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Abstract

We test a series of techniques to pre-

dict punctuation and its effect on ma-

chine translation (MT) quality. Sev-

eral techniques for punctuation prediction

are compared: language modeling tech-

niques, such as n-grams and long short-

term memories (LSTM), sequence labeling

LSTMs (unidirectional and bidirectional),

and monolingual phrase-based, hierarchi-

cal and neural MT. For actual translation,

phrase-based, hierarchical and neural MT

are investigated. We observe that for punc-

tuation prediction, phrase-based statistical

MT and neural MT reach similar results,

and are best used as a preprocessing step

which is followed by neural MT to perform

the actual translation. Implicit punctuation

insertion by a dedicated neural MT system,

trained on unpunctuated source and punc-

tuated target, yields similar results.

1 Introduction

In speech translation, the first step often consists

of automatic speech recognition (ASR). Most ASR

systems output an unsegmented stream of words,

apart from some form of acoustic segmentation

which splits a transcript into so-called utterances.

Translating this stream of words, using off-the-

shelf MT, results in a lower translation quality

compared to translating punctuated input, as MT

systems are usually trained on properly punctuated

and segmented source and target text. End-to-end

speech translation systems, that do not suffer from

c© 2018 The authors. This article is licensed under a Creative
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this problem, have recently achieved high-quality

results too (Weiss et al., 2017), but these models

require infrastructure (in terms of GPUs and train-

ing time) that is not available to everyone.

We compare several techniques and approaches

for punctuation prediction in a translation context,

starting from an input that already contains the cor-

rect sentence boundaries. All techniques and ap-

proaches are trained on the same dataset, allowing

us to fully attribute different results to the specific

techniques and approaches used. Thus, the main

contribution of this paper is not introducing new

methods for punctuation prediction, but a thorough

comparison of methods previously used, since ex-

tensive comparisons are often lacking in related

work. We compare three families of approaches

for punctuation prediction: (1) language modeling,

(2) sequence modeling, and (3) monolingual MT.

These approaches are combined in three differ-

ent architectures resulting in translated and punc-

tuated output: (1) Preprocessing adds punctua-

tion before translating with a normal MT system,

trained on punctuated source and punctuated target

data; (2) Implicit insertion adds punctuation dur-

ing MT, which is trained on unpunctuated source

and punctuated target data; and (3) Postprocess-
ing adds punctuation after MT, which is trained on

unpunctuated source and unpunctuated target data.

Figure 1 shows these different strategies, together

with the baseline strategy, in which the unpunc-

tuated data is translated by a regular MT system

trained on punctuated source and target data.

2 Related work

In this section we discuss work that explicitly tries

to predict punctuation marks like we do. We do

not consider sentence boundary prediction.

Punctuation prediction is first described in

Pérez-Ortiz, Sánchez-Mart́ınez, Esplà-Gomis, Popović, Rico, Martins, Van den Bogaert, Forcada (eds.)
Proceedings of the 21st Annual Conference of the European Association for Machine Translation, p. 269–278
Alacant, Spain, May 2018.



Figure 1: The different punctuation prediction strategies in a
translation context.

(Beeferman et al., 1998), who use a lexical hid-

den Markov model to predict comma insertion

in ASR output. Several other models have also

been investigated, such as a decision tree clas-

sifiers (Kim and Woodland, 2001; Zhang et al.,

2002), finite state models and multi-layer percep-

trons (Christensen et al., 2001), a maximum en-

tropy model (Huang and Zweig, 2002) and condi-

tional random fields (Lu and Ng, 2010; Ueffing et

al., 2013).

Gravano et al. (2009) use a purely text-based

n-gram language model but do not compare with

previously published methods. Several researchers

use recurrent neural networks (RNNs) to tackle

the problem as a sequence labeling task. Tilk

and Alumäe (2015; 2016) use a two-stage LSTM

(Hochreiter and Schmidhuber, 1997) to predict

punctuation based on textual and prosodic fea-

tures. Moró and Szaszák (2017) only use prosodic

information to train a bidirectional LSTM while

Gale and Parthasarathy (2017) compare several

character-level convolutional and LSTM architec-

tures, of which a simple LSTM with delay per-

forms the best, although not consistently better

than word-level bidirectional models. Pahuja et

al. (2017) train a bidirectional RNN to jointly pre-

dict the correlated tasks of punctuation and capi-

talization.

As far as we know, only Tilk and Alumäe (2016)

directly compare unidirectional and bidirectional

word-level LSTMs for sequence labeling: even

though their unidirectional model is smaller than

their bidirectional model1, the bidirectional one

does not consistently outperform the unidirectional

one. As we will see in section 4.1, we observe a

similar trend.

1A hidden size of 100 (Tilk and Alumäe, 2015) vs. 256 (Tilk
and Alumäe, 2016), while it is not clear whether both the for-
ward and the backward have 256 units or whether each of
them have 128.

In the context of MT, Matusov et al. (2006) and

Peitz et al. (2011) present the three strategies for

punctuation prediction we also use (as shown in

figure 1). Lee and Roukos (2006) use a prepro-

cessing approach, and Hassan et al. (2007) present

a postprocessing apprach. Peitz et al. (2011) com-

bine the outputs of the different strategies and find

that “the translation-based punctuation prediction

outperformed the LM based approach as well as

implicit method in terms of BLEU and TER on the

IWSLT 2011 SLT task”. Combining outputs from

different approaches through system combination

yields even better results (Matusov et al., 2006b).

If we examine the comparisons with previously

published methods in related work, we see that

some do no compare their approach at all (Beefer-

man et al., 1998; Huang and Zweig, 2002; Hassan

et al., 2007; Moró and Szaszák, 2017), others com-

pare with either n-gram LMs (Kim and Woodland,

2001; Zhang et al., 2002; Lu and Ng, 2010; Peitz

et al., 2011; Ueffing et al., 2013; Tilk and Alumäe,

2015; Tilk and Alumäe, 2016), CRF (Gale and

Parthasarathy, 2017) or CRF and LSTM sequence

labeling (Pahuja et al., 2017). We are not aware

of a systematic comparison of MT approaches, n-

gram LMs, LSTM LMs and LSTM sequence la-

beling. Especially a direct comparison of two of

the most promising approaches, LSTM sequence

labeling and monolingual MT, is lacking.

3 Methodology

We test several methods, keeping the data for train-

ing, tuning, and testing constant. Section 3.1 de-

scribes the data, section 3.2 discusses the mod-

els for punctuation prediction and section 3.3 the

bilingual translation models. Finally section 3.4

explains how the quality of the punctuation pre-

diction and translation is measured.

3.1 Data

As training data, we use the Dutch (source) and

English (target) components of the Europarl cor-

pus, version 7 (Koehn, 2005). The training data

contains 55M words or 2M sentences (per lan-

guage). As development set and test set we use

the data of Vandeghinste et al. (2013). The devel-

opment set consists of 574 sentences with one ref-

erence translation, randomly selected from actual

translations made by a language service provider.

As test set, we use 500 sentences with three refer-

ence translations, made by three different transla-
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tors.2

All the data are tokenized, truecased, and de-

pending on the experimental condition, cleaned

with the Moses toolkit (Koehn et al., 2007). We

compare the full dataset with a dataset in which

all sentences longer than 80 words have been re-

moved.3

We predict the following punctuation symbols:

dot (.), comma (,), question mark (?), exclama-

tion mark (!), colon (:), semicolon (;), opening

and closing brackets (()), slash (/) and dash (-).

Note that our punctuation set is much larger than

most previous work that we are aware of: for ex-

ample Gale and Parthasarathy (2017) and Pahuja et

al. (2017) only focus on predicting periods, com-

mas and question marks.

3.2 Punctuation prediction

We apply punctuation prediction in the preprocess-

ing as well as in the postprocessing punctuation

strategy, i.e. in Dutch and in English.

3.2.1 Punctuation prediction using language
modeling

We train two types of LMs: n-gram models and

LSTMs. The models for preprocessing are trained

on Dutch and those for postprocessing on English.

The n-gram models are 4-gram LMs (5-grams did

not improve the performance) with interpolated

modified Kneser-Ney smoothing (Chen and Good-

man, 1999), trained with the SRILM toolkit (Stol-

cke, 2002). We compare the results for using the

left context only (forward fw) with those for using

both the left and the right context (forward + back-

ward fw+bw), where both the preceding 3 words

and the following 3 words can be used.

The LSTM LMs are trained with Tensor-

Flow (Abadi et al., 2015) and consist of 1 layer

of 512 cells, initialized randomly with a uniform

distribution between -0.05 and 0.05. They are op-

timized with Adagrad (Duchi et al., 2011) with a

learning rate of 0.1, early stopping is applied if

the validation perplexity has not improved 3 times.

Otherwise, the maximum number of epochs is 39.

We train on batches of size 20 and unroll the net-

work for maximum 35 time steps during backprop-

agation through time. With respect to regulariza-

tion, the norms of the gradients are clipped at 5

and we apply 50% dropout (Srivastava et al., 2014)

2These test sets are freely available upon request.
3For the development and test set, cleaning does not make any
difference, as they are hand-made and are clean to begin with.

during training. We use sampled softmax (Jean et

al., 2014) to speed up training. Due to a lack of re-

sources, we did not apply an exhaustive hyperpa-

rameter optimization, but started from settings that

have proven to work well for similar datasets.4

For punctuation prediction with LMs, we pro-

ceed as follows: we train the LMs on punctuated

data and test on unpunctuated data. Given a non-

punctuated input sentence, we determine the most

probable token after every word. If a punctuation

symbol is predicted, it is inserted at the current po-

sition in the input sentence and the updated sen-

tence is used during the rest of the prediction. We

continue the prediction until the end of the sen-

tence is reached, including the position after the

last token.

The full vocabulary of the training set consists

of approximately 280k words for Dutch and 130k

words for English (Dutch has much more com-

pounding than English). Since models with that

vocabulary size do not fit on our GPUs and since

the large vocabulary also considerably slows down

training of the LSTMs, we limit the vocabulary

size to 50k. For fair comparison, we report results

for n-grams models with the same vocabulary, but

also for n-gram models with the full vocabulary

in order to investigate the effect of the vocabulary

size on the performance. All words not in the vo-

cabulary are mapped to an unknown-word-class.

3.2.2 Punctuation prediction using sequence
labeling

Besides LSTM LMs, we investigate LSTM se-

quence labeling (‘LSTM seq’): we train an LSTM

that takes as input a word and the previous state

and predicts in the output whether the word is fol-

lowed by a punctuation symbol or not (〈nopunct〉-
class). There are several advantages to this ap-

proach compared to language modeling: firstly, we

train the LSTM on unpunctuated text and test it on

unpunctuated text, so there is no mismatch in train-

ing and test conditions. Secondly, the models are

directly optimized for punctuation prediction and

they are easier to train since we do not have the

large output weight matrix of an LM and we only

4We do not use bidirectional LSTM LMs for this task, since
during training, the backward LSTM will have seen punctua-
tion symbols following the current token and the model will
learn to make use of those symbols. However, for applications
such as speech translation, the input for the punctuation pre-
diction model will have no punctuation at all, and hence the
model that has learned to make use of subsequent symbols
will not be optimal.
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have to compute the softmax function over a small

number of output classes. Finally, we can train

bidirectional LSTMs without causing a mismatch

between training input and testing input (see foot-

note 4). A disadvantage of these models is that the

input is not punctuated, and hence the model can-

not exploit punctuation in other parts of the sen-

tence that is previously predicted. Note that, as op-

posed to Tilk and Alumäe (2016), we do not insert

end-of-sentence symbols for the LSTM sequence

labeling, because this would be an (unfair) advan-

tage for bidirectional models – the probability of

seeing an end-of-sentence punctuation mark right

before an end-of-sentence symbol is naturally very

high.

The hyperparameters of these models are the

same as for the LSTM LMs, except that we use

a full softmax in the output layer since we do not

have to deal with a large vocabulary anymore. The

bidirectional LSTMs consist of one forward LSTM

of 256 cells and one backward LSTM of 256 cells,

in total giving the same amount of LSTM cells and

parameters as for the unidirectional LSTM (512).

3.2.3 Punctuation prediction using machine
translation

We can model the punctuation prediction as an

MT problem, treating the non-punctuated version

of our text as source language, and the punctuated

version as target language: we build such mono-

lingual MT systems for Dutch (preprocessing) and

English (postprocessing).

The phrase-based statistical MT (PBSMT) con-

dition uses the Moses decoder (Koehn et al., 2007)

in its phrase-based mode, with a 5-gram LM, and

grow-diag-final-and as phrase alignment criterion.

For other parameters we use the default settings.

The data is word-aligned using GIZA++ (Och and

Ney, 2003). We do not allow reordering, setting

the distortion-limit to 0. The PBSMT clean condi-

tion is equal to PBSMT, but removing all sentences

longer than 80 words from the training data.

The Hiero condition uses Moses in hierarchical

mode (Chiang, 2007), with a glue grammar and a

maximum phrase length of 5. The other param-

eters are the same as for the PBSMT condition.

All Moses systems are tuned using Minimum Error

Rate Training (Och, 2003), maximizing on BLEU.

For the Neural MT (NMT) models, we use the

OpenNMT framework (Klein et al., 2017), trained

with the default settings, i.e. 500 LSTM cells,

seq2seq model type, a vocabulary of 50k for both

source and target language, a general global atten-

tion model (Luong et al., 2015), 13 epochs, a batch

size of 64, and optimization through stochastic

gradient descent (SGD). The initial learning rate is

1, except for the English model trained with SGD:

since the training got stuck in a local minimum, we

use 0.9 instead. The learning rate is decreased with

a decay factor of 0.7, a beam size of 5, and replace-

ments of unknowns, based on the highest attention

weight.5 We also try a variant with optimization

Adam (Kingma and Ba, 2014) and a learning rate

of 0.0002.

Variants of the systems trained with byte pair en-

coding have not been included in this study as ini-

tial tests only showed worse results than without

byte pair encoding.

3.3 Translation Methods

We use the same MT systems as described in sec-

tion 3.2.3, but now trained on the bilingual version

of Europarl. Different from section 3.2.3 is that

we now do allow phrase reordering for the phrase-

based model, setting the distortion limit to 6.

3.4 Evaluation

We measure the quality of punctuation prediction
with precision, recall and F1-score. The precision

over all punctuation symbols is calculated as fol-

lows:

precisionall =
∑

i∈P

TPi

TPi + FPi
(1)

with P the class of all punctuation symbols, TPi

the number of true positives for a certain punctua-

tion symbol and FPi the number of false positives.

Recall is calculated analogously. If a certain punc-

tuation symbol has been predicted but the target

is another punctuation symbol, we count this as a

false negative.

Additionally, we use three common MT eval-

uation metrics, i.e. BLEU (Papineni et al.,

2002), TER (Snover et al., 2006) and ME-

TEOR (Denkowski and Lavie, 2014) with syn-

onyms, comparing the test set with predicted punc-

tuation with the reference text (original text includ-

ing punctuation). These metrics give us informa-

tion on the quality of the entire output (and not

only the punctuation prediction), which can be an

5Replacing the unknowns by their most probable aligned
source language word.
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issue in MT models that allow reordering, such as

Hiero and NMT.

We measure the translation quality with the

same three MT evaluation metrics. Note that, as

described in section 3.1, we use an evaluation set

with three references, ensuring a higher correlation

of BLEU with human judgment, than when only

one reference is used.6

We perform significance testing by bootstrap re-

sampling for BLEU scores (Koehn, 2004) and F1

scores.7

4 Results

Section 4.1 describes the results of punctuation

prediction and section 4.2 describes the results of

MT of unpunctuated input.

4.1 Punctuation Prediction

4.1.1 Dutch
Table 1 shows the results of the punctuation pre-

diction experiments for Dutch. All MT approaches

score significantly better on F1 and BLEU scores

(p < .001) than the LM approaches. They

also score significantly better on F1-score than

the LSTM seq approaches (p < .001), but only

PBSMT, PBSMT clean and Hiero score better on

BLEU score (p < .001) than any of the LSTM

seq approaches. PBSMT scores significantly better

(p < .05) than the other MT approaches on BLEU,

but on F1-score it scores only significantly better

than PBSMT clean (p < .001). This difference be-

tween BLEU and F1 score can be explained by the

fact that the non-PBSMT approaches can reorder

the words and perform unwanted transformations

other than inserting punctuation (mainly affecting

BLEU). This is why we consider the PBSMT ap-

proach to punctuation insertion the best approach

for this experimental setup.

Of the LM approaches, n-gram fw+bw scores

significantly better than the other approaches on

BLEU and F1 (p < .001). Increasing the vocabu-

lary size has only a minor influence on the results:

it decreases precision but increases recall, and has

no significant effects on BLEU nor on F1. These

6The original BLEU paper (Papineni et al., 2002) also uses
multiple references.
7We adapted the perl implementation by
Mark Fishel for BLEU bootstrap resampling,
which is available at https://github.com/moses-
smt/mosesdecoder/blob/master/scripts/analysis/bootstrap-
hypothesis-difference-significance.pl to work for F-scores on
punctuation insertion.

Table 1: Results of punctuation prediction in Dutch

Method Prec. Recall F1 BLEU TER MET.
n-gram LMs

fw 50k 22.63 27.89 24.98 68.69 14.10 87.10
fw full 22.08 28.45 24.86 70.56 13.33 87.69
fw+bw 50k 54.49 78.59 64.36 79.63 8.32 92.88
fw+bw full 53.57 79.15 63.89 80.86 7.78 93.28

LSTM LM fw 44.75 31.83 37.20 83.90 7.97 92.42

LSTM seq
fw 72.03 11.97 20.53 86.11 8.42 91.12
fw opt 43.70 32.25 37.11 83.45 9.31 90.86
fw+bw 50.23 15.07 23.18 86.84 9.17 90.39
fw+bw opt 41.28 16.34 23.41 86.13 9.74 89.94

PBSMT 92.36 74.93 82.74 94.20 2.85 97.14
clean 93.88 71.27 81.02 93.76 3.06 96.88

Hiero 83.16 80.70 81.92 93.54 3.11 97.16
NMT SGD 84.53 79.30 81.83 85.71 6.88 91.79

Adam 82.43 79.30 80.83 85.04 7.12 91.61

Table 2: Results of punctuation prediction in English

Method Prec. Recall F1 BLEU TER MET.
n-gram LM

fw 50k 12.51 28.31 17.35 50.27 23.04 48.24
fw full 23.69 30.37 26.61 71.96 13.64 54.93
fw+bw 50k 42.62 73.60 53.96 69.21 10.41 53.30
fw+bw full 51.30 79.53 62.35 79.78 8.21 58.87

LSTM fw 35.23 25.10 29.31 80.76 10.37 57.21

LSTM seq
fw 69.88 7.50 13.54 90.19 8.86 59.75
fw opt 32.88 32.44 32.66 78.79 11.48 56.66
fw+bw 41.53 13.31 20.20 86.34 10.02 58.31
fw+bw opt 39.10 13.83 20.42 85.21 9.93 58.36

PBSMT 86.09 77.15 81.37 94.76 3.12 66.12
clean 83.46 76.77 79.77 93.77 3.45 65.36

Hiero 76.48 79.87 77.97 92.18 3.91 64.32
NMT SGD 91.41 82.59 86.76 93.53 3.44 64.97

Adam 90.62 82.63 86.43 93.78 3.35 65.19

models tend to overgenerate punctuation, which

can be seen from their low precision.

LSTM sequence labeling (LSTM seq) does not

score better than the LM approaches, mainly be-

cause of the low recall. The bidirectional LSTM

has a lower precision but a slightly higher recall

than the unidirectional LSTM. The n-gram fw+bw
50k and n-gram fw-bw full methods result in a

significantly better F1 score (p < .001) than any

of the LSTM seq methods. In BLEU scores, all

LSTM seq methods are significantly better than all

n-gram LM approaches. This reflects the fact that

BLEU is a precision metric. Only the difference

between LSTM fw and LSTM seq fw opt is not sig-

nificant.

We tested two methods to improve recall for se-

quence labeling: thresholding for the probability

distribution and weighted cross-entropy. Thresh-

olding means that if 〈nopunct〉 is predicted but the

ratio of the probability of the second most probable

output over the probability of 〈nopunct〉 is higher

than a certain threshold, we assign the second most

probable token as prediction. This method indeed

improves the recall of the model but lowers the

precision: we report the result after optimizing the

threshold for F1 score (‘opt’ in the table). We also
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observe that optimizing for F1 does not result in

better quality according to the MT metrics. The

optimal threshold for the unidirectional model was

0.3 and for the bidirectional model 0.6. Trading

off precision and recall had a much smaller effect

on the bidirectional model than on the unidirec-

tional one. Training with weighted cross-entropy,

where more weight is given to the punctuation

symbols since they are much less frequent than the

〈nopunct〉-class, has similar effects but has the dis-

advantage of having to re-train the model and opti-

mize the weights per output class, while the thresh-

old can be optimized during testing.

4.1.2 English

Table 2 shows the results of punctuation predic-

tion for English. As we had three reference sets

in the original test set, we present averaged results

over punctuation prediction on each of these three

sets (we calculate the result for each set separately

and average over the three datasets). For BLEU

scores we used all three references.

All MT approaches score significantly better

than the LM approaches (p < .001) They also

score significantly better than the LSTM seq meth-

ods (at least p < .005). Similar to punctuation in-

sertion for Dutch, PBSMT reaches the best BLEU

scores, although not significantly better than PB-
SMT clean, but significantly better than NMT SGD
and NMT Adam (both p < .05). With respect to the

F1-score, we see that there is no significant differ-

ence between NMT SGD and NMT Adam, but NMT
SGD scores significantly better (p < .001) than the

other MT methods. NMT Adam scores better than

PBSMT (p < 0.05) and PBSMT clean (p < 0.001
for two of the three test sets, not significant for the

third one), and Hiero (p < .001).

For LM and sequence labeling, we see similar

results as for Dutch, with the exception that lim-

iting the vocabulary to only 50k words decreased

the performance much more for English than for

Dutch. This might seem surprising given that the

Dutch dataset has a much larger vocabulary, but it

has many more words that occur only once or a few

times (ca. 200k types have a frequency of 5 or less

in Dutch, as opposed to ca. 80k in English).

The n-gram LM approaches score much better

on F1 score, but they overgenerate, as can be seen

from the low precision and lower BLEU scores,

when compared to LSTM seq approaches, which

seem to undergenerate.

To conclude, we observe that for both Dutch and

English the MT approaches work best for punc-

tuation prediction as an isolated task. Since we

are mainly interested in punctuation prediction in

the context of speech translation, the phrase-based

approach is the most promising since it does not

cause any reordering of the words, giving the best

results according to the MT metrics. We will now

examine which approach achieves the best (bilin-

gual) translation quality.

4.2 Translation of unpunctuated input
Table 3 shows the different experimental condi-

tions that are evaluated and will be further ex-

plained in the next subsections. The best scores

per punctuation strategy are marked in bold, the

best scores per translation system are underlined.

4.2.1 Baselines
In the baseline conditions, we train the MT sys-

tems on normal, punctuated, tokenized, and true-

cased source and target text, and tune them on

the normal, punctuated, tokenized and truecased

development set. We remove all the punctuation

from the test set, and let the MT systems translate

it. It hence constitutes the lower bound.

NMT SGD gets the highest BLEU score, but

not significantly better than PBSMT and PBSMT
clean. Hiero and NMT Adam score significantly

worse than the other three conditions (p < .001).

4.2.2 Upper Bounds
In the upper bounds conditions, we use the same

MT systems as in the baselines, and evaluate them

on the normal, punctuated, tokenized and true-

cased test set, to see how well the MT systems

would do with “perfect” input.

Each of the upper bound scores is significantly

better (p < 0.001) than the same approach in the

baseline condition, so using MT without any form

of punctuation insertion results in a significant loss

in translation quality.

Comparing the different MT systems, NMT
SGD is significantly better than PBSMT (p < .01),

PBSMT clean and NMT Adam (both p < .001).

There is no significant difference between PBSMT,

PBSMT clean, and NMT Adam, but all score signif-

icantly better than Hiero (p < .001). Remarkable

is the higher METEOR score for PBSMT.
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Table 3: Results of punctuation insertion + translation.
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4.2.3 Preprocessing

In the preprocessing conditions, we first insert

punctuation, as described in section 4.1, before

translating. The output of the punctuation inser-

tion is then translated using a regular MT system,

trained on punctuated data.

Using LM and LSTM seq as preprocessing ap-

proach never helps significantly over the baseline,

only in the case of ngram fw+bw full + NMT Adam
(p < .001). Using monolingual MT as prepro-

cessing nearly always helps (p < .005), except

when using Hiero as preprocessing or as transla-

tion engine. Whether PBSMT or PBSMT clean are

used as preprocessors does not make a significant

difference. When using NMT SGD as translation

method, the kind of monolingual MT (apart from

Hiero) does not play a significant role.

The best preprocessing results (using PBSMT as

punctuation inserter) score still significantly lower

than the upper bound scores when using the same

translation system (p < .05 for PBSMT, PBSMT
clean and NMT Adam, p < .01 for Hiero and p <
.001 for NMT SGD).

4.2.4 Implicit Punctuation Insertion

We remove punctuation from the source side of

the parallel corpus and train the MT engines on

these data, so they should be well-suited to trans-

late source text without punctuation in target text

with punctuation.

The score for implicit translation using NMT
SGD is not significantly worse than preprocess-

ing PBSMT + NMT SGD. NMT SGD scores sig-

nificantly better (p < .005) than all other implicit

punctuation insertion methods.

4.2.5 Unpunctuated

We have tested the MT systems trained on un-

punctuated data both in the source and the target,

and evaluated against references from which the

punctuation is also removed. As we use a differ-

ent version of the references, we cannot apply sig-

nificance testing. We present these results as they

provide an indication about the maximum score we

can expect for the postprocessing approach.

Even without punctuation inserted, it is clear

that the scores are much lower than the Upper
bounds presented earlier. The presence of punctua-

tion thus improves the bilingual translation quality

in general.

4.2.6 Postprocessing

In the postprocessing approach, we translate

using MT systems trained on unpunctuated data

(both source and target), resulting in a translation

that does not contain punctuation. The postpro-

cessing step consists of punctuation insertion, sim-

ilar to the preprocessing punctuation insertion step,

but now for English.

Postprocessing with LM and LSTM seq does

not yield any improvements over the baseline.

With monolingual MT we reach significance in all

cases where we use PBSMT (p < .001), PBSMT
clean (p < .001) and NMT SGD (p < .05). NMT
Adam also improves over the baseline (p < .05),

except when combined with the Hiero system.

4.2.7 General results

We note the lack of significant difference be-

tween pre- and postprocessing in the cases where

punctuation insertion consists of PBSMT, PBSMT
clean, NMT SGD or NMT Adam and translation

consists of PBSMT, PBSMT clean, NMT SGD or

NMT Adam.

When considering how much we can close the

gap between upper bound and baseline using the

best scoring combination of methods for each of

the translation systems, we note gap closure of

80% for PBSMT, 64% for PBSMT clean, 79%

for Hiero, 66% for NMT SGD and 89% for NMT
Adam.

5 Conclusions and Future Work

We set out to compare different approaches to

punctuation prediction in the context of transla-

tion. We test several different architectures and

methods for punctuation prediction as well as for

MT, all trained on the exact same data sets, and

evaluate the punctuation prediction quality as a

monolingual phenomenon, as well as its effect on

MT quality.

While there is a clear deterioration of MT qual-

ity when working with unpunctuated input, this

gap can be closed for 66% in the case of our best

bilingual MT system, NMT, by applying monolin-

gual MT as punctuation insertion, or by using a

dedicated implicit insertion MT system.

Whether we use pre- or postprocessing did, in

most cases, not result in a significant difference,

indicating that the general punctuation prediction

quality for Dutch is similar to that of English.
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In future work, we would like to develop a sim-

ilar experiment for segmentation prediction, and

test the results on real speech signals in order to

determine the usefulness of the results in a more

realistic setting. A possible improvement would

be to use NMT as punctuation prediction model,

but constrain the word order with the help of the

attention weights, thus combining the advantage

of neural MT with the constraints on reordering of

PBSMT.
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Punctuation Restoration in Speech Transcripts. Pro-
ceedings Interspeech. 683–687.

Tilk, Ottokar and Tanel Alumäe. 2013. Bidirectional
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