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Abstract
Oxidative stress (OS), defined as disturbances in the pro-/antioxidant balance, is harmful to cells due to the excessive generation
of highly reactive oxygen (ROS) and nitrogen (RNS) species. When the balance is not disturbed, OS has a role in physiological
adaptations and signal transduction. However, an excessive amount of ROS and RNS results in the oxidation of biological
molecules such as lipids, proteins, and DNA. Oxidative stress has been reported in kidney disease, due to both antioxidant
depletions as well as increased ROS production. The kidney is a highly metabolic organ, rich in oxidation reactions in mito-
chondria, which makes it vulnerable to damage caused by OS, and several studies have shown that OS can accelerate kidney
disease progression. Also, in patients at advanced stages of chronic kidney disease (CKD), increased OS is associated with
complications such as hypertension, atherosclerosis, inflammation, and anemia. In this review, we aim to describe OS and its
influence on CKD progression and its complications. We also discuss the potential role of various antioxidants and pharmaco-
logical agents, which may represent potential therapeutic targets to reduce OS in both pediatric and adult CKD patients.
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NO Nitric oxide
NOX NADPH oxidase
NQO1 NADPH quinone oxidoreductase
Nrf2 Nuclear factor erythroid 2-related factor 2
O2

•− Superoxide anion
OS Oxidative stress
OxLDL Oxidized low-density lipoproteins
ROS Reactive oxygen species
SDMA Symmetric dimethylarginine
Se Selenium
SOD Superoxide dismutase
XO Xanthine oxidase
XDH Xanthine dehydrogenase

Introduction

Oxidative stress (OS) is defined as a state of imbalance between
excessive oxidant (free) radicals and insufficient degradation of
those radicals by antioxidant systems as an in-house defense
mechanism (Fig. 1). Oxidant compounds such as reactive oxy-
gen species (ROS) and reactive nitrogen species (RNS) are
formed under physiological conditions and are removed by sev-
eral antioxidant defense mechanisms [1, 2]. Reactive species are
not necessarily harmful to the cells. At moderate concentrations,
Reactive oxygen species/reactive nitrogen species act as second
messengers and regulate intracellular signal transduction path-
ways. In case of an imbalance in the prooxidant/antioxidant
equilibrium, OS is created which leads to metabolic

dysregulation and/or oxidation end products of lipids, DNA,
and proteins and/or oxidative damage in cells, tissues, or organs,
caused by ROS/RNS [1, 2]. Ultimately, this results in several
disorders due to the inactivation of cellular molecules [3].

The kidney is a highly energetic organ. This makes it more
vulnerable to damage caused by OS [4, 5]. In turn, OS is asso-
ciated with kidney disease progression [6, 7]. Furthermore, sev-
eral complications of chronic kidney disease (CKD) such as
inflammation and cardiovascular disease (CVD), the major
cause of death in patients with CKD, are also linked to in-
creased levels of OS. The ‘oxidative’ link between CKD and
its complications is achieved through several mechanisms, such
as uremic toxin-induced endothelial nitric oxide synthase
(eNOS) uncoupling [8] and increased nicotinamide adenine
dinucleotide phosphate-oxidases [NADPH oxidases (NOX)]
activity [9, 10], but also antioxidant losses due to dietary restric-
tions, diuretics use, protein energy wasting, and/or decreased
intestinal absorption [11, 12].

In the current review, we will discuss the nature, source,
and consequences of increased OS and decreased antioxida-
tive capacity in CKD.

Sources of increased oxidative stress

Reactive oxygen species and reactive nitrogen speciesrepresent a
class of reactive molecules which are continuously formed by
oxidation reactions in living cells during normal metabolic pro-
cesses by both enzymatic and nonenzymatic reactions. Free, or

Fig. 1 Imbalance between oxidants and antioxidants. To maintain
cellular homeostasis, a balance is necessary between the production and
degradation of reactive oxygen species (ROS). Oxidative stress is a state
of imbalance between excessive oxidant formation and the degradation of
those radicals by antioxidants. Metabolic dysregulation resulting in
severe cell damage, cell death, aging, and disease can be a consequence

of the oxidative stress. On the other hand, an excessive production of
antioxidants (such as glutathione (GSH), superoxide dismutase (SOD),
catalase, ascorbic acid, α-tocopherol, …) is also harmful to the cell.
‘Reductive stress’ causes a defective host defense and an impaired
physiological signaling
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primary, radicals, defined as independent chemical species with
one or more unpaired electrons, are highly reactive in search for
another unpaired electron. Examples are hydroxyl (OH•) and
the less reactive superoxide anion (O2

•−), nitric oxide radicals
(NO•), and nitrogen dioxide radicals (NO2

•). When two un-
paired electrons react with each other to form a covalent bond,
a new nonradical molecule is formed. More often, however,
free radicals attack nonradical molecules resulting in a new
(secondary) radical molecule, initiating as such a chain reac-
tion. This chain reaction of primary and secondary radicals
eventually leads to oxidative damage of several tissues and
organs [13]. Examples of secondary radicals are hydrogen per-
oxide (H2O2), ozone (O3), singlet oxygen (1O2), hypochlorous
acid (HClO), nitrous acid (HNO2), dinitrogen trioxide (N2O3),
peroxynitrite (ONOO−), and lipid peroxides (Fig. 2) [13].

Since ROS are unstable and have a short half-life, it is
difficult to measure the amount of circulating free radicals.
Several oxidation end products are therefore used to assess
the redox state: These are end products of lipid peroxidation,
DNA damage, or the oxidation of proteins and amino acids
[14] (Supplementary Table 1).

Sources of oxidative stress

Endogenous sources

Normal metabolic processes in aerobic conditions constitute a
major source of ROS. In living organisms, ROS are generated
as products of biochemical reactions in the plasma membrane,
cytoplasm, peroxisomes, lysosomes, and on the membranes of
mitochondria and endoplasmic reticulum. The mitochondria,
together with nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase, xanthine oxidase (XO), myeloperoxidase
(MPO), and the eNOS, are the major source of ROS forma-
tion. Other enzyme sources are prostaglandin synthase,
lipoxygenase, and flavoprotein dehydrogenase [3, 15].

Mitochondrial electron-transport chain Along the mitochon-
drial electron-transport chain, electrons are transferred to re-
duce oxygen to water and produce ATP by oxidative phos-
phorylation of the reduced forms of nicotinamide adenine di-
nucleotide (NADH) and flavin adenine dinucleotide
(FADH2). At complexes I and III of the electron-transport

Fig. 2 Mechanisms of oxidative cellular damage and the antioxidant
defense. Overview of the most relevant oxidant and antioxidant
pathways and their interactions. Green arrow: antioxidative reaction;
green line: inhibition of the oxidating reaction by antioxidative
mechanism; red arrow: pro-oxidative reaction. Abbreviations: αTOH,
alpha tocopherol; ADMA, asymmetric dimethylarginine; AGEs, ad-
vanced glycation end products; BH4, (6R)-5,6,7,8-tetrahydro-l-biopterin;
BiliR, bilirubin; biliV, biliverdin; BVR, biliverdin reductase; Cat,

catalase; COX, cyclooxygenase; eNOS, endothelial NO synthase; Δ
eNOS, eNOS uncoupling; Fe2+, iron; GSH/GSSH, glutathione; H2O2,
hydrogen peroxide; HOCL, hypochlorous acid; LOOH, fatty acid chain;
LOO−, lipid peroxyl radical; MPO, myeloperoxidase; MRC, mitochon-
drial respiratory complex; NOX, NADPH oxidase; NO, nitric oxide;
ONOO, peroxynitrite; O2, oxygen; O2

•−, superoxide anion; PX, peroxi-
dase; SOD, superoxide dismutase; TXA, thromboxane; VitC, vitamin C;
XDH, xanthine dehydrogenase; XO, xanthine oxidase
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chain, respectively, NADH dehydrogenase and ubiquinone-
cytochrome bc1, O2

•− is generated due to incomplete reduc-
tions and electrons that leak away from the main path and
directly reduce oxygen molecules to ROS, such as O2

•−,
H2O2, and OH• [15, 16].

NADPH oxidases The family of NADPH oxidases consists of
seven members: five different types of NADPH oxidases
(NOX) and two dual oxidases (DUOX1–2), DUOX1. All five
of the NOX enzymes consist of two heme containing trans-
membrane oxidoreductases that span the membrane six times
as α-helices with cytosolic N- and C-termini. The classic
NADPH oxidase is gp91phox, also called Nox2. NOX cata-
lyzes the transfer of electrons from the cytosol to the extracel-
lular space or within specialized compartments of the cell.
NADH or NADPH, present in the cytosol, is the electron
donor for the 1-electron reduction of oxygen by the NOX
[17, 18]. The different isoforms differ in Nox-binding pro-
teins, both tissue distribution and intracellular localization
and regulation. NOX1 and NOX4 have been shown to be
key players across a broad range of diseases [19]. In both
the kidney and the vasculature, NADPH oxidase 4 (NOX4)
is the most important isoform, located in renal tubules, renal
fibroblasts, glomerular mesangial cells, and podocytes in the
kidney and in the membrane of mainly endothelial cells and
fibroblasts in the vasculature. In normal conditions, NOX
have a low basal activity, but they can be triggered by cyto-
kines, growth factors, hyperlipidemia, and high glucose [20].
The generation of ROS, such as H2O2, by NOXs can trigger
the activation of several other prooxidative enzymes, thus
leading to a vicious cycle of redox dysfunction [21].

Endothelial nitric oxide synthase Different vital functions,
such as neurotransmission and vascular tone, are regulated
by NO. In mammals, three different isoforms of NO synthases
(NOS) can be found: neuronal NOS (nNOS), inducible NOS
(iNOS), and eNOS [22]. L-arginine is metabolized by NOS to
form L-citrulline and NO, with NADPH and oxygen serving
as co-substrates. To work properly, NOS need the pteridine
cofactor tetrahydrobiopterin (BH4) [23]. In blood vessels,
eNOS is the most abundant of the NOS isoforms and the
NO synthesized in the endothelium is an important protective
molecule of the vasculature. Under pathological conditions,
eNOS can produce ROS by itself, which is called ‘eNOS
uncoupling’: Electron transfer within the active site is
uncoupled from L-arginine oxidation and oxygen is reduced
to form O2

•- [23]. Superoxide anion then combines rapidly
with NO to generate peroxynitrite (ONOO−). Several mecha-
nisms can cause eNOS uncoupling: for example, deficiency in
BH4 or in L-arginine and the accumulation of asymmetric
dimethylarginine (ADMA), a naturally occurring L-arginine
analogue and endogenous NOS inhibitor. ROS itself can per-
petuate eNOS uncoupling by oxidation reactions on either

BH4 and protein arginine N-methyltransferase (PRMT type
1) or demethylarginine dimethylaminohydrolase (DDAH),
leading to increasing levels of ADMA.

Myeloperoxidase MPO, a heme-containing peroxidase that is
synthesized during myeloid differentiation, is abundantly stored
in azurophilic granules of leukocytes. Normally, MPO catalyzes
the formation of HClO from the H2O2-mediated oxidation of
halide ions [24]. However, in various diseases, degranulation
leads to the release of MPO into the extracellular space, where
it can oxidize not only halide ions but also other substrates to
mediate tissue damage [25]. Myeloperoxidase has a well-known
role in atherosclerosis. For example, it contributes to oxidative
modification of low density lipoprotein (LDL) by catalyzing lipid
peroxidation [26]. Clinical trials have demonstrated a correlation
of circulatingMPO levels andMPO-derived oxidized molecules
with coronary artery disease (CAD) and clinical events [27, 28].

Xanthine oxidases Xanthine oxidoreductase acts both as a
xanthine dehydrogenase (XDH) and XO, which are both sin-
gle gene products. XDH as well as XO are associated with the
terminal two steps of purine degradation in humans: hypoxan-
thine–xanthine–uric acid. Under physiological conditions,
XDH uses hypoxanthine or xanthine as a substrate and
NAD+ as a cofactor to produce uric acid and NADH.
Nevertheless, under inflammatory conditions, posttranslation-
al modification due to the oxidation of the cysteine residues
converts XDH to XO, which has an increased affinity for
oxygen as a cofactor to finally produce uric acid and O2

•− or
H2O2 [29].

Nonenzymatic, exogenous, and environmental sources

Air and water pollution, cigarette smoke, alcohol, heavy or
transition metals, drugs, industrial solvents, and radiation are
the main environmental causes of OS. Those agents can enter
the body through different pathways and eventually get me-
tabolized into free radicals [30]. Free transition metals like
copper and iron, in the presence of hydroperoxides, are strong
catalysts for oxidation reactions. They can initiate lipid perox-
idation by cleavage of LOOH to lipid alkoxyl radicals. Their
exact role in disease and atherosclerosis remains controversial.
Copper is transported by albumin to the liver where it is in-
corporated in ceruloplasmin for transport to various tissues.
Ceruloplasmin has ferroxidase capacity required for iron in-
corporation into ferritin [31]. It has also been reported to in-
duce and facilitate LDL oxidation by free metals [32, 33].

Antioxidants

The human body has a built-in defense mechanism against
OS: the antioxidants. Antioxidants inhibit several destructive
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oxidation reactions by being oxidized themselves. This de-
fense system operates through a cascade of blocking the initial
production of free radicals and scavenging oxidants, in which
the oxidants are converted to less toxic compounds and the
secondary production of toxic metabolites is blocked (Fig. 2).
Subsequently, the defense system aims to repair the molecular
injury or enhance the endogenous antioxidant defense system,
which is composed of enzymatic and nonenzymatic
antioxidants.

Enzymatic antioxidants

The enzymatic antioxidants can be divided in two groups: (i)
primary or constitutively acting antioxidant enzymes (super-
oxide dismutase (SOD), catalase, glutathione (GSH) peroxi-
dase, and thioredoxin), that function to maintain the reducing
tone within cells and keep the redox balance stable, and (ii) the
antioxidant response element (ARE)-driven enzymes: phase 2
genes encode for enzymes that directly inactivate oxidants,
increase levels of GSH synthesis and regeneration, and stim-
ulate NADPH synthesis in times of inflammation or stress.
They are regulated by upstream AREs which are first activat-
ed by the transcription factor nuclear factor erythroid 2-related
factor 2 (Nrf2) [34, 35]. Heme oxygenase-1 (HO-1) and
NADPH quinone oxidoreductase (NQO-1) belong to the
ARE-driven enzymes.

Primary enzymatic antioxidants

Superoxide dismutase SOD is a key enzyme in the detoxi-
fication of free radicals in the cell. It converts O2

•− to H2O2

and oxygen, and in turn, catalase or the glutathione perox-
idase system reduces H2O2 to water. Superoxide dismutase
also plays a role in inhibiting the oxidative inactivation of
NO. Mammalian tissues contain three types of SOD:
copper-zinc-containing SOD, manganese-containing
SOD, and the extracellular SOD, which are expressed in
the cytosol, mitochondrial matrix, and extracellular space,
respectively.

Catalases and peroxidases Two enzymes metabolize H2O2

resulting from SOD or generated by, among others, xanthine
oxidase. Catalase (CAT) directly decomposes H2O2 to water
and O2, whereas the peroxidases (PX) use H2O2 to oxidize
another substrate, such as GSH. Mostly, the GSH-PXs coop-
erate with CAT for the decomposition of H2O2 to H2O and
oxidized glutathione (GSSG), which is then reduced by glu-
tathione reductase. GSH-PX requires GSH as a hydrogen do-
nor to decompose H2O2 to water and oxygen and selenium
(Se) as a cofactor to participate in the reaction with peroxides
[15, 36].

Antioxidant response element-driven enzymes

Heme oxygenase-1 HO-1 is an inducible stress-responsive
enzyme responsible for the rate-limiting enzymatic degrada-
tion of heme to free ferrous iron, carbon monoxide (CO), and
biliverdin [37], the latter being rapidly converted by biliverdin
reductase to bilirubin. Each of these enzymatic end products
exerts antioxidative, anti-inflammatory, and anti-apoptotic ef-
fects through different mechanisms [38, 39]. Being an early
stress-responsive protein, HO-1 can be induced by a variety of
agents that cause OS. The protective properties of HO-1 have
been extensively studied in in vitro and animal models of
atherosclerosis, ischemia-reperfusion injury, and acute kidney
injury [40–42]. The activity of HO-1 is influenced by genetic
factors. A (GT)n dinucleotide repeat polymorphism in the
promoter region of HO-1 has been extensively studied and
shorter (GT)n repeats have been found to result in a higher
HO-1 expression and activity.

Nonenzymatic antioxidants

The nonenzymatic antioxidants, or low molecular weight an-
tioxidants, are found in the plasma, extracellular fluids, intra-
cellular fluids, lipoproteins, and membranes. Besides GSH,
this group contains several dietary antioxidants as well as
compounds synthesized in the body, which can be further
divided in two subgroups: the water-soluble antioxidants and
the lipid-soluble antioxidants.

Glutathione

The major soluble nonenzymatic antioxidant is GSH, which is
dependent on the glutathione peroxidase activity. It is highly
abundant in all cell compartments and it is endogenously syn-
thesized throughout the body. This antioxidant protects cellu-
lar macromolecules, such as proteins and membrane lipids,
against ROS. The detoxification of H2O2 and lipid peroxides
is one of its actions. Because of the free thiol group, it can
donate an electron to the radicals to make them harmless. The
donation causes the oxidation of the antioxidant itself, which
turns it into glutathione disulfide (GSSG). In turn, the latter is
reduced back to GSH by the enzyme glutathione reductase,
which uses NAD(P)H oxidase as the electron donor [43]. To
properly maintain the oxidative balance in the cell, it is nec-
essary for the cell to contain high levels of GSH and low levels
of GSSG.

Dietary antioxidants and compounds synthesized in the body

(i) Water-soluble antioxidants

Water-soluble antioxidants mainly react with oxidants in
the cytosol and plasma. Again, in this group, a distinction
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can be made between dietary antioxidants, which include
ascorbic acid and polyphenols and endogenous antioxidants,
which include albumin and bilirubin [15, 44, 45].

(1) Water-soluble dietary antioxidants

Ascorbic acid Ascorbic acid, or vitamin C, is a reducing agent
with both intracellular and extracellular antioxidant capacities
[15] . Ascorbic acid is subsequent ly oxidized to
semidehydroascorbic acid and dehydroascorbic acid. Both
semidehydroascorbic acid and dehydroascorbic acid can be
reduced to ascorbic acid by three different pathways as well
as by GSH [46].

Polyphenols—flavonoids The most abundant dietary anti-
oxidants are the plant-derived polyphenols such as cocoa
flavonols and resveratrol. Fruits, vegetables, and choco-
late are some of their sources. The most studied group is
the flavonoids, responsible for the colors of flowers,
leaves, and fruits. The chemical structure of flavonoids
contains two aromatic rings, which are bound to each
other by three carbon atoms to form an oxygenated het-
erocycle. Several studies showed that a polyphenolic-rich
diet reduces the risk for chronic diseases [47]. Since the
phenolic groups are excellent hydrogen donors, they trap
radicals and interrupt oxidation chain reactions in the cell.
By donating a hydrogen, the phenolic group forms a sta-
ble phenoxyl radical, which is stabilized by a resonance
effect [47]. Recently, beneficial effects of cocoa flavonols
on endothelial dysfunction and blood pressure have been
demonstrated [48].

(2) Water-soluble endogenous antioxidants

Albumin and bilirubin Human serum albumin, synthesized in
the liver, is an abundant protein present in the plasma. It has
several functions, which goes from transporting metals, fatty
acids, and drugs in the blood to the regulation of osmotic
pressure and the distribution of fluids between different com-
partments. Since albumin can bind many types of molecules,
it has a good antioxidant capacity. For example, albumin binds
metal ions, especially copper and iron, to prevent the forma-
tion of hydroxyl radicals by the Fenton reaction. On the other
hand, albumin can also bind circulating bilirubin with a high
affinity. This albumin-bilirubin complex is found to be an
inhibitor of lipid peroxidation, and it was shown that bound
bilirubin protects α-tocopherol from damage mediated by
peroxyl radicals. Albumin also contains the largest source of
extracellular thiols, since it has a reduced cysteine residue.
Such a thiol source makes it possible to scavenge hydroxyl
radicals and HOCl [49].

(ii) Lipid-soluble antioxidants

Lipid-soluble antioxidants are mainly located in the plasma
membranes and lipoproteins and protect cell membranes from
lipid peroxidation. This group contains (among others) α-to-
copherol, β-carotene, and coenzyme Q10.

α-Tocopherol The lipid-soluble vitamin E mainly refers to α-
tocopherol, which is the most active form of eight different
tocopherols. It acts as a defense against oxidant-induced mem-
brane injury. Once α-tocopherol reacts with an oxidant, espe-
cially peroxyl radicals, it converts to α-tocopherol free
radicals (α-TO•), which are relatively nonreactive. These radi-
cals, in turn, can react with other free radicals to form a nonre-
active radical product. The remainingα-tocopherol free radicals
need ascorbic acid to reduce them back to α-tocopherol [15].

(iii) Trace elements zinc and selenium

Both zinc and selenium are essential trace elements in-
volved in several biochemical processes in the human body.
Zinc is an important cofactor of SOD, as discussed earlier, and
it is also required for the upregulation of the zinc-finger pro-
tein A20, which inhibits inflammatory pathways through the
inhibition of TNFα and IL1β [50]. Zinc deficiency was
shown to increase OS and induce cyclooxygenase-2 (COX-
2) and E-selectin gene expression, as well as monocyte adhe-
sion in cultured endothelial cells, suggesting a key role in
inflammatory diseases such as atherosclerosis [50, 51].
Selenium mainly functions as an antioxidant in the form of
the selenoproteins. At least 30 selenoproteins have been iden-
tified, including GSH-PX, selenoprotein P, thioredoxin reduc-
tase, and selenophosphate synthetase [52]. Girelli et al. also
found an association between Se levels and CVD [53].

Oxidative stress in the progression of kidney
disease (Table 1)

The contribution of OS to the progression of kidney disease
and subsequent renal function loss has been extensively stud-
ied [6, 45]. ROS play an important role in the physiological
regulation of kidney function which consequently makes the
kidney especially vulnerable to redox imbalances and oxida-
tive stress. Formation of ROS or changes in ROS production
can occur both in the renal cortex and medulla, with a broad
range in effects, going from alteration in renal blood flow over
sodium/fluid retention to inflammation and fibrotic changes
and onset of proteinuria [89].

There is plenty of evidence for increasing levels of OS
markers with deteriorating renal function, beginning from ear-
ly CKD stages [11] in both adults and children. Like in adults,
data from children and young adults with CKD show
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increasing concentrations of OSmarkers such as mitochondri-
al superoxide and oxidized LDL [90–92], homocysteine [93],
as well as a deficiency of SOD andGSH [91, 92] together with
disease progression. Also, several uremic toxins, associated
with increased OS in CKD, increase with worsening renal
function, such as the retention solute IS [94], F2-isoprostanes,
MDA, and ADMA [95, 96]. However, these findings do not
imply necessarily a causal role for OS in renal function loss
[11]. Some end products of OS-induced lipid peroxidation
have been shown to be more than just oxidation markers in
CKD: Malondialdehyde is the product of polyunsaturated fat-
ty acid peroxidation. It has been shown to induce dysfunction-
al high-density lipoproteins (HDL) molecules [97] and con-
tribute to increased cardiovascular morbidity [98]. There are
several, albeit mainly preclinical, studies showingmechanistic

evidence for a causative role for increased OS in CKD pro-
gression. Themost elaborated is undoubtedly the role of OS in
diabetic nephropathy. In this specific context, increased OS
has been shown to be due to multiple mechanisms including
mitochondrial dysfunction, increased NOX activity, eNOS
uncoupling, and deficiencies in antioxidant defense mecha-
nisms, both enzymatic and nonenzymatic, for which we refer
to extensive reviews by several groups [54, 56].

In structural kidney disease with normal renal function,
such as in proximal tubular cell dysfunction, evidence for
increased renal OS with an adequate antioxidant response
has been reported, as shown by a study in CLC5-deficient
mice, a well-established model of Dent’s disease [99]. In the
context of progressive kidney disease and CKD however,
findings suggest at least the interplay of many different

Table 1 Evidence of disturbed oxidative/antioxidative balance in CKD, CKD progression, and CKD-CVD in humans

Mechanism of increased
oxidative stress or decreased
antioxidative capacity

Evidence for its disturbance
in CKD

Impact on renal disease (I) and
evidence from interventional
studies (E)

Impact on CVD in CKD (I) and
evidence from interventional
studies (E)

Mitochondrial respiration * Increased mitochondrial ROS
generation [54, 55]

* Mitochondrial dysfunction [56, 57]

(I) * Influence on cyst growth inADPKD [58]
* MiRNAs and renal fibrosis [59]

(E) RAAS blockade (eGFR, Alb) [60, 61]

(I) No data available
(E) No data available

NAPDH oxidases Increased NOX4 activity caused by
uremic toxins [9, 62], zinc deficiency
[63], and RAAS

(I) * RAAS [64]
* Zinc deficiency [63]

(E) NOX Inhibitor GKT137831 (Alb) [19]

(I) * RAAS [65]
* Uremic toxins IS, AGEs
[66, 67]

(E) No data available

eNOS eNOS uncoupling caused by uremic
toxins [68], ADMA [69, 70]

(I) No data available
(E) No data available

(I) ADMA mediated increased
endothelial dysfunction and
CVD [70]

(E) No data available

Myeloperoxidase Positive correlation between
8-iso-PGF2α levels with serum
MPO levels [71]

(I) No data available
(E) No data available

(I) MPO and CVD in CKD [72]
(E) No data available

Xanthine oxidases Increased XO activity in CKD [73] (I) No data available
(E) XO Inhibitors and renal function

(eGFR) [74]

(I) XO and CVD in CKD [73]
(E) No data available

Lipid peroxidation IV iron-induced OS [75] (I) No data available
(E) No data available

(I) * Iron-induced OS and early
atherogenesis [75]
* Ceruloplasmin and CVD
events [76]

(E) No data available

SOD, peroxidases, GSH * Decreased SOD [11]
* GSH depletion [77]
* Selenium deficiency [78]

(I) No data available
(E) Selenium supplementation (eGFR)

[52, 79]

(I) No data available
(E) No data available

Heme oxygenase-1 No data available (I) HO-1 (GT)n repeat polymorphism and
renal function in ADPKD, TX, IgA
nephropathy [80]

(E) No data available

(I) HO-1 (GT)n repeat
polymorphism and CVD [81]

(E) No data available

Nonenzymatic antioxidants * Hypoalbuminemia [82]
* Deficiency in trace elements:
* Selenium deficiency [78]
* Zinc deficiency [63]

(I) No data available
(E) Zinc supplementation (Alb) [83, 84]

(I) * Hypoalbuminemia and
increased CVD events [85]
* Hypovitaminosis C [86]

(E) * Tocopherol
supplementation and CVD
events [87]
* Cocoa flavonol and
endothelial dysfunction in
ESRD [88]
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oxidizing mechanisms, but also decreased antioxidant defense
capacities such as the deficiency of SOD, a role for zinc defi-
ciency [55] as well as a decreased activity of the ARE driven
enzymes such as HO-1 [115].

In the following section, we summarize briefly what is
known for specific oxidative and antioxidative mechanisms
in the context of CKD (See also Table 1) in both adults and
children. Unfortunately, data in children, especially in
predialysis context, are limited.

Mitochondrial dysfunction

In CKD, increased mitochondrial ROS generation and mito-
chondrial dysfunction are frequently reported. Especially in di-
abetic nephropathy, mitochondrial dysfunction has been well
explored with findings on both morphological as well as func-
tional disturbances in the renal mitochondria [56]. But also in
nondiabetic CKD patients, disturbed regulatory MiRNAs such
as MiR21 have been reported in CKD patients and an impaired
complex IVactivity has been reported [57, 59]. Recent evidence
also found a role for mitochondrial dysfunction in nondiabetic
CKD,more specifically, autosomal dominant polycystic kidney
disease, which is further discussed in the accompanying review
by Andries et al. in this issue [58, 100].

NADPH oxidases

NOX is induced by different mechanisms. Both in vitro and
animal models showed increased NOX4 activity caused by
the presence of the uremic toxin indoxyl sulfate (IS), leading
to increasing ROS levels [62, 101, 102], and this was also
confirmed in CKD patients [66]. Angiotensin II is an early
key contributor in hypertension and kidney disease progres-
sion by the generation of ROS through NOX [65]. Chronic
angiotensin II receptor blockade (ATII-R) also improved vas-
cular resistance and decreased OS. ATII-R blockers are con-
sidered renoprotective against OS not only by decreasing
NOX expression but also by improving eNOS and SOD ex-
pression and/or activity [64, 103]. Another cause of NOX-
mediated ROS generation in the kidney appears to be zinc
deficiency, as shown by several groups [63] and discussed in
more detail below.

eNOS

In the kidney, eNOS uncoupling was shown to be a major
contributor to OS and subsequent renal damage, mediated
by different mechanisms: ADMA as well as other uremic
toxins have been shown to result in eNOS uncoupling [68,
69]. ADMA is considered a uremic toxin since ADMA levels
have been shown to increase in CKD, due to accumulation as
well as increased generation by a disturbed PRMT/DDAH
activity balance [70, 104]. Recent studies in overweight

children showed a significant negative association between
plasma nitrosative stress and estimated glomerular filtration
rate (eGFR) [105]. In proinflammatory conditions, higher
amounts of peroxynitrite can be formed and this can further
inhibit eNOS activity. The reduced NO production in the kid-
ney vasculature could result in an imbalance toward higher
vasoconstriction and consequent reduction of GFR. In addi-
tion, intercellular adhesion molecule-1 (ICAM-1) was signif-
icantly increased in obese children and correlated with
markers of renal function such as eGFR. Therefore, endothe-
lial dysfunction might be an early step in both cardiovascular
disease and renal dysfunction in young people [106].

Myeloperoxidase

Myeloperoxidase has also a well-described role in the devel-
opment and progression of kidney disease [107]. Recent stud-
ies about the link between MPO and renal dysfunction in
prepubertal obese children, for example, have shown a posi-
tive correlation between 8-iso-PGF2α levels with blood
lipids, insulin resistance, and serum MPO levels, with an in-
verse correlation between both urine 8-isoprostane levels and
serum MPO levels and the total antioxidant status. An associ-
ation between MPO levels and eGFR levels was found as
well: Levels of eGFR were significantly increased across
tertiles of MPO [71]. This could be explained by the occur-
rence of glomerular hyperfiltration, initiated by the presence
of obesity, which is known to result in glomerular damage and
proteinuria.

Xanthine oxidase

In CKD patients, increased XO activity has been shown [73].
If there is a role for XO and/or hyperuricemia on CKD pro-
gression remains contradictory. One recent study byKohagura
et al., in 137 patients with hypertension and hyperuricemia
who started treatment with XO inhibitors, showed a, albeit
modest, protective effect on renal function in hypertensive
patients [74].

Superoxide dismutase, catalase, peroxidase,
and the GSH antioxidant system

Superoxide dismutasis a key enzyme in the detoxification of
free radicals in the cell, and all three isoforms have a high
expression in the kidneys [108]. In CKD, an impaired SOD
activity has been repeatedly reported [11]. The GSH antioxi-
dant system has been reported as one of the first mechanisms
to be disturbed in chronic renal failure [53, 77]. This can also
be partially attributed to a Se deficiency [53, 79]. Se deficien-
cy has been reported in CKD and dialysis patients in whole
blood and plasma as compared with healthy subjects. This
was found at all stages of CKD and dialysis [109]. It has been
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associated with increased OS and mortality, albeit mainly
from infectious diseases [110, 111]. The exact mechanism
between CKD and selenium deficiency is not well known
but could also be due to dietary restrictions [78].

ARE-driven enzymes: heme oxygenase-1

Only little data is available regarding the role of HO-1 in CKD
patients [80, 112].

Clinical studies confirmed a beneficial effect of the short
HO-1 GTn repeat genotype on cardiovascular outcomes, acute
kidney injury as well as outcome of kidney transplantation
[113, 114]. In a mouse model of 5/6th nephrectomized mice,
Kim et al. found an important deficiency of the Nrf2/ARE-
driven enzyme activity despite an increased ROS generation
[115]. Induction of HO-1 consequently protected the kidney
from ongoing damage [116].

Nonenzymatic antioxidants

Water-soluble antioxidants have generally been reported to be
deficient in the context of CKD: CKD patients display
hypovitaminosis C which is in their context probably due to
dietary restrictions and the use of diuretics [117].
Hypoalbuminemia is a frequently seen feature in CKD pa-
tients and can contribute to a decreased antioxidative defense
mechanism [85]. Zinc deficiency is repeatedly reported in
CKD patients, in adults [118, 119] as well as in children
[120, 121].

In contrast to the generally demonstrated normal serum
levels of α-tocopherol reported in the CKD population [122,
123], only one group demonstrated lower levels of vitamin E
as compared to the general population [11].

Evidence from (pre)clinical studies

Additional evidence can be extrapolated from studies restor-
ing the OS imbalance of kidney disease. Indeed, some inter-
ventional studies in humans suggest improvement of renal
injury or creatinine clearance with the correction of the OS
imbalance [79, 124–127].

As also mentioned before, the renin-angiotensin-
aldosterone system (RAAS) blockade is a widely used ap-
proach in proteinuric nephropathy and acts through the reduc-
tion of renal OS [60, 61, 64, 103].

A recent meta-analysis of the effect of antioxidant supplemen-
tation strategies on renal outcome in diabetic kidney disease
points toward the beneficial effects with the use of both vitamin
E and zinc supplementation on early signs of renal damage.
Indeed, zinc supplementation has been shown to significantly
decrease renal injury as measured by pathologic changes in an-
imal studies [128] and urinary albumin excretion in both animal
and human studies [83, 129]. Unfortunately, these clinical trials

mainly include small studies with short-term follow-up. There
remains a lack of evidence on hard endpoints such as evolution to
ESRD [84]. Another study focusing on renal outcome, per-
formed in patients with type 2 diabetes mellitus and stage 4
CKD, is the BEACON trial, which studied bardoxolone methyl,
a Nrf2-inducing agent [130]. The trial design was based upon the
findings of the BEAM trial in type 2 diabetes mellitus patients
with CKD (eGFR between 20 and 45 ml/min/1.73 m2), which
had shown to improve renal function as measured by an increase
of the estimated GFR [131]. This trial, however, was terminated
early because of safety concerns, due to an increase in cardiovas-
cular events notably heart failure, nonfatal myocardial infarction,
nonfatal stroke, and death from cardiovascular causes in the
treatment group [132]. The exact mechanism linking
bardoxolone methyl to these cardiovascular events remains un-
clear. However, the authors suggested that an increase in preload
due to volume expansion and an increase in afterload (as
reflected by increased blood pressure), coupled with an increase
in heart rate, constitute a potentially potent combination of factors
that are likely to precipitate heart failure in an at-risk population
[132]. This was shown to occur through the modulation of the
endothelin pathway, promoting acute sodium and volume [133].
Another explanation for the cardiovascular events resulting from
bardoxolone methyl has been provided by Van Laecke et al.
They consider the well-known side effect of hypomagnesemia
and its association with the risk to develop heart failure with
preserved ejection fraction as a potential culprit
[134]. Nevertheless, it seems counterintuitive to find cardiovas-
cular events resulting from a HO-1-inducing agent, and it must
be acknowledged that bardoxolone methyl is an inducer of Nrf2,
a transcription factor that leads to the induction of many path-
ways and enzymes other than HO-1. Thus, proatherogenic path-
ways, such as CD36 expression, may be induced as well.

Of note, other antioxidant therapies could also lead to ad-
verse side effects, such as the concern of accumulation of
tissue oxalate or gastrointestinal discomforts with high intake
of vitamin C. In a meta-analysis of 2012, however, serious
adverse events appeared not to be significantly increased
[135]. Since mainly small-sized studies have been conducted,
however, appropriately powered studies are needed to reliably
assess the effects and side effects of antioxidant therapy in
people with CKD.

NOX4/1 inhibitors are currently being investigated in diabetic
nephropathy. Animal studies showed promising results in differ-
ent diabetic mice models [19]. The oral Nox1/Nox4 inhibitor
(GKT137831) has been evaluated in a phase 2 study assessing
a 12-week period of treatment with oral GKT137831 adminis-
tered in addition to standard of care for patients with type 2
diabetes and albuminuria (https://clinicaltrials.gov/ct2/show/
NCT02010242) [19]. Despite promising results in different
mouse models of diabetic nephropathy, there was no significant
reduction in albuminuria, which was the primary efficacy
endpoint of the study. Short treatment periods in advanced
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stages of the disease, the effect of stabilization of disease by
pretreatment with blockers of the RAAS, and/or a role for other
NOXs in human kidney disease might account for the lack of
effect on albuminuria in this study.

AST-120, an oral absorbent used particularly to decrease ure-
mic toxins such as IS [124], has been commonly used in Japan to
slow deterioration of renal function in patients with CKD. Sato et
al. studied in a retrospective analysis of 278 patients, diagnosed
with CKD stages III–V, the effect of AST-120 on the need to start
dialysis during 5 years. One hundred twenty-eight patients re-
ceived AST-120 (6 g/day), while the remaining 150 patients did
not. The prevalence of dialysis induction, mortality, and cardio-
vascular events in patients treated with AST-120 was significant-
ly lower after 3 and 5 years compared with the prevalence ob-
served in the untreated patients, suggesting that long-term treat-
ment with AST-120may improve the prognosis of CKD patients
in the predialysis stage [124, 125].

In a small study, Se supplementation has also been shown
to improve renal function, as measured by creatinine clearance
in 13 stable CKD patients [79].

Other promising, preliminary results on antioxidant therapies
include studies with tempol [126, 127, 136], conducted in animal
studies: Tempol is a new promising antioxidative nitroxidework-
ing as a SOD mimetic. A renoprotective effect of tempol in
animal models of hypertension and kidney failure has been re-
ported. The drug not only ameliorated blood pressure through the
regulation of NAD(P)H oxidases but also prevented the devel-
opment of glomerulosclerosis, proteinuria, and the associated
loss of renal function [126, 127]. This was confirmed in a 5/6th
nephrectomized mouse model where tempol supplementation
attenuated OS, inflammation, fibrosis, and deterioration of rem-
nant kidney function [136].

Oxidative stress in CKD-mediated
cardiovascular disease

Chronic kidney disease is characterized by a high burden of
CVD [137]. Recent data indicate that the impact of renal in-
sufficiency on CVD not only begins with minor renal dys-
function but also appears already at a younger age as com-
pared to the general population [138]. A recent study by
Groothoff et al. demonstrated a high burden of CVD in young
adults followed with ESRD from childhood onwards [139].
Moreover, it has been demonstrated that the risk of developing
CVD in children and young adults with advanced CKD and
ESRD is 30 times greater than that of age-matched controls
[140]. Therefore, adolescents and young adults with CKD
should also be considered at high risk for the development
of CVD.

OS has been considered the link between inflammation and
CVD in CKD [141]: Several findings in uremic patients point
to an imbalance favoring the prooxidative state. Increased

ROS activate proinflammatory pathways and eNOS
uncoupling initiates endothelial dysfunction, which, in turn,
form the first step toward arterial hypertension, arteriosclero-
sis, and/or heart failure on the one and accelerated atheroscle-
rosis on the other hand [7]. It is generally recognized that both
chronic inflammation and oxidative stress play reinforcing
key roles in the initiation, propagation, and development of
atherosclerosis. In contrast to the data on CKD progression,
data on the role of OS in CVD focused not only on surrogate
outcomes but also on cardiovascular events and mortality.
Interestingly, this does not account only for the CKD but also,
at least in part, for the general population with preserved kid-
ney function [27, 142, 143]. Of note, conventional treatments
of CVD, including HMGCoA reductase inhibitors (statins),
angiotensin-converting enzyme (ACE) inhibitors, and AT1-
receptor blockers, are all reported to reduce OS in vasculature
thereby improving endothelial function and slowing down
CVD progression [144, 145]. However, the use of these drugs
is unfortunately not always possible in the CKD population
due to side effects or contraindications such as deterioration of
renal function and hyperkalemia.

Endothelial dysfunction and arterial hypertension

Undoubtedly, eNOS uncoupling and disturbed NO availability
are the major contributors to the increase in cardiovascular dis-
ease through the induction of endothelial dysfunction, character-
ized by decreased vasorelaxation and endothelial cell activation
[7]. Several mechanisms have been described: ADMA has been
shown to be associatedwith endothelial dysfunction and vascular
disease in CKD [142, 146, 147], but other uremic toxins as well
as increased OS itself can cause eNOS uncoupling [148].
Nicotinamide adenine dinucleotide phosphate oxidases are key
players as well: Uremic toxins such as IS, homocysteine, and
advanced glycation end products (AGEs) increase NOX4 ex-
pression and activity, leading to increased levels of OS markers,
and endothelial dysfunction in CKD patients [66, 67, 96, 101].
Angiotensin II additionally plays a central role in the pathophys-
iology of arterial hypertension, as discussed above, through the
activation of NOX [65].

In pediatric patients, dysfunctional HDL, which de-
velops at a very early stage in the disease and progresses
together with renal function decline, promotes endothelial
dysfunction, impairs endothelial repair, and reduces cho-
lesterol efflux [149–151]. Interestingly, elevated amounts
of SDMA—but not ADMA—are found in CKD HDL,
which indicates that SDMA modifies HDL in order to
induce dysfunctional HDL [149]. High density lipoprotein
dysfunction is also related to the presence of hyperten-
sion, which is one of the most common sequelae of child-
hood CKD [152]. Indeed, endothelial dysfunction is pres-
ent in children and young adults with early stage CKD, as
reported based on their brachial artery flow-mediated
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dilatation [153], which is lower in CKD patients com-
pared to controls [154, 155]. As in adult patients, there
is a link between hypertension and left ventricular hyper-
trophy in pediatric patients [90, 156–158].

MyeloperoxidaseMPO also plays a key role in hyper-
tension and subclinical cardiovascular disease in children,
as shown by Correia-Costa et al.: MPO levels associated
with increasing levels of 24-h and nighttime blood pres-
sure, together with the loss of dipping pattern. The same
study found an independent association between MPO
levels and pulse wave velocity (PWV, marker for endo-
thelial dysfunction), which reinforces the hypothesis that
MPO is linked with both vascular stiffness and atherogen-
esis [71].

Arteriosclerosis, arterial stiffness, and left ventricular
hypertrophy

Arteriosclerosis is considered a hallmark feature of CKD-
related arterial disease and is characterized by progressive
concentric media hyperplasia, vascular smooth muscle cell
hypertrophy, increased collagen formation, wall thicken-
ing, and subsequent calcification [159]. This results in ar-
terial stiffness which translates in increased pulse wave
velocity following the cardiac systolic contraction of the
heart. The clinical consequences are increased pulse pres-
sure (arterial hypertension), microvascular end-organ dam-
age, impaired diastolic perfusion of the vascular beds, car-
diac remodeling (left ventricular hypertrophy), and subse-
quent risk of malignant arrhythmias [160]. Endothelial
dysfunction, inflammation, diabetes, (accelerated) aging,
disorders in calcium/phosphorus, and many other condi-
tions contribute to the arteriosclerosis process in CKD
[161]. To assess arterial stiffness, carotid-femoral pulse
wave velocity is measured [162]. Arterial stiffness and
medial vascular calcification are already present in up to
35% of patients with early CKD stages (KDIGO G3–4),
and this process already starts in children [163]. A role of
oxidative stress in the occurrence of arteriosclerosis and
arterial stiffness in CKD has also been reported [164].
Several uremic toxins such as AGEs, IS, and p-cresyl sul-
fate and eNOS uncoupling have been shown to induce
arterial stiffness through increased oxidative stress
[165–169]. In a small study, supplementation of L-
arginine was shown to be a safe, well-tolerated, and effec-
tive way of improving endothelial dysfunction in patients
with CKD [169].

Atherosclerosis

There is a well-known role for OS in atherosclerosis [13].
Several mechanisms and markers of OS have been reported
as independent predictors of cardiovascular events.

Myeloperoxidase was one of the first enzymes that has
been shown to play a causal role in atherosclerosis in both
the general as CKD population [26, 27, 72]. Hyperuricemia
and XO are linked to both hypertension and atherosclerosis
[73, 170]. Increased XO activity was found as an independent
predictor of CVD in CKD patients, regardless of uric acid
levels [73]. Treatment with allopurinol was associated with
improvement of cardiovascular outcomes in a clinical study
of 2032 allopurinol-exposed patients and 2032 matched non-
exposed patients showing a positive effect of XO inhibition on
cardiovascular events [171]. But also nonenzymatic mecha-
nisms are associated with an increased risk for CVD.

Specifically interesting in the context of kidney disease is
iron, which can induce the generation of reactive radicals in
the presence of peroxides and contribute to lipid peroxidation
reactions [172]. Anemia is a common problem among both
adults and children with CKD [173]. Intravenous iron supple-
mentation is therefore commonly performed as part of the
anemia management both in adult CKD patients [174] and
in pediatric CKD patients [175, 176]. It has been shown that
iron supplementation induces endothelial dysfunction and
generates ROS in CKD patients and accelerating early athero-
genesis [75].

Recently, increased ceruloplasmin levels in CKD patients
were found to be independently associated with increased risk
of long-term adverse cardiovascular events [76]. Several anti-
oxidative losses in CKD have also been associated with in-
creased CVD: Hypoalbuminemia, oxidized thiols [85], and
hypovitaminosis C have been reported to contribute to cardio-
vascular morbidity and mortality [86].

Atherosclerosis is a process that also starts very early in
children and young adults with CKD, especially in the ones
with one or more risk factors like hypertension, diabetes, hy-
perlipidemia, and renal disease [92, 177]. In these children,
atherosclerosis will continue to progress during life. Carotid
intima media layer thickening in predialysis pediatric CKD
patients has been reported in several studies [91, 155, 177]
and, indeed, significantly correlates with lipid abnormalities
and increased oxidative stress in pediatric CKD, which both
are risk factors for the development of atherosclerosis [92,
155]. Unlike in adults, no data of possible specific OS-
related mechanisms, responsible for atherosclerosis, are found
in children and young adults with CKD.

Evidence from interventional studies

Antioxidant supplementation studies have mainly been con-
ducted in hemodialysis (HD) patients, which hampers to as-
sess its efficiency on CKD progression. A reduction in com-
posite cardiovascular events and myocardial infarction has
been described in the SPACE study in HD patients with prev-
alent cardiovascular disease, in whom supplementation with
800 IU/day vitamin E reduced composite cardiovascular
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disease endpoints and myocardial infarction [87]. Cocoa fla-
vonol supplementation (CFs) showed promising results in
ESRD patients: Rassaf et al. found a sustained attenuation of
endothelial dysfunction after the ingestion of CFs (900 mg/
day). Moreover, CFs mitigated HD-induced vascular dysfunc-
tion and decreased diastolic blood pressure, suggesting ame-
lioration of microvascular function [88]. Similar effects were
found by studying polyphenols derived from concentrated red
grape juice by Castilla et al. in ESRD patients [178] showing a
reduction in oxLDL levels and plasmaNOX4 activity. Finally,
preliminary findings on zinc supplementation in the context of
diabetes also point toward cardioprotective effects in mouse
models [84]. These findings certainly underscore indirectly
the relevance of the deficient antioxidative capacity in CKD
on CVD development.

Conclusion

This review highlights the pivotal role of OS in CKD on both
the acceleration of GFR decline and the development of CVD.
Many pathophysiological mechanisms, both endogenous and
exogenous, lead to (i) increased activity of oxidative enzymes
such as NOX, MPO, and XO; (ii) the dysregulation of crucial
enzymes leading to mitochondrial dysfunction; and (iii) the
phenomenon of eNOS uncoupling or the accumulation of sec-
ondary radicals and transition metals, in CKD. In addition,
crucial antioxidative mechanisms have been shown to be im-
paired in adults as well as in children. These disturbances
already start in the early phase of CKD, and interventions
may help attenuate their deleterious long-term impact. In view
of the pleiotropy of disturbed mechanisms, a broad approach
will be most probably required. Ongoing research will help
clarify the main driving mechanisms underlying the increased
OS, their localization, and an integrative approach of both
transcriptional and signaling pathways within the context of
CKD. Many promising approaches are currently investigated.
Especially in the field of pediatric medicine, dietary interven-
tions and endogenous antioxidant supplementation should be
considered as attractive beneficial approaches given their low
burden of accompanying side effects.
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