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Recently, a combination of model predictive control and a reduced genetic algorithm (RGA-MPC) has shown to
be an efficient control technique for real-time flood control, making use of fast conceptual river models. This
technique was so far only tested under ideal circumstances of perfect model predictions. Prediction errors ori-
ginating from hydrodynamic model mismatches, however, result in a deterioration of the real-time control
performance. Therefore, this paper presents two extensions of the RGA-MPC technique. First, a new type of
conceptual model is introduced to further increase the computational efficiency. This reduced conceptual model
is specially tailored for real-time flood control applications by eliminating all unnecessary intermediate calcu-
lations to obtain the flood control objectives and by introducing a new transport element by means of flow
matrices. Furthermore, the RGA-MPC technique is extended with a flexible data assimilation approach that
analyzes the past observed errors and applies an appropriate error prediction scheme. The proposed approach
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largely compensates for the loss in control performance due to the hydrodynamic model uncertainty.

1. Introduction

The number of river floods has steadily increased during the last
decades, as well in Belgium (MIRA, 2013) as in other parts of the world
(EM-DAT, MEA, 2005). Increasing trends of extreme rainfall events due
to climate change (Lehner et al., 2006, Willems et al., 2012, IPCC, 2014,
Vansteenkiste et al., 2014) and the rising urbanization (Huang et al.,
2008, Hawley and Bledsoe, 2011, Poelmans et al., 2011) are two ex-
amples of ongoing trends that are associated with increasing number of
floods. Previous research has shown that these economically costly
natural disasters can be strongly reduced by using model predictive
control (MPC) for improved retention basin management (Barjas-
Blanco et al., 2010, Breckpot et al., 2013, Chiang and Willems, 2015).
The MPC technique aims to optimize the retention basin regulation, e.g.
the controllable gate levels, in real-time making use of rainfall forecasts
and model-based predictions of river flow conditions, based on a given
objective. Several successful applications of MPC for improved reservoir
operation can be found in the literature (e.g. Galelli et al., 2014,
Schwanenberg et al., 2014, Tian et al., 2015, Ficchi et al., 2016).

Recently, a combination of MPC and a reduced genetic algorithm
(RGA) was presented as a successful and fast alternative for classic MPC
controllers (Vermuyten et al,. 2018). RGA-MPC uses fast conceptual
river models (Wolfs et al., 2015) to predict the future system states. For
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the Demer basin in Belgium, damage cost reductions between 2% and
31% were obtained with this heuristic approach in comparison to the
current regulation based on programmable logic controllers (PLC).
RGA-MPC was so far only tested under ideal circumstances of assumed
perfect model predictions, while model mismatches and rainfall fore-
cast errors can have an important impact on the control performance
(Walker et al., 2003, Brandimarte and Di Baldassarre, 2012).

Model-based flood forecast uncertainty may originate from four key
uncertainty sources: model input, observational, model parameters and
model structure uncertainties (Refsgaard et al., 2007, Shrestha and
Solomatine, 2008, Freni and Mannina, 2010, Willems, 2012). In this
paper, the uncertainties related to the hydrodynamic river model
components are addressed. They result in deviations between the pre-
dictions used in the MPC based optimization process and the actual
river system observations and, as a consequence, lead to a loss in flood
control performance.

MPC has some ‘inherent robustness’ towards uncertainties due to its
receding horizon strategy (De Nicolao et al., 1996, Magni and
Sepulchre, 1997, Mayne et al., 2000). This inherent robustness is,
however, limited and the impact of large uncertainties will be un-
acceptable. Therefore, an efficient real-time control system should
consist of efficient model-updating algorithms and uncertainty propa-
gation techniques, beside an efficient optimization algorithm (Sarma
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et al., 2006). Data assimilation methods update the river model and
systematically eliminate the deviations between predictions and ob-
servations (Hutton et al., 2011,a,b, Liu et al., 2012). In order to include
the input uncertainty, robust MPC controllers such as multiple MPC
(van Overloop et al., 2008), adaptive multiple MPC (Delgoda et al.,
2013) and tree-based MPC (Raso et al., 2014) have been developed.

Two groups of data assimilations methods are typically considered
to account for the hydrodynamic model uncertainty: state updating by
means of state estimators (SE) and error correction by means of pre-
diction error methods (PEM). State estimators, such as a moving hor-
izon estimator (Haseltine and Rawlings, 2005, Rawlings and Bakshi,
2006, Liu et al., 2012) or an ensemble Kalman filter (Evensen, 1994),
adjust the initial conditions of the river model to match the observa-
tions. This model updating approach improves the initial conditions of
the prediction model and thus also the prediction accuracy. The effect
of this update will, however, wash out with increasing lead time as no
observations are yet available for this forecast period (Madsen and
Skotner, 2005). Prediction error methods analyze the past model re-
siduals and apply an error correction scheme to improve the prediction
accuracy. Few examples are autoregressive, moving-average and auto-
regressive-moving-average models (Broersen and Weerts, 2005, Liu
et al., 2012). This paper analyzes the performance of different state
estimators and predictions error methods and their applicability in
combination with conceptual models and RGA-MPC. A new flexible
data assimilation approach is presented and compared against existing
data assimilation methods.

2. Study area

The Demer basin is a very flood prone area located in the eastern
part of Flanders, Belgium. During the last decades, this basin has faced
many floods of which the floods of September 1998, January 2002 and
November 2010 are the most extreme ones. For example, the severe
flood of September 1998, which has an approximate return period of
100 years, caused a total loss of 16 million EUR (HIC, 2003).

This densely populated basin covers a total area of 2334 km?, mostly
consisting of loam and sand. The main stream is the Demer river which
has its source in Ketsingen at an altitude of 89 m above the Belgian
reference level TAW and flows after 85km into the Dijle river in
Werchter at 10 m TAW. The Demer river and its most important tri-
butaries (Herk, Velpe and Gete) are fed by a spring. Nevertheless, these
rivers can be seen as rain-fed rivers due to their high sensitivity to
rainfall. For example, the average downstream discharge of the Demer
river is 6 m®/s in summer (August) and 34 m3/s in winter (December).
The catchments average annual rainfall is 800 mm.

This paper focuses on the Herk river system, which is part of the
Demer basin. The Herk case study consists of two streams: Kleine Herk
in the north and Grote Herk in the south (Fig. 1). An inline retention
basin was installed in 2014 to protect the city of Stevoort. Three hy-
draulic structures regulate the water flow in this network. For this river,
a full hydrodynamic model based on detailed cross-section data and
including the main floodplains, retention basin and hydraulic structures
has been implemented and calibrated before by the Flemish Environ-
ment Agency (VMM). This model was implemented in the InfoWorks RS
software.

3. Methods
3.1. Conceptual modelling

The river models used in this research are conceptual models cre-
ated semi-automatically by means of the Conceptual Model Developer
(CMD) tool of Wolfs et al. (2015). This flexible and modular conceptual
modelling approach divides the entire river network into distinct units
to simplify the network topology (storage cell concept). The resulting
reservoir models are less detailed than full hydrodynamic river models,
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Fig. 1. River network of the Herk case study, together with the retention basin,
the hydraulic structures, observation locations and the city of Stevoort.

but computationally much more efficient. As only a limited number of
observations are available along river networks, simulation results with
full hydrodynamic models are used to calibrate conceptual models
(Meirlaen et al., 2001, Vanrolleghem et al., 2005). These conceptual
models have been successfully applied for flood modelling, integrated
catchment modelling and recently for real-time flood control (Wolfs
et al., 2012, De Vleeschauwer et al., 2014, Wolfs et al., 2016, Meert
et al., 2016, Vermuyten et al., 2018).

A standard conceptual model consists of different reservoirs inter-
connected by hydraulic structures. The volume in each reservoir is
calculated by means of a mass balance equation based on the incoming
and outgoing flows. These volumes are transformed to water levels
located in the reservoirs using hypsometric curves. The flows over the
hydraulic structures and the different control objectives are calculated
based on these water levels (Fig. 2, left). Rainfall-runoff discharges
originating from synthetic hydrographs or hydrological models are the
inputs to the conceptual models.

Fig. 3 gives an overview of three conceptual model types. In a de-
tailed conceptual model, each floodplain area of the full hydrodynamic
model (InfoWorks RS) is explicitly modeled as a distinct reservoir. This
conceptual model type has the best model accuracy and is computa-
tionally much more efficient than the full hydrodynamic model. As
evolutionary optimization methods such as RGA require many itera-
tions, Vermuyten et al. (2018) developed a simplified conceptual model
to further improve the computational efficiency. This approach in-
tegrates floodplain areas in river reservoirs where possible or merges
them with each other, while making a tradeoff between model accuracy
and computational efficiency.

This paper presents a revised conceptual model type, the reduced
conceptual model. It is based on an approach that further increases the
computational efficiency by eliminating unnecessary variables and in-
termediate calculations to obtain the flood control objectives and thus
reducing the number of calculation nodes. As the control objectives are
uniquely related to the water levels and these water levels are un-
ambiguously related to the reservoir volume, the control objectives can
be directly calculated based on the reservoir volume and aggregated per
reservoir (Fig. 2). Furthermore, also the hydraulic structure equations
are eliminated from the model. These equations are taken the same as
the ones implemented in the full hydrodynamic InfoWorks RS software
(Innovyze, 2014) and their application is computationally demanding.
Therefore, all hydraulic structures between two reservoirs are grouped
and replaced by a new transport element, a flow matrix. The resulting
flow between the two reservoirs is calculated in a preprocessing step for
different combinations of the reservoir volumes and stored in these
multidimensional lookup tables. The volume of each reservoir is varied
based on a fixed water level step of the reservoirs representative water
level. This representative water level is the only water level per
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Fig. 2. Illustration of the model reduction approach. Control objectives are directly calculated based on the reservoir volume. Hydraulic structures are grouped and

replaced by flow matrices.
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Fig. 3. Hypothetical examples of three different conceptual model types derived from a detailed InfoWorks RS model.

reservoir that is modelled and serves as an input for the flow matrix
calculations. The water level step is set to 1 cm for the Herk case study,
but can also be taken different per reservoir. For each controllable
hydraulic structure between the two reservoirs, the gate level of this
structure is added as an additional dimension of the flow matrix. Gate
levels are varied with 1 cm between the upper and lower boundary of
the gate position. An example of a two-dimensional flow matrix is given
in Fig. 4.

3.2. Model predictive control and reduced genetic algorithm

RGA-MPC is a technique that combines model predictive control
(MPC) based on a fast conceptual river model and a reduced genetic
algorithm (RGA). Applied to our case, the technique optimizes the gate
positions in real-time based on the conceptual model predictions of
future river flows and minimization of the total flood damage within a
given time horizon as objective function. In here, the RGA is an heur-
istic optimization method that strongly reduces the number of possible
solutions by considering only a subset of the possible gate operation
positions at future time moments as optimization variables. Each

optimization starts with an update of the initial conditions of the pre-
diction model in order to represent the current actual system states.
Next, possible future control strategies are generated, so-called gate
level (GL) scenarios. This generation can be random or the best control
strategy so far can be mutated. Next, the newly generated control
strategy is applied to the river model and the results are compared with
those of the best solution so far. The best control strategy with respect
to the objective criteria is selected to be used during the next iteration
until the stopping criteria are being met. The reduced genetic algorithm
has a higher convergence rate than a standard genetic algorithm. For
more details about the RGA-MPC method, the reader is referred to
Vermuyten et al., (2018).

3.3. Hydrodynamic model uncertainty

This study considers three types of models to simulate the river
hydrodynamics: the full hydrodynamic model implemented in
InfoWorks RS, the original detailed conceptual model and the reduced
conceptual model. In order to investigate the effect of the hydro-
dynamic model uncertainty on the prediction accuracy and the real-
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Fig. 4. Two-dimensional flow matrix to calculate the total flow between two
reservoirs, based on the representative water level (WL) of each reservoir.

time control performance, a different model is used to represent the
actual river system (simulation model) and to predict the future system
states (prediction model). The detailed conceptual model is assumed
here as a close representation of the actual river system and serves as
simulation model. The reduced conceptual model is subject to model
mismatches towards the detailed conceptual model as a result of the
simplification and reduction processes to increase the computational
efficiency of the river model, see section 3.1. The differences between
the reduced and the detailed conceptual model are in this study con-
sidered as the hydrodynamic model uncertainty by using the reduced
conceptual model as prediction model. It has to be noted that this
model uncertainty is likely to be smaller than the differences one would
obtain if the reduced conceptual model results would be compared with
observations (Meert, 2017). The aim of this experimental set-up is,
however, to isolate and investigate the importance of the hydrodynamic
model uncertainty and the added value of an eventual data-based post-
bias correction of the model by means of data assimilation. All con-
sidered data assimilation methods are applied to the reduced con-
ceptual model (prediction model) in order to match the detailed con-
ceptual model (simulation model).

3.4. Data assimilation

Due to the hydrodynamic model uncertainty, the state predictions
by the model may drift away from the actual system states if no feed-
back mechanism by means of data assimilation is introduced. A good
data assimilation approach consists of an update of the initial condi-
tions of the prediction model (state estimator) and an error correction
of the forecast simulation (prediction error method). Fig. 5 shows the
flowchart of the reduced genetic algorithm with data assimilation.

Data assimilation relies on observations along the river network,
which are only available at a limited number of locations. For example,
only seven out of the twelve reservoirs in the reduced conceptual model
of the Herk river have a water level observation available. State esti-
mators can, however, estimate all system states based on only few ob-
servations in order to obtain good initial conditions for all reservoirs.
Prediction error methods (PEM) analyze the model residuals of the
hindcast simulation, predict the forecast error and impose this error
correction on the forecast simulation in a post-processing step. The
error at the time of forecast (TOF) is usually reduced to zero in this way.

The next two sections describe different state estimators and pre-
diction error methods. All considered data assimilation methods correct
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Fig. 5. Flowchart of the reduced genetic algorithm with data assimilation
(blue). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

the states of the prediction model, i.e. the reservoir volumes, based on
the observed water level deviations. First, the water level predictions at
observed locations are corrected, after which the volumes of the cor-
responding reservoirs are adjusted accordingly by means of the water
level — volume relations of the reservoirs (the hypsometric curves). In
this way, all other water levels and the control objectives, which are
calculated based on these volumes, are also corrected and the feedback
is taken into account during the optimization.

3.5. State estimators

3.5.1. Instant updating

Instant or instantaneous updating (IU) is a very simple and fast state
estimator that makes use of the characteristics of the conceptual reservoir
model. Reservoirs that cover an observation location are instantaneously
updated, based on the real-time water level observations. The observed
water level is converted to the reservoir state (volume), making use of
the reservoir hypsometric curve. If two or more observation locations are
available along the region covered by the same reservoir, the most re-
presentative observation location for the reservoir is considered on the
basis of the updating. Reservoirs without observations are not updated,
which is the main drawback of instant updating.

3.5.2. Total instant updating

Total instant updating (TIU) is a rather theoretical state estimator,
similar to instant updating. TIU assumes that each reservoir has an
observation available. In practice, this will seldom be the case, as ob-
servations are typically only available in river reaches and mostly at
controlled hydraulic structures. This experimental state estimator may,
however, give an indication of the added value of installing additional
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measurement devices. Each reservoir is updated in the same way as
with instant updating.

3.5.3. Moving horizon estimator

A moving horizon estimator (MHE) updates the initial model states
by modifying the historical inputs, states or model parameters
(Haseltine and Rawlings, 2005, Rawlings and Bakshi, 2006, Liu et al.,
2012). This is achieved by solving an online optimization problem in
which the simulation results for the hindcast period are fitted to the
observation data. The squared error objective for this optimization
problem is formulated as follows:

J= Z wy (5—y)* + Z ws (6—%)* + Z wp, Ap?
i i i (1)
with J the optimization cost function over the hindcast period, x; the
i-th predicted variable, y; the i-th observed variable, X; the i-th prior
predicted variable, p; the i-th estimated parameter, input or state
variable and wy,wz and w), the weighting coefficients for the different
cost terms. The first cost term resembles the penalty cost for residuals
towards observations, the second for residuals towards prior model
predictions and the third for changes in the estimated parameters, in-
puts or state variables.

In this study, the states at the beginning of the hindcast period are
being optimized with the MHE. Reservoirs with an observation avail-
able are updated by means of instant updating, while reservoirs without
observation are sequentially optimized based on the cost function J.
The last estimated state variables from the hindcast simulation are used
as initial conditions for the prediction model.

As a MHE in turns involves optimization, the main drawback of this
approach is the computational complexity (Haseltine and Rawlings,
2005, Rawlings and Bakshi, 2006). Conceptual models, however, pro-
vide a solution here due to their high computational efficiency.

3.5.4. Ensemble Kalman filter

The Kalman filter is assumed to be the optimal state estimator for
unconstrained, linear systems (Haseltine and Rawlings, 2005, Rawlings
and Bakshi, 2006). For nonlinear systems, the extended Kalman filter
was developed, which first linearizes the nonlinear system before ap-
plying the Kalman filter. The extended Kalman filter is, however, dif-
ficult to implement and to tune and not reliable for highly nonlinear
systems such as flood forecasting models (Julier and Uhlmann, 2004).
To overcome this problem, the ensemble Kalman filter (EnKF) was in-
troduced by Evensen (1994). An EnKF is actually a Monte Carlo ap-
proach in which an ensemble of model states is propagated based on
perturbed input series (Hutton et al., 2014b). The EnKF has been ex-
tensively applied in different disciplines due to its easy implementation
and general applicability to any reservoir model (Naevdal et al., 2003,
Hargreaves et al., 2004, Wen and Chen, 2005, Xie and Zhang, 2010). It
is basically a recursive filter that minimizes the covariance of prediction
errors and consists of two steps: a prediction step and an analysis step.
The prediction step creates rainfall-runoff input ensembles by adding
noise to the deterministic rainfall-runoff input series. These ensembles
are then applied to the conceptual river model which generates model
predictions for each of these ensembles. The analysis step creates ob-
servation ensembles and calculates the error covariance matrices and
the Kalman gain. The state ensembles are then updated based on the
linear correction of the standard Kalman Filter. For the more details
about the approach, see e.g. Evensen, 1994, Moradkhani et al., 2005,
Gillijns et al., 2006, Komma et al., 2008, Chen et al., 2011.

3.6. Prediction error methods

3.6.1. Prediction error models Van Steenbergen

Van Steenbergen et al. (2013) proposed six prediction error models
(PEM) to reduce the prediction error of river catchment hydrological
models. These predefined error models analyze the error during the
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hindcast period and predict the error during the forecast period. The
original forecast simulation is then corrected by applying this error
correction in a post-processing step. This approach can also be applied
to correct flood predictions, based on water level observations. An
overview of the six prediction error models is given below.

PEM1:
e(t) = e 2
PEM2:
em—er
e() =e + m(f—ﬁ) 3)
PEM3:
e(t) = eyxa,=1+Y (€]
PEM4:
e(t) = erxa, "1+ + (1—a, -1+ D) ke, (5)
PEMS:
e(t) = epxa, D + (1—a,1* V) ey, (6
PEM6
e(t) = er# (t,—1) + ey #a,, 1D (t—p)
(=) + (t-1) @)

with e; the error at the time of forecast, e, the mean hindcast error,
t; the time of forecast, t, the forecast period, a,, the mean correlation
factor and a, the correlation factor at time t.

3.6.2. Autoregressive-moving-average model

The autoregressive-moving-average (ARMA) model was introduced
by Whittle (1951) and combines the autoregressive model and the
moving-average model. Both models predict the future values of a time
series after analyzing the given time series. The autoregressive model is
based on a linear combination of the past values, while the moving-
average model is based on a linear combination of past error terms. The
ARMA model contains both models and can be formulated as follows,
with p autoregressive terms and q moving-average terms:

P q
xx=c+¢&+ Z aix;—; + z big_;

i=1

(8

with x time series values, ¢ a constant, e white noise error terms, a;
parameters of the autoregressive model and b; parameters of the
moving-average model.

This study makes use of the ARMASA toolbox developed by
Broersen (2002) to determine the optimal ARMA model. This automatic
algorithm computes several autoregressive, moving-average and ARMA
candidate models based on the hindcast residuals and selects the best
model to correct the forecast simulation.

i=1

3.6.3. Error matrix and error vector

The error matrix approach analyzes the hindcast residuals and
stores them in a matrix as a function of the lead time and the water
level. Newly calculated errors are averaged towards the previous error
value stored in the matrix. The final result is a forecast error correction
as a function of the lead time and the water level. Water levels are
divided into classes of 5cm and lead times into classes of 15 min. The
hindcast period has to be equal to the forecast period in this approach.

Alternatively, the error values can be stored in an error vector, only
depending on the water level. In this way, feedback from the hindcast
period can be taken into account more rapidly during the forecast
correction and the hindcast period can be taken shorter than the fore-
cast period. The dependency on the lead time is, however, no longer
taken into account. Newly calculated errors are again averaged towards
the previously stored error value.
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Table 1
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Description of the condition and the corresponding prediction error model for the four scenarios of the flexible prediction error method.

Condition

Prediction error model

Difference between maximum and minimum hindcast error < 1cm

Monotonically increasing trend of the absolute hindcast error

Monotonically decreasing trend of the absolute hindcast error

Other situations

Linear interpolation between e; at the time of forecast (TOF) and zero at the end of the
forecast period

Spline fitted through the hindcast errors and zero at the two last points of the forecast
period

Linear extrapolation of the two last hindcast errors until a forecast error correction of
zero is reached, zero afterwards

Linear interpolation between e; at the time of forecast (TOF) and zero at the end of the
forecast period

3.6.4. Flexible prediction error method

After analyzing several historical hindcast simulations, four hind-
cast scenarios are defined. The first hindcast scenario corresponds to an
almost constant error over the hindcast period. The threshold for this
scenario was set to 1cm difference between the maximum and
minimum hindcast error. The two most important hindcast scenarios
are a monotonically increasing and monotonically decreasing trend. All
hindcast simulations without a clear trend are categorized under the
fourth hindcast scenario. For each of the four hindcast scenarios, the
corresponding historical forecast errors are analyzed and an appro-
priate prediction error model (PEM) is determined. Table 1 gives an
overview of the four hindcast scenarios and the corresponding PEM in
order of priority. Fig. 6 shows an illustrative example of the error
correction for each of the four scenarios.

The flexible prediction error method (Flex PEM) analyzes the ob-
served hindcast errors and automatically selects one of the four hind-
cast scenarios. The PEM corresponding to the selected scenario is ap-
plied to the forecast simulation. When combining Flex PEM with a state
estimator, this state estimator is applied to the first time step of the
hindcast simulation. The hindcast results corresponding to the time of
forecast are used as initial conditions for the forecast model. In this
way, forecast errors can be estimated as the observed error trend during
the hindcast period, i.e. after the state estimation, will continue during
the forecast period.

3.7. Real-time control performance

RGA-MPC optimizes the future control strategy based on the output
of the prediction model. Due to model uncertainties, these predictions

Hindcast Forecast

e
<lem Z5s

el

correction = 0
at end of forecast

el

L
TOF Lead time

Fig. 6. Example of the prediction error model for each of the four scenarios of
the flexible prediction error method.

Table 2

Overview of the three different types of MPC to investigate the effect of data
assimilation on the real-time control performance when considering model
uncertainty.

MPC Simulation model Prediction model Model uncertainty
No DA Detailed CM Reduced CM Yes
MPC DA Detailed CM Reduced CM Yes
Ideal MPC Detailed CM Detailed CM No

will deviate from the actual future observations in the simulation model
and the real-time controller may take wrong anticipating actions. Three
different types of MPC are considered to investigate how a feedback
mechanism by means of data assimilation (DA) can reduce the loss in
control performance due to model uncertainties (Table 2).

All three MPC types use the detailed conceptual model as reference
simulation model in order to compare the control performance in an
objective way. Ideal MPC considers no model uncertainty as the de-
tailed conceptual model is also used as prediction model. This means
that the controller has perfect knowledge about the future system
states. Ideal MPC is used as a benchmark in this study as it represents
the best obtainable solution. On the other hand, no DA is used as a
second benchmark as it represents an MPC optimization without feed-
back from observations. For this, model uncertainty is introduced by
using the reduced conceptual model as prediction model. MPC DA, fi-
nally, represents an MPC optimization in which data assimilation
methods are implemented to reduce the performance loss due to model
uncertainties. Again, model uncertainty is introduced by using the re-
duced conceptual model as prediction model.

Several data assimilation methods are tested in combination with
MPC to investigate their effect on the real-time control performance.
This performance is compared against the two benchmarks, ideal MPC
and no DA, with the following formula, based on the total damage costs
of the MPC optimizations:

Pl = (Dno pa—Dwmpc pa) #100

&)

(Dno paA—Didear MPC)

with PI the performance improvement [%] and D the total damage
cost [€] (Vermuyten et al., 2018). A good MPC DA method will have a
performance between that of ideal MPC and no DA, aiming for a per-
formance close to ideal MPC or 100%.

4. Results
4.1. Conceptual models

The conceptual models of the Herk are calibrated and validated
based on the simulation results of the full hydrodynamic InfoWorks RS
model. A brief description of the ten calibration and validation events is
given in Table 3, together with the maximum total rainfall-runoff peak
discharge.
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Table 3
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Overview of the ten calibration and validation events with total rainfall-runoff peak discharges for the Herk case study.

Event Period Description Total rainfall-runoff
peak discharge [m®/s]
El Sept 1998 Historical period of heavy rainfall 46
E2 Aug 2003 Historical period of drought, followed by a small rainfall event 25
E3 Dec 1999-Jan 2000 Historical period of heavy rainfall 30
E4 Jan-Feb 1995 Historical period of heavy rainfall 27
E5 Jan-Feb 2002 Historical period of heavy rainfall 30
E6 Nov 2010 Historical period of heavy rainfall 35
E7 Synthetic hydrograph VMM  Synthetic hydrograph starting with a very dry period, followed by a heavy rainfall event, developed by VMM 42
E8 Synthetic hydrograph T1000 Synthetic hydrograph with a return period of 1000 year, developed by VMM 74
E9 Sept 1998 x 1.3 Artificial period of heavy rainfall, created by multiplying the historical period of Sept 1998 with a factor of 1.3 93
E10 2 X Sept 1998 Artificial period of heavy rainfall, created by duplicating the historical event of Sept 1998 in time 62
Table 4
Comparison of three conceptual model (CM) types with respect to model complexity, computational efficiency and model accuracy.
InfoWorks RS Detailed CM Simplified CM Reduced CM
WL nodes > 550 154 82 17
Hydraulic structures > 200 154 59 17
Time step 100s 30s 300s 300s
Computation time 1h 0.8s 0.025s 0.0025s
MAE / 5cm 10cm 10cm

* Event E1 (28 days), Single Intel Xeon E5-1650 3.5 GHz PC with 32 GB RAM.
** Computation time for the complete Herk model in InfoWorks RS.

Table 4 gives an overview of the different conceptual model types
with respect to model complexity, computational efficiency and model
accuracy. In general, conceptual models strongly reduce the number of
calculation nodes in comparison to the InfoWorks RS model. For sta-
bility reasons, a small time step has to be set for the detailed conceptual
model as it contains small floodplain reservoirs. Nevertheless, the
conceptual model strongly outperforms the InfoWorks RS model with
respect to computational efficiency. The mean absolute error (MAE) of
the water level results is limited to 5cm, with reference to the Info-
Works RS model. When the conceptual model is simplified by stronger
lumping, i.e. using reservoirs that span larger areas, the model becomes
more stable and the time step can be increased. Together with the re-
duction in calculation nodes, this results in a model that is 32 times
faster than the original detailed conceptual model, while the MAE re-
mains limited to 10 cm. The model reduction approach results in a re-
duced conceptual model that is an additional ten times faster than the
simplified conceptual model. A significant gain in computational effi-
ciency is obtained, while the impact on the model accuracy is negli-
gible. Consequently, using the reduced conceptual model results in a
much faster optimization of the future flood control strategy without
loss in control quality.

4.2. Prediction accuracy

This section investigates the effect of the data assimilation methods
described in Section 3 on the prediction accuracy of the prediction
model (reduced conceptual model) towards the simulation model (de-
tailed conceptual model). For this, closed-loop simulations are carried
out for each of the ten calibration and validation events with a data
assimilation frequency equal to 15 min. This means that every 15 min in
the simulation model, the prediction model is updated and a new pre-
diction is carried out for the next 48 h. This new prediction takes the
current (and past) observations into account by means of updated in-
itial conditions after applying a state estimator and/or by means of a
prediction error method in a post-processing step. The resulting pre-
dictions are compared with the corresponding observations in the si-
mulation model and are evaluated based on the MAE, which is the
absolute error between predictions and observations averaged over all
observed locations and predictions.

4.2.1. State estimators

Both the EnKF and the MHE have several tuning parameters to tailor
these state estimators for a specific case study. The optimal parameter
settings for the Herk case study are determined by means of a sensitivity
study according to the one at the time principle. The results shown
hereafter are obtained with these optimal parameter settings.

Fig. 7 shows the MAE of the water level predictions as a function of
the lead time for different state estimators. The DA methods IU and TIU
both reduce the initial error at observed locations to zero. For lead
times > 2 h, there is no significant reduction of the MAE in comparison
to the situation without state estimator. The EnKF and the MHE have a
smaller effect on the initial error, but the effect lasts longer than with
TIU. This effect is, however, limited in magnitude. In general, the effect
of a state estimator is limited in time. For small lead times the error is
reduced, while for larger lead times the error converges back to its
original value without state estimator (no SE).

IU and TIU have a negligible computation time as they only require
the conversion from the observed water level to the corresponding re-
servoir volume by means of the hypsometric curve. The MHE and the

MAE [cm]
3 -

no SE

0 L L L J
0 12 24 36 48
Lead time [h]

Fig. 7. Comparison of the mean absolute error (MAE) of the water level pre-
dictions as a function of the lead time for different state estimators in com-
parison to the situation without state estimator (no SE). (For the color version of
this figure, the reader is referred to the web version of this article.).
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Fig. 8. Comparison of the mean absolute error (MAE) of the water level pre-
dictions as a function of the lead time for different prediction error methods in
comparison to the situation without prediction error method (no PEM). (For the
color version of this figure, the reader is referred to the web version of this
article.).

EnKF, however, require a hindcast simulation. The hindcast period of
the EnKF is equal to the time between two observations, i.e. 15 min. The
hindcast period of the MHE was set equal to 2 h after a sensitivity study.
The longer hindcast period and the fact that the MHE actually solves an
optimization problem, leads to a much larger computation time for the
MHE.

4.2.2. Prediction error methods

Fig. 8 summarizes the obtained results for closed-loop simulations
after applying only a prediction error method. As no state estimator is
applied in this analysis, the initial conditions for the predictions are
copied from the previous prediction without error correction. The ap-
plied hindcast period depends on the considered PEM. For PEM1, only
the current error is taken into account, while the error matrix approach
requires a hindcast period of 48 h. For all other PEMs, a hindcast period
of 2h was determined by means of a sensitivity analysis.

Real-time control applications typically consider a future time
horizon based on a moving window (Barjas-Blanco et al., 2010, Galelli
et al., 2014, Tian et al., 2015). Higher importance is given to the model
accuracy at short lead times as the control strategy at larger lead times
can still be adjusted when the control moves over time. Hence, the best
PEM is the one that reduces the prediction error to zero at the time of
forecast while also reducing the prediction error at larger lead times as
much as possible. From Fig. 8 it can be seen that PEM1 and PEM2 fulfill
these criteria best. The error matrix and error vector approach perform
better for larger lead times, but worse for small lead times. Also PEM4,
PEM5 and ARMA perform worse for small lead times, but similar for
larger lead times. PEM6 and Flex PEM reduce the initial error to zero,
but they perform worse for larger lead times, converging back to the
situation without PEM.

4.2.3. State estimators and prediction error methods

This section combines the two most promising PEMs, PEM1 and
PEM2, with a state estimator to further improve the prediction accu-
racy. PEM2 requires a hindcast period of 2 h and is therefore combined
with the MHE. As the hindcast period of the EnKF is limited to 15 min,
this state estimator is combined with PEM1, which requires only in-
formation about the current error. Updating based on IU and TIU
methods cannot be combined with a prediction error method as they do
not have a hindcast period and the initial error is already reduced to
zero by the state estimator itself.

Fig. 9 summarizes the results for the EnKF and the MHE, with and
without PEM. The extension of the data assimilation with a PEM shows
a great improvement over data assimilation when considering only a
state estimator. Not only is the initial error reduced to zero, also the
prediction errors at larger lead times are reduced. When comparing
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Fig. 9. Comparison of the mean absolute error (MAE) of the water level pre-
dictions as a function of the lead time for the ensemble Kalman filter (EnKF)
and the moving horizon estimator (MHE) with and without prediction error
method (PEM) in comparison to the situation without data assimilation (no
DA). (For the color version of this figure, the reader is referred to the web
version of this article.).

these results with those of Fig. 7, it is clear that these combined data
assimilation approaches also outperform the IU and TIU updating
methods.

Because the combination MHE + PEM2 outperforms the combina-
tion EnKF + PEM], it can be concluded that MHE + PEM2 is the ap-
propriate method to improve the prediction accuracy. The drawback of
this approach is, however, the higher computation time. Therefore, and
because the performance of both combinations, MHE + PEM2 and
EnKF + PEM1, is similar, both data assimilation methods are im-
plemented in the model predictive control system to investigate their
effect on the real-time control performance.

4.3. Real-time control performance

Fig. 10 shows the performance improvement of eight DA methods
averaged over the five damage relevant events for the Herk case study
(E1, E6, E7, E8 and E10). Also the absolute damage cost reduction is
shown for each DA method on the right hand side of the figure, summed
over all five events. This is the amount of damage that is avoided by
applying the DA method in comparison to the situation without data
assimilation (no DA).

Combining the MHE or the EnKF with respectively PEM2 and PEM1
results in an improved control performance. The control performance of
these combined DA methods is better than that of IU, but worse than
that of TIU. Combining the MHE and EnKF with the flexible prediction
error method (Flex PEM) results in the best control performance. Also

Total damage
reduction by DA [€]

V) o -143 000
TIU o -20 000
MHE o -128 000
MHE + PEM2 o -111 000
MHE + Flex PEM o 17 000
EnKF (o] -23 000
EnKF + PEM1 o -40 000
EnKF + Flex PEM o 58 000
L . )
0 50 0

Average performance improvement [%]

Fig. 10. Average performance improvement for eight different DA methods,
together with the summed total damage cost reduction by the DA method, for
the five damage relevant events for the Herk case study.
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for each individual event, the best performance is obtained with the
flexible DA methods.

PEM1 and PEM2 were clearly the best prediction error methods
with respect to the prediction accuracy of the water levels at observed
locations when considering both dry and wet periods (see section 4.2.2
and Fig. 8). The proposed flexible prediction error method, however,
outperforms these two PEMs with respect to the control performance.
This can be explained by the more sophisticated approach of Flex PEM
in which the hindcast error is considered in a more detailed way and
depending on the situation an appropriate PEM is applied. As a result,
Flex PEM performs better during flood relevant moments, i.e. during
periods of high water. As these periods determine the final control
performance, rather than the low water periods, Flex PEM is preferred
to be used for real-time flood control applications.

All DA methods except those with the Flex PEM have a negative
total damage cost reduction. This means that the damage cost is higher
when applying these DA methods in comparison with MPC optimization
without considering feedback from observations. This originates from a
bad control performance of these DA methods for event E8, which is the
most extreme event. As this event results in the highest damage costs,
this has a large impact on the total damage cost reduction. These un-
satisfactory results for event E8 can be explained by a badly calibrated
broad crested weir in the detailed conceptual model, located in the river
reach of the Kleine Herk downstream of the retention basin of Stevoort.
During periods of high water, this broad crested weir has a lower flow
capacity than the corresponding structures in the reduced conceptual
model and the InfoWorks RS model. This difference induces large pre-
diction errors in the reservoir between this broad crested weir and the
retention basin during periods of flooding. As this reservoir corresponds
to the most damage prone location in the Herk case study, these pre-
diction errors have an important impact on the control performance.
More specifically, the prediction model wrongly predicts a decrease of
the water level in the concerning reservoir, while actually the corre-
sponding observed water level increases in the simulation model.
Accordingly, MPC does not identify this increase in future damage cost
and does not anticipate on it. The state estimators correct the initial
errors, but afterwards again different water level results are obtained in
the simulation model (increasing) and the prediction model (de-
creasing). PEM1 and PEM2 are not sophisticated enough to identify
these diverging results and take this into account during the error
correction. Therefore, the flexible prediction error method (Flex PEM)
was developed in this study, which can cope with this type of condi-
tions. The Flex PEM shows a significant improvement for event E8 in
comparison to PEM1 and PEM2. In combination with the EnKF, a
performance improvement of 20% is achieved towards MPC without
data assimilation. A performance improvement close to 100% is hard to
reach, as it requires some time to detect and identify the diverging
results, hence before an appropriate error correction can be made.
During this time period, which has a length in the order of magnitude of
the hindcast period, non-optimal control actions are most probably
taken, which of course decreases the final control performance.
Therefore, it is important to limit the length of the hindcast period.
After analyzing the results, it was concluded that the two hour hindcast
period used in this study is appropriate. A shorter hindcast period
would make Flex PEM too reactive to hindcast trends, while with a
longer hindcast period it would take longer before a diverging trend is
detected. In combination with the MHE, the control performance is still
worse than that of MPC without data assimilation. This can be ex-
plained by the fact that the badly calibrated broad crested weir is a vital
component of the conceptual model as it is a hydraulic structure located
in one of the main river reaches. These kind of model errors, with an
impact of this magnitude, should already be eliminated in the calibra-
tion and validation process of the conceptual model, rather than being
corrected by means of data assimilation. This modelling error, however,
did not manifest during model calibration simulations where no MPC
based control was applied but a traditional PLC regulation. Only for the
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extreme event E8 in combination with the corresponding MPC regula-
tion, this modelling error revealed. Therefore, it is important and ad-
vised to also validate conceptual models for regulations different than
the PLC based regulation, as is done in Vermuyten et al. (2018). After
recalibration of the broad crested weir, the detailed conceptual model
shows similar performance as the reduced conceptual model and the
InfoWorks RS model for event E8. The authors, however, decided to
continue with the original weir implementation, since it is interesting to
see how the flexible prediction error method succeeds in strongly re-
ducing the negative impact of this modelling error.

4.4. Magnitude of the model uncertainty

It has to be noted that in real-life cases the total model uncertainties
may be larger than the ones considered in this study. As can be seen
from Fig. 7, the average prediction error is in this study limited to 3 cm.
Minor model errors can thus have a large effect on the final control
performance. Moreover, improved water level predictions at observed
locations do not necessarily lead to improved predictions of the sur-
rounding water levels and of the control objectives. The water level
observations are, however, the only available feedback information.
Minimizing the prediction errors at the observed locations is the best
one can do and the only way to take model uncertainties into account. It
is much more difficult to improve the control performance in case of
small model uncertainties than in case of large model uncertainties.
Fig. 11 demonstrates this by means of a conceptual drawing.

In case of small model uncertainties (small observed error, orange
triangles), data assimilation (DA) can possibly result in a corrected
prediction (green squares) that is worse than the prior prediction when
evaluated over all modeled water level nodes. In this case, data as-
similation deteriorates the overall prediction accuracy. On the other
hand, in case of large model uncertainties (large observed error, red
circles), DA will more easily and clearly improve the overall prediction
accuracy. The final prediction accuracy of the corrected prediction is in
both cases, however, the same.

As this paper investigates the effect of different DA methods on the
real-time control performance for a case study with limited model un-
certainty, the results may be influenced by small modelling errors as it
is more difficult to obtain large performance improvements in such
cases. Despite this difficulty, the flexible data assimilation approach
presented in this work turns out to be a promising technique to account
for hydrodynamic model uncertainty. It is, however, recommended to
conduct further research in which larger model uncertainties are

Water level

Observed water
surface profile

Corrected prediction

\
Prior prediction Modeled WL nodes

(large error)

Observed location Distance

Fig. 11. Conceptual drawing. Prediction of five water level (WL) nodes in one
reservoir for two cases, one with a small error at the observed location (orange
triangles) and one with a large error (red circles), together with the corrected
prediction after data assimilation (DA) (green squares) and the observed water
surface profile. (For interpretation of the references to color in this figure le-
gend, the reader is referred to the web version of this article.). (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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considered to further investigate the benefits of the flexible data as-
similation approach.

5. Conclusions

A new conceptual model type is presented in this paper: reduced
conceptual models. These models are specially tailored to real-time
flood control and optimization applications by eliminating unnecessary
variables and intermediate calculations from simplified conceptual
models. In addition, hydraulic structures are grouped and replaced by
flow matrices. This reduction process hardly affects the model accuracy,
while a significant gain in computational efficiency is obtained. The
reduced conceptual model of the Herk river is ten times faster than the
corresponding simplified conceptual model. Due to the model reduction
process, detailed simulation results are not provided by a reduced
conceptual model. They, however, still provide the control objectives,
which makes them perfectly suitable for real-time flood control opti-
mization problems.

The proposed RGA-MPC method makes uses of the reduced con-
ceptual model to predict the future states of the river system. These
predictions are, however, subject to model mismatches between this
river model and the actual river system. This paper investigated the
effect of the hydrodynamic model uncertainty on the real-time control
performance by using the reduced conceptual model for the optimiza-
tion process (prediction model) and the detailed conceptual model to
represent the actual river system (simulation model). The same rainfall
forecasts were used in both models, assuming perfect rainfall forecasts.
The effect of the rainfall forecast uncertainty will be investigated in
future work.

In order to take model uncertainty into account and improve the
prediction accuracy, the prediction model is extended with data as-
similation techniques. State estimators and prediction error methods
were first tested with respect to the prediction accuracy. State estima-
tors have only a limited effect over time. They improve the initial error
at the time of forecast, but for larger lead times, the error converges
back to the situation without state estimator. Prediction error methods
have a larger impact on the prediction accuracy. PEM1 and PEM2,
proposed by Van Steenbergen et al. (2013), were selected as the best
prediction error methods as they reduce the error at the time of forecast
to zero and also strongly reduce the errors at larger lead times. A data
assimilation approach combining a state estimator and a prediction
error method is recommended as this results in the best prediction ac-
curacy.

The reduced genetic algorithm is extended with a state estimator
and a prediction error method to investigate the effect of model un-
certainty on the real-time control performance for the Herk case study.
The implemented DA approaches showed clear benefits and strongly
reduced the loss in performance due to model uncertainty for all events
except event E8. Due to a badly calibrated broad crested weir in one of
the main streams of the network, strong prediction errors occurred for
this event. PEM1 and PEM2 were not sophisticated enough to detect the
diverging trend between predictions and observations. Therefore, a new
prediction error method was proposed, the flexible prediction error
method (Flex PEM). This approach analyzes the past model residuals
and depending on the observed trend, an appropriate prediction error
model is applied. By doing so, the control performance was strongly
increased for this event. Also for all other events, the combination of the
moving horizon estimator or the ensemble Kalman filter with this
flexible prediction error method outperformed all other data assimila-
tion methods. Flex PEM outperforms PEM1 and PEM2 with respect to
the control performance as this PEM performs better during periods of
high water, hence during periods which are of importance for the in-
curred flood damage cost.

The conclusions made in this study are based on an experimental
set-up with only limited model uncertainty and a small river system. It
is recommended to further investigate the applicability and benefits of
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the flexible prediction error method by considering additional case
studies with larger model uncertainty and larger river systems in future
work. Nevertheless, it can be concluded that the flexible data assim-
ilation approach presented in this paper is a promising technique as it
outperforms other data assimilation methods in the challenging case of
small hydrodynamic model uncertainties.
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