
COBRAS: Interactive Clustering with Pairwise Queries

Toon Van Craenendonck, Sebastijan Dumančić, Elia Van Wolputte, and Hendrik
Blockeel

KU Leuven, Department of Computer Science
firstname.lastname@kuleuven.be

Abstract. Constraint-based clustering algorithms exploit background knowledge
to construct clusterings that are aligned with the interests of a particular user. This
background knowledge is often obtained by allowing the clustering system to pose
pairwise queries to the user: should these two elements be in the same cluster or
not? Answering yes results in a must-link constraint, no in a cannot-link. Ideally,
the user should be able to answer a couple of these queries, inspect the resulting
clustering, and repeat these two steps until a satisfactory result is obtained. Such
an interactive clustering process requires the clustering system to satisfy three
requirements: (1) it should be able to present a reasonable (intermediate) clustering
to the user at any time, (2) it should produce good clusterings given few queries,
i.e. it should be query-efficient, and (3) it should be time-efficient. We present
COBRAS, an approach to clustering with pairwise constraints that satisfies these
requirements. COBRAS constructs clusterings of super-instances, which are local
regions in the data in which all instances are assumed to belong to the same cluster.
By dynamically refining these super-instances during clustering, COBRAS is
able to produce clusterings at increasingly fine-grained levels of granularity. It
quickly produces good high-level clusterings, and is able to refine them to find
more detailed structure as more queries are answered. In our experiments we
demonstrate that COBRAS is the only method able to produce good solutions at
all stages of the clustering process at fast runtimes, and hence the most suitable
method for interactive clustering.

Keywords: Semi-supervised clustering · Pairwise constraints · Active clustering.

1 Introduction

Clustering is inherently subjective [4, 9]: different users often require very different
clusterings of the same dataset, depending on their prior knowledge and goals. Constraint-
based (or semi-supervised) clustering methods are able to deal with this subjectivity by
taking a limited amount of user feedback into account. Often, this feedback is given in
the form of pairwise constraints [17]. The algorithm has no direct access to the cluster
labels in a target clustering, but it can perform pairwise queries to answer the question:
do instances i and j have the same cluster label in the target clustering? A must-link
constraint is obtained if the answer is yes, a cannot-link constraint otherwise.

When obtaining constraints is expensive (e.g., requires human intervention), the clus-
tering process ideally proceeds iteratively, as summarized schematically in Figure 1(a).
It is a loop where in each step the system’s current estimate of the clustering is shown to

2 T. Van Craenendonck et al.

Produce clustering

Satisfactory?

Ready

Query user

Start

Yes

No

#queries

Quality of

clustering

(a) interactive clustering process (b) learning curves

Fig. 1: (a) The interactive clustering process. (b) Typical learning curves with COBRA, the current
state of the art. For a small number of super-instances, performance rises rapidly but stagnates at a
suboptimal level (orange curve). For a higher number of super-instances, performances rises more
slowly but stagnates at a higher level (red curve). The dotted line shows the learning curve that we
hope to obtain with the proposed COBRAS system.

the user, and the user has the opportunity to answer several questions that will allow the
system to improve the clustering, or end the process and accept the current clustering.
Ideally, such a process has three properties: (1) the user can stop it at any time and get
the best result obtained until then; (2) the number of loop executions (hence, the number
of queries asked) until an acceptable result is obtained is as small as possible; (3) each
loop execution is fast; e.g., a user may not want to wait more than a few seconds between
queries. Summarizing this, the process must be anytime (in the number of queries),
query-efficient, and time-efficient; we abbreviate this as AQT.

No existing constraint-based clustering system fulfills all three requirements (see
next section for details). The approach closest to it is COBRA [15]. COBRA uses the
concept of super-instances: sets of instances that are assumed to belong to the same
cluster in the unknown target clustering. It uses constraints on the level of super-instances,
rather than individual instances. This dramatically improves its query efficiency when
the number of super-instances is small. However, having few super-instances increases
the risk that a single super-instance contains instances from different target clusters,
causing COBRA to find lower-quality clusterings. The number of super-instances NS is
a parameter of COBRA and is fixed during the clustering process. This forces the user to
trade off query-efficiency with clustering quality. Figure 1(b) illustrates this: depending
on NS , COBRA quickly converges to a low-quality clustering, or slowly converges to a
higher-quality clustering.

In this paper, we introduce a method for dynamically refining super-instances during
clustering, based on user feedback. Extending COBRA with this method gives COBRAS
(COnstraint-Based Repeated Aggregation and Splitting). The goal of this effort is to
eliminate the above trade-off, and thus provide the first clustering system that meets
the AQT requirements without sacrificing clustering quality; ideally its learning curve
should be close to the one shown in Figure 1(b) (dotted line). An experimental evaluation
confirms that COBRAS meets this goal.

COBRAS: Interactive Clustering with Pairwise Queries 3

2 Related work

The most common way to develop a constraint-based clustering method is to extend an
existing unsupervised method. One can either adapt the clustering procedure to take the
pairwise constraints into account [17, 12, 18], or use the existing procedure with a new
similarity metric that is learned based on the constraints [19, 5]. Alternatively, one can
also modify both the similarity metric and the clustering procedure [3, 2].

Most constraint-based clustering methods assume that a set of constraints is provided
prior to running the clustering algorithm [19, 2, 3, 10]. This makes them unsuitable
for anytime (in the number of constraints) clustering. Furthermore, traditional systems
typically query random pairs [19, 3], which might not be the most informative ones;
these are less query-efficient. Several active constraint-based clustering methods have
been proposed that outperform random query selection [1, 10], but most of them still
require all queries to be answered prior to clustering (query-efficient but not anytime).
An exception to this is NPU [20], an active selection procedure in which the data is
clustered multiple times and each resulting clustering is used to determine which pairs
to query next based on the principle of uncertainty sampling. NPU is both anytime
and query-efficient. However, it is not time-efficient: it requires re-clustering the entire
dataset after every few constraints, which becomes prohibitively slow for large datasets.

COP-COBWEB [16] is similar to COBRAS in that it has both splitting and merging
of clusters as key algorithmic steps. However, it is not anytime: it assumes that all
constraints are given prior to clustering.

COBS [14] uses an approach that is very different from the above. It generates a large
set of clusterings by varying the hyperparameters of several unsupervised clustering
algorithms, and selects from the resulting set the clustering that satisfies the most pairwise
constraints. Generating the set of clusterings, however, can be time consuming for large
datasets, which reduces its suitability for anytime clustering.

COBRA [15] is a recently proposed method that is inherently active: deciding which
pairs to query is part of its clustering procedure. First, COBRA uses K-means to cluster
the data into super-instances. The number of super-instances, denoted as NS , is an input
parameter. Initially, each of the super-instances forms its own cluster. In the second step,
COBRA repeatedly queries the pairwise relation between the closest pair of (partial)
clusters between which the relation is not known yet and merges clusters if necessary,
until all relations between clusters are known.

It was already mentioned in the introduction that the results of COBRA strongly
depend on the number of super-instances NS . Figure 2 illustrates this on a toy dataset.
For NS = 10, the initial clustering (after 0 queries) is not too bad (panel A). As queries
are answered, the quality goes up, but after 14 queries it stagnates at a suboptimal level
(panel D; the incorrectly clustered part is marked with a red ellipse). For NS = 100,
COBRA starts with a worse clustering (panel B) but ends with a better one (panel E). It
takes 103 queries, however, to obtain the final clustering.

Note that the NS parameter allows the user to trade off one disadvantage for the
other, but not to remove both. The dynamic super-instance refinement procedure that we
introduce with COBRAS eliminates this trade-off.

4 T. Van Craenendonck et al.

COBRA, NS = 10

S1

S2

S3

S4

S5

S6

S7

S8

S9 S10

A

Initial clustering, after 0 queries
COBRA, NS = 100

B

Initial clustering, after 0 queries
COBRAS

C
Initial clustering, after 7 queries

CF1=
{
S1, S2, S3

}

CF2=
{
S4, S5

}

CF3=
{
S6, S7, S8

} CF4=
{
S9, S10

}

D

Final clustering, after 14 queries
E

Final clustering, after 103 queries
F

Clustering after 36 queries

Fig. 2: A: The starting situation of COBRA with 10 super-instances (COBRA-10). Initially, each
cluster consists of a single super-instance. B: The initial solution of COBRA-100, which is
highly over-clustered. C: The clustering produced by COBRAS after 7 queries. D: The final
result of COBRA-10. Each of the clusters is represented as a set of super-instances. The final
clustering is not correct, as S7 contains instances from two actual clusters. E: the final clustering
of COBRA-100. F: after 36 queries, COBRAS produces the correct clustering.

3 COBRAS: Constraint-based Repeated Aggregation and
Splitting

The key problem when running COBRA with a small NS is that super-instances often
contain instances from different clusters (e.g., S7 in Figure 2A). COBRA cannot assign
all of these instances to the correct clusters, as each super-instance is treated as a single
unit.

COBRAS solves this problem by allowing super-instances to be refined. It starts
with a single super-instance that contains all instances, and repeatedly refines this super-
instance until a satisfactory clustering is obtained. More specifically, each iteration of
COBRAS consists of two steps. First, it removes the largest super-instance from its
cluster and splits it into several new super-instances. A new cluster is added for each of
these new super-instances. A key challenge in this step is determining a suitable splitting
level for a super-instance, i.e. the number of new super-instances that an existing one
should be split in. For this, we propose a constraint-based procedure, which is detailed
in 3.2.

In the second step of each iteration, COBRAS determines the relation of the newly
created clusters to each other and the existing clusters by running the merging step of
COBRA on the new set of clusters.

By using this procedure of refining super-instances, COBRAS uses a small number
of super-instances in the beginning of the clustering process, and a larger number as

COBRAS: Interactive Clustering with Pairwise Queries 5

more queries are answered. This allows it to perform well for both a small and larger
number of queries, as illustrated in panels C and F in Figure 2.

3.1 Algorithmic description
COBRAS is described in detail in Algorithm 1. In this algorithm a super-instance S is
a set of instances, a cluster C is a set of super-instances, and a clustering C is a set of
clusters. COBRAS starts with a single super-instance S that contains all instances, which
constitutes the only cluster C (line 2). As long as the user keeps answering queries,
COBRAS keeps refining the set of super-instances and the corresponding clustering (lines
3-10). In each iteration it selects the largest super-instance Ssplit (line 4), determines an
appropriate splitting level for it (line 5, this is detailed in Algorithm 2 in Section 3.2), and
splits it into k new super-instances by clustering its instances using K-means (line 6). We
use K-means as it is faster than K-medoids, even if the medoids are computed afterwards
(each K-medoid iteration is O(k(n − k)2) [11] whereas each K-means iteration is
O(nk)). Ssplit is then removed from its original cluster (line 7), and a new cluster is
added for each of the newly created super-instances (line 8). Finally, in the last step of
the while iteration COBRA is used to determine the pairwise relations between all the
clusters (new and existing). The COBRA merging step is slightly modified compared
to the original one [15]: if the relation between two clusters is already known, i.e. from
a query in a previous COBRAS iteration, it is not queried again. Note that one could
also think of other heuristics to determine which super-instance to split instead of simply
the largest one, e.g. one could split the super-instance with the highest intra-cluster
dissimilarity. We have found, however, that selecting the largest super-instance is a
simple and effective heuristic that is difficult to beat.

Algorithm 1 COBRAS
Input: X : a dataset, q: a query limit
Output: C: a clustering of D
1: ML = ∅, CL = ∅
2: S = {X}, C = {S}, C = {C}
3: while |ML|+ |CL| < q do
4: Ssplit, Corigin = argmaxS∈C,C∈C |S|
5: k,ML,CL = determineSplitLevel(Ssplit,ML,CL)
6: Snew1 , . . . , Snewk = K-means(Ssplit, k)
7: Corigin = Corigin \ {Ssplit}
8: C = C ∪ {{Snew1}, . . . , {Snewk}}
9: C,ML,CL = COBRA(C,ML,CL)

10: end while
11: return C

3.2 Determining the splitting level k
Different users may want different clusterings, which can require super-instances at
different granularities. For example, consider clustering a set of images of 20 different

6 T. Van Craenendonck et al.

Algorithm 2 determineSplitLevel
Input: S: a set of instances that is to be split
Output: k: an appropriate splitting level, ML, CL: the obtained ML and CL constraints
1: d = 0, ML = ∅, CL = ∅
2: while no must-link obtained do
3: S1, S2 = k-means(S,2)
4: if must-link(medoid(S1), medoid(S2)) then
5: add (medoid(S1), medoid(S2)) to ML
6: d = max(d, 1)
7: return 2d, ML, CL
8: else
9: add (medoid(S1), medoid(S2)) to CL

10: S = pick between S1 and S2 randomly
11: d++
12: end if
13: end while

people, each taking two different poses. Clustering this data based on identity will require
more super-instances than clustering it based on pose. Consequently, it is crucial to take
user feedback into account to determine appropriate splitting levels.

Algorithm 2 describes the procedure that COBRAS uses to determine the splitting
level k for a super-instance S. The procedure tries to search for a k such that the new
super-instances will be pure w.r.t. the unknown target clustering. To check the purity of S,
COBRAS splits it into two new (temporary) super-instances (by running 2-means on its
instances), and queries the relation between their medoids. If they must link, COBRAS
assumes that the super-instance was pure, and an appropriate level of granularity has
been reached. If they cannot link, the procedure is then repeated on one of the two new
super-instances. This continues until a must-link constraint is obtained. If d bisections
are made before an appropriate level of granularity is reached, then the super-instance as
a whole must be split into 2d smaller super-instances. Figure 3(a) illustrates this process:
super-instance S1 gets split into two super-instances which cannot link; one of these,
St1, is next split into two which again cannot link; among these, St3 is split into two
which must link; hence, St3 seems to be at the right level of granularity and S1 is split
into 22 = 4, which is the number of super-instances at this level. Line 6 in Algorithm 2
makes sure that the super-instance is at least split into two, even when the first constraint
is must-link. This ensures that COBRAS will continue refining super-instances as long
as the user is willing to answer queries, even when the data does not provide evidence
for the usefulness of a particular split.

3.3 Illustration

Figure 3 illustrates two iterations of the entire COBRAS clustering process. The splitting
of S1 into 4 smaller super-instances was already explained. These 4 super-instances are
put into new clusters, and next, the standard merging process of COBRA is applied.
For details about this merging process, we refer to Van Craenendonck et al. [15]. In
this illustration, we assume that COBRA finds a must-link between S4 and S5 and

COBRAS: Interactive Clustering with Pairwise Queries 7

C2

C5

C2

C6

C6

Top-down refinement of S1 Starting situation before
first COBRA merging step

Top-down refinement of S3 Starting situation before
 second COBRA merging step

C3

C4

After first bottom up
COBRA merging step

C7

St5 St6

St4St3

St1 St2

S1

1

2

3

8

9
4

7

10

A B C

D E F

11

12

S2

S4

S3

S5

C3

S2

S4

S3

S5

4

5 6

7

S3

C6

S2

S4

S5

47

S6 S7

S2

S5

S4

After second bottom up
COBRA merging step

C2

C2

C7

S6 S7

C8

Fig. 3: (A) COBRAS decides to split the initial super-instance S1 into 4 new ones, as discussed
in section 3.2. (B) S1 has been removed from the set of clusters (rendering it empty), and a new
cluster added for each of the newly created super-instances. This is the starting situation for the
first bottom-up COBRA run. (C) Using additional queries, COBRA has merged the S4 and S5

clusters into one, and kept the others. In the next iteration (D), COBRAS selects S3 for refinement,
and splits it into 2 new super-instances; this results in two new clusters (E). Finally (F), the merging
step has clustered S7 together with S4 and S5, while S2 and S6 remain in their own cluster.

cannot-links between the others, which results in 3 clusters. Next, super-instance S3 is
considered for splitting, and split into 2. About the resulting S6 and S7, COBRA finds
that S6 should remain in its own cluster, but S7 must link with S4 and thus the clusters
{S7} and {S4, S5} are merged. This step shows how a part of one super-instance (in this
case S7, which was originally part of S3) can get reassigned to a more suitable cluster.

4 Experimental evaluation

In this section, we evaluate COBRAS1 in terms of the AQT criteria (anytime, query
efficiency, time efficiency). We compare it to the following state-of-the-art constraint-
based clustering algorithms:

– COBS [14] uses constraints to select and tune an unsupervised clustering algorithm.
We use the active variant in our experiments.

– COBRA [15] is the algorithm that is most related to COBRAS, as discussed earlier
in this paper. We run it with 10, 25 and 50 super-instances.

1 Source code for COBRAS is available at https://dtai.cs.kuleuven.be/
software/cobras/

8 T. Van Craenendonck et al.

– NPU [20] is an active constraint selection framework that can be used with any
non-active constraint-based clustering method. It constructs neighborhoods of points
that are connected by must-link constraints, with cannot-link constraints between
the different neighborhoods. It repeatedly selects the most informative instance, and
queries its neighborhood membership by means of pairwise constraints. NPU is
an iterative method: after neighborhood membership is determined, the data is re-
clustered and the obtained clustering is used to determine the next pairwise queries.
NPU can be used with any constraint-based clustering algorithm, and we use it with
the following two:
• MPCKMeans [3] is an extension of K-means that exploits constraints through

metric learning and a modified objective. We use the implementation in the
WekaUT package 2.
• COSC (for Constrained Spectral Clustering) [12] is an extension of spectral

clustering optimizing for a modified objective. We use the code provided by the
authors 3.

COSC-NPU and MPCKMeans-NPU need to know the desired number of clusters K
prior to clustering. In our experiments, the true K (as indicated by the class labels) is
given to these algorithms. Note that this puts them at an advantage in the experimental
comparison, as in practice K is often not known in advance.

Datasets

We use the same datasets as those used in the evaluation of COBRA [15]. These include
15 UCI datasets: iris, wine, dermatology, hepatitis, glass, ionosphere, optdigits389,
ecoli, breast-cancer-wisconsin, segmentation, column 2C, parkinsons, spambase, sonar
and yeast. These were selected because of their repeated use in earlier work on constraint-
based clustering (for example, [3, 20]). Optdigits389 contains digits 3, 8 and 9 of the
UCI handwritten digits data [3, 10]. Duplicate instances are removed from all of these
datasets, and the data is normalized between 0 and 1. Further, we use the CMU faces
dataset, containing 624 images of 20 persons with different poses and expressions, with
and without sunglasses. This dataset has four natural clustering targets: identity, pose,
expression and sunglasses. A 2048-value feature vector is extracted for each of the
images using the pre-trained Inception-V3 network [13]. Further, two clustering tasks
are included for the 20 newsgroups text dataset: clustering documents from 3 news-
groups on related topics (the target clusters are comp.graphics, comp.os.ms-windows and
comp.windows.x, as in [1, 10]), and clustering documents from 3 newsgroups on very
different topics (alt.atheism, rec.sport.baseball and sci.space, as in [1, 10]). To extract
features from the text documents we apply tf-idf, followed by latent semantic indexing
(as in [10]) to reduce the dimensionality to 10.

In summary, the comparison is based on 21 clustering tasks (15 UCI datasets, 4
target clusterings for the CMU faces data, and 2 subsets of the newsgroups data).

2
http://www.cs.utexas.edu/users/ml/risc/code/

3
http://www.ml.uni-saarland.de/code/cosc/cosc.htm

COBRAS: Interactive Clustering with Pairwise Queries 9

Experimental methodology

We perform 10-fold cross-validation 10 times (similar to e.g. [1] and [10]), and report
averaged results. The algorithms always cluster the full dataset, but can only query the
relations between pairs that are both in the training set. The quality of the resulting
clustering is evaluated by computing the Adjusted Rand index (ARI, [8]), only on
the instances in the test set. The ARI measures the similarity between the produced
clusterings and the ground-truth indicated by the class labels. A score of 0 means that
the clustering is random, 1 means that it is exactly the same as the ground-truth. The
score for an algorithm for a particular dataset is given by the average ARI over the 10
repetitions of 10 fold cross-validation.

We make sure that COBRAS and COBRA do not query any test instances during
clustering by only using training instances to compute the medoids of the super-instances.
For NPU, pairs involving an instance from the test set are simply excluded from selection.

In each iteration of COBRAS, a super-instance is split and COBRA is run on the
resulting new set of clusterings. If the user stops answering pairwise queries before the
end of the COBRA run (which is simulated frequently in the experiments: we consider
the intermediate clusterings after each query), COBRAS returns the clustering as it was
at the beginning of the iteration. The clustering that is returned is only updated after the
COBRA run, which prevents us from returning clusterings for which the merging step
was not finished yet. This holds for all COBRA runs expect the first one, as in that case
there is no real prior clustering at the beginning of the iteration.

COBRA is not able to handle an unlimited amount of pairwise queries: once all the
relations between super-instances are known, the clustering process naturally stops. In
our experiments, we assume that COBRA simply keeps returning its final clustering after
this point, which allows us to compare all algorithms for the same number of pairwise
queries.

Clustering quality

Figure 4(a) shows the aligned ranks for COBRAS and all competitors over all clustering
tasks4. In contrast to the regular rank, the aligned rank [7, 6] takes the relative differences
between algorithms for individual datasets into account. The first step in computing it
is to calculate for each dataset the average ARI achieved by the algorithms. Then, for
each algorithm, the difference between its ARI and this average is calculated, and the
resulting differences are sorted from 1 to kn (k the number of algorithms, n the number
of datasets). The aligned rank for an algorithm is the average of the positions of its
entries in the sorted list.

Figure 4(b) shows the average ARI of each method over all clustering tasks. This
gives some indication of how substantial the differences in ARI are in practice.

Figures 4(a) and 4(b) show that, compared over the entire range of queries, CO-
BRAS is clearly superior to each individual competitor. None of the competitors is

4 For COSC-NPU we set a timeout of 24h for each run of 250 queries for spambase. Typically it
only got to 40 queries after that time. We considered the last clustering produced within 24h to
be the final one, and use it in the results for all remaining queries in producing the graphs.

10 T. Van Craenendonck et al.

0 50 100 150 200 250

40

60

80

100

120

COBRA-10

COBRA-25

COBRA-50

COBS

COBRAS

MPCKMeans-NPU

COSC-NPU

Aligned rank

Number of queries

(a)

0 50 100 150 200 250
0.30

0.35

0.40

0.45

0.50

0.55

COBRA-10

COBRA-25

COBRA-50

COBS

COBRAS

MPCKMeans-NPU

COSC-NPU

Average ARI

Number of queries

(b)

Fig. 4: (a) Aligned rank for all methods over all clustering tasks (b) Average ARIs for all methods
over all clustering tasks

able to produce good results during the entire clustering process, which is crucial for
interactive clustering. Some of them outperform COBRAS for a specific range of the
number of queries, but those that do are outperformed by a much larger margin for other
ranges. We illustrate this point by comparing COBRAS to COBRA-50 in more detail.
Figure 4(a) shows that COBRA-50 outperforms COBRAS in the range of (roughly)
50-70 queries. However, for < 50 queries, COBRAS-50 performs much worse than
COBRAS; the difference in average ARI in this range is much greater than in the 50-70
range. Furthermore, COBRA-50’s performance stagnates around 50 queries. Thus, the
anytime behavior of COBRA-50 is vastly inferior to that of COBRAS. COBRA-50 is
only preferable to COBRAS when one knows the optimal number of super-instances in
advance. The same holds for COBRA-10 and COBRA-25.

Table 1 shows win/loss statistics that confirm the above conclusions. It demonstrates
that COBRAS outperforms its competitors in the majority of cases (18 out of 24).
COBRAS significantly (Wilcoxon test, p < 0.05) outperforms COBRA-10, COBRA-25,
COBRA-50 and COSC-NPU for at least one of the query numbers. It outperforms
MPCKMeans-NPU and COBS as well, but this difference is found not to be statistically
significant. It is never significantly outperformed by any other method.

Table 1: Wins and losses over the 21 clustering tasks. An asterisk indicates that the difference
is significant according to the Wilcoxon test with p < 0.05. Between parentheses we report the
average margin by which COBRAS wins or loses.

25 queries 50 queries 100 queries 200 queries
win loss win loss win loss win loss

COBRAS vs. COBRA-10 11 (0.05) 10 (0.02) 16* (0.07) 5 (0.01) 17* (0.10) 4 (0.01) 18* (0.12) 3 (0.01)
COBRAS vs. COBRA-25 7(0.03) 14 (0.04) 9 (0.03) 12 (0.03) 14 (0.04) 7 (0.01) 17* (0.06) 4 (0.01)
COBRAS vs. COBRA-50 16* (0.15) 5 (0.01) 9 (0.04) 12 (0.04) 9 (0.02) 12 (0.02) 12 (0.03) 9 (0.01)

COBRAS vs. MPCKM-NPU 11 (0.06) 10 (0.02) 13 (0.07) 8 (0.02) 11 (0.07) 10 (0.02) 11 (0.06) 10 (0.02)
COBRAS vs. COSC-NPU 14* (0.13) 7 (0.02) 15* (0.13) 6 (0.02) 13 (0.13) 8 (0.03) 9 (0.10) 12 (0.04)

COBRAS vs. COBS 12 (0.04) 9 (0.03) 13 (0.04) 8 (0.03) 12 (0.05) 9 (0.03) 10 (0.06) 11 (0.02)

COBRAS: Interactive Clustering with Pairwise Queries 11

Runtime

Figure 5 shows the ratio of the run time of COBRAS to the run times of its competitors
for the 21 clustering tasks after performing 100 queries. COBRA is typically the fastest
algorithm. This is not surprising, as it requires only a single run of K-means, while
COBRAS requires multiple K-means runs. Compared to the other competitors, COBRAS
is one to three orders of magnitude faster for all datasets. The key difference between
COBRAS and its competitors is that COBRAS only re-clusters the parts of the dataset
that are being refined. In contrast, MPCKMeans-NPU and COSC-NPU require frequent
re-clustering of the entire dataset.

Practically speaking, the time between consecutive queries is under a second for all
datasets considered here, which is fast enough for interactive clustering.

The high runtimes of COBS are caused by the fact that it generates a large number
of unsupervised clusterings prior to querying the user. Once this set of clusterings is
generated, however, selecting the clusterings is fast. This means that COBS can be useful
in interactive settings where the time between starting the system and answering the first
query is of no concern.

COBRA-25
COBRAS
COBS
COSC-NPU
MPCKMeans-NPU

Algorithms

Datasets

1

10

100

1,000

10,000

0.1

Speedup of COBRAS over competitor

Fig. 5: Ratio of COBRAS to competitors run time for 21 clustering tasks. For COBRA we only
include the run times of COBRA-25 to not clutter the graph, also the run times for COBRA-10
and COBRA-50 are typically lower than all others.

To summarize all the above: COBRA and possibly COBS can compete with CO-
BRAS in terms of time efficiency; COBRA can compete in terms of query efficiency
if its NS parameter is chosen optimally; none of the existing methods can compete in
terms of anytime behavior.

5 Conclusion

We have introduced COBRAS, a novel system for interactive semi-supervised clustering.
The key innovation in COBRAS is its procedure for dynamically refining super-instances.
This innovation makes it the first clustering system to excel at all three of the following
crucial criteria for interactive clustering systems: anytime behavior, query efficiency, and
time efficiency. This should make COBRAS the method of choice in many applications
of semi-supervised clustering.

12 T. Van Craenendonck et al.

Acknowledgements

TVC is supported by the Agency for Innovation by Science and Technology in Flanders
(IWT). Research supported by Research Fund KU Leuven (GOA/13/010), Research
Foundation - Flanders (G079416N), and the European Research Council (Horizon 2020,
grant agreement 694980, “SYNTH”).

References

1. Basu, S., Banerjee, A., Mooney, R.J.: Active semi-supervision for pairwise constrained
clustering. In: Proc. of SDM 2004

2. Basu, S., Bilenko, M., Mooney, R.J.: A probabilistic framework for semi-supervised clustering.
In: Proc. of KDD 2004

3. Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning in semi-
supervised clustering. In: Proc. of ICML 2004

4. Caruana, R., Elhawary, M., Nguyen, N.: Meta clustering. In: Proc. of ICDM 2006
5. Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric learning. In:

Proc. of ICML 2007
6. Garcı́a, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple

comparisons in the design of experiments in computational intelligence and data mining:
Experimental analysis of power. Information Sciences (2010), special Issue on Intelligent
Distributed Information Systems

7. Hodges, J.L., Lehmann, E.L.: Rank methods for combination of independent experiments in
analysis of variance. The Annals of Mathematical Statistics (1962)

8. Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification (1985)
9. von Luxburg, U., Williamson, R.C., Guyon, I.: Clustering: Science or Art? In: Workshop on

Unsupervised Learning and Transfer Learning (2014)
10. Mallapragada, P.K., Jin, R., Jain, A.K.: Active query selection for semi-supervised clustering.

In: Proc. of ICPR 2008
11. Ng, R.T., Han, J.: Clarans: A method for clustering objects for spatial data mining. IEEE

TKDE 14(5), 1003–1016 (2002)
12. Rangapuram, S.S., Hein, M.: Constrained 1-spectral clustering. In: Proc. of AISTATS 2012
13. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception archi-

tecture for computer vision. CoRR abs/1512.00567 (2015), http://arxiv.org/abs/
1512.00567

14. Van Craenendonck, T., Blockeel, H.: Constraint-based clustering selection. In: Machine
Learning (2017)

15. Van Craenendonck, T., Dumančić, S., Blockeel, H.: COBRA: A Fast and Simple Method for
Active Clustering with Pairwise Constraints. In: Proc. of IJCAI 2017

16. Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In: Proc. of ICML 2000
17. Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained K-means Clustering with

Background Knowledge. In: Proc. of ICML 2001
18. Wang, X., Qian, B., Davidson, I.: On constrained spectral clustering and its applications. Data

Mining and Knowledge Discovery, 2014
19. Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.: Distance metric learning, with application to

clustering with side-information. In: NIPS 2003
20. Xiong, S., Azimi, J., Fern, X.Z.: Active learning of constraints for semi-supervised clustering.

TKDE, 2014

