

Correlated features were removed (r=0.7). 

 

Three model performances (i.e. accuracy and CK) were compared: a reference 

model (Figure 7-2 (f)), a MIST-based personalized model (Figure 7-2 (g)) and a 

hybrid model based on the MIST clustering (Figure 7-2 (i)). 

For the reference model a five-fold subject cross-validation was used. This 

model is the reference model since a classic approach is used where the model 

is trained and tested solely based on the ambulant data. A false discovery rate 

supervised feature selection was applied on the training set, according to the 

Benjamini-Hochberg procedure (python scikit-learn, alpha=0.05). RF models 

of 100 trees, defined based on out-of-bag error, and a balanced class weight 

were trained (python scikit-learn, RandomForestClassifier). Model 

performances were evaluated based on the average accuracy and CK of the 

five-fold cross-validation.  

For the MIST-based personalized model, the models that were trained for each 

subject based on the MIST (Figure 7-2 (c)) were tested on the subject’s 

ambulant data. Model performances were evaluated on the ambulant data 

based on the average accuracy and CK of all subjects. 

For the hybrid approach, first, subjects were subdivided in clusters developed 

based on the MIST feature importance (Figure 7-2 (d)). For each cluster 

models were developed based on a five-fold cross-validation, similar to the 

reference model. Model performances were evaluated based on the average 

accuracy and CK of each cluster separately and of all clusters combined. 

 

7.3. Results 
 

First, we aimed to validate the MIST as a stress test in an uncontrolled, free-

living environment. The response times in the stress condition were faster as 

compared to the control condition (mean stress = 3.77±2.54s, mean control 

= 6.64±7.50s; Wilcoxon ranksum p < 0.001; Figure 7-3). 
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Figure 7-3: Boxplots of the response times to the MIST arithmetic tasks in control and stress condition. 

Additionally, the percentage of incorrect answers was higher in the stress 

condition as compared to the control condition (Table 7-2). 

 

Table 7-2: Comparison of percentage of correct, incorrect and out of time answers in control and 

stress condition. 

 Control Stress 

Percentage correct 93.5 58.3 

Percentage wrong 6.5 14.7 

Percentage out of time / 27.0 

 

Second, we developed RF models for a binary classification, i.e. rest versus 

control and stress combined. We compared a personalized normalization 

approach versus a generalized normalization. In Figure 7-4 an example feature 

(mean SC) is shown when applying no normalization (a), a generalized 

normalization (b) and a personalized normalization (c). It can be seen that 

when applying no or a generalized normalization, many outliers are present, 

due to the subject-specific baseline physiological profiles, i.e. some subjects 

naturally sweat more than others. Differences between rest and stress 

become more pronounced when applying a personalized normalization as 

compared to a generalized normalization (wilcoxon ranksum mean SC rest vs. 

stress; generalized: p = 0.49, personalized: p = 0.002). 
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a) No normalization 

 

b) Generalized normalization 

 
c) Personalized normalization 

 
Figure 7-4: Comparison of mean SC in MIST rest, control and stress conditions when applying a) no 

normalization, b) a generalized normalization and c) a personalized normalization. 

As a result, the average classification performance of the RF models, validated 

through a five-fold cross-validation, is better for models based on a 

personalized normalization approach as compared to a generalized 

normalization (Table 7-3). Therefore, for the following analyses a personalized 

normalization approach was used. 

 

Table 7-3: Classification performance of RF models based on a generalized and a personalized 

normalization 

 Accuracy Cohen-Kappa 

Generalized normalization 0.58 0.16 

Personalized normalization 0.70 0.40 

 

Third, we computed personalized models, which were trained on the entire 

MIST of each subject separately, resulting in 199 models, one for each subject. 

The feature importances of these models were then investigated. In Figure 7-5 

the boxplots of the feature importances for all subject-specific models are 

shown. It can be seen that on average mean SC has the highest importance. 

Further, the large standard deviations (whiskers of the boxplots in Figure 7-5), 
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indicate that each feature has a different importance depending on the subject. 

This implies that per subject different features are responsive to stress.  

 
Figure 7-5: Boxplots of the feature importances of the subject-specific models. 

Fourth, we computed clusters based on the feature importances of the 

subject-specific models. The goal was to cluster subjects for who similar 

features are important, implying they have a similar response to stress. We 

found an optimum of 2 clusters, with a silhouette score of 0.18. In Figure 7-6 

the separation of the two clusters are visualized based on the first two 

principal components of the feature importances matrix. The centroids of each 

feature importance in the two clusters (A and B) are represented in a heatmap 

in Figure 7-7. Cluster A represents 152 subjects, cluster B represents 47 

subjects. It can be seen that for cluster A mainly SC related features are 

important (i.e. Mean SC and SC diff2), for cluster B mainly ECG related 

features are important (i.e. Mean HR and ECG RMSSD). 

 
Figure 7-6: Visualization of the feature importance clusters based on the first and second principal 

components (PC).  

Cluster A (red) and cluster B (green). 
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Figure 7-7: Heatmap of the feature importances in cluster A and B. 

Black squares indicate the most important features per cluster. 

 

To investigate if the split in clusters improves classification performance, we 

trained and tested RF models using a five-fold cross-validation in each cluster 

separately and compared the average performance with that of the models 

developed on the entire dataset using personalized normalization (see Table 

7-3). In Table 7-4 it can be seen that the average performance of cluster A and 

B, weighted with the number of subjects in each cluster, does not differ much 

from the average performance when training and testing on the entire MIST 

dataset (accuracy = 0.7, CK = 0.4, as presented in Table 7-3). However, a 

higher performance is observed for cluster B as compared to cluster A. 
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Table 7-4: Classification performance of RF models trained and tested in each cluster separately. 

 Accuracy Cohen-Kappa 

Cluster A (SC-related features) (n=152) 0.66 0.33 

Cluster B (ECG-related features) (n=47) 0.80 0.60 

Weighted average (n=199) 0.69 0.38 

 

Finally, the aim of this study was to use the MIST to increase personalization 

on the ambulant stress detection. Therefore, the classification performances 

of three models on the ambulant data were compared: a reference model, using 

a five-fold cross-validation to train and test a model only using the ambulant 

data, a personalized model, using the subject-specific model that was trained on 

the MIST and testing it on the ambulant data of that subject, and a hybrid model 

in which first subjects were split according to the clusters that were developed 

based on the subject’s MIST feature importances, and second, for each cluster, 

RF models were trained and tested only using the ambulant data.  

The results are presented in Table 7-5. It can be seen that the personalized 

model has a lower performance as compared to the reference model. The 

weighted average performance of the hybrid model does not differ from the 

reference model. However, as for the MIST, it can be seen that the 

classification performance of the models trained and tested in cluster B is on 

average higher than the performance of the models trained and tested in 

cluster A. 

 

Table 7-5: Classification performance of RF models on ambulant data. 

 Accuracy Cohen-Kappa 

Reference model 0.54 0.07 

Personalized model 0.50 0.01 

Hybrid model weighted average 0.54 0.07 

- Cluster A (n=152) 0.53 0.06 

- Cluster B (n=47) 0.55 0.11 
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7.4. Discussion 
 

We investigated whether subject-specific information retrieved from an 

application-based stress test, which was executed in an uncontrolled, daily-life 

environment, could improve ambulatory stress detection.  

Since, to our knowledge, this is the first time the MIST, or any related stress 

test, has been conducted in a daily-life environment, we first validated the test 

based on subjects’ performance metrics. We showed a significant reduction in 

response time for the stress phase as compared to the control phase. 

Additionally, we reported an average of 58.3% correct answers in the stress 

phase as compared to 93.5% in the control phase. These findings suggest the 

stress test did have a significant stressful effect on the subjects. We compared 

these results with findings in laboratory studies. The study of Dedovic et al. 

[159] in which the MIST was presented for the first time, reported an average 

rate of incorrect answers during the stress phase of 20-45%, which is even 

lower than the rate reported in our study. In later studies failure rates of 

around 55% during the stress phase have been reported [210], which are 

similar to our findings. We can thus conclude that the stressful effect is similar 

in controlled and uncontrolled conditions. However, we did have to remove 

a significant percentage of subjects (65%) from the analysis due to no (34%) or 

incomplete (31%) execution of the MIST, whereas in a controlled, laboratory 

setting the experimenter can ensure a correct execution of the test. This is a 

pitfall of a stress test executed in uncontrolled, daily-life settings. In future 

studies additional incentives could be used to motivate the subject to execute 

the stress test. Alternatively, the application could be developed in such a way 

that it can only be used for ambulant stress detection after executing the stress 

test, forcing the subject to execute the stress test before receiving feedback. 

Second, we confirmed the findings of laboratory studies [107, 53], stating that 

a personalized normalization improves classification performance. We showed 

that stress detection accuracy improved from 0.58 to 0.7 and CK improved 

from 0.16 to 0.40 when using a personalized normalization as opposed to a 

generalized normalization. Therefore we suggest future research focuses on 

stress detection models, including a personalized normalization. However, an 

important risk of this approach is that, per subject, not only the signal of 

interest is increased, but also the noise levels. For personalized normalization, 

we used the subject’s mean and SD to standardize each feature. If the signal 
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was very noisy, the SD will mainly reflect noise instead of the signal of interest. 

A personalized normalization will in this case increase the importance of the 

noise component. Therefore, it is highly important to first apply quality 

indicators or a noise filtering technique, before applying a personalized 

normalization.  

A limitation of the MIST modeling is the way we split rest and stress states. In 

our analysis we used a binary classification, i.e. rest versus control and stress 

combined. It could be argued that a three-class classification of rest versus 

control versus stress would be more representative. Alternatively the control 

task could also be combined with the rest tasks instead of the stress task. We 

chose to combine the control task with the stress task, since they both 

represent an activation of the ANS. Future research should investigate the 

results based on the other two approaches. 

Third, we trained physiological stress detection models based on the MIST 

data for each subject separately and clustered subjects in two groups according 

to their feature importances. We found cluster A (152 subjects) for which 

mainly SC-related features were important and cluster B (47 subjects) for 

which mainly ECG-related features were important. We trained and tested 

stress detection models for each cluster and found that the average 

performance of cluster B outperformed cluster A. This could imply that ECG-

related features are more suitable for stress detection, or that these subjects 

display a more pronounced stress response. Few studies have compared 

classification performances of different sensing modalities. Zhai and Barreto 

[97] compared models based on SC, BVP, ST and pupil dilation in a laboratory 

setting. They found pupil dilation the most important feature and did not see 

large differences between SC, BVP or ST related features. Sun et al. [105] 

compared ECG and SC sensing modalities for activity-aware stress detection 

and found that ECG-related features were more susceptible to physical activity 

and decreased classification performance [105]. Finally, Mozos et al. [122] 

showed in a laboratory experiment that in 16% of AdaBoost classifiers, SC is 

one the five most important features, as compared to 9% for BVP-related 

features. These studies report diverse findings and more research towards 

physiological sensing priorities is needed. 

Further, we compared the weighted average performance of these two 

clusters with the performance of the models developed based on the entire 

data pool (i.e. without clustering). We expected that, by training and testing 
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models based on more similar data (i.e. clusters with similar feature 

importances), the classification performance would improve. However, the 

average performance did not change. A possible explanation could be that the 

clusters were not well-defined, as the silhouette score is 0.18, indicating only 

a moderate separation. This can also be seen in Figure 7-6 in which there are 

many overlapping points between cluster A (green) and cluster B (red). In this 

case, subjects in the same cluster, do not necessarily all have more similar 

feature importances and the training of physiological stress detection models 

is not improved. An alternative could be to use a different clustering technique 

such as PAM (partitioning around medoids), Fuzzy c-means, etc. [211], as 

opposed to the K-means clustering technique, which tends to have a high 

susceptibility for local optima [211].  

Finally, we used the MIST to identify person-specific information to improve 

classification performance for ambulant stress detection models. We used the 

subject’s mean and SD per feature of the MIST to normalize the ambulant data. 

Next, we compared the performance of a reference model with the 

performances of a personalized and hybrid model. We found the lowest 

performance for the personalized model. This could indicate that the 

magnitude of the stress response during a standardized stress test is not equal 

to daily-life settings. In that case the model for stress detection based on the 

MIST will over- or underestimate the physiological stress response during 

daily-life settings. Further, we found the weighted average performance of the 

hybrid model did not increase as compared to the reference model. However, 

as for the MIST, cluster B, with high MIST feature importances for ECG-related 

features, outperformed cluster A, with high MIST feature importances for SC-

related features (especially the CK metric almost doubled). These findings 

imply that subjects with high classification performance during a short stress 

test, also have higher classification performance in daily-life settings. These 

findings could also imply that feature importance during a stress test and during 

daily-life settings are related, meaning that for the same subject, similar 

features are responsive to stress during the MIST and in ambulatory settings. 

So, although the results based on the fully personalized approach have shown 

that the magnitude of the stress response during the MIST does not correlate 

with daily-life settings, the hybrid approach has shown that in terms of feature 

importances, the MIST could still provide valuable information towards 

personalized physiological stress detection in daily-life settings. Concretely, 
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the results suggest the MIST could be used as ‘calibration’ to a) identify the 

subject’s mean and SD for personalized normalization and b) to identify the 

cluster to which the subject belongs for model training and testing. Depending 

on the cluster to which a subject belongs we could already make predictions 

on whether the model will perform good or bad. Additional research is needed 

to leverage this information towards improving model performance.  

In general, we found relatively low classification performances for all three 

models in the ambulant analysis. Several modifications in the analysis pipeline 

should be investigated to improve model performance. First, other modeling 

techniques besides RF should be investigated, such as ANNs which have shown 

to be powerful classification techniques for stress detection [63]. Second, in 

current analysis, per stress level annotation, we labelled the entire previous 

hour with the same self-reported stress level. The reason is that the question 

we asked in the application was ‘What was your maximum stress level during 

the last hour?’. However, during this hour still many variations in physiology 

are possible, we should therefore investigate a technique to identify the point 

of interest in the previous hour, or for example take the mean of the 

physiological signals during that hour.  

 

7.5. Conclusion 
 

Our study investigated a methodology in which an application-based stress test 

(i.e. MIST) was used as ‘calibration’ towards person-specific model 

development in daily-life settings. We compared a reference, personalized and 

hybrid approach to use personal information retrieved from the MIST to 

improve ambulant classification performance. Although none of the 

approaches improved the classification performance, we showed a relation 

between model performance and feature importances found during the MIST 

and during daily-life settings, highlighting the potential of this methodology, in 

which person-specific information based on the MIST is transferred for 

learning ambulant models. Further research should refine the clusters which 

are currently developed solely based on the MIST physiology, by adding 

information on demographics and context, by including the subject’s digital 

phenotype. 
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Chapter 8: Conclusions and 

future prospects 
 

In the 21st century, stress and mental health have become major concerns 

worldwide. Yet, a continuous, quantitative measurement technique, allowing 

just-in-time interventions to reduce stress, is lacking. 

Therefore, research has focused on exploiting the sympathetic nervous 

system’s (SNS) fight-or-flight response, by investigating physiological signals for 

monitoring stress. These have shown to be reliable indicators of stress in well-

controlled laboratory conditions, but large-scale ambulatory validation is 

missing. 

The goal of this research was to identify physiological sensing priorities and 

machine learning techniques for physiological stress detection and next to 

deploy these on a large population in real-life, ambulatory conditions.  

 

Three main objectives have been identified: 

 

a) The identification of the most suitable markers for physiological stress 

detection in a controlled laboratory environment on healthy subjects, to 

translate this knowledge to the ambulant environment. 

b) The differentiation between healthy subjects and patients based 

on their physiological stress response, towards disease prevention and 

interception. 

c) The large-scale investigation of the physiological stress response in 

ambulatory conditions, including demographics and context information 

towards digital phenotypes for personalized and continuous stress detection. 

 

Below, we discuss the conclusion for each objective separately. 

 

8.1. Markers for physiological stress detection 
 

We investigated both physiological sensing priorities and machine learning 

techniques for stress detection. 
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8.1.1. Physiological sensing priorities 
 

In the literature study of Chapter 2, we identified several physiological signals 

that are responsive to stress, including HR, HRV, SC, EMG, BP, ST and pupil 

dilation. However, findings in literature related to sensing priorities are not 

consistent. The main issue is the difference in experimental design, sensor 

quality and analysis methods among different studies. 

In Chapter 3, we developed generalized and personalized physiological stress 

detection models in controlled laboratory conditions on healthy subjects. For 

the generalized models, SC and HR related features have shown to be more 

important than ST and respiration related features. This was confirmed for the 

personalized models. However, further investigation of the personalized 

models showed that feature importance is subject-dependent and one should 

be careful drawing general conclusions related to sensing priorities. For the 

personalized models, there were only 5 features (2 HRV and 3 respiration 

related features) that were never selected, meaning that for none of the 

subjects these features were important. The other 17 remaining features, 

including ST and respiration related features, were therefore important for at 

least one subject, meaning sensing priorities are subject-dependent, and model 

performance of some subjects could drop if for example ST related features 

were to be removed from the dataset. So, overall SC and HR related features 

are most important, but for some subjects also ST and respiration related 

features should be considered. 

In Chapter 4, we developed a model to classify healthy subjects and patients 

based on their physiological stress response to a stress task. We found an 

equally high classification performance based on the response related features, 

including all physiological signals, and the SC related features only. This 

confirms again the high importance of the SC signal. Surprisingly, when we 

investigated the feature importances of the response model further, we 

noticed that four out of five most important features were ST related, 

indicating the relevance of ST features, next to SC. 

In Chapter 6, we showed that, in daily-life conditions, all three physiological 

signals, HR(V), SC and ST, show significant differences between self-reported 

stress levels. These results confirm on a large scale the potential of all three 

signals for physiological stress detection in daily life. 
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In Chapter 7, we identified clusters of feature importances based on 

personalized models for stress detection during the MIST. We found two 

clusters, one with highest importances for HR(V) related features and one 

with highest importances for SC related features. We found the highest 

classification performances, both during MIST and in ambulant data, for the 

cluster with SC related features. 

 

Overall, these findings indicate that SC would be the most important 

physiological signal for physiological stress detection, followed by HR(V), and 

lastly ST. However, further investigation of personalized models, both in 

controlled and ambulatory conditions, has shown that physiological sensing 

priorities differ across subjects. Therefore, in future research, a multi-

sensor approach is suggested.   

Above findings have important implications for hardware development. 

Although all three investigated physiological signals, SC, HR(V) and ST, are 

readily available in research focused wearables such as Empatica E4 and the 

imec Chillband+, these are not (yet) incorporated in widespread commercial 

wearables such as the Fitbit, Apple watch or Samsung Gear, which only feature 

HR. Although our research clearly points to the high importance of SC signals, 

further validation towards a multi-sensor approach is needed to convince large 

manufacturers to incorporate all three signals in their wearables. To this end, 

a first step is to investigate model performances for ambulant stress detection 

(based on the SWEET study) for each physiological signal separately to 

calculate the relative gain of using the combination of all signals as opposed to 

only using HR (which is currently available in most wearables). Additionally, 

current research only investigated HR(V), SC and ST since these signals are 

most easy to measure in ambulant conditions, we suggest to focus additional 

research on adding other physiological signals such as EMG and BP, since these 

have proven to be relevant markers for physiological stress detection in 

laboratory settings. Recent advances in ambulant BP measurement based on 

the combination of ECG and photoplethysmography (PPG) measurements 

through pulse transit time analysis, should allow ubiquitous BP measurements 

in the future [212]. Finally, to be truly unobtrusive and widespread adopted, 

physiological sensing should move beyond wearables, towards non-contact 

sensing. Recent research has shown the potential of contactless capacitively-
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coupled ECG, which allows measurement of HR and HRV through clothing by 

incorporating the sensors in e.g. mattresses, car seats or office chairs [213].  

 

8.1.2. Machine learning techniques 
 

In the literature study of Chapter 2, we discussed the most widely used 

machine learning techniques for physiological stress detection, including 

logistic regression (LR), support vector machines (SVMs), decision trees 

(DTs), random forests (RFs), artificial neural networks (ANNs) and Bayesian 

networks (BNs). Findings in literature related to machine learning technique 

priorities are not consistent, due to differences in experimental design, sensor 

quality and analysis methods among different studies. 

In Chapter 3, we compared the classification performance of six techniques, 

including LR, SVM, DT, RF, static BN, and dynamic BN. We compared 

performances of generalized and personalized models for each of these six 

techniques. We found that for generalized models SVMs perform best and for 

personalized models dynamic BNs perform best. We concluded that the 

choice of model depends on the context of the application and whether insight 

in the model structure is needed. 

In Chapter 4, we used a LR model to differentiate healthy subjects and patients 

based on their physiological response to a stress task. This model allowed 

insights in the feature importances and physiological sensing priorities. 

In Chapter 6 and 7 we used RF models which gave the best result for 

physiological stress detection in an ambulant environment. We identified 

digital phenotypes which correspond to different model performances. 

 

Overall, our research results have not identified one dominant machine 

learning technique for physiological stress detection. In our view, the 

selection of a technique is strongly dependent on the context of the 

application. For example, when the goal is develop a model to gain insight 

into a subject’s stress response, white-box models such as LR and BNs are 

preferred. However, when the goal is to develop a fast algorithm for real-time 

stress detection with high accuracy, black-box models such as SVM could be a 

better choice. 

The results of Chapter 3, 6 and 7 do consistently show that the physiological 

stress response tends to be subject-dependent. We have shown that 
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personalized models can outperform generalized models and that digital 

phenotypes correspond to different model performances. We have identified 

clusters of subjects with similar feature importances, which show different 

model performances both during MIST and in ambulant data. These findings 

call for a more personalized approach in stress detection modeling 

techniques, which to date have mainly focused on generalized methods. A 

possible approach could be to use population models, such as mixed effects 

models, which are extensions of linear regression models for data that are 

collected and summarized in groups [214], in this case digital phenotypes. We 

also suggest to investigate ANNs, including physiological, demographical and 

contextual information, as ANNs can capture more complex relationships 

among these variables. 

Finally, we suggest further research towards temporal models. In Chapter 3, 

we have demonstrated the potential of dynamic BNs for stress detection. 

Previous research has confirmed the advantages of temporal models in the 

context of stress detection, since a current stress state tends to be strongly 

dependent on the previous state [107] [215]. 

 

8.2. The differentiation between healthy subjects 

and patients 
 

In Chapter 4, we have shown the potential of the physiological stress response 

to a controlled stress task, to differentiate healthy subjects and patients with 

stress-related complaints, i.e. the first stage on the stress continuum before 

overstrain and burnout. Although this was only a preliminary study with limited 

number of subjects, it showed that, using ubiquitous sensing modalities, early-

stage stress-related complaints could be detected. 

In Chapter 6, we have used a data-driven approach to identify digital 

phenotypes characterized by self-reported poor health indicators and high 

depression, anxiety and stress scores that are associated to blunted 

physiological responses to stress. These results confirm the differentiation 

between healthy subjects and persons further along the stress continuum 

based on their physiological stress response. 
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These results are encouraging to develop a new approach towards disease 

prevention and interception, i.e. detecting the disease before there are 

any symptoms. This involves a paradigm shift from a ‘diagnose and treat’ 

approach to a ‘predict and pre-empt’ (i.e. intervening early in the disease) 

model [216]. In many mental health diseases early intervention is key, yet tools 

for disease interception are lacking. Our results show the potential of using 

physiological signals for the interception of stress-related diseases (e.g. 

burnout). Further research is needed for population-wide long-term 

monitoring, i.e. more than six months, of healthy subjects until disease onset, 

i.e. until they develop a burnout. This will provide insight into the exact 

physiological dynamics during disease progression, which could allow to define 

a cut-off point at which the subject is ‘in danger’ for developing a burnout and 

should find appropriate treatment (i.e. disease interception). Such studies are 

now made possible using ubiquitous sensing modalities such as wearables and 

smartphones. 

Additionally, these insights could be used towards relapse prevention, a 

major problem in mental health diseases. For example, more than 50% of 

depression patients have a relapse after their first episode and approximately 

80% have a relapse after their second episode [217]. Early detection of stress-

induced relapse episodes, using continuous monitoring systems, could provide 

early warning signs and early intervention of clinicians. 

 

8.3. Towards physiological stress detection in an 

ambulant environment 
 

In Chapter 3, we have presented a binary physiological stress detection model 

in a controlled environment, with the highest accuracy for personalized 

dynamic BNs of 84.6%, which is in line with results obtained in literature [102] 

[103]. 

In Chapter 5, we have presented the SWEET study. The is the world’s largest 

ambulatory stress detection study, including 1,002 subjects who were 

continuously monitored during 5 days. We presented a protocol including 

physiological sensing, baseline psychological information, self-reported stress 

and contextual sensing based on smartphone information. Initial results have 
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revealed important insights related to user compliance, user privacy, data 

quality and the need for user sensor comfort. 

In Chapter 6, we developed a three-class RF classification model for 

ambulatory physiological stress detection, reaching an F1-score of 0.43, which 

is slightly better than a random classification.  

In Chapter 7, we developed a binary RF classification model for stress 

detection during the MIST, reaching an average F1-score of 0.7, which is slightly 

lower, but still comparable with, findings in laboratory settings [102] [103]. 

Further, we developed a binary classification model for ambulatory 

physiological stress detection, reaching an average F1-score of 0.54, which is 

slightly better than a random classification.  

Both in Chapter 6 and 7, we identified clusters of digital phenotypes, based on 

physiological and/or psychological baseline information which are 

characterized by low or high classification performances. 

 

Overall, these findings indicate that stress can accurately be detected in 

controlled environments. However, stress detection in daily life 

conditions remains challenging. A main difference between controlled and 

ambulatory settings, lies in the gold standard for stress. In a controlled 

environment the gold standard is based on the timestamps at which tasks are 

executed (i.e. when a stressful tasks is executed, the gold standard is labeled 

as ‘stress’, when a relaxing task is executed it is labeled as ‘rest’). However, in 

a daily-living setting the gold standard is based on self-reports. This could 

introduce bias in the gold standard and could lead to lower classification 

accuracies. This also raises the question whether we are in fact detecting stress 

or rather an activation of the ANS. From a data analytical perspective, one 

could argue we detect stress since the models are trained based on a, self-

reported, stress reference. From a psychophysiological perspective, it is not 

clear whether our physiological sensing models can differentiate between 

actual stress, which we have defined as the combination of high demands and 

low decision latitude [26], and arousal or an ANS activation. In the analysis of 

the MIST we merged control and stress phases as one ANS activation phase, 

mainly because physiological differences between control and stress were not 

very pronounced. This could point to the fact that what we actually measure 

is ANS activation rather than stress as such. To test this hypothesis the self-

assessment manikin (SAM) of the SWEET study, which measured pleasure, 
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arousal and control levels, could be investigated in combination with self-

reported stress levels and physiological responses. 

Our ambulant stress detection classification performance results are on 

average lower than those reported in literature. However, it is difficult to 

compare results of different studies. For example, Hovsepian et al. found a 

classification accuracy of 72% of their binary physiological stress detection 

model in ambulatory settings, but their approach differs strongly from ours. 

They included self-reported stress levels of a previous time instant as a feature 

to predict the current stress level. Although such a temporal model is an 

interesting approach, one could argue that incorporating self-reported 

information in the model’s prediction does not allow continuous, unobtrusive 

stress detection.  

We suggest future research to focus on personalized and temporal models to 

improve classification performance.  

 

8.4. Future work on the rich data content of the 

SWEET study 
 

As the opportunities for data analyses based on the SWEET study are 

immense, not all possible investigations or insights fit within the scope of this 

thesis. We aimed to focus on personalized physiological stress detection in a 

daily-life setting. Here, we propose a non-exhaustive list of suggestions for 

future research based on the SWEET study data. First, it could be 

investigated how context information (e.g. location, audio, physical activity), 

combined with physiological data, could be used to improve the performance 

of stress detection models. A first analysis of stress detection, solely based on 

context information showed a user lift of 4.98%, meaning the model could 

predict stress 4.98% more accurately than always predicting the majority class 

[218]. Further, a comparative study among the classification performances of 

each physiological signal separately (i.e. HR/HRV, SC and ST) would be useful 

to provide more insight into which physiological features are indispensable for 

ambulatory stress detection. This could be valuable information for hardware 

developers related to the decision on which features to include in their 

wearables. Additionally, subjects reported their sleep quality throughout the 

experiment. The link between physiology and sleep quality for different 
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psychological profiles (e.g. high versus low depression) could be investigated. 

Further, subjects reported their gastro-intestinal symptoms using the Leuven 

Postprandial Distress Scale (LPDS). The link between physiological signals, 

stress, and gastro-intestinal complaints could be investigate. Last but not least, 

the SWEET study could be used as a healthy baseline to compare physiological 

responses of healthy subjects with those of patient populations and analyze 

the effectiveness of interventions on both healthy and patient populations. 

 

8.5. Lessons learned towards large-scale, 

ambulatory data collection 
 

The data collection throughout the three trials conducted in this thesis, have 

indicated several lessons learned towards ambulatory physiological data 

collection and analysis, which could be of interest far beyond the application 

domain of stress. 

First, the subject selection procedure is crucial to collect useful data. In the 

SWEET study all employees who were fit to work could participate in the 

study. Advertisement of the study was conducted through the communication 

department of each company. We noticed that the buy-in of the responsible 

for prevention and safety at work and the HR department were key to reach 

a higher number of subjects. The advantage of having broad inclusion criteria, 

and only limited exclusion criteria, is that it allows a dataset with a high variety 

in population. However, it does not allow any control over the distribution of 

the dataset (e.g. the distribution of age, gender, etc.) and it is susceptible for 

self-selection bias. For example, it is possible that subjects with higher stress 

levels will less likely participate in the study because they feel they do not have 

the time for it. In the future, it would be useful to work with user panels in 

which selection of a more evenly distributed population is more feasible. 

Further, subject motivation is key towards compliance and to reduce drop-

outs. In the SWEET study, subjects did not receive any reward for participating 

nor any feedback on their results. The advantage of not giving a reward is that 

mainly subjects with a strong intrinsic motivation are attracted to participate, 

whereas providing money could motivate subjects to participate for the wrong 

reasons, eventually reducing motivation and resulting in poor data quality (not 

wearing the sensors) and low numbers of answered EMAs. However, we have 
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seen that compliance to the EMAs was 42%, which is less than commonly 

reported rates between 65-85% [174]. In the future, and especially when 

conducting longitudinal trials more effort is needed to keep subjects motivated 

on the long term. Providing subjects with meaningful feedback could be one 

solution. In addition subjects could be given a reward based on their 

compliance (e.g. based on the number of answered EMAs) [219]. Another 

solution could be to use context-aware EMAs, which use contextual 

information to identify when to send an EMA trigger instead of using a random 

time schedule. This could be less disturbing for the study participants, as the 

algorithm should identify whether the subject is capable to answer the EMA, 

and could further improve the quality of the dataset as specific points of 

interests could be questioned more frequently (e.g. moments of high stress). 

We have used several devices throughout this thesis, both commercial (i.e. 

NeXus 10 – MK II) and noncommercial (i.e. imec Necklace, chest patch and 

Chillband). In the first two laboratory trials the main focus was on signal quality 

and bulky devices such as the NeXus 10 – MK II could be used. In ambulatory 

trials however, apart from the signal quality also the user comfort is key. 

Therefore, we used the chest patch and Chillband in the SWEET study which 

are smaller, more user friendly and have a longer battery lifetime (i.e. 7 days 

continuous monitoring). However, still the majority of the subjects in the study 

indicated they would not wear the sensors on a daily basis in the future 

because they are too big or not comfortable. This calls for action of hardware 

developers, who should put more focus on the aspect of user comfort, already 

in an early stage of development. Further analysis should indicate which 

physiological signals are indispensable for physiological stress detection and 

only those should be incorporated in newly developed hardware. In the future, 

non-contact sensing techniques could be an alternative for the use of 

wearables, allowing truly unobtrusive sensing.  

Finally, the quality of the data collection could significantly be improved by 

implementing (near to) real-time, accurate and fine-grained quality 

indicators. In the SWEET study the quality assessment was performed offline, 

after the data collection. In the future, it would be useful to have (near to) 

real-time data collection, combined with (near to) real-time quality indicators. 

This could raise alarms for the investigator, allowing early intervention, when 

quality drops consistently, which could indicate the subject has a broken 

sensor or is using the sensor incorrectly.  
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8.6. A final note on precision medicine and 

personalized healthcare 
 

To conclude, our findings provide a first step towards personalized stress 

detection, and more generally they are a first step towards precision 

medicine and personalized healthcare. By including context information, 

we cannot only improve modelling performance, but also enhance feedback 

strategies towards personalized care. Such tailored interventions, also called 

just-in-time adaptive interventions (JITAIs), use real-time data about subjects’ 

health to deliver real-time interventions adapted to the subjects’ specific needs 

[220]. The goal of JITAIs is to induce behavior change based on triggering 

personalized, appropriate support in real-life settings at the right time and the 

right place [221]. JITAIs have proximal and distal outcomes, where proximal 

outcomes are the short-term goals the intervention wants to achieve and 

which can be measured shortly after the intervention is presented (e.g. daily 

stress and anxiety levels), and distal outcomes are the ultimate goal of the 

interventions, usually the primarily clinical outcome (e.g. relapse prevention in 

schizophrenia) [222]. Trends of the proximal outcomes can be measured on a 

relatively short timeframe (i.e. hours, days, weeks), whereas to monitor trends 

in the distal outcomes longitudinal trials of months, even years are needed.  

JITAIs are fairly new concepts and so far have not been tested in many 

disciplines. Most examples are related to diet (e.g. reduce energy intake by 

just-in-time audio cues [220]) or smoking cessation (e.g. a personalized, 

context-driven smartphone application for smoking cessation [223]). Another 

study investigated JITAIs for stress reduction, by providing subjects stress-

management skills at times they reported high stress rather than randomly 

throughout the day or week [224]. Although this method still relied on self-

reported stress, rather than on physiological, continuous stress detection, the 

results showed a significantly improved stress reduction outcome [224]. We 

suggest future research to investigate if JITAIs for stress reduction could be 

improved, by linking stress reduction interventions to contextual information 

(e.g. location, calendar, social interaction, weather, etc.). This way, ubiquitous 

sensors, computing and feedback could aid in precision medicine towards early 

detection and prevention of stress-related diseases and cause a paradigm shift 

from treatment to disease prevention and interception. 
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Appendix A 
 
Table A-1: Overview of intake questionnaire. For continuous variables the mean and standard 

deviation of the population (932 subjects who filled in the questionnaire) are presented, for 

categorical variables the percentage of the population for each class is presented. Subjects not 

answering the specific question are denoted by answer value ‘NaN’ 

Variable Classes 

Age Mean = 39.5, SD = 9.8 

Length (cm) Mean = 170.1, SD = 26.9 

Weight (kg) Mean = 73.8, SD = 14.5 

Gender Female (n=446, 44.5%)  

Male (n=481, 48.0%) 

NaN (n=75, 7.5%) 

Origin Africa (n=7, 0.7%) 

Asia (n=45, 4.5%) 

Europe (n=854, 85.2%) 

South America (n=13, 1.3%) 

Central America (n=3, 0.3%) 

North America (n=6, 0.6%) 

NaN (n=74, 7.4%) 

Marital status Single (n=183, 18.3%) 

Cohabiting (n= 229, 22.9%) 

Married (n=450, 44.9%) 

Divorced (n=57, 5.7%) 

Widowed (n=9, 0.9%) 

NaN (n=74, 7.4%) 

Children Yes (n=549, 54.8%) 

No (n= 380, 37.9%) 

NaN (n=73, 7.3%) 

If “Yes” to 

“Children”: how 

many 

Mean = 2.1, SD = 0.8 

Pregnant Yes (n=9, 0.9%)  

No (n=919, 91.7%) 
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NaN (n=74, 7.4%) 

Healthy lifestyle (1 = 

unhealthy – 10 = healthy) 

Mean = 6.0, SD = 1.8 

Sports Yes (n= 687, 68.6%) 

No (n=251, 25.0%) 

NaN (n=64, 6.4%) 

If “Yes” to 

“Sports”: Hours 

of sports per 

week 

0-1h (n=118, 11.8%) 

1-3h (n=335, 33.4%) 

3-5h (n=153, 15.3%) 

>5h (n=79, 7.9%) 

NaN (n=317, 31.6%) 

If “No” to 

“Sports”: other 

hobbies 

Yes (n=182, 18.2%) 

No (n=69, 6.9%) 

NaN (n=751, 74.9%) 

Smoke Yes (n=74, 7.4%) 

No (n=856, 85.4%) 

NaN (72, 7.2%) 

If “Yes” to 

“Smoke”: how 

many cigarettes 

Less than 1 per week (n=6, 0.6%) 

1-6 per week (n=17, 1.7%) 

1-5 per day (n=16, 1.6%) 

6-10 per day (n=24, 2.4%) 

10-20 per day (n=12, 1.2%) 

>20 per day (n=2, 0.2%) 

NaN (n=925, 92.3%) 

Caffeinated beverages Yes (n=796, 79.4%) 

No (n=132, 13.2%) 

NaN (n=74, 7.4%) 

If “Yes” to 

“caffeinated 

beverages”: how 

many cups per 

week 

Mean = 15.5, SD = 10.8 

Alcohol Yes (766, 76.4%) 

No (n=163, 16.3%) 

NaN (n=73, 7.3%) 
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If “Yes” to 

“Alcohol”: how 

many glasses per 

week 

Mean = 6.9, SD = 6.9 

Fruit and vegetables No (n=9, 0.9%) 

1-6 portions per week (n=156, 

15.6%) 

1 portion per day (n=179, 17.9%) 

2-3 portions per day (n=410, 40.9%) 

4-5 portions per day (n=132, 13.2%) 

>5 portions per day (n=39, 3.9%) 

NaN (n=77, 7.7%) 

Nr of take-out meals per 

week 

Mean = 1.0, SD =1.0 

Diet Pescetarian (n=22, 2.2%) 

Vegetarian (n=24, 2.4%) 

Vegan (n=7, 0.7%) 

None of the above (n=867, 86.5%) 

NaN (n=82, 8.2%) 

Medication Yes (n=305, 30.5%) 

No (n=614, 61.3%) 

NaN (n=83, 8.3%) 

If “Yes” to 

“Medication”: 

Which medication 

Open text 

Current heart disease Yes (n=26, 2.6%) 

No (n= 893, 89.1%) 

NaN (n=83, 8.3%) 

If “Yes” to 

“Current heart 

disease”: Which 

disease 

Open text 

Heart disease in the past Yes (n=23, 2.3%) 

No (n= 894, 89.2%) 

NaN (n=85, 8.5%) 
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If “Yes” to “Heart 

disease in the 

past”: Which 

disease 

Open text 

Chronic disease Yes (n=113, 11.3%) 

No (n=793, 79.1%) 

NaN (n=96, 9.6%) 

If “Yes” to 

“Chronic 

disease”: Which 

disease 

Open text 

Education Primary school (n=2, 0.2%) 

Secondary school (n=62, 6.2%) 

Bachelors (n=303, 30.2%) 

Masters/PhD (n=509, 50.8%) 

NaN (n=126, 12.6%) 

Employee type Full-time (n=606, 60.5%) 

Part-time (n=152, 15.2%) 

Shift worker (n=16, 1.6%) 

Interim (n=1, 0.1%) 

Consultant (n=13, 1.3%) 

PhD (n=38, 3.8%) 

Intern/student (n=20, 2.0%) 

NaN (n=156, 15.6%) 

If “Employee 

type” is “part-

time”: Percent 

work 

Mean = 77.5, SD = 13.8 

People manager Yes (n=159, 15.9%) 

No (n=713, 71.2%) 

NaN (n=130, 12.9%) 

If “Yes” to 

“People 

manager”: how 

many persons 

1-5 (n= 27, 2.7%) 

6-10 (33, 3.3%) 

11-20 (n=31, 3.1%) 

21-50 (n=22, 2.2%) 
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51-100 (n=6, 0.6%) 

>100 (n=8, 0.8%) 

NaN (n=873, 87.1%) 

PSQI Mean = 4.9, SD = 2.6 

 

Good sleep (<5) (n= 439, 43.8%) 

Poor sleep (>=5) (n= 402, 40.1%) 

NaN (n=161, 16.1%) 

DASS - Depression Mean = 2.6, SD = 3.1  

 

Normal (0-4) (n= 692, 69.1%) 

Mild (5-6) (n= 80, 8.0%) 

Moderate (7-10) (n= 75, 7.5%) 

Severe (11-13) (n= 17, 1.7%) 

Extremely severe (>=14) (n=7, 0.7%) 

NaN (131, 13.1%) 

DASS - Anxiety Mean = 2.0, SD = 2.6 

 

Normal (0-3) (n= 706, 70.5%) 

Mild (4-5) (n= 87, 8.7%) 

Moderate (6-7) (n= 35, 3.5%) 

Severe (8-9) (n=21, 2.1%) 

Extremely severe (>=10) (n=20, 

2.0%) 

NaN (n=133, 13.3%) 

DASS - Stress Mean = 5.1, SD = 3.8 

 

Normal (0-7) (n=661, 66.0%) 

Mild (8-9) (n=97, 9.7%) 

Moderate (10-12) (n=70, 7.0%)  

Severe (13-16) (n= 38, 3.8%) 

Extremely severe (>=17) (n= 7, 0.7%) 

NaN (n=129, 12.9%) 

PSS Mean = 14.4, SD = 6.1 
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Very low (0-7) (n=121, 12.1%) 

Low (8-11) (n=171, 17.1%) 

Average (12-15) (n=224, 22.4%) 

High (16-20) (n=213, 21.3%) 

Very high (>=21) (n=146, 14.6%) 

NaN (n=127, 12.7%) 

RAND-36 - physical 

functioning 

Mean = 89.6, SD = 15.8 

 

Results for baseline of the Medical 

Outcomes Study [225] (n=2471): 70.6 

± 27.4 

RAND-36 - bodily pain Mean = 85.7, SD = 16.1 

 

Results for baseline of the Medical 

Outcomes Study [225] (n=2471): 70.8 

± 25.5 

RAND-36 - role 

limitations due to physical 

health problems 

Mean = 85.2, SD = 28.9 

 

Results for baseline of the Medical 

Outcomes Study [225] (n=2471): 53.0 

± 40.8 

RAND-36 - role 

limitations due to 

personal or emotional 

problems 

Mean = 80.5, SD = 32.5 

 

Results for baseline of the Medical 

Outcomes Study [225] (n=2471): 65.8 

± 40.7 

RAND-36 - emotional 

well-being 

Mean = 72.4, SD = 15.3 

 

Results for baseline of the Medical 

Outcomes Study [225] (n=2471): 70.4 

± 22.0 

RAND-36 - social 

functioning 

Mean = 84.6, SD = 19.0 
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Results for baseline of the Medical 

Outcomes Study [225] (n=2471): 78.8 

± 25.4 

RAND-36 - energy/fatigue Mean = 60.5, SD = 19.2 

 

Results for baseline of the Medical 

Outcomes Study [225] (n=2471): 52.2 

± 22.4 

RAND-36 - general health 

perceptions 

Mean = 67.9, SD = 16.4 

 

Results for baseline of the Medical 

Outcomes Study [225] (n=2471): 57.0 

± 21.11 
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Appendix B 
 

Comparison of feature dynamic range in low and high classification 

performance groups. 

Subjects were subdivided based on their classification performance (i.e. F1-

score) into low, medium and high performance groups. In the main text the 

differences in dynamic range were shown (i.e. the average difference on 

physiological features between periods with low (S1) and high (S3) self-

reported stress levels) between these performance groups, for ECG mean HR, 

SC phasic and ST median. In Fig. S2 these differences were shown for the 

remaining features. For 15 out of 18 features the dynamic range of the high 

performance group was larger than that of the low performance group, only 

for ECG SDNN, ECG LFHF and ST SD this was the opposite. Additionally, for 

10 out of 18 features (ECG LF, ECG HF, SC mean, SC phasic, SC RR, SC diff2, 

SC R, SC dur, ST mean, ST median) the dynamic range of the high performance 

group was larger than that of the medium performance group and the dynamic 

range of the medium performance group was larger than that of the low 

performance group, meaning the dynamic range decreased monotonically from 

high to low performance group. 

To assess if this trend could be due to chance, we subdivided subjects 

randomly, instead of based on their F1-score, and investigated the dynamic 

range for each group. For each feature we calculated the dynamic range per 

group (i.e. absolute value of (mean(high_stress) – mean(low_stress))). First, 

only two groups were compared and the number of features for which the 

dynamic range of one group was larger than for the other group was 

calculated. Then, all three groups were compared and the number of features 

for which there was a monotonic increase/decrease in dynamic range across 

the three groups was calculated. This analysis was repeated 100 times. 

Based on a random division of subjects into two groups, on average 12 out of 

18 features were found for which the dynamic range of one group was larger 

than the other group. Based on 100 repetitions, the 95% confidence interval 

of number of features for which the dynamic range of one group was larger 

than the other group was [11-16]. When dividing subjects based on their F1-

score, 15 features were found for which the dynamic range of the high 

performance group was larger than of the low performance group. This falls 
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within the 95% confidence interval, suggesting that this result could be found 

by chance. However, we also found that on average 5 out of 18 features 

showed a monotonic increase/decrease in dynamic range with a 95% 

confidence interval of [2-9] features. When dividing subjects based on their 

F1-score, 10 features were found for which there was a monotonic decrease 

in dynamic range across the three groups (from high to low performance 

groups), indicating that this finding was unlikely to be due to chance. 
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Appendix C 
 

A 

 
B 

 
C 
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Figure A-1: Comparison of dynamic ranges per feature across low, medium and high classification 

performance groups.  

In A, B and C average ECG, SC and ST related features are shown respectively for low (red), medium 

(yellow) and high performance (green) groups and compared with the entire population average in 

phases of no, light and high stress. The high performance group has a larger dynamic range, i.e. larger 

difference between physiology in no stress and high stress situations, for 16 out of 18 features as 

compared to the low performance group. 
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