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Abstract

Accurate characterisation and localization of pathologic tissue types play a
key role in diagnosis and treatment planning of brain tumors. Neuroimaging
techniques such as magnetic resonance imaging (MRI), magnetic resonance
spectroscopic imaging (MRSI), perfusion-weighted imaging (PWI) and diffusion
weighted imaging (DWI) are being used to characterize brain tumors and
detect full tumor extent. Analysing these data is both time consuming and
challenging for clinicians. Automated algorithms will aid clinicians to analyse
the data faster and more accurately. Blind source separation is one such
technique that is commonly used to extract useful information from the data.
Most of these algorithms use matrix based approaches. Working with tensor
tools such as tensor decompositions can be of great benefit compared to their
matrix counterpart. Tensors are applied in domains such as signal processing,
biomedical engineering, statistics and machine learning. In this thesis, we aim
to develop tensor based blind source separation algorithms for analysing the
MRSI and multi-parametric MRI (MP-MRI) signals.

First, tensor based blind source separation methods are developed to remove
artefacts. In this thesis, we focus on residual water suppression in the MRSI
signal. To suppress the residual water, a Löwner/Hankel tensor is constructed
from the MRSI signal. Canonical polyadiac decomposition (CPD)/Multilinear
singular value decomposition is applied on the tensor to extract the water
component, and to subsequently remove it from the original MRSI signal.
The tensor based water suppression methods show significant improvement in
performance for both simulated and in-vivo MRSI signals compared to the
matrix-based approaches.

Second, tensor based blind source seperation is applied to differentiate various
tissue types in glioma patients from MRSI/multi-parametric MRI signals. Such
a tensor based tumor tissue type differentiation approach is developed which
consists of building a xxT structured 3-D tensor from the MRSI spectra
and then applying a non-negative CPD to extract tissue specific spectra and
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its corresponding distribution in the MRSI grid. An in-vivo study shows
that our tensor based approach significantly outperforms the matrix-based
approaches in identifying tumor and necrotic tissue type in glioma patients.
This tensor based tissue characterization approach is further extended to multi-
parametric magnetic resonance imaging (MP-MRI) including conventional
magnetic resonance imaging, perfusion-weighted imaging, diffusion-weighted
imaging and MRSI modalities to perform tumor segmentation.

Third, we explore the applicability of tensor decompositions in supervised
algorithms for voxel classification in MRSI and tumour tissue segmentation
in MP-MRI. A CNN based low-rank regularized classifier is developed to
classify voxels in MRSI. Multilinear singular value decomposition (MLSVD) is
used to apply regularization in the convolution layer. Low-rank regularization
provides slight improvement in computational complexity without degrading the
classification performance. For tumour tissue segmentation, a superpixel-wise
two stage random forest algorithm is developed. The whole tumor is segmented
in the first stage and in the second stage sub-compartments are segmented from
the whole tumor. Multilinear singular value decomposition (MLSVD) is used
to extract some of the features as input to the random forest classifier. The
proposed algorithm was analysed on the BRATS 2017 challenge dataset, which
showed a very good performance in segmenting the whole tumor and average
performance in segmenting sub-compartments. This shows that tensor based
feature extraction is a viable option for tumor tissue segmentation in MP-MRI.



Beknopte samenvatting

Nauwkeurige karakterisering en lokalisatie van pathologische weefseltypen spelen
een belangrijk rol bij de diagnose en behandelingsplanning van hersentumoren.
Neuroimaging-technieken zoals magnetische resonantie beeldvorming (MRI),
magnetische resonantie spectroscopische beeldvorming (MRSI), perfusie-
gewogen beeldvorming (PWI) en diffusie gewogen beeldvorming (DWI) worden
gebruikt om hersentumoren te karakteriseren en de volledige tumor omtrek te
detecteren. Het analyseren van deze medische beelden is zowel tijdrovend als
uitdagend voor clinici. Geautomatiseerde algoritmen helpen clinici de gegevens
sneller en nauwkeuriger te analyseren. Blinde bronscheiding is een dergelijke
techniek die vaak wordt gebruikt om nuttige informatie uit de gegevens te
extraheren. De meeste algoritmen gebruiken matrixgebaseerde benaderingen.
Het werken met tensor-tools zoals tensor-decomposities kan van groot voordeel
zijn in vergelijking met hun matrix-tegenhanger. Tensoren worden toegepast
in domeinen zoals signaalverwerking, biomedische engineering, statistiek en
machine learning. In dit proefschrift proberen we op tensor gebaseerde blind
bronscheidingsalgoritmen te ontwikkelen voor het analyseren van de MRSI en
multi-parametrische MRI (MP-MRI) signalen.

Ten eerste presenteren we tensor gebaseerde blinde bronscheidingsmethoden
om artefacten te verwijderen. In dit proefschrift richten we ons op residuale
wateronderdrukking in het MRSI-signaal. Om het resterende water te
onderdrukken, wordt een Löwner / Hankel-tensor geconstrueerd uit het MRSI-
signaal. Canonische polyadische decompositie (CPD) wordt toegepast op de
tensor om de watercomponent te extraheren en vervolgens te verwijderen uit
het oorspronkelijke MRSI-signaal. De tensor gebaseerde wateronderdrukkings-
methoden vertonen een significante verbetering in performantie voor zowel
gesimuleerde als in-vivo MRSI-signalen in vergelijking met de matrix gebaseerde
benaderingen.

Ten tweede stellen we een tensor gebaseerde blinde bronscheiding methode
voor om verschillende weefseltypes in glioom-patiënten te onderscheiden op
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basis van MRSI / multi-parametrische MRI-signalen. De methode bestaat
uit het bouwen van een xxT gestructureerde 3D-tensor uit de MRSI-spectra
en het toepassen van een niet-negatieve CPD om weefselspecifieke spectra en
de overeenkomstige verdeling in het MRSI-rooster te extraheren. Een in vivo
onderzoek toont aan dat onze tensor gebaseerde benadering significant beter
is dan de matrix gebaseerde benaderingen bij het identificeren van tumor- en
necrotisch weefseltype bij glioom-patiënten. De tensor gebaseerde benadering
voor weefselkarakterisering wordt verder uitgebreid tot multiparametrische
magnetische resonantie beeldvorming (MP-MRI), om conventionele magnetische
resonantie beeldvorming, perfusie-gewogen beeldvorming, diffusie-gewogen
beeldvorming en MRSI modaliteiten samen te gebruiken voor tumorsegmentatie.

Ten derde onderzoeken we de toepasbaarheid van tensor-decomposities in
gesuperviseerde algoritmen voor voxel-classificatie in MRSI en segmentatie
van tumorweefsel in MP-MRI. Een convolutional neural network (CNN)
gebaseerde low-rank geregulariseerde classifier is ontwikkeld om voxels in MRSI
te classificeren. Multilineaire enkelvoudige waarde-decompositie (MLSVD)
wordt gebruikt om regularisatie toe te passen in de convolutielaag. Low-rank
regularisatie biedt een verbetering in de computationele complexiteit zonder om
de classificatieprestaties te verslechteren. Voor segmentatie van tumorweefsel
is een superpixel gebaseerde methode met twee stappen van random forests
classificatie ontwikkeld. De gehele tumor is gesegmenteerd in de eerste fase en de
subcompartimenten van de gehele tumor worden in de tweede fase gesegmenteerd.
Multilineaire singuliere waarde-decompositie (MLSVD) wordt gebruikt om een
subset van kenmerken te extraheren als input voor de random forest classificator.
Het voorgestelde algoritme werd geanalyseerd op de BRATS 2017 challenge-
dataset, met heel goede performantie in het segmenteren van de gehele tumor
en redelijke performantie in het segmenteren van subcompartimenten. Dit
toont aan dat tensor gebaseerde kenmerk-extractie een haalbare optie is voor
tumorweefselsegmentatie in MP-MRI.
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Chapter 1

Introduction

1.1 Aim of the thesis

Neuroimaging techniques such as magnetic resonance imaging (MRI) and
magnetic resonance spectroscopic imaging (MRSI) allow to visualize brain tissue
non-invasively and are therefore very helpful in diagnosis and prognosis of various
neurological diseases. In Neurooncology, these techniques are used extensively in
both research as well as the clinical environment. In clinical settings these MRI
techniques are being used in the characterisation and localization of pathologic
tissue (Figure 1.1). Hence, they are an important aid to diagnose brain tumor
and, to assist in presurgical planning and post treatment management of brain
tumors. Manually characterizing/localizing tumor tissues is a tedious and
time consuming job, which also suffers from inter and intra-rater variability.
Developing machine learning based automated or semi-automated algorithms for
pre-processing and analysing MRSI/multi-parametric MRI (MP-MRI) signals
will aid clinicians to overcome those problems and results in better diagnosis
and prognosis of brain tumors.

Machine learning is “the capability of the computer program to acquire or
develop new knowledge or skills from existing or non existing examples for the
sake of optimising performance criterion” [7]. Fundamentally, there are two
different tasks within machine learning, namely supervised and un-supervised
learning. In this thesis, both techniques are used with focus on un-supervised
techniques, specifically blind source separation. Blind source separation (BSS)
is one of the un-supervised machine learning techniques which consists of
recovering the original signals from the mixture without (or as little as possible)

1
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Figure 1.1: (b) T2-weighted image showing tumor around the center. (b) MRSI
colour map of myoinositol. Image adapted from: [31].

prior knowledge of the mixing process or the original signals. Substantial
progress in data recording technologies and information processing in recent
years have enabled acquisition and analysis of large amounts of biomedical data.
Extraction of the underlying health relevant information patterns, called sources,
is crucial for a reliable prediction of the underlying pathology or health condition.
Blind source separation provide a nice framework for such applications. BSS
techniques are extensively used in biomedical applications [119]. Biomedical
applications generate large amounts of data. Most of these data are not labelled
as it requires a significant amount of time and domain-specific expertise. BSS
methods don’t require any training based on labelled data and can be applied
directly on the individual data. These advantages of BSS techniques have
motivated us to use it for analysing MRSI data.

Commonly used BSS techniques such as principal component analysis (PCA),
non-negative matrix factorization (NMF) and independent component analysis
(ICA) employ matrix based approaches. Many biomedical signals exhibit
higher-order structure. Reformatting the data tensor as a matrix and using
classical matrix based BSS are bounded by rigid assumptions inherent in
matrix analysis and are not always a good match for higher-order data. For
maintaining structural information, higher-order tensors are very attractive.
They generalize vectors and matrices to higher-order tables of numbers. This
has motivated researchers to use tensor based blind source separation which
enables capturing multiple interactions and couplings from the higher-order data,
instead of standard pairwise interactions. Also, tensors and their corresponding
tools display certain properties that are not available in the matrix domain
[38, 158]. Uniqueness of tensor decomposition under mild conditions is one
such strong property, where additional constraints are not needed to obtain
solutions as compared to the matrix case [61, 62]. Tensor based blind source
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separation is solved using tensor decomposition techniques. Canonical Polyadic
Decomposition (CPD) is the most well known decomposition, which decomposes
a tensor in rank− 1 terms. CPD is unique under mild conditions, which makes
it a broadly applicable key tool for BSS. In many applications rank − 1 is very
restrictive as it cannot model variations in the source, except for strength. In
tensors, uniqueness of decomposition in rank−1 terms can be extended to more
general or realistic terms. A block term decomposition (BTD) generalises the
rank−1 terms in CPD to low multilinear rank terms. When the underlying data
has only second-order structure, instead of using matrix-based approaches for
blind source separation (BSS), matrix data can be converted to a higher-order
tensor. This transformation is called tensorization and under certain conditions
tensor methods will provide advantage over matrix analysis. For example, in
blind source separation (BSS) problems, provided the source can be modelled or
approximated by rational functions, tensorization followed by applying tensor
decompositions has better performance compared to that of the matrix based
counterpart [54].

Tensor decomposition techniques such as CPD are currently emerging as a
standard tool and have already been widely used in telecommunication, array
processing, chemometrics, psychometrics and exploratory data analysis [99,
163]. Biomedical applications include the study of brain networks [128], brain-
computer interfaces [151] seizure localization, EEG [151] and Event-Related
Potentials. Applications using more generalized tensor decompositions, such as
BTD are still limited [89] and have not been explored widely. On the other hand,
in biomedical applications it is still common practice to store data in matrices,
even when they have higher-order structure, and hence important structural
information is lost. With the exception of ICA, tensorization of matrix data
has been limited to a few isolated cases [125]. It is clear that tensors have a
great unexplored potential in biomedical data processing. This thesis aims at
exploring tensor based blind source separation techniques for processing and
analysing MRSI and MP-MRI data. We focus on two main application: residual
water suppression in MRSI (Figure 1.2) and tumor tissue type differentiation
from MRSI/MP-MRI (Figure 1.3). The research in this thesis is part of work
package six (WP6) in the BIOTENSORS project, funded by ERC Advanced
Grant: BIOTENSORS (no 339804) and meets the following objectives:

Aim1: Tensor based blind source separation techniques for MRSI
pre-processing. MRSI signals contain information for estimating metabolite
concentrations from in-vivo in a non-invasive fashion. Along with clinically
relevant components MRSI signals also contain unwanted components such as
water, baseline etc. In general, residual water is suppressed before doing any
analysis in a pre-processing step (Figure 1.2). The traditional model for an
MRS(I) signal is a sum of damped exponentials. This model is still widely used
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Figure 1.2: Residual water suppression from one of the voxel in the MRSI signal.

Figure 1.3: Nosologic images of normal, tumor and necrosis tissue types. Image
adapted from: [111].

for filtering unwanted components (artefacts) originating from residual water
[130]. Currently used matrix algorithms are based on Hankel expansions and
operate on a voxel by voxel basis. Simultaneous analysis of MRSI signals, which
originate from a 2D or 3D array of neighbouring voxels and share similar spectral
profiles, has not been attempted. We aim to exploit the shared information
present among neighbouring voxels and develop a new class of algorithms
based on canonical polyadic decomposition to improve automation and enable
all-at-once water suppression of the entire 2D MRSI set.

Aim2: Tensor based brain tumour tissue typing algorithms using
MRSI and MP-MRI: Another major application of MRSI/MP-MRI signals
we focus on is brain tumour tissue typing. The tumor region of glioblastoma
multiforme (GBM) typically consists of several tissue types, which represent
actively growing tumor, necrosis or normal brain tissue. In vivo MRSI has shown
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an increasing power in the diagnosis of brain lesions and neurological disorders.
For brain tumour patients in particular, the challenge is to classify MRSI voxels
so that they recognise tumour types, grades and tissue heterogeneity. Blind
source separation techniques are used to extract the tissue-specific profiles and
their corresponding distribution from the MRSI data (Figure 1.3). Here, each
source represent the MRS signal from a pure tissue type (healthy, actively
growing tumour, necrotic tissue. . . ). So far, only BSS approaches based on non-
negative matrix factorization (NMF) or independent component analysis (ICA)
[39, 150] have been used but they cannot handle the heterogeneity present in
tissue or artefacts. Our objective is to develop CPD/block term decomposition
(BTD) based algorithms to improve automation and brain tumour heterogeneity
characterization.

Conventional MRI (cMRI) is a widely used imaging modality for tumor
segmentation/localization. In recent years advanced modalities such as diffusion
weighted imaging (DWI), perfusion weighted imaging (PWI) and MRSI are
being used in Neurooncology. Studies have shown that additional structural,
biological and biochemical information provided by these modalities will help
in tumor characterization. In NMF based algorithms, the addition of these
MRI modalities has proven to be beneficial for tumor segmentation [152]. This
motivated us to also focus on extending the CPD based algorithms developed
for MRSI to deal with MP-MRI data and to provide a more refined tissue
characterization.

Aim3: Tensor decompositions applied to supervised tumour tissue
segmentation using MRSI and MP-MRI: One of the problems with BSS
techniques is the difficulty to automate the algorithm as the interpretation is
left to the user. Most state-of-the-art automated algorithms for segmenting
tumor regions are based on a supervised classification approach. Higher order
structures occur naturally in both the data (e.g. 3D MRI scan, MP-MRI
data) and in the algorithms (e.g. Convolution kernel in convolutional neural
network is a 4D array). These higher order structures have not been exploited
in the context of MRSI voxel classification or MP-MRI tumor segmentation.
We aim to explore tensor decomposition methods such as multilinear singular
decomposition (MLSVD) to exploit higher order structure in supervised MRSI
voxel classification for handling over-fitting and to reduced computational
complexity and in MP-MRI tumor segmentation algorithms to generate refined
features.
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1.2 Chapter-by-chapter overview

The schematic representation of this thesis is shown in Figure 1.4 and can be
grouped into four parts: background materials, pre-processing and analysis of
MRSI data, analysis of MP-MRI data and conclusion. Chapters 4, 5 and 7
resort under the umbrella of tensor based blind source separation. Chapters 6
and 8 reveal how to exploit tensor decomposition in supervised algorithms.

Figure 1.4: Schematic overview of the thesis.

Chapter 2 introduces the mathematical background needed for this thesis:
basic concepts of tensor decompositions and machine learning. Commonly
used tensor decomposition methods which form the basis of all algorithms
developed in this thesis are mentioned. In the second half we introduce blind
source separation as an un-supervised machine learning algorithm. Different



CHAPTER-BY-CHAPTER OVERVIEW 7

matrix/tensor based BSS techniques that are relevant to this thesis are explained.
Finally, basic concepts of random forest and convolutional neural networks are
described in a section on supervised machine learning techniques.

Chapter 3 introduces the medical-physical background: basic concepts in
MRI, MRSI and MP-MRI. Different MRI modalities and their benefits in the
diagnosis and management of glioma patients are described. Next, MP-MRI
datasets from UZ Leuven on which tensor based BSS methods are applied are
described. Acquisition parameters and pre-processing methods for all the MRI
modalities are discussed. At last, the BRATS 2017 challenge dataset used in
supervised brain tumor segmentation is discussed.

Chapter 4 introduces two tensor based methods for residual water suppression
in MRSI. MRSI signals share common information among neighbouring
voxels. Since traditional matrix-based approaches did not exploit such shared
information, tensor based methods capable of exploiting such information were
developed. In the first method MRSI is modelled as a sum of exponentials in
the time domain and a Hankel-tensor based exponential data fitting approach is
applied to water suppression. However, in the second method MRSI is modelled
as a sum of rational functions in the frequency domain, where a Löwner-tensor
based blind source separation technique is being developed for residual water
suppression. The added value of simultaneous water suppression in MRSI using
tensor decompositions over a matrix based individual voxel approach is assessed
on both simulated and in-vivo MRSI datasets from UZ Leuven.

Chapter 5 focuses on tumor tissue typing in MRSI using tensor-based blind
source separation. Representing the MRSI signal as a tensor in such a way that a
low-rank structure can be exploited is important. To this end, a third-order xxT
structured tensor construction is formulated. A non-negative canonical polyadic
decomposition (NCPD) based algorithm was developed for extracting tissue
specific patterns and their corresponding abundances. Schemes for initialization
and automatic estimation of number of sources are developed. We hypothesize
that the tensor based algorithm will be better at handling artefacts and will
reveal more localized tissue distributions, thereby providing a more refined
tissue characterization. The NCPD algorithm is applied to the in-vivo MRSI
dataset from UZ Leuven to assess the advantages of using tensor based BSS
compared to matrix based BSS methods (NMF).

Chapter 6 explores supervised algorithms for classification of voxels in MRSI.
The NCPD algorithm in Chapter 5 will extract tissue specific patterns and their
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corresponding abundances from MRSI. These can be further used to classify
each voxel using prior knowledge. We try to improve the tumor characterization
using two supervised algorithms. The first method is based on random forest,
which uses a reduced spectrum from each voxel as input features. In the second
approach, a convolutional neural network (CNN) architecture is developed to
classify the individual voxels in MRSI into three classes: tumor, normal and
bad quality. Additionally, Low-rank regularization based on multilinear singular
value decomposition (MLSVD) is applied to the convolution layer of CNN for
assessing the usability of tensor decomposition in supervised algorithms. The
low-rank regularization will have fewer parameters to learn compared to a non
regularized convolution layer. Therefore, we expect it to handle over-fitting
and result in reduced computational complexity. The advantage of using tensor
based low-rank regularization in CNN is tested on an in-vivo MRSI dataset.

Chapter 7 extends the tensor based algorithm NCPD developed in Chapter 5
to handle the MP-MRI data and to perform tumor segmentation on it. The same
tensor construction approach of chapter 5 is used, but now the MRSI-samples
are replaced by well-chosen characteristic features quantified from a variety
of MR modalities (called MP-MRI). A constrained CPD algorithm, where a
non-negativity constraint is imposed on one of the factor matrices is developed
for tissue characterization from MP-MRI signals. Similarly to Chapter 4, we
analyse the added value of tensor based BSS over matrix based BSS using
MP-MRSI datasets of high grade glioma patients from UZ Leuven.

Chapter 8 explores the applicability of tensor decomposition methods in
extracting features for supervised tumor segmentation algorithms from MP-
MRI data. Un-supervised algorithms developed in the previous chapter was not
capable of segmenting tumor properly on a whole image. Therefore, we shifted
from un-supervised to supervised algorithms for segmenting tumors using a
3D MP-MRI dataset. A superpixel wise two-stage random forest algorithm is
developed. In the first stage, the whole tumor (enhancing tumor + necrosis +
edema) is segmented and subsequently, in the second stage sub-compartments
are segmented from the whole tumor. In both stages many features are extracted
using multilinear singular value decomposition (MLSVD) to exploit the higher
order structure present in the data. We expect tensor based feature extraction
to be viable for tumor segmentation from MP-MRI and to provide more refined
features than those obtained by averaging the matricized parameters. The
algorithms are trained and analysed using the BRATS 2017 challenge dataset.
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Chapter 9 summarises the main findings of each chapter with respect to the
objectives stated in the previous section. Additionally, future research directions
and possible extensions of the current work are discussed.





Chapter 2

Mathematical background:
tensor decomposition and
machine learning

The methods developed throughout this thesis for pre-processing and analysing
MP-MRI signals are all based on tensor decompositions. Therefore, the basic
concept of tensors and various decomposition methods will be discussed in this
chapter. In this thesis, both un-supervised and supervised machine learning
algorithms are used for tumor tissue characterization and localization. Therefore,
in the second half of the chapter, unsupervised blind source separation and
supervised algorithms that are relevant for this thesis are discussed.

2.1 Tensor decomposition

Tensors are higher-order arrays. Vectors are first-order tensors, matrices are
second-order tensors and arrays larger than second-order are called higher-order
tensors. Vector, matrix and a third-order tensor are shown in Figure 2.1. In many
applications the measured data contains higher- order structure, for example:
3D MRI scans, multi-lead EEG measured from different subjects. Processing
the data as a tensor instead of unfolding it to a matrix (i.e. matricization) offers
certain advantages such as: possibilities to obtain compact representations,
the higher-order structure is preserved in the processed data, flexibility in
the choice of constraints, generality of components that can be identified and

11
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tensor decompositions can be unique under mild conditions without imposing
additional constraints [61, 63, 38]. In this section we discuss the tensor tools
that are used in this thesis.

Figure 2.1: Graphical representation of vector, matrix and third-order tensor.

2.1.1 Notations and tensor preliminaries

Tensors, denoted by calligraphic letters, e.g., A, are higher-order generalizations
of vectors (denoted by boldface lowercase letters, e.g., a) and matrices (denoted
by boldface uppercase letters, e.g., A). Scalars are written as italic lowercase
letters, e.g., a. The entry with row index i and column index j of a matrix
A ∈ CI×J is denoted by aij . Likewise, the (i1, i2, . . . , iN )th entry of an Nth-
order tensor A ∈ CI1×I2×...×IN is denoted by ai1i2...iN . The jth column of
a matrix A ∈ CI×J is denoted by aj . The superscripts ·T, ·H, ·−1 and ·†
represent the transpose, complex conjugated transpose, inverse and pseudo
inverse, respectively. The symbol ⊗ and ◦ denotes the outer product and
Hadamard product, respectively. The outer product A ⊗ B of a tensor A ∈
CI1×I2×...×IN and a tensor B ∈ CJ1×J2×...×JM is the tensor defined by: (A ⊗

B)i1...iN j1...jM
= ai1...iN bj1...jM

.

The order of a tensor is the number of indices required to represent an element in
the tensor. Vectors and matrices are tensors of order one and two, respectively.
Fibers are the higher-order analogue of matrix rows and columns [99]. A mode-n
fiber is defined by fixing every index except the nth index. Third-order tensors
have column, row, and tube fibers as shown in Figure 2.2. Similarly, slices
are second-order sections of a tensor obtained by fixing all but two indices.
The process of rearranging the elements of a tensor into a matrix is called
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matricization or unfolding. In mode-n matricization of a tensor, the columns of
the matrix contains the mode-n fibers as shown in Figure 2.3.

Figure 2.2: Mode-1, mode-2 and mode-3 fibers of third-order tensor. Source:
[91]

Figure 2.3: Graphical representation of a third-order tensor matricization in all
three modes. Source: [171]
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Tensor-matrix product

A tensor can be multiplied by a matrix in mode n, which is called tensor
n-mode product. Given a tensor T ∈ CI1×I2×···×IN , its n-mode product with
the matrix U ∈ CJ×In is denoted as T ×n U, will result in a tensor P of size
I1 × · · · × In−1 × J × In+1 × · · · × IN , defined as

Pi1···in−1jin+1···iN = (T ×n U)i1···in−1jin+1···iN

=
In∑
in=1

ti1i2·iNujin

In terms of unfolding, it can be written as P(n) = UX(n). When a tensor
specifies a multilinear operator, the n-mode product with an invertible matrix
of size In × In is related to a change of basis [99].

2.1.2 Tensorization: Löwner and Hankel matrices/tensors

When the data has higher-order structure tensor methods can be directly applied
on the data. Certain manipulation on the original data can also lead to a tensor
and the procedure of creating a data tensor from lower-dimensional data is
referred to as tensorization. Generating a tensor from the data can be broadly
classified into four groups [38]:

• From lower to higher-order structure: for example, one-way exponential
signal can be arranged in a Hankel matrix or a Hankel tensor. Similarly, a
Löwner tensor can be obtained by stacking Löwner matrices constructed
form multiple one-way rational signals.

• Mathematical construction: for instance, N th-order moments/cumulants
obtained from a vector-valued random variable form an N th-order tensor.
Also, a multichannel EEG/ECG (channel×time) can be transformed using
time-frequency or wavelet representations into channel×time×frequency
or channel × time× scale tensor, respectively.

• Experiment design: here data from different modules can be stacked into
a tensor. For instance, MP-MRI images from MRI, DWI, MRSI and PWI
can be stacked to form a third-order tensor.

• Naturally occurring tensor data: some of the measured/generated data
exhibit higher-order structure. For example, 2D-MRSI signal (x−spatial×
y − spatial × spectrum) and 3D MRI scans.
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Amore detailed explanation of different higher-order structures and tensorization
are available in [53]. In this section two types of tensors which fall under the
category of generating tensor from lower-order data (tensorization) are discussed.

Löwner matrix/tensor: while the concept of Löwner matrices is highly
acknowledged in the domain of system identification [9, 10], it is not well known
in other application domains. In a recent study, Löwner matrices have been
used in a BSS context to separate (approximations by) rational functions [54].

Suppose a function f(t) ∈ C is given, evaluated in the point set T =
{t1, t2, . . . , tN}. In order to construct the Löwner matrix, the point set T
is partitioned into two distinct point sets, X = {x1, x2, ..., xI} and Y =
{y1, y2, ..., yJ} with I + J = N . The elements of the Löwner matrix L ∈ CI×J
are then defined as

∀i, j : lij = f(xi)− f(yi)
xi − yj

.

We thus obtain the following matrix:

L =


f(x1)−f(y1)

x1−y1

f(x1)−f(y2)
x1−y2

. . . f(x1)−f(yJ )
x1−yJ

f(x2)−f(y1)
x2−y1

f(x2)−f(y2)
x2−y2

. . . f(x2)−f(yJ )
x2−yJ

...
... . . . ...

f(xI)−f(y1)
xI−y1

f(xI)−f(y2)
xI−y2

. . . f(xI)−f(yJ )
xI−yJ

 .

For partitioning, a parameter α is often used in the literature with I = α
and J = N − α. Matrix L will be square when N is even and α = N/2.
The interleaved partitioning with X = {t1, t3, ...} and Y = {t2, t4, ...} and the
block partitioning with X = {t1, ...tI} and Y = {tI+1, ...tN} are some of the
commonly used partitionings. Rational function and Löwner matrix exhibit
an important property, where a Löwner matrix constructed from a rational
function of degree R will have a rank R [9, 116]. This property is valid for any
point set partitioning.

Given K functions fi(t) evaluated on the same set of N points, a Löwner matrix
Li can be computed for each function. By stacking the different matrices Li in
a tensor along the third mode, a Löwner tensor L ∈ CI×J×K is obtained.

Hankel matrix/tensor: Hankel matrices are used in many applications such
as system identification, coding theory. For a function f(t) ∈ C evaluated at N
distinct points T = {t1, t2, ..., tN}, the elements of a I × J Hankel matrix with
I + J − 1 = N are defined as

∀i, j : hij = f(ti+j−1).
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and in matrix form it is represented as:

H =


f(t1) f(t2) . . . f(tJ−1) f(tJ)
f(t2) f(t3) . . . f(tJ) f(tJ+1)
...

... . . . ...
...

f(tI−1) f(tI) . . . f(tI+J−3) f(tI+J−2)
f(tI) f(tI+1) . . . f(tI+J−2) f(tI+J−1)

 .

A Hankel matrix constructed from a sum of R complex exponentials will have
a rank-R [104]. This important property is the cornerstone of Hankel based
harmonic retrieval, which is used in Chapter 4. Similarly to the Löwner tensor,
a Hankel tensor H ∈ CI×J×K can be constructed from K functions fi(t) by
stacking the Hankel matrices Hi in a tensor along the third mode.

2.1.3 Canonical polyadic decomposition

A data matrix X can be decomposed into two factor matrices A(1) and A(2).

X =
R∑
r=1

a(1)
r

⊗ a(2)
r , A(1)A(2)T

.

Such a decomposition is not unique as it can have infinitely many combinations
of A(1) and A(2):

X = (A(1)B)(B−1A(2)T

)

= Ã(1)Ã(2)T

,

where B is an invertible square matrix of size (R × R). Standard matrix
factorizations methods such as the QR-factorization and singular value
decomposition (SVD) generate unique factors due to hard and restrictive
constraints such as triangularity and orthogonality. Other factorizations
methods such sparse component analysis non-negative factorization estimate
factors using constraints that exploit certain properties of those factors. However,
uniqueness is not always guaranteed.

Polyadic Decomposition (PD) approximates an Nth-order tensor as a sum of
rank-1 tensors [99, 38]. For a tensor T ∈ CI1×I2×···×IN PD is defined as

T =
R∑
r=1

a(1)
r

⊗ · · · ⊗ a(N)
r ,

r
A(1), ... ,A(N)

z
.
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where A(n) is the nth-mode factor matrix and R is the number of rank-one
tensors. If R is minimal, the decomposition becomes canonical (CPD) and the
rank of T is defined as R. The rank of a tensor is defined as the minimum
number of rank-one tensors, whose sum generate the exact tensor. Figure 2.4
shows the CPD of a third-order tensor.

Figure 2.4: Graphical representation of a canonical polyadic decomposition for
a third-order tensor.

The advantage of the CPD model is its uniqueness up to permutation and
scaling under mild conditions. Several deterministic uniqueness conditions have
been derived with increasing generality [61, 63, 38]. One such condition useful
in this thesis is defined as [65]:
For a third-order tensor T ∈ RI×J×K , for K ≥ R, the CPD is unique when,

1. The factor matrices A(1) and A(2) have full column rank. For factor
matrices to be full column rank it is necessary for the tensor rank to be
R ≤ min(I, J).

2. The third factor matrix A(3) does not contain proportional columns.

Generally, CPD is computed by minimizing the Frobenius norm of the difference
between the given data tensor and its CP approximation:

min
A(1),... ,A(N)

‖T −
r

A(1), ... ,A(N)
z
‖2, (2.1)

where ‖.‖ denotes the Frobenius-norms. Alternating least squares (ALS) is the
simplest and most widely used algorithm for computing CPD [33, 3], where
each factor matrix is computed alternatingly using least squares by fixing all
the other factor matrices. Algorithms using simultaneous generalized Schur
decomposition [49], optimization based techniques [166, 141] and many other
approaches [99, 38] are also available for computing CPD.

In this thesis we have used the default CPD by nonlinear least squares (CPD-
NLS) algorithm available in Tensorlab software package [185]. CPD-NLS
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algorithm solves the optimization problem in (2.1.3) using nonlinear least squares
methods such as Gauss–Newton or Levenberg–Marquardt. We have used the
Gauss–Newton method with dogleg trust-region algorithm for our application.
At each iteration, the parameters are updated and the step is calculated by
solving a linearised approximation of the cost function. The cost of each iteration
is reduced by exploiting the multilinear structure and using a preconditioned
conjugate gradient algorithm to determine the Gauss–Newton step [166]. The
computational cost of the algorithm is O(2(N + itgn)R

∏
In + itcg( 5

2 )N2R2 +
1
3NR

3 +8R2∑ In) flops/iteration, where itgn is the number of internal iteration
per step and itcg is the number of iteration of the preconditioned conjugate
gradient algorithm. A more detailed explanation of this algorithm along with
other optimization based approaches are available in [166].

2.1.4 Multilinear singular value decomposition

Multilinear singular value decomposition (MLSVD) can be considered as
generalization of matrix singular value decomposition to higher order tensors.
For an N th-order T ∈ CI1×I2×···×IN , MLSVD is defined as [48]:

T = S ×1 U(1) ×2 U(2) ×3 · · · ×N U(N), .

where U(n) ∈ RIn×In is a unitary matrix and S is (I1 × I2 × · · · × IN )-tensor
of which the subtensors Sin=α obtained by fixing the nth index to α has the
following properties:
1) all-orthogonality: two subtensors Sin=α and Sin=β are orthogonal for all
values of n, α and β subject to α 6= β:

〈Sin=α,Sin=β〉 = 0 when α 6= β,

2) ordering:
‖Sin=1‖ ≥ ‖Sin=2‖ ≥ ... ≥ ‖Sin=In‖

Frobenius-norms of subtensors ‖Sin=i‖, denoted by σ(n)
i are the n-mode singular

values of T . Figure 2.5 shows the MLSVD of a third-order tensor. The factor
matrices U(1), U(2), and U(3) obtained form MLSVD of a third-order tensor
span the column, row, and third-mode space, respectively. In general, the nth
factor matrix spans the n-mode vector space.

MLSVD can be computed using singular value decomposition. The n-mode
factor matrix U(n) can be obtained as the matrix holding the left singular
vectors of T(n), where T(n) is the n-mode matrix unfolding (matricization) of
the tensor T . The core tensor S can then be computed by applying all n-mode
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Figure 2.5: Graphical representation of a MLSVD for a third-order tensor.

products on T with the inverse of corresponding factor matrix U(n):

S = T ×1 U(1)H

×2 U(2)H

×3 · · · ×N U(N)H

.

Computing the MLSVD of an N th-order tensor consists of computing N different
matrix SVDs of unfolded matrices with size: In × I1I2...In−1In+1...IN (1 ≤
n ≤ N) and N n-mode tensor matrix multiplications. In this thesis MLSVD is
computed using the mlsvd-function in Tensorlab toolbox [185].

A data tensor can be approximated by discarding the multilinear singular
vectors and slices of the core tensor that correspond to small multilinear singular
values to obtain a low multilinear rank approximation (LMLRA). Although
the truncation results in a good estimate it may not be necessarily optimal in
the least squares sense [38]. Algorithms based on alternating least squares or
optimization techniques can be used to obtain best approximation. MLSVD
has many applications, it can be considered as a multilinear extension of PCA
[103]. MLSVD has been used for compression, classification, feature extraction,
subspace-based harmonic retrieval, signal enhancement and many more [103,
117, 181, 140, 81]. In this thesis we have used MLSVD for harmonic retrieval,
compression of fourth-order tensor and to extract features for classification.

2.1.5 Block term decomposition

Block Term Decomposition (BTD) is a recently introduced tensor decomposition
method. BTD generalises CPD, where a tensor is approximated by a sum of
low multilinear rank terms as opposed to rank-1 terms in CPD [47, 46, 50]. For
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a N th-order T ∈ CI1×I2×···×IN , BTD is defined as:

T ≈
R∑
r=1
S(r) ×1 U(r,1) ×2 U(r,2) ×3 · · · ×N U(r,N).

where S(r) ∈ CJ
(r)
1 ×J

(r)
2 ×···×J

(r)
N is the core tensor in the rth term and U(r,n) ∈

CIn×J(r)
n is the nth factor matrix in the rth term of the BTD. Consider the

Hankel/Löwner tensor, if the Hankel/Löwner matrix in each slice is constructed
from a linear combination of degree-1 exponential/rational functions CPD will
be able to extract individual components. However, for a linear combination
of low degree exponential/rational functions, rank-1 term of CPD will not
be sufficient to extract individual components. This requires low rank terms
corresponding to the degree of exponential/rational functions for extracting
individual components, in such applications BTD will be more useful than CPD.

In this thesis we have considered one particular case, decomposition in R rank-
(Lr, Lr, 1) block terms. In rank-(Lr, Lr, 1)-BTD each of the low multilinear
rank terms can be represented by a outer product of a rank-Lr matrix and a
non-zero vector. For a third-order tensor T ∈ CI1×I2×I3 the rank-(Lr, Lr, 1)
BTD is given by:

T ≈
R∑
r=1

(ArBT
r ) ◦ cr

where Ar ∈ CI1×Lr and Br ∈ CI2×Lr are full rank matrices. Figure 2.6
visualizes rank-(Lr, Lr, 1) BTD of a third-order tensor. Algorithms such as
alternating least squares [50] and optimization based methods [166] are available
for computing BTD.

Figure 2.6: Graphical representation of a rank-(Lr, Lr, 1) block Tensor
decomposition of a third-order tensor. Source: Tensorlab documentation [185]
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2.1.6 Structured tensor decompositions

Structured tensor decompositions are special cases where additional constraints
or structure are imposed on the factor matrices [167]. Some of the common
constraints/structure include orthogonality, nonnegativity, Hankel structure
and polynomial structure. Imposing constraints on factor matrices can help
to relax the uniqueness condition and simplify computation [168]. They also
enhance the accuracy and robustness with respect to noise, help in implementing
application-dependent prior knowledge and results in better interpretability.
In this thesis we have imposed constraints to add application-dependent prior
knowledge.

The structured data fusion is a broad framework [167] available in Tensorlab
[185], which allows one to use different tensor decomposition models, perform
coupled tensor decomposition with shared factors, incorporate constraints on
factor matrices (e.g non-negative, Hankel structure) and apply regularization to
factor matrices. In this thesis we have used structured data fusion to impose
non-negative constraints, impose that a factor matrix is the same across two
different modes and to apply l1 regularization on a factor matrix in Chapter 5
and 7 for tumor tissue typing.

2.1.7 Applications of tensor decomposition

Biomedical engineering is an emerging field where applied mathematical tools
are extensively used. In this thesis we use tensor decompositions as core building
blocks of algorithms applied to pre-processing and analysis of Magnetic resonance
spectroscopic imaging (MRSI) and multiparametric MRI (MP-MRI) signals.
Tensor decompositions are also used in many other areas of signal processing
and data analysis like audio and speech processing, biomedical engineering,
chemometrics, bioinformatics, genetics and machine learning, to name a few. In
wireless communication, it is used in sensor array processing [159], equalization
[44] and space-time multiplexing codes [43]. In hyperspectral imaging, tensor
decompositions, are used for compression [67], anomaly detection [110], denoising
[193] and image restoration [187]. In the field of biomedical engineering, they
are used to analyse Electroencephalography (EEG) [123], Electrocardiography
(ECG) [126], functional magnetic resonance imaging (fMRI) [155] signals, gene
expression traits [87], gait [139] and many more. For a detailed overview of
tensor decompositions and its applications the reader is referred to the overview
papers [99, 38, 160].
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2.2 Machine learning

Machine learning is a field of computer science which deals with the design and
study of algorithms that can learn from and make predictions on data. Machine
learning has been used in many areas and has very wide range of applications
such as medical image analysis, search engine, health care, computer vision,
bioinformatics, astronomy, financial analysis to name a few. Machine learning
algorithms can be grouped into supervised and un-supervised methods. Given a
training set with input X and labelled response Y , a supervised algorithm learns
a mapping function h : X → Y such that the predicted response is close to the
real response. Un-supervised methods work only on input data to model the
underlying structure or distribution in the data, which helps in interpreting and
analysing the data. Supervised algorithms result in better decision boundaries
and they can achieve very high performance in classification tasks. They require
large training datasets and high computation time. The main advantage of
un-supervised algorithms is their adaptability, where it can be applied to new
data with little to no modifications. However, in supervised methods we have
to start from scratch even for small modifications in the data. Also, supervised
algorithms can be fully automated, whereas in un-supervised techniques the
interpretation is left to the user. Supervised learning methods include support
vector machines (SVM), random forest (RF), deep neural network (DNN), k-
nearest neighbor algorithm, naive Bayes, linear discriminant analysis (LDA) and
many more. Some of the un-supervised methods include clustering methods such
as k-means, Gaussian mixture models and hierarchical clustering, blind signal
separation techniques such as principal component analysis (PCA), independent
component analysis (ICA) and non-negative matrix factorization (NMF), neural
networks based methods such as autoencoders and deep belief nets.

2.2.1 Un-supervised: blind source separation

Blind source separation is the recovery of original signals from the mixture
without (or as little as possible) prior knowledge of the mixing process or the
original signals. Given a set of observed signals S ∈ CN×K , the BSS problem
consists of identifying the mixing matrix H ∈ CK×R and/or the original source
signals in W ∈ CN×R based on the following linear model:

S = WHT, (2.2)

with K the number of observed signals, R the number of source signals and N
the number of samples per signal. By itself, the solution cannot be uniquely
identified as different working hypotheses lead to different solutions (at least
for the non-trivial cases R > 1). Different working assumptions have been used
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before such as mutual independence leading to independent component analysis,
non-negativity leading to non-negative matrix factorization and so on. BSS
techniques that are used in this thesis are discussed briefly in the next section.

Non-negative matrix factorization

Non-negative matrix factorization (NMF) approximates a non-negative input
matrix by a product of two non-negative factor matrices. Given a non-negative
matrix X ∈ RN×K , its NMF is defined as

X ≈WH
where W ∈ RN×R+ and H ∈ RR×K+ are non-negative factor matrices. R is
the rank denoting the number of columns in W, typically R� N or R� K
resulting in a low-rank (rank R) approximation. The columns of W are called the
NMF sources, which contains the basic/signature components. The second factor
matrix H contains the weights/abundances, where each columns represents the
weights of R sources that approximates the corresponding column of X. The
factor matrices are obtained by minimizing a cost function. The Frobenius
norm of the difference between the input matrix X and its approximation WH
is the most commonly used cost function:

min
W,H

f(W,H) = min
W,H
‖X−WH‖2 ∀i,j : wi,j ≥ 0, hi,j ≥ 0.

Other cost functions e.g. based on Kullback-Leibler divergence are also available
in the literature. In general, NMF is an NP-hard problem and the solutions are
not unique [182]. Therefore, practical algorithms aim at finding locally optimal
solutions instead of globally optimal one. When one factor matrix is fixed NMF
reduces to a convex non-negative least squares problem (NNLS) [76]. Most of the
algorithms exploit this fact to estimate the factor matrices iteratively by fixing
one factor matrix and solving the convex non-negative least squares problem
for optimizing the other and vice versa [76]. Some of the most commonly used
NMF algorithms include multiplicative update [108, 77], hierarchical alternating
least squares [36, 77] and convex NMF [59]. NMF is used in many areas such
as image processing [108], text mining [156], computational biology [57], brain
tumor differentiation [135] and many more. In this thesis, the NMF algorithm
is applied to tumor differentiation in chapter 5. A schematic representation of
NMF in the context of MRSI tissue type differentiation is shown in Figure 2.7.

Hierarchical non-negative matrix factorization

Hierarchical non-negative matrix factorization (hNMF) is an extension of NMF,
where NMF is applied sequentially. There are many variants of hNMF used in
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Figure 2.7: Graphical representation of NMF algorithm used for MRSI tissue
differentiation.

hyperspectral imaging [78], massive data clustering [97] and text mining [174].
In this thesis we restrict our discussion to hNMF algorithm specifically designed
for tissue type differentiation in MRSI [111]. hNMF consists of 3 basic steps: in
the first step rank-2 NMFs is applied to obtain sources and their corresponding
abundances. The sources are then assigned to normal and abnormal tissue. In
the second step, several rank-2 NMF are performed on the subset of signals. For
each subset, the signals are selected by applying a threshold on the abundances
corresponding to the abnormal source from the first stage. The threshold is
varied to obtain different subsets. Out of the several rank-2 NMFs, the best
result is chosen based on the correlation between normal source from the first
stage and the sources from the second stage. In the final stage, the normal
source from the first stage and two abnormal sources from the second stage are
combined and their corresponding abundances are estimated using non-negative
least squares (NNLS). A schematic representation of the entire hNMF algorithm
is shown in Figure 2.8.

The hNMF algorithm for tissue type differentiation in MRSI is used in Chapter
5 for comparison with the tensor based blind source separation algorithm. In
the reminder of the thesis we refer this algorithm as hNMF. In [152], the hNMF
algorithm is modified to handle multi-parametric magnetic resonance imaging
(MP-MRI) data and also to provide a more refined tissue characterization.
The modification is mainly done in the second and third stage as shown in
Figure 2.9. In the second stage, several rank-r NMFs are applied on two sets
of voxels, iteratively. At each iteration two set of voxels are selected based on
the voxel-wise abundance ratio maps from the first stage. In the third stage
the tissue sources obtained from both sets are re-combined to calculate the
abundances over the whole ROI using non-negative least-squares fitting (NNLS).
Out of the several iterations the best NMFs corresponding to the two sets is
selected based on a criterion that promotes sparsity to the voxel-wise tissue
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Figure 2.8: Schematic representation of hNMF algorithm for MRSI tissue
differentiation. Source: [111]

abundances. This algorithm is used in Chapter 7 for comparison with the tensor
based blind source separation algorithm and we refer to it as "MP-MRI hNMF"
to differentiate it from the hNMF algorithm.

Löwner-based blind source separation of (approximations by) rational
functions

Rational functions are formed by algebraic fractions with polynomials in the
numerator and denominator. If L is a Löwner matrix constructed from a
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Figure 2.9: Schematic representation of hNMF algorithm for tissue
differentiation in MP-MRI. Source: [152]

rational function of degree R, it has been proven that L has rank R [9, 116].
The Löwner-based blind source separation technique has been developed for any
arbitrary low degree rational functions using rank-(Lr, Lr, 1)-BTD [54]. Since
our application deals with rational functions of degree-1, we limit the discussion
in this chapter to rational functions of degree 1, meaning that the numerator
and denominator are linear functions. For a rational function of degree 1 its
corresponding Löwner matrix will have rank-1, this is easy to verify: f(t) = c

t−p
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gives Li,j = −c · 1
xi−p ·

1
yj−p , which is a rank-1 structure:

L = −c ·


1

x1−p
...
1

xI−p

 [ 1
y1−p · · · 1

yJ−p
]
.

Consider now the construction of two tensors LS ∈ CI×J×K and LW ∈ CI×J×R.
The tensors LS and LW contain Löwner matrices along the third mode
constructed from the observed signals from S, and the source signals from
W, respectively. Following the linear model (2.2.1), the tensor LS can be
expressed as

LS =
R∑
r=1

Lwr
⊗ hr. (2.3)

If each source signal is an evaluated rational function (or can be approximated
by an evaluated rational function), each matrix Lwr

has (approximately) rank
1 [54]. Hence, each term in (2.2.1) has (approximately) rank 1 and the tensor
LS has CPD structure with rank R.

To solve the BSS problem from (2.2.1) under the deterministic assumption of
rationality, a CPD can be computed of LS with rank R. The factor matrix Ĥ in
the third mode is then an estimate of the mixing matrix H. The source signals
can be recovered as Ŵ = S

(
ĤT
)†
, provided H has full column rank, which

requires: R ≤ N . It is also possible to obtain the source signals from only the
estimated factor matrices L̂wr using a more complicated technique as described
in [54]. Note that the two indeterminacies of the CPD are also present in the
BSS: the source signals (factor vectors) are recovered up to permutation and
scaling. Additionally, in BSS the source signals can only be recovered upto a
constant term. In this thesis we estimate the poles of the rational function from
the estimated matrices L̂wr

instead of the source signals.

It remains to show that the separation is unique. This property guarantees
that the recovered source signals are (estimates of) the original source signals.
This uniqueness problem boils down to the CPD uniqueness given the special
rational structure of the factor vectors. In [54, Theorem 4], it has been proven
that the CPD is unique (up to permutation and scaling of the factor vectors)
under following conditions:

1. The poles of the rational functions of the different source signals are
distinct.

2. The third factor matrix H does not contain proportional columns.
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3. The signal length N and the rank R satisfy: bN+1
2 c ≥ R.

Note that uniqueness can still be guaranteed for underdetermined mixtures
with fewer observed signals than source signals. Generic conditions for the BSS
settings are given in [64].

In this thesis, Löwner-based blind source separation is used to develop a tensor-
based residual water suppression algorithm in Chapter 4.

Hankel-based exponential data fitting

Single-channel signal In the single channel case only one signal is available
(one column of S in (2.2.1)). Let sk be a time series modelled as sum of complex
exponentials:

skn =
R∑
r=1

crz
n
r , ∀n = {0, 1, ..., N − 1}, (2.4)

where R is the number of complex exponentials, zr and cr are complex pole
and amplitude, respectively. Hankel singular value decomposition can be used
to estimate the complex poles and amplitudes of the signal [13, 180]. A I × J
Hankel matrix H with I + J = N constructed from the samples of sk can be
decomposed as:

H =


1 . . . 1
z1 . . . z1
... . . . ...

zI−1
1 . . . zI−1

R



c1 0 . . . 0
0 c2 . . . 0
...

... . . . ...
0 0 . . . cR




1 . . . zJ−1
1

1 . . . zJ−1
2

... . . . ...
1 . . . zJ−1

R

 = PCLT (2.5)

where P and L are Vandermonde matrices and C ∈ CK×R contains the complex
amplitudes. This decomposition is called a Vandermonde decomposition and
the poles zr are called generators. There is no direct way to obtain such a
decomposition. However, the generators can be estimated from the truncated
singular value decomposition:

HR = URΣVH
R (2.6)

Because of an underlying isomorphism between equation (2.2.1) and (2.2.1),
the matrix UR are related to matrices P by a non-singular matrix Q

UR = PQ. (2.7)
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Signal poles zr can be determined using the shift-invariance property of
Vandermonde matrices [138]:

P↑ = P↓Z, (2.8)

where the up and down arrow placed after a matrix stands for deleting the
top and bottom row of the considered matrix, respectively and Z is a diagonal
matrix with signal poles zr along the diagonal. Combining equations (2.2.1)
and (2.2.1) result in the shift-invariance property of the singular matrix UR

U↑R = UR↓Ẑ,

with Ẑ = Q−1ZQ. The matrices Z and Ẑ have the same eigenvalues. A least
squares solution is used to estimate Ẑ = U†R↓U

↑
R. Finally, the signal poles

zr are obtained from the eigen-decomposition of Ẑ. The complex amplitude
cr can be obtained from least squares using the Vandermonde source matrix
constructed from the estimated signal poles.

This method is used for residual water suppression in Chapter 4, which is
referred to as Hankel singular value decomposition (HSVD).

Multi-channel signal For the blind BSS problem in (2.2.1), if each of the
observed signals is modelled as a sum of complex exponentials as in (2.2.1),
a Hankel-tensor based exponential data fitting method can be applied for
estimating the source and mixing matrix [138]. A tensor H ∈ CI×J×K
constructed by stacking K Hankel matrices obtained from the columns of
S can be decomposed as follows:

H =
R∑
r=1


1
z1
r

z2
r
...
zIr

 ⊗


1
z1
r

z2
r
...
zJr

 ⊗


h1r
h2r
h3r
...
hkr

 . (2.9)

H = I ×1 V(1) ×2 V(2) ×3 H,

where I is a pseudo-diagonal (R × R × R)-tensor with ones on its diagonal,
V(1) ∈ CI×R, V(2) ∈ CJ×R are Vandermonde matrices and H ∈ CK×R contains
the complex amplitudes. In case of tensors, a Vandermonde decomposition can
be obtained using CPD [168]. However, in our application of residual water
suppression, the estimated generators using CPD were not good enough. Since
the generators contain frequency information and are important for suppressing
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water, a CPD based method was not employed in this thesis. Generators can
also be obtained by applying a truncated MLSVD to the Hankel tensor H

H ≈ HR = A×1 U(1) ×2 U(2) ×3 U(3). (2.10)

where A is an all-orthogonal, ordered, complex-valued (R × R × R)-tensor,
U(1) ∈ CI×R is a complex matrix of which the orthonormal columns span
the column space of V(1), U(2) ∈ CJ×R is a complex matrix of which the
orthonormal columns span the column space of V(2) and U(3) ∈ CK×R is a
complex matrix of which the orthonormal columns span the column space of W.
Because of an underlying isomorphism between equation (2.2.1) and (2.2.1), the
matrices U(p) are related to matrices V(p)(p = 1, 2) by a non-singular matrix Q

U(p) = V(p)Q.

A Vandermonde source matrix is constructed from the estimated signal poles
and the mixing matrix H can then be estimated using least squares. This
method will be explored for achieving MRSI residual water suppression in
Chapter 4.

2.2.2 Supervised learning

Random forest

Random Forest (RF) is an ensemble learning method where a collection of weak
decision trees are used to predict the output class. Random decision forest was
first proposed by Tin Kam Ho [86] and further extended by Breiman [27] and
coined the term "Random Forests".

A decision tree is a non-parametric learning algorithm, which uses a model of
decisions to predict the class of a target variable. It starts with single node
branching into possible outcomes leading to new nodes. Each of these nodes
can further branch into other possible outcomes. This process is continued till
a final decision is made (Figure 2.10). In the training phase each node learns
simple decision rules from the training data. A decision trees provides many
advantages such as capacity to handle both numerical and categorical data,
robust to outliers and simple to understand and interpret with possibility of
tree visualization. The main disadvantage of decision trees is that they have low
bias and very high variance, resulting in over-fitting the training data. Random
forest overcomes this problem by combining bagging [26] with random selection
of a feature subset at each node.

Bagging, also known as bootstrap aggregating, is one of the main parts in a
random forest algorithm. Bagging selects a random sample with replacement



MACHINE LEARNING 31

of the training set and each individual decision tree will learn a different
classification model based on a bootstrapped sample. In each bootstrap, typically
63% of the training data is sampled with replacement and the remaining 37%
from the out-of-bag data. Out-of-bag data are used for internal validation like
estimating classification error and accessing feature importance. In decision
trees of a random forest, at each candidate split in the learning process only a
random subset is used instead of all the features. For classification problems,
random forest typically uses

√
d features from a total of d features at each split.

Figure 2.10 shows majority voting from a collection of decision trees used in
random forest.

Figure 2.10: Majority voting scheme used in random forest. Image adapted
from [133].

Convolutional neural network

Deep learning is the trending topic in machine learning with state-of-the-art
performance in many areas. In the last decade they have grown exponentially
and have made inroads into a wide range of areas ranging from healthcare to
genetics to finance and to space exploration. Big companies such as Google,
Microsoft, Facebook, Amazon, Instagram, Baidu, IBM, Tesla, and many more
are using deep learning in many of their applications/products. Deep learning
is very powerful and has huge potential, recently its performance surpassed that
of human in applications like object recognition and classification [84], speech
recognition [85], and defeat both European and world number 1 master in the
game of Go [161]. Convolutional neural networks (CNN) are a class of deep
neural networks mainly suited for image recognition and classification tasks.
CNN became widely recognised after Krizhevsky et al. [101] proposed a method
achieving a top-5 error of 15.3%, more than 10.8 percentage points ahead of
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the runner up in the 2012 ImageNet Large-Scale Visual Recognition Challenge
[149].

The most fundamental element of any neural network is a neuron as shown
in Figure 2.11. A neuron consists of 1) a set of synapses or connecting links
characterized by a weight, 2) an adder for summing the input signals and 3) a
activation function. Each neuron will perform the dot product between the input
and the weights of the synapses, adds the bias to it and performs non-linear
activation to generate the output. In CNN, hyperbolic tangent (tanh), sigmoid
and Rectified Linear Unit (ReLU) are commonly used activation functions,
which are shown in Figure 2.12. ReLU is the most widely used activation
function, which is also employed in this thesis since it is about six times faster
than tanh [101].

Figure 2.11: Model of a neuron as used in neural networks. Source: [83]

Most CNN architectures are usually made of the following types of layers:
convolutional (conv), pooling (either maximum or average), fully connected
(FC), and activation (e.g. rectified linear unit (ReLU)). Convolution and the
fully connected layers are the most important ones. Weights in these layers are
learned during training and are called weight layers. Several of these layers are
usually connected in a sequential manner between the input and the output
layer.

In 2D-convolution, the convolution kernel slides through the image and performs
the dot product to generate the output as shown in Figure 2.13. In CNN,
convolution layers apply the convolution operation to the input, passing the
result to the next layer. The convolution filter is defined by its receptive field
(filter size, width and height) with the depth of the filter equal to the depth of
the input. Therefore, each filter consists of 3-D (width, height and input depth)
weights. A single convolution layer can have multiple filters, generating a set
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Figure 2.12: Hyperbolic tangent, sigmoid and ReLU activation functions from
left to right, respectively. Image adapted from: [95]

of feature maps. The number of filters defines the output depth. Stacking the
feature maps from all filters along the depth dimension forms the full output
volume of the convolution layer. The kernel of the convolution layer can be
represented by 4-D weights consisting of width, height, input depth and output
depth. Figure 2.14 shows a convolution layer with receptive files 2× 2, input
depth of three and output depth of five.

Other parameters of the convolution layer include stride and zero padding.
Stride defines the amount of pixels that the convolution filter (or kernel) slides
between two operations. A stride of one retains the input matrix size and a
value greater than one reduces the dimension of input matrix. Zero padding
adds zeros a the outer edges of the input matrix. It is mostly used to adjust
or to preserve the input dimension. For example consider an input volume of
size 50× 50× 20 and a convolution layer with filter size/receptive field of 3× 3,
output depth (number of filters) of 25, stride of 1 and zero pad of 1 on all sides.
The convolution kernel is of size 3× 3× 20× 25 and will generate an output
volume of size 50× 50× 25.

After each convolution layer, CNN architectures typically have a ReLU activation
layer followed by a maximum pooling (MP) layer. In the max-pooling layer, the
dimensionality of an input feature map is reduced by retaining only maximum
values as shown in Figure 2.15.

Fully connected (FC) layers connect every neuron in one layer to every neuron
in another layer as shown in Figure 2.16. A convolution layer can be converted
to a FC layer by making the kernel size equal to the input image size, with no
padding applied to the input image. In the end an activation layer will be used
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Figure 2.13: Convolution operation on an image of size 4× 4 with a 2× 2 kernal.
Image obtained from: [79]

to produce the output, typically sigmoid. During training a loss layer will be
present at the end of the CNN architecture, which is used by a backpropagation
algorithm to update the weight of the convolution and FC layers. first described
in (1), leading to the possible usage of higher learning rates. In principle, the
method adds an additional step between the layers, in which the output of the
layer before is normalized. Batch Normalization (BN) is an additional step that
can be added between Convolution layer and ReLU, in which the output of
the layer before is normalized. Batch Normalization will reduce the internal
covariate shift in neural networks allowing higher learning rates [90].

A typical CNN architecture has a few main building blocks of [conv-ReLU-MP]
with convolutional filter of size 5×5 or 7×7, followed by a few FC layers, and a
final activation layer, usually sigmoid. Simonyan and Zisserman [207] have shown
the benefits of modifying the building block by adding extra convolutional and
ReLU layers, [conv-ReLU-conv-ReLU-MP], but using only a small convolutional
kernels with receptive field 3×3. We use the same building block in the CNN
architecture that we built in Chapter 6.
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Figure 2.14: 3-D model of CNN convolution layer. Image obtained from: [153]

Figure 2.15: Demonstration of max-pooling operation. Image adapted from:
[95]
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Figure 2.16: Fully connected layer with one hidden layer. Image adapted from:
[83]



Chapter 3

Multi-parametric magnetic
resonance imaging

3.1 Magnetic resonance imaging

Magnetic resonance imaging (MRI) is a medical imaging technique that can
visualize the anatomy and the physiological processes of the body. MRI
has a wide range of applications in the medical field and is used on both
human and non-human subjects. MRI is the investigative tool of choice in
neuroimaging, especially for diagnosis and treatment of cancer, but it is also
used in cardiovascular, musculoskeletal, liver and gastrointestinal imaging.
MRI scanning is safer compared to other scanning techniques like Computed
Tomography (CT), Positron Emission Tomography (PET), or Single-Photon
Emission Computed Tomography (SPECT) as it is based on magnetic fields.

3.1.1 Principles of MRI

Magnetic resonance imaging is based on the principle of nuclear magnetic
resonance, which uses the property that certain atomic nuclei can absorb and
emit radio frequency energy under the influence of an external magnetic field.
Atoms such as hydrogen (1H), carbon (13C), fluorine (19F) and phosphorus
(31P) exhibit quantum mechanical property called spin, which enables them to
have a magnetic dipole moment. Since hydrogen is the most abundant atom
present in the human body, (1H) is the most routinely used technique. In the

37
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remainder of the thesis only 1H MRI is considered. Under normal conditions
magnetic fields from various hydrogen nuclei cancel each other, resulting in zero
net magnetization. When a strong extremal magnetic field B0 is applied, the
hydrogen nuclei spins align themselves along the magnetic field. The direction
of the applied magnetic field B0 is also referred to as longitudinal axis. The
individual spins align either in low energy state with direction parallel to B0
or in the high energy state with direction anti-parallel to B0. The number
of nuclei that occupy a low energy state is larger than that of a high energy
state, resulting in a net magnetization, M , in the direction of B0 as shown
in Figure 3.1. The spins of hydrogen nuclei precess along the direction of the
net magnetization M , and cannot be detected at this stage. This is called the
resting or equilibrium state. The rate of precession is proportional to the applied
magnetic field B0 [70]. Larmor equation defines the relationship between the
frequency of precession and the applied magnetic field, given by:

f0 = γB0

where, f0 is the frequency of precession, called Larmor frequency, and γ is the
gyromagnetic ratio unique to each type of atom.

Figure 3.1: Graphical representation of precessing spins under an external
magnetic field B0 and the resulting net magnetization vector M . Source: [152]

In order to be able to measure the precession, an oscillating magnetic field
B1 called radio frequency (RF) pulse is applied in a plane perpendicular to
B0, referred to as transverse direction. If the frequency of oscillating magnetic
field B1 is equal to the Larmor frequency of the hydrogen nucleus, some of the
hydrogen nuclei in the low energy state will absorb the RF energy and jump to
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a high energy state. This will result in a net magnetization in the transverse
direction from the longitudinal direction of equilibrium state as shown in Figure
3.2. Once the RF pulse is removed, the hydrogen nuclei will return to the
equilibrium state, this process is called relaxation. During relaxation, the nuclei
lose energy by emitting an oscillating magnetic flux, which is recorded as an
induction of a voltage in the RF coil by the rotating macroscopic magnetization
according to Faraday’s law and used to reconstruct a signal.

Figure 3.2: Illustration of change in the direction of magnetization vector M
after applying the RF pulse. Source: [152].

The relaxation stage mainly consists of two events:
1) T1- or spin-lattice relaxation: here the magnetic component along the
longitudinal direction is restored. The rate of restoration is described by
time constant T1 and different tissues have different values.
2) T2- or spin-spin relaxation: here the magnetization in the transverse direction
gradually decays to zero and is described by a time constant T2.
T ∗2 -relaxation: Local magnetic field inhomogeneities will result in transverse
magnetization decay at a rate greater than T2. The combined effect of T2
relaxation and additional factors will describes the actual decay of the transverse
magnetization called as T ∗2 -relaxation.

Different tissues have different hydrogen abundances and they also exhibit
different relaxation times, these properties can be used to obtain contrast
between tissues. Pulse sequence parameters such as echo time (TE) and
repetition time (TR) can be used to exploit these properties and to obtain MRI
images with different contrast between tissues. The echo time (TE) is the time
between the RF excitation pulse and the peak in the MR signal induced in
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the receiver coil, at which data acquisition starts. The repetition time (TR)
is the time between successive pulse sequences and it determines recovery of
longitudinal magnetization after each pulse. The next sections will briefly
discuss some of the commonly used MRI techniques.

3.1.2 Conventional MRI

In neuroimaging Conventional MRI (cMRI) is the imaging modality of choice,
which provides better spatial resolution and good soft tissue contrast. Using
different pulse sequences and varying acquisition parameters, the echo time
(TE) and repetition time (TR) will generate images with tissue contrast. In
this thesis we have used T1-weighted, T1+contrast, T2-weighted and FLAIR
(Figure 3.6) images of the brain.

T1-weighted imaging

T1-weighted imaging uses the differences in T1 relaxation time among different
tissue types and uses short TE and short TR for acquisition. Tissues having
short T1 relaxation time appear brighter in T1-weighted imaging. In tissues
like fat, magnetic component along the longitudinal direction is restored quickly
and they appear brighter (hyper-intense) on T1 weighted images. The spins of
hydrogen atoms in tissues with large amount of water realign slowly along the
longitudinal direction and appear darker. In T1-weighted imaging of the brain,
white matter appears bright, gray matter appears gray and cerebro-spinal fluid
(CSF) appears dark.

T1-weighted imaging can be performed after the administration of contrast
agent, generally gadolinium based compound [105]. This technique is known as
T1+contrast imaging. Tissues like tumours where the blood-brain barrier is
disrupted gets enhanced by gadolinium and appear extremely bright.

T2-weighted imaging

In T2-weighted imaging, the contrast between tissues is based on the T2
(transverse) relaxation time. They require a long TE and TR and tissue with
long T2 appears brighter. Tissues like fat are dark and fluid is hyper-intense. In
T2-weighted imaging of brain, gray matter appears gray, white matter appears
dark and cerebral spinal fluid (CSF) appears hyper-intense.
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FLAIR imaging

Fluid-attenuated inversion-recovery (FLAIR) is based on an inversion recovery
technique, which is designed such that a signal from a particular tissue can be
nulled by selecting the inversion time (TI). CSF and other fluids such as blood
appear dark on a FLAIR image. Since CSF is suppressed in FLAIR imaging,
it is good at detecting subtle changes in regions close to CSF and also small
hyperintense lesions.

3.1.3 Magnetic resonance spectroscopic imaging

Magnetic resonance spectroscopy (MRS) is a non-invasive imaging technique
that provides spectral profiles from which the metabolite concentrations of
the tissue under investigation can be estimated. MRI mostly measures the
water signal from the tissue, whereas MRS is capable of measuring magnetic
resonance signals from nuclei present in other molecules. MRS is confined to a
specific location (single voxel), while its extended technique, magnetic resonance
spectroscopic imaging (MRSI), provides metabolite information in a two- or
three- dimensional voxel grid.

MRS(I) is based on the principle of shielding effect or chemical shift effect. Due
to a shielding effect of the atom, the local magnetic field is effectively reduced
from the external magnetic field B0. Now the rate of precession is given by

feff = γ(1− σ)B0

2π
where, σ is the shielding constant, which depends on the chemical compound
and the position of the nucleus in that compound. This results in a slightly
different resonance frequency for different metabolites, which is called chemical
shift from the reference frequency f0. The chemical shift is usually expressed in
parts-per-million (ppm) since it is independent from the spectrometer frequency.

MRS can be used to measure signals from various nuclei such as hydrogen
(1H), carbon (13C), fluorine (19F) and phosphorus (31P). 1H-MRS is the most
commonly used technique. Pulse sequences frequently used in MRS(I) are
Point RESolved Spectroscopy (PRESS) [23] and STimulated Echo Acquisition
Mode (STEAM) [73], which are shown in Figure 3.3. The concentration of
water is significantly larger compared to other metabolites, typically in the
range of 10,000 to 1. Therefore, in 1H-MRS, a water suppression technique is
employed to measure the metabolite signal of interest. Methods such as chemical
shift selective suppression (CHESS) [82] and multiply optimized insensitive
suppression train (MOIST) [134] are used for water suppression.
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Figure 3.3: PRESS and STEAM acquisition sequences for MRS. MT stands for
mixing time. Source: [15].

In MRS, acquisition is typically of short echo time (TE≤50ms) or long echo
time (TE≥130ms). Long echo time signals show only a limited number of
metabolites, whereas it is also easier to extract slowly decaying metabolites
since it is less prone to baseline effects due to fast decaying macro-molecules.
Short TE can detect large number of resonance frequencies, but also fast decaying
macromolecular signals, overlapping with the metabolite signals of interest. A
good quality single voxel MRS can be obtained from short acquisition times,
whereas MRSI requires longer acquisition and processing times. Because of the
low signal-to-noise ratio (SNR) in MRSI, the spatial resolution is restricted
compared to other MRI modalities. Typically, a voxel size of 1 × 1 × 1cm3

is used in MRSI acquisition. Also, MRSI are measured from a limited region
of interest instead of the whole brain in order to avoid long acquisition times.
Figure 3.4 shows the MRSI signal measured from a region in the brain.

Important metabolites that are present in the human brain include N-acetyl
aspartate (NAA), creatine (Cre), choline (Cho), glutamate (Glu), glutamine
(Gln), myo-inositol (mI), glycine (Gly), lactate (Lac) and lipid (Lip). A short
echo time MRS spectrum showing important metabolite peaks is shown in
Figure 3.5. A complete list of metabolites along with their chemical shift can be
found in [80]. The metabolite concentration present in the tissue is proportional
to the area under the spectral peak of the corresponding metabolite. Peak
area measurements are unreliable due to overlapping resonance peaks, baseline
distortions and non-ideal lineshapes. Therefore, quantification methods such
as Accurate Quantitation of Short Echo time domain Signals (AQSES) [144]
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Figure 3.4: (A) MRSI grid overlaid on T1-weighted image. (B) Spectra
corresponding to voxel grid within the white box.

and QUantitation based on quantum ESTimation (QUEST) [148], Totally
Automatic Robust Quantitation in NMR (TARQUIN) [191] in the time-domain
and LCModel [146] in the frequency domain are available. Pre-processing
steps such as zero-filling, frequency alignment, phase correction, residual water
suppression, signal normalization and baseline correction are usually performed
before using the spectra for further analysis like quantification or classification.

Figure 3.5: Absorption spectrum (real part) of a MRS signal obtained from a
tumor region in brain.
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3.1.4 Diffusion-weighted imaging

Diffusion-weighted imaging (DWI) is an advanced technique from which
information about microscopic motion of water molecules within tissue can be
obtained. Three types of diffusion can be found in the brain: free isotropic,
restricted isotropic and anisotropic diffusion encountered mostly in CSF, gray
matter and white matter regions, respectively. DWI uses the property where
dephasing of the MR signal occurs due to random motion of water molecules in
the presence of a varying magnetic field. Diffusion is made the dominant image
contrast by applying large magnetic field gradients in particular directions.
Apparent diffusion coefficient (ADC) maps can be obtained by acquiring DWI
images with different weights. Diffusion tensor imaging (DTI) is a special kind
of DWI, where the three-dimensional diffusion process is modelled [14]. From
DTI, diffusion measures such as fractional anisotropy (FA), mean diffusivity
(MD), axial diffusivity (AD) and radial diffusivity (RD) can be obtained. FA
quantifies the degree of diffusion anisotropy, scaling from 0 (isotropic diffusion)
to 1 (diffusion in only one direction). MD represents the magnitude of diffusion
averaged over the applied gradient directions. AD and RD reflect the magnitude
of diffusion along the principal axis of the ellipsoid and in a plane perpendicular
to the principal axis, respectively.

Diffusion kurtosis imaging (DKI) is an emerging technique developed as an
extension of DTI and is based on the non-gaussian diffusion of water in
tissues, providing information on diffusional heterogeneity and micro-structural
complexity [93]. Parameter maps such axial kurtosis (AK), radial kurtosis (RK),
mean kurtosis (MK), and kurtosis anisotropy (KA) are obtained from DKI.
AK represents the kurtosis coefficient in the direction of main diffusion, RK is
the mean kurtosis value from all directions perpendicular to the direction of
main diffusion and the MK is defined as the averaged kurtosis over all measured
diffusion directions. In this thesis we have used FA, MD maps from DTI and
MK map from DKI.

3.1.5 Perfusion-weighted imaging

Perfusion is the steady-state flow of blood to the tissue, measured as rate of
blood delivery or blood flow per unit mass of tissue. Perfusion-weighted imaging
(PWI) is an MRI imaging technique that provides insights into perfusion of
blood in tissues, where several tissue hemodynamic parameters are estimated.
Several PWI techniques have been proposed, which can be classified into two
major approaches. In the first approach, an exogenous tracer such as gadolinium
chelate is induced and dynamic scanning upon the passage of a tracer through
the cerebro-vascular system is performed. Dynamic susceptibility-weighted MRI
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(DSC-MRI) [157] and dynamic contrast-enhanced MRI (DCE-MRI) [173] belong
to this class. In the second approach, techniques such as arterial spin labelling
(ASL) use an endogenous contrast agent, where blood spins are magnetically
labelled upstream from the imaging section with inverting or saturating RF-
pulses [56]. DSC-MRI and DCE-MRI use a series of MR images to detect the
passage of contrast agent through a given tissue. The injected contrast agent
alters the T ∗2 , T2 and T1 relaxation times locally, these changes picked up T ∗2 ,
T2 and T1-weighted images are used to quantify haemodynamic parameters. In
DCE-MRI T1-weighted images are used, where permeability parameters like
transfer constant (ktrans) and rate constant (kep)) are estimated. DSC-MRI
is the most relevant clinically used technique, which is also used in this thesis.
In DSC-MRI, T ∗2 - or T2- weighted images are used to quantify values such
as cerebral blood volume (CBV), cerebral blood flow (CBF) a mean transit
time (MTT). CBF represents instantaneous capillary flow in the tissue, CBV
describes the blood volume of the cerebral capillaries and venules per cerebral
tissue volume and MTT measures the length of time a certain volume of blood
spends in the cerebral capillary circulation.

3.2 Glioma

Brain tumors emerge due to the formation of abnormal cells in the brain. They
are classified into two groups: malignant tumors and benign tumors. Benign
tumors usually do not grow back and lack the ability to invade neighboring
tissue, whereas malignant tumors are aggressive with the potential to spread to
other neighboring tissue. Brain tumors are one of the most fatal cancers [52],
with a 5-year survival rate of 34.4% for primary malignant brain tumors [60].

Gliomas are the most common type of primary brain tumors originating from
glial cells, which constitute 30% of primary brain tumors and 80% of malignant
primary brain tumors [60]. The World Health Organization (WHO) categorises
the gliomas into four grades [115]. Grade I and grade II are called low-grade
glioma (LGGs), they are semi-malignant and have better prognosis. Similarly,
grade III and grade IV are referred as high-grade glioma (HGG), they are
malignant tumors and have very high fatality rate. The tumor sub-compartments
of glioma contains active or enhancing tumor, necrosis and edema. Combination
of all the three regions is referred to as "total tumor" and the combination of
enhancing tumor and necrosis is referred to as "tumor core". Glioblastoma
(GBM) is the most malignant type of tumor belonging to grade IV glioma,
often characterized by the presence of necrosis (dead cell tissue). GBM is the
most common type of glioma that is diagnosed in clinic with the lowest 5-year
survival rate of 5%.
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Common symptoms of glioma patients include headache, nausea, vomiting,
fatigue, sleep disturbance and cognitive impairment [71, 162]. Medical history,
age and neuro-images of the patient along with neurological examination are used
in initial diagnosis of brain tumor. Currently, the gold standard for diagnosis
and classification of gliomas consists of histological analysis of tissue samples
obtained from biopsy. Treatment of gliomas consists of surgery, radiation
therapy and/or chemotherapy and depends on the individual patient. After the
treatment, the size of tumor resection plays an important role in prognosis and
survival time of patients in GBMs.

3.2.1 Neuroimaging in glioma

Conventional MRI is the most common choice of imaging modality for diagnosis
and treatment planning of glioma patients. Different MRI sequences are
often combined in clinical practice for analysing and differentiating tumor
sub compartments. cMRI is good at locating the tumor region. FLAIR imaging
is better at capturing the whole tumor region including the edema, which
appears brighter (hyper-intense). On T2-weighted images, the edema region
adjacent to the tumor appears bright. In HGG, active tumor regions are
enhanced in T1+contrast (T1c) images and the necrotic region appears dark
as the contrast agent does not enter dead cells. Figure 3.6 shows one slice of
T1+contrast, T2 and FLAIR image for a GBM patient.

Figure 3.6: T1+contrast, T2, FLAIR and expert delineation overlaid on
T1+contrast of a grade IV GBM patient left to right, respectively. Active
tumor, necrosis and edema are shown in red, green and blue, respectively.

In clinical applications, PWI is used to assess regional variations in cerebral
micro-vasculature in both normal and diseased brain. Conventional MRI is not a
reliable indicator of malignancy. Combining CBV measurement from PWI with
cMRI will help in evaluating tumor grading and malignancy. It also enables to
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identify lesions such as cerebral abscesses or radiation necrosis, which resemble
tumor. Pathologic differences in vascularization can be visualized using CBV
maps, where radiation necrosis has lower CBV values and progressing tumor
has higher CBV values. Figure 3.7 shows one slice of CBV map from a GBM
patient.

Figure 3.7: CBV map and expert delineation overlaid on T1+contrast of a
grade IV GBM patient left to right, respectively. Active tumor, necrosis and
edema are shown in red, green and blue, respectively.

The diffusion coefficient is usually higher in brain tumors compared to normal
brain tissue [124]. Studies have shown that MK values increase with tumor
grade and are better in differentiating between glioma grades than ADC and FA
[147, 178]. MD and FA values measured from tumor region and peri-tumoral
edema region have been successfully applied to differentiate between GBMs and
metastases [30]. Figure 3.8 shows one slice of MD, FA, MK maps from a GBM
patient.

Figure 3.8: MD, FA, MK maps and expert delineation overlaid on T1+contrast
of a grade IV GBM patient left to right, respectively. Active tumor, necrosis
and edema are shown in red. green and blue, respectively.
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MRSI helps in assessing the spatial variability of the tumor characteristics and
is quite useful in determining glioma grade non-invasively. MRS(I) has the
potential to monitor the glioma grade. The levels of NAA and mI are decreased
and Cho is increased as glioma progresses upto grade III [29]. Presence of Lac
indicates the malignant transformation of the tumor. Lipids are found in the
MRS(I) of GBM patients, which indicate the presence of necrosis. MRSI is
also useful in discriminating tumor recurrence from radiation necrosis, where
studies have shown that Cho/NAA and Cho/Cre ratios are significantly higher
in recurrent tumor than in radiation necrosis [164, 189]. Figure 3.9 shows the
quantified NAA and Lip maps from a 2-D MRSI signal in a GBM patient.

Figure 3.9: Top row: MRSI grid overlaid on T2 image and spectrum from a
voxel in necrotic region (from left to right). Bottom row: Quantified NAA and
Lip maps overlaid on T2 image (from left to right).
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3.3 Data acquisition and pre-processing

3.3.1 UZ Leuven data

A total of 28 2-D-1H MRSI data was acquired on a 3T MR scanner (Achieva,
Philips, Best, The Netherlands) at the University Hospital of Leuven from brain
tumor patients. The study and the experimental procedures involving human
subjects have been approved by the ethical committee of the institute.

All the MP-MRI acquisitions were performed on a 3T MR system (Philips
Achieva, The Netherlands) at the University Hospital of Leuven, using a body
coil for transmission and an 8-channel head coil for signal reception. The
total time for all MRI modalities was around 45 min. 14 high-grade glioma
patients (11 grade IV, 2 grade III and one grade II astrocytoma with focal
progression to a grade III glioma) were scanned for this study. The lesions
were classified according to grade using the 2007 WHO classification [115], with
histopathological confirmation in all cases. The study involving human subjects
have been approved by the human ethics review board of the institute. Written
informed consent was obtained from every patient before participation.

Conventional magnetic resonance imaging (cMRI)

An axial spin echo T2-weighted MRI was acquired with the following parameters:
repetition time (TR)/ echo time (TE): 3000/80 ms; slice/gap: 4/1 mm; turbo
factor: 10; field of view [FOV]: 230×184 mm2; acquisition matrix: 400×300.

A T1-weighted 3-D spoiled gradient echo MRI scan with contrast administration
was performed with the following parameters: fast field echo, TR/TE/inversion
time (TI): 9.7/4.6/900 ms; flip angle: 8◦; turbo field echo factor: 180; acquisition
voxel size: 0.98×0.98×1 mm3; 118 contiguous partitions.

An axial FLAIR MRI scan was acquired with the following parameters:
TR/TE/TI: 11000/120/2800 ms, slice/gap: 4/1 mm, FOV: 230×184 mm2,
acquisition matrix: 240×134.

Perfusion weighted imaging (PWI)

Perfusion images were obtained using Dynamic Susceptibility-weighted Contrast-
enhanced MRI with a gradient-echo EPI sequence: TR/TE: 1350/30 ms;
slice/gap: 3/0 mm; dynamic scans: 60; FOV: 200×200 mm2; matrix: 112×109;
EPI data were acquired during the first pass following a rapid injection of a
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0.1mmol/kg body weight bolus of meglumine gadoterate via a mechanical pump
at a rate of 4mL/s, followed by a 20-mL bolus of saline.

DSC data were analyzed using the DSCoMAN plugin [1] in ImageJ [154].
Relative cerebral blood volume (rCBV) maps were derived from the dynamic
signal intensity curves using the method proposed by Boxerman et al. [25].

Magnetic resonance spectroscopic imaging (MRSI)

A 2D-1H MRSI protocol was used as previously described in [177]. A point-
resolved spectroscopy sequence was used as the volume selection technique
with a bandwidth of 1.3kHz for the conventional slice-selective pulses; TR/TE:
2000/35ms; FOV: 160×160mm2; maximal volume of interest (VOI): 80×80mm2;
slice thickness: 10mm; acquisition voxel size: 10×10mm2; reconstruction voxel
size: 5×5mm2; receiver bandwidth: 2000Hz; samples: 2048; number of signal
averages: 1; water suppression method: multiple optimizations insensitive
suppression train [134]; first- and second-order pencil beam shimming; parallel
imaging: sensitivity encoding with reduction factors of 2 (left-right) and 1.8
(anterior-posterior). Automated pre-scanning optimized the shim in order to
yield a peak width consistently under 20Hz full-width half-maximum (FWHM).
The slice was positioned in the center of the tumor. Voxels outside the MRSI
PRESS excitation volume are excluded from the analysis.

The raw MRSI data were exported from the Philips platform after performing
the following post-processing steps: zero filling in k space, transformation from k
space to normal space, automatic phase correction and eddy current correction.
Further processing was done with MATLAB based SPID software [143]. Two
different pre-processing steps were used: 1) When only MRSI data was used for
tumor characterization (Chapter 5 and 6): the residual water component was
removed from the MRSI data using Hankel Lanczos singular value decomposition
with partial reorthogonalization (HLSVD-PRO) [106]. A model order of 30
and a passband of 0.25 to 4.2 parts per million (ppm) were used in HLSVD-
PRO algorithm. After removing the water component, baseline correction and
baseline offset correction were performed. All the pre-processing were done using
the Matlab (The MathWorks, Inc., Natick, Massachusetts, United States) based
software, SPID [143]. The spectra were aligned in frequency using a simulated
reference spectrum, which was generated using the parameters given in [80].
The complex-valued pre-processed spectra were truncated to the region 0.25-4.2
ppm and the truncated spectra were normalized to unit norm (l2). Voxels
outside the MRSI PRESS excitation volume are excluded from the analysis.

2) When MRSI data was used as part of MP-MRI signal: The residual water
was removed using MPFIR (Maximum-Phase Finite Impulse Response) filtering
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[145], a model order 25 and the spectral range from 0.25 to 4.2ppm were used. A
band of voxels at the outer edges of the VOI were omitted to avoid chemical shift
displacement artifacts and lipid contamination (band proportional to the grid
size, maximally 3 voxels wide for a 16×16 grid). AQSES-MRSI [41] was used to
quantify the following metabolites using an experimentally acquired metabolite
basis set: Lip, Lac, NAA, Glx, Cre, Cho, mI and Gly. The basis set incorporates
prior knowledge of the individual metabolites into the quantification procedure,
i.e. their frequency, phase, and relative amplitudes within the multiplets. The
quantified values were used in MP-MRI signal.

Diffusion kurtosis imaging (DKI)

An EPI DWI sequence with a spin-echo readout was used to acquire the DKI
data, according to an optimized DKI protocol [142]. Implemented b-values
were 0, 700, 1000, and 2800s/mm2, applied respectively in 10, 25, 40, and 75
uniformly distributed directions. The following parameters were used in the
acquisition: TR/TE: 3200/90 ms; gradient duration/diffusion time interval:
20/48.3 ms; FOV: 240×240 mm2; matrix: 96×96; number of signal averages:
1; slice/gap: 2.5/0 mm; parallel imaging: SENSE with factor 2 in the antero-
posterior direction.

After motion and eddy current correction [8], isotropic smoothing was applied
using a Gaussian kernel (FWHM=3mm) to reduce Gibbs ringing. However,
smoothing was applied only to b=0 and b=700 images in order to avoid a noise
bias in the tensor estimation [184]. Diffusion and kurtosis tensors were estimated
in each voxel using a constrained weighted linear least-squares algorithm [184].
Mean diffusivity (MD), fractional anisotropy (FA) and mean kurtosis (MK)
maps were derived from the tensors according to [142, 107].

Data co-registration

All the MP-MRI modalities were co-registered and brought to the same spatial
resolution to perform voxel-wise analysis. Cubic spline interpolation was used
to create an interpolated set of T1+C images, with one slice coinciding with the
central plane of the MRSI volume of interest. Only the MRI data that are within
the MRSI region of interest (ROI) were considered for analysis. Skull-stripping
was applied to all images prior to co-registration. The cMRI dataset and the
PWI dataset were rigidly co-registered to the interpolated T1+C reference
set using SPM [2]. The normalized mutual information criterion was used for
co-registration [122], with cubic spline interpolation for reslicing. Diffusion-
weighted parameter maps were non-linearly co-registered to the T2-weighted
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MRI using ExploreDTI [109] to minimize the local misalignment between the
EPI distorted DKI data and the cMRI data. The MRSI data were spatially
aligned with the reference set and resampled using cubic spline interpolation.
All MRI parameters were brought to the spatial resolution of the original T1+C
dataset, i.e. 0.98×0.98×1 mm3. Only the voxels that are within the MRSI ROI
are considered for analysis.

3.3.2 BRATS 2017 challenge dataset

The MP-MRI BRATS 2017 challenge dataset consists of four modalities
T1, T1+contrast (T1+C), T2 and FLAIR [127, 4, 11, 12]. Datasets were
acquired from 19 different institutions with various scanners and different
clinical protocols. Provided MP-MRI images were co-registered to the same
anatomical template, skull-stripped and interpolated to the same resolution
(1mm3). All datasets were manually segmented by one to four raters. All
the raters followed the same annotation protocol, and their annotations were
approved by experienced neuro-radiologists. The expert labelling consisted
of three classes:1) enhancing tumor (ET), 2) peritumoral edema (ED) and 3)
the necrotic and non-enhancing tumor (NCR/NET). The dataset was divided
into three groups: 1) Training set, consisting of 210 high-grade glioma and 75
low-grade glioma patients. 2) Validation dataset containing 46 MP-MRI images.
3) Test dataset containing 146 MP-MRI images from both HGG and LGG
patients. The user has access to expert labelling from the training set only.



Chapter 4

Residual water suppression in
MRSI

Magnetic resonance spectroscopic imaging (MRSI) signals are often corrupted by
residual water and artifacts. The aim of this chapter is to develop a tensor based
method where the residual water is suppressed simultaneously in all voxels of the
MRSI grid. A 3-D tensor is constructed by stacking the Löwner/ Hankel matrix
from all the MRSI voxels in the third mode. Canonical polyadic decomposition
(CPD)/ multi-linear singular value decomposition (MLSVD) is applied on the
tensor to extract the water component, and to subsequently remove it from the
original MRSI signal. Performance of tensor based methods is analyzed using
simulations and in-vivo data and compared with the widely-used subspace based
Hankel singular value decomposition (HSVD) method. The work presented in
this chapter is based on [19].

4.1 Introduction

Magnetic resonance spectroscopic imaging (MRSI) is a non-invasive imaging
technique that provides spectral profiles in a 2-D or 3-D voxel grid, from which
the spatial distribution of metabolite concentrations or metabolite ratios can
be estimated. Each voxel in the MRSI grid has a spectrum composed of several
peaks corresponding to the metabolites present at that location. MRSI has
many clinical applications and is used, among others, to investigate psychiatric
disorders[42], for diagnosis and prognosis of brain tumors [45, 176], breast
cancer [22] and autism [74]. Most of the clinical applications use metabolite

53
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concentrations or metabolite ratios obtained from MRSI. Hence, an accurate
and efficient quantification of metabolites is important. The metabolite levels
in the human tissue are small compared to water, therefore 1H MRSI signals
typically contain a large water peak which is usually 103 to 104 larger than the
metabolites of interest. This will affect the quantification of metabolites and
has to be suppressed before applying any quantification algorithm. Typically,
water suppression techniques are used during the acquisition of MRSI signals to
get rid of large water peaks [134]. However, it is difficult to remove the water
completely with these methods and some residual water will still be present in
the spectra. It is important to suppress the water signal as much as possible
for accurate and robust quantification of metabolites.

In general, residual water is suppressed before metabolite quantification, in
a pre-processing step. Algorithms such as subspace-based Hankel singular
value decomposition (HSVD) [13, 32, 180], multi-phase finite impulse response
filtering [170], wavelet-based [191] and low rank methods based on union-of-
subspaces [120] are available. Variants of these and other different methods are
described in the review paper [66]. In the HSVD method, the water signal is
first estimated using a subspace-based decomposition into a sum of complex
damped exponentials and subsequently removed from the measured signal to
suppresses the water component. HSVD is the most popular residual water
suppression technique and is available in many software packages such as jMRUI
[169], SPID [143], VeSPA [165] and TARQUIN [191] as a preprocessing step
before quantification.

HSVD was originally developed to suppress residual water from single voxel
magnetic resonance signal (MRS) signal. It can be applied to MRSI signal with
2D or 3D voxel grid, but they suppress water one voxel at a time. In MRSI,
water signal from neighbouring voxels are closely related and they contain shared
information. Since HSVD method works voxel-by-voxel in MRSI signals, they
are not capable of exploiting the shared information present among the voxels
in the MRSI grid. As such, the HSVD method might result in poor residual
water suppression for some of the voxels in the MRSI grid. Processing one
voxel at a time generated a matrix, where matrix based blind source separation
technique was used to suppress water. On the other hand, processing all the
voxels simultaneously generates a tensor, where tensor based BSS approach
can be employed. This motivated us to develop tensor based approaches which
enable us to exploit the shared information present among neighbouring voxels
and result in better water suppression.

The water removal from the MRSI signals can be formulated as a blind source
separation (BSS) problem. Recently, a Löwner-based BSS method has been
developed, which can be used if the source signals can be approximated by
rational functions. In this chapter, we propose a tensor based algorithm to
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suppress the residual water simultaneously from all the voxels in the MRSI
signal using the Löwner-based BSS method, under the assumption that the
different MRSI components can be well approximated by low-degree rational
functions. We have also explored a Hankel-tensor based exponential data fitting
method for water suppression. These tensor based methods are compared
against the matrix based HSVD method.

4.2 Tensor based methods for water removal

Section 4.2.1 explains the MRSI and the water signal model. Section 4.2.2
discusses residual water suppression using Löwner-tensor method. In
Section 4.2.3, residual water suppression using Hankel-tensor method is
explained.

4.2.1 MRSI and residual water

The MRSI time-domain signal is represented by a free-induction (FID). The
complex time-domain FID signal in each voxel can be modeled by a sum of
complex damped exponentials:

F (t) =
R∑
r=1

are
jφre(−dr+j2πfr)t,

in which R is the number of resonance peaks in the signal, and fr, ar, φr and
dr are the frequency, amplitude, phase and damping of the rth resonance peak,
respectively. Similarly, in the frequency domain, the Fourier transform of the
FID signal can be modeled as a sum of rational functions.

S(f) =
R∑
r=1

are
jφr/2π

dr + j2π(f − fr)

=
R∑
r=1

cr
jω + pr

, (4.1)

where cr = are
jφr/2π is the complex amplitude, pr = dr− j2πfr is the complex

pole and ω = 2πf is the angular frequency.

The MRSI data matrix S is constructed by stacking the spectra from each
voxel in the columns. Similarly, the data matrix F is defined by stacking the
FID’s from each voxel. The residual water present in the MRSI signals is
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sometimes large and can strongly affect the metabolite peaks of interest, which
belong to the region of interest in 0.25-4.2 ppm as shown in Figure 4.1. In
theory, the water signal can be represented by only one exponential/rational
function in time/frequency domain, but this model is not sufficient for an in-vivo
signal. In practice, it is possible to model the residual water signal with a linear
combination of several exponentials [32], which can then be extracted from S
(respectively, F).

Figure 4.1: Absorption spectrum from one of the voxels in the MRSI grid with
a large residual water signal. The region of interest for metabolites is shown
within the red box.

4.2.2 Löwner-based water suppression

Löwner-based blind source separation in MRSI

It has been shown in [32] that it is possible to model the in-vivo residual water
signal with a linear combination of several exponentials. Here, we assume that
neighboring voxels in the MRSI signal share sources (rank-1 rational functions)
that are used to model the residual water signal. Hence, the estimation of
sources that model residual water and their corresponding abundances from the
K measured MRSI signals can be formulated as a BSS problem:

S = WHT,

where columns of S ∈ CN×K contain the measured spectra from all the voxels,
the columns of W ∈ CN×R represent the individual metabolite components and
the columns of H ∈ CK×R (the mixing matrix) represent their corresponding
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abundances (weights) in each voxel. We use the Löwner-based BSS technique
explained in Section 2.2.1 to estimate the individual metabolite sources. For
each voxel, a Löwner matrix Lsk

is constructed from the corresponding spectrum
in the MRSI grid:

Lsk
=


sk(x1)−sk(y1)

x1−y1

sk(x1)−sk(y2)
x1−y2

. . . sk(x1)−sk(yJ )
x1−yJ

sk(x2)−sk(y1)
x2−y1

sk(x2)−sk(y2)
x2−y2

. . . sk(x2)−sk(yJ )
x2−yJ

...
... . . . ...

sk(xI)−sk(y1)
xI−y1

sk(xI)−sk(y2)
xI−y2

. . . sk(xI)−sk(yJ )
xI−yJ

 ,

in which sk is the spectrum of the kth voxel, and with {x1, ..., xI} and {y1, ..., yI}
two partitions of the point set Ω = {ω1, . . . , ωN} with N = I + J . Two typical
partitioning types for Ω are interleaved and block partitioning. Since the water
signal is concentrated around 4.7 ppm, if we use the block partitioning it may
result in one set containing large water peaks and the other set containing
noise or small metabolite peaks. Interleaved partition guarantees that both
sets contain water peaks. Therefore, we have used interleaved partition for
constructing the Löwner matrix from the spectrum. The Löwner matrix is
constructed using the spectrum from 0.25-6.5 ppm, which contains the region
of interest in 0.25-4.2 ppm and the water region.

A third-order tensor LS is obtained by stacking the Löwner matrices along
the third mode as shown in Figure 4.2. As it is assumed that each individual
component wr can be well approximated by a degree-1 rational function with a
single resonance peak as described in (4.2.1), each corresponding rth Löwner
matrix has approximately rank 1 and can be described as arbT

r . Hence, a CPD
can be applied on LS:

LS ≈
R∑
r=1

ar ⊗ br ⊗ hr = JA,B,HK , (4.2)

with A ∈ CI×R, B ∈ CJ×R and H ∈ CK×R. Each rank-1 tensor corresponds
to the contribution of a particular component to the observed spectral data.

Estimation of source parameters

The abundance vectors hr can be directly identified from (4.2.2). A second
goal is to identify the source components and their corresponding parameters
as described in (4.2.1). The rth source is modeled by wr(ω) = cr

jω+pr
, and its
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Figure 4.2: Construction of the Löwner tensor T from the spectra of the different
MRSI voxels

corresponding Löwner matrix Lwr
can be written as:

Lwr
=


−jcr

(jx1+pr)(jy1+pr)
−jcr

(jx1+pr)(jy2+pr) . . . −jcr

(jx1+pr)(jyJ +pr)
−jcr

(jx2+pr)(jy1+pr)
−jcr

(jx2+pr)(jy2+pr) . . . −jcr

(jx2+pr)(jyJ +pr)
...

... . . . ...
−jcr

(jxI+pr)(jy1+pr)
−jcr

(jxI+pr)(jy2+pr) . . . −jcr

(jxI+pr)(jyJ +pr)



=


c(1)

r

jx1+pr

c(1)
r

jx2+pr

...
c(1)

r

jxI+pr


[

c(2)
r

jy1+pr

c(2)
r

jy2+pr
· · · c(2)

r

jyJ +pr

]

= arbrT

with −jcr = c
(1)
r c

(2)
r . The parameters c(1)

r and pr can be obtained from ar using
least squares, [

pr

c
(1)
r

]
=
[
ar −1

]† (jx ◦ ar),

where 1 ∈ RI is the vector with all ones. We can estimate c(2)
r and pr from br

in a similar way. The final estimate of pr can be obtained by averaging the
estimates from ar and br.
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Water signal suppression

Once the source parameters are estimated, the model is extrapolated to the entire
length of the frequency region. The abundance matrix H is calculated using
least squares from the source signals and measured spectra, H = (W†S)T. The
real part of each estimated pole gives the damping factor of the corresponding
source (dr) while the imaginary part returns the resonance frequency. The
components whose resonance frequencies are outside the region of interest (0.25
- 4.2 ppm) belong to the water component or provide other nuisance peaks.
Therefore, the influence of the water component on the observed spectral data
is constructed using only those components and their corresponding abundance
vectors. Let Φ denote the set of P indices corresponding to the P water
sources. Then Wwater =

[
wΦ1 · · · wΦP

]
and Hwater =

[
hΦ1 · · · hΦP

]
,

and the contribution of the water component can be expressed as Swater =
WwaterHT

water. The water component can then be removed from the measured
MRSI spectra as Ssuppressed = S− Swater.

After removing the water component from the MRSI signal, a small baseline
will be present at the outer edges of the spectrum. This arises mainly because
the Löwner method is not able to model the complex water signal properly
at the outer edges of the spectrum when the water signal has some baseline.
Also damped complex exponential function translates to rational function only
when signal is continuous and infinitely long. The HSVD method can estimate
a source with a broad peak (large damping) to model the edges of the water
spectrum, whereas Löwner method fails to extract such broad peaks and hence
fails to model the water spectrum at the outer edges and results in a baseline.
This problem can be corrected by modeling the baseline using a polynomial
function of degree D. Therefore, the polynomial functions are added to the
estimated source matrix W to obtain the matrix Wpoly ∈ RN×(K+d+1):

Wpoly =


w11 w12 . . . w1R 1 f1 f2

1 . . . fd1
w21 w22 . . . w2R 1 f2 f2

2 . . . fd2
...

... . . . ...
...

...
... . . . ...

wN1 wN2 . . . wNR 1 fN f2
N . . . fdN


The abundance matrix H is recalculated in a least-square sense using the
estimate of Wpoly and the measured spectra in S. The residual water component
is suppressed using the subtraction method as explained above. Each polynomial
source is also considered as a water component.

In this method the water signal in each voxel is modeled as a linear combination
of many (resonance peaks/rank-1 rational functions) (typically 20-30). For each
voxel, the rows of the abundance matrix H specify the subset of sources that



60 RESIDUAL WATER SUPPRESSION IN MRSI

are used to model the water signal by means of their corresponding weights.
Since these weight combinations are voxel-wise different, they can model voxel-
wise variations in the water component. This will allow to handle the B0
inhomogeneity and spectrum distortions present in the MRSI signals.

Computation of CPD

The approach in this chapter makes use of a compression step and a CPD step
[28]. The compression step applies an MLSVD with truncation to compute a
smaller core tensor S and corresponding factor matrices U(n). Provided that the
dimensions of S exceed R, it can be shown that S still has (approximately) rank
R if T has (approximately) rank R. In the second step, a CPD is performed on
the smaller tensor S (rather than on T ), which returns the factor matrices B(n).
CPD is computed using nonlinear least squares by minimizing the Frobenius
norm of the error between the compressed core and its rank-1 approximation
[166]. The nth factor matrix of T is then equal to the A(n) = U(n)B(n). This
two-step procedure is especially beneficial if T is large, as the computation
complexity of the CPD algorithm is higher compared to the MLSVD algorithm.
If T only approximately has rank R, the two-step procedure still provides good
estimates in various occasions which differ only minimally compared to the
estimates from computing a CPD on T directly.

The CPD algorithm requires an initial value for the factor matrices. Random
initializations can sometimes result in poor water suppression. In order to
overcome this problem, different initializations are used if the water suppression
is not sufficient. To verify the quality of the water suppression, the variance in
the water region and noise region are compared. If the variance in the water
segment is larger than the variance in the noise segment by a given threshold,
the water suppression is considered to be poor and a different initial value is
used until a good suppression is obtained.

4.2.3 Hankel-tensor based water suppression in MRSI

In the time domain the BSS problem of separating individual resonance peaks
can be formulated as:

F = VHT, (4.3)

where columns of F ∈ CN×K contain the measured FID from all the voxels,
V ∈ CN×R is the Vandermonde matrix of the R source poles (zr) and the
columns of H ∈ CK×R (the mixing matrix) represent their corresponding
abundances (weights) in each voxel.
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Similarly to the Löwner method, for each voxel a Hankel matrix Hfk
is

constructed from the corresponding time-domain FID signal. A third-order
tensor Hf is obtained by stacking the Hankel matrices along the third mode as
shown in Figure 4.2. We can estimate the poles zr = e−dr+2πfr of the MRSI
signals by applying MLSVD to the Hankel tensor Hf as explained in Section
2.2.1. The abundance matrix H is then calculated using the least squares
solution of the equation (4.2.3) in which the Vandermonde matrix V is derived
from the estimated poles, H = (V†F)T. The real part of each log(zr) gives
the damping factor of the corresponding source (dr) while the imaginary part
returns the resonance frequency. The components with resonance frequencies
outside the region of interest (0.25 - 4.2 ppm) are considered to reconstruct
the water component and possibly other nuisance peaks. Finally, the residual
water is suppressed from the MRSI signal by subtracting the estimated water
component similarly to the Löwner method.

4.3 Results

To test the performance of the Löwner and Hankel-tensor based water
suppression methods, they are applied on both simulated and in-vivo MRSI
data. Section 4.3.2 discusses the performance of the Löwner, the Hankel-tensor
and the HSVD methods on simulated datasets. In Section 4.3.3 the performance
of the Löwner, Hankel-tensor and HSVD methods is assessed using in-vivo data.
Tensorlab is used for the Löwner and Hankel matrix constructions and tensor
computations [186]. The signal-to-noise ratio (SNR) is defined as the power of
the signal to the power of the noise. Unless stated otherwise, a rank R = 50 is
used for the CPD of the Löwner tensor LS and d = 4 degree polynomial sources
are used for the entire MRSI in both the simulation and in-vivo cases. For the
HSVD, an order of 50 was used for each voxel and for Hankel-tensor we have
used an order of 100 in the MLSVD of the entire MRSI signal.

4.3.1 Spectral variations in MRSI voxels

To demonstrate that our proposed method can handle B0 inhomogeneity and
spectrum distortions, we have applied the Löwner method to one in-vivo dataset.
Figure 4.3 (a) & (c) show absorption spectra of an in-vivo MRSI signal from two
of the voxels having different spectral shape (red, dashed-line). The estimated
water signal (black, solid-line) is overlapped on the measured spectrum in the
figure, and we clearly see that the estimated water signal (black, solid line)
models both voxels that are having distinct spectral shapes. Figure 4.3 (b) & (d)
show the individual resonance peaks used to model the water signal. From the
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Figure 4.3: (a) & (c) Absorption spectra of an in-vivo signal without water
suppression (red, dashed-line) overlapped with the estimated water spectra
(black, solid-line) from two different voxels in the MRSI grid. (b) & (d) Individual
resonance peaks used in the modelling of the water signal from (a) and (c),
respectively.

figure we observe that the individual resonance peaks used to model the water
component have different complex amplitude for both voxels, which enables to
handle B0 inhomogeneity and spectral distortions.

4.3.2 Simulations

The simulated signals containing residual water are generated using an in-vitro
basis set which was obtained as described in [136]. The basis set consisting of
in-vitro signals from Alanine (Ala), Aspartate (Ala), Choline (Cho), Creatine
(Cre), γ-aminobutyric acid (GABA), Glutamate (Glu), Lactate (Lac), two lipids
(Lip1 and Lip2), myo-Inositol (MI), N-Acetyl-Aspartate (NAA) and Taurine
(Tau) metabolites was used to generate the spectra. A grid of MRSI signals
of size 16×16 was generated for simulation. First, signals consisting of 12
metabolites are constructed using the basis set without any residual water. The
amplitude of each metabolite in the grid is varied using a 2-D Gaussian window,

g(x, y) = e−(x2+y2)/2σ2
+ U(x, y)
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Figure 4.4: (a) Absorption spectrum of a simulated in-vitro signal without water
from one of the MRSI voxels. (b) Absorption spectrum of a simulated in-vitro
signal with large water peak from one of the MRSI voxels. (c) Absorption
spectrum of the water-suppressed signal using the Löwner method without
polynomial sources. (d) Absorption spectrum of the water-suppressed signal
using the Löwner method with polynomial sources.

where U(x, y) is a uniformly distributed random number, and x = 0, y = 0 is
the central voxel. Circular Gaussian noise is added to the metabolite signals.
Residual water signal was generated by scaling the in-vivo measured MRSI
water reference signal. In each voxel the residual water signal is distorted by
multiplying it with a Gaussian decaying signal e(−dkt

2), where dk is modelled as
a uniformly distributed random variable between 0 and 0.005. Finally, residual
water was added to the noisy metabolite signals to generate the MRSI data.

The Löwner method with and without polynomial sources was applied on a
simulated MRSI signal to suppress the residual water. The result of water
removal in one of the voxels is shown in Figure 4.4. From Figure 4.4(c)&(d) we
clearly observe that the Löwner method will introduce a baseline and it can be
addressed by including the polynomial sources in the least squares stage. In
the remainder of the chapter, we have only considered the Löwner method with
polynomial sources, unless explicitly mentioned.

The Löwner, Hankel-tensor and HSVD water-suppression methods are applied
on the simulated MRSI signals for 100 different noise and metabolite amplitude
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Figure 4.5: Boxplot of the residual errors after water suppression using the
HSVD, the Löwner (LT) and the Hankel-tensor (HT) methods on 100 simulated
in-vitro MRSI signals. The error is calculated as the l2-norm of the difference
between the water-suppressed signal and the original water-free signal (with
noise).

realizations. Figure 4.5 shows the boxplot of errors between the water-suppressed
signal and the metabolite signal (with noise) for two different noise levels.
The boxplot indicates that both the Löwner-based method and the Hankel-
tensor method have a lower average error compared to the HSVD method and
suppresses the residual water better without distorting the metabolite spectra.
The Löwner-based method has the best performance in suppressing residual
water compared to the other two methods.

4.3.3 In-vivo results

To test the performance of the algorithms we have applied the HSVD, Hankel
tensor and Löwner methods on 28 in-vivo datasets. Figure 4.6 shows the real
part of the spectra with residual water and after water suppression for two
different voxels in a MRSI grid. In many voxels, all three methods give good
water suppression as shown in Figure 4.6c. However, in some voxels the HSVD
method does not perform well as shown in Figure 4.6f. In Figure 4.6b, we
observe that an artefact is present at the right side of the water signal. Therefore
the HSVD method fails to suppress water completely and results in a significant
residue. However, both tensor methods are able to suppress water even in the
presence of an artefact. Fig. 4.7 shows the water-suppressed spectra obtained
with HSVD, Löwner and Hankel-tensor methods from different locations in the
voxel grid.
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Figure 4.6: Residual water suppression in in-vivo MRSI signals. (a-b) Absorption
spectra of measured MRSI signal with large residual water peak for two voxels.
(c-d) Absorption spectrum of the water-suppressed signal (blue) using the
Löwner method and the quantified signal (red) in the two corresponding voxels.
(e-f) Absorption spectrum of the water-suppressed signal using HSVD method
and the quantified signal (red) in the two corresponding voxels. (g-h) Absorption
spectrum of the water-suppressed signal using the Hankel-tensor method and
the quantified signal (red) in the two corresponding voxels.
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Figure 4.7: Original and residual water suppressed spectra from different
locations in 16× 16 voxel grid. First column: Un-suppressed original spectra,
second column: water suppressed spectra using HSVD, third column: water
suppressed spectra using the Hankel-tensor method, fourth column: water
suppressed spectra using the Löwner tensor method. Voxel position in the
16× 16 grid: Row-1: top left corner, Row-2: middle left, Row-3: bottom left
corner, Row-4: middle top, Row-5: centre, Row-6: bottom middle, Row-7: top
right corner, Row-8: middle right, Row-9: top right corner.
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Figure 4.8: Boxplots of error after residual water suppression using the methods
HSVD, Löwner and Hankel-tensor in 28 in-vivo MRSI signals. The error is
calculated as the difference between the variance in water region segment and
the variance from a segment in the noise region.

There is no ground truth available for in-vivo data to measure the quality of
water suppression. To measure the performance, we calculate the difference in
sample variance between the water region segment and the noise segment in
each voxel. The spectrum in the region of 4.2-5.2 ppm is considered as water
segment and the spectrum at the outer edges is considered as noise segment. For
each MRSI signal, the average difference in variance is used as the performance
measure. Figure 4.8 shows the boxplot of sample variance difference of 28 MRSI
in-vivo data signals for the HSVD, Hankel tensor and Löwner methods.

Several fast acquisition schemes generates MRSI signals with small sample
length to reduce the acquisition time. Therefore, we also applied the proposed
methods on in-vivo MRSI signal with smaller sample length, which are obtained
by truncating the original signal to 1024, 512 and 256 samples. Fig. 4.9- 4.11
shows the boxplot of sample variance difference using HSVD, Hankel tensor and
Löwner methods for 28 MRSI in-vivo data signals with 1024, 512 and 256 samples
per voxel, respectively. Table 4.1 shows the average error (difference in variance)
over 28 in-vivo MRSI signals for Löwner-tensor, HSVD and Hankel-tensor
methods. From the table we can observe that the Löwner-tensor method has
better performance compared to HSVD for both original (2048) and truncated
(1024, 515 and 256) FID signals. The Hankel-tensor method performs better
on the original un-truncated signals and has similar performance in truncated
(1024, 515 and 256) FID signals compared to HSVD.

Next, we tried to analyse the quality of water suppression by quantifying MRSI
signals and examining the Cramér-Rao bounds of the metabolite amplitudes
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Figure 4.9: Boxplots of error after residual water suppression using the methods
HSVD, Löwner and Hankel-tensor in 28 in-vivo MRSI signals truncated to 1024
samples per voxel. The error is calculated as the difference between the variance
the in water region segment and the variance from a segment in the noise region.

Figure 4.10: Boxplots of error after residual water suppression using the methods
HSVD, Löwner and Hankel-tensor in 28 in-vivo MRSI signals truncated to 512
samples per voxel. The error is calculated as the difference between the variance
in the water region segment and the variance from a segment in the noise region.

[35]. Two in-vivo MRSI signals measured from brain tumor patients with a grid
size 16×16 were used in this analysis. A band of three voxels at the outer edges
of the MRSI grid were omitted to avoid chemical shift displacement artefacts
and bad quality spectra. This resulted in a reduced MRSI grid size of 10×10.
AQSES [144] was used to quantify the MRSI signal in Matlab based SPID
software [143]. An in-vitro basis set consisting of two lipids (Lip1 and Lip2),
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Figure 4.11: Boxplots of error after residual water suppression using the methods
HSVD, Löwner and Hankel-tensor in 28 in-vivo MRSI signals truncated to 256
samples per voxel. The error is calculated as the difference between the variance
in the water region segment and the variance from a segment in the noise region.

Table 4.1: Average residual water suppression error (difference in variance)
obtained from HSVD, Löwner and Hankel-tensor methods over 28 in-vivo MRSI
signals. The results are shown for original MRSI signal with 2048 samples for
each voxel and truncated MRSI signals with 1024, 512 and 256 samples for each
voxel.

FID length HSVD Hankel-tensor Löwner-tensor
2048 (original) 100.26 53.56 37.33

1024 121.86 80.27 40.82
512 133.00 127.36 33.57
256 148.81 122.56 37.49

phosphocholine (PCh), Cre, Glu, glutamine (Gln), MI, Lac, N-Acetyl-Aspartate
(NAA) and glycine (Gly) metabolites was used in the AQSES algorithm. Table
4.2 shows the average Cramér-Rao bounds in % of quantified amplitude of five
metabolites along with the standard deviation for two of the in-vivo MRSI
signals. In the first patient all three methods perform well and the average
Cramér-Rao bounds are similar. However, for the second patient the metabolites
estimated from the MRSI signals after water suppression using HSVD clearly
show higher Cramér-Rao bounds for Glutamate and lipid metabolites because
the HSVD method fails to suppress the water signal properly in many of the
voxels as shown in Figure 4.12. From Figure 4.12, we can clearly see that
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the improper suppression of the water signal results in bad quantification of
metabolites such as Glutamate. Even though the suppression of the water
signal in two of those voxels using Hankel tensor is better than using HSVD,
the quantification is not good compared to Löwner water suppression.

Table 4.2: Mean and standard deviation of Cramér-Rao bounds in % of
quantified amplitude for Lipid (Lip1), Glutamate, N-acetylaspartate (NAA)
and phosphocholine (PCh) metabolites over 10×10 MRSI voxel grid.

Patient-1
Mean Standard deviation

HSVD Hankel-tensor Löwner-tensor HSVD Hankel-tensor Löwner-tensor
Lipid 19.7016 21.1315 19.9462 11.7981 12.5221 12.2064

Glutamate 22.5448 25.9515 21.2197 9.7971 8.9112 9.3843
NAA 9.5400 10.9208 9.3868 4.3972 5.5443 4.0182
PCh 9.5269 9.7131 9.3248 3.4515 2.7612 3.1800

Patient-2
Mean Standard deviation

HSVD Hankel-tensor Löwner-tensor HSVD Hankel-tensor Löwner-tensor
Lipid 511.8554 51.7515 46.8847 4693.97 91.6301 86.9021

Glutamate 37.1549 38.1211 27.5632 29.6739 21.7350 12.5496
NAA 13.1994 14.7912 13.3217 4.5156 5.4552 4.4907
PCh 14.9876 14.1948 15.0810 8.9005 9.0866 12.4655

4.4 Discussion

Residual water suppression is one of the common preprocessing steps used in
the quantification of MRSI signals. T. Sundin et. al. [170] propose a maximum-
phase finite impulse response filter for residual water suppression. This method
will alter the amplitude and phase of the filtered signal, which may create
problems in quantification methods where different phase variations are not
allowed and where spectra instead of quantified metabolites are used for the
analysis [21, 111]. HSVD is the most widely used method and is available as
a preprocessing step in many MRSI software packages. As it is applied on a
voxel-by-voxel basis and as it computes the water source components separately
for each voxel, it does not exploit the information shared among the voxels
in the MRSI grid. Therefore, the HSVD method can fail to suppress water
completely in a particular voxel due to noise or artifacts present in that voxel.
This problem can be seen in an in-vivo example shown in Figure 4.6 where the
HSVD method fails to suppress the water in a particular voxel (Figure 4.6f)
and performs better in another voxel (Figure 4.6e). This has motivated us
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Figure 4.12: Improper water suppression using the HSVD method in two voxels
of the 10×10 MRSI grid. (a-b) Absorption spectra of measured MRSI signal
with large residual water peak for two voxels. (c-d) Absorption spectrum of
the water-suppressed signal (blue) using the Löwner method and the quantified
signal (red) in the two corresponding voxels. (e-f) Absorption spectrum of
the water-suppressed signal using HSVD method and the quantified signal
(red) in the two corresponding voxels. (g-h) Absorption spectrum of the water-
suppressed signal using the Hankel-tensor method and the quantified signal
(red) in the two corresponding voxels.
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to develop a new algorithm, which can exploit the similarity in water sources
present among all voxels.

In this chapter, we have represented the second-order MRSI data using a
third-order tensor by means of a Löwner transform. A novel residual water-
suppression method based on CPD, where sources are shared among many
voxels, was developed. This work explored the feasibility and efficiency of the
proposed algorithm in suppressing the residual water from MRSI data using
both simulation and in-vivo signals. The Löwner-based method is applied
simultaneously on the entire MRSI grid to estimate a large number of sources
which can be used, in various combinations, to model the water component in
each voxel. The water signal in each voxel is estimated as a linear combination
of the sources with different voxel specific weights. This helps in preventing
the failure of the water suppression in single voxels. The Löwner tensor is
constructed using truncated spectra. Only the parts where the metabolite and
water peaks are present are retained in the spectra. This helps in reducing the
size of the tensor and the computational complexity of the algorithm without
any significant impact on water suppression quality. The Löwner-based method
requires fewer parameters to model the water signal in the MRSI grid. For
example, in the HSVD method with a rank-50, for each voxel we estimate 50
complex amplitude + 50 complex poles. For an MRSI grid of 8× 8 the total
number of free parameters includes 50× 64 complex amplitudes and 50× 64
complex poles. In case of the Löwner method with a rank-50 and polynomial
degree 4, the total number of free parameters for an MRSI grid of 8× 8 includes
50 complex poles + 54× 64 complex amplitudes.

When using the Löwner method to estimate the water sources we have applied
the CPD only on the compressed core tensor S and the factor matrices are
obtained as explained in the Section 2.1.1. It speeds up the algorithm without
any significant negative consequences in the estimated water signal. In general,
the factor matrices obtained from the compressed CPD step are typically used
as the initial values in the computation of the CPD of the full tensor to further
improve the decomposition, also known as the refinement step. Here, we have not
used the refinement step as it is computationally intensive and did not provide
any significant improvement in the estimated water signal. In the Löwner-
based method we have added a quality verification on the water suppression to
overcome the problems with random initialization. If the algorithm is used with
different initializations to obtain a better water suppression, the compression
step is only performed once as it is deterministic. Since the compression step
takes most of the computation time and the CPD on the core tensor is relatively
fast, running the algorithm again with a different initialization will not increase
the computation significantly. A rank R = 50 was used for the CPD of the
Löwner tensor LS based on the assumption that the water signal from all
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the voxels can be modelled using 20-25 first-order rational functions and the
remaining ones are sufficient to model the metabolites. The chosen rank was
not sensitive to the grid size in the sense that similar performance was obtained
on the larger voxel grid (16× 16) as well as on the smaller voxel grid (8× 8).
Also, the selection of the rank itself is not so sensitive since the results did not
change significantly when increasing (e.g, R = 60) or decreasing the rank (e.g,
R = 40).

The Hankel-tensor based method has been used to estimate the parameters of
exponentially damped sinusoids of multichannel signals [138]. In this chapter
we have used the Hankel-tensor based method as a natural extension of the
HSVD method to estimate the water signals from MRSI data. The Hankel-
tensor method has better performance compared to the HSVD method in both
simulations and in-vivo data, however its performance is worse than the Löwner
method. Both Hankel-tensor and HSVD methods extract sources with broad
peaks, which helps in tackling the baseline without the need for additional
polynomial sources. A higher model-order (rank) of 100 was used, as the
performance deteriorated when a model order similar to the HSVD-rank (50)
was used.The reason is that a rank of 50 is typically sufficient for modelling a
signal from an individual voxel, but is not sufficient to capture all the variations
in damping and frequency shifts across signals in the MRSI grid. The Hankel
tensor requires a higher model order (rank) compared to the Löwner method
because the frequency domain decouples the noise, artefacts and trends present
outside the region of interest and also a higher rank was needed to model the
variations in trend across different voxels. The Hankel-tensor was constructed
using the entire FID signal of length 2048, which resulted in a large tensor
and higher computational complexity. A truncated FID (<2048 samples) can
also be used to construct the Hankel-tensor to reduce the size and complexity,
but its performance is worse than HSVD in in-vivo MRSI data. It is not clear
why the performance of the Hankel-tensor based method does not perform as
good as the Löwner based method. One possible reason is that in the frequency
domain, the water signal and artefacts/nuisance parameters present at different
frequency range can be decoupled, which is exploited by Löwner based method
for extracting the water signal.

All three methods model the total MRS signal sufficiently well, however in
some voxels HSVD fails to suppress the water completely. This happens mainly
because the water signal is modeled from the sources whose frequencies are
outside the region of interest (0.25 - 4.2 ppm) and in some cases (e.g., Figure 4.6)
part of the water signal is modelled by a few sources whose frequencies lie in
the region of interest (0.25 - 4.2 ppm). Therefore, a small residual water is
present in the water suppressed signal, since part of the water signal modelled
by sources in the region of interest (0.25 - 4.2 ppm) is not subtracted.
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As a proof of concept, we have analyzed the proposed methods in terms of
residual error in case of simulation and difference in variance for in-vivo examples.
Also, we have assessed the water suppression quality of three methods using
the average Cramér-Rao bounds of the metabolite amplitude in two in-vivo
patients. Although Cramér-Rao bounds depend on more factors, they are often
used in in-vivo studies to assess the reliability of metabolite quantification. In
the future, these water suppression methods could also be compared in terms
of reliability of metabolite quantification in a test-retest experiment.

4.5 Conclusion

A tensor-based method which suppresses residual water simultaneously in all
MRSI voxels using a Löwner-based blind source separation technique and Hankel-
tensor based exponential data-fitting technique are proposed. These methods
were tested on both simulated and in-vivo 1H MRSI signals. In both cases
the tensor based methods perform better than the widely-used subspace-based
HSVD method, which uses a single Hankel matrix from one spectrum at a time.
Comparing the two tensor based methods, the Löwner-tensor based method
was shown to better suppress residual water in MRSI. The main advantage of
Löwner-based method is that it can handle the presence of artifacts in some
voxels without significantly affecting the water suppression quality. In contrast,
the HSVD method completely fails to suppress water in some voxels when
artifacts are present, thus making the further analysis of those spectra difficult.



Chapter 5

Un-supervised tissue type
differentiation in glioma

Magnetic resonance spectroscopic imaging (MRSI) reveals chemical information
that characterizes different tissue types in brain tumors. Blind source separation
techniques such as non-negative matrix factorization and hierarchical non-
negative matrix factorization are used to extract the tissue-specific profiles and
their corresponding distribution from the MRSI data. In this chapter we focus on
automatic detection of the tumor, necrotic and normal brain tissue types using
tensor based methods. A 3-dimensional MRSI tensor is constructed from in-vivo
2D-MRSI data of individual glioma patients. Non-negative canonical polyadic
decomposition (NCPD) is applied to the MRSI tensor to differentiate various
tissue types and to extract the tissue-specific profiles and their corresponding
distribution. NCPD is applied to 28 MRSI datasets of UZ Leuven and compared
with previous matrix-based decompositions. The work presented in this chapter
is based on [18].

5.1 Introduction

Accurate characterisation and localization of pathologic tissue types play a
key role in diagnosis and treatment planning of brain tumors. The tumor
region of glioblastoma multiforme (GBM) could consist of several tissue types,
which represent actively growing tumor, necrosis or normal brain tissue [111].
In recent years, many advanced MR modalities such as Magnetic Resonance
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Spectroscopic Imaging (MRSI), perfusion-weighted MRI (PWI) and diffusion
weighted MRI (DWI) are being used to characterize brain tumors and detect
full tumor extent [58]. MRSI is a non-invasive imaging technique that provides
spectral profiles in a two- or three- dimensional voxel grid, from which the
spatial distribution of metabolite concentrations can be estimated. Each voxel
in the MRSI grid has a spectrum composed of several peaks corresponding to the
metabolites present in that grid. The area under the peak is proportional to the
metabolite concentration. MRSI has been successfully applied to diagnosis and
prognosis of brain tumors. There are many algorithms for MRSI data analysis
available in the literature that aim at tissue characterisation, tumor localization
and classification. In particular, nonnegative matrix factorization (NMF) and
hierarchical NMF (hNMF) have shown potential to differentiate different tissue
patterns in MRSI of GBM patients [111]. However, the performance of hNMF
deteriorates in the presence of artifacts because it can handle only three tissue
types (tumor, necrotic and normal).

Higher order tensors have certain properties that are not present in a matrix [38].
Tensor decompositions are now being used in various biomedical applications like
genomics [131], EEG and fMRI data analysis [129] and smart patient monitoring
[179]. The 2D MRSI signal can naturally be represented as a third-tensor P
as shown in Fig. 5.1. The mode-1 and mode-2 of the tensor P represent the
spatial dimension of the 2-D MRSI signal and mode-3 represents the spectra
from all voxels. This motivated us to explore tensor based approached to obtain
more refined tissue characterisation and localization.

Figure 5.1: 3-way spatial tensor representation of 2-D MRSI data.

To extract different tissue types from the spatial tensor P , we can use block term
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decomposition (BTD) in R rank-(Lr, Lr, 1) block terms [51]. The (Lr, Lr, 1)
BTD for a third-order tensor P ∈ RI×J×K can be written as:

P ≈
R∑
r=1

(ArBT
r ) ◦ sr

where sr represents the tissue-specific spectral pattern, ArBT
r having rank Lr

represents the corresponding spatial distribution with Ar ∈ RI×Lr , Br ∈ RJ×Lr

and ‘◦’represents outer product. The rank Lr for each tissue type plays an
important role in the decomposition, which depends on factors like size and
shape of the tissue type. The rank Lr is not known a priori and it is difficult to
estimate it from the MRSI data. Also there is no guarantee that the spatial
distribution follows a low-rank structure so that it can be represented by a low
rank matrix ArBT

r . Because of these problems, we developed a new tensorization
of the 2-D MRSI signal which allows to exploit the low-rank structure.

In this chapter, we propose a novel algorithm for the detection of tumor, necrotic
and normal tissue types from MRSI signals. The algorithm first applies a window
method to enhance the peaks and reduce the length of the spectra, and then
constructs a 3-D MRSI tensor. Decomposing this tensor using NCPD with
common factor in mode-1 and mode-2, allows to retrieve the tissue-specific
spectral profiles from the NCPD factor matrices. Preliminary studies have been
previously presented in [20]. The chapter is organized as follows: In Section
5.2, the construction of the MRSI tensor and the NCPD algorithm for tissue
type differentiation is explained. The performance evaluation of the proposed
NCPD algorithm in comparison with one-level NMF and hNMF using short-echo
time (TE) 1H 2D-MRSI datasets from glioma patients is done in Section 5.3.
Discussions are presented in Section 5.4 and finally the chapter is concluded in
Section 5.5.

5.2 Method

5.2.1 MRSI tensor construction

For each voxel in the MRSI grid, a reduced real-valued spectrum x is constructed
from the corresponding complex-valued pre-processed spectrum. Elements of
the vector x are obtained by moving an overlapping window over the spectrum,
where the ith element of x is the sum of squares of absolute value of all the
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elements in the ith window segment,

x(i) =
L∑
j=1

si(j)s∗i (j)

si is the spectrum at the ith segment, ss∗i is its complex conjugate and L is the
length of the window segment. Fig. 5.2a shows the construction of a vector x
from the spectrum. The resulting vector X can be considered as a denoised and
reduced-length version of the original spectrum. The window length L is chosen
such that it covers the widest peak in the spectra and step value is chosen as L

4 .
Use of vector x has the following advantages:

1. It reduces the length of spectra without losing vital information required
for tumor tissue type differentiation.

2. It gives more weight to the peaks and makes the signal smoother and
non-negative.

Instead of sum of squares we can use mean value over the window to reduce the
length of the spectra. However, it does not enhance the peaks which contain
most of the information.

The 2D-MRSI signal is naturally a third-order tensor. However, it does not
exhibit low-rank structure. This prevents us from extracting tissue specific
patterns by applying tensor decomposition methods directly on the 2D-MRSI.
Other tensors obtained by stacking Löwner/Hankel matrix from each voxel can
have low-rank structure. Using tensor decomposition such as CPD may extract
individual peaks as sources. Such kind of problems will also arise when using
NMF methods. These individual peaks do not correspond to a tumor or a
normal tissue signature, which are composed of many peaks. Rank-(Lr, Lr, 1)
BTD can be used to extract sources containing many peaks corresponding to
different tissues. Since signatures of tumor and normal tissue vary from patient
to patient, it is not feasible to estimate the rank Lr for extracting good tumor
and normal specific tissue signatures. Therefore, we developed a new way to
construct tensor from reduced spectra to overcome such problems. A third-order
MRSI tensor T is constructed by stacking xxT from all the voxels in the MRSI
grid as shown in Fig. 5.2(b).

Under the assumption that each voxel correspond to a specific tissue, the MRSI
tensor T will have a low-rank structure. The xxT structure in MRSI tensor
couples the peaks in the reduced spectra and prevents extracting individual
peaks as sources.
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Figure 5.2: (a) Construction of reduced spectrum, x from the pre-processed
spectra. SOS: sum of squares. (b) Construction of the MRSI tensor T from the
reduced spectra, x. K is the total number of voxels in the 2D MRSI excitation
volume.

5.2.2 Non-negative CPD

Non-negative canonical polyadic decomposition (NCPD) is a tensor decomposi-
tion method, where the tensor is decomposed into a sum of rank-one tensors
with non-negativity constraints on the factor matrices [37].

X ≈ JABCK ≡
R∑
r=1

ar ◦ br ◦ cr, A,B,C ≥ 0

where A = [a1,a2, ...,aR] ∈ RI×R+ , B = [b1,b2, ...,bR] ∈ RJ×R+ and C =
[c1, c2, ...,aR] ∈ RK×R+ are non-negative factor matrices. R is the rank, defined
as the number of rank-one terms.

In the MRSI tensor T , the frontal slices are symmetrical, therefore we constrain
the frontal slices of each NCPD rank-one term to be symmetric. To maintain
symmetry, a common factor matrix is used for mode-1 and mode-2 in the NCPD
as shown in Fig. 5.3. After performing the NCPD on the MRSI tensor T
we obtain two factor matrices S and H, where S represents the tissue-specific
patterns of the reduced spectra and H represents the spatial distribution of
each tissue type.
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Figure 5.3: Non-negative CPD of MRSI tensor T : MRSI tensor T is decomposed
into R rank-1 tensors. Common factor S is used in mode-1 and mode-2 to
maintain symmetry of frontal slices. Each si gives a tissue-specific reduced
spectral pattern and the corresponding hi gives the spatial distribution of the
respective tissue type, upon reshaping. Non-negativity of S and H is imposed
in the decomposition.

Each rank-one term obtained from the NCPD of the MRSI tensor T is expected
to correspond to a particular tissue type, although it is not always guaranteed
with the current formulation. Here, we assume that in most of the voxels the
spectra belong to a particular tissue type, with the exception of a few voxels
whose spectra may contain a mixture of at most two tissue types. Therefore,
the factor matrix H will be sparse, meaning that each row will mostly have
only one high value. A further refinement of the NCPD method exploits the
sparsity assumption in the factor matrix H by imposing a l1 regularization on
it. The NCPD with l1 regularization (NCPD-l1) can be written as

[S∗,H∗] = arg min
S≥0,H≥0

‖T −
R∑
i=1

S(:, i) ◦ S(:, i) ◦H(:, i)‖2

+ λ‖V ec(H)‖1 (5.1)

where S and H are the aforementioned factor matrices and λ is the parameter
which controls the sparsity.

In this work, the tensor decomposition was performed using the Tensorlab
Matlab package [185]. Non-negativity constraints, common factors to maintain
symmetry and l1 regularization are imposed using the structured data fusion
framework [167] available in Tensorlab. In structured data fusion framework,
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transformation of variables is used to convert the constrained optimization
problem in Equation (5.2.2) into an unconstrained problem, where squaring was
used to get non-negative variables. Gauss-Newton algorithm with dogleg trust
region (GNDL) is used to solve the resulting non-linear least-squares problem
[167]. At each iteration of the GNDL algorithm, a step is calculated by iteratively
solving a linearized version of Equation (5.2.2) using conjugate gradients. The
SDF framework allows straightforward incorporation of regularization terms
into the objective function.

5.2.3 Spectral recovery and non-negative least squares

The NCPD of the MRSI tensor T gives the factor matrix S, which contains
the reduced spectral patterns specific to different tissue types. However, it
is desirable to recover tissue-specific spectral sources as vectors of the same
length as the pre-processed MRSI spectra, which are more interpretable since
they can be directly compared to the original spectra. To this end, a least
squares problem is solved, and the matrix of spectral sources representing the
tissue-specific spectral patterns W is:

W = (H†YT )T (5.2)

where H† is the Moore-Penrose pseudoinverse of the NCPD factor matrix H
and Y is the matrix containing the unit normalized spectra from all voxels as
its columns. The source spectra W can be estimated as complex-valued or
magnitude vectors by using complex-valued or magnitude spectra Y in equation
(5.2.3), respectively.

In the NCPD of MRSI tensor T , the factor matrix H corresponds to the weights
of the linear combination of S(:, i)S(:, i)T and not the linear combination of
source spectra W. Also, the tensor is constructed using the normalised spectra,
therefore voxels having relatively small values compared to other spectra will
also get enhanced and will have higher abundances. The abundances of the
sources in the original unnormalised spectra are more meaningful and represent
the true distribution. Also we want the abundances to represent the weights in
the linear combination of source spectra W. To address these problems, spatial
distributions, HD of the different tissue types is calculated using non-negative
least squares with l1 regularization:

HD(:, i) = arg min
x≥0
‖Wx−Yun(:, i)‖22 + λ1‖x‖1 (5.3)

where, HD(:, i) is the distribution of source spectra in each voxel, W contains
the estimated source spectra and Yun(:, i) is the original unnormalised spectrum
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of each voxel. The problem in equation (5.2.3) is solved for all the voxels in the
MRSI grid using a Matlab based large-scale l1-regularized least squares problem
solver [98]. When the estimated source spectra W and the MRSI voxel spectra
are complex-valued, the real and imaginary part are concatenated to form a
single real-valued matrix, which is then used as input to the non-negative least
squares problem with l1 regularization. Tissue distribution maps are obtained
by reshaping the rows of HD to the 2D-MRSI grid.

5.2.4 Initialization

The NCPD algorithm needs initial values for S and H and the non-negative
least squares [98] algorithm needs initial values for HD. Initializing S, H and
HD with uniformly distributed pseudorandom numbers between 0 and 1 gives
good solution, but the results are not exactly the same between different runs.
Although the solutions are similar between different runs, poor initial values may
result in sub-optimal solutions. To find good initialization values, first we take
the singular value decomposition (SVD) of the matrix Y, Y = UΣVH , where
the columns of the matrix Y are the complex spectra from each voxel. Reduced
spectra Sinit are constructed from R dominant left-singular vectors as explained
in Section 5.2.1 and are used as initial value for S in the NCPD algorithm.
Initial values for H are obtained through least squares as Hinit = (S†initM)T ,
where M is a matrix whose columns are the reduced spectra x from each voxel.
Least squares may introduce negative values in Hinit. However, these negative
values are typically rare and small in amplitude. Moreover, the NCPD algorithm
in Tensorlab can handle negative initial values. A vector of all ones was used to
initialize HD in the final non-negative least squares step.

5.2.5 Source number estimation

The NCPD algorithm needs the number of sources (i.e. decomposition rank)
as input. Estimating the rank from the input spectra/ tensor T is a difficult
problem. The literature on estimation of decomposition rank from the tensor
is limited. Tensorlab package [185] has a method rankest, which estimates the
rank based on the L-curve of the number of rank-one terms in a CPD. However,
this method gives good results when the noise is low or when the decomposition
is exact, which is not the case for our MRSI tensor T . The estimated rank R
from this method is much higher than the required number of sources for a
good tissue type differentiation. In [172] a Bayesian model based on automatic
relevance determination is proposed for NMF, which also estimates the model
order R along with non-negative factor matrices. In this method, the estimated
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model order is dependent on the choice of the dispersion parameter, which
represents the tradeoff between the data fidelity and the regularization terms.
Selecting the optimal dispersion parameter for each MRSI dataset is difficult
and it is as hard as selecting the rank itself. In this chapter we will use the
covariance matrix based approach to estimate the number of sources.

Let A be the data matrix of size K ×N where the rows represent K spectra
of length N from all the voxels in the MRSI grid. Then the K ×K sample
covariance matrix is estimated as C = 1

N−1 [(A − Ā1TN )(A − Ā1TN )T ], where
Ā = 1

N−1
∑N
i=1 ai and 1N is a vector of all ones with length N . The eigenvalues

of the covariance matrix C are denoted by λ1 ≥ λ2 ≥ λ3 ≥ ... ≥ λK . The
number of sources is estimated as the minimum number R such that the
cumulative sum of eigenvalues is greater than 99% of the sum of all eigen-values.

R∗ = minR, such that [
∑i=R
i=1 λi∑i=K
i=1 λi

≥ 0.99] (5.4)

where R∗ is the estimated number of sources. When the data matrix A is
constructed from the original complex valued spectra, the estimated number
of sources is high. Therefore, we use the reduced spectra in A to calculate
the covariance matrix C. Reduced spectra suppress noise and small variations
present in the original spectra resulting in fewer eigenvalues significantly larger
than zero in the covariance matrix C. Therefore, using reduced spectra to
estimate R provides a good estimate for the number of sources in many MRSI
datasets. However, when the MRSI data contain spectra of less quality or
having more artifacts the estimated number of sources is still too high. To
overcome this problem we incorporate prior knowledge about the maximum
number of sources (includes tissue types + artifacts) for estimating the number
of sources. Let the maximum number of sources be P . If R∗ obtained from
(5.2.5) is less than or equal to P (R∗ ≤ P ), then the number of sources is set
to R∗ and is used in the NCPD algorithm. When R∗ obtained from (5.2.5) is
greater than P (R∗ > P ), only the largest P + 1 eigenvalues of C are retained
and the remaining ones are set to zero. Then the number of sources is estimated
as in equation (5.2.5) with K set to P + 1, i.e the set of eigenvalues is reduced
to the largest P + 1 values only.

5.2.6 Source and distribution correlation

The performance evaluation of the algorithms in the in-vivo study was analyzed
using two measures:
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1. Source correlation: In this chapter we have defined two types of source
correlation:

(a) Source correlation Type I (SC1): The source correlation is calculated
as Pearson’s linear correlation coefficient between the estimated
source spectrum and the tissue-specific spectrum based on expert
labeling of the in-vivo MRSI voxels [111]. The tissue-specific
spectrum based on expert labeling (src_expt) for a particular
tissue type is computed as the average of all the spectra from the
voxels labelled by the expert as belonging to that tissue type. The
construction of expert spectra, src_expt for the tumor tissue is
shown in Fig. 5.4.

src_expt = Y1 + Y2 + ......+ Yn
n

SC1 = r(W(:, T ), src_expt)

where W(:, T ) is the estimated source spectrum corresponding to
a particular tissue type, src_expt is the expert labeled spectrum
corresponding to that particular tissue type, Y1, Y2, ...., Yn are the
spectra from the voxel that are marked by the expert as belonging
to that particular tissue type and r is Pearson’s linear correlation
coefficient.

(b) Source correlation Type II (SC2): First Pearson’s linear correlation
coefficients are calculated between the estimated source spectrum
and all the spectra in the voxels that are marked by the expert as
belonging to a particular tissue type. Then the source correlation
SC2 is calculated by taking the average of Pearson’s linear correlation
coefficients:

SC2 = r(W (:, T ), Y1) + .......+ r(W (:, T ), Yn))
n

where SC2 is the Type II source correlation, W (:, T ) is the estimated
source spectrum corresponding to a particular tissue type.

2. Distribution correlation (DC): Distribution correlation is calculated as
Pearson’s linear correlation coefficient between the estimated distribution
map corresponding to a particular tissue type and the distribution map
based on expert labeling (dist_expt). For each tissue type, a distribution
map based on expert labeling is obtained by using values equal to the l2
norm of the corresponding spectra for all voxels labeled as a certain tissue
class, and values of 0 for the other voxels as shown in Fig. 5.4.

DC = r(HD(:, T ), dist_expt)



METHOD 85

where DC is the distribution correlation, HD(:, T ) is the estimated
distribution vector corresponding to a particular tissue type, dist_expt
is the expert labeled distribution vector corresponding to that particular
tissue type.

Because of heterogeneity, the tumor tissue is modelled by more than one source
spectrum in many patients. In this case, the average of source spectra and sum
of the corresponding distribution maps are used in the calculation of SC1 and
DC, respectively. Whereas, for SC2, only the maximum correlation among the
source spectra is retained for averaging. In NCPD algorithm the estimated
source spectra and the MRSI voxel spectra are complex signals. Therefore, the
real and imaginary part of the complex spectra are concatenated to form a
real signal, which is then used in the calculation of correlation. Since absolute
spectra were used in NMF and hNMF, source correlation was calculated on the
spectra directly.

Figure 5.4: Generation of expert labeled tissue-specific (Tumor) spectrum and
distribution vector. Calculation of source and distribution correlation is shown
in the box. Sij is the spectra at ith column and jth row. The tissue type
T-tumor or C-control is shown between braces.
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5.3 Results on brain tumor dataset

To test the feasibility of spatial tensor representation as shown in Fig.5.1 in
tissue type differentiation, we constructed a spatial tensor P using magnitude
spectra and applied (Lr, Lr, 1) BTD on the spatial tensor for one high grade
(grade IV) MRSI dataset. The spatial tensor P is decomposed into 6 rank
(Lr, Lr, 1) terms with rank Lr = 10, 10, 9, 8, 5, 5. The corresponding distribution
maps of the different sources are shown in Fig. 5.5b. Non-negative constraints
are applied to the source mode (mode-3) only. The rank Lr is chosen manually
by trying different combinations and selecting the one which gives the best
results. For comparison, we have shown the distribution maps obtained from the
MRSI tensor T (shown in Fig.5.2) of the same dataset using NCPD-l1 algorithm
with 6 sources in Fig. 5.5c. The MRSI grid superimposed on anatomical image
and the expert labelling is shown in Fig. 5.5a. Comparing the distribution maps
in Fig. 5.5b and 5.5c with the expert labelling in Fig. 5.5a, we can observe that
the tissue type differentiation is not good using a spatial tensor representation
with (Lr, Lr, 1) BTD compared to an xxT based tensor representation with
NCPD. The output of spatial tensor with (Lr, Lr, 1) BTD is sensitive to choice
of Lr and choosing a suitable Lr for all the R sources is difficult. Therefore the
results are demonstrated for only one high grade glioma patient.

In order to evaluate the performance and validate the tissue differentiation
ability, three algorithms, NCPD (with and without l1 regularization), single
stage NMF and hNMF were applied on 28 in-vivo 1H MRSI datasets (22 grade
IV, 3 grade II and 3 grade II astrocytoma with focal progression to a grade III
glioma) from 17 patients with gliomas. The Type I, Type II source correlation
and the distribution correlation for tumor and necrotic tissue obtained from
NCPD without regularization, NCPD with l1 regularization, single stage NMF
and hNMF are shown as box-plots in Fig. 5.6. From Fig. 5.6 it is clearly evident
that source and distribution correlation values are higher and less scattered
when using NCPD-l1 compared to single stage NMF and hNMF. The NCPD
algorithm is unable to extract tumor tissue in 2 out of 28 datasets, whereas
the single stage NMF and hNMF algorithms do not estimate tumor tissue in 5
datasets. The correlation values of the tissue types which are not recovered are
set to zero (Fig. 5.6). A summary of the results i.e, mean, standard deviation
(std dev), median, median absolute deviation (MAD) and range is shown in
Table 5.1. In case of tumor tissue, NCPD-l1 has the highest mean and median
values for source and distribution correlation. To check whether there is a
significant increase in the median, we have performed a one-sided Wilcoxon
rank sum test with 1% significance level (α = 0.01) [75]. The Wilcoxon rank
sum test was performed between the correlations obtained from NCPD-l1 and
other algorithms and the corresponding p-values are shown in Table 5.1. There
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(a) MRSI voxel grid and expert label

(b) Distribution maps: (Lr, Lr, 1) BTD of spatial tensor P

(c) Distribution maps: NCPD of MRSI tensor T

Figure 5.5: (a) Left to right, First image: T2-weighted anatomical MR image
of a brain tumor with areas of necrosis. Second image: voxels within the
MRSI excitation volume superimposed on anatomical image. Third image:
expert labeling, where yellow (horizontal + vertical line) indicates necrotic, red
(horizontal line) indicates tumor, dark blue (slanted + horizontal line) indicates
normal, light blue (vertical line) indicates normal/tumor and green (slanted line)
indicates spectra of poor quality. (b) Tissue distribution maps obtained from
an (Lr, Lr, 1) block term decomposition of spatial tensor P . First three images
from the left correspond to tumor, necrotic and normal tissue distribution
respectively. Remaining three images correspond to bad spectra/artefact. (c)
Tissue distribution maps obtained using the NCPD-l1 algorithm on the MRSI
tensor T . First three images from the left correspond to tumor, necrotic and
normal tissue distribution respectively. Remaining three images correspond to
tumor, normal tissue and bad spectra/artefact distribution respectively. In this
dataset the tumor tissue is modelled by two sources.

was a significant increase in the median of SC1, SC2 and DC from NCPD-l1
compared to single stage NMF and hNMF, which is evident from the p-values
(p < 0.01). However, the increase in the median was not significant compared
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to NCPD without regularization (p > 0.05). In case of necrotic tissue, the
performance of all the algorithms is good. NCPD-l1 has significantly higher
mean and median values compared to single stage NMF and hNMF for DC (p
< 0.01). On the other hand, single stage NMF and hNMF has slightly better
median values for SC2 but the increase is not significant (p > 0.01). For the
necrotic sources NCPD-l1 has slightly better median values for correlation than
NCPD (no regularization), but the differences are not significant (p > 0.01).

Figure 5.6: Box-plot of Type I source correlation, Type II source correlation
and distribution correlation values obtained from NCPD without regularization,
NCPD with l1 regularization , single stage NMF and hNMF algorithms. Zero
correlation values indicate that the specific tissue type was not recovered.

For all the MRSI datasets, the rank was automatically estimated using the
method explained in section 5.2.5. Fig. 5.7 shows the estimated ranks for 28
MRSI datasets with and without using prior knowledge. From Fig. 5.7 we
can observe that the estimated rank was higher in many MRSI datasets and
after applying the maximum possible tissue types as prior knowledge in the
second stage the estimated ranks are reduced. The tissue types are assigned
to the sources manually by visualizing the estimated distribution maps, expert
labelling and the estimated source spectra.

The result of an in-vivo example is shown in Fig. 5.8. NCPD-l1, single stage
NMF and hNMF methods are applied to a 16×16 voxel grid shown in the second
row of Fig. 5.8a. The spectra which are truncated to the region 0.25-4.2 ppm
are of length 517. The reduced spectra are constructed using a window length
L = 20 and the window is moved with a step-size of 5 samples. Therefore the size
of the MRSI tensor T with 16×16 (K = 256) voxels is 100×100×256. For this
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Figure 5.7: Estimated number of sources from the covariance matrix for 28
MRSI datasets with and without using the maximum number of tissue types as
prior knowledge. The horizontal line indicates the maximum number of tissue
types used as prior knowledge in the analysis (P = 8).

dataset the number of sources was estimated as R = 7, the same rank was used
for the single stage NMF algorithm. The seven sources and their corresponding
distribution maps obtained from NCPD-l1 and NMF methods are shown in
Fig. 5.8b, 5.8c, 5.8d and 5.8e. Using the hNMF method, only three sources are
obtained as shown in Fig. 5.8f and 5.8g. Fig. 5.8g shows that the hNMF method
identifies the normal and necrotic (SC1 = 0.9971) tissue properly but fails to
recover the tumor tissue. Single-stage NMF identifies normal and necrotic tissue,
but only the necrotic source is good (SC1 = 0.9941) and the normal source
deviates a lot from the expert as shown in 5.8d (first row). In the single stage
NMF method the recovered tumor tissue (SC1 = 0.6041) and its corresponding
distribution (DC = 0.4262) are bad and it is difficult to identify it as tumor
tissue from the source spectrum. The NCPD method identifies all three tumor
(SC1 = 0.9875), necrotic (SC1 = 0.9854) and normal tissue types. Fig. 5.8b
and 5.8c show that the estimated tissue sources and their corresponding spatial
distribution are accurate when compared to expert labeling. In this example we
have estimated seven sources and their corresponding distributions from rank-7
NCPD-l1. Three sources correspond to tumor, necrosis and normal tissue type,
the other four sources correspond to artifacts (Fig. 5.8b and 5.8c: 7th row) and
spectra from the outer edges of the voxel grid (Fig. 5.8b and 5.8c: 4th, 5th and
6th row) which are contaminated by the chemical shift displacement artifact.
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Figure 5.8: Tissue pattern differentiation using 1H MRSI: C, T and N represent
normal, tumor and necrosis, respectively. (a) First row: T2-weighted anatomical
MR image of a brain tumor with areas of necrosis. Second row: voxels within the
MRSI excitation volume superimposed on anatomical image. Third row: expert
labeling, where yellow (horizontal + vertical line) indicates N, red (horizontal
line) indicates T, magenta (no pattern) indicates T/N, dark blue (slanted +
horizontal line) indicates C, light blue (vertical line) indicates C/T and green
(slanted line) indicates spectra of poor quality. (b, c) results of NCPD. (b)
The recovered sources from the NCPD-l1 method are shown in black (solid
line). First three rows represent C, N and T spectral sources in black (solid
line), with tissue-specific spectra based on expert labeling overlaid in green
(dash-dot line). The remaining four rows represent artifacts and spectra from
outer edges. (c) Distribution maps corresponding to spectral profiles in (b). (d,
e) Results of single-stage NMF. (d) The recovered sources are shown in black,
overlaid with the expert-based tissue-specific spectra in red. First three rows
show normal, necrotic and tumor spectra and the remaining rows show other
spectra obtained using rank-7 NMF. (e) Distribution maps corresponding to (d).
(f, g) Results of hNMF. (f) Recovered sources shown in black and expert-based
tissue-specific spectra in red. First two rows show control and necrotic spectra.
(g) Distribution maps corresponding to (f).
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5.4 Discussion

The 2D-MRSI data can be directly represented as a third-order tensor. A
(Lr, Lr, 1) BTD based approach can be used to extract the different tissue types
from this spatial tensor. The problem with this approach is that it is difficult to
find the rank Lr of the factor matrices. The rank Lr is patient specific and it is
different for different tissue types. Even when the ranks Lr are approximately
known, this method does not perform better than single stage NMF or hNMF
algorithms. This has motivated us to find a new way to represent 2-D MRSI
data in a tensor.

In this chapter, we have proposed a method to represent the 2D-MRSI data in a
tensor using a reduced format of the spectra. A novel tissue type differentiation
algorithm based on non-negative canonical polyadic decomposition with l1
regularization was developed. This study explored the feasibility and efficiency
of the proposed algorithm (NCPD-l1) in recovering the normal, tumor and
necrotic tissue patterns for patients with glioma using short-TE MRSI data.
The previous matrix-based algorithms, NMF and hNMF failed consistently
in extracting tissue-specific spectral patterns. NMF failed because the tumor
spectral profile is not sufficiently uncorrelated from a linear combination of other
tissue patterns: normal and necrosis [111]. Also, sometimes the NMF algorithm
extracts individual peaks as sources and these sources do not represent the
tissue-specific spectral patterns. The problem with the hNMF [111] is that the
algorithm is designed for a maximum of three sources and cannot handle artifacts.
Therefore, in [111] the voxels at the outer edge of the PRESS excitation volume
are removed to minimize the effect of artifacts. By doing this we can lose the
voxels belonging to clinically relevant tissue types. In the MRSI grid shown in
Fig. 5.8, if we remove 2 or 3 outer rows or columns of voxels the necrotic tissue
is almost lost. Also, due to heterogeneity of the tissue some datasets require
more than one source to model that tissue type. In this case, hNMF fails to
model all the tissue types with only 3 sources.

The hNMF algorithm is mainly designed to handle GBMs. When the hNMF
algorithm is used on low grade gliomas, the second stage of hNMF is not applied
and hNMF reduces to single stage NMF with two sources. NMF with more
than two sources performs better compared to hNMF in MRSI data, which
does not contain necrotic tissue type (low grade gliomas). In high grade gliomas
containing necrotic tissue type, hNMF performs better than single stage NMF
because the second stage in the hNMF separates tumor and necrotic tissue type.
In NCPD, MRSI data with more tissue types as in high grade glioma with
necrotic tissue can be modelled using a higher number of sources and low grade
gliomas with less artifacts can be modelled using a lower number of sources.
The proposed NCPD algorithm can better separate tumor and necrotic tissue
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type than hNMF in high grade gliomas and better separate tumor tissue from
other ones in low grade gliomas than NMF.

We have proposed an initialization scheme for the NCPD algorithm based on
SVD of the complex-valued spectra and spectral reduction of singular vectors.
Random initialization is used in most of the non-negative tensor factorization
applications. In non-negative RESCAL tensor factorization [102], the factor
matrices are initialized using an NMF initialization, method Non-negative
Double Singular Value Decomposition method (NNDSVD) [24]. When NCPD
is initialised using NNDSVD on the reduced spectra, the initial factor matrix
Sinit contains many zero values, which are also retained in the decomposed
factor matrix S. Therefore, the estimated reduced source spectra are unrealistic
and deviate from the actual tissue-specific reduced spectra. Other initialization
methods based on clustering will have more realistic source spectra compared
to SVD-based methods. The problem with these methods is that they require
some initialization and are computationally intensive [190, 34]. Although our
initialization method is based on SVD, it does not suffer from too many zero
values in the source initialization because the SVD is applied on the complex-
valued spectra and the singular vectors are made positive by constructing the
reduced spectra from them. The initialized sources are more realistic and close
to the reduced spectra found in the MRSI voxels.

The number of sources for the NCPD algorithm is estimated using the eigenvalues
of reduced spectra covariance matrix. The number of sources is overestimated
when no prior knowledge is used as shown by striped bars in Fig. 5.7. Use
of prior knowledge about the maximum number of tissue types prevents this
overestimation and results in better number of sources estimation as shown by
solid bars in Fig. 5.7. In this method we have used a cut-off of 99% on the
cumulative sum of eigenvalues of C. Whereas, information theoretic criteria
based methods such as in [188, 6] can determine the number of sources adaptively
without the need for a cut-off value. However, these methods do not perform
well in the presence of artifacts or when a linear model is not strictly satisfied.
These methods highly overestimate the number of sources in our MRSI datasets.

The advantage of this tensor method is that the construction of the MRSI
tensor couples the peaks in the spectra because of the XXT in the frontal slices.
Therefore, in the spectral sources obtained from the NCPD algorithm the peaks
will be coupled, i.e. we will not get individual peaks as sources. The difference
in the results between NCPD without regularization and NCPD-l1 is negligible
because the construction of the tensor and the extra sources already introduce
sparsity in H. But NCPD-l1 algorithm gives more stable results and sometimes
models the tissue types with less sources. Also, the computational time is much
less in NCPD-l1 compared to NCPD (without regularization) as it converges in
fewer iterations.



94 UN-SUPERVISED TISSUE TYPE DIFFERENTIATION IN GLIOMA

5.5 Conclusion

The NCPD-l1 algorithm outperforms the existing tissue type differentiation
methods based on NMF and hNMF. The worse performance of the hNMF is
due to the fact that the voxels in the outer edge of MRSI excitation volume are
included in the assessment. By contrast, NCPD can account for artifacts and
bad voxels present in the outer edges because more sources (R ≥ 3) are used in
the decomposition. NCPD is also able to separate artifacts from tissue sources,
but NMF fails to separate these properly even after using more sources in the
decomposition. The NCPD algorithm has the potential to replace the hNMF
method in unsupervised nosologic imaging for brain tumors [112], which can be
used as a tool to assist brain tumor diagnosis. Recently, instead of using only
the MRSI signal, a multiparametric (MRSI, cMRI, DWI, PWI) approach based
on a modified hierarchical non-negative matrix factorization (hNMF) has been
used to characterize brain tumor heterogeneity [152].



Chapter 6

Supervised tumor voxel
classification in MRSI

The non-negative canonical polyadic decomposition (NCPD) algorithm developed
in the previous chapter extracts the tissue-specific profiles and their corresponding
distribution from the MRSI data. However, it cannot assign each voxel to a
particular tissue. In this chapter we extend the NCPD algorithm and develop a
CNN classifier to classify the voxels in the MRSI grid into three classes: tumor,
normal and bad quality. We also analyse the effect of low-rank regularization
on convolution layers in the CNN classifier. NCPD, CNN with and without
low-rank regularization are tested on MRSI datasets of UZ Leuven and compared
with a random forest classifier.

6.1 Introduction

Magnetic resonance spectroscopic imaging has been used in the diagnosis
and prognosis of brain tumors. There are many algorithms for MRSI data
analysis available in the literature that aim at tissue characterisation, tumor
localization and classification. Machine learning algorithms are extensively used
in the medical field, including cancer prognosis and prediction [100]. In the
previous chapter we have developed a un-supervised non-negative canonical
polyadic decomposition (NCPD) algorithm for tumor tissue characterisation
and localization, which can be used to generate nosologic images for brain
tumors. In clinical settings, automatic labelling of voxels in the MRSI grid as
belonging to tumor or normal tissue is useful. Generally, un-supervised methods

95
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are difficult to automate. The NCPD algorithm generates tissue specific sources
and their corresponding abundances. However, it does not specify which source
belongs to which tissue and it requires the user to manually specify the class
of each source. Once we have the class for each source, voxels can be labelled
using the corresponding abundances. It is possible to automatically estimate
the class of each source using thresholds based on prior-knowledge. However,
these thresholds are very sensitive and often result in poor decision. Supervised
algorithms are widely used in classification task. With sufficient training data,
supervised classification algorithms often outperform un-supervised methods.
Also, supervised methods are easy to automate and require minimal to even
no user interaction. This motivated us to explore supervised algorithms for
classifying voxels in the MRSI signals as tumor or normal.

In MRS(I), supervised algorithms have been used for various classification tasks.
Linear discriminant analysis, logistic regression, functional trees, support vector
machines and decision stump logit boost classification algorithms are used in
single voxel high resolution magic angle spinning spectroscopy to distinguish
between recurrent low grade gliomas that transformed to a higher grade and
those that remained grade II [40]. In [68] support vector machine (SVM) and
logistic regression have been used to classify voxels as tumor or normal using
31P-MRSI. These methods extract features by quantifying metabolites from
MRS(I) signals. Luts et al. [118] studied the effect of feature extraction in
classifying brain tumors into different grades using 1H-MRS and showed that
using full spectra and pattern recognition based feature extraction methods
perform better than metabolite quantification.

In recent years deep learning algorithms that do not require any feature
engineering have shown a lot of potential in medical image analysis [113]. Most
state-of-art techniques for automatic tumor segmentation from multi-parametric
MRI employ a particular class of deep learning, namely convolutional neural
network (CNN) [92]. CNNs are good in identifying local input patterns by
enforcing a local connectivity. Since local features in the spectra are useful
in discriminating different tissue-specific patterns, CNNs will be more suited
for classifying voxels in the MRSI dataset. Therefore, in this chapter we
propose a CNN architecture to classify the voxels in the MRSI grid into three
classes: tumor, normal and bad. We also apply multi-linear singular value
decomposition (MLSVD) based low-rank regularization to convolution layers
in CNN. We analyse the performance of the CNN classifiers with and without
low-rank regularization and compare their performance to that of a random
forest classifier.
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6.2 Method

6.2.1 Feature extraction

Similarly to tissue type differentiation in the previous chapter, for each voxel
in the MRSI grid a reduced real-valued spectrum X is constructed from the
corresponding complex-valued pre-processed spectrum. Elements of the vector
X are obtained by moving an overlapping window over the spectrum, where the
ith element of X is the sum of squares of the absolute values of all the elements
in the ith window segment as shown in Figure 5.2a,

X(i) =
L∑
j=1

si(j)s∗i (j)

si is the spectrum at the ith segment, s∗i is its complex conjugate and L is the
length of the window segment. This reduced spectrum is used as input feature
for non-negative CPD and random forest classifier. For a convolution neural
network classifier, the reduced spectrum is used to generate the input image.

6.2.2 Non-negative CPD for tumor classification

As described in the previous chapter, the 2D-MRSI data from the patient is
represented in a 3-D tensor T using the reduced spectra (Figure 5.2). Non-
negative canonical polyadic decomposition (NCPD) with common factor in
mode-1 and mode-2 and l1 regularization on mode-3 is applied to the MRSI
tensor T

[S∗,H∗] = arg min
S≥0,H≥0

‖T −
R∑
i=1

S(:, i) ◦ S(:, i) ◦H(:, i)‖22 + λ‖V ec(H)‖1

where S represents the tissue-specific patterns of the reduced spectra, H
represents the spatial distribution of each tissue type. R is the rank, defined
as the number of rank-one terms and λ is a parameter which controls sparsity.
Ideally, to classify a voxel into three classes (tumor, normal and bad) a rank of
R = 3 should be used. Due to the heterogeneity of tumor and normal tissues
it is difficult to model them using only one source for each type. Therefore
each class is usually modelled by more than one source. The total number of
sources (rank R) is estimated similarly to the NCPD tissue type differentiation
method from the previous chapter. Once the source (S) and abundance matrix
(H) are estimated from the NCPD, each source is then manually assigned to a
particular class. The abundance values in H corresponding to tumor, normal
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and bad sources are summed respectively and the voxels are assigned to the
corresponding class which has the largest value in the summed abundances.
Instead of manual assignment of sources, it is also possible to assign the sources
to a particular class automatically using the full length spectral sources instead
of the reduced spectra S. The full length spectral sources are estimated from
the abundance matrix and the pre-processed MRSI spectra as described in
Section 5.2.3 of the previous chapter. Tissue types are assigned to the source
spectra using the maximum values of Cho, NAA, Cr and Lip peaks. Detailed
description of this algorithm is given in the APPENDIX A.

6.2.3 Random forest

Random forest is one of the widely used supervised classification algorithms.
They belong to the class of ensemble methods for classification, where a collection
of decision trees are used [26, 27]. Each decision tree learns a rule and gives
a classification output, called a vote for that class. The random forest then
chooses the class voted by the majority of decision trees. We used the default
MATLAB R2016a (Statistical Toolbox) implementation "TreeBagger" with 200
trees to classify each voxel into one of the three (tumor or normal or bad)
classes. The reduced spectrum from each voxel is used as input feature for the
random forest classifier. Since the number of voxels belonging to tumor is less
than normal or bad, class imbalance is present in the training data. The class
imbalance is handled by weighting the training data corresponding to the class
it belongs to. The weights were chosen such that they are inversely proportional
to the percentage of voxels belonging to that corresponding class in the dataset.
A weight of WT = 1, WN = 0.69 and WB = 0.58 was used for data belonging
to tumor, normal and bad class, respectively.

6.2.4 Convolutional neural network

Löwner matrices are used in many applications such as system identification
[9, 10] and blind source separation [54]. Consider a function f(t) ∈ C, evaluated
in the point set T = {t1, t2, . . . , tN}. The point set T is partitioned into two
distinct point sets, X = {x1, x2, ..., xI} and Y = {y1, y2, ..., yJ} with I +J = N .
The elements of the Löwner matrix L ∈ CI×J are then defined as

∀i, j : lij = f(xi)− f(yi)
xi − yj

.
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We thus obtain the following matrix:

L =


f(x1)−f(y1)

x1−y1

f(x1)−f(y2)
x1−y2

. . . f(x1)−f(yJ )
x1−yJ

f(x2)−f(y1)
x2−y1

f(x2)−f(y2)
x2−y2

. . . f(x2)−f(yJ )
x2−yJ

...
... . . . ...

f(xI)−f(y1)
xI−y1

f(xI)−f(y2)
xI−y2

. . . f(xI)−f(yJ )
xI−yJ

 .

Since CNN are more suited for analyzing images, we have used a Löwner matrix
approach to convert the 1-D reduced spectra to a 2-D image. The construction
of the Löwner matrix also couples different peaks in the reduced spectra, which
can help CNNs to extract more relevant features for classification. The Löwner
matrices from each voxel are used as input feature for the CNN model. Figure
6.1 shows the reduced spectrum and the corresponding Löwner matrix images
from three voxels belonging to tumor, normal and bad classes.

A typical convolutional neural network architecture is made of several layers
consisting of three basis blocks: 1) Convolution layer, 2) Rectified linear unit
(ReLU) and 3) Max-pooling. A convolution layer is the most important layer
in the CNN architecture: in this layer 2-D convolution is performed on the
input using a kernel to generate a feature map. A single convolution layer
can have multiple kernels, generating a set of feature maps. ReLU applies
a non-saturating activation function, replaces negative values in the feature
maps by zeroes and preserves the positive values. In the max-pooling layer,
the dimensionality of an input feature map is reduced, by retaining only the
maximum value over a defined neighborhood region of the feature map. The
CNN architecture used for MRSI voxel classification consists of six convolution
layers, six ReLU layers, three max pool layers, one fully connected layer and a
final softmax layer for prediction, as shown in Figure 6.2. Batch normalization
is used in between convolution layer and ReLU.

6.2.5 Low-rank regularization

Multilinear singular value decomposition (MLSVD) can be considered as a
generalization of matrix singular value decomposition to higher order tensors.
For a fourth-order tensor T ∈ RI1×I2×I3×I4 , MLSVD is defined as

T = S ×1 U(1) ×2 U(2) ×3 U(3) ×4 U(4).

where S is an all-orthogonal, ordered, (I1 × I2 × I2 × I4)-tensor, U(1) ∈ RI1×I1 ,
U(2) ∈ RI2×I2 , U(3) ∈ RI3×I3 and U(4) ∈ RI4×I4 are orthonormal matrices and
×n is the n-mode product of a tensor by a matrix [48].
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Figure 6.1: Original spectra, reduced spectra and Löwner matrices belonging to
three different classes. First row: real part of the spectra, second row: imaginary
part of the spectra, third row: reduced spectra and fourth row: Löwner matrices.
First column: tumor, second column:normal and third column: bad.
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3×3 Conv, 128

BN -> ReLu

3×3 Conv, 128

BN -> ReLu

Maxpool/2

3×3 Conv, 128

BN -> ReLu

3×3 Conv, 128

BN -> ReLu

Maxpool/2

3×3 Conv, 128

BN -> ReLu

3×3 Conv, 128

BN -> ReLu

Maxpool/2

Fully Connected

SoftMax

Figure 6.2: Convolutional neural network architecture used for voxel
classification in MRSI. Each convolution layer shows the filter size (e.g. 3× 3)
and the number of output channels (e.g. 128). Maxpool/2 represents a maxpool
layer with size 2 × 2 and stride 2, which reduces the dimension of the input
image by half.
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Filters of a convolution layer can be represented by a 4-D tensor T ∈
RI1×I2×I3×I4 , where I1 and I2 represents the filter size/receptive field width
and height, respectively, I3 represents the number of input channels (input
depth) and I4 represents the number of output filters (output depth). In the
low-rank regularization model we replace the convolution tensor T by a low
rank tensor T ∗ using truncated MLSVD.

T ∗ =S∗ ×3 U∗(3) ×4 U∗(4)

S∗ = S∗∗ ×1 U(1) ×2 U(2)
(6.1)

where, S∗∗ ∈ RI1×I2×I∗
3×I

∗
4 is the truncated core tensor, U∗(3) ∈ RI3×I∗

3 and
U∗(4) ∈ RI4×I∗

4 are truncated mode-3 and mode-4 factor matrices, respectively,
with I3 > I∗3 and I4 > I∗4 . The compression is not performed on the receptive
field dimension (mode-1 and mode-2) since the filter size was small (3 × 3).
Chen Yunpeng et al. [194] have formulated the relationship between the
convolution layer and its tensor decomposed representation. For an input tensor
X ∈ Rp×q×I3 the convolution layer with kernel weights T ∈ RI1×I2×I3×I4 will
generate an output tensor of size Y ∈ Rp×q×I4 . The output of the modified
convolution layer whose weights are represented by the truncated MLSVD
(equation (6.2.5)) can be written as:

Y(a, b, c) =
I∗

4∑
l=1

[
I∗

3∑
k=1

a+δ1∑
i=a−δ1

b+δ2∑
j=b−δ2

S∗(i− a+ δ1, j − b+ δ2, k, l)

I3∑
m=1
X (i, j,m)U∗(3)(m, l)]U∗(4)(c, l)

(6.2)

where, δ1 and δ2 represent the half-width of the filter size on each dimension.
Equation (6.2.5) can be simplified by denoting the intermediate results with
T (1) ∈ Rp×q×I∗

3 and T (2) ∈ Rp×q×I∗
4 as [194]:

T (1)(i, j, l) ,
I3∑
m=1
X (i, j, l), (6.3)
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3×3 Conv
3× 3× I × J

BN -> ReLu

1× 1 Conv, U∗(3)

1× 1× I × I∗

3× 3 Conv, S∗
3× 3× I∗ × J∗

1× 1 Conv, U∗(4)

1× 1× J∗ × J

BN -> ReLu

Figure 6.3: Low-rank regularized representation of convolution layer. The
original convolution layer is shown in the left and the low-rank regularized
representation is shown in the right. Each convolution layer shows the filter size
(e.g. 3×3) and the total size of the kernel (e.g. 3×3×I×J). Convolution layers
in the low-rank regularized representation also show the factor matrix/core
tensor corresponding to that layer

.

T (2)(a, b, l) ,
I∗

3∑
k=1

a+δ1∑
i=a−δ1

b+δ2∑
j=b−δ2

T (1)(i, j, k)

S∗(i− a+ δ1, j − b+ δ2, k, l),

(6.4)

Y(a, b, c) =
I∗

4∑
l=1
T (2)(a, b, l)U∗(4)(c, l). (6.5)

The full convolution layers can be represented by a low-rank model using three
convolution layers as shown in equations (6.2.5), (6.2.5) and (6.2.5). First the
input tensor is convolved using a 1 × 1 kernel corresponding to the mode-3
(input) factor matrix, then a full convolution with truncated kernel in input and
output dimension corresponding to the core tensor is performed, finally a 1× 1
convolution corresponding to the mode-4 (output) factor matrix is performed.
The low-rank convolution architecture is shown in Figure 6.3.

Initially, the CNN with full convolution architecture is trained for 10 epochs.
Next, MLSVD is applied to all the convolution kernel weights except the
first layer where the input is fed. The truncated input (I∗3 ) and output (I∗4 )
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dimensions of the low-rank architecture are estimated from the MLSVD singular
values of the corresponding mode, respectively. In both modes it is calculated
as the minimum number such that the cumulative sum of singular values is
greater than the threshold τ = 0.8 of the sum of all singular values. Finally,
each convolution layer in the CNN architecture is replaced by a low-rank model
as shown in Figure 6.3 with the estimated truncated dimensions (I∗3 and I∗4 ).

Batch normalization was used after each convolution layer as shown in figure
6.2. Multiclass hinge loss (mhinge) was used as loss function for training
the CNN. Similarly to random forest classifier, training data was weighted in
order to handle the class imbalance. Both CNN’s, with and without low-rank
regularization, are implemented using Matlab based MatConvNet package [183].

6.3 Results and Discussion

The performance of the algorithms are evaluated using 28 MRSI signals from
17 glioma patients. Voxels are labelled by the expert as belonging to active
tumor, necrosis, normal, bad or mixture of these (only a few cases). All the
voxels belonging to active tumor, necrosis and their mixture are considered as
tumor class. Some voxels are also labelled by the expert as a mixture of tumor
and normal, in this case the preference is given to tumor and is considered as
belonging to the tumor class. Numbers of MRSI scans and grid size vary over
patients as shown in Table 6.1.

Leave-one-patient-out-cross-validation method was used for training and
validating the supervised classifiers. Classifiers are trained from the labelled
voxels of all the patients except one, which was used as a test patient. This
is repeated until all the patients belong to the test group are used once. For
each test patient all the MRSI voxels are classified using the trained model.
To measure performance we compute the sensitivity (TPR, true positive rate),
specificity (SPC, true negative rate), precision (PPV, positive predictive value)
and F1 Score for tumor vs others (normal + bad) and normal vs others (tumor
+ bad). These performance measures are defined as:
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Table 6.1: Number of scans along with the grid size of the MRSI signal for 17
different patients.

Patient number number of scans Grid size
1 1 16× 16
2 2 16× 16 and 8× 16
3 2 16× 16 and 16× 16
4 1 8× 16
5 1 8× 16
6 2 16× 16 and 16× 8
7 2 16× 16 and 12× 16
8 2 16× 16 and 16× 16
9 1 8× 16
10 1 16× 16
11 3 16× 16, 8× 16 and 8× 16
12 3 16× 16, 12× 14 and 12× 14
13 2 16× 16 and 16× 16
14 2 16× 16 and 16× 16
15 1 8× 8
16 1 8× 16
17 1 12× 16

TPR = TP

TP + FN

SPC = TN

TN + FP

PPV = TP

TP + FP

F1 = 2TP
2TP + FP + FN

where, TP, TN, FP and FN are the number of true positive, true negative,
false positive and false negative voxels in the test patient, respectively. Leave-
one-patient-out-cross-validation method is used for random forest and CNN
classifiers, whereas NCPD is applied on the MRSI dataset individually and
the performance measures are calculated for each patient. Boxplots of all
performance measures for tumor vs others (normal + bad) and normal vs others
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Figure 6.4: Boxplot of sensitivity, specificity, precision and F1 Score over 17
patients from NCPD with manual source assignment (NCPD-M), Random
forest (RF), convolutional neural network (CNN), convolutional neural network
with low-rank regularization (CNN-TR) and NCPD with automatic source
assignment (NCPD-A). These values are calculated for Tumor vs others (normal
+ bad).

(tumor + bad) are shown in Figure 6.4 and Figure 6.5. Table 6.2 shows the
average values of the performance measure from NCPD with manual source
assignment (NCPD-M), Random forest (RF), convolutional neural network
(CNN), convolutional neural network with low-rank regularization (CNN-TR)
and NCPD with automatic source assignment (NCPD-M) algorithms.
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Figure 6.5: Boxplot of sensitivity, specificity, precision and F1 Score over 17
patients from NCPD with manual source assignment (NCPD-M), Random
forest (RF), convolutional neural network (CNN), convolutional neural network
with low-rank regularization (CNN-TR) and NCPD with automatic source
assignment (NCPD-A). These values are calculated for Normal vs others (tumor
+ bad).
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Table 6.2: Average sensitivity, specificity, precision and F1 Score over 17 patients
from NCPD with manual source assignment (NCPD-M), Random forest (RF),
convolutional neural network (CNN), convolutional neural network with low-
rank regularization and NCPD with automatic source assignment (NCPD-A).
These values are calculated for Tumor vs others (normal + bad) and Normal vs
others (tumor + bad).

Sensitivity Specificity precision F1 Score
Mean std dev Mean std dev Mean std dev Mean std dev

Tumor
NCPD-M 0.8101 0.0907 0.8796 0.1038 0.7036 0.1627 0.7437 0.1118

RF 0.7689 0.2499 0.9446 0.0613 0.8076 0.2310 0.7739 0.2237
CNN 0.8158 0.1798 0.9422 0.0604 0.8270 0.1156 0.8089 0.1288

CNN-TR 0.8290 0.1694 0.9318 0.0647 0.8106 0.1180 0.8087 0.1237
NCPD-A 0.8507 0.0906 0.7912 0.2357 0.6361 0.2178 0.7035 0.1391

Normal
NCPD-M 0.7169 0.2284 0.8606 0.1032 0.6302 0.2829 0.5851 0.2502

RF 0.8415 0.1387 0.9427 0.0351 0.8408 0.1487 0.7702 0.2311
CNN 0.8739 0.1273 0.9296 0.0335 0.7776 0.2343 0.7862 0.2254

CNN-TR 0.8585 0.1289 0.9391 0.0364 0.7886 0.2413 0.7835 0.2245
NCPD-M 0.8934 0.2383 0.5519 0.2532 0.4493 0.2294 0.5664 0.2465

Both NCPD-M and NCPD-A methods have a high value of sensitivity for tumor
vs others because the tumor voxels are overestimated and a significant number
of normal and bad voxels are classified as tumor. This is evident from the low
values of specificity and precision. Also NCPD is not good in identifying bad
voxels because bad spectra will not have any specific signature and it is difficult
to represent these spectra as a linear combination of sources. NCPD with
manual source assignment performs better than automatic source assignment.
NCPD-automatic performance deteriorates because it fails to identify sources
corresponding to bad class properly. The main advantage of NCPD is that it
can be applied to any MRSI dataset without the need for training.

The random forest classifier has the lowest average sensitivity for tumor vs
others compared to other methods. In one of the patients, it completely fails
to identify tumor voxels resulting in a lower sensitivity. In other patients
more tumor voxels are classified as bad or normal as compared to the CNN
method. Random forest performs better than the un-supervised NCPD method
in identifying tumor, which is reflected in a higher F1 score. However, its
performance is still worse compared to the CNN method, which is evident from
the lower value of sensitivity and F1 score. Random forest is good in identifying
normal voxels rather than tumor voxels and has a similar performance to the
CNN classifier for normal vs others (tumor + bad).

Both CNN models with and without low-rank regularization have the best
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performance in identifying tumor voxels compared to NCPD and random forest.
In identifying normal voxels CNN had lower specificity and precision than
random forest. However, the overall performance is still similar to random
forest, which can be seen from the higher sensitivity and F1 score. There is not
much difference in performance between the two CNN methods with and without
the low-rank regularization. The low-rank regularized CNN has less parameters
compared to the full CNN architecture. In our model we have applied the
low-rank model to 5 convolution layers with a kernel size of 3× 3× 128× 128.
Each of the original convolution layers will have 3 ∗ 3 ∗ 128 ∗ 128 = 147456
parameters and a total of 147456 ∗ 5 = 737280 parameters from 5 layers.
After applying the low-rank regularization with a threshold τ = 0.8, the
truncated input and output dimension has an average value of I∗3 = 95 and
I∗4 = 95, respectively. Each of the low-rank convolution layers will have
(1 ∗ 1 ∗ 128 ∗ 95 + 3 ∗ 3 ∗ 95 ∗ 95 + 1 ∗ 1 ∗ 95 ∗ 128) = 105417 parameters
and a total of 105417 ∗ 5 = 527085 parameters from 5 such low-rank layers. A
smaller number of learning parameters (convolution kernel weights) usually helps
in preventing over-fitting of training data. However for the current problem
we did not find any notable difference and there was a slight increase in the
sensitivity for tumor vs others at the cost of specificity with the low-rank
regularized model. The Löwner matrices generated from the MRSI signal are of
size 50× 49. For an input image of this size, the original convolution layer will
perform 3∗3∗128∗128∗50∗49 = 361267200 multiplications, where as a low-rank
convolution model performs 50∗49∗128∗95+50∗49∗3∗3∗95∗95+50∗59∗94∗128 =
264287650 multiplications to generate the output. Since low-rank regularised
CNN requires fewer multiplications than the un-regularised original CNN, it is
faster in predicting the class for a given input voxel.

6.4 Conclusion

A convolutional neural network method with low-rank regularization is proposed
for classifying voxels in the MRSI grid into tumor, normal and bad class. We
have extended the NCPD tissue differentiation algorithm to perform voxel
classification in MRSI signals. Both the CNN and NCPD algorithms are tested
on in-vivo MRSI signals from brain tumor patients and are compared with
a random forest classifier. CNN has the best performance when identifying
the tumor voxels and for the normal voxel identification both the CNN and
random forest perform similarly. In future research we would like to apply these
algorithms to a much larger dataset and further classify the tumor voxels into
active tumor and necrosis.





Chapter 7

Un-supervised tumor
Segmentation in
Multi-parametric MRI

In diagnosis and treatment planning of brain tumors, characterisation and
localization of tissue plays an important role. In this chapter the non-negative
CPD for tissue differentiation is adapted to deal multi-parametric MRI (MP-
MRI) data, in particular: conventional MRI (T2, T1+C and FLAIR), PWI,
DKI and MRSI modalities. A 3-dimensional tensor is constructed from in-vivo
multi-parametric MRI of high grade glioma patients. Constrained canonical
polyadic decomposition (CPD) with common factor in mode-1 and mode-2 and
l1 regularization on mode-3 is applied on the 3-dimensional multi-parametric
tensor to characterize various tissue types. The work presented in this chapter
is based on [17].

7.1 Introduction

Accurate characterisation and localization of tissue types play a key role in
brain tumor diagnosis and treatment planning. Neuro-imaging methods provide
anatomical and pathophysiological information about brain tumors and aid in
diagnosis, treatment planning and follow-up of patients. Currently, conventional
magnetic resonance imaging (cMRI) is mainly used for detection and analysis of
brain tumor upon suspicion. In recent years, many advanced magnetic resonance
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(MR) modalities, such as perfusion-weighted imaging (PWI), diffusion-weighted
imaging (DWI) and MR spectroscopic imaging (MRSI) are being used for brain
tumor diagnosis [111, 96, 58]. The tumor region of glioblastoma multiforme
(GBM) could consist of several tissue types, which represent actively growing
tumor, necrosis or normal brain tissue [111]. Many studies have investigated the
potential of individual MRI modalities to characterize tumor grade, detect full
tumor extent and assess early success of therapy. No specific modality is clearly
capable of answering clinical questions unambiguously. Various MR modalities
provide complementary information on the structural, hemodynamic and/or
biochemical characteristics of the tissue. Instead of using the MR modalities
independently, it has been shown that combining several MRI modalities (multi-
parametric MRI) improves diagnostic accuracy when it comes to grading gliomas
[176, 152].

Hierarchical non-negative matrix factorization (hNMF) has been applied to
brain MRSI data to differentiate various tissue patterns in GBM patients
[111]. In Chapter 5, we have developed a non-negative canonical polyadic
decomposition (NCPD) based algorithm to differentiate various tissue patterns
from MRSI data and showed that it works better than the NMF based algorithm
developed for MRSI [111]. Recently, the same hierarchical non-negative matrix
factorization (hNMF) algorithm developed for MRSI [111] has been modified to
deal with MP-MRI data and to provide a more refined tissue characterization
and segmentation [152]. These findings motivated us to explore tensor based
approaches similar to NCPD on MP-MRI datasets.

In this chapter, a tensor based algorithm is proposed for tissue type
differentiation in high-grade glioma patients from MP-MRI. A modified version
of the tensor approach in [20] has been applied to MP-MRI imaging. The
proposed method consists of representing the MP-MRI data in a 3-dimensional
tensor and applying constrained canonical polyadic decomposition (CPD) with
l1 regularization to the MP-MRI tensor. The performance of the CPD algorithm
is evaluated using expert segmentation and compared with hierarchical non-
negative matrix factorization (hNMF) [152].

7.2 Method

7.2.1 Tensor construction

For each voxel in the ROI, a vector x is constructed consisting of MP-MRI
features as shown in Fig. 7.1a. The vector x consists of:
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1. eight metabolite concentrations mI, Gly, Cho, Cre, Glx, NAA, Lac and
Lip from the MRSI modality.

2. T2, T1+C and FLAIR from the cMRI modality.

3. rCBV values from the PWI modality.

4. MD, MK and FA values from the DKI modality.

5. Smoothed version of T2, T1+C, FLAIR, rCBV, MD, MK and FA features
using a moving average window with kernel size 3×3.

6. Smoothed version T2, T1+C, FLAIR, rCBV, MD, MK and FA features
using a moving average window with kernel size 5×5.

A 3-way MP-MRI tensor T is constructed by stacking xxT from all the voxels
in the MP-MRI grid as shown in Fig. 7.1b.

Figure 7.1: (a) Construction of feature vector x from MP-MRI. (b) Construction
of the MP-MRI tensor T from the feature vector x. K is the total number of
voxels in the region of interest (ROI).

7.2.2 Constrained canonical polyadic decomposition

Canonical polyadic decomposition (CPD) is a tensor decomposition method,
where the tensor is decomposed into a sum of rank-one tensors [38]. CPD of a
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Figure 7.2: Partial non-negative CPD of MP-MRI tensor T : MP-MRI tensor T
is decomposed into R rank-1 tensors. Common factor S is used in mode-1 and
mode-2 to maintain symmetry of frontal slices. Each si gives a tissue-specific
feature vector and the corresponding hi gives the spatial distribution of the
respective tissue type, upon reshaping. A non-negativity constraint is imposed
only on H in the decomposition.

third-order tensor X ∈ RI×J×K can be written as

X ≈ JABCK ≡
R∑
r=1

ar ◦ br ◦ cr,

where A = [a1,a2, ...,aR] ∈ RI×R, B = [b1,b2, ...,bR] ∈ RJ×R and C =
[c1, c2, ..., cR] ∈ RK×R are factor matrices. R is the rank, defined as the number
of rank-one terms. ’◦’ represents outer product.

In the MP-MRI tensor T , the frontal slices are symmetrical, therefore we
constrain the frontal slices of each CPD rank-one term to be symmetric. To
maintain symmetry, a common factor matrix S is used for mode-1 and mode-2
in the CPD as shown in Fig. 7.2. Tissue abundances are kept positive by
imposing a non-negative constraint on the mode-3 factor matrix H in the CPD.
After performing the CPD on the MRSI tensor T we obtain two factor matrices
S and H, where S represents the tissue-specific feature vector and H represents
the spatial distribution of each tissue type.

Each rank-one term obtained from the constrained CPD of the MP-MRI tensor
T is expected to correspond to a particular tissue type. Therefore, the mode-3
factor matrix, H will be sparse, meaning that each row will mostly have only
one high value. l1 regularization is applied on the mode-3 factor matrix H in
the partial non-negative CPD to exploit the sparsity assumption of the tissue
type distribution.
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[S∗,H∗] = arg min
S,H≥0

‖T −
R∑
i=1

S(:, i) ◦ S(:, i) ◦H(:, i)‖22 + λ‖V ec(H)‖1,

where S represents a matrix with tissue-specific feature vectors as columns, H
is a matrix containing their corresponding distribution vectors and λ is the
parameter which controls the sparsity. The tensor decomposition was performed
using Tensorlab Matlab package [185]. Common mode-1 and mode-2 factor,
non-negativity of H (mode-3) and l1 regularization are applied using structured
data fusion method [167] in Tensorlab.

7.2.3 Validation

Dice score: For each patient, the tissue segmentation were obtained from their
corresponding abundance values, H. The tissue segmentation was performed
by assigning each voxel to a particular source using k-means clustering on the
abundance values, H. Number of classes is set equal to R, the number of sources
obtained from CPD. The segmentation obtained from CPD was compared to
the manual segmentation by a radiologist with 6 years of experience in brain
tumor research using the dice score:

Dicetissue = 2× Atissue,CPD ∩Atissue,expert
Atissue,CPD +Atissue,expert

where, Dicetissue is the dice score, Atissue,CPD is the area of tissue segmentation
obtained from the CPD algorithm and Atissue,expert is the tissue area labelled
by a radiologist.

Source correlation: In this method Pearson’s linear correlation coefficient is
calculated between the estimated feature vectors and the tissue-specific feature
vectors based on expert labelling of the in-vivo MP-MRI voxels [111]. The
expert label based feature vector for a particular tissue type is computed as
the average of all the feature vectors from the voxels which are labelled by the
expert as belonging to that tissue type.

7.3 Results and discussion

The feasibility of constrained CPD algorithm in differentiating tissue types
is tested by applying it on fourteen MP-MRI datasets from patients with
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high-grade glioma. The performance of the constrained CPD algorithm is
compared with the MP-MRI hNMF algorithm [152]. Table 7.1 shows the dice
score for active tumor and the tumor core region and source correlation for
the active tumor tissue type as computed by the constrained CPD and the
hNMF algorithm. Table 7.1 also shows the mean and standard deviation of the
dice score and source correlation over 14 MP-MRI datasets. The constrained
CPD algorithm has slightly better mean values for the dice score, however the
increase was not significant. The mean source correlation value is clearly better
using CPD compared to hNMF. For all the patients, the rank R is selected
manually for both constrained CPD and hNMF. The l1 regularization parameter
of λ = 0.2 was used in the CPD algorithm.

Table 7.1: Dice scores and source correlation of fourteen HGG patients using
CPD and hNMF algorithms. Dice scores are shown for active tumor and the
tumor core (tumor + necrosis) region. Source correlation is shown for active
tumor tissue type. Mean and standard deviation are shown in the last two rows,
respectively.

CPD-l1 hNMF
Dice Dice Tumor source Dice Dice Tumor source
tumor core correlation tumor core correlation

PT01 0.83 0.96 0.94 0.81 0.98 0.50
PT02 0.77 0.85 0.95 0.78 0.86 0.92
PT03 0.90 0.95 0.97 0.81 0.92 0.51
PT04 0.81 0.88 0.95 0.74 0.82 0.88
PT05 0.89 0.89 0.98 0.71 0.71 0.78
PT06 0.88 0.95 0.99 0.82 0.94 0.62
PT07 0.76 0.88 0.80 0.74 0.90 0.54
PT08 0.81 0.94 0.91 0.75 0.86 0.93
PT09 0.69 0.83 0.93 0.76 0.90 0.98
PT10 0.79 0.59 0.95 0.54 0.50 0.74
PT11 0.87 0.87 0.98 0.88 0.88 0.96
PT12 0.76 0.76 0.98 0.75 0.75 0.98
PT13 0.92 0.92 0.98 0.93 0.93 1.00
PT14 0.88 0.88 0.99 0.89 0.89 0.98
Mean 0.83 0.87 0.95 0.78 0.85 0.81
std 0.07 0.10 0.05 0.09 0.13 0.19

The result of applying the constrained CPD algorithm on one of the MP-MRI
datasets from a grade IV patient is shown in Fig 7.3 and 7.4. Fig 7.3 shows
some of the relevant input MRI features (first two rows) and the abundance
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Figure 7.3: Coregistered MRI maps of several modalities and tissue abundance
maps obtained from hNMF and CPD algorithms. The input maps: (A) T2,
(B) T1+C, (C) MD, (D) MK, (E) rCBV, (F) Cho, (G) Cre and (H) Lip. The
green box indicates the ROI. (I-L) tissue abundance maps obtained from hNMF
((I) Active tumor, (J) Necrosis, (K) Edema, (L) Cerebrospinal fluid). (M-P)
tissue abundance maps obtained from constrained CPD ((M) Active tumor, (N)
Necrosis, (O)) Edema, (P) Cerebrospinal fluid).

maps obtained from hNMF and CPD algorithms. For hNMF only four out of six
relevant abundance maps are shown, whereas in case of CPD a decomposition
of rank R = 4 was performed and all abundance maps are shown. The sources
which represent tissue-specific MP-MRI features obtained from CPD and hNMF
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algorithms are shown in Fig. 7.4a. The segmented region of active tumor and
necrosis obtained from the CPD and hNMF algorithms is shown in Fig. 7.4b
along with the radiologist segmentation. From Fig 7.3 and 7.4 we can observe
that for this patient (PT03 in Table 7.1) the CPD based algorithm provides a
better active tumor segmentation than hNMF based algorithm (Dice tumorCPD
= 0.90 and Dice tumorhNMF = 0.81).

Figure 7.4: (A) Sources consisting of MP-MRI features obtained from CPD and
hNMF algorithms. The estimeted sources are shown for tumor and necrosis
tissue type. (B) Comparison of the segmentation by radiologist (blue) with
the segmentations obtained from CPD and hNMF (green). First two images
correspond to tumor and necrosis segmentation from CPD, respectively. Last
two images correspond segmentations from hNMF. Cyan indicates segmentation
overlap.

The constrained CPD algorithm performs slightly better than the existing tissue
type differentiation method based on hNMF, but the improvement in dice
score is not significant. However, the CPD algorithm has clearly better source
correlation than hNMF. Higher source correlation implies that the estimated
source features for a particular tissue type better resembles the actual MP-MRI
features observed in the region corresponding to that tissue type. This helps in
identifying the tissue type from the sources. The main advantage of the tensor
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approach is that we need to select only one rank R, whereas in the hNMF
algorithm we need to select two ranks, one for each group in the second step of
hNMF [152]. Therefore, automation of the CPD based algorithm will be much
easier compared to hNMF. Also in the tensor approach, the tensor construction
couples different MP-MRI features because of the xxT in the frontal slices.
Therefore, in the sources obtained from the CPD algorithm the features will
be coupled, meaning that an individual feature will not appear as a separate
source. This is the reason for having higher source correlation values in the
CPD algorithm. Moreover, for each voxel, the xxT in the frontal slices will
give more weight to dominant features and least significant features will be
suppressed.

7.4 Conclusion

In this chapter we have described a method to represent the MP-MRI data in a
3-D tensor. An algorithm using constrained canonical polyadic decomposition
with l1 regularization was proposed for tissue type differentiation in high-
grade glioma patients from multi-parametric MRI. To explore feasibility of the
proposed algorithm, it was tested on 14 MP-MRI datasets from patients having
high-grade glioma. The constrained CPD algorithm has a better performance
in terms source correlation and similar performance in terms of dice score
compared to hNMF [152]. In this in-vivo study we have shown that a tensor
formulation can be used for tumor characterization in multi-parametric MRI
and further research in this direction is promising.





Chapter 8

Supervised tumor
Segmentation in
Multi-parametric MRI

In this chapter, we propose a fully automated superpixel-wise two-stage tumor
tissue segmentation algorithm using random forest from MP-MRI data with
only conventional MRI (T2, T1+C, T1 and FLAIR). The first stage is used to
identify total tumor and the second stage to segment sub-regions. The features
for the random forest classifier are extracted by constructing a tensor from the
multimodal MRI data and applying multi-linear singular value decomposition.
This method is trained using the BRATS 2017 training dataset and tested on
validation and test datasets. The work presented in this chapter is based on [16].

8.1 Introduction

Accurate characterisation and localization of tissue types play a key role in brain
tumor diagnosis and treatment planning. Neuro-imaging methods in particular
magnetic resonance imaging (MRI) provide anatomical and pathophysiological
information about brain tumors and aid in diagnosis, treatment planning
and follow-up of patients. Manual segmentation of tumor tissue is a tedious
and time consuming job, it also suffers from inter and intra-rater variability.
An automated brain tumor segmentation algorithm will help to overcome
those problems. However, automation of brain tumor tissue segmentation is
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a difficult problem and often fails when applied on MRI images from different
centres/scanners.

In the previous chapter we have developed a constrained CPD based un-
supervised MP-MRI tumor segmentation method. This algorithm used MP-MRI
data consisting of cMRI (T1c, T2 and FLAIR), DWI, PWI and MRSI and
was analysed on a 2D region of interest specified by the MRSI modality. In
practice, advance MRI modalities like DWI, PWI and MRSI are often not
available. Although, using advanced MRI modalities provides more refined
segmentations, tumor segmentation algorithms should be capable providing
good delineations without using advanced modalities. The performance of the
constrained CPD algorithm deteriorated significantly when applied on the full
slice without the MRSI modality. Since, in practice tumor segmentations are
performed on 3D images, the un-supervised constrained CPD based algorithms
are not suitable for tumour segmentation without including advanced modalities.
Nowadays, supervised classification methods are receiving the most attention
[127]. This is mainly due to availability of large public database, BRATS
[127, 4, 11, 12] containing labelled MP-MRI images consisting of T2, T1,
T1+contrast and FLAIR modality. All of the top performing algorithms in
recent BRATS challenges use supervised algorithms. Therefore, in this chapter
we use supervised methods to develop tumor segmentation algoritham using
BRATS 2017 challenge dataset.

Superpixels are gaining popularity in image segmentation algorithms, and have
also been used in the context of brain tumor segmentation from MRI [192].
Performing superpixel-level image segmentation offers certain advantages over
pixel-level segmentation like spatial smoothness, capturing image redundancy
and reducing computational complexity [192, 94]. These advantages motivated
us to develop superpixel level brain tumor segmentation. Superpixels are mostly
used for segmenting whole tumor and in this chapter we extend it to perform
tumor sub-region segmentation.

Recently, tensor decompositions such as the canonical polyadic decomposition
and the multilinear singular value decomposition (MLSVD) [160] have been used
to extract features from high-dimensional data to use in classification algorithms
[69]. Multimodal MRI consisting of T2, T1, T1+contrast and FLAIR imaging
after co-registration and re-sampling to the same resolution, can be naturally
represented as a third-order tensor. Our objective also includes exploring tensor
decomposition method to extract feature that can exploit higher-order structure
of MP-MRI data.

In this chapter we develop a fully automatic tumor superpixel-level tissue
segmentation algorithm using a random forest classifier. Multilinear singular
value decomposition is used to extract features for the classifier.
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Figure 8.1: (a) One slice of the FLAIR image. (b) Generated superpixels for
the slice in (a).

8.2 Method

8.2.1 Preprocessing

First, each individual 3D image is scaled to the range: 0-1. Next, intensities
are normalized by applying histogram equalization. A reference histogram is
generated by selecting 10 random images from the training set and extracting
a histogram from the combined image. Histogram equalization is applied
separately to different modalities. Background is removed from each slice using
Ostu’s image threshold method [137].

8.2.2 Feature extraction

The MR images are divided into smaller patches which are better aligned with
intensity edges, called superpixels [5]. The superpixels are generated from each
slice from one of the modalities as shown in Fig.8.1. The tissue assignment
is done on superpixel-level instead of individual pixel, which helps to reduce
computational cost and improve spatial smoothness [192].

Different features extracted from each superpixel are explained below

• Feature1: Intensity values are the most basic features that are used by
almost all segmentation algorithms. Therefore for each superpixel, mean
intensity values of all the four modalities and six difference images (e.g.:
abs(T1-T2)) are extracted.
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• Feature2: Entropy and standard deviation over each superpixel. Here we
assume that these features are able to capture variations in each superpixel
and these will be different for different tissues.

• Feature3: A third-order tensor is constructed for each superpixel, where
the frontal slices are the covariance matrix of pixel-level features and the
third mode is the modality and the difference images of the modalities. The
covariance matrix is constructed over the pixels present in the superpixel.
Pixel-level features consist of mean, median, standard deviation and
entropy over a 5× 5 window. Features are extracted by applying a rank-2
truncated multilinear singular value decomposition (MLSVD) on the third-
order Tensor as shown in Fig. 8.2. Here we assume that the covariance
between different pixel-level features will be different for different tissues.

• Feature4: A fourth-order tensor is constructed for each superpixel where
the first two modes are 5× 5 image patches with the main voxel at the
centre, third mode consists of image patches from all four modalities
(T1, T2, T1C and FLAIR) and patches from six difference images of
the modalities (abs(T1-T2), abs(T1-T1C), abs(T1-FLAIR), abs(T1C-T2),
abs(T1C-FLAIR), abs(T2-FLAIR)) and the fourth mode consists of voxels
within the superpixel. Again MLSVD is used for feature extraction. Only
the mode-1, mode-2, mode-3 and the core tensor are used as feature. Here
the features represent the dominant value of different modalities from a
small 5× 5 region measured across the superpixel, which was obtained by
MLSVD.

• Feature5: A Third-order tensor is constructed for each superpixel, where
the first mode is the pixels from 5× 5 image patches with the main voxel
at the centre, the second mode is the modality and the difference images
(e.g.: abs(T1-T2)) of the modalities and the third mode consists of the
voxels within the superpixel. Again, features are extracted by applying
rank-2 MLSVD. Only the mode-1, mode-2 and core tensor are used as
feature. This feature is similar feature4, where the tensor order is reduced
by one by using a vectorised version of 5×5 image patches. Either feature4
or feature5 is used but not both.

• Feature6: For each superpixel a covariance matrix is estimated from the
intensity values of all the modalities and the difference images. Covariance
matrix plus two dominant eigenvectors and eigenvalues are used as features.
This is also somewhat similar to feature3, where covariance is calculated
between image modalities instead of pixel level feature.

• Feature7: Texture features are commonly used in segmentation. Local
spectral histograms is one such feature, which represents texture
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Figure 8.2: Truncated multilinear singular value decomposition and feature
extraction.

descriptors based on a local distribution of filter responses [114]. Local
spectral histograms with fifteen filters are estimated for all four modalities
and six difference images. A third-order tensor is constructed for each
superpixel, where the first mode includes local spectral histograms, second
mode is the modality and the difference images of the modalities and
the third mode consists of the voxels within the superpixel. Features are
extracted by applying rank-2 MLSVD. Only the mode-1, mode-2 and core
tensor are used as feature. The mean of the local spectral histograms over
the superpixel are also used along with the MLSVD features.

8.2.3 Training and tissue segmentation

Tumor tissue segmentation was performed using a two-stage classifier. In the
first stage a binary classification was performed on the superpixels to segment
tumor and non-tumor regions. In the second-stage a multi-class classification
was performed on the superpixels which are inside the estimated tumor region to
segment enhancing tumor (ET), edema (ED), necrotic and non-enhancing tumor
(NCR/NET) and healthy tissue. The two-stage operation is demonstrated in
Fig. 8.3. For both stages a random forest classifier was used.
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Figure 8.3: Demonstration of whole tumor segmentation in first stage and
sub-tissue segmentation in second stage.

First stage:

In the first stage, superpixels are obtained from FLAIR because the total tumor
is brighter in this modality. The feature set for this stage consists of Feature1,
Feature2, Feature3 and Feature4. The dataset is divided in three groups, and
random forest classifiers with 100 trees are trained from each group. The
prediction is the result of majority voting of the classifiers learned from three
data groups. For each model training is done iteratively, where a class balanced
subset from the respective group is used for initial training. Next the trained
model is tested on the remaining data from the respective group, the data that
are classified wrongly are added to the initial subset and trained again with
100 tree random forest binary classifier. After the first stage classification at
superpixel level, image filling and continuity-based denoising developed by [192]
is performed on the whole tumor segmentation before going to the second stage.

Second stage:

In the second stage, superpixels are obtained from T1+contrast imaging modality
because the enhancing tumor is brighter in this modality. Feature1, Feature5,
Feature6 and Feature7 are used as features in this stage. Random forest
classifiers with 250 trees are trained using a iterative method. Initially, 60
patients are randomly selected from the dataset for training and the trained
model is tested on the remaining subset of the database. Next, the patients
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which resulted in low Dice scores are included in the training set and a new
model is trained. This is continued until all the patients in the dataset are
used. Initially, the training was started with a balanced data. The generated
superpixel in the second stage will not coincide exactly with the segmentation of
the first stage. Therefore, all the superpixels which have less than 20% overlap
with the segmentation of the first stage are discarded.

Initially, the first stage classifier was trained using Feature1, Feature2, Feature3
and Feature4. Since the performance on the validation set was satisfactory, we
trained the second stage using the same features. However, the performance of
the second-stage classifier on the validation set was bad. Therefore, additional
features Feature5, Feature6 and Feature7 were included in the second-stage
classifier to improve the performance. The list of all features with their
corresponding dimension and the stage where they are used is shown Table 8.1.

Table 8.1: Features used in stage one and stage two along with their
corresponding dimension.

Feature1 Feature2 Feature3 Feature4 Feature5 Feature6 Feature7
Dimension 10 20 36 48 78 122 196
Stage One X X X X X X X
Stage Two X X X X X X X

8.3 Results and Discussion

8.3.1 First Stage: whole tumor segmentation

A first stage model with three classifiers was trained using the BRATS 2017
training database [127, 4, 11, 12] containing 210 HGG and 75 LGG patients.
The performance of the trained model in segmenting the whole tumor is tested
on the validation dataset of BRATS 2017 challenge. Average Dice score and
sensitivity obtained from the trained first stage model over 46 HGG patients
are shown in Table 8.2. The boxplots of the Dice scores and sensitivity are
shown in Fig. 8.4.
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Table 8.2: Mean, standard deviation, median, 25 quantile and 75 quantile of
Dice score and sensitivity for whole tumor (WT) over forty six patients from
validation set using only first stage model.

Dice WT Sensitivity WT
Mean 0.8330 0.8574
Std 0.1186 0.1318

Median 0.8673 0.9024
25 quantile 0.8298 0.8114
75 quantile 0.9084 0.9415

Figure 8.4: Boxplots of Dice scores and sensitivity for whole tumor (WT)
obtained from first stage model on BRATS 2017 validation dataset of 46
patients.

8.3.2 High grade glioma

The BRATS 2017 high grade glioma database [127, 4, 11, 12] containing N = 210
patients is split into training set (70%) and test set (30%). A first stage model
with a single classifier plus the second stage model is trained using only HGG and
the trained model is tested on 63 HGG patients. Fig.8.5 shows the segmentation
of tumor tissue for two different slices. We can observe from the figure that
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Figure 8.5: Segmentation results on two slices 1-2. (a) T2 image of one slice,
(b) Estimated segmentation (c) Expert segmentation. Green-Edema, Brown-
enhancing tumor and Blue- Necrosis.

the enhancing tumor and edema region are segmented properly. However the
NCR/NET region is not identified properly.

The boxplot of the Dice scores is shown in Fig. 8.6 and the average Dice score
and sensitivity obtained from the trained model for sixty three HGG patients
are shown in Table 8.3. From the boxplot, we can observe that the algorithm
performs well on most of the patients. however there are still some patients
where the algorithm fails to segment properly.

Table 8.3: Mean, standard deviation, median 25 quantile and 75 quantile of
Dice score and sensitivity for enhancing tumor (ET), whole tumor (WT) and
tumor core (TC) over 63 HGG patients.

Dice ET Dice WT Dice TC Sensitivity ET Sensitivity WT Sensitivity TC
Mean 0.761 0.833 0.783 0.855 0.815 0.777
Std 0.106 0.096 0.147 0.126 0.090 0.191

Median 0.783 0.867 0.824 0.886 0.837 0.826
25 quantile 0.708 0.795 0.723 0.820 0.769 0.721
75 quantile 0.833 0.895 0.898 0.941 0.884 0.908
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Figure 8.6: Boxplots of Dice scores for enhancing tumor (ET), whole tumor
(WT) and tumor core (TC) on BRATS 2017 training dataset of 63 patients.

8.3.3 Validation and test dataset results

The trained model consisting of both first and second stage is also tested on the
BRATS 2017 validation dataset [127, 4, 11, 12]. The results are shown in Fig.
8.7 and Table 8.4. The performance is worse when compared to only HGG case.

Table 8.4: Mean, standard deviation, median 25 quantile and 75 quantile of
Dice score and sensitivity for enhancing tumor (ET), whole tumor (WT) and
tumor core (TC) over 46 validation dataset.

Dice ET Dice WT Dice TC Sensitivity ET Sensitivity WT Sensitivity TC
Mean 0.6125 0.7928 0.6734 0.6971 0.8320 0.6763
Std 0.3013 0.1217 0.2215 0.2347 0.1221 0.2297

Median 0.7419 0.8410 0.7291 0.7683 0.8614 0.6921
25 quantile 0.5240 0.7441 0.6607 0.6365 0.8053 0.5961
75 quantile 0.8383 0.8788 0.8213 0.8468 0.9169 0.8482

This algorithm does not identify necrotic and non-enhancing tumor (NCR/NET)
tissue properly, it results in bad performance for LGG patients where NCR/NET
tissue is larger than enhancing tumor in most cases. Also, when there is
no enhancing tumor in patients, the algorithm identifies it falsely in some
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Figure 8.7: Boxplots of Dice scores for enhancing tumor (ET), whole tumor
(WT) and tumor core (TC) on BRATS 2017 validation dataset of 46 patients.

superpixels. This results in Dice score of zero for enhancing tumor, which can
be seen from the boxplot in Fig. 8.7. Post-processing methods to remove such
false positives may improve the average performance.

Finally the complete algorithm is applied on BRATS 2017 test dataset consisting
of 146 patients. The average results are shown in Table 8.5.

Table 8.5: Mean, standard deviation, median 25 quantile and 75 quantile of
Dice score and Hausdorff95 for enhancing tumor (ET), whole tumor (WT) and
tumor core (TC) over test dataset of 146 patients.

Dice ET Dice WT Dice TC Hausdorff95 ET Hausdorff95 WT Hausdorff95 TC
Mean 0.5032 0.7701 0.6105 71.27 31.33 38.90
Std 0.3054 0.1871 0.2954 132.94 30.61 84.13

Median 0.6376 0.8400 0.7416 6.56 14.56 9.56
25 quantile 0.2137 0.7202 0.4597 3.70 4.69 6.48
75 quantile 0.7447 0.8902 0.8358 39.46 54.40 29.73
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8.4 Conclusion

In this chapter, we have developed a fully automated algorithm for brain tumor
segmentation from multimodal MRI data. Superpixels and a tensor based
feature extraction algorithm is proposed to be used with a two-stage random
forest classifier for segmenting tumor tissue. The superpixels are restricted to
2-D slices because of the different resolution in the third dimension. In future
work, the 2-D superpixels can be directly extended to 3D provided the difference
in resolution is considered when constructing superpixels. The performance
of the algorithm is comparable to the state-of-the-art methods when applied
only to HGG patients. However, its performance deteriorates when tested
on the BRATS 2017 validation and test database, which contains both low
grade glioma (LGG) and HGG patients. The proposed superpixel method has
good performance in segmenting the whole tumor using only the first stage
model on the the BRATS 2017 validation set. However, this method does not
perform well in segmenting the sub-regions, specifically the NCR/NET region.
We assume that the features may not be discriminant enough to separate the
NCR/NET region from others (mainly normal). In future work, identification
of the NCR/NET region can be improved by using texture based features like
Gabor and applying feature selection for selecting dominant and removing
redundant features. Therefore, the proposed method is more suited to segment
the whole tumor and not good in identifying sub-regions, especially in LGG
patients.



Chapter 9

Conclusion and future
perspectives

9.1 Conclusion

In this thesis we have explored the application of tensor based blind source
separation techniques to magnetic resonance spectroscopic imaging and multi-
parametric MRI. Tensor based blind source separation methods have been
developed for simultaneous suppression of residual water from 2-D MRSI data.
Both un-supervised algorithms using tensor based blind source separation
techniques and supervised algorithms using random forest/CNN were developed
for tumor characterization from 2-D MRSI and MP-MRI signals.

The mathematical and medical-physical background that is used in this thesis
are briefly discussed in Chapter 1 and 2. Chapter 1 deals with the mathematical
background, where basic concepts of tensor decompositions, various unsupervised
blind source separation techniques and supervised classifiers are discussed.
Medical-physical background is addressed in Chapter 2. Physical concepts of
MRI and MRSI are explained along with a brief overview of advanced imaging
modalities. Afterwards, the most common brain tumor, glioma is discussed
along the applicability of neuroimaging techniques for diagnosis and treatment
planning. In the last part, MRI acquisition parameters and data preprocessing
pipelines were described for the UZ Leuven dataset.
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Chapter 4: focuses on pre-processing of MRSI signal. In this chapter we have
developed two tensor based methods to suppress residual water from MRSI
signals. The first method used Löwner tensors constructed from spectra and
CPD to extract water components. Similarly, in the second method a Hankel
tensor constructed from FID and MLSVD was used to extract water components.
The water components are then subtracted to remove residual water from the
MRSI signal.

Tensor based methods were able to suppress the residual water simultaneously
from all the voxels in the MRSI signal. In simulations, the Löwner-tensor
based method resulted in the lowest average mean square error, followed by the
Hankel-tensor based method. In some of the in-vivo MRSI signals, HSVD fails to
suppress residual water in a few voxels. Whereas, tensor based methods overcome
this problem by exploiting the shared information among the neighbouring
voxels and thus resulting in much better residual water suppression. In in-vivo
signals, the Löwner-tensor method has significantly lower difference in variance
compared to the Hankel-tensor and the HSVD methods. The main conclusion
is that in both simulated and in-vivo MRSI data, the tensor based methods
outperform the widely-used subspace-based HSVD method.

One of the issues with the Löwner-tensor based water suppression method is
the initialization of factor matrices. Some initializations might result in poor
water suppression. In some cases, especially for FID’s with small sample size a
lot of initializations are required to obtain a proper residual water suppression.
Another minor issue with the tensor based methods is the selection of rank R
required for good quality water suppression. It is difficult to optimise R as a
function of grid size and using a general R may not result in optimal water
suppression.

In MRSI, B0 field inhomogeneity can cause frequency shifts of complete spectra
between voxels. The proposed tensor methods can handle only minor frequency
shifts, and will result in improper water suppression in some of the voxels with
bigger chemical shift. A pre-processing step where the spectra from all the
voxels are aligned to a reference spectrum can overcome this problem.

HSVD has been widely used for residual water suppression in the clinical setting
as a pre-processing step in metabolite quantification. A Löwner-tensor based
method has the potential to replace the HSVD method in the clinical setting.
Additional experiments such as analysing the effect of the rank on the voxel
grid with various sizes, assessing the reliability of metabolite quantification
in a test-retest experiment and testing on MRSI signals acquired using a
different protocol are required to fine tune the algorithm before using it in MRSI
processing software’s for clinical applications.
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Chapter 5: here we focused on applying tensor based BSS techniques for tumor
tissue type differentiation in MRSI. Applying rank-(Lr, Lr, 1)-BTD directly on
the MRSI signal failed to extract any meaningful tissue patterns. To exploit
the low-rank structure, a third-order tensor with xxT structure is constructed
from the smoothed and reduced length spectra. Non-negative CPD based
technique was applied to extract tissue specific spectra and their corresponding
abundances. An automatic rank detection scheme was also proposed to estimate
the number of tissue specific sources present in each of MRSI signals.

Tensor based methods can handle artefacts, extract tissue specific sources
that characterize the actual tissue and generate more refined abundance maps.
In extracting and localizing tumor tissue, the NCPD method has the best
performance with a significantly higher mean and median values for source
and distribution correlation compared to the NMF and the hNMF methods.
For necrotic tissue, the performance of all the algorithms were good with the
NCPD having slightly higher mean and median values for the source and the
distribution correlation. The tensor based NCPD method was able to extract
tumor tissue from patients where the matrix based NMF and hNMF algorithms
failed. From the results, we can conclude that the NCPD algorithm significantly
outperforms the existing tissue type differentiation methods based on NMF and
hNMF. The use of l1 regularization in the NCPD algorithm has minimal effect
on the performance.

In the construction of the reduced spectra we used a window length of size
L = 20 such that it covers the widest peak in the spectra. The choice of
window length was flexible and resulted in similar performance when its size was
increased or decreased. However, varying the window length by large amounts or
using original spectrum has negative effect on the performance. The automatic
rank estimation method used in this chapter provided a good estimate of rank
for the MRSI dataset used in this thesis. However, it was not robust and was
also sensitive to the cut-off value. The NCPD algorithm without automatic rank
estimation can be easily adapted to handle different types of tumor, various
MRSI signals acquired using different protocol and MRSI signals measured from
various regions with a minimal adjustment to the window length.

Tissue specific sources can be used to identify the tissue type and nosologic
images can be generated from abundances. These can be used by clinicians as
an initial guess to identify the tumor region and various tissue types to further
improve the diagnosis. To use this algorithm for identifying the voxels belonging
to a particular tissue further modification and testing on large datasets are
required.



136 CONCLUSION AND FUTURE PERSPECTIVES

Chapter 6: the NCPD algorithm proposed in Chapter 5 was extended to
perform voxel classification. This chapter focuses on developing supervised
algorithms, where a CNN based classifier is proposed to classify the voxels in
the MRSI signal. Low-rank regularization was applied to the CNN classifier
using MLSVD. The CNN methods have better performance with higher average
sensitivity and F1 score when classifying tumors compared to that of the RF
and the NCPD algorithms. The Low-rank regularized CNN has around 25%
lower computational complexity than that of un-regularized CNN without any
performance degradation. Although the CNN classifier has the best performance
measure, other methods also have certain advantages. NCPD is an un-supervised
method and does not require any training. It can be applied directly to a new
MRSI signal which is obtained using different acquisition parameters (e.g.
different length, sampling frequency). A random forest algorithm is faster
compared to CNN and requires significantly less time for training.

In the random forest algorithm, using denoised original length (resolution)
spectra resulted in lower performance compared to that of reduced spectra. This
shows that construction of reduced spectra results in a better feature extraction.
In CNN using Löwner matrix from denoised original length (resolution) spectra
has similar performance with significant increase in computation time compared
to that of Löwner matrix from reduced spectra.

To apply low-rank regularization, a cut-off value of 0.8 (80%) was used for
truncating the MLSVD. The cut-off value was not sensitive for small changes
and resulted in similar performance. The low-rank regularized CNN has fewer
number of multiplications compared to that of un-regularized CNN, which
enabled it to perform faster on a CPU. However, the low-rank regularized CNN
was not faster on a GPU as these methods are not fully yet developed to exploit
the parallel processing capabilities of GPU. These methods are still in the
conceptual stage and requires extensive analysis using a large dataset for any
potential clinical application.

Chapter 7: here more advanced MRI modalities are included to perform tumor
segmentation from MP-MRI data. A method based on constrained canonical
polyadic decomposition with l1 regularization was developed to segment tumors
from MP-MRI data consisting of cMRI (T1+C, T2 and FLAIR), MRSI, DWI
and PWI. A constrained CPD algorithm provides tissue-specific signatures of the
pathological tissue classes, as well as abundance maps of their spatial distribution.
The abundance maps were converted into absolute tissue segmentation and good
spatial alignment was found with manual segmentation by a neuro-radiologist.
Results indicate that the constrained CPD algorithm has significantly better
performance in terms of source correlation and similar performance in terms of
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dice score compared to MP-MRI hNMF [152].

The tensor based blind source separation method, NCPD developed for tissue
type differentiation in Chapter 5 can be easily adapted to handle MP-MRI data
with very few modifications. However, such kind of adaptability is not possible
for supervised algorithms. The automatic rank detection scheme developed for
NCPD did not result in reliable rank estimation for constrained CPD. Therefore,
the rank was selected manually for each patient. This method performed well
when applied on a small region of interest which was defined by the scan area
of the MRSI modality. However, when applied on the whole image by excluding
the MRSI modality its performance was reduced significantly. Therefore, in the
current state this algorithm has very limited clinical applicability.

Chapter 8: focuses on applicability of features generated from a tensor
decomposition for supervised tumor segmentation algorithms from MP-MRI
datasets. We have proposed a two stage random forest classifier using features
generated from a superpixel by applying MLSVD. Its performance is good in
segmenting the whole tumor using only the first stage model on the BRATS
2017 validation set. However, its performance deteriorates when segmenting
the sub-regions, specifically the Necrotic(NCR)/non-enhancing tumor (NET)
region. This study shows that tensor decompositions can be successfully applied
to extract features for supervised tumor segmentation algorithms. However, the
significance of such features has not been analysed. Further experiments in this
direction are required.

We have made the assumption that the boundaries of the generated superpixels
will coincide with the tumor delineation. This assumption was approximately
satisfied in many patients when segmenting the whole tumor, which resulted
in good dice scores for total tumor segmentation. However, the superpixel
generated for sub-regions did not align well especially when the pathologic
regions was small. This resulted in very low dice scores for some of the patients.
The performance of the proposed method was not good compared to the state-of-
the-art supervised algorithms. Therefore, further modifications such as working
on pixel level instead of superpixel in the second stage and post-processing with
conditional random field algorithms are required for this method to become
clinically relevant.

9.2 Future perspectives

We have applied residual water supression on 2D MRSI signals with a maximum
grid size of 16 × 16. In recent years MRSI signals are being acquired in 3D
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[132] and in high resolution [121]. Applying tensor based water suppression
algorithms to larger grids with many voxels is very demanding, both in terms
of computation and memory. In the future, analysis of the proposed methods
in terms of computation, memory, stability and performance can be performed
when applied to very large voxel grids. In order to reduce the computation and
memory load the tensor methods can be applied on smaller grids and then the
results can be combined.

MRSI also suffers from other nuisance parameters like artefacts and baseline. A
simple rank-1 model was sufficient to model water, but artefacts have much more
variation and require higher rank models, which can be captured by block term
decomposition. In future, block term decomposition based BSS algorithms have
the potential to provide promising results in detecting and removing nuisance
parameters from the MRSI signals.

In case of matrix based blind source separation, the hierarchical model was
proved to be better for tissue characterization in both MRSI and MP-MRI
[111, 152]. A fine tuned hierarchical model for the proposed tensor based
algorithm will result in better tissue localization, especially for MP-MRI datasets.
The proposed tensor based algorithms do not exploit the spatial information
like tissue homogeneity in the local neighbourhood. Incorporating these in the
proposed algorithms using a new tensor construction scheme or adding spatial
regularization will result in a more refined tissue characterization.

The tensor based algorithm was proposed for brain tumor differentiation using
short echo time MRSI signals. In future these methods can be applied to MRSI
signals obtained with: 1) different acquisition parameters like long echo time, 2)
from other parts of the body, 3) from other diseases such as prostate cancer or
multiple sclerosis. We can also test this algorithm for other biomedical signals
by slight modification as shown for MP-MRI case.

Construction of xxT structured tensor from a data matrices and applying rank-
R canonical polyadic decomposition will implicitly perform clustering of data
matrix into R groups. Therefore, exploring the usability of this tensor based
method in various clustering applications is an interesting research direction.
We can also compare its clustering performance with well known clustering
methods such as k-means and spectral clustering.

In today’s era of big-data, the MRSI dataset used to train CNN is small. In the
future work the proposed CNN methods can be trained and tested on a much
larger dataset. The voxels belonging to the tumor class can be further classified
into active tumor and necrosis. This was not considered in this thesis as only a
small number of necrotic samples were available for training. In future, when
working on a large dataset, a four class (active tumor, necrosis, normal tissue
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and bad quality) CNN can be considered. In this thesis, the Löwner matrix
is used as input to CNN, but other methods of converting the spectra into a
2-D array such as the short time Fourier transform, wavelets and empirical
mode decomposition can be considered as potential input feature for CNN. The
superpixel and MLSVD based algorithm was trained and tested on BRATS 2017
challenge dataset. The post-operative GBM dataset of UZ Leuven also contains
T1, T1+C, T2 Flair images, the same modalities as BRATS 2017 challenge
dataset but with different resolution in the third direction. The proposed
superpixel and MLSVD based algorithm can be applied with little modification
to accommodate the post-operative MP-MRI scans. In this thesis we have
used 2-D superpixels; this can be directly extended to 3-D by considering the
difference in resolution in the other direction when constructing superpixels.

Most state-of-the-art tumor segmentations algorithms in MP-MRI are based on
CNN. These CNN architecture are very big, containing millions of parameters.
This poses a huge burden on the computation and memory during training and
can also result in overfitting. Exploring tensor based low-rank regularization
methods as a potential tool for reducing computational complexity and
preventing overfitting is promising research.

Advanced methods proposed in this thesis need further fine tuning and more
extensive validation before becoming clinical tools for the benefit of the patient.
In this deep learning and big-data era, there are promising opportunities to
further exploit such methods.





Appendix A

Tissue type assignment

Assigning a tissue type to the estimated source spectra will give valuable
information. The spectra from the tumor tissue are characterised by an increase
in choline (Cho) and decrease in N-acetylaspartate (NAA) and creatine (Cr)
[72, 175, 88], whereas necrotic spectra are characterised by large values of lipid
(Lip) and absence of other metabolites [55, 88]. To assign a tissue type to these
source spectra, we have used the maximum values of Cho (3.13-3.30 ppm), NAA
(1.95-2.10 ppm), Cr (2.92-3.08 ppm) and Lip (0.75-1.45 ppm) peaks (Figure
A.1). The complete algorithm is described in the flow chart shown in Figure
A.2. This method identifies seven tissue types: T (tumor), C (normal(control)),
N (necrosis), B (bad/artifact), T/N (tumor and necrotic mixture), T/C (tumor
and control mixture) and C/N (control and necrotic mixture). The flowchart
outlining the tissue typing method is shown in Fig. A.2. The method starts by
calculating the maximum, minimum and peak values from the real part of the
source spectrum (absorption spectrum). The following steps are carried out for
tissue typing:

(I) Large negative peak?:- In this step we check for the presence of any large
negative values in the real part of the spectrum using threshold τ1. If true
the spectra is assigned as artifact (bad).

(II) Large unexpected peak?:- This step checks for the presence of a any large
peaks other than Naa, Cr, Cho or Lip using τ2. If true the spectrum is
assigned as bad.

(III) Max peak- In this step we check for the maximum peak among NAA, Cr,
Lip and Cho. Here the algorithm splits into three branches corresponding
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to maximum lipid peak, maximum NAA or Cr peak and maximum Cho
peak as shown in the flowchart (Fig. A.2) .

(IV) Too broad Lip?:- checks whether the Lip peak is too broad (> 10Hz).
When the peak is too broad the spectral source is assigned to artifact (B).

(V) One Large Peak?:- checks if any one peak far outweighs the other peaks
using threshold τ3. When Lip outweigh others peaks, the source is assigned
as N [111] and for other cases it is assigned as B.

(VI) Lip present?:- checks for presence of significant amount of Lip using
threshold τ4. This step is performed when NAA, Ch or Cho is the biggest
peak. When a significant amount of Lip is present along with other peaks,
the source spectrum will be assigned as a mixture of Necrotic and tumor
(T/N) or normal (C/N).

(VII) T or C?:- In this step we have used the ratio Cho
NAA or Cr to differentiate

between control (C) and tumor (T) tissue sources. NAA or Cr is chosen
based on which is larger.

We have used threshold values of τ1 = 0.6, τ2 = 0.6, τ3 = 2
3 , τ4 = 0.5 and

τ5 = 0.8, which can be adjusted to accommodate MRSI signals that are measured
with a different acquisition protocol.

Figure A.1: Shows real part of the tissue specific spectrum (real(Wi)) obtained
from NCPD. The peaks that are used for tissue type assignment are labelled.

For tumor voxel classification T, N, T/N, T/C, C/N are grouped into the tumor
class.
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Figure A.2: Flowchart showing the procedure of assigning a tissue type to the
source spectrum. B-bad; N-necrosis; C-control; T-tumor. FWHM stands for
full width at half maximum.





Bibliography

[1] Dynamic Susceptibility Contrast MR ANalysis (DSCoMAN). Available
at: https://sites.duke.edu/dblab/dscoman/. Accessed: 2016-02-01.

[2] Statistical Parametric Mapping (SPM). Available at: http://www.fil.
ion.ucl.ac.uk/spm/. Accessed: 2016-02-01.

[3] Foundations of the PARAFAC procedure: Models and conditions for an"
explanatory" multimodal factor analysis, author=Harshman, Richard A.

[4] Advancing The Cancer Genome Atlas glioma MRI collections with expert
segmentation labels and radiomic features, author=Bakas, Spyridon and
Akbari, Hamed and Sotiras, Aristeidis and Bilello, Michel and Rozycki,
Martin and Kirby, Justin S and Freymann, John B and Farahani, Keyvan
and Davatzikos, Christos. Scientific data 4 (2017), 170117.

[5] Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and
Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel
methods. IEEE transactions on pattern analysis and machine intelligence
34, 11 (2012), 2274–2282.

[6] Akaike, H. A new look at the statistical model identification. Automatic
Control, IEEE Transactions on 19, 6 (1974), 716–723.

[7] Alpaydin, E. Introduction to machine learning. MIT press, 2014.

[8] Andersson, J., Xu, J., Yacoub, E., Auerbach, E., Moeller, S.,
and Ugurbil, K. A comprehensive Gaussian process framework for
correcting distortions and movements in diffusion images. In Proceedings
of the 20th Annual Meeting of ISMRM (2012), p. 2426.

[9] Antoulas, A., and Anderson, B. On the scalar rational interpolation
problem. IMA Journal of Mathematical Control and Information 3, 2-3
(1986), 61–88.

145

https://sites.duke.edu/dblab/dscoman/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/


146 BIBLIOGRAPHY

[10] Antoulas, T. A tutorial introduction to the Loewner framework for
model reduction. 9th Elgersburg Workshop Mathematische Systemtheorie,
2014.

[11] Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M.,
Kirby, J., Freymann, J., Farahani, K., and Davatzikos, C.
Segmentation Labels and Radiomic Features for the Pre-operative Scans
of the TCGA-LGG collection. The Cancer Imaging Archive (2017).

[12] Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M.,
Kirby, J., Freymann, J., Farahani, K., and Davatzikos, C.
Segmentation Labels and Radiomic Features for the Pre-operative Scans
of the TCGA-LGG collection. The Cancer Imaging Archive (2017).

[13] Barkhuijsen, H., De Beer, R., and Van Ormondt, D. Improved
algorithm for noniterative time-domain model fitting to exponentially
damped magnetic resonance signals. Journal of Magnetic Resonance
(1969) 73, 3 (1987), 553–557.

[14] Basser, P. J., Mattiello, J., and LeBihan, D. MR diffusion tensor
spectroscopy and imaging. Biophysical journal 66, 1 (1994), 259–267.

[15] Bertholdo, D., Watcharakorn, A., and Castillo, M. Brain
proton magnetic resonance spectroscopy: introduction and overview.
Neuroimaging Clinics 23, 3 (2013), 359–380.

[16] Bharath, H., Colleman, S., Sima, D., and Van Huffel, S.
Tumor Segmentation from Multimodal MRI Using Random Forest with
Superpixel and Tensor Based Feature Extraction. In: Crimi A., Bakas
S., Kuijf H., Menze B., Reyes M. (eds) Brainlesion: Glioma, Multiple
Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2017. Lecture
Notes in Computer Science 10670 (2018), 463–473.

[17] Bharath, H., Sauwen, N., Sima, D. M., Himmelreich, U.,
De Lathauwer, L., and Van Huffel, S. Canonical polyadic
decomposition for tissue type differentiation using multi-parametric MRI
in high-grade gliomas. In Signal Processing Conference (EUSIPCO), 2016
24th European (2016), IEEE, pp. 547–551.

[18] Bharath, H., Sima, D., Sauwen, N., Himmelreich, U.,
De Lathauwer, L., and Van Huffel, S. Nonnegative Canonical
Polyadic Decomposition for Tissue-Type Differentiation in Gliomas. IEEE
journal of biomedical and health informatics 21, 4 (2017), 1124–1132.

[19] Bharath, H. N., Debals, O., Sima, D. M., Himmelreich, U.,
De Lathauwer, L., and Van Huffel, S. Tensor Based Method for



BIBLIOGRAPHY 147

Residual Water Suppression in 1H Magnetic Resonance Spectroscopic
Imaging. Accepted for publication in IEEE Transactions on Biomedical
Engineering, 2018.

[20] Bharath, H. N., Sima, D. M., Sauwen, N., Himmelreich, U.,
De Lathauwer, L., and Van Huffel, S. Tensor based tumor tissue
type differentiation using magnetic resonance spectroscopic imaging. In
Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual
International Conference of the IEEE (Aug 2015), pp. 7003–7006.

[21] Bharath, H. N., Sima, D. M., Sauwen, N., Himmelreich, U.,
Lathauwer, L. D., and Huffel, S. V. Nonnegative Canonical Polyadic
Decomposition for Tissue-Type Differentiation in Gliomas. IEEE Journal
of Biomedical and Health Informatics 21, 4 (July 2017), 1124–1132.

[22] Bolan, P. J., Nelson, M. T., Yee, D., and Garwood, M. Imaging in
breast cancer: magnetic resonance spectroscopy. Breast Cancer Research
7, 4 (2005), 1.

[23] Bottomley, P. A. Spatial localization in NMR spectroscopy in vivo.
Annals of the New York Academy of Sciences 508, 1 (1987), 333–348.

[24] Boutsidis, C., and Gallopoulos, E. SVD based initialization: A
head start for nonnegative matrix factorization. Pattern Recognition 41,
4 (2008), 1350–1362.

[25] Boxerman, J., Schmainda, K., and Weisskoff, R. Relative cerebral
blood volume maps corrected for contrast agent extravasation significantly
correlate with glioma tumor grade, whereas uncorrected maps do not.
American Journal of Neuroradiology 27, 4 (2006), 859–867.

[26] Breiman, L. Bagging predictors. Machine learning 24, 2 (1996), 123–140.

[27] Breiman, L. Random forests. Machine learning 45, 1 (2001), 5–32.

[28] Bro, R., and Andersson, C. A. Improving the speed of multiway
algorithms: Part II: Compression. Chemometrics and intelligent laboratory
systems 42, 1 (1998), 105–113.

[29] Bulik, M., Jancalek, R., Vanicek, J., Skoch, A., and Mechl, M.
Potential of MR spectroscopy for assessment of glioma grading. Clinical
neurology and neurosurgery 115, 2 (2013), 146–153.

[30] Byrnes, T. J., Barrick, T. R., Bell, B. A., and Clark, C. A.
Diffusion tensor imaging discriminates between glioblastoma and cerebral
metastases in vivo. NMR in biomedicine 24, 1 (2011), 54–60.



148 BIBLIOGRAPHY

[31] C Peet, A., Arvanitis, T., O Leach, M., and Waldman, A.
Functional imaging in adult and paediatric brain tumours.

[32] Cabanes, E., Confort-Gouny, S., Le Fur, Y., Simond, G., and
Cozzone, P. J. Optimization of residual water signal removal by HLSVD
on simulated short echo time proton MR spectra of the human brain.
Journal of Magnetic Resonance 150, 2 (2001), 116–125.

[33] Carroll, J. D., and Chang, J.-J. Analysis of individual differences in
multidimensional scaling via an N-way generalization of “Eckart-Young”
decomposition. Psychometrika 35, 3 (1970), 283–319.

[34] Casalino, G., Del Buono, N., and Mencar, C. Subtractive
clustering for seeding non-negative matrix factorizations. Information
Sciences 257 (2014), 369–387.

[35] Cavassila, S., Deval, S., Huegen, C., Van Ormondt, D., and
Graveron-Demilly, D. Cramér–Rao bounds: an evaluation tool for
quantitation. NMR in Biomedicine 14, 4 (2001), 278–283.

[36] Cichocki, A., Zdunek, R., and Amari, S.-i. Hierarchical ALS
algorithms for nonnegative matrix and 3D tensor factorization. In
International Conference on Independent Component Analysis and Signal
Separation (2007), Springer, pp. 169–176.

[37] Cichocki, A., Zdunek, R., Phan, A. H., and Amari, S. i.
Nonnegative matrix and tensor factorizations: applications to exploratory
multi-way data analysis and blind source separation. John Wiley & Sons,
2009.

[38] Cichocki, A. and Mandic, D. and De Lathauwer, L. and Guoxu
Zhou and Qibin Zhao and Caiafa, C. and Phan, H.A. Tensor
Decompositions for Signal Processing Applications: From two-way to
multiway component analysis. Signal Processing Magazine, IEEE 32, 2
(March 2015), 145–163.

[39] Comon, P., and Jutten, C. Handbook of Blind Source Separation:
Independent component analysis and applications. Academic press, 2010.

[40] Constantin, A., Elkhaled, A., Jalbert, L., Srinivasan, R., Cha,
S., Chang, S. M., Bajcsy, R., and Nelson, S. J. Identifying
malignant transformations in recurrent low grade gliomas using high
resolution magic angle spinning spectroscopy. Artificial intelligence in
medicine 55, 1 (2012), 61–70.



BIBLIOGRAPHY 149

[41] Croitor Sava A. R., Sima, D. M., Poullet, J.-B., Wright, A. J.,
Heerschap, A., and Van Huffel, S. Exploiting spatial information
to estimate metabolite levels in two-dimensional MRSI of heterogeneous
brain lesions. NMR in Biomedicine 24, 7 (2011), 824–835.

[42] Dager, S. R., Oskin, N., Richards, T. L., and Posse, S. Research
applications of magnetic resonance spectroscopy (MRS) to investigate
psychiatric disorders. Topics in magnetic resonance imaging: TMRI 19,
2 (2008), 81.

[43] de Almeida, A. L., Favier, G., and Mota, J. C. Space-time
multiplexing codes: A tensor modeling approach. In Signal Processing
Advances in Wireless Communications, 2006. SPAWC’06. IEEE 7th
Workshop on (2006), IEEE, pp. 1–5.

[44] de Almeida, A. L., Favier, G., and Mota, J. C. M. PARAFAC-
based unified tensor modeling for wireless communication systems with
application to blind multiuser equalization. Signal Processing 87, 2 (2007),
337–351.

[45] De Edelenyi, F. S., Simonetti, A., Postma, G., Huo, R., and
Buydens, L. Application of independent component analysis to 1H MR
spectroscopic imaging exams of brain tumours. Analytica Chimica Acta
544, 1 (2005), 36–46.

[46] De Lathauwer, L. Decompositions of a higher-order tensor in block
terms-part II: definitions and uniqueness. SIAM Journal on Matrix
Analysis and Applications 30, 3 (2008), 1033–1066.

[47] De Lathauwer, L. Decompositions of a higher-order tensor in block
terms—Part I: Lemmas for partitioned matrices. SIAM Journal on Matrix
Analysis and Applications 30, 3 (2008), 1022–1032.

[48] De Lathauwer, L., De Moor, B., and Vandewalle, J. A multilinear
singular value decomposition. SIAM journal on Matrix Analysis and
Applications 21, 4 (2000), 1253–1278.

[49] De Lathauwer, L., De Moor, B., and Vandewalle, J. Computation
of the canonical decomposition by means of a simultaneous generalized
Schur decomposition. SIAM journal on Matrix Analysis and Applications
26, 2 (2004), 295–327.

[50] De Lathauwer, L., and Nion, D. Decompositions of a higher-order
tensor in block terms—Part III: Alternating least squares algorithms.
SIAM journal on Matrix Analysis and Applications 30, 3 (2008), 1067–
1083.



150 BIBLIOGRAPHY

[51] De Lathauwer, Lieven. Blind Separation of Exponential Polynomials
and the Decomposition of a Tensor in Rank-(LR, LR, 1) Terms. SIAM J.
Matrix Anal. Appl. 32, 4 (Dec. 2011), 1451–1474.

[52] DeAngelis, L. M. Brain tumors. New England Journal of Medicine
344, 2 (2001), 114–123.

[53] Debals, O. Tensorization and applications in blind source separation.
PhD thesis, Department of Electrical Engineering, KU Leuven, Leuven,
Belgium, 2017.

[54] Debals, O., Van Barel, M., and De Lathauwer, L. Löwner-Based
Blind Signal Separation of Rational Functions With Applications. Signal
Processing, IEEE Transactions on 64, 8 (April 2016), 1909–1918.

[55] Delikatny, E. J., Chawla, S., Leung, D.-J., and Poptani, H.
MR-visible lipids and the tumor microenvironment. NMR in Biomedicine
24, 6 (2011), 592–611.

[56] Detre, J. A., Rao, H., Wang, D. J., Chen, Y. F., and Wang,
Z. Applications of arterial spin labeled MRI in the brain. Journal of
Magnetic Resonance Imaging 35, 5 (2012), 1026–1037.

[57] Devarajan, K. Nonnegative matrix factorization: an analytical and
interpretive tool in computational biology. PLoS computational biology 4,
7 (2008), e1000029.

[58] Dimou, S., Battisti, R., Hermens, D., and Lagopoulos, J. A
systematic review of functional magnetic resonance imaging and diffusion
tensor imaging modalities used in presurgical planning of brain tumour
resection. Neurosurgical review 36, 2 (2013), 205–214.

[59] Ding, C. H., Li, T., and Jordan, M. I. Convex and semi-nonnegative
matrix factorizations. IEEE transactions on pattern analysis and machine
intelligence 32, 1 (2010), 45–55.

[60] Dolecek, T. A., Propp, J. M., Stroup, N. E., and Kruchko, C.
CBTRUS statistical report: primary brain and central nervous system
tumors diagnosed in the United States in 2005–2009. Neuro-oncology 14,
suppl_5 (2012), v1–v49.

[61] Domanov, I., and De Lathauwer, L. On the Uniqueness of the
Canonical Polyadic Decomposition of Third-Order Tensors — Part I:
Basic Results and Uniqueness of One Factor Matrix. SIAM Journal on
Matrix Analysis and Applications 34, 3 (2013), 855–875.



BIBLIOGRAPHY 151

[62] Domanov, I., and De Lathauwer, L. On the Uniqueness of the
Canonical Polyadic Decomposition of Third-Order Tensors — Part II:
Uniqueness of the Overall Decomposition. SIAM Journal on Matrix
Analysis and Applications 34, 3 (2013), 876–903.

[63] Domanov, I., and De Lathauwer, L. On the uniqueness of the
canonical polyadic decomposition of third-order tensors—Part II: Basic
results and uniqueness of one factor matrix. SIAM Journal on Matrix
Analysis and Applications 34, 3 (2013), 876–903.

[64] Domanov, I., and De Lathauwer, L. Generic uniqueness of a
structured matrix factorization and applications in blind source separation.
IEEE Journal of Selected Topics in Signal Processing 10, 4 (June 2016),
701–711.

[65] Domanov, I., and Lathauwer, L. D. Canonical polyadic
decomposition of third-order tensors: reduction to generalized eigenvalue
decomposition. SIAM Journal on Matrix Analysis and Applications 35, 2
(2014), 636–660.

[66] Dong, Z. Proton MRS and MRSI of the brain without water suppression.
Progress in nuclear magnetic resonance spectroscopy 86 (2015), 65–79.

[67] Du, B., Zhang, M., Zhang, L., Hu, R., and Tao, D. PLTD: Patch-
based low-rank tensor decomposition for hyperspectral images. IEEE
Transactions on Multimedia 19, 1 (2017), 67–79.

[68] Er, F. C., Hatay, G. H., Okeer, E., Yildirim, M., Hakyemez, B.,
and Ozturk-Isik, E. Classification of phosphorus magnetic resonance
spectroscopic imaging of brain tumors using support vector machine and
logistic regression at 3T. In Engineering in Medicine and Biology Society
(EMBC), 2014 36th Annual International Conference of the IEEE (2014),
IEEE, pp. 2392–2395.

[69] Fargeas, A., Albera, L., Kachenoura, A., Dréan, G., Ospina,
J.-D., Coloigner, J., Lafond, C., Delobel, J.-B., De Crevoisier,
R., and Acosta, O. On feature extraction and classification in prostate
cancer radiotherapy using tensor decompositions. Medical Engineering
and Physics 37, 1 (2015), 126–131.

[70] Försterling, F. H. Spin dynamics: basics of nuclear magnetic resonance.
Medical Physics 37, 1 (2010), 406–407.

[71] Forsyth, P. A., and Posner, J. B. Headaches in patients with brain
tumors A study of 111 patients. Neurology 43, 9 (1993), 1678–1678.



152 BIBLIOGRAPHY

[72] Fountas, K. N., Kapsalaki, E. Z., Gotsis, S. D., Kapsalakis,
J. Z., Smisson III, H. F., Johnston, K. W., Robinson Jr, J. S.,
and Papadakis, N. In vivo proton magnetic resonance spectroscopy
of brain tumors. Stereotactic and functional neurosurgery 74, 2 (2000),
83–94.

[73] Frahm, J., Merboldt, K.-D., and Hänicke, W. Localized proton
spectroscopy using stimulated echoes. Journal of Magnetic Resonance
(1969) 72, 3 (1987), 502–508.

[74] Friedman, S., Shaw, D., Artru, A., Richards, T., Gardner, J.,
Dawson, G., Posse, S., and Dager, S. Regional brain chemical
alterations in young children with autism spectrum disorder. Neurology
60, 1 (2003), 100–107.

[75] Gibbons, J. D., and Chakraborti, S. Nonparametric statistical
inference. Springer, 2011.

[76] Gillis, N., et al. Nonnegative matrix factorization: Complexity,
algorithms and applications. Unpublished doctoral dissertation, Université
catholique de Louvain. Louvain-La-Neuve: CORE (2011).

[77] Gillis, N., and Glineur, F. Accelerated multiplicative updates and
hierarchical ALS algorithms for nonnegative matrix factorization. Neural
computation 24, 4 (2012), 1085–1105.

[78] Gillis, N., Kuang, D., and Park, H. Hierarchical clustering of
hyperspectral images using rank-two nonnegative matrix factorization.
IEEE Transactions on Geoscience and Remote Sensing 53, 4 (2015),
2066–2078.

[79] Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

[80] Govindaraju, V., Young, K., and Maudsley, A. A. Proton NMR
chemical shifts and coupling constants for brain metabolites. NMR in
Biomedicine 13, 3 (2000), 129–153.

[81] Haardt, M., Roemer, F., and Del Galdo, G. Higher-order SVD-
based subspace estimation to improve the parameter estimation accuracy
in multidimensional harmonic retrieval problems. IEEE Transactions on
Signal Processing 56, 7 (2008), 3198–3213.

[82] Haase, A., Frahm, J., Hanicke, W., and Matthaei, D. 1H NMR
chemical shift selective (CHESS) imaging. Physics in Medicine & Biology
30, 4 (1985), 341.

http://www.deeplearningbook.org


BIBLIOGRAPHY 153

[83] Haykin, S. S., Haykin, S. S., Haykin, S. S., and Haykin, S. S.
Neural networks and learning machines, vol. 3. Pearson Upper Saddle
River, NJ, USA:, 2009.

[84] He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification.
In Proceedings of the IEEE international conference on computer vision
(2015), pp. 1026–1034.

[85] Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r.,
Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath,
T. N., et al. Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups. IEEE Signal
Processing Magazine 29, 6 (2012), 82–97.

[86] Ho, T. K. Random decision forests. In Document analysis and recognition,
1995., proceedings of the third international conference on (1995), vol. 1,
IEEE, pp. 278–282.

[87] Hore, V., Viñuela, A., Buil, A., Knight, J., McCarthy, M. I.,
Small, K., and Marchini, J. Tensor decomposition for multiple-tissue
gene expression experiments. Nature genetics 48, 9 (2016), 1094.

[88] Howe, F., Barton, S., Cudlip, S., Stubbs, M., Saunders, D.,
Murphy, M., Wilkins, P., Opstad, K., Doyle, V., McLean, M.,
et al. Metabolic profiles of human brain tumors using quantitative
in vivo 1H magnetic resonance spectroscopy. Magnetic Resonance in
Medicine 49, 2 (2003), 223–232.

[89] Hunyadi, B., Camps, D., Sorber, L., Van Paesschen, W.,
De Vos, M., Van Huffel, S., and De Lathauwer, L. Block term
decomposition for modelling epileptic seizures. EURASIP Journal on
Advances in Signal Processing 2014, 1 (2014), 139.

[90] Ioffe, S., and Szegedy, C. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167 (2015).

[91] Ishteva, M. Numerical methods for the best low multilinear rank
approximation of higher-order tensors. PhD thesis, Department of
Electrical Engineering, KU Leuven, Leuven, Belgium, 2009.

[92] Işın, A., Direkoğlu, C., and Şah, M. Review of MRI-based
brain tumor image segmentation using deep learning methods. Procedia
Computer Science 102 (2016), 317–324.



154 BIBLIOGRAPHY

[93] Jensen, J. H., Helpern, J. A., Ramani, A., Lu, H., and Kaczynski,
K. Diffusional kurtosis imaging: The quantification of non-gaussian water
diffusion by means of magnetic resonance imaging. Magnetic resonance
in medicine 53, 6 (2005), 1432–1440.

[94] Jia, S., and Zhang, C. Fast and robust image segmentation using an
superpixel based fcm algorithm. In Image Processing (ICIP), 2014 IEEE
International Conference on (2014), IEEE, pp. 947–951.

[95] Karpathy, A. CS231n convolutional neural networks for visual
recognition. http://cs231n.github.io/convolutional-networks/,
2018. [Online; accessed 20-April-2018].

[96] Keogh, B. P., and Henson, J. W. Clinical manifestations and
diagnostic imaging of brain tumors. Hematology/oncology clinics of North
America 26, 4 (2012), 733–755.

[97] Kersting, K., Wahabzada, M., Thurau, C., and Bauckhage, C.
Hierarchical convex NMF for clustering massive data. In Proceedings of
2nd Asian Conference on Machine Learning (2010), pp. 253–268.

[98] Koh, K., Kim, S., and Boyd, S. l1_ls: A Matlab Solver for Large-Scale
L1-Regularized Least Squares Problems. http://web.stanford.edu/
~boyd/l1_ls/, 2008.

[99] Kolda, T. G., and Bader, B. W. Tensor decompositions and
applications. SIAM review 51, 3 (2009), 455–500.

[100] Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis,
M. V., and Fotiadis, D. I. Machine learning applications in cancer
prognosis and prediction. Computational and structural biotechnology
journal 13 (2015), 8–17.

[101] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks. In Advances in
neural information processing systems (2012), pp. 1097–1105.

[102] Krompaß, D., Nickel, M., Jiang, X., and Tresp, V. Non-negative
tensor factorization with rescal. In Tensor Methods for Machine Learning,
ECML workshop (2013).

[103] Kroonenberg, P. M. Applied multiway data analysis, vol. 702. John
Wiley & Sons, 2008.

[104] Kung, S.-Y., Arun, K. S., and Rao, D. B. State-space and singular-
value decomposition-based approximation methods for the harmonic
retrieval problem. JOSA 73, 12 (1983), 1799–1811.

http://cs231n.github.io/convolutional-networks/
http://web.stanford.edu/~boyd/l1_ls/
http://web.stanford.edu/~boyd/l1_ls/


BIBLIOGRAPHY 155

[105] Laniado, M., Weinmann, H., Schörner, W., Felix, R., and Speck,
U. First use of GdDTPA/dimeglumine in man. Physiological chemistry
and physics and medical NMR 16, 2 (1984), 157–165.

[106] Laudadio, T., Mastronardi, N., Vanhamme, L., Van Hecke, P.,
and Van Huffel, S. Improved Lanczos algorithms for blackbox MRS
data quantitation. Journal of Magnetic Resonance 157, 2 (2002), 292–297.

[107] Le Bihan, D., Mangin, J.-F., Poupon, C., Clark, C. A., Pappata,
S., Molko, N., and Chabriat, H. Diffusion tensor imaging: concepts
and applications. Journal of magnetic resonance imaging 13, 4 (2001),
534–546.

[108] Lee, D. D., and Seung, H. S. Learning the parts of objects by non-
negative matrix factorization. Nature 401, 6755 (1999), 788.

[109] Leemans, A., Jeurissen, B., Sijbers, J., and Jones, D. ExploreDTI:
a graphical toolbox for processing, analyzing, and visualizing diffusion
MR data. In 17th Annual Meeting of Intl Soc Mag Reson Med (2009),
vol. 209, p. 3537.

[110] Li, S., Wang, W., Qi, H., Ayhan, B., Kwan, C., and Vance, S.
Low-rank tensor decomposition based anomaly detection for hyperspectral
imagery. In Image Processing (ICIP), 2015 IEEE International Conference
on (2015), IEEE, pp. 4525–4529.

[111] Li, Y., Sima, D. M., Cauter, S. V., Croitor Sava A. R.,
Himmelreich, U., Pi, Y., and Van Huffel, S. Hierarchical non-
negative matrix factorization (hNMF): a tissue pattern differentiation
method for glioblastoma multiforme diagnosis using MRSI. NMR in
Biomedicine 26, 3 (2013), 307–319.

[112] Li, Y., Sima, D. M., Van Cauter, S., Himmelreich, U., Sava, A.
R. C., Pi, Y., Liu, Y., and Van Huffel, S. Unsupervised nosologic
imaging for glioma diagnosis. Biomedical Engineering, IEEE Transactions
on 60, 6 (2013), 1760–1763.

[113] Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi,
F., Ghafoorian, M., van der Laak, J. A., van Ginneken, B., and
Sánchez, C. I. A survey on deep learning in medical image analysis.
Medical image analysis 42 (2017), 60–88.

[114] Liu, X., and Wang, D. A spectral histogram model for texton modeling
and texture discrimination. Vision Research 42, 23 (2002), 2617–2634.



156 BIBLIOGRAPHY

[115] Louis, D. N., Ohgaki, H., Wiestler, O. D., Cavenee, W. K.,
Burger, P. C., Jouvet, A., Scheithauer, B. W., and Kleihues,
P. The 2007 WHO classification of tumours of the central nervous system.
Acta neuropathologica 114, 2 (2007), 97–109.

[116] Löwner, K. Über monotone matrixfunktionen. Mathematische
Zeitschrift 38, 1 (1934), 177–216.

[117] Lu, H., Plataniotis, K. N., and Venetsanopoulos, A. N. A survey
of multilinear subspace learning for tensor data. Pattern Recognition 44,
7 (2011), 1540–1551.

[118] Luts, J., Poullet, J.-B., Garcia-Gomez, J. M., Heerschap, A.,
Robles, M., Suykens, J. A., and Huffel, S. V. Effect of feature
extraction for brain tumor classification based on short echo time 1H MR
spectra. Magnetic resonance in medicine 60, 2 (2008), 288–298.

[119] M., B. A., M., B. M., and Michael, Z. Blind Source Separation.
American Cancer Society, 2006.

[120] Ma, C., Lam, F., Johnson, C. L., and Liang, Z.-P. Removal of
nuisance signals from limited and sparse 1H MRSI data using a union-of-
subspaces model. Magnetic resonance in medicine 75, 2 (2016), 488–497.

[121] Ma, C., Lam, F., Ning, Q., Johnson, C. L., and Liang, Z.-P.
High-resolution 1H-MRSI of the brain using short-TE SPICE. Magnetic
resonance in medicine 77, 2 (2017), 467–479.

[122] Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., and
Suetens, P. Multimodality image registration by maximization of mutual
information. Medical Imaging, IEEE Transactions on 16, 2 (1997), 187–
198.

[123] Mahyari, A. G., Zoltowski, D. M., Bernat, E. M., and Aviyente,
S. A Tensor Decomposition-Based Approach for Detecting Dynamic
Network States From EEG. IEEE Transactions on Biomedical Engineering
64, 1 (2017), 225–237.

[124] Maier, S. E., Sun, Y., and Mulkern, R. V. Diffusion imaging of
brain tumors. NMR in biomedicine 23, 7 (2010), 849–864.

[125] Martınez-Montes, E., Valdés-Sosa, P. A., Miwakeichi, F.,
Goldman, R. I., and Cohen, M. S. Concurrent EEG/fMRI analysis
by multiway partial least squares. NeuroImage 22, 3 (2004), 1023–1034.



BIBLIOGRAPHY 157

[126] McLeod, K., Sermesant, M., Beerbaum, P., and Pennec, X.
Spatio-temporal tensor decomposition of a polyaffine motion model for a
better analysis of pathological left ventricular dynamics. IEEE transactions
on medical imaging 34, 7 (2015), 1562–1575.

[127] Menze, B., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani,
K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R.,
Lanczi, L., Gerstner, E., Weber, M., Arbel, T., Avants, B.,
Ayache, N., Buendia, P., Collins, D., Cordier, N., Corso, J.,
Criminisi, A., Das, T., Delingette, H., Demiralp, C., Durst,
C., Dojat, M., Doyle, S., Festa, J., Forbes, F., Geremia, E.,
Glocker, B., Golland, P., Guo, X., Hamamci, A., Iftekharuddin,
K., Jena, R., John, N., Konukoglu, E., Lashkari, D., Mariz, J.,
Meier, R., Pereira, S., Precup, D., Price, S., Raviv, T., Reza,
S., Ryan, M., Sarikaya, D., Schwartz, L., Shin, H., Shotton,
J., Silva, C., Sousa, N., Subbanna, N., Szekely, G., Taylor, T.,
Thomas, O., Tustison, N., Unal, G., Vasseur, F., Wintermark,
M., Ye, D., Zhao, L., Zhao, B., Zikic, D., Prastawa, M., Reyes,
M., and Van Leemput, K. The multimodal brain tumor image
segmentation benchmark (BRATS). IEEE transactions on medical imaging
34, 10 (2015), 1993–2024.

[128] Mørup, M. Applications of tensor (multiway array) factorizations and
decompositions in data mining. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery 1, 1 (2011), 24–40.

[129] Mørup, M., Hansen, L. K., Arnfred, S. M., Lim, L.-H., and
Madsen, K. H. Shift-invariant multilinear decomposition of neuroimaging
data. NeuroImage 42, 4 (2008), 1439 – 1450.

[130] Mountford, C. E., Stanwell, P., Lin, A., Ramadan, S., and Ross,
B. Neurospectroscopy: the past, present and future. Chemical reviews
110, 5 (2010), 3060–3086.

[131] Muralidhara, C., Gross, A. M., Gutell, R. R., and Alter, O.
Tensor decomposition reveals concurrent evolutionary convergences and
divergences and correlations with structural motifs in ribosomal RNA.
PloS one 6, 4 (2011), e18768.

[132] Muruganandham, M., Clerkin, P. P., Smith, B. J., Anderson,
C. M., Morris, A., Capizzano, A. A., Magnotta, V., McGuire,
S. M., Smith, M. C., Bayouth, J. E., et al. 3-Dimensional
magnetic resonance spectroscopic imaging at 3 Tesla for early response
assessment of glioblastoma patients during external beam radiation



158 BIBLIOGRAPHY

therapy. International Journal of Radiation Oncology• Biology• Physics
90, 1 (2014), 181–189.

[133] Nguyen, C., Wang, Y., and Nguyen, H. N. Random forest classifier
combined with feature selection for breast cancer diagnosis and prognostic.
Journal of Biomedical Science and Engineering 6, 05 (2013), 551.

[134] Ogg, R. J., Kingsley, R., and Taylor, J. S. WET, a T1-and
B1-insensitive water-suppression method for in vivo localized 1H NMR
spectroscopy. Journal of Magnetic Resonance, Series B 104, 1 (1994),
1–10.

[135] Ortega-Martorell, S., Lisboa, P. J., Vellido, A., Simões, R. V.,
Pumarola, M., Julià-Sapé, M., and Arús, C. Convex non-negative
matrix factorization for brain tumor delimitation from MRSI data. PloS
one 7, 10 (2012), e47824.

[136] Osorio Garcia, M. I. Advanced signal processing for magnetic resonance
spectroscopy. PhD thesis, Department of Electrical Engineering, KU
Leuven, Leuven, Belgium, 2011.

[137] Otsu, N. A threshold selection method from gray-level histograms. IEEE
transactions on systems, man, and cybernetics 9, 1 (1979), 62–66.

[138] Papy, J.-M., De Lathauwer, L., and Van Huffel, S. Exponential
data fitting using multilinear algebra: the single-channel and multi-channel
case. Numerical linear algebra with applications 12, 8 (2005), 809–826.

[139] Pham, T. D., and Yan, H. Tensor Decomposition of Gait Dynamics
in Parkinson’s Disease. IEEE Transactions on Biomedical Engineering
(2017).

[140] Phan, A. H., and Cichocki, A. Tensor decompositions for feature
extraction and classification of high dimensional datasets. Nonlinear
theory and its applications, IEICE 1, 1 (2010), 37–68.

[141] Phan, A.-H., Tichavsky, P., and Cichocki, A. Low complexity
damped Gauss–Newton algorithms for CANDECOMP/PARAFAC. SIAM
Journal on Matrix Analysis and Applications 34, 1 (2013), 126–147.

[142] Poot, D. H., den Dekker, A. J., Achten, E., Verhoye, M., and
Sijbers, J. Optimal experimental design for diffusion kurtosis imaging.
Medical Imaging, IEEE Transactions on 29, 3 (2010), 819–829.

[143] Poullet, J. B. Quantification and classification of magnetic resonance
spectroscopic data for brain tumor diagnosis. PhD thesis, Department of
Electrical Engineering, KU Leuven, Leuven, Belgium, 2008.



BIBLIOGRAPHY 159

[144] Poullet, J.-B., Sima, D. M., Simonetti, A. W., De Neuter, B.,
Vanhamme, L., Lemmerling, P., and Van Huffel, S. An automated
quantitation of short echo time MRS spectra in an open source software
environment: AQSES. NMR in Biomedicine 20, 5 (2007), 493–504.

[145] Poullet, J.-B., Sima, D. M., Van Huffel, S., and Van Hecke, P.
Frequency-selective quantitation of short-echo time 1H magnetic resonance
spectra. Journal of Magnetic Resonance 186, 2 (2007), 293–304.

[146] Provencher, S. W. Estimation of metabolite concentrations from
localized in vivo proton NMR spectra. Magnetic resonance in medicine
30, 6 (1993), 672–679.

[147] Raab, P., Hattingen, E., Franz, K., Zanella, F. E., and
Lanfermann, H. Cerebral gliomas: diffusional kurtosis imaging analysis
of microstructural differences. Radiology 254, 3 (2010), 876–881.

[148] Ratiney, H., Sdika, M., Coenradie, Y., Cavassila, S., Ormondt,
D. v., and Graveron-Demilly, D. Time-domain semi-parametric
estimation based on a metabolite basis set. NMR in Biomedicine 18, 1
(2005), 1–13.

[149] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.,
Berg, A. C., and Fei-Fei, L. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV) 115, 3
(2015), 211–252.

[150] Sajda, P., Du, S., Brown, T. R., Stoyanova, R., Shungu, D. C.,
Mao, X., and Parra, L. C. Nonnegative matrix factorization for
rapid recovery of constituent spectra in magnetic resonance chemical shift
imaging of the brain. IEEE transactions on medical imaging 23, 12 (2004),
1453–1465.

[151] Sanei, S., and Chambers, J. A. EEG signal processing. John Wiley &
Sons, 2013.

[152] Sauwen, Nicolas and Sima, Diana M. and Van Cauter, Sofie and
Veraart, Jelle and Leemans, Alexander and Maes, Frederik
and Himmelreich, Uwe and Van Huffel, Sabine. Hierarchical non-
negative matrix factorization to characterize brain tumor heterogeneity
using multi-parametric MRI. NMR in Biomedicine 28, 12 (2015), 1599–
1624.

[153] Saxena, A. Convolutional Neural Networks (CNNs): An Illustrated
Explanation. https://xrds.acm.org/blog/2016/06/convolutional-

https://xrds.acm.org/blog/2016/06/convolutional-neural-networks-cnns-illustrated-explanation/
https://xrds.acm.org/blog/2016/06/convolutional-neural-networks-cnns-illustrated-explanation/


160 BIBLIOGRAPHY

neural-networks-cnns-illustrated-explanation/, 2016. [Online;
accessed 20-April-2018].

[154] Schneider, C. A., Rasband, W. S., Eliceiri, K. W., et al. NIH
Image to ImageJ: 25 years of image analysis. Nat methods 9, 7 (2012),
671–675.

[155] Sen, B., and Parhi, K. K. Extraction of common task signals and
spatial maps from group fmri using a parafac-based tensor decomposition
technique. In Acoustics, Speech and Signal Processing (ICASSP), 2017
IEEE International Conference on (2017), IEEE, pp. 1113–1117.

[156] Shahnaz, F., Berry, M. W., Pauca, V. P., and Plemmons, R. J.
Document clustering using nonnegative matrix factorization. Information
Processing & Management 42, 2 (2006), 373–386.

[157] Shiroishi, M. S., Castellazzi, G., Boxerman, J. L., D’amore,
F., Essig, M., Nguyen, T. B., Provenzale, J. M., Enterline,
D. S., Anzalone, N., Dörfler, A., et al. Principles of T2*-weighted
dynamic susceptibility contrast MRI technique in brain tumor imaging.
Journal of Magnetic Resonance Imaging 41, 2 (2015), 296–313.

[158] Sidiropoulos, N., De Lathauwer, L., Fu, X., Huang, K.,
Papalexakis, E., and Faloutsos, C. Tensor Decomposition for Signal
Processing and Machine Learning. Signal Processing, IEEE Transactions
on. to be published.

[159] Sidiropoulos, N. D., Bro, R., and Giannakis, G. B. Parallel
factor analysis in sensor array processing. IEEE transactions on Signal
Processing 48, 8 (2000), 2377–2388.

[160] Sidiropoulos, N. D., De Lathauwer, L., Fu, X., Huang, K.,
Papalexakis, E. E., and Faloutsos, C. Tensor decomposition for
signal processing and machine learning. IEEE Transactions on Signal
Processing 65, 13 (2017), 3551–3582.

[161] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the game
of Go with deep neural networks and tree search. nature 529, 7587 (2016),
484–489.

[162] Sizoo, E. M., Braam, L., Postma, T. J., Pasman, H. R. W.,
Heimans, J. J., Klein, M., Reijneveld, J. C., and Taphoorn,
M. J. Symptoms and problems in the end-of-life phase of high-grade
glioma patients. Neuro-oncology 12, 11 (2010), 1162–1166.

https://xrds.acm.org/blog/2016/06/convolutional-neural-networks-cnns-illustrated-explanation/
https://xrds.acm.org/blog/2016/06/convolutional-neural-networks-cnns-illustrated-explanation/


BIBLIOGRAPHY 161

[163] Smilde, A., Bro, R., and Geladi, P. Multi-way analysis: applications
in the chemical sciences. John Wiley & Sons, 2005.

[164] Smith, E. A., Carlos, R. C., Junck, L. R., Tsien, C. I., Elias,
A., and Sundgren, P. C. Developing a clinical decision model: MR
spectroscopy to differentiate between recurrent tumor and radiation change
in patients with new contrast-enhancing lesions. American Journal of
Roentgenology 192, 2 (2009), W45–W52.

[165] Soher, B., Semanchuk, P., Todd, D., Steinberg, J., and Young,
K. VeSPA: integrated applications for RF pulse design, spectral simulation
and MRS data analysis. In Proceedings of 19th Annual Meeting ISMRM
(2011), p. 1410.

[166] Sorber, L., Van Barel, M., and De Lathauwer, L. Optimization-
based algorithms for tensor decompositions: Canonical polyadic
decomposition, decomposition in rank-(L_r,L_r,1) terms, and a new
generalization. SIAM Journal on Optimization 23, 2 (2013), 695–720.

[167] Sorber, L. and Van Barel, M. and De Lathauwer, L. Structured
Data Fusion. Selected Topics in Signal Processing, IEEE Journal of 9, 4
(June 2015), 586–600.

[168] Sørensen, M., and De Lathauwer, L. Blind signal separation
via tensor decomposition with Vandermonde factor: Canonical polyadic
decomposition. IEEE Transactions on Signal Processing 61, 22 (2013),
5507–5519.

[169] Stefan, D., Di Cesare, F., Andrasescu, A., Popa, E., Lazariev,
A., Vescovo, E., Strbak, O., Williams, S., Starcuk, Z., Cabanas,
M., et al. Quantitation of magnetic resonance spectroscopy signals: the
jMRUI software package. Measurement Science and Technology 20, 10
(2009), 104035.

[170] Sundin, T., Vanhamme, L., Van Hecke, P., Dologlou, I., and
Van Huffel, S. Accurate quantification of 1H spectra: From finite
impulse response filter design for solvent suppression to parameter
estimation. Journal of Magnetic Resonance 139, 2 (1999), 189–204.

[171] Symeonidis, P., Nanopoulos, A., and Manolopoulos, Y. A unified
framework for providing recommendations in social tagging systems based
on ternary semantic analysis. IEEE Transactions on Knowledge and Data
Engineering 22, 2 (2010), 179–192.

[172] Tan, V. Y., and Févotte, C. Automatic Relevance Determination
in Nonnegative Matrix Factorization with the β-Divergence. Pattern



162 BIBLIOGRAPHY

Analysis and Machine Intelligence, IEEE Transactions on 35, 7 (2013),
1592–1605.

[173] Tofts, P. S., Brix, G., Buckley, D. L., Evelhoch, J. L.,
Henderson, E., Knopp, M. V., Larsson, H. B., Lee, T.-Y., Mayr,
N. A., Parker, G. J., et al. Estimating kinetic parameters from
dynamic contrast-enhanced T 1-weighted MRI of a diffusable tracer:
standardized quantities and symbols. Journal of magnetic resonance
imaging 10, 3 (1999), 223–232.

[174] Tu, D., Chen, L., Lv, M., Shi, H., and Chen, G. Hierarchical online
NMF for detecting and tracking topic hierarchies in a text stream. Pattern
Recognition 76 (2018), 203–214.

[175] Tzika, A. A., Astrakas, L. G., Zarifi, M. K., Zurakowski, D.,
Poussaint, T. Y., Goumnerova, L., Tarbell, N. J., and Black,
P. M. Spectroscopic and perfusion magnetic resonance imaging predictors
of progression in pediatric brain tumors. Cancer 100, 6 (2004), 1246–1256.

[176] Van Cauter, S., De Keyzer, F., Sima, D. M., Croitor Sava
A. R., D’Arco, F., Veraart, J., Peeters, R. R., Leemans, A.,
Van Gool, S., Wilms, G., Demaerel, P., Van Huffel, S., Sunaert,
S., and Himmelreich, U. Integrating diffusion kurtosis imaging,
dynamic susceptibility-weighted contrast-enhanced MRI, and short echo
time chemical shift imaging for grading gliomas. Neuro-oncology 16, 7
(2014), 1010–1021.

[177] Van Cauter, S., Sima, D. M., Luts, J., ter Beek, L., Ribbens,
A., Peeters, R. R., Osorio Garcia, M. I., Li, Y., Sunaert, S.,
Van Gool, S. W., et al. Reproducibility of rapid short echo time
CSI at 3 Tesla for clinical applications. Journal of Magnetic Resonance
Imaging 37, 2 (2013), 445–456.

[178] Van Cauter, S., Veraart, J., Sijbers, J., Peeters, R. R.,
Himmelreich, U., De Keyzer, F., Van Gool, S. W.,
Van Calenbergh, F., De Vleeschouwer, S., Van Hecke, W.,
et al. Gliomas: diffusion kurtosis MR imaging in grading. Radiology
263, 2 (2012), 492–501.

[179] Van Huffel, S. Tensor Decompositions in Smart Patient Monitoring.
SIAM News 42, 7 (Sep. 2015), 1.

[180] Vanhamme, L., Fierro, R. D., Van Huffel, S., and de Beer, R.
Fast removal of residual water in proton spectra. Journal of Magnetic
Resonance 132, 2 (1998), 197–203.



BIBLIOGRAPHY 163

[181] Vasilescu, M. A. O., and Terzopoulos, D. Multilinear analysis
of image ensembles: Tensorfaces. In European Conference on Computer
Vision (2002), Springer, pp. 447–460.

[182] Vavasis, S. A. On the complexity of nonnegative matrix factorization.
SIAM Journal on Optimization 20, 3 (2009), 1364–1377.

[183] Vedaldi, A., and Lenc, K. MatConvNet – Convolutional Neural
Networks for MATLAB. In Proceeding of the ACM Int. Conf. on
Multimedia (2015).

[184] Veraart, J., Sijbers, J., Sunaert, S., Leemans, A., and Jeurissen,
B. Weighted linear least squares estimation of diffusion MRI parameters:
strengths, limitations, and pitfalls. NeuroImage 81 (2013), 335–346.

[185] Vervliet, N., Debals, O., Sorber, L., Van Barel, M., and
De Lathauwer, L. Tensorlab 3.0. https://www.tensorlab.net, 2016.

[186] Vervliet, N., Debals, O., Sorber, L., Van Barel, M., and
De Lathauwer, L. Tensorlab 3.0, March 2016.

[187] Wang, Y., Peng, J., Zhao, Q., Leung, Y., Zhao, X.-L., and Meng,
D. Hyperspectral image restoration via total variation regularized low-
rank tensor decomposition. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing (2017).

[188] Wax, M., and Kailath, T. Detection of signals by information theoretic
criteria. Acoustics, Speech and Signal Processing, IEEE Transactions on
33, 2 (1985), 387–392.

[189] Weybright, P., Sundgren, P. C., Maly, P., Hassan, D. G., Nan,
B., Rohrer, S., and Junck, L. Differentiation between brain tumor
recurrence and radiation injury using MR spectroscopy. American Journal
of Roentgenology 185, 6 (2005), 1471–1476.

[190] Wild, S., Curry, J., and Dougherty, A. Improving non-
negative matrix factorizations through structured initialization. Pattern
Recognition 37, 11 (2004), 2217–2232.

[191] Wilson, M., Reynolds, G., Kauppinen, R. A., Arvanitis, T. N.,
and Peet, A. C. A constrained least-squares approach to the automated
quantitation of in vivo 1H magnetic resonance spectroscopy data. Magnetic
resonance in medicine 65, 1 (2011), 1–12.

[192] Wu, W., Chen, A. Y., Zhao, L., and Corso, J. J. Brain
tumor detection and segmentation in a CRF (conditional random fields)

https://www.tensorlab.net


164 BIBLIOGRAPHY

framework with pixel-pairwise affinity and superpixel-level features.
International journal of computer assisted radiology and surgery 9, 2
(2014), 241–253.

[193] Xu, F., Bai, X., and Zhou, J. Non-local similarity based tensor
decomposition for hyperspectral image denoising. In Image Processing
(ICIP), 2017 IEEE International Conference on (2017), IEEE, pp. 1890–
1894.

[194] Yunpeng, C., Xiaojie, J., Bingyi, K., Jiashi, F., and Shuicheng,
Y. Sharing Residual Units Through Collective Tensor Factorization in
Deep Neural Networks. arXiv preprint arXiv:1703.02180 (2017).



Curriculum vitae

Bharath Halandur Nagaraja was born in Kundapura, Karnataka, India on
January 1, 1984. He received his Bachelor of Engineering degree in the field
of electronics and communication from The National Institute of Engineering,
Mysore, India in 2005. He received his M.Sc (by research) degree in the field of
electrical engineering from the Indian Institute of Technology Madras, India
in 2012. His master thesis was on signal processing techniques for biomedical
applications.

Between February 2013 and April 2014 he was employed as a Senior R&D
Engineer at National Brain Research Centre, where he worked on the processing
and analysis of the magnetic resonance spectroscopic imaging (MRSI) data.
Prior to M.Sc, he has worked in WeP Peripherals Ltd, Mysore as a Design
Engineer. He was involved in the design and development of firmware for retail
billing and dot matrix printers

In May 2014, he joined KU Leuven Electrical Engineering Department (ESAT-
STADIUS) as a PhD student under the supervision of Prof. Sabine Van Huffel.
His research has been a part of work package six (WP6) in the BIOTENSORS
project, funded by ERC Advanced Grant: BIOTENSORS (no 339804), with the
aim of applying tensor based blind source separation techniques to magnetic
resonance spectroscopic imaging.

165





List of publications

Papers in international journals

1. Bharath, H. N., Debals, O., Sima, D. M., Himmelreich, U., De Lathauwer,
L., and Van Huffel, S. Tensor based method for residual water suppression in 1H
magnetic resonance spectroscopic imaging. Accepted for publication in IEEE
Transactions on Biomedical Engineering, 2018.

2. Sauwen, N., Acou, M., Bharath, H. N., Sima, D.M., Veraart, J., Maes,
F., Himmelreich, U., Achten, E. and Van Huffel, S. The successive projection
algorithm as an initialization method for brain tumor segmentation using
non-negative matrix factorization. PloS one. 2017 Aug 28;12(8):e0180268..
https://doi.org/10.1371/journal.pone.0180268.

3. Bharath, H. N., Sima, D. M., Sauwen, N., Himmelreich, U., Lathauwer,
L. D., and Huffel, S. V. Nonnegative canonical polyadic decomposition for
tissue-type differentiation in gliomas. IEEE Journal of Biomedical and Health
Informatics 21, 4 (July 2017), 1124–1132.

Papers in proceedings of international conferences

1. Bharath, H. N., Colleman, S., Sima, D.M., Van Huffel, S. (2018) Tumor
Segmentation from Multimodal MRI Using Random Forest with Superpixel and
Tensor Based Feature Extraction. In: Crimi A., Bakas S., Kuijf H., Menze B.,
Reyes M. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic
Brain Injuries. BrainLes 2017. Lecture Notes in Computer Science, vol 10670.
Springer, Cham.

2. Bharath, H. N., Sauwen, N., Sima, D.M., Himmelreich, U., De Lathauwer,
L., and Van Huffel, S. Canonical polyadic decomposition for tissue type

167



168 LIST OF PUBLICATIONS

differentiation using multi-parametric MRI in high-grade gliomas. European
Signal Processing Conference (EUSIPCO) 2016, Budapest, Aug. 2016 (pp.
547-551).

3. Sauwen, N., Acou, M., Bharath, H. N., Sima, D.M., Veraart, J., Maes, F.,
Himmelreich, U., Achten, E., and Van Huffel, S. Initializing nonnegative matrix
factorization using the successive projection algorithm for multi-parametric
medical image segmentation. 24th European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning (ESANN), Bruges,
May 2016 (pp.265-270).

4. Bharath, H. N., Sima, D.M., Sauwen, N., Himmelreich, U., De
Lathauwer, L., and Van Huffel, S. Tensor based tumor tissue type differentiation
using magnetic resonance spectroscopic imaging. 37th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
Milan, Aug. 2015 (pp. 7003-7006).

Abstracts in proceedings of international conferences

1. Bharath, H.N., Sima, D.M. and Van Huffel, S. Tensor Based Approaches
in Magnetic Resonance Spectroscopic Signal Analysis. SIAM Conference on
Computational Science and Engineering (SIAM CSE 17), Atlanta, USA, Feb.
2017.

2. Bharath, H.N., Sima, D.M. and Van Huffel, S. Löwner Based Residual
Water Suppression in Magnetic Resonance Spectroscopic Imaging. 6th Dutch
Bio-Medical Engineering Conference (BME 2017), , Egmond aan Zee, The
Netherlands, Jan. 2017.

3. Bharath, H.N., Sauwen, N., Sima, D.M., Himmelreich, U., De Lathauwer,
L., and Van Huffel, S. Canonical polyadic decomposition for tissue type
differentiation using multi-parametric MRI in high-grade gliomas. 33rd Annual
Conference of the European Society of Magnetic Resonance in Medicine and
Biology (ESMRMB 2016), Vienna, Austria, Sept. 2016.

4. Bharath, H.N., Sauwen, N., Sima, D.M., Himmelreich, U., and Van
Huffel, S. Non-Negative Canonical Polyadic Decomposition Based Brain Tumor
Characterization From Multi-Parametric MR Imaging. TDA 2016 workshop on
Tensor Decompositions and Applications, Leuven, Belgium, Jan. 2016.





FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF ELECTRICAL ENGINEERING

STADIUS CENTER FOR DYNAMICAL SYSTEMS, SIGNAL PROCESSING AND DATA ANALYTICS
Kasteelpark Arenberg 10, bus 2446

B-3001 Leuven
bhalandu@esat.kuleuven.be


	Abstract
	Beknopte samenvatting
	List of Abbreviations
	Contents
	List of Figures
	List of Tables
	Introduction
	Aim of the thesis
	Chapter-by-chapter overview

	Mathematical background: tensor decomposition and machine learning
	Tensor decomposition
	Notations and tensor preliminaries
	Tensorization: Löwner and Hankel matrices/tensors
	Canonical polyadic decomposition
	Multilinear singular value decomposition
	Block term decomposition
	Structured tensor decompositions
	Applications of tensor decomposition

	Machine learning
	Un-supervised: blind source separation
	Supervised learning


	Multi-parametric magnetic resonance imaging
	Magnetic resonance imaging
	Principles of MRI
	Conventional MRI
	Magnetic resonance spectroscopic imaging
	Diffusion-weighted imaging
	Perfusion-weighted imaging

	Glioma
	Neuroimaging in glioma

	Data acquisition and pre-processing
	UZ Leuven data
	BRATS 2017 challenge dataset


	Residual water suppression in MRSI
	Introduction
	Tensor based methods for water removal
	MRSI and residual water
	Löwner-based water suppression
	Hankel-tensor based water suppression in MRSI

	Results
	Spectral variations in MRSI voxels
	Simulations
	In-vivo results

	Discussion
	Conclusion

	Un-supervised tissue type differentiation in glioma
	Introduction
	Method
	MRSI tensor construction
	Non-negative CPD
	Spectral recovery and non-negative least squares
	Initialization
	Source number estimation
	Source and distribution correlation

	Results on brain tumor dataset
	Discussion
	Conclusion

	Supervised tumor voxel classification in MRSI
	Introduction
	Method
	Feature extraction
	Non-negative CPD for tumor classification
	Random forest
	Convolutional neural network
	Low-rank regularization

	Results and Discussion
	Conclusion

	Un-supervised tumor Segmentation in Multi-parametric MRI
	Introduction
	Method
	Tensor construction
	Constrained canonical polyadic decomposition
	Validation

	Results and discussion
	Conclusion

	Supervised tumor Segmentation in Multi-parametric MRI
	Introduction
	Method
	Preprocessing
	Feature extraction
	Training and tissue segmentation

	Results and Discussion
	First Stage: whole tumor segmentation
	High grade glioma
	Validation and test dataset results

	Conclusion

	Conclusion and future perspectives
	Conclusion
	Future perspectives

	Tissue type assignment
	Bibliography
	Curriculum vitae
	List of publications

