
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Techniques for Block Cipher
Cryptanalysis

Yunwen LIU

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of Engineering
Science (PhD): Electrical Engineering

September 2018

Supervisor:
Prof. dr. ir. Vincent Rijmen

Techniques for Block Cipher Cryptanalysis

Yunwen LIU

Examination committee:
Prof. dr. ir. Joos Vandewalle, chair
Prof. dr. ir. Vincent Rijmen, supervisor
Prof. dr. ir. Bart Preneel
Prof. dr. ir. Luc Van Eycken
Prof. dr. ir. Joan Daemen
(Radboud University)

Prof. dr. Gregor Leander
(Ruhr-Universität Bochum)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering
Science (PhD): Electrical Engineer-
ing

September 2018

© 2018 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Yunwen LIU, Kasteelpark Arenberg 10 - bus 2452, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Preface

不知周之梦为蝴蝶与? 蝴蝶之梦为周与?
— 《齐物论》The Butterfly Dream by Zhuangzi

The doctoral study to me is just like the Boléro: through a spiral circulation it
goes on and on, and now it arrives at the last few bars of the melody. I would
like to thank everyone who has supported, encouraged and accompanied me,
and all the gratefulness shall never fade in my memory.

My supervisor Prof. Vincent Rijmen is the person to whom I own a deep debt of
gratitude and thankfulness. The excellence, kindness, patience of Prof. Rijmen
is beyond my greatest admiration and respect: becoming his student is definitely
one of the best things that ever happened in my life. Being a supervisor who
sincerely cares for the development of his students, he keeps enlightening me
with wisdom, advices and practical suggestions. Whenever I look back, every
step that was firmly taken was always under his guidance.

I would like to thank the jury members of the committee, Prof. Joan Daemen,
Prof. Gregor Leander, Prof. Bart Preneel, Prof. Joos Vandewalle, and Prof.
Luc Van Eycken, for their time in reading the manuscript, and their valuable
suggestions and comments to improve my thesis and research. Especially, I am
more than grateful to Prof. Bart Preneel, who together with my supervisor
gave me the opportunity to start the doctoral programme, and generously offers
advice and help during my stay in COSIC.

In the doctoral study, it is my pleasure and honour to work with many excellent
researchers. The valuable experience in our collaborations has positively
influenced my research and professional skills, as well as my understanding of an
academic career. For that, I would like to thank Tomer Ashur, Hua Chen, Glenn
De Witte, Itai Dinur, Limin Fan, Jingyi Feng, Shaojing Fu, Gregor Leander,
Chao Li, Chaoyun Li, Wei Li, Guoqiang Liu, Ya Liu, Willi Meier, Longjiang
Qu, Adrián Ranea, Yu Sasaki, Ling Song, Bing Sun, Zhi Tao, Gaoli Wang, and

i

ii PREFACE

Qingju Wang, without whom this thesis could never be possible.

I enjoy every single frame of Leuven and Belgium in my memory, including the
gloomy and naughty weather. To me, Leuven is a hometown which witnesses
my growth, and the home address is Kasteelpark Arenberg 10. I would like
to thank our dear Péla Noë, and the administration team Elsy Vermoesen,
Wim Devroye, Saartje Verheyen and Dana Brouckmans, for their dedications in
administrative works to keep us free of worry. Without them, it is easy for me
to imagine how messy life could be. Moreover, my heartfelt thanks go to Bing
Sun for his guidance and help both in Changsha and in Leuven since 2009; to
Tomer Ashur for being a great friend, collaborator and office mate; to Qingju
Wang for her kindness in walking me through the early days of work and life
in Leuven; to Bart Mennink and Atul Luykx for their advices in research and
presentation; and to Sara Cleemput and Yu-long Chen for the Dutch abstract
of my thesis. I would also like to thank Hua Chen, Wenying Zhang, Wei Li,
Bohan Yang, Ren Zhang, Chaoyun Li, Aysajan Abidin and Kent Chuang; their
friendship and hospitality largely eased my homesick in a foreign country. Apart
from being an outstanding team at work, COSIC has also organised many
interesting activities, where many memorable hours were spent together with
Victor Arribas Abril, Günes Acar, Abdelrahaman Aly, Arthur Beckers, Begül
Bilgin, Dušan Božilov, Carl Bootland, Ruan De Clercq, Thomas De Cnudde,
Lauren De Meyer, Eduard Marín Fàbregas, Miloš Grujić, Ilia Iliashenko, Pieter
Maene, Jose M. Bermudo Mera, Mustafa A. Mustafa, Fatemeh Shirazi, Danilo
Šijačić, Iraklis Symeonidis, Alan Szepieniec, Kerem Varıcı, Lennert Wouters,
and many old and new COSICs.

In my home country, Prof. Chao Li and Prof. Longjiang Qu provided their
kindest help and support during my bachelor and master study, also for several
research visits in the past four years. Without their encouragement, I could
never imagine myself starting to pursue a doctoral degree. Outside COSIC,
I have also received a lot of help from Ralph Ankele, Patrick Derbez, Prof.
Jian Guo, Stefan Kölbl, Prof. Christian Rechberger, Yu Sasaki, Ernst Schulte-
Geers, Tyge Tiessen and Prof. Bin Zhang. It is my great pleasure to talk with
them through conferences, workshops and emails, and their advice has greatly
improved my research. In addition, I would like to acknowledge the China
Scholarship Council (CSC) and COSIC for the financial support.

Finally, I would like to express my sincere gratitude to my parents for their
unconditional support, sacrifice and love. They are my source of courage and
strength, and raise me to be a happy person.

Yunwen Liu

in Leuven, August 2018

Abstract

This thesis mainly focuses on cryptanalytic techniques for block ciphers, which
benefits the design of cryptographic components as well.

For ARX structures, we propose a novel analytic method called rotational-XOR
cryptanalysis which mathematically extends rotational cryptanalysis to ARX
ciphers with constants involved. In order to find distinguishers for ARX ciphers
more efficiently, we study the automatic search techniques based on SAT/SMT
solvers and a Python package SymPy, which automatically finds distinguishers
in linear cryptanalysis and rotational-XOR cryptanalysis. The search tool is
successfully applied to the block cipher family Speck, for which improved
linear trails and rotational-XOR characteristics are found. For analysing ciphers
with a substitution-permutation network structure, we study the block cipher
LowMC which is designed for low multiplicative complexity. The S-box layer
of LowMC has a relatively low algebraic degree, which makes it vulnerable
to higher-order differential cryptanalysis. The round function allows us to
adequately bound the number of monomials such that it leads to an efficient
interpolation attack. As a result, the security claims of the original design are
compromised. A third topic we study are the basic assumptions in differential
cryptanalysis. By labelling the effective keys being the keys under which a
characteristic has a nonzero probability, we propose an efficient algorithm to
find singular characteristics that have a nonzero expected probability but with
no effective keys, and find examples of singular characteristics in 5-round AES
and Prince. Even though the assumptions enable the designers to estimate
the security margin against differential cryptanalysis, the distinguishers found
in this model might be invalid when the singular characteristics are not taken
into consideration by the cryptanalyst.

Another topic in this thesis is the diffusion layer of block ciphers. We
concentrated on the linear layers and the round constants in terms of the
invariant subspace attack. It is shown that the dimension of possible invariant
subspaces can be bounded under certain conditions, such that the invariant

iii

iv ABSTRACT

subspaces in a round function will be destroyed by choosing the round constants.
The design of new diffusion functions is currently receiving widespread attention.
Although the diffusion functions in most ciphers are linear, some nonlinear
functions may achieve the same diffusion effect while providing an extra layer
of confusion. We proposed two types of nonlinear diffusion layers based on a
nonlinear error-correcting code and T-functions, and rigorously analysed their
cryptographic properties. By applying the nonlinear functions in toy ciphers, it
hints that nonlinear diffusion layer is a promising building block for designing
new lightweight block ciphers.

Beknopte samenvatting

In dit proefschrift concentreren we ons vooral op cryptanalytische technieken
voor blokcijfers, die ook voordelen bieden voor het ontwerp van cryptografische
componenten.

Voor de ARX-structuur hebben we een nieuwe analysemethode voorgesteld,
de rotationele-XOR-cryptanalyse, een wiskundige uitbreiding van rotationele
cryptanalyse naar ARX-cijfers met constanten. Om onderscheidende elementen
in de ARX-cijfers efficiënter te vinden, bestuderen we automatische zoektech-
nieken op basis van SAT/SMT-solvers en een Python-pakket SymPy, die beide
automatisch onderscheidende elementen vinden voor lineaire cryptanalyse en
rotationele-XOR cryptanalyse. Het zoekinstrument is met succes toegepast op
de blokcijferfamilie Speck, waar verbeterde lineaire paden en rotationele-XOR-
kenmerken werden gevonden. Voor de analyse van cijfers met een substitutie-
permutatie-netwerkstructuur, bestuderen we het blokcijfer LowMC dat is
ontworpen met het oog op lage multiplicatieve complexiteit. De S-box-laag van
LowMC heeft een relatief lage algebraïsche graad die kwetsbaar is voor hogere-
orde differentiële cryptanalyse, en de ronde-functie laat ons toe om adequaat
het aantal eentermen te beperken, wat leidt tot een efficiënte interpolatie-
aanval. Als gevolg hiervan komen de veiligheidsclaims van het oorspronkelijke
ontwerp in het gedrang. Een derde onderwerp in cryptanalyse dat we hebben
bestudeerd, zijn de basisaannames in differentiële cryptanalyse. Door aan te
duiden dat de effectieve sleutels diegene zijn waaronder een karakteristieken
een waarschijnlijkheid groter dan nul heeft, hebben we een efficiënt algoritme
voorgesteld om singuliere karakteristieken te vinden, die een verwachte waarde
groter dan nul hebben maar zonder effectieve sleutels, en hebben we voorbeelden
van singuliere karakteristieken gevonden in 5 rounden van AES en Prince.
Hoewel de aannames de ontwerpers in staat stellen om de beveiligingsmarge
tegen differentiële cryptanalyse in te schatten, kunnen de onderscheidende
elementen die in dit model worden gevonden ongeldig zijn als de singuliere
karakteristieken niet door de cryptanalyst in overweging worden genomen.

v

vi BEKNOPTE SAMENVATTING

Een ander aandachtspunt van dit proefschrift zijn de diffusielagen van blokcijfers.
We concentreerden ons op de lineaire lagen en de rondeconstanten voor de
invariante-deelruimteaanval. We tonen aan dat de dimensie van mogelijke
invariante deelruimten onder bepaalde voorwaarden kan worden begrensd, zodat
de invariante deelruimten in een ronde functie worden vernietigd door de ronde-
constanten te kiezen. Het ontwerp van nieuwe diffusiefuncties is de laatste jaren
een populair onderwerp. Hoewel de diffusiefuncties in de meeste cijfers lineair
zijn, kunnen sommige niet-lineaire functies hetzelfde diffusie-effect bereiken
terwijl ze een extra confusielaag bieden. We hebben twee soorten niet-lineaire
diffusielagen voorgesteld op basis van een niet-lineaire foutcorrigerende code en
T-functies, en hun cryptografische eigenschappen grondig geanalyseerd. Door
de niet-lineaire functies in cijfers toe te passen, geeft het aan dat niet-lineaire
diffusielaag een veelbelovende bouwsteen is voor het ontwerpen van nieuwe
pluimgewicht blokcijfers.

Abbreviations

AE Authenticated Encryption

AES Advanced Encryption Standard

ANF Algebraic Normal Form

ARX Addition, Rotation, XOR

CBC Cipher Block Chaining

CNF Conjunctive Normal Form

CP Constraint Programming

DDT Difference Distribution Table

DES Data Encryption Standard

EDP Expected Differential Probability

FPE Format-Preserving Encryption

GFN Generalised Feistel Networks

FFT Fast Fourier Transformation

FHE Fully Homomorphic Encryption

IoT Internet of Things

IPsec Internet Protocol Security

LAT Linear Approximation Table

MAC Message Authentication Code

MDS Maximum Distance Separable

vii

viii ABBREVIATIONS

MILP Mixed-Integer Linear Programming

MPC Multi-Party Computation

NMDS Near-MDS

SAT Boolean Satisfiability Problem

SMT Satisfiability Modulo Theory

SSH Secure Shell

SPN Substitution-Permutation Network

TLS Transport Layer Security

XOR Exclusive Or

List of Symbols

⊕ XOR

� Modular addition

1x�y The symbol equals 1 when every bit of x is no larger than that of y,
otherwise it is 0

a An element in a finite field

â A vector over a finite field (when we stress that it is a vector)

ai The i-th component of an element in a finite field Fm2n

ai[j] The j-th bit of the i-th component of an element in a finite field Fm2n

a An element of a ring

â A vector over a ring

F2n A finite field of 2n elements

Id Identity operation

|S| The cardinality of a set S

SHL Left Shift by 1

wt(·) The Hamming weight

Z2n The ring of integer modulo 2n

ix

Contents

Abstract iii

Beknopte samenvatting v

Abbreviations vii

List of Symbols ix

Contents xi

List of Figures xvii

List of Tables xix

1 Introduction 1

1.1 Modern Cryptography . 1

1.2 Symmetric-key Primitives . 2

1.2.1 Block Ciphers . 3

1.2.2 Stream Ciphers . 6

1.2.3 Hash Functions . 7

1.2.4 MAC Algorithms . 7

1.2.5 Permutation-based Primitives 8

xi

xii CONTENTS

1.2.6 Lightweight Symmetric Cryptography 9

1.3 Cryptanalytic Techniques . 10

1.3.1 Models of Cryptanalysis 10

1.3.2 The Toolbox of a Cryptanalyst 13

1.3.3 Provable Resistance Against Certain Attacks 15

1.4 Thesis Outline . 16

2 Automatic Search Techniques on ARX 19

2.1 ARX Primitives . 19

2.1.1 SPECK Family of Block Ciphers 20

2.2 Previous Cryptanalytic Techniques 21

2.2.1 Differential Cryptanalysis 21

2.2.2 Linear Cryptanalysis . 24

2.2.3 Variants of Differential and Linear Cryptanalysis 26

2.2.4 Rotational Cryptanalysis 26

2.3 Rotational-XOR Cryptanalysis 27

2.3.1 Rotational-XOR Difference 27

2.3.2 Theoretical Propagation of RX-difference 28

2.3.3 An Example in SPECK32/64 36

2.4 A General Framework for Automatic Search on ARX Primitives 37

2.4.1 A General Model for Automatic Search 39

2.4.2 State-of-the-art Search Engines 40

2.4.3 Search Strategy . 43

2.4.4 A Fully Automated Tool ARXPY 44

2.5 Applications to the SPECK Family 46

2.5.1 Automatic Search in Linear Cryptanalysis 46

2.5.2 Automatic Search for RX-characteristics 52

CONTENTS xiii

2.6 Conclusion . 58

3 Optimised Interpolation Attacks on LowMC 61

3.1 Motivation . 61

3.2 Higher-Order Differential Cryptanalysis and Interpolation Attacks 62

3.3 Description of LowMC . 66

3.4 A Basic 9-Round Attack on LowMC-80 69

3.4.1 The Higher-Order Differential Property 69

3.4.2 Bounding the Number of Variables 69

3.4.3 Obtaining the Data . 71

3.4.4 The Basic Interpolation Attack 71

3.5 The Optimised Interpolation Attack 73

3.5.1 Transformation of Variables 74

3.5.2 Applications to LowMC-80 76

3.6 Conclusions . 77

4 Observations on Invariant Subspace Attack 79

4.1 Invariant Subspace Attack . 79

4.1.1 Linear properties of a nonlinear function 81

4.1.2 Characterise Subspace Propagations in the S-box Layer 82

4.2 Bounding the Invariant Subspaces 86

4.2.1 AES-like∗ Ciphers . 86

4.2.2 Bounds on Invariant Subspace Attacks in AES-like∗ . . 87

4.2.3 Countermeasures and Discussions 90

4.3 Conclusions . 90

5 Nonlinear Diffusion Layers 93

5.1 Motivation . 93

xiv CONTENTS

5.2 A General Definition of Branch Number 94

5.3 A Nonlinear Function Based on the Kerdock Code 95

5.3.1 Kerdock Codes . 95

5.3.2 Diffusion Function ζ Based on K(4) 97

5.4 A General Construction of Nonlinear Diffusion Functions Based
on T-functions . 102

5.4.1 The Nonlinear Diffusion Functions ρ and ψ 104

5.4.2 Diffusion Functions ρ and ψ 104

5.5 Example Ciphers with a Nonlinear Diffusion Layer 106

5.5.1 Nonlinear Diffusion Function ζ 106

5.5.2 Nonlinear Diffusion Function ρ and ψ 107

5.6 Conclusions . 110

6 The Phantom of Differential Characteristics 111

6.1 Motivation . 111

6.2 Basic Observation . 114

6.3 Singular Characteristic and Singular Cluster 117

6.3.1 Singular Characteristic 117

6.3.2 Singular Clusters . 119

6.4 Differential Properties of the AES 121

6.4.1 Singular Characteristics of the AES 121

6.4.2 Density of Singular Characteristics in the AES 123

6.4.3 Singular Cluster in the AES 125

6.5 A Tale of Two Perspectives . 125

6.6 Concluding Remarks . 128

7 Conclusion 131

CONTENTS xv

A Mathematical Background 135

Bibliography 139

Curriculum Vitae 159

List of Figures

1.1 One round of a Feistel cipher. 4

1.2 An illustration of the substitution-permutation network. 5

1.3 The sponge structure. 9

2.1 One round of Speck. 21

2.2 Automaton representation of the probability of differential
equations. 32

2.3 Notation of masks in round function of Speck32. 48

2.4 Notation of the RX-differences in Speck. Left: Round function.
Right: Key schedule. 53

5.1 (a): a nonlinear function with XOR and modular additions, and
(b): a nonlinear function with only modular additions. 104

5.2 (a) An example cipher of 128 bits, (b) a column, (c) a row, (d) a
lane. 108

5.3 A 4-round differential characteristic with 24 active S-boxes. . . 109

6.1 Princecore reduced to 6 rounds. The dashed box shows the
location of Ω6 and Ω7 in the 6-round characteristics adopted for
a multiple differentials distinguisher. 127

xvii

List of Tables

1.1 An overview on a fraction of main cryptanalytic techniques . . 14

2.1 A table comparing the transition probability predicted through
Theorem 1 and the empirical probability for uniformly chosen x
and y, and a fixed (a1, b1,∆1, a2, b2,∆2). The rotational amount
is γ = 1. All RX-differences are in hexadecimal notation. 37

2.2 A table describing the RX-distinguisher for 7-round Speck32/64.
All RX-differences are in hexadecimal notation, and γ = 1. . . . 38

2.3 Correlation of the best linear trails in the Speck family. 49

2.4 Linear trails with best correlation in reduced-round Speck. . . 50

2.5 The distribution of linear trails in the best found 9-/10-round
Speck32 linear hull. 51

2.6 Comparison between the runtime of CNF files generated by
Section 2.5.1 and STP on the searching problems of Speck128. 52

2.7 RX-characteristics with γ = 1 for different versions of Speck.
Entries marked with † were found through the adjusted search
strategy. 56

2.8 A 11-round (left) and 12-round (right) RX-characteristic in
Speck32/64. 57

2.9 12-round (left) and 13-round (right) RX-characteristics in
Speck48/96. 58

2.10 14-round (left) and 15-round (right) RX-characteristics in
Speck48/96. 59

xix

xx LIST OF TABLES

2.11 Best found distinguishers for Speck32 and Speck48. DC:
differential characteristic; LC: linear trail; RX: RX-characteristic.
The data probability for a linear trail is filled with its squared
correlation. 60

3.1 LowMC Instance Families . 67

3.2 Attacks on LowMC . 78

5.1 Parameters of Kerdock codes for 4 ≤ m ≤ 8 97

5.2 Lookup table of the nonlinear function ζ 97

Chapter 1

Introduction

1.1 Modern Cryptography

Since the early dawn of the information age, cryptography has played a vital
role in almost every aspect of information security, and has had a profound
impact on shaping the world. Even though words like “cryptocurrency”
have gained a global-level attention in the past few years, cryptography is
rather unfamiliar to the general public, either in the ancient times where
cryptographic technology was controlled by the state or the military, or in the
new century where cryptography has been deeply embedded in our daily lives.
Nevertheless, violations of confidential information or personal data have become
a common issue, through numerous hackings, phishings, frauds, malware or
vulnerabilities in existing systems, which seem to be the inevitable by-product of
the convenience and efficiency brought by the digital era. Therefore, the major
goal of cryptography is to protect the confidentiality, authenticity, integrity and
privacy of our data against malicious adversaries. Cryptographic algorithms,
schemes and protocols have been widely deployed in communication systems,
financial networks with online banking and payment, smart devices and tags
evolving together with the rise of the Internet of Things (IoT), and so on.

Historically, the development of cryptography went through a long way until
scientifically reliable solutions were eventually found. Modern cryptography
began with the pioneering work of Shannon on the mathematical aspects of
information theory, and later split into two directions: symmetric-key (or secret-
key) cryptography and asymmetric-key (or public-key) cryptography. In either
case, the keys are the source of protection. The same key is shared by both

1

2 INTRODUCTION

parties in symmetric-key cryptography; while in public-key cryptography a
private-public key-pair is distributed respectively for the participants in the
communication channel. Generally speaking, symmetric-key algorithms have a
better performance than the public-key ones in terms of speed and efficiency,
whereas sharing the secret keys in symmetric-key cryptography is much more
complicated than key distribution in public-key cryptography.

Unlike public-key cryptography, the security of symmetric-key algorithms is
not based on the reduction to hard mathematical problems. Instead, they
are based on the claim that no attacks can be found which are faster than
exhaustive search. Therefore, before the adoption of new algorithms and
schemes, especially for standards and official recommendations, they need to go
through a comprehensive scrutiny by means of cryptanalysis or attack. To be
specific, except for some legacy schemes, most of the cryptographic algorithms
nowadays have to be publicly evaluated for several years before being accepted
for practical applications. Nevertheless, major progress may still be achieved
even in a highly-developed cryptosystem, and some might be devastating. For
instance, the Heartbleed attack [81] revealed in the Transport Layer Security
(TLS) protocol was one of the worst vulnerabilities found on the internet, and
the KRACK attack [196] detected weaknesses in the Wi-Fi Protected Access
(WPA2) protocol.

The theme of this thesis falls into the field of symmetric-key cryptography,
especially on the cryptanalysis of symmetric primitives and the design of the
components in a cipher.

1.2 Symmetric-key Primitives

Symmetric-key primitives are the major workhorses for almost all aspects
of cryptography. They protect the confidentiality and the authenticity of
information, where the latter includes data origin authentication and the
integrity of the information. Meanwhile, symmetric-key primitives have
contributed to many applications, for example, multi-party computation (MPC),
fully homomorphic encryption (FHE), proof-of-work function in a blockchain,
and the onion router in privacy technology. In this section, we will recall briefly
the basic concepts of symmetric-key primitives.

SYMMETRIC-KEY PRIMITIVES 3

1.2.1 Block Ciphers

Block ciphers are the fundamental components of symmetric-key primitives;
they mainly focus on the functionality of encryption. In order to encrypt large
files efficiently, the data are split into “blocks” of a fixed length, usually 64 or
128 bits. The secrecy comes with the secret key, which is shared between the
communication parties.

Definition 1. A block cipher with block size n and key size k is a tuple (E ,D,K),
which is composed of an encryption function E : F2n × F2k → F2n , and a
decryption function D : F2n × F2k → F2n . In addition, it satisfies that for a
plaintext p and a fixed key K ∈ K, D(E(p,K),K) = p, i.e., a block cipher is a
permutation under any given key.

For efficiency reasons, block ciphers are often designed to be iterative functions,
which are built from round functions with only a few simple operations.

Definition 2 ([42]). A block cipher is called an iterative block cipher with block
size n, key size k, and r rounds if it is composed of r permutations for each key
K ∈ F2k :

E(K, ·) = fr−1(Kr−1, ·) ◦ fr−2(Kr−2, ·) · · · ◦ f0(K0, ·),

where fi : F2n × F2ki → F2n are the round functions, Ki’s are the round keys
of ki bits generated by a key schedule K : F2k → F2kr−1 × F2kr−2 × · · · × F2k0 .

Especially, if all the round functions are identical, it is called an iterated block
cipher. Furthermore, if the round function f(K,x) can be decomposed into
f ′(x ⊕K), which means that the key is directly XORed into the state, then
we call it a key-alternating cipher [61]. Many block ciphers are actually key-
alternating ciphers, including the AES (Advanced Encryption Standard) [65].

Based on the specific round functions, block ciphers can be roughly classified
into three types.

Feistel

One of the first Feistel ciphers is the former standard DES (Data Encryption
Standard) published in 1977 [163]. A notable feature of the Feistel structure is
that the round function only updates half (or part) of the entire state as shown
in Figure 1.1. To be specific, the Feistel round maps (xL, xR) ∈ F2n × F2n to
(yL, yR) ∈ F2n × F2n by

yR = xL ⊕ F (xR) , yL = xR ,

4 INTRODUCTION

F

Feistel network

F

Generalised Feistel network

Figure 1.1: One round of a Feistel cipher.

where F : F2n → F2n is the round function. Note that the round function of
a Feistel cipher is not necessarily bijective, and the decryption can reuse the
encryption circuit to a large extent. When the two branches are of the same size,
the Feistel network is called balanced; otherwise, it is unbalanced. As variants of
the Feistel network, generalised Feistel structures have been proposed, including
multiple branches (generalised Feistel networks, GFN); see Figure 1.1, and
modular operations (also known as �-Feistel [38]).1 Examples of Feistel ciphers
include Misty [153], Kasumi [154], LBlock [208], Skipjack, Clefia [179],
Piccolo [177], and Twine [190].

Apart from its practical importance, the Feistel structure acts as the theoretical
bridge between pseudorandom functions and pseudorandom permutations, which
is known as the Luby-Rackoff construction [151]. It was proven that a 3-round
Feistel structure is sufficient to be a pseudorandom permutation, if the round
function is a cryptographically secure pseudorandom function. There are a
number of follow-up works on the theoretical security of Feistel structures,
triggering many generic approaches for attacking Feistel ciphers, such as meet-
in-the-middle and yoyo attacks [38, 80, 99].

The theoretical study of Feistel structures also finds applications in the so-called
format-preserving encryption (FPE) [22] schemes which aim at enciphering
plaintext over a small field meanwhile preserving the format. FPE somewhat
resembles ciphertext stealing [61]. For instance, to encrypt a 16-digit credit
card number (around 53 bits) with the AES, the plaintext needs to be padded
to 128 bits, thus the ciphertext is longer than the plaintext and is probably
not a 16-digit number anymore. Unbalanced Feistel structures [108, 158, 173],
such as card shuffles, are extensively adopted in constructing provably secure
FPEs. Meanwhile, FF1 and FF3 schemes for FPE have been standardised by
NIST [82]; both are based on Feistel networks.

1Generalised Feistel structure take many different forms [109], where only one example is
illustrated in Figure 1.1.

SYMMETRIC-KEY PRIMITIVES 5

S S S S S S S S

P

k

S S S S S S S S

Figure 1.2: An illustration of the substitution-permutation network.

Lai-Massey

The Lai-Massey scheme was developed for the Idea cipher [133] by Lai and
Massey. The state is split, and a round function (which is not necessarily
invertible) is applied to the difference between the two parts of the state.
Instead of XORs, modular additions and subtractions are used in the Lai-
Massey schemes, under the design concept of “mixing operations from different
algebraic groups”.

SPN

With DES being superseded by the AES, substitution-permutation networks
(SPN) have taken over the majority of new block cipher designs. Usually,
SPN ciphers are key-alternating, with the round key XORed at the end of
each round. The round function of SPN ciphers is composed of a substitution
layer of invertible S-boxes, and a permutation layer with linear functions, see
Figure 1.2 for an illustration. The advantage of the SPN structure is that
the components of an SPN cipher can be highly parametrised and flexible, by
choosing appropriate S-boxes and linear functions. Moreover, SPN ciphers
are often designed under the guidance of the Wide Trail Strategy [63] which
provides provable bounds against several major cryptanalytic methods. We will
discuss more detail in Section 1.3.3 and also in Chapter 5.

The S-boxes are often defined on 4 or 8 bits, and expected to achieve optimal
differential uniformity and nonlinearity. For instance, the S-box of the AES
is derived from the inverse function over the finite field F28 , which is one of
the best 8-bit S-boxes known to-date. Due to the tremendous number (n!)
of permutations on n elements, it is generally difficult to find one with good
cryptographic properties which also meets the implementation requirements. For
4-bit S-boxes, the properties and constructions have been extensively studied;
for instance, it is known that there are 16 affine-equivalent classes [69, 138].

6 INTRODUCTION

For the linear layer, there are various options, from bit-level permutations to
word-level operations. The core component of many linear layer is carefully
chosen such that it inherits good properties from the corresponding error-
correcting codes.

Modes of Operation. A block cipher can only handle data with a fixed length.
When utilising block ciphers in real-world applications, modes of operation [82]
are a secure way to encipher data that is larger than the block size. A bad
example of using a block cipher is the Electronic Codebook mode (ECB), where
the ciphertext blocks are identical when the plaintext blocks are the same, thus
it reveals some patterns in the plaintext. Cipher Block Chaining (CBC) is one of
the most commonly-known modes for encryption. In CBC mode, the ciphertext
of the previous encryption process is XORed to the plaintext of the current
encryption, and the first block is processed with a random initialisation vector.
The security of modes needs to be carefully deduced with provable security
techniques by assuming that the underlying block cipher is a pseudorandom
permutation. For an n-bit block cipher, CBC mode is unsafe if more than 2n/2
blocks are encrypted under the same key even though the block cipher itself
has no cryptographic weakness. This is also known as the birthday bound. As
a consequence, the block size of a block cipher cannot be too small. Although
many 64-bit or 32-bit block ciphers are proposed for lightweightness, researchers
warn for the possible vulnerabilities of some 64-bit block ciphers [33] in practice.

1.2.2 Stream Ciphers

Stream ciphers are a practical realisation of the idea of the one time pad.
It generates a pseudorandom bit stream with a master key, an initialisation
vector and some constants, and enciphers the plaintexts by XORing the key
stream. Comparing with block ciphers, stream ciphers are fast and cheap in
implementation, thus they are widely adopted in applications, such as Snow
3G [83] in 3GPP, Salsa20 [24] in TLS by Google. In 2008, the EU project
eStream selected a number of stream ciphers in a final portfolio for software-
or hardware-oriented applications. Many of those are still of a great interest
for academia and industry, such as Salsa20, Grain [105], and Trivium [68].
Stream ciphers can be roughly classified into synchronising ciphers and self-
synchronising ciphers, where the main difference is the dependency of the key
streams on the ciphertexts.

One way to generate stream ciphers is to convert a block cipher using modes of
operation. For instance, Cipher Feedback (CFB) mode is a self-synchronising
stream cipher generated from a block cipher. Another option is to design stream
ciphers from scratch. Unfortunately, there are no guidelines like the Wide Trail

SYMMETRIC-KEY PRIMITIVES 7

Strategy in designing stream ciphers. Moreover, it is more difficult to analyse
stream ciphers in general, due to their ad hoc structures.

1.2.3 Hash Functions

A hash function maps messages of arbitrary length into a digest of a fixed length
n. The main functionality of hash functions is integrity and data authentication,
which means one could easily check if the message is modified by checking the
authenticity of the digest. There are three criteria to meet for a secure hash
function H(x):

• Pre-image resistance: For a given y, the complexity of finding an x such
that H(x) = y is 2n.

• Second pre-image resistance: For a given x, the complexity of finding an
x′ such that H(x′) = H(x) is 2n.

• Collision resistance: The complexity of finding a pair of x and x′ such
that H(x) = H(x′) is 2n/2.

Hash functions can be built based on block ciphers, using Davies-Meyer, Merkle-
Damgård or Miyaguchi-Preneel constructions. The underlying block ciphers are
often based on boolean operations and arithmetic. Examples include the SHA-1,
SHA-2, MD hash families, and some finalists from the SHA-3 competition.

After the theoretical break of SHA-1 and the practical collision detected on
MD5 in 2005, there was an urgent need in standardising a new secure and
efficient hash function, like in the AES competition. In 2009, Keccak [30]
won the SHA-3 competition, and became the new international standard for
hash functions. Apart from Keccak, popular hash functions include SHA-256(-
512) [86], Ripemd-160 [77], Blake2 [9], Skein [85], among them, SHA-256 and
Ripemd-160 are used in several cryptocurrencies like the Bitcoin for transactions
or proof-of-work.

1.2.4 MAC Algorithms

Message authentication codes, or MAC algorithms, are symmetric primitives
for authentication and integrity, which have a similar role as digital signatures
in public-key cryptography. Unlike many keyless hash functions, the
communication parties using a MAC need to share a secret key, with which a
tag is generated for the message. A secure MAC algorithm should be resistant

8 INTRODUCTION

to forgery attacks, where the attacker forges tags to pass the verification process.
MAC schemes are often based on block ciphers or permutations. For instance,
CBC-MAC, is derived from the CBC mode with block ciphers, where the tag
is generated as the encryption of the last ciphertext. HMAC [21] is another
popular scheme for authentication, which is based on a hash function.

There are MACs without secrecy, which send plaintexts directly without
encryption, see for instance the systematic authentication codes [147].
Authentication can also be combined with encryption, which is known
as authenticated encryption (AE). For example, encrypt-and-MAC (E&M)
produces the tag based on plaintext and only encrypts the plaintext, which is
adopted in the Secure Shell protocol (SSH). Used in the SSL (Secure Sockets
Layer) and TLS protocols, MAC-then-encrypt (MtE) generates the tag from
the plaintext and then encrypts both. There is also encrypt-then-MAC (EtM)
which first encrypts the plaintext then authenticates the ciphertext. EtM is
utilised in the Internet Protocol security (IPsec).

Various attacks are discovered in MAC schemes due to the design itself
or incorrect implementations, which severely compromise the data security.
For instance, padding oracle attacks, or the Lucky Thirteen attack [1], take
advantage of the padding errors in the plaintexts. In order to make authenticated
encryption schemes secure, applicable, and robust, a competition CAESAR [54]
calls for and evaluates new authenticated ciphers since 2013. The ciphers are
expected to be secure, fast, and to offer advantages over the AES-GCM.

1.2.5 Permutation-based Primitives

The advantage of Keccak over other finalists in the SHA-3 competition is
its novel design ideas and excellent performance in many platforms. It is a
permutation-based primitive [28, 29] with 5-bit S-boxes and strong diffusion
operations. Keccak adopts a sponge structure (see Figure 1.3) as the
compression function which is both efficient and secure. The popularity of
Keccak led to the study of permutation-based primitives. Block ciphers can
be used to generate other primitives by employing modes of operation, while
permutations can be used in a sponge structure to encrypt and/or authenticate
messages. In a sponge structure, the function f is a cryptographically-secure
permutation. The state size of f is called the width, which is split into the rate
r and the capacity c indicating the efficiency and security strength, respectively.

To process a message, an input of variable lengths is absorbed into the sponge.
Then, it squeezes out the outputs of an arbitrary length with the fixed-length
permutation in an iterated construction. The sponge structure was later
extended into the duplex structure, where both sponge and duplex have keyed

SYMMETRIC-KEY PRIMITIVES 9

0 f f f f f
· · ·

c

r

pad

M

trunc

Z

absorbing squeezing

Figure 1.3: The sponge structure.

variants, namely the donkey sponge and the monkey duplex [28]. Descendants of
Keccak are proposed, such as the authenticated encryption schemesKeyak [32]
and Ketje [31], a fast hashing function KangarooTwelve [27], and a
pseudorandom functionKravatte [26]. Meanwhile, the sponge construction has
also been adopted in several lightweight hash functions such as Photon [101],
Spongent [43] and Quark [8].

1.2.6 Lightweight Symmetric Cryptography

With the popularity of the IoT, small devices from sensors to RFID tags are
able to be connected and communicate with each other through networks. With
billions of such small devices, the security and privacy of the information may
be at stake due to various types of adversaries, where some might be the users
themselves. Thus the information should be properly protected by cryptographic
schemes.

Most cryptographic algorithms are designed with a strong guarantee on security
as the main priority. Even though there are many studies on highly optimised
implementations, especially for the AES, the algorithms may not be suitable or
efficient enough in constrained software or hardware devices. Such devices have
restrictions on the memory, area, throughput, energy or power consumption,
and some are based on microprocessors and micro-controllers. As a result,
instead of tweaking the implementations for current algorithms to the limit,
new symmetric-key primitives are designed to fit constrained environments,
with novel structures and building components proposed. The challenge is to

10 INTRODUCTION

find the right trade-off among security margin, efficiency and cost. Despite the
insignificant size of the devices, lightweight cryptography is by no means weak
cryptography. The primitives are still expected to be secure against adversaries,
even though the attackers in this context may possess less computational power
or only have restricted access to the plaintexts or ciphertexts.

During the past decade, a large number of lightweight primitives have been
proposed by both academia and industry, see for instance a comprehensive survey
by Biryukov et al. [39]. Among them, one of the first lightweight block ciphers
is Present, which was presented in CHES 2007 and later became an ISO/IEC
standard in 2012 along with Clefia [179]. Afterwards, the community witnessed
a boost in new block cipher proposals, including Prince [47], Klein [93],
Led [102], Rectangle [212], Pride [5], PRINTcipher [125], Simon and
Speck [16], Skinny [19], Gift [13] and so on.

Lightweight stream ciphers, hash functions and authenticated encryption
schemes can be built upon lightweight block ciphers. Nevertheless, there
are new proposals such as Photon [101], Spongent [43], Haraka v2 [129],
Kreyvium [55], Lizard [104], as well as many CAESAR candidates [31, 207].

1.3 Cryptanalytic Techniques

1.3.1 Models of Cryptanalysis

Designs and cryptanalysis evolve with dynamic interactions. For the two parties
in the game, a basic agreement is Kerckhoffs’ Principle, which states that
the entire cryptosystem, except for the secret key, is publicly known by the
adversary. The secrecy of the secret key is so vital, that specific standards
and regulations are formulated on the generation, management and storage of
the keys. The focus of this thesis is the security of cryptographic algorithms
when the secret key is correctly deployed in the system. In this section, we
introduce the classifications of attacks based on the power of the adversary. We
will mainly focus on the cryptanalysis of block ciphers for simplicity, where
the terminology and methodology may also be applicable to other types of
primitives.

Ideally, a cryptographic system is secure even when the attacker has unlimited
computing power, which is known as information-theoretical security or
unconditional security. In other words, the ciphertext will not leak any
information about the plaintext, except the length, no matter how powerful the
adversary is. One example that offers such secrecy is the one-time pad, where
the random key-string completely destroys the relation between plaintexts and

CRYPTANALYTIC TECHNIQUES 11

ciphertexts. However, the scheme is impractical as the length of the secret key
should be at least the same as that of the message. Meanwhile for real-life
attackers, with either a supercomputer or a laptop, the computational power is
limited. Under such a model, the security of cryptographic schemes we consider
is called computational security. In other words, no current technology could
break the system. However, it might become vulnerable in the future. The RSA
cryptosystem is an example. Even though it is safe and widely applied nowadays,
the threat from quantum computers is the sword of Damocles, which in return
leads to an active research area, known as the post-quantum cryptography [25].2

In the context of symmetric-key cryptography, computational security may
be violated in three models, taking the amount of exposed information into
consideration.

• Black-box Model. A cryptographic algorithm is considered as a black
box, where the adversary only has access to the plaintexts and/or the
ciphertexts, but has no control nor information on the intermediate
values. In this model, the mathematical properties of the algorithm are
closely examined to exclude design flaws and weaknesses. This is what a
cryptanalysis means in a narrow sense. Any algorithm should at least be
secure in the black-box model.

• Grey-box Model. Cryptographic algorithms are implemented on software
or hardware platforms. As a result, a mathematically secure cipher might
be compromised because of incorrect implementations, where the physical
characteristics of the implementations can be used to recover the secret
key. Attacks in grey-box model are also called implementation attacks.
They include for example, timing attacks, acoustic attacks, cache attacks,
differential fault attacks, power analysis attacks, and so on.

• White-box Model. White-box adversaries, which are the most powerful
attackers, have access to the implementation details as well as the dynamic
execution. For instance, an attacker is able to see or tamper with the
secret key in the memory.

This thesis mainly deals with adversaries in black-box model. More specifically,
the mathematical aspects related to the design and analysis of block ciphers,
which includes the following attacking goals.

• Key Recovery Attacks. In the one-time pad, the secret key is random and
has at least the same length as the message. For practical applications,

2Dedicated research on quantum cryptanalysis of symmetric primitives can also be found
in a couple of research papers [113, 114].

12 INTRODUCTION

the secret key is generated from a master key, which is of a fixed length.
A straightforward approach to recover the key is through an exhaustive
key search. For a κ-bit key, the complexity of exhaustive search is around
2κ−1 on average. Therefore, the key length cannot be too small. The
recommended key length by NIST [14] is at least 112 bits for the federal
government; while for top-secret level documents, the key length should be
192 or 256 bits for long-term security. As we will discuss in the following
chapters, the attacker might take advantage of the design details to mount
key recovery attacks with complexity lower than exhaustive search. This
is called breaking an algorithm.

• Distinguishing Attacks. Instead of recovering the key, an attacker may also
try to distinguish a cipher from random. Although not all distinguishing
properties could be efficiently converted into a key recovery attack, a
distinguisher is often essential in launching an efficient attack.

Adversaries can be either passive or active, from simply observing the ciphertexts
to deliberately asking for the encryption of chosen plaintexts. In reality, one
should be prudent on the assumptions about the adversary and always prepare
for the worst when it comes to security. For instance, deliberate actions were
taken in order to lure the opponent to encrypt messages with certain information
which were successfully applied in World War II. Based on the access to the
plaintexts and ciphertexts, the attacks can be classified into the following
categories.

• Ciphertext-only attack. The adversary is completely passive, and only has
information about the ciphertext and statistical information on plaintexts.
A good cipher is supposed to generate indistinguishable ciphertexts, which
leaks no information about the plaintexts.

• Known-plaintext attack (KPA). The adversary knows some plaintext-
ciphertext pairs, which might be advantageous for deducing the secret
key.

• Chosen-plaintext attack (CPA). The adversary has access to the encryption
oracle, and is able to ask for the encryption of the plaintexts at his/her
will.

• Chosen-plaintext chosen-ciphertext attack (CCA). The adversary has
access to both encryption and decryption oracles, and may (adaptively)
ask for the decryption of the chosen ciphertexts.

Parallel to the plaintexts and ciphertexts, assumptions can be made about the
keys as well. In principle, the secrecy of the keys should be protected. However,

CRYPTANALYTIC TECHNIQUES 13

this is possibly violated due to many practical reasons. For instance, the update
process of the secret key is not random enough, such that some relations can
be found between two master keys used in a system. Besides, it is interesting
for researchers to study the security of cryptographic algorithms given certain
conditions on the keys, which may lead to better insights on the designs and
analysis.

• Single-key model. This is the default attack model, where the key is a
fixed but unknown value.

• Open-key models.

– Related-key model. The adversary may query the encryption or
decryption oracle under a pair of keys with a certain relation, for
instance, the XOR difference of the keys is fixed and known.

– Weak-key model. The adversary is able to chose the secret key from
a set of weak keys.

– Known-key model. Under such a model, the adversary knows
the secret key, based on which the adversary is able to deduce
properties of the cipher. The attack is often of a distinguishing
nature, which is of a theoretical significance in understanding and
analysing primitives [126].

1.3.2 The Toolbox of a Cryptanalyst

Beginning with the invention of differential cryptanalysis and many other
techniques, a formalised research field has been established on the systematic
analysis of symmetric primitives, with a large number of cryptanalytic techniques
developed. As the elemental components in many primitives are block ciphers,
most of the techniques are studied based on block ciphers; they may also be
further converted to finding collisions in hash functions or forging tags in MAC
algorithms. As we have mentioned before, a good distinguisher is essential for
a successful attack. The challenging task is to figure out which is applicable
and how to find one. Based on the certainty of the distinguishers, most of
the cryptanalytic methods can be roughly categorised into cryptanalysis with
a statistical distinguisher or a deterministic distinguisher. For simplicity, we
call them statistical cryptanalysis and deterministic cryptanalysis, respectively.
In statistical cryptanalysis, the distinguisher exists with a certain probability.
Usually, the statistical relations between the plaintexts and ciphertexts are
studied, where the probability is determined by the cipher as well as the
secret key. Meanwhile, a distinguisher in deterministic cryptanalysis is often

14 INTRODUCTION

Table 1.1: An overview on a fraction of main cryptanalytic techniques

Statistical distinguisher Deterministic distinguisher
Differential cryptanalysis* Higher-order differential cryptanalysis†

Linear cryptanalysis† Impossible differential cryptanalysis*

Truncated differential cryptanalysis* Integral cryptanalysis†

Differential-linear cryptanalysis* Zero-correlation linear cryptanalysis†

Boomerang attack† Division property†

Rectangle attack† Interpolation attack†

Multiple linear cryptanalysis† Zero-sum distinguisher†

Multiple differential cryptanalysis* Algebraic attack†

Multidimensional linear cryptanalysis†

Rotational cryptanalysis*

Rotational-XOR cryptanalysis*

Polytopic cryptanalysis*

* - Known Plaintext Attack, †- Chosen Plaintext(/Ciphertext) Attack

independent of the secret key, and derived based on the algebraic properties of
a cipher. We summarise the major cryptanalytic techniques [7, 11, 34, 35, 36,
45, 56, 106, 107, 111, 122, 124, 131, 135, 152, 191, 198] in Table 1.1, where we
assume that the attacker works in the single-key model. Note that it is possible
to find some corresponding distinguishers in the open-key model as well. For
example, related-key differential cryptanalysis finds differential characteristics
under a pair of related keys having a certain difference.

Note that Table 1.1 covers only a fraction of all distinguishers. For instance, an
invariant-subspace distinguisher [136] holds with probability 1 for a weak-key
class, thus it belongs to the deterministic cryptanalysis column but only under a
weak-key model. Similar exceptions include the nonlinear invariant attack [193]
and subspace-trail cryptanalysis [94], where the former works only for weak
keys and the latter can be regarded as a generalisation of integral cryptanalysis
and truncated differential cryptanalysis.

In general, it is difficult to find a good distinguisher. Typically, many human
hours were spent to search for an optimal distinguisher, which requires delicate
inspection of the mathematical properties as well as sharp observations based
on one’s expertise. In recent years, computer-aided search methods have been
successfully applied in finding distinguishers automatically, which dramatically
improves the efficiency in cryptanalysis as well as in designs. Another good

CRYPTANALYTIC TECHNIQUES 15

news is that the distinguishers are not isolated. It is proven that differential
cryptanalysis and linear cryptanalysis can be linked through a complicated
relation in the Fourier domain [58], which however is rather a theoretical
observation than predicting new distinguishers from one another. For impossible
differential cryptanalysis, zero-correlation linear cryptanalysis and integral
cryptanalysis, connections can be found for ciphers within a class where the
linear layers satisfy certain conditions [187]. The observations benefit the
theoretical predictions on the length of the distinguishers [186], or yield a new
distinguisher based on the knowledge of a known one of another type.

In order to complete an attack, techniques for key recovery, collision finding or
tag forgery need to be considered in detail. Examples include meet-in-the-middle
attack, rebound attack [156], cube attack [76] and guess-and-determine attack.
To measure the effectiveness of an attack, one needs to consider the complexities
in terms of data, time and memory. Usually, the data complexity is determined
by the strength of a distinguisher. Time complexity and memory complexity
can be finely adjusted by a trade-off, depending on the computational resource
possessed by an attacker, which is known as the time-memory trade-off attack.

1.3.3 Provable Resistance Against Certain Attacks

During the early practice of designing symmetric primitives, the design
philosophy was often based on rules of thumb, which may overlook some
possible flaws. The Wide Trail Strategy [61], adopted by Daemen and Rijmen
in their milestone proposal of Rijndael [65], is a successful approach to guide the
design of block ciphers. Here, we recall the strategy in the context of differential
cryptanalysis.

In an SPN cipher, an S-box is called active when it has a nonzero input difference.
The Wide Trail Strategy bridges the provable bounds on the probability of
characteristics with the minimum number of active S-boxes in a cipher, where
the branch number [61] of the linear layer plays a significant role.3

Definition 3. Let s, n be integers. The differential branch number of a linear
function f : Fn2s → Fn2s is given by

Bd(f) = min
a6=0
{wt(f(a)) + wt(a)}.

Denote the matrix corresponding to the linear function by M . When M is a
maximum distance separable (MDS) matrix, Bd(f) = n+ 1, which is optimal.

3The definition of branch number here can also be extended to nonlinear functions, which
will be shown in Chapter 5.

16 INTRODUCTION

If M is sub-optimal, then Bd(f) = n. In such a case, the matrix is called
Near-MDS or NMDS.

It can be shown that 2 ≤ Bd(f) ≤ n+1 when f is invertible. Diffusion functions
with branch number Bd(f) ≤ n have become popular in designing lightweight
block ciphers; for instance, Prince [47] and Midori [12] utilise functions with
branch number 4, while Present [44] adopts a bit-shuffling function with
branch number 2.

It is possible to mathematically deduce the minimum number of active S-boxes
of a cipher based on the branch number, while the bound can also be obtained
by running a program as we will discuss in detail in Chapter 2.

1.4 Thesis Outline

The main focus of this thesis is to study block ciphers from the viewpoint of a
cryptanalyst, as well as to deduce the consequences and benefits for designing
new ciphers. In the next chapters, we will dig into the cryptanalytic techniques
for block ciphers, and discuss in depth the systematic framework of finding
a distinguisher, the attacks on specific ciphers or structures, and also novel
approaches to construct new components.

The organisation of the rest of this thesis is as follows.

We start with finding a good distinguisher for block ciphers in Chapter 2,
especially ciphers with an ARX structure. After a comprehensive overview
of the basic cryptanalytic techniques for ARX ciphers, we propose a new
attack called rotational-XOR cryptanalysis, which studies a novel statistical
behaviour of ARX ciphers when rotational cryptanalysis is inapplicable. In
order to efficiently search for distinguishers, even for ciphers with relatively
large block size, we focus on the automatic search techniques on ARX ciphers
based on SAT/SMT solvers. Due to the combinations of simple operations
in ARX, we are able to develop a tool based on Python, which automatically
generates the SAT/SMT files for searching a certain type of distinguishers and
further automates the process of computer-aided cryptanalysis. We choose the
Speck family as an example, and find optimal linear trails and rotational-XOR
characteristics for round-reduced versions of all instances in the family, which
also improves previous results in the literature. The automatic search technique
can be beneficial for the designers, since the circle of design and evaluation can
be largely shortened for future ARX ciphers. The content of this chapter was
published in the following papers [7, 71, 146, 150, 171].

THESIS OUTLINE 17

In Chapter 3, the cipher LowMC aiming for low multiplication complexity is
analysed, with some of the security claims broken. LowMC is a block cipher
with special optimisations for the applications in MPC and FHE. It took a
rather novel design philosophy, adopting a partial S-box layer with a dense
randomised linear layer. However, the lightweight nonlinear layer allows one
to explore the higher-order differential property which penetrates a relatively
large number of rounds. Meanwhile, optimised interpolation attacks can be
launched to recover the secret key by solving a linear equation system. The time
complexity of the attack depends on the number of unknown variables. In order
to estimate the parameter with more accuracy, a novel method is proposed
which combines the previous two key-recovery approaches in a dynamic way.
As a response, the designers have revised the original design to prevent such
attacks. This chapter is based on a published paper [75].

In Chapter 4 and Chapter 5, we study the diffusion layers of block ciphers,
especially SPN ciphers. While the S-box operations often receive much attention
in research, diffusion layers plays a crucial and irreplaceable role in the design
and cryptanalysis as well. In Chapter 4, we study the influence of linear layers
on the invariant subspace attack. By extracting properties of the linear layer,
we are able to show a bound on the dimension of possible invariant-subspace
distinguishers. In Chapter 5, we focus on designing new diffusion layers which
are in fact nonlinear. Under the guidance of the Wide Trail Strategy, a nonlinear
diffusion layer with good diffusion parameters and decent nonlinear properties
may allow a block cipher to achieve resistance against differential and linear
cryptanalysis within a smaller number of rounds. We propose two types of
nonlinear diffusion functions, with their cryptographic properties analysed in
depth. As an application, toy ciphers are constructed that show a stronger
resistance compared with ciphers of a similar structure but with a linear diffusion
layer. Chapter 4 is based on a publication in [148]. The content of Chapter 5
will appear in a journal [149].

For most of the statistical cryptanalytic techniques, the probability of a
distinguisher is estimated under certain assumptions on the round function
and round keys, which might not necessarily be true in reality. In Chapter 6,
we focus on one of the most significant questions in differential cryptanalysis,
namely, the accuracy of the probability estimation for a differential characteristic.
We propose the concept of effective keys, and they are the keys for which a
characteristic has a nonzero probability. As a result, it is possible that some
characteristics have no effective keys at all, which we call singular characteristics.
An algorithm is proposed in Chapter 6, as well as concrete examples of singular
characteristics in practical ciphers.

Finally, in Chapter 7, we conclude the thesis with a few remarks, and discuss
future work.

Chapter 2

Automatic Search Techniques
on ARX

In this chapter, we study the automatic search techniques on ARX ciphers,
and their applications in cryptanalysis. We start by recalling the basics of
ARX ciphers and previous cryptanalytic techniques in Section 2.1 and 2.2.
Rotational-XOR cryptanalysis is introduced in Section 2.3 which is a novel
cryptanalytic method on ARX. Afterwards, a general framework for automatic
search techniques is discussed in Section 2.4. The automatic search techniques
on ARX can be packaged into an automatic tool, which only costs a minimal
effort of an cryptanalyst in analysing ARX ciphers. We apply the automatic
tool to the block cipher family Speck in Section 2.5. Finally, we conclude in
Section 2.6. The contents on rotational-XOR cryptanalysis and its applications
to Speck in this thesis are based on the collaborative works with Ashur, De
Witte, and Ranea, see [7, 71, 146, 171]. The main contributions in this thesis
include developing the automatic search techniques with SAT/SMT solver for
ARX ciphers, and the mathematical model for Rotational-XOR cryptanalysis.

2.1 ARX Primitives

ARX, which stands for modular Addition, Rotation and XOR, is a widely
used design philosophy. Through the interactions of simple operations, ARX
provides strong cryptographic properties. Meanwhile, the operations can be
efficiently implemented in software, so that it is favoured by some designers and
a number of ARX-based designs were proposed. Among them there are the hash

19

20 AUTOMATIC SEARCH TECHNIQUES ON ARX

functions Blake [9] and Skein [85], which are two of the five SHA-3 finalists,
stream ciphers such as Salsa20 [24] and ChaCha [23], block ciphers such as
Tea [205], Xtea [164], Hight [110] and Speck [16], and the MAC algorithm
Chaskey [159]. In 2016, the ARX-based primitives Sparx and Lax [73] were
designed with provable resistance against differential and linear cryptanalysis.
Different from the classification that we have recalled in Chapter 1, ARX
primitives are not necessarily designed with one of those structures, instead
they often take ad hoc design approaches.

As an extension of ARX, a structure replacing the addition with the bitwise
AND, is of special interest because the bitwise AND simplifies cryptanalysis
and improves hardware efficiency. It gained attention and popularity with the
SHA-3 hash function Keccak [30], the NSA block cipher Simon [16], and the
AE scheme Norx [10].

2.1.1 SPECK Family of Block Ciphers

In this section, we introduce the ARX cipher Speck which we will extensively
study; it serves as a proof-of-concept to the methodology we propose for general
ARX primitives in this chapter.

Speck is a family of lightweight block ciphers designed by the NSA in 2013 [16].
A member of the family is denoted by Speck2n/mn, where the block size is 2n
for n ∈ {16, 24, 32, 48, 64}, and the key size is mn for m ∈ {2, 3, 4}.

The round function of Speck receives two words xi and yi, and a round key ki,
all of size n, and outputs two words of size n: xi+1 and yi+1, such that

(xi+1, yi+1) = Fki(xi, yi) = (fki(xi, yi), fki(xi, yi)⊕ (yi≪ β)) ,

where
fki(xi, yi) = ((xi≫ α)� yi)⊕ ki .

The Speck key schedule algorithm uses the same round function to generate
the round keys. Let K = (lm−2, ..., l0, k0) be a master key for Speck2n, where
li, k0 ∈ F2n . The sequence of round keys ki is generated as

ki+1 = fct(li, ki)⊕ (ki≪ β) ,

for
li+m−1 = fct(li, ki) ,

with ct = i the round number starting from 0.

PREVIOUS CRYPTANALYTIC TECHNIQUES 21

li+m−2 · · · li ki

Rii

xi yi

≫ α

≪ β

xi+1 yi+1

Figure 2.1: One round of Speck.

The rotation offset (α, β) is (7, 2) for Speck32, and (8, 3) for the larger versions.
A single round of Speck with m = 4 is depicted in Figure 2.1. For more details,
we refer to the original design [16] and a note by the designers [17].

2.2 Previous Cryptanalytic Techniques

Despite the simplicity of ARX designs, it is difficult to find their cryptographic
weaknesses. Indeed, if the structure is not appropriately applied, for instance
without rotation, the system easily becomes vulnerable [169]. However in
general, it is not easy to break an ARX cipher, and the cryptanalytic tools
applicable to ARX primitives are rather limited. In this section, we will
recall some cryptanalysis techniques: Section 2.2.1, 2.2.2 and 2.2.3 recap
differential cryptanalysis, linear cryptanalysis and their variants, which are
generally effective for most symmetric-key primitives. In Section 2.2.4, we give
a brief introduction to rotational cryptanalysis.

2.2.1 Differential Cryptanalysis

Differential cryptanalysis is a statistical attack on symmetric-key primitives
proposed by Biham and Shamir in 1990 [36]. It theoretically breaks the
security of DES, and is one of the first techniques that can be applied to
most modern ciphers. In a nutshell, an attacker encrypts plaintexts with a fixed
input difference, and analyses the differences in the outputs. For a random
permutation, any difference might occur, while a cipher may possess weaknesses

22 AUTOMATIC SEARCH TECHNIQUES ON ARX

such that some output difference is more probable than others, which leads to
a distinguisher.

Definition 4 ([132]). Let (G,⊗) be an Abelian group. The difference between
two elements X and X∗ is defined as X+X∗−1, where + is the group operation
and X∗−1 is the inverse element of X∗ in G.

For finite fields with characteristic 2, the difference is often defined with the
XOR operation: X ⊕X∗. The differential probability of a vectorial Boolean
function is defined as follows.

Definition 5. Let δ ∈ F2n be the input difference and ∆ ∈ F2m be the output
difference. For a vectorial Boolean function f : F2n → F2m , the differential
probability of δ → ∆ is defined as

dp(δ → ∆) ,
#{x ∈ F2n |f(x)⊕ f(x⊕ δ) = ∆}

2n .

A table that contains the number of right pairs for all input and output
differences is called a difference distribution table (DDT). For functions with a
small input size, for instance an S-box, the DDT can be efficiently generated.
However, it is currently infeasible to obtain the DDT of a block cipher,
considering its large block size and the fact that every master key instantiates
a different permutation. To facilitate the analysis, recall that block ciphers are
often iterative functions, we define a differential characteristic as below.

Definition 6. For an iterative function f = fr−1 ◦ · · · ◦ f1 ◦ f0, a sequence of
differences

Ω : δ0
f0→ δ1

f1→ δ2 → · · · → δr−1
fr−1→ δr

is called an r-round differential characteristic of f .

A differential (δ → ∆) over f = fr−1 ◦ · · · ◦ f1 ◦ f0 contains all differential
characteristics with δ0 = δ, and δr = ∆, where the probability is the sum on
that of its characteristics. In general, there is no efficient way to precisely obtain
the probability of a differential characteristics. To this end, we introduce some
fundamental assumptions on block ciphers.

Markov Cipher

Most block ciphers are designed as an iterative function with simple rounds. It
is possible that the rounds are mutually dependent so that there is no simple
formula to compute the overall probability of a characteristic. To simplify the

PREVIOUS CRYPTANALYTIC TECHNIQUES 23

analysis, certain hypotheses are assmued as the foundation of many cryptanalytic
techniques, which have been formulated by Lai, Massey and Murphy [132]. Here,
we follow the interpretations in the AES design [65].

• Markov cipher. A Markov cipher is an iterative cipher whose
round function satisfies the condition that the differential probability
is independent of the choice of one of the component plaintexts under an
appropriate definition of difference.

• Hypothesis of stochastic equivalence. For virtually all values of
the cipher key, the probability of a differential characteristic can be
approximated by the expected value of the probability of the differential
characteristic, averaged over all possible values of the cipher key.

• Hypothesis of independent round keys. The round keys of a
cipher are derived from the cipher key by means of the key schedule.
The hypothesis states that the expected probability of a differential
characteristic averaged over all possible values of the cipher key, can be
approximated by the expected probability of the differential characteristic,
averaged over all independently specified round keys values.

Over decades of practice, it is widely accepted that the assumptions are
plausible and close to the experimental reality for many ciphers, meanwhile
some discrepancies have been observed in analyses as well [103, 123, 200]. In
this chapter, our analyses will be based on these assumptions and verified by
experiment. In Chapter 6 of this thesis, we will study in depth the hypotheses
and their influence on cryptanalysis.

Key Recovery Techniques

Differentials and characteristics only distinguish a block cipher from random
permutations, so further techniques for recovering the secret key are required.
Here, we describe a basic approach for the recovery of the last-round key,
which is the so-called 1R-attack. The attacker has the knowledge of an r-
round differential distinguisher (a → b) of a block cipher. After encrypting
the plaintext pairs with input difference a over r + 1 rounds and obtaining
the ciphertexts, the attacker guesses some necessary key bits in the (r + 1)-th
round key, and executes a partial decryption on the ciphertexts. If the output
difference b does not occur with the predicted probability, then the guessed key
is filtered out as a wrong guess. At the end of this process, the attacker obtains
suggested key values. Note that wrong key values may be suggested due to the
coincidence with wrong pairs. The signal-to-noise ratio S/N is defined as the

24 AUTOMATIC SEARCH TECHNIQUES ON ARX

ratio between the number of right pairs and the average count of the incorrect
subkeys in a counting scheme. It was shown in [36] that the signal-to-noise ratio
is proportional to the probability p of the differential distinguisher, thus the
data requirement for the attack to succeed is approximately c · p−1, where c is
a constant that depends on S/N .

Differential Cryptanalysis on ARX

With alternative definitions of the differences, differential cryptanalysis of the
ARX ciphers has two versions: with XOR difference where X∗ = X ⊕ δ and
additive difference where X∗ = X � δ [145].

Definition 7. Let x, y be elements in F2n , and δx, δy, δz ∈ F2n be the difference
values. Then the XOR differential probability of addition is defined as

xdp+(δx, δy → δz) = Pr[(x⊕ δx)� (y ⊕ δy) = (x� y)⊕ δz] .

Similarly, the additive differential probability of XOR is

adp⊕(δx, δy → δz) = Pr[(x� δx)⊕ (y � δy) = (x⊕ y)� δz] .

Formulae for computing the differential probability xdp+ and adp⊕ were studied
in a number of papers [144, 145, 160], based on the observation that the modular
addition is a T-function [120] (see the definition in Appendix A). As a result,
the theoretical probability of the differential characteristics can be obtained
efficiently.

2.2.2 Linear Cryptanalysis

Linear cryptanalysis [152] was proposed by Matsui in early 1990’s; it is the first
experimental cryptanalysis against the DES. Linear cryptanalysis investigates
linear relations among the plaintext, ciphertext and the secret key.

Definition 8. Let f : F2n → F2m be a vectorial Boolean function. Assume that
the masks for input x and output f(x) are Γin and Γout. The correlation of the
linear approximation is defined as

C(Γin,Γout) = 2 · Pr(Γin · x⊕ Γout · f(x) = 0)− 1 .

Equivalently, the correlation can also be written as a Walsh transformation,

C(Γin,Γout) = 2−n
∑
x∈F2n

(−1)Γin·x⊕Γout·f(x) .

PREVIOUS CRYPTANALYTIC TECHNIQUES 25

The square of the correlation C2 is sometimes called the linear probability of an
approximation, which is analogous to the probability in differential cryptanalysis.

In some analysis, bias is used instead of correlation, which is defined as ε =
C(Γin,Γout)/2. We will stick to correlations in the rest of this thesis, and the
notations mostly follow the analysis of correlation matrices by Daemen et al. [62].
Similar to differential cryptanalysis, we consider the linear approximation of an
iterated function. Let f = fr−1 ◦ · · · ◦ f1 ◦ f0 be an iterated function. Linear
approximations (γi, γi+1) of a single round fi can be concatenated into a linear
trail (γ0, γ1, · · · , γr) of f .1 In order to estimate the correlation of a linear trail,
the following lemma is often used.

Lemma 1 ([62]). Let (γ0, γ1, · · · , γr) be a linear trail of an iterated permutation.
Then, the correlation of the linear trail can be calculated as

C(γ0, γr) =
r−1∏
i=0

C(γi, γi+1).

A linear approximation (Γin,Γout) of a block cipher is called a linear hull [167],
which contains all linear trails with masks Γin and Γout. The correlation of a
linear hull is the sum of the correlations of all the linear trails as predicted by
the correlation matrix [62], however, sometimes the exact value is difficult to
obtain. Hence, the potential (average squared correlation) of a linear hull is
defined as

ALP (Γin,Γout) = 1
|K|

∑
k∈K

C(Γin,Γout)2.

Key Recovery Attack

The basic key recovery technique in linear cryptanalysis is Matsui’s Algorithm
2 [152], which is based on the wrong key randomisation hypothesis. In short,
it is assumed that with a wrongly guessed key, the partial decryption does
not “peel off” the last round and leads to some random behaviour.2 With a
linear distinguisher of correlation c, the data complexity is estimated to be
proportional to c−2 up to some constant.

1A linear trail is sometimes called a linear characteristic [152].
2A number of follow-up studies (see for instance [6, 46]) finely adjust the original hypothesis

of wrong key randomisation, which leads to a more accurate estimation of the data complexity
and the success probability.

26 AUTOMATIC SEARCH TECHNIQUES ON ARX

2.2.3 Variants of Differential and Linear Cryptanalysis

Variants of differential cryptanalysis were proposed, including truncated
differential cryptanalysis [124], higher-order differential cryptanalysis [124, 131],
impossible differential cryptanalysis [34, 121], boomerang attack [198], rectangle
attack [35], etc. Many of the variants explore the combined effect of
characteristics [56, 134, 194, 201].

Linear cryptanalysis has been generalised into many variants, to name a few,
differential-linear cryptanalysis [135], zero-correlation linear cryptanalysis [45],
multidimensional linear cryptanalysis [106].

2.2.4 Rotational Cryptanalysis

Apart from the above two general methods, rotational cryptanalysis, a dedicated
cryptanalysis for analysing ARX constructions, drew a lot of attention since its
publication. Although the idea of tracking rotational input pairs can be found
before being formalised, see for example, [79, 183], rotational cryptanalysis
was first proposed as a generic attack technique against ARX-based designs by
Khovratovich and Nikolić in 2010 [117] and applied to Threefish, the ARX-
based block cipher underlying the hash function Skein [85]. Most notably, the
rotational rebound attack [119], which is an extension of rotational cryptanalysis,
is by far the best attack against Skein, to date.

Similar to differential cryptanalysis, rotational cryptanalysis takes advantage
of the high probability in the propagation of rotational pairs, e.g. (x, x≪ γ),
through the ARX operations. The following proposition provides a general
method to compute the propagation of a rotational pair through modular
addition.

Proposition 1 ([67]). For independently random variables x, y ∈ F2n , and
0 < γ < n,

Pr[(x� y)≪ γ = (x≪ γ)� (y≪ γ)] = (1 + 2γ−n + 2−γ + 2−n)/4 .

Remark 1. The probability is maximized to 2−1.415 when n is large and γ = 1.
In this chapter, we denote x≪ 1 by ←−x to simplify the notation.

In the original application of rotational cryptanalysis [119], the probability of a
rotational distinguisher is determined by the number of modular additions in an
ARX system, by assuming the independence in the inputs and outputs of each
addition. However, as was shown in [118] that the formula is wrong when applied
to Skein and Blake. More specifically, Khovratovich et al. pointed out that the

ROTATIONAL-XOR CRYPTANALYSIS 27

independence assumption in [117] does not hold when an output of a modular
addition is directly passed as input into another modular addition. They refer
to this event as a “chained modular addition”, and show that when such a
chain exists, the transition probability over both additions is not independent.
Fortunately, the revised result does not invalidate the rotational rebound attack
since the probability there was estimated experimentally. A similar effect of
dependency was noticed as well for linear cryptanalysis [168], and for differential
cryptanalysis [127].

Similar to the modular chains, another issue that was not rigorously analyzed
in [117] and its subsequent works, is the injection of constants. The impact of
constants to ARX systems is noticed, for example, in [183] where the designers
of the block cipher Sea assert that their construction can resist rotational
cryptanalysis due to the nonlinear key schedule and the injection of pseudo-
random constants. When an ARX structure includes the injection of constants,
it is called ARX-C. It was proven in [117] that this structure is complete, i.e.,
that any function can be implemented through an ARX-C construction. In
most papers on rotational cryptanalysis, heuristic experiments are made to
estimate the influence of constants.

In the following section, we will show that constants can be beneficial in
constructing new distinguishers.

2.3 Rotational-XOR Cryptanalysis

In this section, we propose a new cryptanalytic technique called Rotational-
XOR cryptanalysis, which is an extension of rotational cryptanalysis by taking
the constants in the ARX systems into consideration. We will first define the
rotational-XOR differences and subsequently study the theoretical propagation
through ARX operations. Afterwards, an example is provided using Speck to
show how the analysis works in real ciphers.

2.3.1 Rotational-XOR Difference

In most cases, the constants are injected into the state either through an XOR
operation or through modular addition. When the constant c is rotational-
invariant, i.e., c = c≪ γ, for some γ, XORing with c does not change the
rotational property of a rotational pair (x, x≪ γ). However, whenever c is not
rotational-invariant, the properties of the output require further inspection.

28 AUTOMATIC SEARCH TECHNIQUES ON ARX

In general, when a constant c that is not rotational-invariant is XORed into a
rotational pair (x, x≪ γ), the output pair (x⊕ c, (x≪ γ)⊕ c) no longer forms
a rotational pair. If this pair is given as an input to the modular addition, the
basic formula in Proposition 1 for computing the propagation of the rotational
property can no longer be used.
Definition 9 ([7]). Let a1, a2, x be elements in F2n . We call

(x⊕ a1, (x≪ γ)⊕ a2)

a pair with ((a1, a2), γ)-rotational-XOR-difference (or in shorthand notation
((a1, a2), γ)-RX-difference and RX-difference when a1, a2, γ are clear in the
context), and such a pair is referred to as an RX-pair.

It is necessary to point out that in Definition 9, the difference between the
values in an RX-pair is not explicitly defined. The reason is that there exist
multiple parameters a1, a2 corresponding to one pair. For instance, by naming
a variable y = x⊕ a1, we have (y, (y≪ γ)⊕ ((a1 ≪ γ)⊕ a2)), which results in
the same RX-difference with a different pair. In order to simplify the notation,
we give an equivalent definition of an RX-difference below.
Definition 10 ([146]). Given a pair of variables (v1, v2) ∈ F2n , an RX-
difference with rotational offset γ is defined as

∆γ(v1, v2) = v1 ⊕ (v2 ≪ γ).

Note that when a1 = a2 = 0 or ∆γ = 0, the pair (v1, v2) simply becomes a
rotational pair. Similar to differential cryptanalysis, an attacker cares less about
the exact values of the pair and focuses on the RX-difference. It is possible
to take another equivalent way to define RX-differences, while the statistical
property revealed is the same.

2.3.2 Theoretical Propagation of RX-difference

In this section, we study the propagation of RX-differences through the
operations in ARX.

The linear operations

Similar to a rotational pair, an RX-pair passes through the linear operations
with probability 1. To be specific, rotating a pair (x⊕ a1, (x≪ γ)⊕ a2) to the
left by an offset γ′ leads to

((x≪ γ′)⊕ (a1 ≪ γ′), (x≪ (γ′ + γ)⊕ (a2 ≪ γ′)).

ROTATIONAL-XOR CRYPTANALYSIS 29

Meanwhile, for XOR we have

(x⊕ a1, (x≪ γ)⊕ a2)⊕(y ⊕ a′1, (y≪ γ)⊕ a′2)

= ((x⊕ y)⊕ a1 ⊕ a′1, ((x⊕ y)≪ γ)⊕ (a2 ⊕ a′2)).

With the RX-difference in Definition 10, it means that the linear operations
can be directly applied to the RX-difference to deduce the output difference.

The nonlinear operation

Both rotational relations and differences have a probabilistic propagation
through the nonlinear operation �, while the propagation of an RX-difference is
more than their simple combination. Here, our goal is to estimate the transition
probability with respect to modular addition of two input RX-differences to an
output RX-difference. Without loss of generality, we consider the case where
the input rotational pairs are (x⊕a1, y⊕b1) and (←−x ⊕a2,

←−y ⊕b2), and compute
the probability of

←−−−−−−−−−−−−−−−−−−
(x⊕ a1)� (y ⊕ b1)⊕∆1 = (←−x ⊕ a2)� (←−y ⊕ b2)⊕∆2.

Firstly, we introduce two lemmata on differential equations of addition, which
facilitates our deduction of the main theorem in this section. In the sequel, the
identity operation is denoted by Id and left shift by 1 is denoted by SHL.

Lemma 2 ([175]). Let ζ1, ζ2, ζ3 ∈ F2n be constants. Let x, y ∈ F2n be
independent random variables. The probability of the differential equation

x� y = (x⊕ ζ1)� (y ⊕ ζ2)⊕ ζ3 (2.1)

is

1(Id⊕ SHL)(ζ1⊕ζ2⊕ζ3)�SHL((ζ1⊕ζ3)|(ζ2⊕ζ3)) · 2−| SHL((ζ1⊕ζ3)|(ζ2⊕ζ3))| , (2.2)

where a � b if ai ≤ bi for all i.

The following example is provided for a better understanding of Lemma 2.

Example 1. Let n = 8, ζ1 = E, ζ2 = 9 and ζ3 = F7 , we have

(Id⊕SHL)(ζ1 ⊕ ζ2 ⊕ ζ3) = 10 ,

SHL((ζ1 ⊕ ζ3)|(ζ2 ⊕ ζ3)) = FE ,

30 AUTOMATIC SEARCH TECHNIQUES ON ARX

and
|SHL((ζ1 ⊕ ζ3)|(ζ2 ⊕ ζ3))| = |FE| = 7 .

We evaluate the characteristic function 1(Id⊕ SHL)(ζ1⊕ζ2⊕ζ3)4SHL((ζ1⊕ζ3)|(ζ2⊕ζ3)),
and see that it is equal to 1 since no bit in (Id⊕SHL)(ζ1 ⊕ ζ2 ⊕ ζ3) is larger
than the respective bit in SHL((ζ1 ⊕ ζ3)|(ζ2 ⊕ ζ3)). The probability is then
2−| SHL((ζ1⊕ζ3)|(ζ2⊕ζ3))| = 2−7.
Lemma 3. Let ζ1, ζ2, ζ3 ∈ F2n be constants. For independent random variables
x, y ∈ F2n , the probability of

x� y � 1 = (x⊕ ζ1)� (y ⊕ ζ2)⊕ ζ3 (2.3)
is

1(Id⊕ SHL)(ζ1⊕ζ2⊕ζ3)⊕1�SHL((ζ1⊕ζ3)|(ζ2⊕ζ3)) · 2−| SHL((ζ1⊕ζ3)|(ζ2⊕ζ3))| . (2.4)

Proof. Let c be the carry vector of x � y (i.e., c = (x� y) ⊕ x ⊕ y), z the
output vector of x � y (i.e., z = x � y), h the carry vector of z � 1 (i.e.,
h = (z � 1)⊕ z ⊕ 1), and e = c⊕ 1⊕ h. Then,

x� y � 1 = (x⊕ y ⊕ c)� 1 = x⊕ y ⊕ c⊕ 1⊕ h = x⊕ y ⊕ e.

Denote the i-th bit of the binary expansion of 1 by 1i. Then the i-th bit of h,
hi can be computed recursively through

hi =
{

0 i = 0 ,
zi−1 ∧ hi−1 ⊕ zi−1 ∧ 1i−1 ⊕ hi−1 ∧ 1i−1 i > 0 .

We get that,

hi =

0 i = 0 ,
z0 ∧ h0 ⊕ z0 ∧ 10 ⊕ h0 ∧ 10 = x0 ⊕ y0 i = 1 ,
(xi−1 ⊕ yi−1 ⊕ ci−1) ∧ hi−1 i > 1 .

Hence e0 = c0 ⊕ 1⊕ h0 = 1 and
ei+1 = ci+1 ⊕ hi+1

= xi ∧ yi ⊕ xi ∧ ci ⊕ yi ∧ ci ⊕ (xi ⊕ yi ⊕ ci) ∧ hi

= xi ∧ yi ⊕ xi ∧ (ci ⊕ hi)⊕ yi ∧ (ci ⊕ hi)⊕ ci ∧ hi

= xi ∧ yi ⊕ xi ∧ ei ⊕ yi ∧ ei ⊕ (xi−1 ∧ yi−1 ⊕ xi−1

∧ ci−1 ⊕ yi−1 ∧ ci−1) ∧ (xi−1 ⊕ yi−1 ⊕ ci−1) ∧ hi−1

= xi ∧ yi ⊕ xi ∧ ei ⊕ yi ∧ ei ⊕ xi−1 ∧ yi−1 ∧ ci−1 ∧ hi−1

= xi ∧ yi ⊕ xi ∧ ei ⊕ yi ∧ ei .

(2.5)

ROTATIONAL-XOR CRYPTANALYSIS 31

The last equation holds since c0 ∧ h0 = 0 and therefore ci ∧ hi = 0 for all
i. In other words, when computing x � y � 1 we can calculate the carry bit
entering position i + 1 as a function of xi, yi, and the previous carry bit, ei
by means of Equation (2.5). Notice that the recursive formulae for computing
c = (x� y)⊕x⊕ y and e = (x� y� 1)⊕x⊕ y are similar except that they start
with different initial values; we will use a T-function to derive the probability of
the differential equation which is analogous to the XOR-differential probability
of addition [160].

We define a T-function for the differential equation x� y � 1 = (x⊕ ζ1)� (y ⊕
ζ2)⊕ ζ3 as follows.

(t1)i = xi ⊕ yi ⊕ ei ,

ei+1 = xi ∧ yi ⊕ xi ∧ ei ⊕ yi ∧ ei ,

(t2)i = (xi ⊕ (ζ1)i)⊕ (yi ⊕ (ζ2)i)⊕ gi ,

gi+1 = (xi ⊕ (ζ1)i) ∧ (yi ⊕ (ζ2)i)⊕ (xi ⊕ (ζ1)i) ∧ gi ⊕ (yi ⊕ (ζ2)i) ∧ gi ,

(2.6)

where e0 = 1, g0 = 0. Let Si = (ei, gi), the T-function is defined as

((t1)i ⊕ (t2)i, Si+1) = f(xi, yi, (ζ1)i, (ζ2)i, Si), 0 ≤ i ≤ n− 1 , (2.7)

where f follows from Equation (2.6). Define ωi = (ζ1)i||(ζ2)i||(ζ3)i, 0 ≤ i ≤ n−1,
L = (1, 1), C = (0, 1)T and eight 2×2 matrices as

A000 =
[
1 0
0 0

]
, A001 = A010 = A100 = 1

2

[
0 1
0 1

]
,

A111 =
[
0 0
0 1

]
, A011 = A101 = A110 = 1

2

[
1 0
1 0

]
.

Using the directed acyclic graph method [160], the probability of Equation (2.3)
can be determined by LAωn−1 · · ·Aω1Aω0C. From [160] we know that the
probability of the differential equation x � y = (x ⊕ ζ1) � (y ⊕ ζ2) ⊕ ζ3 is
LAωn−1 · · ·Aω1Aω0C

′ , where C ′ = (1, 0)T . The probabilities of Equation (2.1)
and Equation (2.3) can be fully determined by the same automaton as shown in
Figure 2.2. It starts at state (1, 1), reads ωi = (ζ1)i||(ζ2)i||(ζ3)i from i = n− 1
to 0 by regarding ωi as the binary representation of a decimal number and
updates the automaton. The probability of Equation (2.1) (Equation (2.3)
resp.) is nonzero if the automaton ends at state (1, 0) (state (0, 1) resp.), and
every time it passes through a full line, the probability is halved.

We first discuss the condition for the probability to be nonzero, so we omit the
value 1/2 which may occur in the multiplications for now. Since the product

32 AUTOMATIC SEARCH TECHNIQUES ON ARX

(1,1) (0,1)

(0,0) (1,0)

start

7

0,1,2,…,7

1,2,4,7

0,3,5,6 0

7

0

1,2,4

3,5,6

1,2,4 3,5,6

Figure 2.2: Automaton representation of the probability of differential equations.

of L with any matrix Aj can only be (1, 0), (0, 1) or (0, 0), the probability
of Equation (2.1) (Equation (2.3) resp.) is nonzero when LAωn−1 · · ·Aω1Aω0

equals (1, 0) ((0, 1) resp.). Therefore the probability of Equation (2.3) will be
nonzero when the first n− 2 multiplications do not lead to (0, 0), meanwhile
LAωn−1 · · ·Aω1 = (0, 1) and w0 = 1, 2, 4, 7, or LAωn−1 · · ·Aω1 = (1, 0) and
w0 = 1, 2, 4. Comparing with the probability of Equation (2.1) in the previous
lemma, the probability of Equation (2.3) is nonzero if the following condition is
satisfied

(Id⊕SHL)(ζ1 ⊕ ζ2 ⊕ ζ3)⊕ 1 � SHL((ζ1 ⊕ ζ3)|(ζ2 ⊕ ζ3)).

If the probability is nonzero, it is determined by the number of times that
ωi ∈ {001, 010, 100, 011, 101, 110}, and each time it contributes 1/2 to the
overall probability except the first multiplication LAωn−1 . Therefore the
probability is 2−| SHL((ζ1⊕ζ3)|(ζ2⊕ζ3))| since it encounters such matrices when
(((ζ1)i ⊕ (ζ3)i)|((ζ2)i ⊕ (ζ3)i)) = 1 for given i, 0 ≤ i ≤ n − 1. Therefore the
probability of Equation (2.3) is given by

1(Id⊕ SHL)(ζ1⊕ζ2⊕ζ3)⊕1�SHL((ζ1⊕ζ3)|(ζ2⊕ζ3)) · 2−| SHL((ζ1⊕ζ3)|(ζ2⊕ζ3))|.

which leads to the conclusion.

Now we are ready to introduce the theorem for deducing the probability in
RX-difference propagation through modular addition.

ROTATIONAL-XOR CRYPTANALYSIS 33

Theorem 1. Let x, y ∈ F2n be independent random variables. Let
a1, b1, a2, b2,∆1,∆2 be constants in F2n . Then,

Pr[
←−−−−−−−−−−−−−−−−−−
(x⊕ a1)� (y ⊕ b1)⊕∆1 = (←−x ⊕ a2)� (←−y ⊕ b2)⊕∆2]

= 1(Id⊕ SHL)(δ1⊕δ2⊕δ3)⊕1�SHL((δ1⊕δ3)|(δ2⊕δ3)) · 2−| SHL((δ1⊕δ3)|(δ2⊕δ3))| · 2−3

+ 1(Id⊕ SHL)(δ1⊕δ2⊕δ3)�SHL((δ1⊕δ3)|(δ2⊕δ3)) · 2−| SHL((δ1⊕δ3)|(δ2⊕δ3))| · 2−1.415 ,

(2.8)

where
δ1 = R(a1)⊕ L′(a2),

δ2 = R(b1)⊕ L′(b2),

and
δ3 = R(∆1)⊕ L′(∆2) .

Proof. Let C1 be the carry vector of (x⊕ a1)� (y ⊕ b1) and let C1
n−γ be the

carry bit in position n− γ (i.e., C1
n−γ is the most significant carry produced

by (R(x)⊕R(a1))� (R(y)⊕R(b1))). We write
←−−−−−−−−−−−−−−−−−−
(x⊕ a1)� (y ⊕ b1)⊕∆1 from

Equation (2.8) as the concatenation of its left and right parts.

←−−−−−−−−−−−−−−−−−−
(x⊕ a1)� (y ⊕ b1)⊕∆1

=
←−−
((L(x)⊕ L(a1))� (L(y)⊕ L(b1))� C1

n−γ)⊕ L(∆1)||

((R(x)⊕R(a1))� (R(y)⊕R(b1)))⊕R(∆1)

= ((R(x)⊕R(a1))� (R(y)⊕R(b1)))⊕R(∆1)||

((L(x)⊕ L(a1))� (L(y)⊕ L(b1))� C1
n−γ)⊕ L(∆1) .

Similarly, let C2 be the carry vector of (←−x ⊕ a2) � (←−y ⊕ b2), and C2
γ the

carry bit in position γ (i.e., C2
γ is the most significant carry produced by

((L(x) ⊕ R′(a2)) � (L(y) ⊕ R′(b2)). We can write (←−x ⊕ a2) � (←−y ⊕ b2) ⊕∆2
from Equation (2.8) as the concatenation of its left and right parts.

34 AUTOMATIC SEARCH TECHNIQUES ON ARX

(←−x ⊕ a2)� (←−y ⊕ b2)⊕∆2

= ((
←−−−−−−−
L(x)||R(x))⊕ a2)� ((

←−−−−−−−
L(y)||R(y))⊕ b2)⊕∆2

= ((R(x)||L(x))⊕ (L′(a2)||R′(a2)))� ((R(y)||L(y))⊕ (L′(b2)||R′(b2)))⊕∆2

= ((R(x)⊕ L′(a2))� (R(y)⊕ L′(b2))� C2
γ)⊕ L′(∆2)||

((L(x)⊕R′(a2))� (L(y)⊕R′(b2)))⊕R′(∆2) .

We get that
←−−−−−−−−−−−−−−−−−−
(x⊕ a1)� (y ⊕ b1)⊕∆1 = (←−x ⊕ a2)� (←−y ⊕ b2)⊕∆2

if and only if

((R(x)⊕ L′(a2))� (R(y)⊕ L′(b2))� C2
γ)⊕ L′(∆2) =

(R(x)⊕R(a1))� (R(y)⊕R(b1))⊕R(∆1) ,
(2.9)

and
((L(x)⊕ L(a1))� (L(y)⊕ L(b1))� C1

n−γ)⊕ L(∆1) =

((L(x)⊕R′(a2))� (L(y)⊕R′(b2)))⊕R′(∆2).
(2.10)

Replacing

R(x†) = R(x)⊕ L′(a2)

R(y†) = R(y)⊕ L′(b2),

we can rewrite the condition in Equation (2.9) as

R(x†)�R(y†)� C2
γ =

(R(x†)⊕R(a1)⊕ L′(a2))� (R(y†)⊕R(b1)⊕ L′(b2))⊕R(∆1)⊕ L′(∆2).
(2.11)

Similarly, by setting

L(x∗) = L(x)⊕ L(a1)

L(y∗) = L(y)⊕ L(b1),

ROTATIONAL-XOR CRYPTANALYSIS 35

Equation (2.10) reduces to

L(x∗)� L(y∗)� C1
n−γ =

((L(x∗)⊕ L(a1)⊕R′(a2))� (L(y∗)⊕ L(b1)⊕R′(b2)))⊕R′(∆2)⊕ L(∆1).
(2.12)

We can compute the probability that the conditions in Equation (2.11) and
Equation (2.12) hold, by means of Lemma 2 and Lemma 3 based on the values
of C1

n−γ and C2
γ .

Case 1: C2
γ = 0, the probability is the difference propagation probability and

it can be calculated by means of Lemma 2.

Case 2: C2
γ = 1, we solve the differential equations using Lemma 3.

Similarly,

Case 3: C1
n−γ = 0, the probability is the difference propagation probability

and it can be calculated by Lemma 2.

Case 4: C1
n−γ = 1, we solve the differential equations using Lemma 3.

When γ = 1, L(·), R′(·) represent a single bit, hence,

C1
n−γ = L(a1)⊕ L(b1)⊕ L(∆1)⊕R′(a2)⊕R′(b2)⊕R′(∆2).

In addition, notice that the carry bit of L(x)� L(y) is independent of that of
R(x)�R(y) when x, y are independent random variables. We have for large n
and γ = 1, Pr[C2

γ = 0] = 3/4 and Pr[C1
n−γ = 0] = 1/2, since the carry for 1-bit

addition is biased. However, for the addition of two random bit strings, the
most significant carry bit can be regarded as balanced. Then,

Pr[C2
γ = 0, C1

n−γ = 0] = 2−1.415

Pr[C2
γ = 0, C1

n−γ = 1] = 2−1.415

Pr[C2
γ = 1, C1

n−γ = 0] = 2−3

Pr[C2
γ = 1, C1

n−γ = 1] = 2−3.

Therefore, the probability is calculated as

Pr[C2
γ = 0, C1

n−γ] · Pr[x� y = (x⊕ δ1)� (y ⊕ δ2)⊕ δ3]+

Pr[C2
γ = 1, C1

n−γ] · Pr[x� y � 1 = (x⊕ δ1)� (y ⊕ δ2)⊕ δ3],

36 AUTOMATIC SEARCH TECHNIQUES ON ARX

which concludes the proof.

Note that when all the constants are 0, i.e., a1 = a2 = b1 = b2 = ∆1 = ∆2 = 0,
Theorem 1 predicts Pr[←−−−x� y =←−x �←−y], which is the trivial case.

To be complete, we give an equivalent interpretation of Theorem 1 under
Definition 10.

Corollary 1. Suppose that x, y ∈ F2n are independent uniform random
variables, z = x � y. For RX-differences dx, dy, dz ∈ F2n , and variables
x′ = (x⊕ dx)≫ 1, y′ = (y ⊕ dy)≫ 1, z′ = (z ⊕ dz)≫ 1, we have that,

Pr[x′ � y′ = z′] =

1(Id⊕ SHL)(δx⊕δy⊕δz)⊕1�SHL((δx⊕δz)|(δy⊕δz)) · 2−| SHL((δx⊕δz)|(δy⊕δz))| · 2−3

+ 1(Id⊕ SHL)(δx⊕δy⊕δz)�SHL((δx⊕δz)|(δy⊕δz)) · 2−| SHL((δx⊕δz)|(δy⊕δz))| · 2−1.415,

(2.13)

where δx = L(dx), δy = L(dy), δz = L(dz).

2.3.3 An Example in SPECK32/64

Next we give an example of applying RX-cryptanalysis on Speck32/64 with
Theorem 1 when γ = 1. A detailed rotational-XOR cryptanalysis with automatic
search techniques on other instances of Speck will be discussed in Section 2.5.2.

Using a greedy algorithm, we obtained a 6-round characteristic with RX-
differences for the key-schedule of Speck32/64. In Table 2.1 we compare the
probability predicted by Theorem 1 and the probability obtained by iterating all
232 possible (x, y) with a fixed tuple (a1, b1,∆1, a2, b2,∆2). As is evident from
Table 2.1, the values match perfectly. In addition, the empirical probability of
the characteristic over 233 uniformly chosen keys is around 2−25.046. Interestingly,
the empirical probability of the full characteristic is lower than the one predicted
in Table 2.1, which means the left and right inputs to the round function are not
independent. Nevertheless, this characteristic suggests that a weak-key class of
size 2−25 · 264 = 239 exists for 7-round Speck32/64.

The characteristic in the key schedule can be utilised to construct a 7-round
RX-distinguisher for Speck32/64. We started by generating a 64-bit random
master-key and checked if it belongs to the weak-key class (i.e., if the resulting
subkeys satisfy the characteristic in Table 2.1). Once an appropriate key was
found, we used it to encrypt 232 chosen plaintexts with a ((0, 0), 1)-RX difference.

A GENERAL FRAMEWORK FOR AUTOMATIC SEARCH ON ARX PRIMITIVES 37

Table 2.1: A table comparing the transition probability predicted through
Theorem 1 and the empirical probability for uniformly chosen x and y, and a
fixed (a1, b1,∆1, a2, b2,∆2). The rotational amount is γ = 1. All RX-differences
are in hexadecimal notation.

Round a1 b1 ∆1 a2 b2 ∆2 Predicted Prob. Empirical Prob.

1 0 0 0 0 0 0 2−1.415 2−1.415

2 0 0 0 0 0 0 2−1.415 2−1.415

3 0 1 0 0 1 2 2−2.415 2−2.415

4 0 2 6 0 0 8 2−2.415 2−2.415

5 0 D C4 0 B 78 2−6.415 2−6.415

6 0 F4 0 1000 50 1088 2−7.415 2−7.415

Total 2−21.49

Using Theorem 1, we found a possible characteristic taking into account the
RX-difference propagation through the modular addition, and the RX-difference
coming through the key injection.

We repeated this experiment using 27 weak keys. The average number of keys to
discard before finding a key following the characteristic in the key schedule was
approximately 225.1, so the weak-key class is indeed of size 239. In Table 2.2 we
present the characteristic, the predicted probability, and the average empirical
probability. The average number of input pairs with a ((0,0),1)-difference
following the full 7-round characteristic is 1.33, hence the probability is 2−31.58.
Moreover, when taking the differential effect into account (i.e., only checking
how many pairs satisfy the required RX-difference in the last round), the average
number of such pairs is 3.83, thus the probability is 2−30.06.

2.4 A General Framework for Automatic Search on
ARX Primitives

For SPN ciphers, designers often follow the Wide Trail Strategy to support the
argument for a provable resistance against differential and linear cryptanalysis.
In order to set upper bounds to the maximum differential probability of the
differential characteristics and the maximum linear correlation of the linear
trails, we often choose:

• the S-boxes to be such that the difference propagations have a low

38 AUTOMATIC SEARCH TECHNIQUES ON ARX

Table 2.2: A table describing the RX-distinguisher for 7-round Speck32/64.
All RX-differences are in hexadecimal notation, and γ = 1.

Round Difference Key diff. Predicted Empirical
(left,right) accum. prob. accum. prob.

0 0, 0 0
1 0, 0 0 2−1.415 2−1.415

2 0, 0 3 2−2.83 2−2.85

3 3, 3 4 2−4.245 2−4.27

4 607, 60B 11 2−8.66 2−8.68

5 40E, 1C22 1B8 2−15.075 2−15.01

6 3992, 491A 1668 2−21.49 2−21.44

7 333F, 1756 2−31.905 2−31.6

probability and the linear approximations also have a low absolute
correlation;

• the linear layer to be such that the minimum number of active S-boxes is
relatively high.

For instance, the S-box of the AES is derived from the inverse function over
F28 , which is differentially 4-uniform. The linear layer is the composition of
ShiftRows which achieves good diffusion property, and MixColumns which
provides extra diffusion by an MDS matrix. With such a combination, the
probability of 4-round differential characteristics in the AES can be upper
bounded.

However, for ciphers without S-boxes, especially, ARX ciphers, there is no
formula to deduce the security margin, not to mention a simple way to
find differential characteristics and linear trails. Previously, finding such
characteristics requires a large amount of human effort and experience, an
astonishing example is the cryptanalysis of the hash function SHA-1 and
MD5 [202, 203], where the distinguishers were found manually. In this section,
we will introduce a generic model for automatic search, aided by software search
engines; then linear cryptanalysis and RX-cryptanalysis are applied to an ARX
cipher as a demonstration of our toolbox for cryptanalysis.

A GENERAL FRAMEWORK FOR AUTOMATIC SEARCH ON ARX PRIMITIVES 39

2.4.1 A General Model for Automatic Search

As we have recalled in Section 2.2, the hypothesis of stochastic equivalence is
the basis for constructing statistical distinguishers. It allows us to focus on some
distinguishing properties over each individual round, and then connect them
under a certain strategy to optimise the strength of the overall distinguisher.

Here we describe a model for searching for optimal statistical distinguishers in
block ciphers. Given a block cipher with n-bit block size and r rounds, we track
the propagation of values (e.g., differences, masks, RX-differences, etc.) through
the round functions of a block cipher with a non-zero probability/correlation,
which can be illustrated as a shortest path problem in a weighted directed
acyclic graph as follows.3

Find a shortest path in a weighted directed acyclic graph

• Model an (r + 1)-partite graph G = (V,E).

• The vertice set V =
⋃r
i=0 Vi, where Vi = F2n .

• A directed edge is drawn from vi ∈ Vi to vi+i ∈ Vi+1 when the
propagation of vi to vi+1 through the i-th round has a non-zero
probability (correlation, resp.). The absolute binary logarithm of
the probability (the absolute value of the correlation, resp.) is
assigned as the weight of the edge.

• Finding an optimal distinguisher is equivalent to finding a shortest
path of length r in G.

Note that the search of truncated differentials in an SPN cipher is analogous to
the above model, where the vertice set contains all the truncated differences
(active/inactive) instead of actual ones.

Although the shortest path problem is well-studied and can be solved with a
number of efficient algorithms such as Dijkstra’s algorithm, a direct application
is infeasible for most cryptographic primitives, due to the tremendous size of the
vertice set. For instance, for a 32-bit block cipher with r rounds, the number of
vertices is (r + 1) · 232, which makes it impossible to efficiently store and access
them on a personal computer. Dedicated works have been developed on ad hoc
strategies, such as the branch-and-bound method by Matsui [152] in searching
linear trails, as well as a variety of optimised tools including YAARX [197],

3We refer to the textbook [204] for terminology in graph theory.

40 AUTOMATIC SEARCH TECHNIQUES ON ARX

ARX Toolkit [140] and algorithms designed by Biryukov et al. and Bouillaguet
et al. [40, 41, 49].

Another commonly used approach in recent years is to utilise some search
engine, which avoids customising the search algorithms from scratch and saves
cryptanalysts from dealing with complex programs. In the next section, we will
study this approach in detail, which is simply referred to as automatic search
in this thesis.

2.4.2 State-of-the-art Search Engines

SAT/SMT

The Boolean satisfiability problem (SAT) considers whether there is a valid
assignment to Boolean variables satisfying a given set of Boolean clauses. A
Boolean clause consists of Boolean variables (called literals), operators AND,
OR, NOT, and parentheses. For example, the clause x AND (NOT y) is
satisfiable since x = TRUE, y = FALSE is a valid assignment.

The SAT problem is NP-complete [59]. However for most practical situations,
the solutions can be found in a reasonable time. There are a large number of
heuristic SAT solvers, and all of them accept the DIMACS CNF (Conjunctive
Normal Form) files as the standard input format. In the CNF format, all
clauses are literals with logical operation OR and NOT, while the clauses are
concatenated by AND. The output is either satisfiable or unsatisfiable. When it
is satisfiable, the solver can also return a valid assignment to all literals. More
specifically, SAT solvers will start searching with an initial assignment, then
calculate the number of conflicting clauses, based on which the search tree of
the SAT solver decides the next step of searching to eliminate possible conflicts
until a valid or no solution is found.

In general, any Boolean or arithmetic operation can be realised by a combination
of ANDs, ORs and NOTs. When considering problems in cryptanalysis, XOR
is one of the most common operations. If we translate XOR clauses into CNF,
a sentence a ⊕ b becomes two clauses (¬a ∨ ¬b) ∧ (a ∨ b). In general, the
XOR of n Boolean variables will give 2n−1 clauses in CNF format. Even if
the expressions are logically equivalent, the underlying structure of the XOR
equation system is missing in terms of the CNF format. A system of XOR
equations is in fact a linear equation system over F2, therefore, it can be solved by
Gaussian elimination in time O(n3), where n is the number of variables. In many
circumstances, Gaussian elimination is much more efficient than translating
XOR into operations ∨ and ∧. One SAT solver called Cryptominisat4 [181, 182]

A GENERAL FRAMEWORK FOR AUTOMATIC SEARCH ON ARX PRIMITIVES 41

is specially designed to be compatible with XOR operations and solve the XOR
equation system by Gaussian elimination. Another example is inequality. When
comparing Boolean expressions, z ≥ a⊕ b, it is equivalent to if a⊕ b, then z,
which is logically consistent with (¬a ∨ b ∨ z) ∧ (a ∨ ¬b ∨ z).

Addition over integers is an unnatural operation in the SAT language, as it is
not easy to describe with only OR and AND. In SAT theory, constraints like the
objective function

∑
i xi ≤ k, where k ≥ 1, are called cardinality constraints,

which belongs to an even larger class called Pseudo Boolean constraints (PB-
constraints). There are two directions to handle the cardinality constraints: one
is to develop new PB-solvers dedicated to cardinality constraints, the other one
is to convert cardinality constraints into CNF format. One plain method is to
enumerate all the possible combinations of no more than k out of n variables
being true , i.e. the conjunction of

(
n
k+1
)
clauses

∧
i1,...,ik+1

(¬xi1 ∨ · · · ∨ ¬xik+1).
However it is not applicable when n, k are large. Throughout the literature, a
large number of methods to encode the cardinality constraints are presented.
The basic idea is to add new variables to reduce the number of constraints. Since
it is a trade-off between the number of new variables needed and the number
of clauses, while the sizes of variables and clauses both have a significant
influence on the efficiency of solving, it is critical to find a good encoding
method. In this section, we use the sequential encoding method [180], as shown
in Equation (2.14). For

∑
i xi ≤ k, new dummy variables {ui,j}1≤i≤n−1,1≤j≤k

are introduced to return contradiction when the cardinality is larger than k.

(¬x1 ∨ u1,1) ∧ (¬u1,j),

(¬xi ∨ ui,1) ∧ (¬ui−1,1 ∨ ui,1) ∧ (¬xi ∨ ¬ui−1,j−1 ∨ ui,j)

∧ (¬ui−1,j ∨ ui,j) ∧ (¬xi ∨ ¬ui−1,k),

¬xn ∨ ¬un−1,k,

(2.14)

where 1 < j ≤ k, 1 < i < n. The sequential encoding of cardinality constraints
is one of the best methods, with a relatively small amount of additional variables
and a great reduction of clauses. When k = 0, all variables are zero, which can
be translated to n clauses as ¬xi, 1 ≤ i ≤ n.

As a generalisation, satisfiability modulo theory (SMT) problem supports a
larger variety of data structures and functionalities than SAT, such as bit
vectors and self-defined functions. Dozens of SMT solvers have been developed
in the last decades; widely used examples are STP [89] and Z3 [70], which
are SMT solvers based on a SAT solver. STP and Z3 read files in the
SMTLIB [15] language, then convert them into a CNF file which can be
solved by an underlying SAT solver. The solvers support most operations on
Boolean vectors, and integrate arithmetic operations including addition and

42 AUTOMATIC SEARCH TECHNIQUES ON ARX

multiplication (packaging cardinality constraints with a similar approach as
Equation (2.14) into a function), which enables to model complex problems.

Mixed-Integer Linear Programming

Mixed-Integer Linear Programming (MILP) was adopted in modelling
cryptanalysis problems by Borghoff et al., for example, [48], and later improved
in a number of studies [161, 189]. Linear programming language naturally
contains arithmetic operations such as addition, while the sentences for
describing Boolean operations can be complicated. Nevertheless, MILP has
been successfully applied to automatic search of many distinguishers [87, 174,
189, 209].

SMT has certain similarity with the 0-1 integer programming problem or
MILP in interpreting problems, while the underlying ideas to solve them differ
significantly. For the MILP problem, linear programming solvers first regard the
problem as a general linear programming problem over the real numbers, then
by Branch and Cut, they carefully rule out illegal branches and then limit the
solution to 0-1 integers. SMT solvers try to translate the problem to SAT, then
solve it within a binary field. Due to the different methodologies of solvers, the
performance depends heavily on the background and structure of the underlying
problem.

Constraint Programming

A constraint programming (CP) problem states variables and their relations in
constraints. CP solvers have been applied to solving cryptanalytic problems
in [92, 188]; they take advantage of the functionality in CP solvers that the
constraints over variables can be expressed in look-up tables, such that difference
distribution table of 8-bit S-boxes can be efficiently processed. Currently, CP
solvers such as Choco [170] support Boolean, integer, real variables, but are less
flexible than SMT solvers in handling bitvectors.

The models for different search engines are mutually translatable, while the main
difference is on the performance which depends on the specific problem. In this
chapter, and the following chapters whenever applicable, we adopt SAT/SMT
solvers.

A GENERAL FRAMEWORK FOR AUTOMATIC SEARCH ON ARX PRIMITIVES 43

2.4.3 Search Strategy

In order to obtain an optimal characteristic, an objective function to minimise
the overall weight is necessary. As we have shown in Section 2.4.2, objective
functions are supported naturally in MILP, however, not for SAT/SMT which
is adopted in our research. Instead, we set cardinality constraints and finely
adjust the bound until the minimum is located. In such a case, the strategy of
searching, i.e., choosing appropriate bounds, is crucial to the efficiency. To avoid
being ambiguous, the cardinality constraints are also referred to as objective
functions, due to their identical functionality. In the following, we discuss
the design of search strategy, which will be adopted and further optimised in
Section 2.5.2.

Vanilla Strategy

Obviously, there exist trivial upper and lower bounds for the objective function.
As a basic strategy, one may start with the trivial bound and then test one-by-
one with a decreasing/increasing order. It is believed that, for cryptographic
problems executing on SAT solvers, the time for an unsatisfiable decision takes
much longer than satisfiable one, because the search is roughly brute-force before
returning the decision for an unsatisfiable [181]. Hence, we follow Algorithm 1
to find a shortest path of length r in graph G with the weight of a shortest path
of length r − 1.

Algorithm 1 Find the weight of a shortest path in graph G
Input: A shortest path p0 in G of length r − 1 with weight `
Output: The weight of a shortest path p1 in G with length r

1: Extend the length of p0 by one with a cost as small as possible, pass its
weight in a variable `′

2: Set the objective function to `′ and run the solver
3: while The problem is satisfiable with upper bound `′ do
4: `′ ← `′ − 1
5: Run the solver
6: return `′ + 1

It is ensured that the unsatisfiable decision only happens once. However, if a
direct extension of the path p0 found by the solver is of relatively high weight,
which usually happens in ARX-related problems, it is intolerable due to the
exponentially-growing decision time for satisfiable when the size of the problem
is sufficiently large, let alone the time consumed to find such an extension at

44 AUTOMATIC SEARCH TECHNIQUES ON ARX

a minimum cost. Therefore, we involve the idea of binary search in the next
strategy.

Binary-Search Strategy

In order to find a target in a sorted array, instead of going through them
one-by-one from the end of the array, binary search starts from the middle and
each decision chops off the possible interval by half. In our problem, the interval
is (`, U], where ` is the weight of the shortest path of length r − 1 in G and U
is a trivial upper bound (for instance, the block size n since characteristics with
probability less than 2−n is less interesting). We illustrate the strategy in the
following algorithm.

Algorithm 2 Find the weight of a shortest path in graph G
Input: A search interval (`, U]
Output: The weight of a shortest path in G with length r

1: Set the search interval to [T−, T+]
2: T− ← `,T+ ← b `+U2 c
3: while T− < T+ do
4: Run the solver
5: if the problem is satisfiable then
6: U ← T+

7: T+ ← bT
−+T+

2 c
8: else
9: `← T−

10: T− ← T+, T+ ← U
return T− + 1

Remark 2. Note that the second strategy may encounter more unsatisfiable
decisions than the first, but it can still be better in performance. In practice, the
efficiency of the strategy largely depends on the underlying problem, and dedicated
improvements can be applied to the above strategies for specific problems.

2.4.4 A Fully Automated Tool ARXPY

As we have already mentioned, automatic search techniques have been applied
to many ciphers in terms of various cryptanalysis methods. To the best of
our knowledge, previous automated tools [128, 140, 141, 197] searching for
statistical characteristics are implemented specifically for a particular cipher or

A GENERAL FRAMEWORK FOR AUTOMATIC SEARCH ON ARX PRIMITIVES 45

a family of them. Anyone who attempts to use the tool for a cipher which is
not implemented in the package, has to figure out the mechanism of the tool
and write the code by oneself, which is inefficient as well as going against the
original intention of the authors who share their code online.

Our goal is to push the automation process one step further, where it allows the
users to utilise and extend the package to new ciphers by simply implementing
the cipher in a way that the tool also recognises. ArxPy is such a tool for finding
optimal RX-characteristics in ARX block ciphers. In a nutshell, ArxPy takes
a Python-like implementation of an ARX block cipher as the input, translates
the problem into SAT/SMT files automatically, and gives it as an input to the
solver. Given a Python implementation of an ARX block cipher, ArxPy is
executed with a simple shell command. Therefore, the only effort to use ArxPy
is implementing the ARX block cipher in Python, comparing with generating
the files manually. On top of that, ArxPy is open source and has a modular
architecture, therefore, it can be easily adapted for specific scenarios.

ArxPy has been implemented in three modules: the ARX block cipher parser,
the SMT writer and the characteristic finder. Here we briefly explain these
three modules.

The parser module takes a specific implementation of an ARX cipher in Python.
The implementation contains the block size, plaintexts, ciphertexts and round
keys as the variables, the key schedule and the round function as the functions.
Then, it generates a sequence of symbolic expressions of the output values and
the round keys. SymPy [157], a Python library for symbolic mathematics, is
used to generate and parse the symbolic expressions.

The writer module takes the symbolic expressions generated by the parser as an
input, and outputs an SMT file. This is done by extracting the sequence of ARX
operations of the encryption algorithm and the key schedule, and by translating
these operations into equations. The sequence of operations is obtained from
the symbolic expressions by traversing them as trees and extracting their nodes
with SymPy.

Finally, the finder module implements the search strategy to find the optimal
RX-characteristics with the STP solver. The binary search strategy described
in Section 2.4.3 is used to minimize the weight of the characteristic. To find
the optimal RX-characteristic, ArxPy searches for characteristics up to many
weights. After the execution finishes, the last characteristic in the output file is
the optimal one found by the tool.

46 AUTOMATIC SEARCH TECHNIQUES ON ARX

2.5 Applications to the SPECK Family

In this section, we apply the general framework of automatic search to the
block cipher Speck with respect to linear cryptanalysis in Section 2.5.1 and
RX-cryptanalysis in Section 2.5.2. First, we model the graph by studying the
representation of the edges and their weights, and then show characteristics
found by the solver.

2.5.1 Automatic Search in Linear Cryptanalysis

We call a linear trail over a (round-reduced) cipher with maximum correlation
amplitude an optimal linear trail. Here, we apply our automatic search
framework to searching for optimal linear trails in round-reduced Speck, which
gives a general idea on the resistance of Speck towards linear cryptanalysis.
We first transform the rules for linear masks in ARX operations into SAT/SMT
clauses, then apply the model for Speck to find linear trails and linear hulls.
Afterwards, we compare and discuss the runtime of different SAT/SMT solvers.

Translating Clauses for Modular Addition

The behaviours of masks through linear operations are easy to describe, since
the correlation is either zero or ±1. For example, with input masks Γa,Γb and
output mask Γc, the condition for being a linear approximation of XOR with
nonzero correlation is Γa = Γb = Γc. The condition for being a nontrivial linear
approximation of three-fork branching is Γa ⊕ Γb ⊕ Γc = 0, and the conditions
for rotational circular shift is equivalent to each corresponding bit of the masks.

However for the nonlinear operation modular addition, it is necessary to have a
better understanding on the nature of addition modulo 2n. The seminal works
on linear correlation of modular addition are by Wallén et al. [168, 199]. They
propose a recursive method to calculate the correlation of a linear approximation
in addition modulo 2n efficiently by an automaton. The only drawback of the
recursive automaton is that it is very difficult to translate the expression into
bit-level linear relations in masks, i.e. every bit is dependent on all previous bits,
which leads to a huge number of complex constraints. Therefore, even though
there are several papers discussing the heuristic search methods of differential
characteristics, no previous result finds linear trails in ARX ciphers with SAT
theory.

In order to avoid the recursive expression, an explicit result on calculating
the correlation of linear approximations in modular addition is proven by

APPLICATIONS TO THE SPECK FAMILY 47

Schulte-Geers [175]. Despite the recursive property of the carry, modular
addition is CCZ-equivalent to a vectorial quadratic Boolean function. A more
natural formula to calculate the correlation in addition modulo 2n is given in
Proposition 2.

Proposition 2 ([175]). Let z be an n-bit vector satisfying z ⊕ (z � 1)⊕ ((u⊕
v ⊕ w) � 1) = 0, zn−1 = 0, where u is the output mask, v, w are the input
masks in a linear approximation of addition modulo 2n. Then the correlation of
the linear approximation is given by

C((u, v), w) = 1u⊕v4z1u⊕w4z(−1)(u⊕w)·(u⊕v)2−|z|.

Comparing to a recursive algorithm, the Hamming weight of z determines
the amplitude of the correlation directly, while each bit of z can be explicitly
calculated from input and output masks.

From Proposition 2, to obtain a valid linear approximation, the input masks v, w
and output mask u through addition modulo 2n need to follow the constraints
below.

zn−1 = 0,

zn−2 = un−1 ⊕ vn−1 ⊕ wn−1,

zj = zj+1 ⊕ uj+1 ⊕ vj+1 ⊕ wj+1,

zi ≥ ui ⊕ vi,

zi ≥ ui ⊕ wi,

(2.15)

where 0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 3.

From Linear Relations Towards SATisfiability

We take Speck32 as an example for simplicity. Figure 2.3 shows the notation
of the masks in round r. From Equation (2.15), we can derive the constraints
for a linear approximation of Speck32 in round r as

zr15 = 0, zr14 = Γar6 ⊕ Γcr15 ⊕ Γdr15,

zrj = zrj+1 ⊕ Γarj+8 ⊕ Γcrj+1 ⊕ Γdrj+1,

zri ≥ Γari+7 ⊕ Γdri , zri ≥ Γcri ⊕ Γdri ,

Γdri = Γar+1
i ⊕ Γbr+1

i , Γcri = Γbri ⊕ Γbr+1
i+2 ,

(2.16)

48 AUTOMATIC SEARCH TECHNIQUES ON ARX

Γar Γbr

≫ α

≪ β

Γar+1 Γbr+1

Γar≫ α Γcr

Γdr

Γbr+1

Figure 2.3: Notation of masks in round function of Speck32.

where 0 ≤ i ≤ 15, 0 ≤ j ≤ 13, and
∑
r,i z

r
i is to be minimized.

Note that when the block size is 32, it is preferable to take the vanilla strategy
as shown in Algorithm 3.

Algorithm 3 Find an optimal linear trail
Input: An optimal linear trail L with correlation 2−` of an r round-reduced
cipher
Output: The correlation of the optimal linear trail in r+1 round-reduced cipher

1: Append a 1-round trail at the end of L to extend it into a r+ 1 round valid
linear trail L′ with correlation 2−`′

2: while the problem is satisfiable with
∑
r,i z

r
i ≤ `′ do

3: `′ ← `′ − 1
4: return 2−(`′+1)

An overview on the correlation of optimal linear trails in round-reduced Speck
ciphers is given in Table 2.3. Our experiments for searching optimal linear
trails were performed on a PC with 8 Intel® Core™ i7 processors clocked at
3.40 GHz. In order to speed up the search by utilising the parallel mode in
Cryptominisat4, we run the program on a cruncher with 40 Intel® Xeon™
E5-2687W v3 processors clocked at 3.1 GHz. We confirm all the correlations of
optimal linear trails in [211]. Moreover, our method covers significantly more
rounds in larger versions of Speck: 11/13/9/9 rounds comparing to 7/5/4/4
rounds in the previous paper [211] for Speck48/64/96/128.

We also show examples of linear trails with the best correlation for round-
reduced Speck in Table 2.4. Sometimes without further constraints, input and

APPLICATIONS TO THE SPECK FAMILY 49

Table 2.3: Correlation of the best linear trails in the Speck family.

R Speck32 R Speck32 R Speck48 Speck64 Speck96 Speck128

1 1 12 2−20 1 1 1 1 1
2 1 13 2−22 2 1 1 1 1
3 2−1 14 2−24 3 2−1 2−1 2−1 2−1

4 2−3 15 2−26 4 2−3 2−3 2−3 2−3

5 2−5 16 2−28 5 2−6 2−6 2−6 2−6

6 2−7 17 2−30 6 2−8 2−9 2−9 2−9

7 2−9 18 2−34 7 2−12 2−13 2−13 2−13

8 2−12 19 2−36 8 2−15 2−17 2−18 2−18

9 2−14 20 2−38 9 2−19 2−19 2−22 2−22

10 2−17 21 2−40 10 2−22 2−21

11 2−19 22 2−42 11 2−25 2−24

12 2−27

13 2−30

output masks may have very high Hamming weight. By setting cardinality
constraints on the Hamming weights of the masks, we can obtain trails with
input and output masks of the lowest Hamming weight under a given correlation
and number of rounds; an example is the linear trail of 11-round Speck32 in
Table 2.4.

Enumerating Linear Trails in a Linear Hull

For most SAT solvers, if the problem is satisfiable, they can print all the solutions.
However, due to the additional variables introduced by encoding methods in
generating the CNF files, the solvers may output duplicated solutions which
represent the same trail, as also observed by Kölbl et al. in [130]. To avoid
inaccuracy, we generate the solutions one by one:

Step 1: Generate the CNF file for the problem, and ask the solver to give one
solution s̄ if it exists.

Step 2: Append a new clause to the current CNF file in order to rule out s̄.

Step 3: Ask the solver to give a solution, repeat step 2 until the solver returns
unsatisfiable.

In Table 2.5, we give the best linear hulls found and their corresponding
distribution of trails for 9-round and 10-round Speck32, where the averaged

50 AUTOMATIC SEARCH TECHNIQUES ON ARX

Table 2.4: Linear trails with best correlation in reduced-round Speck.

R Speck32 Speck48 Speck64
1 4000 00B0 800121 158021 00101800 00001812
2 0000 00C0 018100 200101 00001000 00000010
3 0300 0300 000100 000001 00000018 00000000
4 0C1E 0818 000001 000000 D8000000 C0000000
5 F000 D010 098000 080000 04100006 04800006
6 4683 4743 406100 406800 0026D030 0420C030
7 00A0 0629 00024B 00420A 01070101 21073781
8 78A0 18A1 001040 5E1042 01B00100 00318601
9 0090 6021 9082C0 F082D0 01800001 0181B000
10 6080 4081 000018 80D09B 01000000 00018000
11 0080 0001 DE84DC C684DC 00010000 00000000
12 0001 0000 00000D00 00000C00
13 00006065 00006068

R Speck96 Speck128
1 000001800120 140000018021 0000000001800120 1400000000018021
2 000000018100 200000000101 0000000000018100 2000000000000101
3 000000000100 000000000001 0000000000000100 0000000000000001
4 000000000001 000000000000 0000000000000001 0000000000000000
5 098000000000 080000000000 0D00000000000000 0C00000000000000
6 404000000000 404800000000 6040000000000000 604C000000000000
7 000000000002 004000000002 0000000000000003 0060000000000003
8 180000000010 1A0000000010 1800000000000018 1B00000000000018
9 009000000080 108000000080 00900000000000C0 18800000000000C0
10 440458000404 840480000404 0000000004045E06 C404800000000606

linear probability ALP is estimated by summing up the squared correlation of
all linear trails found by the solver. The experimental average ALP with 128
random keys for the above linear hulls are 2−28.9 and 2−31.1 respectively.

Comparison of Solvers

In some previous papers on automatic searching of differential and linear trails,
e.g. [161, 189], the search problem is modelled as a MILP problem and solved
by CPLEX. To compare the performance of CPLEX and Cryptominisat4,
we encode the same constraints with the MILP language and CNF without
optimisation. Despite the connection between the MILP and the SAT problem

APPLICATIONS TO THE SPECK FAMILY 51

Table 2.5: The distribution of linear trails in the best found 9-/10-round
Speck32 linear hull.

9-round* 10-round†

Cor. #trails Cor. #trails
2−14 0 2−17 1
2−15 1 2−18 1
2−16 0 2−19 6
2−17 3 2−20 16
2−18 2 2−21 81
2−19 21 2−22 344
2−20 69 2−23 1298
2−21 346 2−24 4873
2−22 1196 2−25 17781
2−23 4461 2−26 ≥60480
2−24 15241 2−27 ≥23951
2−25 48397 2−28 ≥11272
2−26 2−29 ≥3789
2−27 2−30 ≥5883
2−28 2−31 ≥48951

ALP 2−29.1 ALP ≥ 2−32.1

*input masks: 0010, 1400, output masks: 0B00, 0800
†input masks: 0000, 0306, output masks: 0B00, 0800

with an objective function, our method has an advantage over CPLEX. For
instance, to find an optimal linear trail in 6-round Speck32, it takes over 4000
seconds on CPLEX, compared to about 2 seconds on Cryptominisat4.4

Another commonly used solver is STP [89], which is an SMT solver and also a
CNF generator. It encodes constraints into a CNF file inside the solver based
on the SMTLIB2 language, and then calls a SAT solver to solve the problem.
Unlike Cryptominisat4, STP does not support XOR clauses and Gaussian
elimination, therefore all clauses involving XOR are translated into standard
CNF format. Thus, with exactly the same constraints derived in Section 2.5.1,
we generate different CNF files encoded by STP and our method, and compare

4In 2016, the MILP-based method was applied to the search of differential characteristics
and linear trails of Speck [87]. The formulae describing the linear approximations differ
from those here, and dedicated techniques are used to improve their search. In addition, the
authors concatenate two or three shorter linear trails to attack more rounds, while we focus
on finding optimal trails in reduced-round primitives.

52 AUTOMATIC SEARCH TECHNIQUES ON ARX

Table 2.6: Comparison between the runtime of CNF files generated by
Section 2.5.1 and STP on the searching problems of Speck128.

Section 2.5.1 STP
#Rounds time1 time2 time1 time2

4 0.05 s 0.09 s 2 s 2 s
5 0.8 s 1 s 4 s 7 s
6 8 s 10 s 18 s 19 s
7 4 m 44 s 1 m 56 s 6 m 2 s 4 m 20 s
8 2 s 643 m 55 s 55 m 4 s 114 m 26 s
9 53 m 51 s 16523 m 10 m 27 s 12184 m

their performances on the searching problem of Speck by considering the
number of variables and clauses in the corresponding CNF file, as well as the
runtime for getting optimal linear trails and unsatisfiable decision. Both CNF
files run on Cryptominisat4.

In most cases, the CNF file encoded by our method has a smaller number of
variables and clauses than the STP-generated ones, and the difference can be a
factor of 2 for problems in Speck with larger block sizes. Although the size of
the problem and the speed of solving are not strictly proportional, in general, less
variables and clauses are preferable. Table 2.6 shows the comparison between
the runtime of CNF files generated by the method in Section 2.5.1 and the
STP solver, where time1 is the time to find an optimal linear trail, and time2 is
the time to return unsatisfiable. In general, the performance of both methods
is comparable. However it is interesting to notice that it takes 2 seconds to
find one optimal trail for 8-round Speck128 by our method while STP uses
around one hour. It shows that the performance of CNF files depends heavily
on the encoding method and the underlying problem. Therefore, our method
may provide an alternative way to solve problems which are not solvable using
other solvers.

2.5.2 Automatic Search for RX-characteristics

Translating RX-cryptanalysis with SAT/SMT

Based on the theory of RX-cryptanalysis in Section 2.3, our goal is to find
good RX-characteristics in Speck. Different from linear cryptanalysis in
Section 2.5.1, we work with related keys with given RX-differences, such that
the RX-differences of the plaintext part may somehow be cancelled which leads
to distinguishers covering more rounds. For each version of Speck, we model

APPLICATIONS TO THE SPECK FAMILY 53

the propagation of RX-differences through both the round function and the key
schedule. Since Speck uses a non-linear key schedule, the master keys following
an RX-characteristic over the key schedule belong to a weak-key class.

We explain the notation as shown in Figure 2.4.

∆1a
r ∆1b

r

≫ α

≪ β

∆1a
r+1 ∆1b

r+1

∆1k
r

∆1a
r≫ α

∆1d
r

∆1b
r≪ β

∆1l
r+m−2 · · · ∆1l

r ∆1k
r

Rrr

Figure 2.4: Notation of the RX-differences in Speck. Left: Round function.
Right: Key schedule.

Since the key schedule of Speck reuses the same round function as the cipher
itself, it is sufficient to only show the model of the round function. With
Corollary 1, the probability of an RX-difference propagating through additions
splits into two mutually exclusive cases, thus one of the following constraints
should be satisfied:

(Id⊕SHL)(L′(∆1a
r≫ α)⊕ L′(∆1b

r)⊕ L′(∆1d
r))⊕ 1

� SHL((L′(∆1a
r≫ α)⊕ L′(∆1d

r))|(L′(∆1b
r)⊕ L′(∆1d

r)))
(2.17)

(Id⊕SHL)(L′(∆1a
r≫ α)⊕ L′(∆1b

r)⊕ L′(∆1d
r))

� SHL((L′(∆1a
r≫ α)⊕ L′(∆1d

r))|(L′(∆1b
r)⊕ L′(∆1d

r)))
(2.18)

54 AUTOMATIC SEARCH TECHNIQUES ON ARX

The cost wr is calculated as

wr =

|SHL((L′(∆1a

r≫ α)⊕ L′(∆1d
r))|(L′(∆1b

r)⊕ L′(∆1d
r)))|+ 3 ,

Eq. (2.17) holds,
|SHL((L′(∆1a

r≫ α)⊕ L′(∆1d
r))|(L′(∆1b

r)⊕ L′(∆1d
r)))|+ 1.415 ,

Eq. (2.18) holds.

The linear operations are modelled as follows:

∆1a
r+1 = ∆1d

r ⊕∆1k
r,

∆1b
r+1 = (∆1b

r≪ β)⊕∆1a
r+1.

And our objective function is to minimise∑
r

wr.

Starting from Figure 2.4 each operation is replaced with the appropriate
constraint(s). This is repeated for each round of the round-reduced cipher,
where the output constraints of a round are treated as the input constraints of
the next one. A target value is set for the objective function and the program
is given as input to the STP tool [89] which searches for a solution satisfying
all constraints. When the STP tool finishes, the target value is replaced with a
new one according to the search strategy, and the STP tool is called again until
the search is complete.

Search Strategy

The strategy here is based on the binary-search strategy in Section 2.4.3, which
works in two phases:

Phase 1 - finding a good RX-characteristic over the data part. The program
starts by searching for an RX-characteristic covering the data part of the cipher
(i.e., the left side of Figure 2.4) with probability at least 2−n/2, and the key
schedule part with probability at least 2−mn. If a solution satisfying these
constraints is found, the objective function for the data part is updated and an
RX-characteristic with probability at least 2−n/4 is searched.

If the program cannot find a solution with probability at least 2−n/2, the
objective function for the data part is relaxed and the program searches for an

APPLICATIONS TO THE SPECK FAMILY 55

Algorithm 4 Find an optimal RX-characteristic of r rounds for Speck32/64.
Input: T+

d ,T−d ,T+
k ,T−k .

Output: The probability of an optimal RX-characteristic of r rounds.
1: T+

d ← 32, T−d ← 0, T+
k ← 64, T−k ← 0

2: Set T−d ≤Wd ≤ T+
d , T−k ≤Wk ≤ T+

k

3: while T+
d 6= T−d do

4: if The problem is satisfiable then
5: T+

d ← T+
d /2

6: else
7: T−d ← T+

d /2
8: Set T−d ≤Wd ≤ T+

d

9: while T+
k 6= T−k do

10: if The problem is satisfiable then
11: T+

k ← T+
k /2

12: else
13: T−k ← T+

k /2
14: Set T−k ≤Wk ≤ T+

k

15: return 2−Wd , 2−Wk

RX-characteristic with probability at least 2−1.5n/2. This binary search (over
the binary logarithm of the differential probability of a characteristic in the
data part) is repeated until no further improvements are possible.

Phase 2 - optimising the size of the weak-key class. After the RX-
characteristic with optimal probability is found, the program sets to optimise
the size of the weak-key class. Suppose ζ0 is the probability for the RX-
characteristic found in Phase 1, the objective functions in Phase 2 are set such
that the program finds RX-characteristics with probability at least ζ0 for the
data part, and probability at least 2−mn/2 for the key schedule (i.e., the right
part of Figure 2.4). With a binary search, the best RX-characteristic for the
key schedule is improved under the constraint that this RX-characteristic can
support an RX-characteristic for the data part with probability at least ζ0.

Using this algorithm it is guaranteed that the RX-characteristic in the round
function have optimal probability, and that the corresponding RX-characteristic
in the key schedule allows for a non-empty weak key class. The algorithm is
more formally described in Algorithm 4.

56 AUTOMATIC SEARCH TECHNIQUES ON ARX

Table 2.7: RX-characteristics with γ = 1 for different versions of Speck. Entries
marked with † were found through the adjusted search strategy.

Version Rounds Data Prob. Key Class Size

32/64 10 2−19.15 228.10

32/64 11 2−22.15 218.68

32/64 12 2−25.57 24.92

48/96 11 2−23.15 214.93

48/96 11† 2−24.15 225.68

48/96 12 2−26.57 227.5

48/96 12† 2−26.57 243.51

48/96 13 2−31.98 224.51

48/96 14 2−37.40 20.34

48/96 15 2−43.81 21.09

Additional Search Strategies

Note that, for obtaining a large number of rounds, the above search strategy
prefers RX-characteristics with high probability in the data part over large
weak-key classes. Some may adopt different trade-offs, which can be obtained
by minor modifications to the code. For instance, the size of the weak-key class
of some characteristics found under our strategy seems to be marginal. We run
several experiments with the adjusted search strategy that 2mn · ζ0 > 22n where
ζ0 is as before. In such case, the size of the weak-key class is larger than the
required data complexity.

Results

We present an overview of the distinguishers in Table 2.7; more details can
be found in our paper [146]. The rotational amount is set to 1 for all the
RX-characteristics.

Table 2.8 shows the RX-characteristics covering 11 and 12 rounds found by
our program. The best published characteristic so far covered 9 rounds of
Speck with probability 2−30. Our 10-round characteristic has a much better
probability of 2−19.15 for a weak-key class of size 228.10. The table also shows
that even our 12-round characteristic has probability of 2−26.57 which is still
higher than the previously known 9-round differential characteristic, although
our distinguisher works for a weak-key class of about 30 keys.

APPLICATIONS TO THE SPECK FAMILY 57

Table 2.8: A 11-round (left) and 12-round (right) RX-characteristic in
Speck32/64.

R RX-diff.(Key) RX-diff.(data) R RX-diff.(Key) RX-diff.(data)

0 0000 (0000||0000) 0 0000 (0050||2000)
1 0000 (0000||0000) 1 0100 (8000||0000)
2 0000 (0000||0000) 2 0001 (0000||0000)
3 0001 (0000||0000) 3 0000 (0000||0000)
4 0000 (0000||0000) 4 0001 (0000||0000)
5 0003 (0000||0000) 5 0000 (0000||0000)
6 0200 (0000||0000) 6 0001 (0000||0000)
7 0205 (0200||0200) 7 0200 (0000||0000)
8 0801 (0000||0800) 8 0206 (0200||0200)
9 2001 (0000||2000) 9 0800 (0000||0800)
10 AA0B (0000||8000) 10 2001 (0000||2000)
11 (2A0B||2A09) 11 A40E (0000||8000)

12 (240E||240C)
Prob. 2−45.32 2−22.15 2−59.08 2−25.57

We extended our search to 13-round characteristics but found none, suggesting
that a 12-round RX-characteristic is the longest possible one.

We found RX-characteristics covering up to 15 rounds for Speck48/96. Some
of the characteristics are shown in Table 2.9 and Table 2.10. The distinguishers
extend the previously best differential characteristic which covers 11 rounds
with probability 2−45. Note that the sizes of the weak key class for the 14- and
15-round characteristics are marginal. However, due to resource constraints we
killed the program before it completed its search. Hence, the characteristics
presented in this section are not guaranteed to be optimal in length (i.e., 16-
round RX-characteristics may exist) nor in probability (i.e., RX-characteristics
with higher probabilities or a larger weak-key class may exist for the same
number of rounds). In addition, the probabilities of the round function part
in the 14- and 15-round characteristics are relatively high, which may imply
that distinguishers with larger weak key classes can be found with a different
trade-off.

Experimental Verification. The characteristics for Speck32/64 were partially
verified by experiments. For 10-round and 11-round characteristics, a key-pair
is generated randomly with the corresponding difference. Then we executed the
key expansion algorithm and tested whether the key characteristic is followed.

58 AUTOMATIC SEARCH TECHNIQUES ON ARX

Table 2.9: 12-round (left) and 13-round (right) RX-characteristics in
Speck48/96.

R RX-diff.(Key) RX-diff.(data) R RX-diff.(Key) RX-diff.(data)

0 000008 (000000||000008) 0 000008 (000000||000008)
1 000240 (000000||000040) 1 000240 (000000||000040)
2 000000 (000200||000000) 2 000000 (000200||000000)
3 000000 (000000||000000) 3 000000 (000000||000000)
4 000000 (000000||000000) 4 000000 (000000||000000)
5 000000 (000000||000000) 5 000000 (000000||000000)
6 000001 (000000||000000) 6 000001 (000000||000000)
7 000001 (000000||000000) 7 000001 (000000||000000)
8 000001 (000000||000000) 8 000000 (000000||000000)
9 010010 (000001||000001) 9 010018 (000001||000001)
10 100089 (000010||000018) 10 1000F1 (000018||000010)
11 8904DE (000080||000040) 11 880801 (080080||080000)
12 (09049E||09069E) 12 C04911 (000000||400000)

13 (004911||004913)
Prob. 2−52.49 2−26.57 2−71.49 2−31.98

Once a weak key was found, we encrypted 232 plaintexts, and measured the
probability that the RX-characteristic is satisfied. It shows that the experimental
probability matches the theoretical prediction.

2.6 Conclusion

In this chapter, we recalled the cryptanalytic techniques of ARX ciphers,
including differential cryptanalysis, linear cryptanalysis, rotational cryptanalysis,
as well as our recently-proposed rotational-XOR cryptanalysis. We studied
the properties of the rotational-XOR difference with a rigorous mathematical
deduction, which enrich the toolbox for analysing ARX ciphers. For various
cryptanalytic techniques, a core element is the distinguisher. Generally speaking,
it is difficult to find a good distinguisher for a cipher with a large block size
and many rounds, especially if one also prefers an optimal solution. As an
application of a general framework with SAT/SMT solvers, we developed an
automatic tool for finding optimal characteristics and trails in ARX ciphers.
Moreover, a Python-based package SymPy was adopted to wrap the search tool
into ArxPy. It bridges plain implementations of ARX ciphers and SAT/SMT
files, thus simplifies the cryptanalysis. With the automatic search tool, the effort

CONCLUSION 59

Table 2.10: 14-round (left) and 15-round (right) RX-characteristics in
Speck48/96.

R RX-diff.(Key) RX-diff.(data) R RX-diff.(Key) RX-diff.(data)

0 000008 (000000||000008) 0 000008 (000000||000008)
1 000240 (000000||000040) 1 000240 (000000||000040)
2 000000 (000200||000000) 2 000000 (000200||000000)
3 000000 (000000||000000) 3 000000 (000000||000000)
4 000000 (000000||000000) 4 000000 (000000||000000)
5 000000 (000000||000000) 5 000000 (000000||000000)
6 000001 (000000||000000) 6 000001 (000000||000000)
7 000001 (000000||000000) 7 000001 (000000||000000)
8 000000 (000000||000000) 8 000001 (000000||000000)
9 010018 (000000||000000) 9 010011 (000001||000001)
10 1000E0 (010019||010019) 10 100080 (000010||000018)
11 680021 (0801E8||000120) 11 990391 (000089||000049)
12 000009 (000900||000000) 12 480103 (000248||000000)
13 202844 (000000||000000) 13 000301 (000100||000100)
14 (202844||202844) 14 91101D (000000||000800)

15 (91181D||91581D)
Prob. 2−95.66 2−37.40 2−94.91 2−43.81

in finding distinguishers in ARX with differential, linear or RX-cryptanalysis
will be largely reduced, therefore, it allows us to have a better understanding of
an ARX cipher or to design new ones.

Our automatic search tool is mainly applied to linear cryptanalysis and RX-
cryptanalysis of Speck. Here, we list the best known distinguishers of Speck32
and Speck48 in Table 2.11 including differential characteristics, linear trails
and RX-characteristics.

Considering the number of rounds covered by the distinguishers, RX-
characteristics are better than differential characteristics and linear trails within
some weak key class. For the smallest version Speck32/64, the distinguishers
cover up to 54.5% of the total rounds, and the best known attack reached
15 rounds with differential cryptanalysis by Dinur [74]. Interestingly, the
distinguishers in the larger versions cover many more rounds while the total
number of rounds only slightly increases. Meanwhile, the distinguishers we
found for the larger versions are often not optimal due to the resource limits.
It implies that with improved computational resources one might find better
distinguishers with our automatic search tool for the larger versions of Speck.

60 AUTOMATIC SEARCH TECHNIQUES ON ARX

Table 2.11: Best found distinguishers for Speck32 and Speck48. DC:
differential characteristic; LC: linear trail; RX: RX-characteristic. The data
probability for a linear trail is filled with its squared correlation.

Version Rnds. Covered. Rnds. Type Data Prob. Key Class Ref.

32/64 22 9 DC 2−30 264 [74]
9 LC 2−28 264 [150]
10 RX 2−19.15 228.10 [146]
11 RX 2−22.15 218.68 [146]
12 RX 2−25.57 24.92 [146]

48/96 23 10 DC 2−40 296 [74]
10 LC 2−44 296 [150]
11 DC 2−45 296 [87]
11 RX 2−24.15 225.68 [146]
12 RX 2−26.57 243.51 [146]
13 RX 2−31.98 224.51 [146]
14 RX 2−37.40 20.34 [146]
15 RX 2−43.81 21.09 [146]

More importantly, the larger versions in the family are those which received
more attention and consideration, so it is certainly worth a closer look before
any decision being made for recommendation or application.

In addition, we expect the applications of our analysis tool to many other ARX
designs in future work. Moreover, it is certainly promising to design new ARX
primitives efficiently by automated evaluations and adjustments. To this end,
further improvements in automatic search techniques are required.

Chapter 3

Optimised Interpolation
Attacks on LowMC

3.1 Motivation

With the concepts of secure multi-party computation (MPC) and fully
homomorphic encryption (FHE) receiving increasing attention, these areas
witnessed remarkable advances in the past years, due to a number of theoretical
and practical breakthroughs. In MPC protocols, the communicating parties
evaluate a function collaboratively with the inputs being private, where Yao’s
circuit [210] and Shamir’s secret sharing [176] are the main practical protocols.
Symmetric-key primitives are not directly involved in the techniques that
enable the computation by multiple parties. However, a secure evaluation
of a symmetric encryption, such as an encryption with the AES, is a vital
benchmark for an MPC protocol. For fully homomorphic encryption, a user
may want to upload the encrypted information to a cloud server, while the
server is still able to carry out certain operations on the ciphertexts such that
the decryption yields the intended evaluation on the plaintext. Instead of
sending a homomorphic encryption of the information under the public key to
the server, the user could send the symmetric-key encryption of the message
together with the public-key encryption of the secret key. Then, the server could
use a homomorphic decrypting circuit to get the homomorphic encryption of the
message while avoiding heavy computations. One of the practical difficulties is
that, highly-optimised implementations of the existing cryptographic primitives
are not directly transplantable to MPC and FHE with efficient instantiations.

61

62 OPTIMISED INTERPOLATION ATTACKS ON LOWMC

For both MPC and FHE scenarios, there are two main metrics to evaluate
the cost of block ciphers: multiplicative complexity (MC) which is simply the
number of multiplications (AND gates) in a circuit and the multiplicative depth
of the circuit (AND depth). The metrics have some similarity to the latency,
where a low-latency cipher takes less time for one encryption in hardware. It
also resembles the efficient masked implementations which require minimising
the number of multiplications. The requirements from the MPC and FHE
applications hint a new direction in designing lightweight block ciphers instead
of optimising ciphers with a different nature. Proposed by Albrecht et al. in
2015, LowMC is the first block cipher that is designed for low multiplicative
complexity. Since non-linear operations result in a heavy computational penalty
compared to linear ones, the designers of LowMC took an extreme approach,
combining very dense affine layers generated by random invertible matrices with
partial non-linear layers where the S-boxes are of algebraic degree 2. The design
rationale and security are carefully analysed to support the security claim of
the proposal, where a formula was derived to estimate the required number of
rounds in order to resist classical cryptanalytic techniques.

In this chapter, we consider optimised interpolation attacks on the first block
cipher for low multiplicative complexity, LowMC. First, we recall the main
methodology and the cipher specification in Section 3.2 and Section 3.3. Our
basic attack on 9-round LowMC with an 80-bit key is described in Section 3.4. A
generic framework for optimised interpolation attacks is described in Section 3.5
with an application to 9-round LowMC-80. Finally, we conclude in Section 3.6.

3.2 Higher-Order Differential Cryptanalysis and
Interpolation Attacks

Higher-order differential and interpolation attacks are examples of algebraic
cryptanalysis which explore certain properties in the algebraic normal form
(ANF) of the outputs as Boolean polynomials. Note that there is a specific
attack in cryptanalysis called algebraic attack [60], which builds and solves
equation systems with known information from the inputs and outputs, the
unknown variables, i.e., the secret keys. Solving such equation systems is
difficult in general [52]. In this chapter, we refer to algebraic cryptanalysis in a
general sense, which differs from the algebraic attack.

First, we recall the basic concepts and introduce the notation used in this
chapter. Any function F from F2n to F2 can be described as a multivariate

HIGHER-ORDER DIFFERENTIAL CRYPTANALYSIS AND INTERPOLATION ATTACKS 63

polynomial, whose ANF is unique and given as

F (xn−1, . . . , x0) =
∑

u=(un−1,...,u0)

αuMu ,

where αu ∈ {0, 1} is the coefficient of the monomial Mu =
∏n−1
i=0 x

ui
i , and

the sum is over F2. The algebraic degree of the function F is deg(F) =
max{wt(u) |αu 6= 0}. Therefore, a function F with a degree bounded by d ≤ n
can be described using

∑d
i=0
(
n
i

)
coefficients. To simplify our notations, we

define
(
n
≤d
)
,
∑d
i=0
(
n
i

)
.

The ANF coefficients αu of F can be interpolated by summing over 2wt(u)

evaluations of F : define the set of inputs S to contain all the 2wt(u) n-bit
vectors whose bits set to 1 are a subset of the bits set to 1 in un−1, . . . , u0. More
formally, we have the following lemma.

Lemma 4. Let S = {x = (xn−1, . . . , x0) | ū ∧ x = 0}, where ū is bitwise NOT
applied to u and ∧ is bitwise AND. Then, αu =

∑
(xn−1,...,x0)∈S F (xn−1, . . . , x0).

Note that this implies that a function F with a degree bounded by d ≤ n
can be fully interpolated given its evaluations on the set of

(
n
≤d
)
inputs whose

Hamming weight is at most d, namely {x = (xn−1, . . . , x0) |wt(x) ≤ d}.

Given the truth table of an arbitrary function F as a bit vector of 2n entries,
the ANF of F can be represented as a bit vector of 2n entries, corresponding
to its 2n coefficients αu. This ANF representation can be efficiently computed
using the Möbius Transform, which is an FFT-like algorithm. The Möbius
transform performs n iterations on its input vector (the truth table of F), where
in each iteration, half of the array entries are XORed into the other half. In
total, its complexity is about n · 2n bit operations. For more details on the
Möbius transform, we refer to Joux [112].

Higher-Order Differential Cryptanalysis. Higher-order differential cryptanal-
ysis was introduced by Lai in [131] as an algebraic-type cryptanalysis that
is particularly efficient against ciphers of a low algebraic degree. The name
stems from an extension of the differences (as first-order derivatives) called
higher-order derivatives.

Definition 11. Let (S,+) and (T,+) be Abelian groups. For a function f :
S → T , the i-th derivative of f at point (a1, a2, · · · , ai) is recursively defined as

D
(i)
a1,··· ,aif(x) = Dai(D

(i−1)
a1,··· ,ai−1f(x)) ,

64 OPTIMISED INTERPOLATION ATTACKS ON LOWMC

where the first derivative at point a, D(1)
a (or Da for simplicity) is defined by

f(x+ a)− f(x), with t1 − t2 = t1 + t−1
2 , t1, t2 ∈ T .

It is obvious that the 0-th derivative is f(x) itself, and the first-order derivative
is simply the difference in differential cryptanalysis according to Definition 4 in
Chapter 2. A higher-order differential distinguisher distinguishes a function f
from random if

D
(i)
a1,··· ,aif(x) = constant ,

for some i-th order derivative. The higher-order differential property is
closely related to the algebraic degree of a function. The basic higher-order
differential cryptanalysis over F2 considers some target bit b and analyses its
ANF representation in terms of the plaintext P , denoted by FK(P), where K is
the unknown secret key. Given that deg(FK(P)) ≤ dg independently of K for dg
relatively small, the attacker chooses an arbitrary linear subspace S of dimension
dg, and evaluates the cipher over its 2dg inputs. Since every differentiation
reduces the algebraic degree of the target bit by 1 and deg(FK(P)) ≤ dg, the
value of the higher-order differential over S for the target bit b is equal to
some constant. Higher-order differential properties may be used in key recovery
attacks, depending on the specification of the cipher [124].

It is worthy of mentioning that higher-order differential cryptanalysis resembles
several other cryptanalytic methods, including integral cryptanalysis [122], zero-
sum distinguisher [11], and cube attack [76], because they all focus on the
algebraic degree of the ANF or some monomials. For instance, an attacker asks
for the sum of the encryptions over a plaintext subspace: if the sum is zero for
all keys, then an integral distinguisher is found. In such a case, the output bits
are called balanced.

Interpolation Attacks. The interpolation attack was introduced in 1997 by
Jakobsen and Knudsen as an algebraic-type attack on block ciphers [111].
The attack is closely related to higher-order differential cryptanalysis and is
particularly efficient against block ciphers whose round function has a low
algebraic degree.1 The interpolation attack has several variants, and can be
applied over a general finite field, exploiting known or chosen plaintexts. Here,
we give a high-level description of the chosen plaintext interpolation attack over
F2, as this is the variant we apply to LowMC.

The attack considers some intermediate encryption target bit b of the block
cipher, whose ANF representation can be expressed from the ciphertext side in
terms of the ciphertext and key as F (C,K). The key K is an unknown constant,

1In fact, some of its variants directly exploit higher-order differential properties, as we
describe next.

HIGHER-ORDER DIFFERENTIAL CRYPTANALYSIS AND INTERPOLATION ATTACKS 65

and we can write FK(C) = FK(cn−1, . . . , c0) =
∑
u=(un−1,...,u0)∈F2n

αuMu,
where αu ∈ {0, 1} is the coefficient of the monomial Mu =

∏n−1
i=0 c

ui
i . Therefore,

the coefficients αu of FK(C) generally depend on the secret key and are unknown.
The goal of the interpolation attack is to recover (interpolate) the unknown
coefficients of FK(C), and then use various ad hoc techniques to recover the
secret key.

In order to deduce the unknown coefficients of FK(C), they are considered as
linearised variables, and recovered by solving a linear equation system. For the
purpose of constructing the equation system, the attacker assumes that the
algebraic degree dg of the bit b in terms of the plaintext bits is relatively small,
which allows to use higher-order differential cryptanalysis. More specifically,
a higher-order differential property is devised by encrypting a subspace S of
plaintexts of dimension dg+ 1, and performing higher-order differentiation with
respect to this subspace, whose outcome is zero on the bit b.

When expressed in terms of the ciphertexts C1, . . . , C2dg+1 , this gives the
equation

∑2dg+1

t=1 FK(Ct) = 0. For each ciphertext Ct, FK(Ct) is merely a
linear expression in the variables αu, and thus the subspace S gives rise to
one linear equation in the variables αu. In order to solve for the unknown
variables αu, the attacker considers several such subspaces, each giving one
equation. In total, the number of equations needs to be roughly equal to the
number of the unknown αu variables, assuming the equations are sufficiently
“random”. The efficiency of the attack depends on the algebraic degree of b in
terms of the plaintext, but also on the number of unknown coefficients in the
ANF representation of b in terms of the ciphertext.

From the high-level description above, it is easy to conclude that the data
and time complexities of the attack depend on the value of the degree dg and
the number of unknown variables αu. Therefore, in order to mount efficient
interpolation attacks, the attacker tries to minimise these parameters, since
a straightforward application will encounter complexity obstacles within only
a few rounds. To this end, we had to develop new techniques such as using
carefully chosen plaintext structures which allow to efficiently derive the linear
system of equations. Our main new contribution is based on considering two
variants of the interpolation attack, as illustrated in the following example.

In the original variant of the interpolation attack over F2 which we refer to
as variant 1, the attacker views the ANF of some intermediate encryption
bit b as an unknown polynomial FK(C) in the ciphertext bits, where K is
the unknown but fixed secret key. In a dual approach to the interpolation
attack, which we refer to as variant 2 proposed by Shimoyama et al. [178], the
attacker interpolates the full polynomial F (K,C) by considering each monomial

66 OPTIMISED INTERPOLATION ATTACKS ON LOWMC

in the key bits x1, . . . , xκ with a non-zero coefficient as a separate variable. For
example, consider the polynomial

F (c1, c2, x1, x2, x3) = c1c2x1 + c1c2x2 + c1x1 + c1x2 + c2x1 + x1x2 + x3 + 1,

where x1, x2, x3 are the key bits and c1, c2 are the ciphertext bits. We can write

Fx1,x2,x3(c1, c2) = α1c1c2 + α2c1 + α3c2 + α4,

and thus in the first variant we have 4 variables: α1, α2, α3, α4. In this variant,
the actual representation of the variables in terms of the key is not considered.
In the dual variant, we write

F (c1, c2, x1, x2, x3) = x1x2(1) + x1(c1c2 + c1 + c2) + x2(c1c2 + c1) + x3(1) + 1,

and we have 4 variables: x1x2, x1, x2, x3.

The advantage of variant 2 over the first variant is that it directly recovers the
secret key, and furthermore, in some cases it may result in a smaller number
of variables in the equation system. At the same time, in order to derive the
actual equation system the attacker has to evaluate the polynomial F for each
ciphertext. This process is less efficient in variant 2, since each evaluation
of F (K,C) is expensive as it requires evaluating all the complex ciphertext
expressions that are multiplied with the variables, whereas in variant 1 each
evaluation of FK(C) is relatively simple because it requires evaluating simple
monomials in the ciphertext. Therefore, the choice of which variant to use in
order to optimise the attack depends on the underlying cryptosystem.

As detailed in Section 3.5, our main idea is to combine the two dual variants of
interpolations attacks: we first derive the equation system efficiently using the
original variant of [111]. Then, we transform a carefully chosen variable subset
to variables which are linearised monomials in the key bits, as in variant 2. This
results in a mixed variable set that is smaller than the variable sets of each
variant. Consequently, we obtain an attack which is more efficient than the two
variants. In our example above, we can express α1 = x1 + x2, α2 = x1 + x2 and
α3 = x1, resulting in only 3 variables: x1, x2, α4. Obviously, our toy example
merely demonstrates the idea at a very high level, and the actual choice of
which variables to transform as well as the analysis of the resultant algorithm
are more involved.

3.3 Description of LowMC

LowMC is a family of SPN ciphers, proposed at Eurocrypt 2015 [3] by Albrecht
et al. The specification defined two specific instance families which are analysed

DESCRIPTION OF LOWMC 67

Table 3.1: LowMC Instance Families

Instance key size κ block size n S-boxes m data lim rounds r
LowMC-80 80 256 49 64 11
LowMC-128 128 256 63 128 12

in this chapter, both having a block size of n = 256 bits, and are characterised
by their key size κ, which is either 80 or 128 bits. We refer to these instance
families as LowMC-80 and LowMC-128. The encryption function of LowMC
applies a sequence of rounds to the plaintext, where each round contains a
round-key addition layer, an S-box layer, and an affine layer over F2. LowMC
was designed with distinct features as detailed in the pseudocode below. It has
a linear key schedule and its affine layers are selected at random, where each
selection defines a separate instance of the family. To be specific, the linear
operations are defined by random invertible binary matrices. The matrices
LMatrix(i) are chosen at random from all invertible binary n×n matrices, while
the matrices KMatrix(i) are chosen independently and uniformly at random
from all binary n× κ matrices of rank min(n, κ). The constants Constants(i)
are chosen independently and uniformly at random from all binary vectors of
length n. The S-box layer of LowMC is composed of 3-bit S-boxes with degree
2 over F2 with each S-box being S[8] = {0, 1, 3, 6, 7, 4, 5, 2}. Furthermore, the
S-box layers are only partial, namely, in each S-box layer, only 3m < n bits go
through an S-box (where m is a parameter), while the rest of the n− 3m bits
remain unchanged.

The distinctive feature of LowMC is that its affine layers are chosen at random
and thus each block cipher family contains a huge number of instances. This
may enable a malicious party to instantiate LowMC with a hidden backdoor.
Its designers propose to use the Grain stream cipher [105] as a source of pseudo-
random bits in order to restrict that the freedom available in the LowMC
instantiation. The designers also mention that it is possible to use any sufficiently
random source to generate the affine layers, and this source does not necessarily
need to be cryptographically secure.

The designers proposed that each family instance of LowMC is defined with a
data limit lim, which determines the maximal data complexity before changing
the key. In other words, the cipher is guaranteed to offer security according to
its key size as long as the adversary cannot obtain more than 2lim plaintext-
ciphertext pairs. The parameters of the two instance families are given in
Table 3.1. The internal number of rounds in each family was set in order to
guarantee a security level that corresponds to its key size. For this purpose,
the resistance of LowMC was evaluated against a variety of well-known

68 OPTIMISED INTERPOLATION ATTACKS ON LOWMC

cryptanalytic attacks. One of the main considerations in setting the internal
number of rounds was to provide resistance against algebraic cryptanalysis.
Indeed, LowMC is potentially susceptible to such attacks due to the low
algebraic degree of its internal round, but the designers argue that LowMC has
sufficiently many rounds to resist such attacks. All of our results were obtained
using the interpolation attack.

To simplify the notations, we denote the 256-bit state at the input to the i-th
key addition layer by Xi−1 (e.g., the plaintext is denoted X0), the input to the
i-th S-box layer by Y i−1 and the input to the i-th affine layer by Zi−1. We
refer to the 3m bits of the state that go through S-boxes in the S-box layer
as the S-part, while the remaining n − 3m bits are referred to as the I-part.
Given a state W , denote by W |SP and W |IP the S-part and I-part of the
state, respectively (e.g., Y 5|IP is the I-part of the input state to the 6-th S-box
layer).

It is common in cryptanalysis of block ciphers to exchange the order of the final
two affine operations over F2, namely, the keyless affine transformation and key
addition. This allows the attacker to “peel off” the last affine transformation
at a negligible cost by working with an equivalent last-round key obtained
by an affine transformation on the original last-round key. For the sake of
simplicity, we assume in the following that we did already “peel off” the last
affine transformation of the cipher. Therefore, the final states of the last round
r are denoted by Xr−1, Y r−1, Zr−1 and Y r, which denotes the ciphertext after
“peeling off” the final affine transformation.

Model of Computation Since an exhaustive key search attack and our attacks
use different bitwise operations, comparing these attacks cannot be compared
simply by counting the number of encryption function evaluations. Instead,
we compare the complexity of straight-line implementations of the algorithms,
counting the number of bit operations (such as XOR, AND, OR) on pairs of
bits. This computation model ignores operations such as moving a bit from
one position to another which only requires renaming variables. Each affine
layer of LowMC involves multiplication of the 256 state with a 256 × 256
matrix. This multiplication requires roughly 216 bit operations, and therefore a
single encryption of LowMC requires more than 216 · 8 = 219 bit operations.
Consequently, an exhaustive search for 80-bit and 128-bit keys requires about
299 and 2147 bit operations, respectively, and these are quantities of reference
for our attacks.

A BASIC 9-ROUND ATTACK ON LOWMC-80 69

3.4 A Basic 9-Round Attack on LowMC-80

In this section we describe our basic interpolation attack on 9-round LowMC.
We begin by considering the elements that are required for the attack.

3.4.1 The Higher-Order Differential Property

We construct the higher-order differential property used in the interpolation
attack. A similar property was described by the LowMC designers [3], but we
reiterate it here for the sake of completeness.

The algebraic degree of a single round of LowMC-80 over F2 is 2, and therefore
the algebraic degree of any bit at the input to the 6-th S-box layer of LowMC-
80, Y 5, in the input bits, X0, is at most 32. Moreover, as the bits of the I-part
of LowMC do not go through S-boxes in the first round, the degree at the
input to the 7-th S-box layer, Y 6, in the bits of the I-part, X0|IP , is at most
32. Furthermore, since the bits of the I-part of the 7-th S-box layer do not go
through an S-box, the degree of any bit of Z6|IP in the input bits of the I-part,
X0|IP , is at most 32.

The last properties implies that the value of a 33rd order differential over any
33-dimensional subspace selected from X0|IP is zero for any bit of Z6|IP .
Moreover, as we selected a subspace whose bits do not go through an S-box
in the first round, the value of a 32nd order differential for any bit of Z6|IP
over any 32-dimensional subspace from X0|IP , is a constant and independent
of the key. This observation implies that we can select several 32-dimensional
subspaces, and compute in a preprocessing phase the constants obtained by
summing over a target bit of Z6|IP for an arbitrary fixed value of the key.
Each such constant derived from a 32-dimensional subspace gives one bit of
information that we will exploit as the constant value of an equation in the
interpolation attack.

3.4.2 Bounding the Number of Variables

In the interpolation attack on 9-round LowMC-80, we select a target bit from
Z6|IP and denote its ANF representation in the 256-bit ciphertext obtained
after inverting the final affine transformation and 80-bit key by F (C,K). We
have FK(C) =

∑
u∈F2256

αuMu, where αu ∈ {0, 1} is the coefficient of the
monomial Mu =

∏255
i=0 c

ui
i . As the complexity of the attack depends on the

number of variables αu, it is important to estimate their number with good

70 OPTIMISED INTERPOLATION ATTACKS ON LOWMC

accuracy. An initial estimation can be made by observing that the algebraic
degree of the inverse round of LowMC-80 is two, and thus deg(FK(C)) ≤ 4.
This implies that αu = 0 in case wt(u) > 4, and therefore the number of
unknown variables is upper bounded by

(256
≤4
)
≈ 227.

The initial upper bound on the number of variables can be significantly improved
by considering the specific round function of LowMC-80. For this purpose,
it will be convenient to use additional notation to describe the variables αu
according to the degree of Mu, by defining the set of variables Ui for a positive
integer i as Ui = {αu that is not identically zero as a function of the key|wt(u) =
i}. We have already seen that Ui is empty for i > 4, and we now derive tighter
bounds on Ui for i ≤ 4. Thus, we analyse the symbolic representation of the
state variables in the decryption direction, starting from the ciphertext Y 9, up
to Z6, as polynomials in the ciphertext bits.

The ciphertext Y 9 contains 256 bits, while in order to compute Z8 we merely
add unknown constants to these bits. Recall that we “peeled off” the last
affine layer. Then, the inverse S-box layer is applied to Z8 to obtain the
state Y 8. Each 3-bit S-box may contribute up to 3 quadratic monomials to
Y 8, and 6 monomials in total, e.g., an S-box corresponding to ciphertext bits
c1, c2, c3 may contribute the monomials c1, c2, c3, c1c2, c1c3, c2c3. Note that
these monomials may appear in the ANF of different bits of Y 8 with different
unknown coefficients, e.g., c1x1 and c1x2 may appear in the ANF of two different
bits of Y 8. However, in interpolation attacks, we consider the ANF of the target
bit, in which the coefficient αu of every monomials Mu in the ciphertext is
linearised and considered as a single variable. Therefore, the important quantity
is the number of possibilities to create the monomials Mu. For this reason, the
monomial c1 is counted only once even if it appears in the ANF of different bits
of Y 8 with different unknown coefficients.

Since there are 49 S-boxes, the total number of monomials Mu in the ANF of
the state bits of Y 8 is bounded by |U2| ≤ 3 · 49 = 147, |U1| ≤ 256 and |Ui| = 0
for i ≥ 3. As the affine and key addition mappings do not influence the number
of monomials Mu, this bound applies also to X8 and Z7.

Next, the inverse S-box layer is applied to Z7 to obtain the state Y 7, for
which we already know that |Ui| = 0 for i > 4. Since the S-box layer is
of degree 2, a trivial upper bound on the number of variables αu in Y 7 is
obtained by multiplying the 147+256 = 403 monomials in unordered pairs,
giving |

⋃4
i=1 Ui| ≤

(403
2
)

+ 403 < 216.5. Since the key addition and affine layers
do not influence the number of monomials, the upper bound of 216.5 also applies
to X7 and Z6, and it is much smaller than our initial bound of about 227.

We denote the set of variables
⋃4
i=1 Ui by U , and note that the explicit set

A BASIC 9-ROUND ATTACK ON LOWMC-80 71

{u|αu ∈ U} can be easily derived during preprocessing, which involves a more
explicit computation of the monomial set {Mu|αu ∈ U}.

3.4.3 Obtaining the Data

After deducing that the number of variables in the system of equations is
|U | ≈ 216.5, we conclude that we need to differentiate over about 216.5 32-
dimensional subspaces in order to obtain sufficiently many equations to solve the
system. A trivial approach is to select about 216.5 arbitrary linearly independent
32-dimensional subspaces from the 256−3 ·49 = 109 bits of X0|IP . This results
in an attack with data complexity of 232+16.5 = 248.5, and is rather wasteful. A
more efficient approach which was previously used in various papers such as [76]
is to select a large 37-dimensional subspace S from X0|IP , containing

(37
32
)
> 218

linearly independent 32-dimensional subspaces, which should suffice for the
attack by assuming that the constructed system of equations is sufficiently
random. The subspaces are indexed according to 37− 32 = 5 constant indexes
that are set to zero in S.

3.4.4 The Basic Interpolation Attack

We now describe a basic interpolation attack on 9-round LowMC-80. We note
that this attack is incomplete, as it only computes the |U | variables αu using
e ≈ |U | equations, without recovering the actual secret key. The details of this
final step will be given in the optimised attack in Section 3.5. For the sake
of convenience, we describe the attack in two phases: the preprocessing phase
and the online phase. However, we take into account both phases in the total
complexity evaluation.

Assume we selected a target bit b from Z6|IP , a subspace S of dimension
37 from X0|IP , and e ≈ |U | 32-dimensional subspaces S1, . . . , Se in S. The
detailed attack is described below.

Preprocessing:

1. Compute an e-bit array of free coefficients for e ≈ |U | equations,
denoted by â0: evaluate b on the subset of inputs of S with the
key set to zero, and obtain a bit array of size 237, then, calculate
the free coefficients by summing on b for the e 32-dimensional
subspaces S1, . . . , Se in S, and store the result in â0.

2. Calculate the |U | vectors {u|αu ∈ U}: This can be done by first

72 OPTIMISED INTERPOLATION ATTACKS ON LOWMC

calculating the 403 monomials Mu past the first S-box layer, and
multiplying them in pairs.

Online:

1. Ask for the encryptions of the 237 plaintexts in S and store the
ciphertexts in a table.

2. Allocate a 237 × |U | matrix A, where row A[t] is a bit array that
represents the evaluation FK(Ct).

3. For each ciphertext Ct, calculate A[t] by evaluating FK(Ct):

(a) For each {u|αu ∈ U}, evaluate the monomial Mu(Ct) and set
the corresponding bit entry in A[t] according to the result.

4. Allocate an e× |U | matrix E over F2, representing the equation
system on U .

5. For each 32-dimensional subspace Sj in S, namely S1, . . . , Se:

(a) Populate the row E[j] by summing over the 232 rows of A
corresponding to Sj .

6. Solve the equation system Ex̂ = â0, where x̂ represents the vector
of variables of U and â0 is the vector of free coefficients calculated
in preprocessing Step 1.

The data complexity of the attack is 237 chosen plaintexts. The total time
complexity of the attack is about 265 bit operations, dominated by online Step 5,
where for each of the e subspaces, we sum over 232 bit vectors of size U , requiring
about e ·232 · |U | ≈ 265 bit operations.2 The memory complexity of the attack is
about 237 · |U | ≈ 253.5 bits, dominated by the storage of the matrix A in online
Step 2.

We note that in the complexity evaluation of the attack we ignore indexing
issues that arise in Step 3.a and Step 5. The reason that we can ignore these
mappings in the complexity evaluation is that they are independent of the secret
key and data, so they can be precomputed.

2The complexity of solving linear equation system is not the dominating phase in the
total time complexity in our attacks. Even though advanced algorithms such as Strassen’s
algorithm [185] can be found in the literature, requiring a complexity of about O(n2.8),
they are very complex and inefficient in practice comparing with the Gaussian elimination
algorithm which is O(n3) in complexity.

THE OPTIMISED INTERPOLATION ATTACK 73

3.5 The Optimised Interpolation Attack

In this section, we introduce three optimisations of the basic 9-round attack
above. The first optimisation reorders the steps of the algorithm in order to
reduce the memory complexity, while the second optimisation further exploits
the structure of chosen plaintexts to reduce the time complexity of the attack.
Finally the third optimisation is based on a novel technique in interpolation
attacks, and allows to further reduce the data and time complexities.

The first two optimisations focus on online Steps 2-5, which compute the equation
system E from the 237 ciphertexts. First, we reduce the memory complexity
by noticing that we do not need to allocate the matrix A. Instead, we work
column-wise and focus on a single column A[∗][`] at a time, corresponding to
some {u|αu ∈ U}. We evaluate Mu(Ct) for all ciphertexts (which gives an array
of 237 bits, â`) and then populate the corresponding column E[∗][`] by summing
over the 32-dimensional subspaces S1, . . . , Se on â`.

Next, we reduce the time complexity by optimising the summation process:
given a bit array â` of 237 entries, the goal is to sum over many 32-dimensional
subspaces (indexed according to 5 bits which are set to zero). This can be
done efficiently using the Möbius transform. For this purpose, we can view
â` as evaluating a 37-variable polynomial over F2, and the summation over a
32-dimensional subspace of â` is equal to the coefficient of its corresponding 32-
degree monomial. All these coefficients are computed by the Möbius transform
in about 37 · 237 bit operations. We stress that the reason that we can use the
Möbius transform in this case is purely combinatorial and is due to the way
that we selected the structure of subspaces for the interpolation to â` when
viewed as a polynomial.

Finally, we optimise the data complexity and further reduce the time complexity.
In order to achieve this, examine the polynomial F (K,C) for the target bit b
selected in Z6|IP . Due to the linear key schedule of LowMC, this polynomial
is of degree 4. We consider a variable αu ∈ U and analyse its ANF in terms
of the 80 key bit variables. Since αu is multiplied by Mu in F (K,C), then
deg(αu) + deg(Mu) ≤ 4, implying that if deg(Mu) ≥ 2, then deg(αu) ≤ 2.
This simple observation is borrowed from cube attacks [76] and can be used to
significantly reduce the number of variables U .

Assuming that we interpolate the variables of U2
⋃
U3
⋃
U4 in terms of the key

and recover their values, then the key itself should be very easy to deduce, as
the variables of U3 are merely key bits.

Next, we describe the general steps to transform the variable set and the
equations, and the full analysis on the details of the algorithms and the deduction

74 OPTIMISED INTERPOLATION ATTACKS ON LOWMC

of the complexity are referred to our paper [75].

3.5.1 Transformation of Variables

Given an instance of LowMC with a 256-bit block, a key size of κ, and m
S-boxes per layer, we assume that we want to interpolate a target bit b through
the final r1 rounds of the cipher. We first describe in a more generic way
how to calculate the initial set of variables U , and bound its size. As in the
9-round attack, the number of monomials in the 256 ciphertext bits at Y r−1

after inverting the final S-box layer is bounded by 256 + 3m. The target bit b is
a polynomial of degree 2r1−1 in the state Y r−1, and thus it contains at most(

256 + 3m
≤ 2r1−1

)
monomials. Therefore, the set of monomials with unknown coefficients can be
computed by multiplying the 256 + 3m monomials in unordered tuples with no
repetition of size up to 2r1−1. Thus,

|U | ≤
(

256 + 3m
≤ 2r1−1

)
.

Note again that this bound is generally better than the trivial bound of |U | ≤(256
2r1

)
, which follows from the fact that b is a polynomial of degree 2r1 in the

256 ciphertext bits.

We consider the target bit b as a polynomial in both the ciphertext and the
key, namely, F (K,C) = F (xκ−1, . . . , x0, c255, . . . , c0) =

∑
u∈F2n

αuMu, where
Mu =

∏n−1
i=0 c

ui
i and αu(xκ−1, . . . , x0) is a polynomial from F2κ to F2. We

partition the variables of |U | into subsets according to the degree of their
monomials in the ciphertext, which is bounded by deg(FK(C)) = 2r1 . Denote
d = 2r1 and write U =

⋃d
i=1 Ui, where Ui = {αu ∈ U |deg(Mu) = i}. Due to the

linear key schedule of LowMC, we have deg(F (K,C)) = deg(FK(C)) = d, and
therefore deg(αu) + deg(Mu) ≤ d. This allows us to transform the variable set
U into a smaller variable set, considering internal linear relations as deg(αu) ≤
d− deg(Mu).

In order to estimate the number of variables with improved accuracy, it is
preferable to have an adjustable parameter to determine which variables are
to be interpolated with monomials involving the key bits. To this end, we
choose an integral splitting index 1 ≤ sp ≤ d + 1, and split the variable set
into U = U ′

⋃
U ′′, where U ′ =

⋃sp−1
i=1 Ui and U ′′ =

⋃d
i=sp Ui. Therefore, we

can interpolate each variable of U ′′ in terms of the key, and express it as αu =

THE OPTIMISED INTERPOLATION ATTACK 75

∑
{v=(vκ−1,...,v0)|wt(v)≤d−sp} βvM̃v, where βv ∈ {0, 1} is the coefficient of the

monomial M̃v =
∏κ−1
i=0 x

vi
i . Note that the coefficients βv are independent of the

key and can be computed during preprocessing. This interpolation transforms
the set of variables U ′′ into the set of variables V = {M̃v =

∏κ−1
i=0 x

vi
i |wt(v) ≤

d − sp}, which are low degree monomials in the key bits. Similarly to the
partition of U , we partition the variables of V into subsets according to the
degree of their monomials in the key, namely Vi = {M̃v ∈ V |deg(M̃v) = i}.
Especially, the variables in V1 are exactly the secret key bits. In addition, we
define V≤i =

⋃i
j=1 Vi. The set of variables is transformed via interpolation into

a new set of variables W = U ′
⋃
V .

The variable αu ∈ Ui is interpolated by the variables in V≤(d−i). This process can
be executed in a similar way as the two-phase process in the basic interpolation
attack. In the first phase, we evaluate the polynomial αu for all relevant keys
of Hamming weights at most d− i. Since αu is a variable in Ui, the evaluation
of αu is simply the summation of the target bit on a subset of 2i inputs. Then,
the coefficients βv of the monomials M̃v ∈ V≤d−i are interpolated by summing
the evaluations of αu. In addition, the equation system need to be transformed
correspondingly with the new variable set W , namely, the variables αu ∈ Ui in
a linear expansion of the monomials M̃v. With a linear transformation on the
coefficient matrix of the original equation system, it can be converted into a
new equation system based on the new set W . Therefore, the complexity can
be estimated based on the number of coefficients in the linear expansion, which
is |V≤(d−i)|.

Here, we give an summary of the optimised interpolation attack.

Preprocessing:

1. Compute an e-bit array of free coefficients for e ≈ |U | equations,
denoted by â0: evaluate b on the subset of inputs (plaintexts) of S
(with the key set to zero), and obtain a bit array of size |S|. Then,
calculate the free coefficients by applying the Möbius transform to
the bit array, and copy the values of sums over S1, . . . , Se to â0.

2. Calculate the |U | vectors {u|αu ∈ U}: This is done by first
calculating the 256 + 3m monomials past the first S-box layer,
and multiplying them in unordered tuples of size up to 2r1−1 .

76 OPTIMISED INTERPOLATION ATTACKS ON LOWMC

Online:

1. Ask for the encryptions of the plaintexts in S and store the
ciphertexts in a table.

2. Allocate a bit vector of size |S| for the storage of the vectors â`
(the evaluation of the `-th monomial in U).

3. Allocate an e×|W |matrix E over GF (2), representing the equation
system onW . The matrix is vertically decomposed into two smaller
matrices: E1 of size e× |U ′| and E2 of size e× |V |.

4. For each {Mu|αu ∈ U}:

(a) For each ciphertext Ct, calculate â`[t] by evaluating Mu(Ct).
(b) Use the Möbius transform to sum over all subspaces of â`.
(c) When αu ∈ U ′: For each subspace Sj in S, obtain its

corresponding sum from â` and copy it to the corresponding
column of E1[j].

(d) Otherwise, when αu ∈ U ′′: Interpolate the coefficients βv
of V≤(d−i) in αu. For each subspace Sj in S, obtain its
corresponding Boolean sum from âl as the coefficient of αu
over U . Populate the corresponding column of E2[j] by adding
the sum when βv is 1.

5. Solve the equation system Ex̂ = â0, where x̂ represents the vector
of variables of W = U ′

⋃
V .

6. Deduce the κ-bit secret key, which is simply given by the monomials
V1.

The total data complexity of the algorithm is |S| chosen plaintexts. The total
time complexity is dominated by Step 4 and 5, where Step 4.b is potentially the
main factor with a complexity of log (|S|) · |S| · |U |. The memory complexity is
potentially dominated by a few steps: the storage of variables in preprocessing
that requires 28 · |U | bits, the storage of ciphertexts in Step 1 that requires
28 · |S| bits, and the storage of E in Step 3 that requires |W | · |W | bits.

3.5.2 Applications to LowMC-80

First of all, we apply the optimised interpolation attack to 9-round LowMC,
as a comparison with the basic version attack. As in the attack described in

CONCLUSIONS 77

Section 3.4.4, we select the target bit b in Z6|IP , using subspaces of dimension
32 to obtain the equations. We interpolate through r1 = 2 rounds, implying
that d = 2r1 = 4. Therefore |U | =

(256+3m
≤2r1−1

)
=
(403
≤2
)
≈ 216.5.

We use sp = 2. The size of the relevant variable sets can be deduced: |U ′| ≤(256
≤sp−1

)
=
(256
≤1
)
≈ 28, |V | ≤

(
κ

≤d−sp
)

=
(80
≤2
)
< 212, |W | = |U ′|+ |V | < 212.

We choose a subspace S of dimension 35 from X0|IP , containing
(35

32
)
>

212 > |W | 32-dimensional subspaces, which should suffice for the attack. The
time complexity of the optimised 9-round attack is about 257 bit operations (or
257−19 = 238 encryptions), mostly dominated by Step 4.b with log(|S|)·|S|·|U | ≈
35 · 235 · 216.5 = 256.5 operations. The data complexity is 235 chosen plaintexts.
The memory complexity is dominated by the storage of ciphertexts in Step 1,
and is about |S| · 28 = 243 bits.

Similar to the 9-round attack, the attack can be directly applied to 10-round
LowMC-80 with a finely adjusted splitting index sp = 4. For the full LowMC-
80, Aa direct application of the optimised attack would lead to an attack slower
than exhaustive search, however, the 9-round and 10-round attack can be
extended into an attack on the full LowMC by assuming a linear dependency
between the bits of Z6|IP and Z7|IP , each with 109 bits. Since the linear layer
is generated randomly, it is plausible to assume the existence of weak instances,
where the probability of this event is about 2109+109−256 = 2−38.

3.6 Conclusions

In this chapter, we study the resistance of the LowMC cipher against higher-
order differential cryptanalysis and the interpolation attack. The low algebraic
degree of the partial S-box layer allows us to find higher-order differential
distinguishers covering more than half of the full cipher, in addition LowMC it
has an inadequate number of monomials in the ANF of an intermediate bit in
terms of the ciphertexts and the key, which renders it vulnerable to interpolation
attacks. We introduced new techniques for interpolation attacks, including a
new variable transformation technique that can lead to savings in their data and
time complexities of the attack. We apply the optimised interpolation attack
to LowMC-80 reduced to 9 rounds, to demonstrate the improvement over the
basic approach.

Furthermore, the optimised interpolation technique can be further applied to
full versions of LowMC-80 and LowMC-128 for some weak instances. We
skipped the detailed elaborations in this thesis. A summary of the attack
results can be found in Table 3.2, which refute the designers’ security claim.

78 OPTIMISED INTERPOLATION ATTACKS ON LOWMC

Table 3.2: Attacks on LowMC

Instance Nr. of Rounds Fraction of Data† Time†† Memory†††
Family Rounds Attacked Instances

LowMC-80 11 9 1 235 238 235

10 1 239 257 239

all(11) 2−38 239 257 239

LowMC-128 12 11 1 270 286 270

all(12) 2−122 270 286 270

all(12) 1 273 2118 280

† Given in chosen plaintexts.
†† Given in LowMC encryptions.
††† Given in 256-bit words.

For instance, it can be shown that a fraction of 2−38 of the LowMC 80-bit
key instances could be broken in about 257 time, using 239 chosen plaintexts.
The probability of 2−38 is practically significant, namely, a malicious party can
easily find weak instances of LowMC by running its source of pseudo-random
bits with sufficiently many seeds. and checking whether the resultant instance
is weak.

In response to our attack, the designers of LowMC have improved the security
margin by extending the number of rounds in each version of LowMC, and
released an updated cipher LowMCv2 [4]. Following this line of MPC-friendly
and FHE-friendly ciphers, several new block ciphers and stream ciphers are
proposed for achieving low multiplication complexity and low AND depth, such
as MiMC [2, 95], Kreyvium [55], and Flip [155].

As a future work item, it will be interesting to optimise our techniques further
and apply them to additional block ciphers.

Chapter 4

Observations on Invariant
Subspace Attack

Linear layers are important components in designing symmetric-key primitives,
for both implementation and security. In terms of security, a widely accepted
criterion of a linear layer is its branch number, which is essential to achieve
provable security against differential and linear cryptanalysis. The properties
of the linear layers are further studied to evaluate the resistance to other
cryptanalytic methods. For instance, the resistance of a so-called “structure”
to impossible differential cryptanalysis is closely related to the “primitive index”
of the linear layer [186]. In this chapter, we study the influence of the linear
layers on distinguishers in the invariant subspace attack.

This chapter is organised as follows. In Section 4.1, we recall the invariant
subspace attack and mathematically characterise some of the properties.
Section 4.2 gives the bounds on invariant subspaces for several block ciphers,
in terms of the property of their linear layers, which further results in
countermeasures to achieve provable resistance. Finally, we conclude in
Section 4.3.

4.1 Invariant Subspace Attack

Over the last fifteen years, lightweight block ciphers which are suitable for
various constrained environments have become the focus of recent symmetric
primitives. Performance always comes with a price. Some lightweight block

79

80 OBSERVATIONS ON INVARIANT SUBSPACE ATTACK

ciphers trade in a tolerable amount of security margin under certain attack
models to achieve improved performance in hardware. Without an explicit
guideline, it is an interesting question whether a slight change towards higher
efficiency may have devastating consequences. When choosing lightweight S-
boxes, the linear layer and the key schedule (sometimes even no key schedule),
the security margin of lightweight block ciphers against known attacks needs to
be analysed.

A new type of attack named invariant subspace attack [136] is of special interest.
It was invented in the analysis of a lightweight block cipher PRINTcipher [125].
The design of PRINTcipher is a typical SPN structure with a 3-bit S-box and
a Present-like linear layer. It has no key schedule, and the round constants are
XORed partially to the state. The flaw in this design is that the round function
maps an affine subspace to its coset, which leads to a distinguisher covering any
number of rounds for a set of weak keys. The discovery of invariant subspace
attack seems ad hoc, but a followed work by Bulygin et al. [53] studied the
patterns of the invariant subspaces in PRINTcipher and managed to find all
subspaces following these patterns. It was left as an open problem whether
this attack works for other block ciphers as well, until a generic algorithm to
detect the existence of invariant subspaces was proposed by Leander et al. [137].
As a result, several lightweight designs have been found to be vulnerable to
invariant subspace attacks, such as Zorro [91], iScream [97], and Robin [96].
Notably, the structures of Zorro and the LS-design iScream are different, yet
both of them admit a weak-key space in terms of invariant subspace attack.
Another victim of the attack is a recently-proposed block cipher Midori [12];
the distinguisher is also found in an ad hoc way, taking advantage of the
fixed points in the S-box together with the unfortunate combination of the
linear layer and the constants [98]. Unlike differential cryptanalysis [36] and
linear cryptanalysis [152] which are extensively studied and comprehensively
understood, the critical weakness leading to the invariant subspace attack is
not clear. And more importantly, a guideline to preclude such attack needs to
be drawn for a “provably secure” framework.

A quick solution to resist the invariant subspace attack is to use heavier key
schedules or randomised constants. Indeed, to extend the invariant subspace
attack to any number of rounds, it is necessary to make sure that all the
round keys and constants are in the weak-key space. A relatively strong
key schedule guarantees that the probability for each round key to lie in the
weak-key space is negligible. However, in lightweight designs, an ultra-light
key schedule reduces the implementation cost. In the meantime, there are
designs without key schedule yet having shown no vulnerability to the invariant
subspace attack. For instance, no significant weak-key class is found in another
LS-design Fantomas [96], and a slight modification of the constant addition

INVARIANT SUBSPACE ATTACK 81

in PRINTcipher will prevent all invariant subspaces of the detected type [53].
A paper by Beierle et al. [18] in CRYPTO 2017 considered subspaces which
are invariant for both the S-box layer and the linear layer, and focused on the
“invariant factors” of the linear layer which provides criteria for resistance against
invariant subspace attacks, whereas possible invariant subspaces for the full
round function but not the individual components are not considered. Another
related research is the subspace trail cryptanalysis proposed by Grassi et al. [94],
which focuses on the (not necessarily invariant) subspace propagations.

In the rest of this chapter, we denote an n-bit vector in F2n by x =
(xn−1, xn−2, . . . , x0). A k-dimensional affine subspace in Fm2t is denoted by
W = (W1,W2, . . . ,Wm) where Wi is the subspace of W restricted to a t-
dimensional subspace of Fk2 . The component function fλ of a vectorial Boolean
function f : F2n → F2n is defined as λ · f , where λ ∈ F2n and · is the inner
product.

4.1.1 Linear properties of a nonlinear function

Nonlinear functions play a critical role in the confusion of cryptographic
algorithms. The study of nonlinear functions provides criteria for resistance
against various attacks. The S-box of a block cipher is expected to have no
linear structures, which might be extended to a linear structure of the whole
cipher. One of the early investigations to the existence of linear structures in
block ciphers was by Evertse in 1987 [84].

Recall the definition of higher-order differences in Definition 11. Let F be a
vectorial boolean function from F2n to F2m . For a, b ∈ F2n , the first order
derivative is defined as DaF (x) = F (x) ⊕ F (x ⊕ a), and the second order
derivative is D(2)

a,bF (x) = F (x⊕ a⊕ b)⊕ F (x⊕ a)⊕ F (x⊕ b)⊕ F (x).

Definition 12 ([57, 84] (linear structure, linear kernel)). Let f be a boolean
function from F2n to F2. Then, the linear kernel of f includes all vectors e
such that Def is constant. Any element e of the linear kernel of f is called a
linear structure.

It has been pointed out in [84] that block ciphers with linear structures are
vulnerable to attacks much, and there are many works on the characteristics of
such structures [78, 84]. However, these properties posed no major threat to
any practical ciphers. Two decades later, the study of linear relations between
ciphertexts and plaintexts was brought up again in FSE 2013 [50], where a new
criterion for avoiding the propagation of linear relations is defined by Boura
and Canteaut.

82 OBSERVATIONS ON INVARIANT SUBSPACE ATTACK

Definition 13 ([50] ((v, w)−linear)). Let S be a function from F2n to F2m .
Then, S is said to be (v, w)−linear if there exist two linear subspaces V ∈ F2n

and W ∈ F2m with dimV = v and dimW = w, such that, for all λ ∈ W , Sλ
has degree at most 1 on all cosets of V .

The authors of [50] showed that a function S is (v, w)−linear if and only if
the component functions Sλ, λ ∈ W have the property that all its second-
order derivatives D(2)

α,βSλ with α, β ∈ V vanish. Therefore, the definition of
(v, w)−linear is more general than that of linear structures and linear kernels,
which leads to the following proposition.

Proposition 3. Let S be a function from F2n to F2m , V ∈ F2n and W ∈ F2m

are subspaces with dimension v and w, respectively. If the component functions
Sλ for all λ ∈W have a linear kernel V , then S is (v, w)−linear.

Proof. When the component function Sλ has a linear kernel V , the first-order
derivative of Sλ over V is constant for every λ ∈ W , hence the second-order
derivatives over V always vanish.

The definition of (v, w)−linear property stemmed from the analysis of the hash
function Hamsi [50, 88]. Based on the observation that some output bits of the
S-box are linearly dependent on certain input bits when the remaining input
bits are fixed to constants, such linear relations inside the S-box are extended
to the round function and lead to a second pre-image attack to the whole hash
function. A similar but more powerful attack [100] was recently proposed on
the round-reduced permutation Keccak-f of the SHA-3 hash function. The
distinguisher is called a linear structure of Keccak, however in essence, it is
closer to the notation of (v, w)-linearity.

Next, we will show that the existence of invariant subspaces is closely related
to the linear relations inside the S-boxes.

4.1.2 Characterise Subspace Propagations in the S-box Layer

Suppose that the round function F is composed with an S-box layer Fs, a linear
layer Fl and a key addition Fk, where F = Fk ◦Fl ◦Fs. It is shown in [136] that
if there exists an affine subspace v+A that is stable under F , F (v+A) = v+A,
then when the round key k ∈ v + u+A, we have

(Fl ◦ Fs)(v +A) = u+A . (4.1)

This means that the invariant subspace property in the round function of a
key-alternating block cipher is equivalent to the propagation of special affine

INVARIANT SUBSPACE ATTACK 83

subspaces, namely an affine subspace v +A is transformed to its coset u+A.
Since the inverse of a linear layer is also linear, Equation (4.1) is equivalent
to Fs(v + A) = F−1

l (u) + F−1
l (A), where the right hand side is still an affine

subspace. Therefore, we will focus on the propagation of affine subspaces
through a layer of S-boxes.

Definition 14. Let f be a (nonlinear) function from F2n to F2m . If an affine
subspace (v + A) ⊂ F2n is mapped to (u + B) ⊂ F2m which is also an affine
subspace, then (v +A→ u+B) is called an affine subspace propagation.

Notice that a similar definition is proposed in [94] where subspace trails are
studied to construct new impossible differential distinguishers. Here we show
that the number of affine subspace propagation is an affine-invariant property.

Proposition 4. The number of affine subspace propagations of vectorial Boolean
functions is affine invariant.

Proof. Let f and g be two affine-equivalent vectorial Boolean functions where
g(x) = f(Px) with P be an affine transformation. If (v + A → u + B) is
an affine subspace propagation in f , g(P−1(v + A)) = f(v + A) = u + B, so
(P−1(v+A)→ u+B) is an affine subspace propagation of g. Hence the number
of affine subspace propagations is the same for two affine-equivalent S-boxes.

In Section 4.1.1, we have shown that if an S-box is (v, w)−linear, the
corresponding component function is of degree at most 1 over all cosets of
V . However, in most applications, the property only holds for certain choices of
constants, i.e., not for all cosets. Therefore, we introduce the following notion
to generalise the property of (v, w)−linearity.

Definition 15. Let f be a function from F2n to F2m . Then, f is called linear
with respect to (V,W) if there exist two affine subspaces V ∈ F2n and W ∈ F2m

with dimV = v and dimW = w, such that, for all λ ∈ W , fλ has degree at
most 1 on V .

Example 2. Let the algebraic normal form of an S-box S : (x3, x2, x1, x0)→
(y3, y2, y1, y0) be

y0 = x1x2 + x0 + x2 + x3

y1 = x0x1x2 + x0x1x3 + x0x2x3 + x2x3 + x1x3 + x3 + x1

y2 = x0x1x3 + x0x2x3 + x1x3 + x0x3 + x0x1 + x3 + x2 + 1

y3 = x0x2x3 + x0x1x3 + x0x1x2 + x1x2 + x3 + x1 + x0 + 1

(4.2)

84 OBSERVATIONS ON INVARIANT SUBSPACE ATTACK

A 2-dimensional subspace {0, 1, 4, 5} is mapped to {c, 5, 9, 0} of dimension
2, which is equivalent to S(0, x2, 0, x0) = (x0 + 1, x2 + 1, 0, x0 + x2), where
x2, x0 ∈ F2. However, the image of its coset {8, 9, c, d} is {3, e, 4, 7}, which is
not a 2-dimensional affine subspace.

Theorem 2. Let S be an s-bit S-box. Then the image of a 2-dimensional affine
subspace v +A under the S-box is also an affine subspace u+B of dimension 2
if and only if the S-box is linear with respect to (v +A,F2n).

Proof. (⇒) When the outputs form an affine subspace of dimension 2, we have
that ⊕

x∈v+A
S(x) = 0 , (4.3)

which means that the ANF of the S-box is of degree at most 1 over v + A.
Indeed, since v +A is of dimension 2, we assume that xi, xj are the variables
and all the rest are fixed to some constants. Once there exists a term xixj in
the ANF of the component function, Equation (4.3) does not always evaluate
to zero, which leads to a contradiction.

(⇐) The linearity of S with respect to (v + A,F2n) is equivalent to that the
restriction S|v+A is linear; therefore, the image of v + A is also an affine
subspace.

In most lightweight block cipher designs, optimal 3-bit and 4-bit S-boxes
are selected to obtain optimised performance in hardware. Meanwhile, some
lightweight designs are also the target of known invariant subspace attacks.
Therefore, in the following, we will limit the scope of our study to optimal
3-bit and 4-bit S-boxes. Note that a similar result was found in the analysis of
invariant subspaces in Midori64 [98].

It is known that all 4-bit optimal S-boxes are in one of the 16 affine-equivalent
classes [69, 138]. Since the propagation of affine subspaces is affine invariant, we
check the representatives in each class of the optimal 4-bit S-boxes. It is shown
that no optimal 4-bit S-box admits 3-dimensional affine subspace propagations.
However many transitions of 2-dimensional and 1-dimensional affine subspaces
are found. Similarly, there is no propagation of 2-dimensional affine subspace
in the optimal 3-bit S-boxes. The following theorem characterises the linear
dependence of outputs and inputs through an optimal 3-bit and 4-bit S-box.

Theorem 3. Let S be an optimal s-bit S-box with s = 3, 4. Then the image of
an affine subspace v +A with dimension less than s under the S-box is also an
affine subspace u+B if and only if S is linear with respect to (v +A,F2s).

INVARIANT SUBSPACE ATTACK 85

Proof. When the transition is between two affine subspaces of dimension 1,
every bit of the output is a linear function of the input, therefore the conclusion
always holds as a trivial case. Since there is no propagation of affine subspaces
with dimension 2 for the optimal 3-bit S-boxes, if S maps an affine subspace
v +A to an affine subspace u+B, then S is linear over v +A.

For 4-bit S-boxes, the affine subspace propagations are only of dimension 1 and
2, so the conclusion follows from Theorem 2.

The theorem shows that if there is a propagation of affine subspaces through an
S-box, the S-box acts as a linear function over the input space, i.e., S restricted
to the input affine subspace S|v+A is linear. As a special case, if the input
subspace is Fs2, the output is also Fs2. The conclusion can be extended to a layer
of S-boxes.

Theorem 4. Let F = (S0, S1, . . . , Sb−1) be a layer of optimal s-bit (s = 3, 4)
S-boxes. Then there exists an affine subspace v+A = (v0+A0, v1+A1, . . . , vb−1+
Ab−1) whose image through the S-box layer is also an affine subspace u+B =
(u0 +B0, u1 +B1, . . . , ub−1 +Bb−1) if and only if vi +Ai = Fs2 or F restricted
to vi +Ai is a linear transformation, 0 ≤ i ≤ b− 1.

Proof. For a layer of S-boxes F = (S0, S1, . . . , Sb−1), consider the restriction
of F to each of the S-boxes Si. The affine subspace propagation through F
implies that the restriction to each S-box also admits a propagation of affine
subspaces. Hence the conclusion can be drawn by applying Theorem 3 to each
restriction.

Example 3. We take the affine subspace propagation in PRINTcipher as an
example. The notation follows the original paper, a star ∗ represents the variable
taking values in F2. We refer to [53] for more details. The affine subspace
(1, ∗, 0) is mapped to (1, ∗, 1) by the S-box S = {0, 1, 3, 6, 7, 4, 5, 2} when k2 is
00. Hence the S-box restricted on (1, ∗, 0) is linear which has a matrix form1 0 0

1 1 0
1 0 1

 . (4.4)

86 OBSERVATIONS ON INVARIANT SUBSPACE ATTACK

4.2 Bounding the Invariant Subspaces

4.2.1 AES-like∗ Ciphers

The success of the AES has inspired many block cipher designs with a similar
structure. The state can be arranged as a 4× 4 matrix as shown below, with
each element of the state consisting of 4-bit or 8-bit.

s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

The round function of an AES-like cipher includes SubBytes (or SubCells),
ShiftRows (or ShuffleCells), MixColumns, KeyAdd and ConstAdd. The first
three operations are on 4-bit or 8-bit words, which means there are no bit-level
operations. Here we focus on the lightweight AES-like ciphers with 4-bit S-boxes,
and denote them by AES-like∗; they include the following operations.
SubCells: The 4-bit S-box is applied to each of the 16 cells.
ShuffleCells: A shuffle on the 16 cells of the state. In most of the designs, the
ShuffleCells operation shuffles the cell in a way that the cells belonging to the
same column are distributed over 4 different columns to achieve good diffusion.
MixColumns: A linear transformation M operates on the 4 columns of the state.
Normally M is selected from MDS or near-MDS matrices.
KeyAdd&ConstAdd: The key schedule and constants are usually extremely
lightweight.

Midori is a lightweight block cipher for low energy devices. It has two instances
Midori64 and Midori128, with 64-bit and 128-bit block size, respectively.
Midori64 is a typical AES-like∗ cipher. Its round function contains the following
operations
SubCells: The 4-bit S-box S0[16] = {C, A, D, 3, E, B, F, 7, 8, 9, 1, 5, 0, 2, 4, 6}.
ShuffleCells: Each cell of the state is shuffled:
(s0, s1, ..., s15)← (s0, s10, s5, s15, s14, s4, s11, s1, s9, s3, s12, s6, s7, s13, s2, s8).
MixColumns: The matrix M is applied to each column of the state.

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 . (4.5)

KeyAdd&ConstAdd: The round key is derived from the master key, and the
round constants are in {0, 1}16. We refer to [12] for the details of Midori.

BOUNDING THE INVARIANT SUBSPACES 87

4.2.2 Bounds on Invariant Subspace Attacks in AES-like∗

The invariant subspace attacks have been found until now in two ways; through
ad hoc or heuristic search. Rather than checking possible attacks after every
adjustment of parameters and components, it is preferable for designers to have
a guideline to preclude the existence of large invariant subspaces during the
design process. Based on the discussions in the previous section, we will show
that the dimension of some invariant subspaces in AES-like∗ ciphers can be
bounded.

Assume that there exists an invariant subspace A = (A1, A2, . . . , A16) in the
round function of an AES-like∗ block cipher. We ignore the operations KeyAdd
and ConstAdd for a moment, since they have no influence on the dimension of
the affine subspaces. According to Theorem 4, the output sets after SubCells,
ShuffleCells are also affine subspaces. Hence we denote the output sets B,D,E
after SubCells, ShuffleCells and MixColumns by B = (B1, B2, . . . , B16), D =
(D1, D2, . . . , D16) and E = (E1, E2, . . . , E16), as illustrated below.

A1
A2
...

A15
A16

 SubCells−−−−−→

B1
B2
...

B15
B16

 ShuffleCells−−−−−−−→

D1
D2
...

D15
D16

 MixColumns−−−−−−−−→

E1
E2
...

E15
E16

 .

We further assume that the input space A = (A1, A2, . . . , A16) has the property
that the restrictions Ai over each S-box are linearly independent from each
other. Then, we have the following bound on the dimension of the invariant
subspaces when the MixColumns matrix is MDS.

Theorem 5. Let f be the round function without key and constant addition of an
AES-like∗ cipher with an MDS MixColumn layer, satisfying that the ShuffleCells
operation spreads cells from the same column to all different columns. When
the input space A = (A1, A2, . . . , A16) is such that the restrictions Ai over each
S-box are linearly independent from each other, the dimension of any invariant
subspace is at most 32.

Proof. We show that the restriction of the invariant subspace A over every S-box
is of dimension at most 2. Firstly, the subspaces propagating through 4-bit S-
boxes are of dimension 1, 2, or 4, and the dimensions of the intermediate outputs
through the S-box layer remain the same, hence

∑
dim(Ai) =

∑
dim(Bi). Note

here that the sum of the dimensions of the restricted spaces only equals the
dimension of the input space when the restrictions are linearly independent

88 OBSERVATIONS ON INVARIANT SUBSPACE ATTACK

from each other. While the ShuffleCells operation simply permutes the cells,
the only operation that has an influence on the dimensions of the restricted
subspaces is the MixColumns layer. For the four cells involved in a MixColumns
operation, w.l.o.g (E1, E2, E3, E4), we consider the following cases.
Case 1. Suppose that there is one cell taking values in F4

2. Since all the entries
in an MDS matrix are nonzero (the inverse of an MDS matrix is also MDS),
the dimensions of Di, i = 1, 2, 3, 4 are also 4.
Case 2. Suppose that there are two or three cells taking all values in F4

2. Since
all the entries of the MDS matrix are nonzero, and the values in each cell are
independent from other cells, the dimensions of Di, i = 1, 2, 3, 4 are also 4.

So for Case 1 and 2,
∑

dim(Di) >
∑

dim(Ei) =
∑

dim(Ai). However, we
know from the SubCells layer that

∑
dim(Ai) =

∑
dim(Bi), thus

∑
dim(Di) >∑

dim(Bi), which contradicts the fact that the ShuffleCells operation only
permute the cells without changing their dimensions.
Case 3. Suppose that all four cells take values in F4

2, then the dimensions of
Di, i = 1, 2, 3, 4 are also 4. Recall that in the construction of the ShuffleCells,
in order to achieve good diffusion, it is preferably to spread the cells from
the same column to different columns. That is to say the cells of dimension
4 are distributed to 4 different columns. As a result, Case 3 either yields a
contradiction with Case 1 or a trivial case where all 16 cells receive inputs in
F4

2.

To conclude, if there exists an invariant subspace in an AES-like∗ cipher with
an MDS MixColumns layer, every cell can only take a value from subspaces of
dimension at most 2, which means the total dimension is at most 32.

The main observation of the above theorem is that the restriction of an invariant
subspaces on any cell cannot be of dimension 4, when the MixColumns matrix
is MDS. The observation can be generalised for any matrix by verifying a simple
condition, as we will discuss next.

Definition 16. For a subspace W = (W1,W2, . . . ,Wm) ∈ F2s × F2s × . . .F2s ,
we define an m-bit vector AI(W) = w = (w1, w2, . . . , wm) as the active indicator
of W , where

wi =
{

1,Wi = F2n ;
0, otherwise.

It is obvious that the nonzero entries of w indicates the active cells in W .

Definition 17. Let P be an n × n matrix over F2s , u be a binary vector of
length n. We define P�u by a binary vector v of length n, where vi =

∨
j Pi,j ·uj

and
∨

is the OR operation.

BOUNDING THE INVARIANT SUBSPACES 89

Theorem 6. Suppose M : Fm2s → Fm2s is linear. Let W = (W1,W2, . . . ,Wm) be
a subspace and V = (V1, V2, . . . , Vm) be the image of W under the linear function
M . Then, W has the same active pattern as V if M �AI(W) = AI(W).

Proof. The sets in each Vi are a linear combination of Wj , 1 ≤ j ≤ m. If
there exists a j0 such that Mi,j0 · AI(W)j0 = 1, then AI(V)i = 1. Thus,
W has the same active pattern with V if

∨
jMi,j · AI(W)j = AI(W)i, i.e.

M �AI(W) = AI(W).

It is obvious that the trivial cases are AI(W) = (0, 0, . . . , 0) or (1, 1, . . . , 1). If
(0, 0, . . . , 0) and (1, 1, . . . , 1) are the only solutions to the equation M � x = x,
it means that if there exists an invariant subspace for a round function with
the linear layer M , its dimension is at most 32, which corresponds to AI(W) =
(0, 0, . . . , 0) (AI(W) = (1, 1, . . . , 1) is the whole space).

There are AES-like∗ lightweight proposals with non-MDS MixColumns layer
such as Midori64 and Skinny64 [19]. The linear functionM is the composition
of ShuffleCells and MixColumns, which is a 16× 16 matrix over F24 . Here we
take the round function of Midori64 without key and constant addition as an
example and assume that the input cells are linearly independent. The linear
layer has a matrix form as given by Equation (4.6) below.

0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0

(4.6)

It can be verified that M � x = x only has trivial solutions. Therefore, for
the round function of Midori64 without the addition of keys and constants, if
there are any invariant subspaces with independent input cells, each cell is of
dimension at most 2. Recall that the round constants of Midori for each cell

90 OBSERVATIONS ON INVARIANT SUBSPACE ATTACK

are 0 or 1, hence, they are more likely to fall to some aforementioned invariant
subspaces. It can also be seen as a general explanation of the “unfortunate
combination of constants” as described in the discovery of the distinguisher [98].
The same upper bound on the dimension can be deduced for Skinny64; the
details of the deduction is omitted here.

4.2.3 Countermeasures and Discussions

Countermeasures to resist the invariant subspace attack can be deduced based
on Theorem 5 and 6. Firstly we study the properties of the invariant subspaces
in the keyless and constant-less round function of a given cipher, based on
which a guideline for the choice of the constants can be deduced. For the round
function of AES-like∗ ciphers with MDS MixColumns layer and Midori64,
when considering the invariant subspaces with independent inputs on each cells,
each cell should be of dimension at most 2.

As a consequence, we deduce a countermeasure as follows. Denote the set of
the constants for a single cell over all rounds by Cconst. The designer chooses
Cconst such that there is no 2-dimensional subspace V of F4

2 satisfying

Cconst ⊆ V.

For instance, if the constants for the first cell s0 are {1, 2, 3, 4, 5} over the first
five rounds, then clearly {1, 2, 3, 4, 5} can not fall to any 2-dimensional subspace,
hence the propagation of any nontrivial invariant subspaces with independent
inputs on each cell will be blocked after five rounds. Hence, invariant subspace
attack cannot be found for arbitrary number of rounds. It is obvious that this
is much more lightweight, compared with a heavier key schedule or complex
constants.

Remark 3. The bound and countermeasures are tailored for AES-like∗
primitives, which are suitable for the majority of current lightweight designs.
While the bounding technique does not directly apply to bit-level operations, we
leave the generalisation to bit-based designs as an open problem.

4.3 Conclusions

In this chapter, we focused on finding a mathematical characteration of the
(non)existence of invariant subspaces in lightweight block ciphers. By studying
the propagation of subspaces in S-boxes, we deduce that if v+A is an invariant
subspace in the round function of a lightweight block cipher with 3-bit or

CONCLUSIONS 91

4-bit S-box, then v +A restricted to each S-box has dimension 4 or at most 2.
Furthermore, when v +A restricted to Si is of dimension at most 2, Si is linear
over v +A|Si . As a consequence, we focus on lightweight AES-like ciphers with
4-bit S-boxes and an MDS MixColumn layer. The dimension of an invariant
subspace is upper bounded by 32, and the round function restricted to the
invariant subspace is linear. Based on the results, we propose a countermeasure
to resist invariant-subspace distinguishers in some lightweight ciphers, which is
easy and lightweight.

Chapter 5

Nonlinear Diffusion Layers

5.1 Motivation

Confusion and diffusion are the main criteria for cryptographic building blocks,
especially in the design of block ciphers. A prominent type is the SPN ciphers,
where confusion and diffusion are achieved mainly by the S-boxes and the
permutation layer, respectively. The common use of the SPN structures can
partially be attributed to the security proof it inherits from the structure, as in
the Wide Trail Strategy. In this framework, the major feature of a permutation
layer is its branch number, which is related to the minimum distance of an
error-correcting code. For instance, the diffusion layer of the AES is based on
a linear MDS code with length 8, dimension 4 and distance 5 over F28 . Most
AES-like ciphers have a diffusion layer based on a linear code. In fact, in the
practice of block cipher design, a consensus seems to have developed about the
diffusion function: designers choose linear functions with large branch numbers
to achieve provable bounds against differential and linear cryptanalysis.

Despite the clear division of labour for the S-boxes and the linear layer in SPN
ciphers, the Wide Trail Strategy does not require that the diffusion layer is
linear, see for example [172, p.142]. Intuitively speaking, a nonlinear diffusion
layer is able to guarantee a similar provable bound compared to a linear one
with the same branch number, while the confusion of the cipher may benefit as
well. However, no alternative to linear diffusion layers has been proposed or
studied in the literature in the context of the Wide Trail Strategy. A possible
reason is that the properties of nonlinear error-correcting codes are less explored
than the linear ones, which sets limit to the design and the analysis.

93

94 NONLINEAR DIFFUSION LAYERS

In this chapter, we present several constructions of nonlinear diffusion layers.
One is based on a well-known nonlinear code, a member of the Kerdock code
family, which is of length 16, 256 codewords and minimal distance 6 over F2.
The other one is a generic construction of nonlinear functions with T-functions,
which is of theoretical interests and able to generate a number of good nonlinear
diffusion functions, such as the nonlinear functions based on modular additions
designed in this chapter. We study the cryptographic properties of the nonlinear
diffusion layers, such as their branch number and differential probabilities. From
a practical point of view, we also construct example ciphers to illustrate the
advantage of nonlinear diffusion layer in the design of lightweight block ciphers.

The rest of this chapter is organised as follows: Section 5.2 recalls the general
definition of branch number. Section 5.3 introduces the Kerdock nonlinear
code family, derives a nonlinear diffusion function based on an instance K(4)
and analyses its cryptographic properties. We propose a generic construction
of nonlinear functions in Section 5.4 as well as a rigorous deduction of their
branch numbers. In particular, two instances are designed based on modular
additions which possess a diffusion property compatible with an NMDS function.
To illustrate the advantage of the nonlinear diffusion functions, we show two
example ciphers in Section 5.5, and analyse the minimum number of active S-
boxes and the expected differential probability for the differential characteristics.
Section 5.6 concludes the chapter.

5.2 A General Definition of Branch Number

Let n, t be positive integers. The value of a in Hexadecimal is shown with
numbers in typewriter font. An element in the vector space over a finite field
Fn2t is represented as a vector x̂ = {xn−1, · · · , x1, x0}, while a vector of length
n over Z2t the ring of integers modulo 2t is denoted with bold letters, i.e.,
ŷ = {yn−1, · · · ,y1,y0}. The j-th bit of the i-th component of an element
a ∈ F2t is denoted by ai[j]. We denote matrices of dimension n×n over a finite
field with capital letters, and n× n matrices over a ring with bold font.

Diffusion layers are one of the core components in block ciphers. One of the
metrics to measure a good diffusion function is the branch number which is
often defined for linear functions over finite fields. However, it is possible to
define them for general functions.

Definition 18. Let (G,⊗) be an Abelian group, n be an integer. The differential
branch number of a (possibly nonlinear) function f : Gn → Gn is defined as

Bd(f) = min
α,β 6=α

{wt(α⊗ β−1) + wt(f(α)⊗ f(β)−1)} , α, β ∈ Gn ,

A NONLINEAR FUNCTION BASED ON THE KERDOCK CODE 95

where + is integer addition, g−1 is the inverse element of g ∈ G and wt(·) is
the Hamming weight with wt(x) = wt(xn−1, · · · , x1, x0) = #{i|xi 6= 0}.

Similarly, linear branch number can be defined as follows.

Definition 19 ([172]). Let (G,⊗) be an Abelian group, n be an integer. The
linear branch number of a function f : Gn → Gn is defined as

Bl(f) = min
α,β,C(α,β) 6=0

{wt(α) + wt(β)} ,

where C(·, ·) is the correlation with input mask α and output mask β.

5.3 A Nonlinear Function Based on the Kerdock
Code

5.3.1 Kerdock Codes

Although much less is known about nonlinear error-correcting codes than about
linear codes, a few examples with very good properties are known. Kerdock
codes [116, 166] are an example. In order to create a diffusion map similar to
MixColumns from a nonlinear code, we put some extra requirements. Firstly,
for practical reasons the code should be over an alphabet with size a power of
two. Secondly, recall that in AES the action of MixColumns on a single column
can be described by ŷ = Mx̂ where M is a matrix derived from a generator
matrix

[
I M

]
of the corresponding linear code, where x̂, ŷ are vectors of length

4 over F28 . In other words, the matrix M is the matrix used to compute the
redundancy symbols of the codeword (= output of MixColumns) from the data
symbols (= input of MixColumns). Hence, if we use a nonlinear code to define
a diffusion map in a similar way, then there should be an explicit formula to
compute the redundancy symbols from the data symbols. This means that we
need a systematic code. Furthermore, we require that the binary logarithm of
the number of codewords equals the length of the codewords, divided by two.

We now explain Kerdock codes following the derivation of [143]. Consider the
space V of all bit-strings of length m and let f be a function from V to {0, 1}.
Define a codeword ĉf with length n = 2m as follows:

ĉf = (f(00 . . . 0), f(00 . . . 1), . . . , f(11 . . . 1)) .

Then the first-order Reed-Muller code of length n = 2m is defined as follows:

R(1,m) = {ĉf | f is a linear/affine function on V } .

96 NONLINEAR DIFFUSION LAYERS

Since the sum of two linear/affine functions is a linear/affine function, it follows
that R(1,m) is a linear code. Since there are 2m+1 linear/affine functions over
V , R(1,m) has dimension m+ 1. The second-order Reed-Muller code of length
n = 2m is defined as:

R(2,m) = {ĉf | f is a function of degree at most 2 on V } .

Also R(2,m) is a linear code. R(2,m) can also be described as

R(1,m) = {ĉf+g | f is a linear/affine function on V and

g is a homogeneous function of degree 2 on V } .
(5.1)

The Kerdock code of lengthm satisfies R(1,m) ⊂ C ⊂ R(2,m). In fact Kerdock
codes can be formed by putting extra conditions on g in Equation (5.1). A
homogeneous function of degree 2 can be described by a quadratic form:

Q(x̂) =
∑

1≤i<j≤m
xixj , (5.2)

or the corresponding symplectic form:

B(x̂, ŷ) = Q(x̂+ ŷ)−Q(x̂)−Q(ŷ) = x̂BŷT , (5.3)

where B is a symplectic matrix (B = −BT and all elements on the main diagonal
are equal to 0). A set of 2m−1 symplectic (m×m)-matrices (m even) such that
the difference of any two matrices of the set is nonsingular is called a Kerdock
set.

Letm be even andm ≥ 4. Let G be the set of homogeneous functions of degree 2
defined by the 2m−1 matrices of a Kerdock set according to Equations (5.2)–(5.3).
Then the Kerdock code of length n = 2m is defined as follows:

K(m) = {ĉf+g | f is a linear/affine function on V and g ∈ G}. (5.4)

Since there are 2m+1 choices for f and 2m−1 choices for g, we obtain that K(m)
contains 22m codewords. It can be shown that the minimum distance of K(m)
equals 2m−1 − 2m/2−1. In addition, all Kerdock codes are systematic.

When m = 4, K(4) has length 24 = 16 and contains 22·4 = 28 codewords. It has
minimum distance 23 − 22−1 = 6. This code is also known as the Nordstrom-
Robinson code [166]. Table 5.1 illustrates that Kerdock codes for larger m do
not satisfy the requirements that we put at the start of this section.

A NONLINEAR FUNCTION BASED ON THE KERDOCK CODE 97

Table 5.1: Parameters of Kerdock codes for 4 ≤ m ≤ 8

m n = 2m log2(|C|) = 2m d = 2m−1 − 2m/2−1

4 16 8 6
6 64 12 28
8 256 16 120

Table 5.2: Lookup table of the nonlinear function ζ

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 0 76 B9 CF 97 2D E2 58 6B D1 1E A4 FC 8A 45 33
1 E5 9C 53 2A 4E FB 34 81 B2 7 C8 7D 19 60 AF D6
2 DA A3 6C 15 71 C4 B BE 8D 38 F7 42 26 5F 90 E9
3 3F 49 86 F0 A8 12 DD 67 54 EE 21 9B C3 B5 7A C
4 AE 1B D4 61 C9 B0 7F 6 35 4C 83 FA 52 E7 28 9D
5 78 C2 D B7 23 55 9A EC DF A9 66 10 84 3E F1 4B
6 47 FD 32 88 1C 6A A5 D3 E0 96 59 2F BB 1 CE 74
7 91 24 EB 5E F6 8F 40 39 A 73 BC C5 6D D8 17 A2
8 5D E8 27 92 3A 43 8C F5 C6 BF 70 9 A1 14 DB 6E
9 8B 31 FE 44 D0 A6 69 1F 2C 5A 95 E3 77 CD 2 B8
A B4 E C1 7B EF 99 56 20 13 65 AA DC 48 F2 3D 87
B 62 D7 18 AD 5 7C B3 CA F9 80 4F 36 9E 2B E4 51
C F3 85 4A 3C 64 DE 11 AB 98 22 ED 57 F 79 B6 C0
D 16 6F A0 D9 BD 8 C7 72 41 F4 3B 8E EA 93 5C 25
E 29 50 9F E6 82 37 F8 4D 7E CB 4 B1 D5 AC 63 1A
F CC BA 75 3 5B E1 2E 94 A7 1D D2 68 30 46 89 FF

5.3.2 Diffusion Function ζ Based on K(4)

Definition 20. We define the diffusion function ζ by stating that, for all 8-bit
strings x, the image ζ(x) is the unique 8-bit value y such that the 16-bit value
x‖y is a codeword of K(4).

Table 5.2 gives a tabular representation of ζ.

Diffusion Properties of ζ

Theorem 7. The nonlinear function ζ has differential branch number 6.

Proof. By definition, the differential branch number of the nonlinear function
is the minimum distance between the codewords of K(4), which equals 6.

98 NONLINEAR DIFFUSION LAYERS

The advantage of the function ζ is two-fold. The minimum distance of a binary
linear code with length 16 and dimension 8 is at most 5 [195], which means ζ
achieves better diffusion than any linear layer operating on F8

2. In addition, the
nonlinearity of ζ may lower the maximum expected differential probability of
the optimal characteristics, when ζ is adopted in stead of the linear layer of a
cipher. This depends of course on the cipher.

Differential Property of ζ

An alternative description of the Kerdock code K(4) is the binary image of a
Z4-linear code with the generator matrix

M =

3 2 3 1
3 3 1 2
2 1 1 1
3 1 2 3

 ,

under the Gray map Φ : Z4 → F22 which is defined by:

Φ(0) = 00,Φ(1) = 01,Φ(2) = 11,Φ(3) = 10.

For more information on Z4-linear codes and their links with nonlinear codes
over F2, we refer to [195]. We know from Section 5.3.1 that the diffusion function
ζ based on K(4) is quadratic. As a result, its difference distribution table (DDT)
has several interesting properties, which reflects the symmetry in the Kerdock
codes.

Before diving into the properties, we introduce a few lemmata on the interactions
among the Gray map, XOR and modular addition. Their correctness can be
verified by going over all the cases.

Lemma 5. Let v1,v2 ∈ Z4. Let Φ be the Gray map. We have

Φ(v1 � v2) =Φ(v1)⊕ Φ(v2)⊕ e ,

Φ(v1 � v2 � 2) =Φ(v1)⊕ Φ(v2)⊕ Φ(2)⊕ e ,
(5.5)

where

e =
{

00, when v1 ∈ {0, 2} or v2 ∈ {0, 2} ,
11, otherwise.

= Φ(2v1v2) .

A NONLINEAR FUNCTION BASED ON THE KERDOCK CODE 99

Lemma 6. Let y1, y2 ∈ F22 . Φ−1 is the inverse Gray map. We have

Φ−1(y1 ⊕ y2) = Φ−1(y1)� Φ−1(y2)� f , (5.6)

where

f =
{

0, when y1 ∈ {00, 11} or y2 ∈ {00, 11},
2, otherwise,

= 2 · Φ−1(y1) · Φ−1(y2) ,

and the multiplications are over Z4.

Lemma 5 and Lemma 6 show that the behaviour of 0, 2 is different from that of
1, 3 with respect to the Gray map. Therefore, we define the following subsets of
Z4

4.

Definition 21. The space Z4
4 can be divided into 16 sets Λi with 0 ≤ i ≤ 15,

where

Λi = {
[
c3 c2 c1 c0

]T | cj ∈ {0, 2}, when the j-th bit of i is 0

otherwise cj ∈ {1, 3}} .
(5.7)

We further denote the binary image of Λi by λi.

For example:
Λ0 = {

[
c3 c2 c1 c0

]T | cj ∈ {0, 2}} ,

and

λ0 = {00,03,0C,0F,30,33,3C,3F,C0,C3,CC,CF,F0,F3,FC,FF} ,

where the numbers in typewriter font are 8-bit strings in hexadecimal notations.

Theorem 8. The differential probability of any input difference in ζ is 0, 1
or 1/4. In particular, when the input difference is in λ0 or λ15, the output
difference is the image of the input difference under ζ and has differential
probability 1.

Proof. Let â, b̂ be the input and output differences which are vectors in F8
2. We

consider the differential equation:

ζ(x̂)⊕ ζ(x̂⊕ â) = b̂ ,

100 NONLINEAR DIFFUSION LAYERS

which is equivalent to

Φ(MΦ−1(x̂))⊕ Φ(MΦ−1(x̂⊕ â)) = b̂ .

By Lemma 6, it is equivalent to

Φ(MΦ−1(x̂))⊕ Φ(M(Φ−1(x̂)� Φ−1(â)� f̂)) = b̂,

⇒ Φ(MΦ−1(x̂))⊕ Φ(MΦ−1(x̂)�MΦ−1(â)�M f̂) = b̂ ,

where f̂ =
[
f3 f2 f1 f0

]T depends on x̂ and â, specifically f̂ ∈ Λ0 with

fi = 2Φ−1(x̂)iΦ−1(â)i .

With Lemma 5 and f̂ ∈ Λ0, the above equation is equivalent to

Φ(MΦ−1(x̂))⊕ Φ(M(Φ−1(x̂)))⊕ Φ(MΦ−1(â))⊕ Φ(M f̂)⊕ ê = b̂ ,

⇒ Φ(MΦ−1(â))⊕ Φ(M f̂)⊕ ê = b̂ ,

(5.8)

where

êi =
{

00, (MΦ−1(x̂))i ∈ {0, 2} or (MΦ−1(â))i ∈ {0, 2} ,
11, otherwise.

= Φ(2(MΦ−1(x̂))i(MΦ−1(â))i) .

Therefore, the output difference is b̂ = Φ(MΦ−1(â))⊕ Φ(M f̂)⊕ ê. Next, we
discuss the possible values of Φ(M f̂)⊕ ê.

(1) If the input difference â ∈ λ0, i.e., Φ−1(â) ∈ Λ0. Then f̂ = ~0, and ê = ~0
since MΦ−1(â) ∈ Λ0 (notice that Λ0 is stable under M , i.e., MΛ0 = Λ0). Thus,
Φ(M f̂)⊕ ê = 0, and we have Φ(MΦ−1(â)) = b̂.

(2) If Φ−1(â) ∈ Λ15, we have fi = 2Φ−1(x̂)i, thus M f̂ = 2Mx̂, where the
multiplication is over Z4. Hence, (M f̂)i equals 0 when (MΦ−1(x̂))i ∈ {0, 2}
and 2 when (MΦ−1(x̂))i ∈ {1, 3}. Therefore, Φ(M f̂) = ê, and we have
Φ(MΦ−1(â)) = b̂.

(3) Denote Φ−1(x̂) by x̂ and Φ−1(â) by â. Denote by û · v̂ the component-wise
product of two vectors û, v̂. If â is not in Λ0 or Λ15, we have

Φ(M f̂)⊕ ê = Φ(M(2x̂ · â))⊕ Φ(2(M x̂) · (M â)) ,

A NONLINEAR FUNCTION BASED ON THE KERDOCK CODE 101

which is equivalent to Φ(M(2x̂ · â)� (2(M x̂) · (M â))) since 2(M x̂) · (M â) ∈ Λ0.

With x̂ =
[
x3 x2 x1 x0

]T and â =
[
a3 a2 a1 a0

]T , we obtain

M(2x̂a)� (2(M x̂) · (M â))

= M

2x3a3
2x2a2
2x1a1
2x0a0

� 2

(3x3 � 2x2 � 3x1 � x0)(3a3 � 2a2 � 3a1 � a0)
(3x3 � 3x2 � x1 � 2x0)(3a3 � 3a2 � a1 � 2a0)

(2x3 � x2 � x1 � x0)(2a3 � a2 � a1 � a0)
(3x3 � x2 � 2x1 � 3x0)(3a3 � a2 � 2a1 � 3a0)

 ,
which is a linear transformation of x over Z4 with matrix

2a1 � 2a0 0 2a3 � 2a0 2a3 � 2a1
2a2 � 2a1 2a3 � 2a1 2a3 � 2a2 0

0 2a1 � 2a0 2a2 � 2a0 2a2 � 2a1
2a2 � 2a0 2a3 � 2a0 0 2a3 � 2a2

 .
Since the sum of all the rows is zero, the rank of the matrix is at most 3. Moreover,
since there is at least one Ai which equals 0 or 2, due to the assumption that
â ∈ Λi, 1 ≤ i ≤ 14, it can be easily verified that the rank of the matrix is exactly
2. Therefore, there are four possible values that Φ(M f̂)⊕ ê can take:

Φ(
[
2a1 � 2a0, 2a2 � 2a1, 0, 2a2 � 2a0

]T)

Φ(
[
0, 2a3 � 2a1, 2a1 � 2a0, 2a3 � 2a0

]T)

Φ(
[
2a3 � 2a0, 2a3 � 2a2, 2a2 � 2a0, 0

]T)

Φ(
[
2a3 � 2a1, 0, 2a2 � 2a1, 2a3 � 2a2

]T)

,

if â ∈ Λi, i = 1, 2, 4, 7, 8, 11, 13, or the linear span of the above four vectors if
â ∈ Λi, i = 3, 5, 6, 9, 10, 12 (due to that these four expressions only evaluate
to two different vectors). Each value appears with probability 1/4. That is
to say, for any input difference â with Φ−1(â) ∈ Λi, 1 ≤ i ≤ 14, there are four
output differences, and the differential probability is 1/4, which concludes the
proof.

Remark 4. Let D0 be an input difference with four output differences
D1, D2, D3, D4. Then, the output differences propagate to the same set of
four differences through ζ. For instance, the input difference 01 has the
output differences 76, 79, B5, BA, and they have the same output differences
40, 4F, 73, 7C when acting as input difference to the function ζ. We call the
propagation of differences {76, 79, B5, BA} to {40, 4F, 73, 7C} a package. Note

102 NONLINEAR DIFFUSION LAYERS

that the propagations with probability 1 are packages naturally. Furthermore,
it can be easily verified with the expressions of the output differences that the
packages can be categorised into loops. For instance, the following four packages
form a loop of length 4:

{01, 3D, CD, F1} → {76, 79, B5, BA} ,

{76, 79, B5, BA} → {40, 4F, 73, 7C} ,

{40, 4F, 73, 7C} → {5E, 6D, 9D, AE} ,

{5E, 6D, 9D, AE} → {01, 3D, CD, F1} .

5.4 A General Construction of Nonlinear Diffusion
Functions Based on T-functions

In order to find a systematic nonlinear code (2n, n, d) over a finite field F2m , one
may start with identifying an appropriate nonlinear bijection f : Fn2m → Fn2m ,
such that the codewords are of the form:

ĉ = (x̂, f(x̂)), x̂ ∈ Fn2m .

However, there are no guidelines for the choice of the nonlinear functions due
to the lack of the generator matrix. Given a certain nonlinear function, it is
also time-consuming to find the minimal distance and the weight distribution
of the code, since this requires to generate all the codewords and computing
the differences of all pairs.

In this section, we consider a general family of nonlinear functions based on the
T-functions. The original idea of this construction came from the observations
on ARX structures and automatons. We would like to thank Gregor Leander
who came up with an elegant proof of the cryptographic properties and further
generalised the constructions during fruitful discussions.

Let k, l ≥ 0 be integers. Let η : Fl2k → Fl2k be a nonlinear function

ŷ = η(x̂) ,

where ŷ = (yl−1, . . . , y1, y0)T and x̂ = (xl−1, . . . , x1, x0)T . We define η to be a
function such that the j-th bit of each of the yi

1. depends linearly on the j-th bits of x`, i.e., x`[j] for all 1 ≤ ` ≤ l.

A GENERAL CONSTRUCTION OF NONLINEAR DIFFUSION FUNCTIONS BASED ON T-FUNCTIONS
103

2. depends in an arbitrary way on the t-th bits of x` for any 1 ≤ ` ≤ l and
for t < j

3. does not depend on the t-th bits of x` for all 1 ≤ ` ≤ l and for t > j

Denote x̂(j) = (xl−1[j], . . . , x0[j])T and ŷ(j) = (yl−1[j], . . . , y0[j])T . For all
0 ≤ j ≤ k − 1, there exist a function

Tj :
(
Fl2
)j → Fl2

and a linear function mj

mj : Fl2 → Fl2
defined by a matrix Mj ∈ Fl×l2 such that

ŷ(j) = Mj x̂
(j) + Tj

(
x̂(j−1), . . . , x̂(0)

)
.

Theorem 9. Let η be a function defined as above. Then η is a permutation if
all the matrices Mj are invertible. Furthermore, the branch number of η is

min
0≤j≤k−1

Bd(Mj) ≤ Bd(η) ≤ max
0≤j≤k−1

Bd(Mj) .

Proof. Suppose that

ŷ(j) = Mj x̂
(j) ⊕ Tj(x̂(j−1), . . . , x̂(0)) ,

and

ŷ(j) ⊕∆ŷ(j) = Mj(x̂(j) ⊕∆x̂(j))⊕ Tj(x̂(j−1) ⊕∆x̂(j−1), . . . , x̂(0) ⊕∆x̂(0).

We consider j0 ≥ 0 where ∆x̂(j0) is the first nonzero component of
(∆x̂(t−1), . . . ,∆x̂(0))T . Then, one has ∆x̂(j−1) = 0 for j < j0. Therefore,

Tj(x̂(j0−1), . . . , x̂(0)) = Tj(x̂(j0−1) ⊕∆x̂(j0−1), . . . , x̂(0) ⊕∆x̂(0)) ,

which means
∆ŷ(j0) = Mj0∆x̂(j0) .

Invertible: When (∆ŷ(k−1),∆ŷ(k−2), . . . ,∆ŷ(0))T = 0, in particular, ∆ŷ(j0) =
0. Since every Mj is invertible, we have ∆x̂(j0) = 0. By induction, we get
(∆x̂(k−1),∆x̂(k−2), . . . ,∆x̂(0))T = 0.

Branch number: When there are α nonzero bits in ∆ŷ(j0), i.e., the Hamming
weight of ∆ŷ(j0) is wt(∆ŷ(j0)) = α, we know that wt(∆ŷ(j0)) + wt(∆x̂(j0)) ≥
Bd(Mj0). Therefore, the branch number of function η:

min
0≤j≤k−1

Bd(Mj) ≤ Bd(η) ≤ max
0≤j≤k−1

Bd(Mj) .

104 NONLINEAR DIFFUSION LAYERS

x3 x2 x1 x0

y3 y2 y1 y0

(a)a nonlinear function ρ

x3 x2 x1 x0

y3 y2 y1 y0

(b)a nonlinear function ψ

Figure 5.1: (a): a nonlinear function with XOR and modular additions, and
(b): a nonlinear function with only modular additions.

With the generic construction, one can adjust the nonlinear diffusion function
according to the goal of the design, meanwhile the diffusion property of the
function is fully under control. As an application, we define two nonlinear
diffusion functions based on modular addition.

5.4.1 The Nonlinear Diffusion Functions ρ and ψ

Let m ≥ 2 be an integer. In most cases, m equals 4 or 8 according to the size
of the S-box in use. We define a nonlinear function over F2m as

ρ : F4
2m → F4

2m : (x3, x2, x1, x0) 7→ (y3, y2, y1, y0) ,

where yi = xi ⊕ (xi+1 � xi+2), 0 ≤ i ≤ 3. Figure 5.1(a) gives a picture of ρ.

By slightly modifying the function ρ, we define a nonlinear function ψ which is
shown in Figure 5.1(b):

ψ : F4
2m → F4

2m : (x3, x2, x1, x0) 7→ (y3, y2, y1, y0) ,

where yi = xi � (xi+1 � xi+2), 0 ≤ i ≤ 3.

5.4.2 Diffusion Functions ρ and ψ

As special instances of the general construction, the branch number of the
nonlinear functions ρ and ψ can be predicted accordingly.

A GENERAL CONSTRUCTION OF NONLINEAR DIFFUSION FUNCTIONS BASED ON T-FUNCTIONS
105

Theorem 10. The nonlinear function ρ is invertible and has differential branch
number 4.

Proof. The modular addition of two elements x� y can be written as x⊕ y ⊕
c(x, y), where the carry function c(·, ·) is a T-function. As a consequence, the
update function of ρ,

yi = xi ⊕ (xi+1 � xi+2)

is equivalent to
yi = xi ⊕ xi+1 ⊕ xi+2 ⊕ c(xi+1, xi+2),

which follows the general construction. The matrix representation for the linear
part of the update function is

0 1 1 1
1 1 1 0
1 1 0 1
1 0 1 1

 , (5.9)

which has branch number 4. Hence, the nonlinear function is invertible with
differential branch number 4.

Remark 5. Note that ρ is similar to the S-box (χ function) adopted in the
SHA-3 permutation Keccak-f [30], which is a generalised automaton [61, 206].
Although ρ is invertible, the inverse of ρ seems to not have a simple expression.

The property of the nonlinear function ψ can be analysed analogously to that of
ρ. Here, notice that the operations in the nonlinear function ψ are only modular
additions, hence, we take a slightly different approach to show the property of
ψ as follows.

Theorem 11. ψ is invertible and has differential branch number 4.

Proof. Although ψ is a nonlinear function over F2m , it is linear over the ring of
integer modulo 2m, i.e., Z2m . Therefore, it has a generator matrix over Z2m :

Ψ =

0 1 1 1
1 1 1 0
1 1 0 1
1 0 1 1

 ,

which is near-MDS. As a result, ψ is invertible and its differential branch number
is 4.

106 NONLINEAR DIFFUSION LAYERS

Due to the linearity over Z2m , the inverse of ψ has a simple form with generator
matrix Ψ−1. When m = 4, the update rule of ψ−1 is defined by the generator
matrix:

Ψ−1 =

10 11 11 11
11 11 11 10
11 11 10 11
11 10 11 11

 .

Remark 6. It is interesting to notice that the linear part of the functions ρ and
ψ is affine-equivalent to a well-known linear function σ : F4

2m → F4
2m defined by

the binary near-MDS matrix
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 . (5.10)

The function σ has been successfully applied to lightweight block cipher designs
such as Midori [12], and the similarity suggests possible applications of the
nonlinear functions ρ and ψ.

5.5 Example Ciphers with a Nonlinear Diffusion
Layer

5.5.1 Nonlinear Diffusion Function ζ

The diffusion layer based on the Kerdock nonlinear function operates on bits. In
order to fully utilise the diffusion property, we provide here an example cipher
with 128-bit block size as shown in Figure 5.2. The 128-bit block is arranged
as a 3-dimensional state with rows, columns and lanes of length 4, 8, and 4,
respectively. The cipher has two different round functions. For odd-numbered
rounds, the round function is defined as follows:

• SubCells: 32 applications of a 4-bit S-box (the S-box of Present [44]) on
each row

S[16] = {C, 5, 6, B, 9, 0, A, D, 3, E, F, 8, 4, 7, 1, 2} ;

• MixColumns: 16 applications of the nonlinear map ζ derived from K(4)
on each column;

• AddKey: a 128-bit key is XORed into the state,

EXAMPLE CIPHERS WITH A NONLINEAR DIFFUSION LAYER 107

and for even-numbered rounds it is as follows:

• SubCells: 32 applications of the S-box on each row;

• MixLanes: 32 applications on each lanes of the linear function σ : F4
2 → F4

2
in Equation (5.10);

• AddKey: a 128-bit key is XORed into the state.

To evaluate the bound for the number of active S-boxes in the cipher, we
performed an automatic search of differential characteristics, adopting a similar
method as [189]. Denote the 4-bit differences before and after each SubCells
layer by ari and bri , where 0 ≤ r ≤ n stands for the round number and 0 ≤ i ≤ 15
labels the S-boxes. Model the propagation of (ari → bri) by the DDT table of
the S-box. For odd-numbered rounds, the difference propagation of (bri → ar+1

i)
follows Theorem 8. For even-numbered rounds, the MixLanes operation is linear,
therefore, the propagation of differences is straightforward.

It is shown by automatic search that the minimum number of active S-boxes
in a 4-round differential characteristic is 24, while the number is 20 with a
linear diffusion layer where the branch number is at most 5. Furthermore, the
probability of a differential characteristic with optimal number of active S-boxes
can be much lower than what is provided by the S-boxes solely. For instance,
we show a 4-round characteristic with 24 active S-boxes in Figure 5.3. To
simplify the view, the differences over the cells are 4-bit long which represent
the hexadecimal values of the bits in a row of the cipher, and a blank cell stands
for a zero difference.

The 24 active S-boxes lead to a differential probability of 2−61 (taking into
account the propagations of probability 2−3). Moreover, we define the nonlinear
diffusion functions being effectively active if the difference propagations have
nonzero probability which is strictly less than 1 (the propagations with
probability 1 have no effective contribution). In our example, there are 8
effectively active nonlinear diffusion functions, which counts for an additional
probability of 2−16. Therefore, the overall expected differential probability of
the characteristic is 2−77.

Remark 7. The cipher we propose here has some similarity to previous designs
such as the LS-designs [96] which are 2-dimension and the block cipher 3D [162].

5.5.2 Nonlinear Diffusion Function ρ and ψ

The nonlinear functions ρ and ψ operate on F4
2m , therefore, they can be adopted

similarly as most MixColumns operations in the AES-like designs. We illustrate

108 NONLINEAR DIFFUSION LAYERS

(a) (b)

(c)

(d)

Figure 5.2: (a) An example cipher of 128 bits, (b) a column, (c) a row, (d) a
lane.

an application of the nonlinear diffusion function ρ in the following 64-bit cipher.
The state is arranged in a 4×4 square

s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

 .

The round function consists the following operations:

• SubCells: a 4-bit S-box (the S-box of Prince) is applied to each cell;

• ShiftBits: the value on each column is rotated to the left by r bits, i.e.,

(s4i, s4i+1, s4i+2, s4i+3)← ((s4i, s4i+1, s4i+2, s4i+3)≪ r), i = 0, 1, 2, 3 ;

• ShuffleCells: the same operation as that of Midori, i.e.,

(s0, s1, ..., s15)← (s0, s10, s5, s15, s14, s4, s11, s1, s9, s3, s12, s6, s7, s13, s2, s8) ;

• MixColumns: ρ is applied to each column of the state;

EXAMPLE CIPHERS WITH A NONLINEAR DIFFUSION LAYER 109

9 8 5

SC

8 3 1

MC

8

8

8

8

8

3

3

3

3

3

1

1

1

1

1

SC

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

ML

7

7

7

7

7

SC

f

f

f

f

f

MC

f

SC

e

ML

e e e

Figure 5.3: A 4-round differential characteristic with 24 active S-boxes.

• KeyAdd: a 64-bit key is XORed to the state.

Despite its similarity to Midori, the cipher we propose here has the operation
ShiftBits, which is uncommon for S-box-based ciphers. The main target of
ShiftBits is to avoid trivial propagations of differences through the MixColumns
operation where the modular additions are not effectively activated. The
difference propagation through modular addition can be efficiently modelled
with a SAT/SMT language similar to the techniques in [150, 130]. As a result,
we track the propagation of the differences through the round function, and
obtain that when the rotational offset r is 3, an optimal differential characteristic
of 4 rounds has probability 2−42. Compared to Midori64 with at least 16
active S-boxes after 4 rounds leading to a differential probability 2−32 [12],
the modular additions of ρ contribute significantly to the resistance against
differential cryptanalysis.

110 NONLINEAR DIFFUSION LAYERS

Remark 8. The main focus of these example ciphers is the nonlinear diffusion
layer, therefore, we ignore the specification of their key schedule. By experiment,
one can show that the linear branch number of the function ζ is 6 and those of
ρ, ψ are 4 when operating over 4-bit words. Hence, for simplicity and illustrative
purposes, we only concentrate on analysing differential characteristics of the
ciphers.

5.6 Conclusions

In this chapter, we proposed several nonlinear functions with good diffusion,
which can be adopted as a replacement of the linear layers in block ciphers;
our nonlinear functions provide both diffusion and confusion. We investigate a
nonlinear function derived from the Kerdock codes, and two nonlinear functions
of an automaton structure based on modular additions, which are derived from a
generic construction of nonlinear functions based on T-functions proposed in this
chapter. We proved that the diffusion property in terms of the branch number
has a comparable or even better effect compared to their linear counterparts.
To show an application of nonlinear diffusion layers, the diffusion effect of the
nonlinear function is illustrated in two example ciphers. Due to the improved
diffusion of the ζ function, a higher bound on the minimum number of the
active S-boxes is guaranteed. Moreover, the confusion effect is further boosted
by the probabilistic propagations of differences through the nonlinear diffusion
layer.

A future line of work could focus on constructing nonlinear diffusion functions
suitable for various designing preferences, as well as a better trade-off between the
diffusion and confusion effect of a nonlinear diffusion function when interacting
with the S-boxes and (possibly also) the linear functions. In terms of the
resistance against differential and linear cryptanalysis, it is promising to design
lightweight ciphers which reach the security requirement with fewer rounds.

In addition, designing ciphers for MPC and FHE benefits from the nonlinear
diffusion layers, since fewer rounds may reduce the overall multiplicative
depth. For side-channel resistance, masking schemes such as the Threshold
Implementation [165] prefer operations with a lower algebraic degree; in this
case, nonlinear diffusion functions based on bitwise AND can be advantageous.

Chapter 6

The Phantom of Differential
Characteristics

As we have seen in previous chapters, statistical distinguishers are extensively
studied and applied to symmetric cryptanalysis. Those distinguishers are based
on several fundamental assumptions. In this chapter, our focus is on the accuracy
of the assumptions when considering practical ciphers, especially the influence
on the characteristics in differential cryptanalysis.

This chapter is organised as follows. Section 6.1 motivates the problem we will
study and reviews previous works. We show our basic observation on effective
keys of the characteristics in Section 6.2. The singular characteristic as well as
singular cluster are proposed in Section 6.3. Section 6.4 shows the properties of
singular characteristics and singular clusters in the AES. Section 6.5 further
discusses the different views of the designer and the attacker with respect to
the security of a block cipher. Finally, we conclude in Section 6.6.

6.1 Motivation

Symmetric-key designs are expected to resist known cryptanalytic methods
based on distinguishers that distinguish a (round-reduced) block cipher from
random permutations. Introduced by Biham and Shamir in 1990, differential
cryptanalysis has been successfully applied to the analysis of numerous block
ciphers and hash functions, see for instance [36, 115]. In a single-key setting,
the difference in a block cipher comes from the plaintexts, which play the same

111

112 THE PHANTOM OF DIFFERENTIAL CHARACTERISTICS

role as the chaining values in a hash function; while the difference in a hash
function is injected through the messages, which resembles the round keys in
a block cipher. Generally speaking, finding collisions for a hash function is
somehow analogous to searching for related-key differentials of a block cipher,
examples are the collision attacks on MD5 and SHA-1 [184, 202, 203], as well
as the rebound attacks on the SHA-3 candidates [156].

Key Schedule. A block cipher is designed with a key schedule which expands
the key into several round keys. We often assume that independent keys are
produced in successive rounds, meanwhile the key schedule cannot be too
complicated to reduce the implementation cost. Therefore, in practical block
cipher designs, the operations of a key schedule are mostly linear. For example
in the key schedule of AES-128, only 4 out of 16 bytes pass through the S-box
operations. Meanwhile, linear key schedules are commonly adopted, especially
in many lightweight ciphers.

The key schedules are hardly explored to construct a distinguisher for a (round-
reduced) cipher. Indeed, cryptanalysis typically searches for the distinguishing
properties that are independent of the key schedules. For example, truncated
impossible differentials independent of the non-linear components and the
key schedule [34, 187] are constructed in most impossible differential attacks.
Even if they have been used to mount attacks in the related-key setting [37],
the key schedules are in most cases merely involved in the key recovery
attack to reduce the guessing complexity by exploring the relations among
the round keys. As a matter of fact, key schedules are considered irrelevant to
the distinguishers themselves in the single-key setting, such as the search of
differential characteristics with an automated tool [188].

The overlooking of the key schedules leads to a bottle-neck in finding better
distinguishers. As shown in a previous research [186], unless the details of the
S-boxes and the key schedule are explored, the 4-round impossible differentials
of the AES cannot be improved. Unfortunately though, the role of the key
schedule in extending the distinguishers under the single-key model still remains
an open problem.

Hypothesis of Stochastic Equivalence. The probability of a differential is
the sum of the probabilities of the corresponding differential characteristics.
Hence, an estimation on the probabilities of differential characteristics is
crucial to the validity of an analysis. However, predicting the probability
for a given differential characteristic under a specific key schedule is known to
be a difficult problem. A widely accepted solution is to assume that the
probability varies negligibly for different keys, which is the hypothesis of
stochastic equivalence [132], see also section 2.2.1. Meanwhile, the primitive
is assumed to be a Markov cipher and the round keys are independent and

MOTIVATION 113

uniformly distributed despite the key schedule. Under these assumptions, the
probability of a differential characteristic is estimated by the product of the
probability in each round, which is the expected differential probability (EDP)
of the characteristic, i.e., the averaged probability over all independent round
keys. The assumptions enable the designers to provide security proofs against
differential cryptanalysis by bounding the minimum number of active S-boxes,
such as the wide trail strategy in the design of the AES [64], as we have also
implicitly utilised in previous chapters. Currently, this model serves as the main
methodology of evaluating block ciphers against differential cryptanalysis.

Even though the hypothesis of stochastic equivalence and the Markov model
provide reliable bounds for the designers, they encounter exceptions from the
point of view of attackers [103, 123, 200]. For instance, there exists a discrepancy
between the experiments and the theoretical estimation in a chain of modular
additions for differential cryptanalysis and rotational cryptanalysis [118, 139].
In the meantime, the existence of 2-round plateau characteristics in the AES
indicates the mismatch of fixed-key and the expected differential probability in
some SPN block ciphers [66]. Therefore, it is vital to test whether a differential
characteristic with a non-zero EDP is a real differential characteristic in a block
cipher with a specific key schedule. As a direct consequence, some differential
attacks on block ciphers may be at stake. Moreover, if the characteristics can be
shown to be of probability zero, an attack will probably fail since the techniques
for the key recovery attack based on a differential and an impossible differential
are essentially different.

Consider the following toy cipher. Let S(·) be the 8-bit S-box of the AES
and Srk(x) = S(Sr−1

k (x) ⊕ k), where S1
k(x) = S(x ⊕ k). For a fixed-key k,

one can construct at most
(256

2
)
≈ 215 differential characteristics of Srk(x) by

naming the pairs of plaintexts. However, under the hypothesis of stochastic
equivalence and the assumption of the Markov model, since for each input
difference of the S-box, there are about 27 possible output differences, we
can find 28 × 27 × 27 · · · × 27 = 27r+8 differential characteristics with nonzero
probability. Thus, for any characteristic, its probability of being valid is
approximately 28+15/27r+8 = 2−(7r−15), which is marginal when r is large.
From this point of view, it is probable that a differential characteristic with a
nonzero EDP may turn out to be an impossible one. Therefore, the results of
characteristic-based differential cryptanalysis may be suspicious unless one can
claim the characteristic is a real one.

114 THE PHANTOM OF DIFFERENTIAL CHARACTERISTICS

6.2 Basic Observation

Throughout this chapter, we are only interested in whether a differential
characteristic is a real one or not, and we will neglect the value of a nonzero
probability. For a fixed permutation, the character of a differential characteristic
Ω is defined as follows:

χ(Ω) =
{

1 Pr(Ω) > 0,
0 Pr(Ω) = 0.

The character function distinguishes whether a differential characteristic is
possible or not. Furthermore, let E be a block cipher and k be a fixed key.
If we can find a pair of plaintexts such that the characteristic Ω holds, we
denote χk(Ω) = 1. Otherwise, χk(Ω) = 0. For a vectorial Boolean function
f , if f(x⊕ δ)⊕ f(x) = ∆, we call x a right input of δ → ∆ and we denote by
RI(δ,∆) all the right inputs of δ → ∆. Similarly, we denote by RO(δ,∆) all
the right outputs of δ → ∆. Obviously, one has

RO(δ,∆) = {y = f(x) |x ∈ RI(δ,∆)} .

As illustrated before, a randomly-constructed characteristic under the hypothesis
of stochastic equivalence may well be invalid in reality. If a differential
characteristic with nonzero EDP is not a real characteristic in a block cipher,
any key recovery attack based on such a distinguisher will fail. A probably
more urgent concern is that the key schedule has a fundamental influence on
the validity of the characteristics, contrary to the fact that key schedules have
been ignored for a long time. For example, the AES encompasses three different
key schedules to support variable key size. However in practice, a differential
characteristic of AES-128 is naturally considered as a characteristic of AES-192
due to the same underlying round function.

Consider an r-round characteristic Ω : α0
S→ β0

P→ · · · P→ αr−1
S→ βr−1 of an

SPN cipher where αi+1 = Pβi, i = 0, . . . , r − 2 and the round keys are XORed
after the permutation layer. The XOR of the round keys does not affect the
differences, but it changes the intermediate values for sure. Consequently, the
actual number of right pairs following such a characteristic may largely vary with
the round keys. Denote the output y of the i-th S-box-layer by ROS(αi−1, βi−1),
the input z to the (i + 1)-st S-box-layer by RIS(αi, βi), and the i-th round
key by Ki, respectively. The characteristic holds with a nonzero probability if
z = Py ⊕Ki, which implies that

Ki ∈ [P ·ROS(αi−1, βi−1)]⊕RIS(αi, βi) . (6.1)

BASIC OBSERVATION 115

The observation of Equation (6.1) is based on SPN ciphers; nevertheless, it can
be extended to other structures as well. Thus we have the following claim:

Claim. A differential characteristic of a block cipher always corresponds to
some keys, i.e., the whole key space can be divided into two subsets K0 and
K1 = K0 such that χk(Ω) = 1 if and only if k ∈ K0.

It has already been noticed by previous studies that a differential characteristic
may be of zero probability under certain keys, for instance, the plateau
characteristics in the AES. Recall that the character function χk(Ω) indicates
whether for a given key k the probability of a characteristic Ω is zero. We
introduce the following definition of the effective keys.

Definition 22. The keys for which a differential characteristic Ω holds with
nonzero probability are called the effective keys of Ω. The set containing all
effective keys of the characteristic Ω is denoted by KΩ, i.e., χk(Ω) = 1 if and
only if k ∈ KΩ. For differential characteristics Ω0, . . . ,Ωt−1, their effective keys
are defined as the intersection of all KΩi , i.e., KΩ0,...,Ωt−1 = ∩t−1

i=0KΩi .

Usually, due to the complex relation between plaintexts and the keys, as well as a
detailed key schedule, computing the effective keys of a differential characteristic
is difficult. However, if the S-box is differentially 4-uniform, i.e., the entries in
the DDT table of the S-box are 0, 2 or 4, we have the following theorem on the
effective keys of a 2-round characteristic in an SPN cipher, which is also the
behaviour of the keys observed in plateau characteristics [66].

Theorem 12. Let E be a 2-round SPN cipher with differentially 4-uniform
S-boxes and Ω be a differential characteristic of E. Then, the effective keys KΩ
form a linear (affine) subspace.

Proof. The key point of the proof is based on the fact that if the number of right
pairs for the active S-boxes involved in a differential characteristic is either 1 or
2, the right inputs/outputs of each active S-box form a linear/affine subspace.

If there are two right inputs, say {a, a ⊕ δ}, we can further denote the right
inputs by a⊕{0, δ} = {δx}⊕ a where x ∈ F2. Thus the dimension of the linear
subspace is 1. If there are four right inputs, say {a, a⊕δ, b, b⊕δ}, we can further
denote the right inputs by a⊕ {0, δ, a⊕ b, a⊕ b⊕ δ} = {δx1 ⊕ (a⊕ b)x2} ⊕ a
where x1, x2 ∈ F2. Thus the dimension of the linear subspace is 2.

It is trivial that if an S-box is not active, the right inputs form exactly the
whole space.

116 THE PHANTOM OF DIFFERENTIAL CHARACTERISTICS

Then, according to Equation (6.1), the effective keys form the following set:

[P ·ROS(α0, β0)]⊕RIS(α1, β1) .

Since ROS(α0, β0) and RIS(α1, β1) are linear/affine subspaces, the effective
keys form a linear/affine subspace.

As shown by our experiments, a diffusion layer with a simple algebraic structure,
such as the MixColumns operation in the AES, leads to a rather small or even
empty set of effective keys. In contrast, a 2-round characteristic of Present is
likely to possess a large amount of effective keys, as we observed in characteristics
with low Hamming weights.

Example 4. Let a 2-round characteristic of the AES be
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 S→

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 P→

2 0 0 0
1 0 0 0
1 0 0 0
3 0 0 0

 S→

3 0 0 0
1 0 0 0
1 0 0 0
2 0 0 0

 .

The right pairs of the differences propagating through the active S-boxes are
RIS(1, 1) = {CE, CF} = {CE ⊕ (x0 · 1)|x0 ∈ F2}, ROS(1, 1) = {8A, 8B} =
{8A ⊕ (x1 · 1)|x1 ∈ F2}, RIS(2, 3) = {10, 12} = {10 ⊕ (x2 · 2)|x2 ∈ F2},
RIS(3, 2) = {18, 1B} = {18⊕ (x3 · 3)|x3 ∈ F2}. The values passing through an
inactive S-box can take any value in F28 , which can be represented as a free
variable of 8 bits. Hence, one gets that the first column of the effective keys falls
into a linear subspace as follows:

2 m3 m1 m1 2 0 0 0
1 m2 m3 m1 0 1 0 0
1 m1 m2 m3 0 0 1 0
3 m1 m1 m2 0 0 0 3

 · x⊕

m2 m3 m1 m1
m1 m2 m3 m1
m1 m1 m2 m3
m3 m1 m1 m2

8A
0
0
0

⊕

10
CE
CE
18

 , x ∈ F29
2

 .

The hexadecimal numbers in the above linear system represent column vectors
of 8 bits. The MixColumns matrix of the AES is denoted as

m2 m3 m1 m1
m1 m2 m3 m1
m1 m1 m2 m3
m3 m1 m1 m2

SINGULAR CHARACTERISTIC AND SINGULAR CLUSTER 117

with each mi ∈ F8×8
2 being the matrix representation of the multiplication with i

over F8
2. To be specific, m1 is the identity matrix and

m2 =

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0

, m3 = m1 ⊕m2 =

1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
1 0 0 1 1 0 0 0
1 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
1 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1

.

This is also defined as the primitive representation [187] of a diffusion function.
Meanwhile, the effective keys of the remaining columns have no constraints
hence they can be any element of F32

2 .

Remark 9. Our main focus here is on ciphers with differentially 4-uniform
S-boxes, which covers a large number of block ciphers resembling the AES.
Nonetheless, the method of identifying the effective keys is applicable to other S-
boxes with a slight modification. For example, given an S-boxes with 6 right inputs
for a certain difference propagation, the inputs can be classified into (affine)
subspaces of dimension 1 or 2, which is reduced to the case in Theorem 12.

6.3 Singular Characteristic and Singular Cluster

6.3.1 Singular Characteristic

Though the round keys are often assumed to be independently random for the
sake of simplicity, all of them depend on the master key by the key schedule.
For a key schedule with an n-bit master key generating r round keys of n bits
each, the proportion of genuine keys out of all the independently random round
keys is 2(1−r)n. Typically, the size of a round key is 128 bits or 64 bits, which
means the fraction of genuine keys produced by the key schedule is marginal
within all independently random round keys.

Recall that the set of effective keys of a differential characteristic is often a subset
of all the possible keys. In this section, our focus is a seemingly peculiar but
general phenomenon of characteristics, namely, the sets containing the effective
keys for 2-round fragments of a characteristic are unfortunately inconsistent to
each other with respect to the key schedule. We will demonstrate the existence of
such “phantom” characteristics which have nonzero EDP while their probability
is zero for all master keys.

118 THE PHANTOM OF DIFFERENTIAL CHARACTERISTICS

Definition 23. Let Ω be an r-round characteristic of a cipher E. If KΩ = ∅,
we call Ω a singular characteristic.

The difference between singular characteristics and the so-called impossible
characteristics is that impossible characteristics are of probability zero due to
the mismatch of difference propagations in the S-boxes or the linear layers,
while a singular characteristic appears to be a characteristic if the information
of the key schedule is not taken into consideration. Especially, techniques to
enumerate differential characteristics with an automatic search may generate
a large number of characteristic which are in fact singular, as we will show in
Section 6.4. Usually, detecting a singular characteristic is not trivial. However,
for those ciphers which have well-structured diffusion layers, we are able to
mathematically describe the set of the effective keys. Furthermore, taking the
key schedule into consideration, we execute the following strategy.

Exploring the Key Schedule.

Suppose that the key schedule updates the (i+ 1)-th round keys with the i-th
one by ki+1 = F (ki), where F is the key-expansion function. Consider a 3-round
differential characteristic as follows:

Ω : α0
S→ β0

P→ Pβ0 = α1
S→ β1

P→ Pβ1 = α2
S→ β2

P→ Pβ2 = α3.

According to Theorem 12, the effective keys of

α0
S→ β0

P→ α1
S→ β1

can be written as a linear subspace, denote by K1 = {A1x1 ⊕ B1}, where A1
(resp. B1) is a matrix (resp. vector) determined by the characteristic and x1 is
a vector of free variables. Similarly, denote the effective keys of

α1
S→ β1

P→ α2
S→ β2

by K2 = {A2x2 ⊕B2}. According to the key schedule, we have that the keys
satisfying k2 = F (k1), for k1 ∈ K1, k2 ∈ K2, are the candidates of the effective
keys for the 3-round characteristic.

For a general function F , we need to find the intersection of the sets K2 and
F (K1), in order to identify the effective keys. Notice that the key schedules in
block ciphers tend to be light and simple comparing with the round functions,
the problem can be much simplified if we place certain conditions on the function
F . Assume that the key schedule only involves a few nonlinear operations, i.e.,
the round keys satisfy ki+1 = L ◦N(ki), where the N is a nonlinear function

SINGULAR CHARACTERISTIC AND SINGULAR CLUSTER 119

that only applies to a small fraction of the bits in ki and the L function is linear.
Then, we have k2 = L ◦N(k1), or equivalently, L−1(k2) = N(k1). Since N only
applies to a small fraction of the bits of k1, L−1(k2) = N(k1) involves only a
small number of non-linear equations. By deleting these non-linear equations
from this system, we get a linear system L(k1, k2) = 0 which could be reduced
to L′(x1, x2) = 0. If L′(x1, x2) = 0 has no solutions, we can claim that the set
of the effective keys is empty which implies that Ω is singular.

Note that the strategy for computing the effective keys of a 3-round differential
characteristic can be extended to any number of rounds, as shown in Algorithm 5.
As only the linear relations of the key schedule are utilised in the linear equation
systems, the effective keys of a characteristic form a subset of the solutions of
the equation system. As a result, our strategy may overlook the singularity
of some characteristics. If there are only a few effective keys found by the
equation system, it is possible to directly filter out the genuine keys for such
characteristics with the key schedule.

Algorithm 5 The algorithm to detect if a characteristic is singular

Input: An r-round characteristic Ω : α0
S→ β0

P→ Pβ0 = α1
S→ β1

P→
Pβ1 . . . αr−1

S→ βr−1
P→ Pβr−1 = αr

Output: The singularity of Ω

1: Find effective keys for every 2-consecutive-round of Ω as Ki = {Aixi ⊕Bi},
1 ≤ i ≤ r − 1.

2: Build an equation system based on the key schedule: ki+1 = L ◦ N(ki),
1 ≤ i ≤ r − 2, ki ∈ Ki.

3: Delete the nonlinear equations and get a linear equation system L(ki, ki+1) =
0, 1 ≤ i ≤ r − 2.

4: Reduce the linear equation system into L′(xi, xi+1) = 0, 1 ≤ i ≤ r − 2.
5: if Rank of coefficient matrix 6= Rank of augment matrix then
6: return The characteristic Ω is singular.
7: else
8: return The singularity of Ω is undetermined.

6.3.2 Singular Clusters

When a differential contains only singular characteristics, it clearly has no
effective keys. In a more general setting, considering two or more characteristics
simultaneously, it is possible that the intersection of their effective keys turns

120 THE PHANTOM OF DIFFERENTIAL CHARACTERISTICS

Algorithm 6 The algorithm to detect if a pair of characteristics form a singular
cluster
Input: r-round characteristics Ω : α0

S→ β0
P→ Pβ0 = α1

S→ β1
P→

Pβ1 . . . αr−1
S→ βr−1

P→ Pβr−1 = αr and Ω∗ : α∗0
S→ β∗0

P→ Pβ∗0 = α∗1
S→ β∗1

P→
Pβ∗1 . . . α

∗
r−1

S→ β∗r−1
P→ Pβ∗r−1 = α∗r

Output: The singularity of the collection {Ω, Ω∗}

1: Find effective keys for every 2-consecutive-round of Ω and Ω∗ as Ki =
{Aixi ⊕Bi}, and K∗i = {A∗i x∗i ⊕B∗i }, respectively, for 1 ≤ i ≤ r − 1

2: Build a linear equation system with ki = k∗i , 1 ≤ i ≤ r−2, ki ∈ Ki, k∗i ∈ K∗i .
3: if Rank of coefficient matrix 6= Rank of augment matrix then
4: return The collection is a singular cluster.
5: else
6: return The collection is undetermined.

out to be an empty set. In such case, the collection of these characteristics will
have no effective key.

Definition 24. Let D = {Ω0, . . . ,Ωt−1} be a set of differential characteristics
of a block cipher E. Then, D is called a singular cluster of E if the corresponding
effective keys form an empty set:

∩t−1
i=0KΩi = ∅ .

Here, a set of differential characteristics can be a differential, a truncated
differential, or a multiple differential. It is common to compute the probability
of the collection by summing up the probability of each characteristic in practice.
However, if one shows that the collection is singular, the estimation might be
more or less inaccurate. Note that the probability of a singular cluster is not
necessarily zero, which is different from singular characteristics.

At a first glance, one can determine the effective keys of each differential
characteristic separately, and then find the intersection of these effective keys.
However, we have a more efficient algorithm for two characteristics: For 2-
round differential characteristics Ω and Ω∗, we write the effective keys in these
characteristics as K = Ax⊕B and K∗ = A∗x∗ ⊕B∗, respectively. The effective
keys k ∈ K, k∗ ∈ K∗ satisfy k = k∗, which is linear with respect to x and
x∗. Therefore, if this linear system has no solutions, we can declare that Ω
and Ω∗ form a singular cluster. To determine the singularity of the equation
systems is equivalent to compare the ranks of the coefficient matrix [A,A∗]
and the augmented matrix [A,A∗, B ⊕ B∗]. The strategy can be generalised
for any number of r-round characteristics, for simplicity, here we show it for a

DIFFERENTIAL PROPERTIES OF THE AES 121

pair of r-round characteristics in Algorithm 6. Notice that we only compare
the effective keys of the characteristics in the same segment, however, it is
also possible to find a singular characteristic by taking the key schedule into
consideration, i.e., exploring the effective keys in different segments of two
characteristics.

Remark 10. Here we note a difference between singular characteristics and
singular clusters. A characteristic being singular implies that its probability is
zero for all master keys. However, the probability of characteristics in a singular
cluster is not necessarily zero, since the singular behaviour is that some of the
characteristics in the cluster cannot exist simultaneously for every master key.
Moreover, for a collection of characteristics, if there are two characteristics
forming a singular cluster on their own, the collection is again a singular cluster.

6.4 Differential Properties of the AES

6.4.1 Singular Characteristics of the AES

Since its publication, the security of the AES has been studied intensively.
Moreover, because of the well-studied properties of the AES, other primitives
such as hash functions also adopt a similar design strategy. For example, the
SHA-3 candidate Grøstl [90] adopts two permutations which are similar to
the AES. In the cryptanalysis of these primitives, differential characteristics
with active pattern 1→ m→ m2 → m→ 1 are widely used where the states
of these primitives are viewed as m × m square matrices over finite fields.1
For example, as a newly developed technique in the meet-in-the-middle attack,
the differential enumerating technique [72] is based on a 5-round differential
characteristic of this pattern; in the rebound attack on Grøstl, a similar
differential characteristic was adopted [156].

It is not difficult to find singular characteristics for the AES; for instance,
the following differential characteristic of 5-round AES-128 is singular, where

1An active pattern indicates the number of active S-boxes in the corresponding round of
the characteristic.

122 THE PHANTOM OF DIFFERENTIAL CHARACTERISTICS

5-round AES-128 is defined as the first 5 rounds of the AES-128.

Ω1 :

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 S→

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 P→

2 0 0 0
1 0 0 0
1 0 0 0
3 0 0 0

 S→

3 0 0 0
1 0 0 0
1 0 0 0
2 0 0 0

 P→

6 2 1 3
3 2 3 2
3 6 2 1
5 4 1 1

S→

24 27 39 9D
45 36 36 27
36 F1 2E 2D
39 2D 1F 3A

 P→

6 0 0 0
0 5 0 0
0 0 5 0
0 0 0 36

 S→

E 0 0 0
0 9 0 0
0 0 D 0
0 0 0 B

 P→

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 S→

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

Here we note that a characteristic is singular if any of its segments is singular.
For instance, the middle 3-round of Ω1 is singular, and Ω1 can be regarded as
the segment of some characteristic covering more rounds which is singular as
well.

There is no doubt that the singularity of differential characteristics is sensitive
to the key schedule. For two ciphers with the same round function but different
key schedules, it is likely to find characteristics which are valid for one but
singular for another. Here, by encrypting a pair of messages with a 128-bit
random master key through the AES, and tracking the difference propagation
for 3 rounds (from round 3 to 5), we get a valid 3-round characteristic of the
AES-128:2

Ω2 :

C AE 21 17
8 57 21 39
4 57 63 2E
4 F9 42 17

 S→

D9 FD 94 7E
15 D8 51 F2
F3 EE 14 7C
EC EB 8B B7

 P→

79 82 26 A6
F9 37 8E F6
EB 7B BD 2A
C9 F2 6B 74

 S→

5 24 B0 94
7B F4 FC E8
8 C 3E A3
8D FE 9C C3

P→

F0 79 AE 2E
77 B4 9D EA
D3 9 51 48
58 32 CC F3

 S→

99 5E 74 5
3E 23 AF 88
5F DD 49 7E
19 60 95 AA

 .

However, it can be verified that Ω2 is actually a singular characteristic of
AES-192 (from round 3 to 5), which implies a valid attack based on differential
characteristics on AES-128 might be invalid on AES-192. Here, we conjecture
that in general a valid characteristic would probably turn into a singular one
when the key schedule is modified.

2Although characteristics with fewer active S-boxes are often preferred by attackers, it is
difficult to confirm that such characteristics are not singular. So we construct the example in
such a way that the characteristic is guaranteed to possess at least two right inputs.

DIFFERENTIAL PROPERTIES OF THE AES 123

6.4.2 Density of Singular Characteristics in the AES

The existence of singular characteristics shows the hidden behaviour of
characteristics interacting with the key schedule. With examples of singular
characteristics found for the AES in previous sections, it also needs to be
pointed out that the singular characteristics are far more common than just a
coincidence.

Definition 25. Let α→ β be a differential of a cipher and D = {Ω0, . . . ,Ωt−1}
be all the differential characteristics in the differential. The density of α→ β,
denoted by ρ(α→ β), is defined as the fraction of singular characteristics in D.

As discussed earlier, a randomly picked characteristic is likely not valid in
reality. In particular, we concentrate on the singularity of the characteristics in
AES-128 with the pattern 1→ 4→ 16→ 4→ 1 which are the majority of all
characteristics constructed in the classical enumerating approach.

We carry out experiments to identify singular characteristics in 3-round
differentials containing characteristics with the same active pattern as follows,
where ∗ stands for a nonzero difference. Furthermore, we set the input and
output differences such that the 3-round characteristic from the middle three
rounds of a 5-round characteristic with active pattern 1→ 4→ 16→ 4→ 1.
∗ 0 0 0
∗ 0 0 0
∗ 0 0 0
∗ 0 0 0

 S→

∗ 0 0 0
∗ 0 0 0
∗ 0 0 0
∗ 0 0 0

 P→

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 S→

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 P→

∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

 S→

∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

 .

By randomly choosing 1024 differentials D0, . . . ,D1023, we enumerate all the
characteristics in each differential when the differences after the first S-box
layer are fixed (but randomly chosen within the possible output differences),
and check the singularity with the linear equation systems derived from the
key schedule of AES-128. The average density of singular characteristics is
approximately

ρ̄ = 98.47%.

It is necessary to point out that the nonlinear operations of a key schedule
are not explored in the linear equation systems, thus, the density of singular
characteristics derived here is actually a lower bound. To be specific, when one
adopts a certain automated search tool in finding such differential characteristics
in the AES, less than 2% of the characteristics found by the tool actually exist
in reality. It is not the failure of any tool, but the fact that the method of
enumerating differential characteristics simply ignores the influence of the key
schedules.

124 THE PHANTOM OF DIFFERENTIAL CHARACTERISTICS

By looking into the linear equation systems, we are able to theoretically estimate
the density of singular characteristics. Assume that the equation system L′(X) =
0 of such a characteristic has N equations and the rank of the coefficient matrix
is R̃. Then the dimension of the image space for the coefficient matrix is R̃,
which means the probability that a given characteristic is singular is no less
than 1−2R̃−N , when the augment column is random. In the above experiments,
the rank of the coefficient matrix in the linear equation system takes values
from R̃ = 88 to R̃ = 90. Hence, in theory the density of singular characteristics
is around 1 − 2−6 to 1 − 2−8 (i.e. 98.43% to 99.61%), which is consistent
with the experiments. As a result, the assumption on the randomness of the
augment columns is rather reasonable, which may attribute to the confusion
effect of the S-boxes on the right inputs and right outputs. In other words, the
augment column may take almost any values from the vector space, since there
is no simple (linear) relation between the right pairs of two different difference
propagations through the S-box.

Intuitively speaking, singular characteristics are more dense when the number
of equations N is considerably larger than the rank of the coefficient matrix
R̃, which happens if the differences are of higher Hamming weights such that
additional equations can be generated while the rank of the coefficient matrix
is lower in general. For example, the density of 3-round characteristics with all
differences being nonzero in AES-128 is estimated to be around 1− 2−68 since
the corresponding linear equation system has 96 equations and rank no larger
than 28. Even though the total number of such 3-round characteristics can be
tremendous, the number of valid characteristics may only be marginal which
leads to an obvious effect on the estimation of the probability of a differential.

Definition 26. A differential α → β is singular if all its characteristics are
singular, which is to say, ρ(α→ β) = 1.

A singular differential is in fact an impossible differential, however the former
will be overlooked under previous techniques of finding impossible differentials.
The large densities of the singular characteristics suggest that they may lead
to a new method to constructing impossible differentials, i.e., if all differential
characteristics starting from α and ending at β are detected to be singular, we
can conclude that α → β is an impossible differential. However, due to the
huge number of differential characteristics within a differential, it may be very
difficult to directly test all of them sequentially.

A TALE OF TWO PERSPECTIVES 125

6.4.3 Singular Cluster in the AES

As an example, we find that the following 2-round differential characteristics of
the AES-128 form a singular cluster:

Ω3 :

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 S→

18 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 P→

30 0 0 0
18 0 0 0
18 0 0 0
28 0 0 0

 S→

3 0 0 0
1 0 0 0
1 0 0 0
2 0 0 0

 ,

Ω4 :

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 S→

14 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 P→

28 0 0 0
14 0 0 0
14 0 0 0
3C 0 0 0

 S→

3 0 0 0
1 0 0 0
1 0 0 0
2 0 0 0

 .

Remark 11. Singular clusters are not rare. Recall that the singularity can
be identified by a linear equation system: we expect a similar behaviour as
the characteristics being singular, that is, the linear equation system derived
for a set of characteristics is more likely to be singular if differences in the
characteristics are of higher Hamming weights. The singular characteristics and
singular clusters can be detected for many lightweight designs, especially when
they adopt an AES-like structure, this presents a concern for the attackers with
respect to the effectiveness of cryptanalysis based on differential characteristics.
As an illustration, we will show the singular characteristics and singular clusters
of the Prince cipher in next section; these results have a practical influence on
previous studies such as multiple differential cryptanalysis [56].

6.5 A Tale of Two Perspectives

An important observation in previous sections, is that the differential
characteristics have a much closer connection with the keys than the statement in
the hypothesis of stochastic equivalence. The existence of singular characteristics
and singular clusters shows that the information of the keys and the key schedules
should be taken into consideration, not merely for related-key models and other
open-key models as we previously believed.

Consider the following illustrative example. Assume that Ω is a valid 10-round
differential characteristic with at least one pair of right inputs in the AES-128.
We can find such a characteristic by encrypting a pair of plaintexts under a
random key, and the solutions to the linear equation system are candidates
for the effective keys. In most experiments we carried out, the only candidate

126 THE PHANTOM OF DIFFERENTIAL CHARACTERISTICS

from the solution of the equation system is exactly the master key used in the
encryption.

What we believe critical is that the hypothesis of stochastic equivalence and
Markov model need to be interpreted from two different perspectives: the
designer and the attacker.

Designer’s Perspective. When designing a block cipher or a permutation, the
model based on the hypothesis of stochastic equivalence provides an approximate
view of an overall behaviour possessed by general characteristics under all
independently chosen random keys. Under such a scenario, it makes sense that
the designers take the security bound as a main factor of consideration rather
than a particular characteristic having probability 0 or a marginal nonzero
probability. For instance, it is proven that there are at least 25 active S-boxes
in any 4-round differential characteristic of the AES such as the active pattern
of Ω1 in Section 6.4; however, the provable bound might not be guaranteed to
be tight for certain ciphers.

Attacker’s Perspective. For the attackers whose main target is to identify
one specific non-randomness in the primitives, the hypothesis of stochastic
equivalence for a designer’s perspective might lead to a distorted image.3 One
of the underestimated factors is the role of the key schedule as we show for
singular characteristics, which is unfortunately often ignored in many practical
analyses.

Prince is an AES-like primitive, hence it possesses singular characteristics and
singular clusters as well. The following 3-round characteristic of Prince is
singular even though its EDP is as high as 2−35.

Ω5 :

8 0 4 0
0 0 0 0
4 0 8 0
0 0 0 0

 S→

8 0 4 0
0 0 0 0
8 0 4 0
0 0 0 0

 M ′→

8 0 4 0
0 0 0 0
8 0 4 0
0 0 0 0

 SR→

8 0 4 0
0 0 0 0
4 0 8 0
0 0 0 0

 S→

8 0 5 0
0 0 0 0
8 0 5 0
0 0 0 0

M ′→

8 0 5 0
0 0 0 0
8 0 5 0
0 0 0 0

 SR→

8 0 5 0
0 0 0 0
5 0 8 0
0 0 0 0

 S→

2 0 5 0
0 0 0 0
2 0 5 0
0 0 0 0

It enlightens us that an invalid differential characteristic can be easily mistaken
as real if one neglects the impact of key schedules.

3Some experiments show that the estimation under the hypothesis is rather close to reality,
see for instance, [130] It is noteworthy that the irregularity is what the attackers have to
pay extra attention to, which is supported by a number of studies such as those we have
previously referred to in this chapter.

A TALE OF TWO PERSPECTIVES 127

R4

RC4 ⊕ k1

R5

RC5 ⊕ k1

S M′ S−1 R6

RC6 ⊕ k1

R7

RC7 ⊕ k1

Ω6,Ω7

S M′ SR SR-1 M′ S -1

Figure 6.1: Princecore reduced to 6 rounds. The dashed box shows the location
of Ω6 and Ω7 in the 6-round characteristics adopted for a multiple differentials
distinguisher.

Moreover, multiple differential cryptanalysis has been applied to Prince [56].
The multiple differentials studied in Prince consist of characteristics with
active patterns as Ω5. The cipher is reduced to 6 rounds of Princecore which
is illustrated in Figure 6.1. The input and output differences are (δin, δout) ∈
{(1, 2), (2, 1)} × {(1, 2), (2, 1)}. We found the following singular cluster in
Prince.

Ω6 :

8 0 4 0
0 0 0 0
4 0 8 0
0 0 0 0

 S→

5 0 8 0
0 0 0 0
5 0 8 0
0 0 0 0

 M ′→

0 0 0 0
5 0 8 0
0 0 0 0
5 0 8 0

 SR→

0 0 0 0
0 8 0 5
0 0 0 0
0 5 0 8

 S→

0 0 0 0
0 5 0 2
0 0 0 0
0 5 0 2

 ,

Ω7 :

8 0 1 0
0 0 0 0
1 0 8 0
0 0 0 0

 S→

4 0 8 0
0 0 0 0
4 0 8 0
0 0 0 0

 M ′→

0 0 0 0
4 0 8 0
0 0 0 0
4 0 8 0

 SR→

0 0 0 0
0 8 0 4
0 0 0 0
0 4 0 8

 S→

0 0 0 0
0 5 0 2
0 0 0 0
0 5 0 2

 .

These are the fragments of two 6-round characteristics with input difference
2 0 1 0
0 0 0 0
2 0 1 0
0 0 0 0

 ,

which are located in the dashed box as depicted in Figure 6.1.

Characteristics forming a singular cluster indicates that at most one of them
is valid under all possible keys, such that they show no congregating effect if
multiple differentials are considered. Furthermore, since round-reduced Prince
is symmetric with respect to the middle round, the characteristics Ω6,Ω7 in
reversed order are still within a singular cluster located in the last few rounds.

128 THE PHANTOM OF DIFFERENTIAL CHARACTERISTICS

As a matter of fact, the reflection property of the Prince cipher can be further
utilised in order to construct singular characteristics. For instance, connecting
Ω6 and Ω7 in their tails by the middle switchM′, we get a 4-round characteristic
Ω8 as below. Taking the constants into account, it can be verified that Ω8 is
indeed a singular characteristic covering the middle 4 rounds as in Figure 6.1,
which was considered as valid to build a distinguisher [56].

Ω8 :

8 0 4 0
0 0 0 0
4 0 8 0
0 0 0 0

 S→

5 0 8 0
0 0 0 0
5 0 8 0
0 0 0 0

 M ′→

0 0 0 0
5 0 8 0
0 0 0 0
5 0 8 0

 SR→

0 0 0 0
0 8 0 5
0 0 0 0
0 5 0 8

 S→

0 0 0 0
0 5 0 2
0 0 0 0
0 5 0 2

M ′→

0 0 0 0
0 5 0 2
0 0 0 0
0 5 0 2

 S−1

→

0 0 0 0
0 8 0 4
0 0 0 0
0 4 0 8

 SR-1
→

0 0 0 0
4 0 8 0
0 0 0 0
4 0 8 0

 M ′→

4 0 8 0
0 0 0 0
4 0 8 0
0 0 0 0

 S−1

→

8 0 1 0
0 0 0 0
1 0 8 0
0 0 0 0

Note that the singular characteristics are sensitive to the key as well as the
constant in this example. Our result shows that Ω8 is singular when the constants
RCi and RCi+1 XORed to the 4-round characteristic satisfy i = 3, 4, 5, 6, 7.
The round constants can be found in the Prince specification [47]. Therefore,
the existence of singular characteristics and singular clusters shows that the
cryptanalytic results of Prince in [56] need to be scrutinised.

6.6 Concluding Remarks

The key schedule of a block cipher is rarely exploited in differential cryptanalysis.
The hypothesis of stochastic equivalence and the Markov model are the
foundations to evaluate the security of block ciphers against differential
cryptanalysis and serve as a guideline for design cryptographic primitives.
In this chapter, we show that it may lead to incorrect results when applying
characteristic-based differential cryptanalysis to a real cipher without taking
the key schedule into account.

To show our point of view, we propose the concept of singular characteristics
by studying their effective keys, i.e., characteristics with nonzero EDP but
with probability 0 for all master keys. In addition, we study the congregating
effect of characteristics and propose singular clusters to find multiple differential
characteristics with no effective keys. We found examples of a 5-round singular
characteristic in the AES, by investigating the property of its key schedule,
and showed that the singular characteristics in differentials of the AES are in

CONCLUDING REMARKS 129

fact the overwhelming majority with density close to 1. We also construct a
valid differential characteristic of AES-128 while it is proved to be singular in
AES-192 to demonstrate that the existence of a differential characteristic is
sensitive to the key schedule.

It is also interesting to note that the opposite of singular characteristics may
also be useful for attackers. If a characteristic has high probability for most
of the genuine keys, it is in fact a good distinguisher even though the EDP
of the characteristic might be marginal. A similar phenomenon has been
observed through the analysis of PRINTcipher in multidimensional linear
cryptanalysis [136, Section 4.3].

Chapter 7

Conclusion

In this thesis, we focused on the cryptanalysis of symmetric-key primitives,
especially block ciphers. Design and analysis are the core aspects of symmetric-
key cryptography, where the goal in common is to improve the security of the
primitives. Even though the motivation of the thesis leans towards finding
improved distinguishers and attacks on specific ciphers, we do hope to provide
insights and solutions for future designs as well, since a good design always
keeps the attacks in mind.

One of the main contributions in this thesis is the automatic search of
distinguishers with the applications to cryptanalysis and design in Chapter 2,
especially for the ARX structure. The automatic search techniques based on
a certain solver have been successfully applied to finding lower bounds on the
number of active S-boxes in SPN ciphers for several years. However, the research
has only gradually developed during the past few years for the ciphers with
Boolean operations and arithmetic, partially motivated by the publication of
the NSA ciphers Simon and Speck. One major obstacle to be overcome back
then was to find a solver-friendly mathematical description of the distinguishers,
such as the propagation of the differences or linear masks through the round
function. This problem motivates the first part of this thesis. With a special
focus on the ARX ciphers, a novel cryptanalytic technique called rotational-
XOR cryptanalysis is proposed, which is based on a statistical distinguisher
combining both differential cryptanalysis and rotational cryptanalysis. In
addition, automatic search techniques based on SAT/SMT solvers are developed
with applications to the linear cryptanalysis and rotational-XOR cryptanalysis
of ARX ciphers. A Python-based tool ArxPy accelerates the analysis process
by parsing a cipher and writing the SAT/SMT files automatically. As an

131

132 CONCLUSION

application, improved distinguishers are found for the block cipher family
Speck. While solver-based automatic search techniques have made a notable
progress in analysing ARX ciphers, they have also been adopted in SPN ciphers
for searching the characteristics and trails, where the modelling of the S-boxes
(even 8-bit ones) becomes feasible. There is no doubt that automatic search
techniques have replaced some efforts in cryptanalysis which used to be carried
out with a large amount of human hours.

Meanwhile, new symmetric primitives have been proposed with an increasing
speed over decades, motivated by the IoT application scenarios. As we have
recalled in the first chapter, new block ciphers as well as lightweight hash
functions and AE schemes have been designed to optimise the performance
under software and hardware constraints. Researchers have adopted novel
structures and components in order to push the designs to the limit. In addition,
ciphers with resistance against side-channel attacks receive attention from
the theoretical and practical viewpoints. Interestingly, one reason behind the
proliferation of designs is the development in the area of automatic search,
which efficiently assists the designers in manipulating the trade-offs between
security and performance.

During the past years, questions have frequently been asked whether new types
of cryptanalysis can be found and if better ciphers can be designed.

Indeed, many cryptanalytic methods were invented in the 1990’s, while a number
of symmetric primitives have been standardised by international and national
organisations for a wide spectrum of application scenarios. Nevertheless, the
pace of symmetric-key cryptography never slows down. To begin with, invariant
subspace attack, the division property, the nonlinear invariant attack, and also
rotational-XOR cryptanalysis discussed in this thesis are just a fraction of
the novel analysis techniques we have seen in recent years, some of which are
developed in the context of lightweight primitives. In addition, new techniques
are proposed to improve the attacks as well, to name a few, the first practical
collision of full SHA-1 was published in 2017 by a group of researchers from CWI
and Google research [184]; integral cryptanalysis with improved key recovery
techniques successfully broke the block cipher Misty [192]; the applications
of the linear structures technique by Guo et al. lead to improved pre-image
and collision attacks in round-reduced Keccak [100]. Another example is the
optimised interpolation attacks on the block cipher LowMC in Chapter 3. As a
cipher aiming at a novel feature, the designers of LowMC introduced many new
ideas and attempts on minimising the multiplicative complexity. However, our
study has shown that the security margin of the (first version of the) cipher is
not enough to resist higher-order differential cryptanalysis and the interpolation
attack. In addition, several new designs aiming at low multiplicative complexity
were proposed over the last few years, some of them chose to use fewer nonlinear

CONCLUSION 133

operations per round and extended the total number of rounds, such as MiMC.
Further applications of the improved interpolation attack on those ciphers would
be an interesting topic.

With the selection of Keccak as the SHA-3 standard, permutation-based
cryptography was proposed by the KeccakTeam [28]; they showed that most
mainstream types of symmetric primitives can be efficiently designed with
permutations with a sponge construction. Chapter 6 of this thesis studies
differential cryptanalysis against fixed-key block ciphers, where the observation
may be beneficial for permutations as well. Our study shows that the application
of differential cryptanalysis in fixed-key block ciphers may result in a different
picture than the one predicted by the basic assumptions such as the hypothesis
of stochastic equivalence, especially for the characteristics. We focus on
the characteristics with nonzero expected differential probabilities, which
are actually of zero probability for all master keys. An efficient algorithm
is developed in our research, with an application to 5-round differential
characteristics in the AES. Our findings are of interest for permutations, because
the round constants in permutations are similar to a “known” fixed key. If
a differential can be shown to be in fact an impossible one under a specific
combination of the round constants, then a distinguisher is found.

This thesis focused on several interesting problems in design as well. In
terms of new designs, they are expected to offer resistance against known
cryptanalytic methods, especially with features to demonstrate such resistance
with mathematical deductions, such as the Wide Trail Strategy. In Chapter 4,
we study the resistance against invariant subspace attacks for some AES-like
ciphers, by considering the properties of the linear layer. Based on a condition
on the linear layer, it can be shown that the dimension of possible invariant
subspaces can be bounded, which leads to a countermeasure in choosing the
constants to break the iterative propagation of the invariant subspaces in a
cipher.

In recent years, a large fraction of new block ciphers choose to take the SPN
structure, where the main design focus is on 4-bit S-boxes and lightweight
linear layers with MDS or NMDS property. Notably, a series of studies try to
construct MDS or NMDS matrices with smaller XOR count [20, 142], some
of which are adopted in new lightweight designs. Instead of searching for new
linear functions, Chapter 5 proposes a novel component called the nonlinear
diffusion layer. We argue that nonlinear diffusion layers are beneficial for both
diffusion and confusion effects in a block cipher, which could guarantee the
resistance against differential and linear cryptanalysis within a smaller number
of rounds. Two types of nonlinear diffusion functions are proposed, with their
cryptographic properties analysed. It is promising for designers to adopt the
nonlinear diffusion functions we proposed, or to construct new nonlinear layers

134 CONCLUSION

for a new cipher, based on the observations from the toy ciphers we studied.

Our results as summarised in this thesis are only a tiny fraction of the overall
efforts and ideas from the researchers in the community which, in total, provide
positive solutions to partially respond to the questions raised earlier.

One important future work is to improve the automatic search techniques in
several aspects. For instance, one technical barrier of the solver-based automatic
search lies in the exponential growth of the complexity with respect to the block
size and the number of rounds. A more efficient method to translate the problems
for the solvers could be advantageous, while it is also promising to integrate
the cryptographic problems into specialised solvers such as Cryptominisat.
Meanwhile, the analysis of block ciphers is largely automated, but the design
still requires the expertise of the researchers. From the viewpoint of this thesis,
one of the most promising attempts would be an ARX cipher with automatic
dynamic design and analysis, for the simple structure and operations in ARX.
Speaking of automated techniques and algorithms, it would be interesting to
utilise machine learning algorithms as an alternative to the solvers. On the
other hand, it is feasible to search for characteristics in SPN ciphers as well,
but the effect of the singular characteristics is often not taken into account.
Therefore, it is possible that many of the characteristics found by a solver
are in fact invalid in practice. It is interesting to combine the conditions on
singular characteristics with automatic search techniques, which avoids invalid
characteristics and narrows down the search space.

Another exciting research topic is the nonlinear diffusion layer, especially the
construction of new nonlinear diffusion functions and the design of ciphers
with a nonlinear diffusion layer. Considering the ARX structure in one of the
nonlinear functions we proposed, it is certainly interesting to take both the
Wide Trail Strategy (which mainly focuses on SPN ciphers) and the Long Trail
Strategy [73] (which focuses on ARX ciphers) into account, in order to find new
nonlinear diffusion functions based on Boolean arithmetic and operations.

Appendix A

Mathematical Background

Many cryptographic primitives are constructed based on mathematical
structures. In symmetric-key cryptography, one of the most important
mathematical objects is the Boolean function. The research on Boolean functions
is an active topic in the mathematical aspects of information theory [57]. Here
we recall some basics about finite fields and Boolean functions.

Definition 27. Let G be a set, + be an operation. We call (G,+) a group if
(1) ∀g1, g2 ∈ G, g1 + g2 ∈ G; (2) ∀g1, g2, g3 ∈ G, (g1 + g2) + g3 = g1 + (g2 + g3);
(3) there exists an element 0, such that ∀g ∈ G, g + 0 = g; (4) ∀g ∈ G,
there exists an element g′, such that g + g′ = 0. Furthermore, if ∀g1, g2 ∈ G,
g1 + g2 = g2 + g1, then G is an Abelian group.

Definition 28. Let R be a set, +,× be two (different) operations. We call
(R,+,×) a ring if (1) (R,+) is an Abelian group; (2) ∀r1, r2, r3, (r1 × r2) ×
r3 = r1 × (r2 × r3); (3) ∀r1, r2, r3 ∈ R, r1 × (r2 + r3) = r1 × r2 + r1 × r3,
(r1 + r2)× r3 = r1 × r3 + r2 × r3.

Definition 29. Let p be a prime, Fp is the prime field with the elements
{0, 1, 2, . . . , p − 1}. Assume that f(x) is a irreducible polynomial (i.e., a
polynomial with no nontrivial divisors) of degree n in the polynomial ring
Fp[x], <f(x)> is the ring with all the polynomials which have f(x) as a divisor.
Then, the residue field Fp[x]/ <f(x)> is a finite field of pn elements, which is
denoted by Fpn .

Proposition 5. Assume that F is a finite field, +,× are the operations. Then
(F,+) is an Abelian group, (F\{0},×) is an Abelian group.

135

136 MATHEMATICAL BACKGROUND

Finite fields lies at the mathematical intersection of computer science and
communication technology, where the most well-known example is the binary
field. It contains only two elements {0, 1}, i.e., the on and off states in circuits.
Boolean functions are functions over the binary field mapping F2n to F2. The
algebraic normal form (ANF) of a Boolean function with degree n is defined as⊕

I∈P(N)

aI(
∏
i∈I

xi) =
⊕

I∈P(N)

aIx
I ,

where P(N) is the power set of {1, 2, . . . , n}. The algebraic degree is the
maximum degree of the monomials in the ANF, i.e., max{|I||aI 6= 0}. The
total number of Boolean functions of n variables is 22n . In many applications,
permutations over finite fields, or vectorial Boolean functions are studied. A
vectorial Boolean function f̂ : F2n → F2n consists of n Boolean functions
fi : F2n → F2, which are called the component functions. The algebraic degree
of a vectorial Boolean function is defined as the global degree max{deg(fi)}.

In order to gain an systematical view instead of one specific function, equivalence
classes can be defined for Boolean functions and vectorial Boolean functions.
Here, we recall the affine equivalence and CCZ equivalence.

Definition 30 ([57]). Let f and g be Boolean functions. f and g are called
affine equivalent if there exists a linear functions L and a element a, such that
for all x, we have f(x) = g(L(x) + a).

Definition 31 ([57]). Let f and g be Boolean functions. f and g are called CCZ
equivalent if their graphs Cf = {(x, y)|y = f(x)} and Cg = {(x, y)|y = g(x)}
are affine equivalent.

Boolean functions with affine equivalence are of the same algebraic degree and
share many similar cryptographic properties. Compared with affine equivalence,
CCZ equivalence, named after three researchers who discovered the property, is
more general. The degree of two CCZ-equivalent functions may differ.

The security of block ciphers depends on the properties of the building blocks,
one important factor is the S-box. In order to evaluate the resistance of the
S-boxes against differential and linear cryptanalysis, differential uniformity and
nonlinearity are studied.

Definition 32. Let f̂ be a vectorial Boolean function from F2n to F2m . The
differential uniformity is defined as

max
a∈F2n ,b∈F2m

|{x|f̂(x⊕ a)⊕ f̂(x) = b}|.

MATHEMATICAL BACKGROUND 137

The nonlinearity is the distance between the Boolean function and all linear
functions, which is defined as follows:

2n−1 − 1
2 max
v∈F∗2m ,u∈F2n

|
∑
x∈F2n

(−1)u·x⊕v·f̂(x)|.

Vectorial Boolean functions with optimal differential uniformity (which equals
2) are called almost perfect nonlinear (APN). At the time of writing this thesis,
APN functions with n being even have only been found up to n = 6 [51]. Note
that the 8-bit S-box of the AES is differentially 4-uniform.

For ciphers without S-boxes, it is interesting to study the nonlinear operations
such as the biswise AND and the modular addition. For instance, when analysing
the cryptographic properties of modular addition, we often consider it as a
T-function or an S-function.

Definition 33 ([120]). A function f : Fl2n → F2n is called a T-function if the
i-th bit of the output only depends on the j-th bits of the inputs where j ≤ i.

Definition 34 ([160]). An S-function accepts n-bit words a1, a2, · · · , ak and a
list of states S[i] (for 0 ≤ i < n) as inputs, and produces an n-bit output word b
in the following way:

(b[i], S[i+ 1]) = f(a1[i], a2[i], ..., ak[i], S[i]), 0 ≤ i < n.

Obviously, S-functions are in fact T-functions under the condition that the
dependence between the output and input bits should be described by a finite
state. In this thesis, we refer to both of them as T-functions.

Bibliography

[1] Al Fardan, N. J., and Paterson, K. G. Lucky thirteen: Breaking
the TLS and DTLS record protocols. In IEEE Symposium on Security
and Privacy - IEEE S&P 2013 (2013), IEEE, pp. 526–540.

[2] Albrecht, M., Grassi, L., Rechberger, C., Roy, A., and Tiessen,
T. MiMC: Efficient encryption and cryptographic hashing with minimal
multiplicative complexity. In Advances in Cryptology - ASIACRYPT 2016
(2016), Springer, pp. 191–219.

[3] Albrecht, M., Rechberger, C., Schneider, T., Tiessen, T., and
Zohner, M. Ciphers for MPC and FHE. In Advances in Cryptology -
EUROCRYPT 2015 (2015), Springer, pp. 430–454.

[4] Albrecht, M., Rechberger, C., Schneider, T., Tiessen, T., and
Zohner, M. Ciphers for MPC and FHE. https://eprint.iacr.org/
2016/687, 2016.

[5] Albrecht, M. R., Driessen, B., Kavun, E. B., Leander, G., Paar,
C., and Yalçın, T. Block ciphers - focus on the linear layer (feat.
PRIDE). In Advances in Cryptology - CRYPTO 2014 (2014), Springer,
pp. 57–76.

[6] Ashur, T., Beyne, T., and Rijmen, V. Revisiting the wrong-key-
randomization hypothesis. http://eprint.iacr.org/2016/990, 2016.

[7] Ashur, T., and Liu, Y. Rotational cryptanalysis in the presence of
constants. IACR Transactions on Symmetric Cryptology 2016, 1 (2016),
57–70.

[8] Aumasson, J.-P., Henzen, L., Meier, W., and Naya-Plasencia, M.
Quark: A lightweight hash. Journal of cryptology 26, 2 (2013), 313–339.

[9] Aumasson, J.-P., Henzen, L., Meier, W., and Phan, R. C.-W.
SHA-3 proposal BLAKE. Submission to NIST (2008).

139

https://eprint.iacr.org/2016/687
https://eprint.iacr.org/2016/687
http://eprint.iacr.org/2016/990

140 BIBLIOGRAPHY

[10] Aumasson, J.-P., Jovanovic, P., and Neves, S. NORX: parallel
and scalable AEAD. In European Symposium on Research in Computer
Security (2014), Springer, pp. 19–36.

[11] Aumasson, J.-P., and Meier, W. Zero-sum distinguishers for reduced
Keccak-f and for the core functions of Luffa and Hamsi. http://131002.
net/data/papers/AM09.pdf, 2009.

[12] Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari,
H., Akishita, T., and Regazzoni, F. Midori: a block cipher for low
energy. In Advances in Cryptology - ASIACRYPT 2015 (2015), Springer,
pp. 411–436.

[13] Banik, S., Pandey, S. K., Peyrin, T., Sasaki, Y., Sim, S. M., and
Todo, Y. GIFT: a small PRESENT. In International Conference on
Cryptographic Hardware and Embedded Systems - CHES 2017 (2017),
Springer, pp. 321–345.

[14] Barker, E., and Roginsky, A. Transitions: Recommendation for
transitioning the use of cryptographic algorithms and key lengths. NIST
Special Publication 800 (2015), 131A.

[15] Barrett, C., Fontaine, P., and Tinelli, C. The satisfiability modulo
theories library SMT-LIB. www.SMT-LIB.org, 2016.

[16] Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks,
B., and Wingers, L. The SIMON and SPECK lightweight block ciphers.
In Proceedings of the 52nd Annual Design Automation Conference - DAC
2015 (2015), ACM, pp. 175:1–175:6.

[17] Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks,
B., and Wingers, L. Notes on the design and analysis of SIMON and
SPECK. http://eprint.iacr.org/2017/560, 2017.

[18] Beierle, C., Canteaut, A., Leander, G., and Rotella, Y. Proving
resistance against invariant attacks: How to choose the round constants.
In Advances in Cryptology - CRYPTO 2017 (2017), pp. 647–678.

[19] Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin,
T., Sasaki, Y., Sasdrich, P., and Sim, S. M. The SKINNY family
of block ciphers and its low-latency variant MANTIS. In Advances in
Cryptology - CRYPTO 2016 (2016), Springer, pp. 123–153.

[20] Beierle, C., Kranz, T., and Leander, G. Lightweight multiplication
in GF(2n) with applications to MDS matrices. In Advances in Cryptology
- CRYPTO 2016 (2016), Springer, pp. 625–653.

http://131002.net/data/papers/AM09.pdf
http://131002.net/data/papers/AM09.pdf
www.SMT-LIB.org
http://eprint.iacr.org/2017/560

BIBLIOGRAPHY 141

[21] Bellare, M., Canetti, R., and Krawczyk, H. Keying hash functions
for message authentication. In Advances in Cryptology - CRYPTO’96
(1996), Springer, pp. 1–15.

[22] Bellare, M., Ristenpart, T., Rogaway, P., and Stegers, T.
Format-preserving encryption. In International Workshop on Selected
Areas in Cryptography - SAC 2009 (2009), Springer, pp. 295–312.

[23] Bernstein, D. J. ChaCha, a variant of Salsa20. http://cr.yp.to/
chacha.html.

[24] Bernstein, D. J. The Salsa20 family of stream ciphers. In New stream
cipher designs. Springer, 2008, pp. 84–97.

[25] Bernstein, D. J. Introduction to post-quantum cryptography. In
Post-quantum cryptography. Springer, 2009, pp. 1–14.

[26] Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Assche, G. V.,
and Keer, R. V. Farfalle: parallel permutation-based cryptography.
Cryptology ePrint Archive, Report 2016/1188.

[27] Bertoni, G., Daemen, J., Peeters, M., Assche, G. V., and Keer,
R. V. KangarooTwelve: fast hashing based on Keccak-p. Cryptology
ePrint Archive, Report 2016/770.

[28] Bertoni, G., Daemen, J., Peeters, M., and Van Assche,
G. Permutation-based encryption, authentication and authenticated
encryption.

[29] Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G. Sponge
functions. ECRYPT Hash Workshop.

[30] Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G. Keccak.
In Advance in Cryptology - EUROCRYPT 2013 (2013), Springer, pp. 313–
314.

[31] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., and
Van Keer, R. Ketje. Submission to CAESAR (2014).

[32] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., and
Van Keer, R. Keyak. Submission to CAESAR (2014).

[33] Bhargavan, K., and Leurent, G. On the practical (in-)security of
64-bit block ciphers: Collision attacks on HTTP over TLS and OpenVPN.
In ACM SIGSAC Conference on Computer and Communications Security
- CCS 2016 (2016), ACM, pp. 456–467.

http://cr.yp.to/chacha.html
http://cr.yp.to/chacha.html

142 BIBLIOGRAPHY

[34] Biham, E., Biryukov, A., and Shamir, A. Cryptanalysis of Skipjack
reduced to 31 rounds using impossible differentials. In Advances in
Cryptology - EUROCRYPT ’99 (1999), Springer, pp. 12–23.

[35] Biham, E., Dunkelman, O., and Keller, N. The rectangle attack -
rectangling the Serpent. In Advances in Cryptology - EUROCRYPT 2001
(2001), Springer, pp. 340–357.

[36] Biham, E., and Shamir, A. Differential cryptanalysis of DES-like
cryptosystems. Journal of Cryptology 4, 1 (1991), 3–72.

[37] Biryukov, A., and Khovratovich, D. Related-key cryptanalysis of
the full AES-192 and AES-256. In Advances in Cryptology - ASIACRYPT
2009 (2009), pp. 1–18.

[38] Biryukov, A., Leurent, G., and Perrin, L. Cryptanalysis of Feistel
networks with secret round functions. In International Conference on
Selected Areas in Cryptography - SAC 2015 (2015), Springer, pp. 102–121.

[39] Biryukov, A., and Perrin, L. State of the art in lightweight symmetric
cryptography. https://eprint.iacr.org/2017/511, 2017.

[40] Biryukov, A., and Velichkov, V. Automatic search for differential
trails in ARX ciphers. In Topics in Cryptology - CT-RSA 2014 (2014),
Springer, pp. 227–250.

[41] Biryukov, A., Velichkov, V., and Le Corre, Y. Automatic search
for the best trails in ARX: Application to block cipher SPECK. In
International Workshop on Fast Software Encryption - FSE 2016 (2016),
Springer, pp. 289–310.

[42] Bogdanov, A. Analysis and design of block cipher constructions. PhD
thesis, Ruhr-Universität Bochum, 2009.

[43] Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı,
K., and Verbauwhede, I. SPONGENT: A lightweight hash function.
In International Workshop on Cryptographic Hardware and Embedded
Systems - CHES 2011 (2011), Springer, pp. 312–325.

[44] Bogdanov, A., Knudsen, L. R., Leander, G., Paar, C.,
Poschmann, A., Robshaw, M. J., Seurin, Y., and Vikkelsoe, C.
PRESENT: An ultra-lightweight block cipher. In International Workshop
on Cryptographic Hardware and Embedded Systems - CHES 2007 (2007),
Springer, pp. 450–466.

https://eprint.iacr.org/2017/511

BIBLIOGRAPHY 143

[45] Bogdanov, A., and Rijmen, V. Linear hulls with correlation zero and
linear cryptanalysis of block ciphers. Designs, codes and cryptography 70,
3 (2014), 369–383.

[46] Bogdanov, A., and Tischhauser, E. On the wrong key randomisation
and key equivalence hypotheses in Matsui’s Algorithm 2. In International
Workshop on Fast Software Encryption - FSE 2013 (2013), Springer,
pp. 19–38.

[47] Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E. B.,
Knezevic, M., Knudsen, L. R., Leander, G., Nikov, V., Paar, C.,
Rechberger, C., Rombouts, P., Thomsen, S. S., and Yalçın, T.
PRINCE: a low-latency block cipher for pervasive computing applications.
In Advances in Cryptology - ASIACRYPT 2012 (2012), Springer, pp. 208–
225.

[48] Borghoff, J., Knudsen, L. R., and Stolpe, M. Bivium as a mixed-
integer linear programming problem. In IMA Int. Conf. (2009), Springer,
pp. 133–152.

[49] Bouillaguet, C., Derbez, P., and Fouque, P.-A. Automatic search
of attacks on round-reduced AES and applications. In Advances in
Cryptology - CRYPTO 2011 (2011), Springer, pp. 169–187.

[50] Boura, C., and Canteaut, A. A new criterion for avoiding the
propagation of linear relations through an Sbox. In International Workshop
on Fast Software Encryption - FSE 2013 (2013), Springer, pp. 585–604.

[51] Browning, K., Dillon, J., McQuistan, M., and Wolfe, A. An
APN permutation in dimension six. Finite Fields: theory and applications
518 (2010), 33–42.

[52] Buchberger, B., and Winkler, F. Gröbner bases and applications,
vol. 251. Cambridge University Press, 1998.

[53] Bulygin, S., Walter, M., and Buchmann, J. Full analysis of
PRINTcipher with respect to invariant subspace attack: Efficient key
recovery and countermeasures. Designs, Codes and Cryptography 73, 3
(2014), 997–1022.

[54] CAESAR. Competition for authenticated encryption: Security,
applicability, and robustness. https://competitions.cr.yp.to/
caesar.html, 2014.

[55] Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-
Plasencia, M., Paillier, P., and Sirdey, R. Stream ciphers: A

https://competitions.cr.yp.to/caesar.html
https://competitions.cr.yp.to/caesar.html

144 BIBLIOGRAPHY

practical solution for efficient homomorphic-ciphertext compression. In
International Conference on Fast Software Encryption - FSE 2016 (2016),
Springer, pp. 313–333.

[56] Canteaut, A., Fuhr, T., Gilbert, H., Naya-Plasencia, M., and
Reinhard, J. Multiple differential cryptanalysis of round-reduced
PRINCE. In International Workshop on Fast Software Encryption -
FSE 2014 (2014), pp. 591–610.

[57] Carlet, C. Boolean functions for cryptography and error correcting
codes. Boolean models and methods in Mathematics, Computer science,
and Engineering 2 (2010), 257.

[58] Chabaud, F., and Vaudenay, S. Links between differential and linear
cryptanalysis. In Advances in Cryptology – EUROCRYPT’94 (1994),
Springer, pp. 356–365.

[59] Cook, S. A. The complexity of theorem-proving procedures. In The
third annual ACM symposium on Theory of computing (1971), ACM,
pp. 151–158.

[60] Courtois, N., and Pieprzyk, J. Cryptanalysis of block ciphers
with overdefined systems of equations. In Advances in Cryptology -
ASIACRYPT 2002 (2002), Springer, pp. 267–287.

[61] Daemen, J. Cipher and hash function design, strategies based on linear
and differential cryptanalysis. PhD thesis, KU Leuven, 1995.

[62] Daemen, J., Govaerts, R., and Vandewalle, J. Correlation matrices.
In International Workshop on Fast Software Encryption - FSE’95 (1995),
Springer, pp. 275–285.

[63] Daemen, J., and Rijmen, V. The wide trail design strategy. In IMA
International Conference on Cryptography and Coding (2001), Springer,
pp. 222–238.

[64] Daemen, J., and Rijmen, V. AES and the wide trail design strategy.
In Advances in Cryptology - EUROCRYPT 2002 (2002), pp. 108–109.

[65] Daemen, J., and Rijmen, V. The Design of Rijndael: AES - The
Advanced Encryption Standard. Information Security and Cryptography.
Springer, 2002.

[66] Daemen, J., and Rijmen, V. Plateau characteristics. IET Information
Security 1, 1 (2007), 11–17.

BIBLIOGRAPHY 145

[67] Daum, M. Cryptanalysis of Hash functions of the MD4-family. PhD
thesis, Ruhr-Universität Bochum, 2005.

[68] De Canniere, C. Trivium: A stream cipher construction inspired by
block cipher design principles. In International Conference on Information
Security (2006), Springer, pp. 171–186.

[69] De Cannière, C. Analysis and design of symmetric encryption
algorithms. PhD thesis, KU Leuven, 2007.

[70] De Moura, L., and Bjørner, N. Z3: An efficient SMT solver. Tools
and Algorithms for the Construction and Analysis of Systems (2008),
337–340.

[71] De Witte, G., Ashur, T., and Liu, Y. An automated tool
for Rotational-XOR cryptanalysis of ARX-based primitives. In 38th
Symposium on Information Theory in the Benelux (2017).

[72] Derbez, P., Fouque, P., and Jean, J. Improved key recovery attacks
on reduced-round AES in the single-key setting. In Advances in Cryptology
- EUROCRYPT 2013 (2013), pp. 371–387.

[73] Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Großschädl,
J., and Biryukov, A. Design strategies for ARX with provable bounds:
SPARX and LAX. In Advances in Cryptology - ASIACRYPT 2016 (2016),
Springer, pp. 484–513.

[74] Dinur, I. Improved differential cryptanalysis of round-reduced SPECK.
In International Workshop on Selected Areas in Cryptography - SAC 2014.
Springer, 2014, pp. 147–164.

[75] Dinur, I., Liu, Y., Meier, W., and Wang, Q. Optimized interpolation
attacks on LowMC. In Advance in Cryptology - ASIACRYPT 2015 (2015),
Springer, pp. 535–560.

[76] Dinur, I., and Shamir, A. Cube attacks on tweakable black box
polynomials. In Advances in Cryptology - EUROCRYPT 2009 (2009),
Springer-Verlag, pp. 278–299.

[77] Dobbertin, H., Bosselaers, A., and Preneel, B. RIPEMD-160:
A strengthened version of RIPEMD. In International Workshop on Fast
Software Encryption - FSE’96 (1996), Springer, pp. 71–82.

[78] Dubuc, S. Characterization of linear structures. Designs, Codes and
Cryptography 22, 1 (2001), 33–45.

146 BIBLIOGRAPHY

[79] Dunkelman, O., Indesteege, S., and Keller, N. A differential-linear
attack on 12-round Serpent. In Progress in Cryptology - INDOCRYPT
2008. Springer, 2008, pp. 308–321.

[80] Durak, F. B., and Vaudenay, S. Breaking the FF3 format-preserving
encryption standard over small domains. In Advances in Cryptology -
CRYPTO 2017 (2017), Springer, pp. 679–707.

[81] Durumeric, Z., Kasten, J., Adrian, D., Halderman, J. A., Bailey,
M., Li, F., Weaver, N., Amann, J., Beekman, J., Payer, M., and
Paxson, V. The matter of Heartbleed. In Proceedings of the 2014
Conference on Internet Measurement Conference (2014), ACM, pp. 475–
488.

[82] Dworkin, M. Recommendation for block cipher modes of operation:
methods for format-preserving encryption. NIST Special Publication 800
(2013), 38G.

[83] ETSI/SAGE. Specification of the 3GPP confidentiality and integrity
algorithms UEA2 & UIA2. document 2: SNOW 3G specification. Tech.
rep., 2006.

[84] Evertse, J.-H. Linear structures in blockciphers. In Advances in
Cryptology - EUROCRYPT’87 (1987), Springer, pp. 249–266.

[85] Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare,
M., Kohno, T., Callas, J., and Walker, J. The Skein hash function
family. Submission to NIST (2010).

[86] FIPS. 180-2: Secure hash standard (SHS). US Department of Commerce,
National Institute of Standards and Technology (NIST) (2012).

[87] Fu, K., Wang, M., Guo, Y., Sun, S., and Hu, L. MILP-based
automatic search algorithms for differential and linear trails for SPECK.
In International Workshop on Fast Software Encryption - FSE 2016
(2016), Springer, pp. 268–288.

[88] Fuhr, T. Finding second preimages of short messages for Hamsi-256. In
Advances in Cryptology - ASIACRYPT 2010 (2010), Springer, pp. 20–37.

[89] Ganesh, V., and Dill, D. L. A decision procedure for bit-vectors and
arrays. In International Conference on Computer Aided Verification -
CAV 2007 (2007), pp. 519–531.

[90] Gauravaram, P., Knudsen, L. R., Matusiewicz, K., Mendel,
F., Rechberger, C., Schläffer, M., and Thomsen, S. S. Grøstl-
a SHA-3 candidate. In Dagstuhl Seminar Proceedings (2009), Schloss
Dagstuhl-Leibniz-Zentrum für Informatik.

BIBLIOGRAPHY 147

[91] Gérard, B., Grosso, V., Naya-Plasencia, M., and Standaert,
F.-X. Block ciphers that are easier to mask: How far can we go?
In International Workshop on Cryptographic Hardware and Embedded
Systems - CHES 2013 (2013), Springer, pp. 383–399.

[92] Gerault, D., Minier, M., and Solnon, C. Constraint programming
models for chosen key differential cryptanalysis. In International
Conference on Principles and Practice of Constraint Programming (2016),
Springer, pp. 584–601.

[93] Gong, Z., Nikova, S., and Law, Y. W. KLEIN: A new family of
lightweight block ciphers. In RFIDSec 2011 (2011), Springer, pp. 1–18.

[94] Grassi, L., Rechberger, C., and Rønjom, S. Subspace trail
cryptanalysis and its applications to AES. IACR Transactions on
Symmetric Cryptology 2016, 2 (2017), 192–225.

[95] Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., and Smart,
N. P. MPC-friendly symmetric key primitives. In ACM SIGSAC
Conference on Computer and Communications Security - CCS 2016
(2016), ACM, pp. 430–443.

[96] Grosso, V., Leurent, G., Standaert, F.-X., and Varıcı, K. LS-
designs: Bitslice encryption for efficient masked software implementations.
In International Workshop on Fast Software Encryption - FSE 2014
(2014), Springer, pp. 18–37.

[97] Grosso, V., Leurent, G., Standaert, F.-X., Varıcı, K., Durvaux,
F., Gaspar, L., and Kerckhof, S. SCREAM & iSCREAM side-
channel resistant authenticated encryption with masking. Submission to
CAESAR (2014).

[98] Guo, J., Jean, J., Nikolic, I., Qiao, K., Sasaki, Y., and Sim, S. M.
Invariant subspace attack against Midori64 and the resistance criteria
for S-box designs. IACR Transactions on Symmetric Cryptology 2016, 1
(2016), 33–56.

[99] Guo, J., Jean, J., Nikolić, I., and Sasaki, Y. Meet-in-the-middle
attacks on generic Feistel constructions. In Advances in Cryptology –
ASIACRYPT 2014 (2014), Springer, pp. 458–477.

[100] Guo, J., Liu, M., and Song, L. Linear structures: Applications to
cryptanalysis of round-reduced Keccak. In Advances in Cryptology -
ASIACRYPT 2016 (2016), Springer, pp. 249–274.

148 BIBLIOGRAPHY

[101] Guo, J., Peyrin, T., and Poschmann, A. The PHOTON family of
lightweight hash functions. In Advances in Cryptology - CRYPTO 2011
(2011), Springer, pp. 222–239.

[102] Guo, J., Peyrin, T., Poschmann, A., and Robshaw, M. The LED
block cipher. In International Workshop on Cryptographic Hardware and
Embedded Systems - CHES 2011 (2011), vol. 6917, Springer, p. 326.

[103] Hall, C., Kelsey, J., Rijmen, V., Schneier, B., and Wagner, D.
Cryptanalysis of SPEED. In International Workshop on Selected Areas in
Cryptography - SAC’98 (1998), pp. 319–338.

[104] Hamann, M., Krause, M., and Meier, W. LIZARD - a lightweight
stream cipher for power-constrained devices. IACR Transactions on
Symmetric Cryptology 2017, 1 (2017), 45–79.

[105] Hell, M., Johansson, T., Maximov, A., and Meier, W. The Grain
family of stream ciphers. In New Stream Cipher Designs. Springer, 2008,
pp. 179–190.

[106] Hermelin, M., Cho, J., and Nyberg, K. Multidimensional linear
cryptanalysis of reduced round Serpent. In Information Security and
Privacy (2008), Springer, pp. 203–215.

[107] Hermelin, M., and Nyberg, K. Linear cryptanalysis using multiple
linear approximations. https://eprint.iacr.org/2011/093, 2011.

[108] Hoang, V. T., Morris, B., and Rogaway, P. An enciphering scheme
based on a card shuffle. In Advances in Cryptology - CRYPTO 2012.
Springer, 2012, pp. 1–13.

[109] Hoang, V. T., and Rogaway, P. On generalized Feistel networks. In
Advances in Cryptology – CRYPTO 2010 (2010), Springer, pp. 613–630.

[110] Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.-S., Lee,
C., Chang, D., Lee, J., Jeong, K., et al. HIGHT: A new block
cipher suitable for low-resource device. In International Workshop on
Cryptographic Hardware and Embedded Systems - CHES 2006 (2006),
Springer, pp. 46–59.

[111] Jakobsen, T., and Knudsen, L. R. The interpolation attack on block
ciphers. In International Workshop on Fast Software Encryption - FSE’97
(1997), Springer, p. 28.

[112] Joux, A. Algorithmic cryptanalysis. CRC Press, 2009.

https://eprint.iacr.org/2011/093

BIBLIOGRAPHY 149

[113] Kaplan, M., Leurent, G., Leverrier, A., and Naya-Plasencia,
M. Breaking symmetric cryptosystems using quantum period finding. In
Advances in Cryptology - CRYPTO 2016 (2016), Springer, pp. 207–237.

[114] Kaplan, M., Leurent, G., Leverrier, A., and Naya-Plasencia,
M. Quantum differential and linear cryptanalysis. IACR Transactions on
Symmetric Cryptology 2016, 1 (2016), 71–94.

[115] Karpman, P., Peyrin, T., and Stevens, M. Practical free-start
collision attacks on 76-step SHA-1. In Advances in Cryptology - CRYPTO
2015 (2015), pp. 623–642.

[116] Kerdock, A. A class of low-rate non-linear binary codes. Information
and Control 20 (1972), 182–187.

[117] Khovratovich, D., and Nikolić, I. Rotational cryptanalysis of ARX.
In International Workshop on Fast Software Encryption - FSE 2010
(2010), Springer, pp. 333–346.

[118] Khovratovich, D., Nikolić, I., Pieprzyk, J., Sokołowski, P.,
and Steinfeld, R. Rotational cryptanalysis of ARX revisited. In
International Workshop on Fast Software Encryption - FSE 2015 (2015),
Springer, pp. 519–536.

[119] Khovratovich, D., Nikolić, I., and Rechberger, C. Rotational
rebound attacks on reduced Skein. In Advances in Cryptology -
ASIACRYPT 2010 (2010), Springer, pp. 1–19.

[120] Klimov, A., and Shamir, A. A new class of invertible mappings.
In International Workshop on Cryptographic Hardware and Embedded
Systems - CHES 2002 (2002), pp. 470–483.

[121] Knudsen, L. DEAL - a 128-bit block cipher. Complexity 258, 2 (1998),
216.

[122] Knudsen, L., and Wagner, D. Integral cryptanalysis. In International
Workshop on Fast Software Encryption - FSE 2002 (2002), Springer,
pp. 629–632.

[123] Knudsen, L. R. Iterative characteristics of DES and s2-DES. In Advances
in Cryptology - CRYPTO’92 (1992), pp. 497–511.

[124] Knudsen, L. R. Truncated and higher-order differentials. In International
Workshop on Fast Software Encryption - FSE’94 (1994), Springer, pp. 196–
211.

150 BIBLIOGRAPHY

[125] Knudsen, L. R., Leander, G., Poschmann, A., and Robshaw,
M. J. PRINTcipher: A block cipher for IC-printing. In International
Workshop on Cryptographic Hardware and Embedded Systems - CHES
2010 (2010), Springer, pp. 16–32.

[126] Knudsen, L. R., and Rijmen, V. Known-key distinguishers for some
block ciphers. In Advances in Cryptology - ASIACRYPT 2007 (2007),
Springer, pp. 315–324.

[127] Knudsen, L. R., Rijmen, V., Rivest, R. L., and Robshaw, M. J.
On the design and security of RC2. In International Workshop on Fast
Software Encryption - FSE’98 (1998), Springer, pp. 206–221.

[128] Kölbl, S. CryptoSMT: An easy to use tool for cryptanalysis of symmetric
primitives. https://github.com/kste/cryptosmt, 2015.

[129] Kölbl, S., Lauridsen, M. M., Mendel, F., and Rechberger, C.
Haraka v2 - efficient short-input hashing for post-quantum applications.
IACR Transactions on Symmetric Cryptology 2016, 2 (2017), 1–29.

[130] Kölbl, S., Leander, G., and Tiessen, T. Observations on the SIMON
block cipher family. In Advance in Cryptology - CRYPTO 2015 (2015),
Springer, pp. 161–185.

[131] Lai, X. Higher order derivatives and differential cryptanalysis. In
Communications and Cryptography. Springer, 1994, pp. 227–233.

[132] Lai, X., Massey, J., and Murphy, S. Markov ciphers and differential
cryptanalysis. In Advances in Cryptology - EUROCRYPT’91 (1991),
Springer, pp. 17–38.

[133] Lai, X., and Massey, J. L. A proposal for a new block encryption
standard. In Advances in Cryptology - EUROCRYPT ’90 (Berlin,
Heidelberg, 1991), I. B. Damgård, Ed., Springer Berlin Heidelberg, pp. 389–
404.

[134] Lallemand, V., and Naya-Plasencia, M. Cryptanalysis of KLEIN. In
International Workshop on Fast Software Encryption - FSE 2014 (2014),
pp. 451–470.

[135] Langford, S., and Hellman, M. Differential-linear cryptanalysis. In
Advances in Cryptology - CRYPTO’94 (1994), Springer, pp. 17–25.

[136] Leander, G., Abdelraheem, M., AlKhzaimi, H., and Zenner,
E. A cryptanalysis of PRINTcipher: the invariant subspace attack. In
Advances in Cryptology - CRYPTO 2011 (2011), Springer, pp. 206–221.

https://github.com/kste/cryptosmt

BIBLIOGRAPHY 151

[137] Leander, G., Minaud, B., and Rønjom, S. A generic approach
to invariant subspace attacks: Cryptanalysis of Robin, iSCREAM and
Zorro. In Advances in Cryptology - EUROCRYPT 2015 (2015), Springer,
pp. 254–283.

[138] Leander, G., and Poschmann, A. On the classification of 4 bit Sboxes.
In International Workshop on the Arithmetic of Finite Fields (2007),
Springer, pp. 159–176.

[139] Leurent, G. Analysis of differential attacks in ARX constructions. In
Advances in Cryptology - ASIACRYPT 2012 (2012), pp. 226–243.

[140] Leurent, G. ARXtools: a toolkit for ARX analysis. https://who.rocq.
inria.fr/Gaetan.Leurent/arxtools.html, 2012.

[141] Leurent, G. Construction of differential characteristics in ARX designs
application to Skein. In Advances in Cryptology - CRYPTO 2013 (2013),
Springer, pp. 241–258.

[142] Li, C., and Wang, Q. Design of lightweight linear diffusion layers from
near-MDS matrices. IACR Transactions on Symmetric Cryptology 2017,
1 (2017), 129–155.

[143] Lint, J. V. Kerdock codes and Preparata codes. Congressus
Numerantium 39 (1983), 25–51.

[144] Lipmaa, H., and Moriai, S. Efficient algorithms for computing
differential properties of addition. In International Workshop on Fast
Software Encryption - FSE 2001 (2001), Springer, pp. 336–350.

[145] Lipmaa, H., Wallén, J., and Dumas, P. On the additive differential
probability of exclusive-or. In International Workshop on Fast Software
Encryption - FSE 2004 (2004), Springer, pp. 317–331.

[146] Liu, Y., De Witte, G., Ranea, A., and Ashur, T. Rotational-
XOR cryptanalysis of reduced-round SPECK. IACR Transactions on
Symmetric Cryptology 2017, 3 (2017), 24–36.

[147] Liu, Y., Qu, L., and Li, C. New constructions of systematic
authentication codes from three classes of cyclic codes. Advances in
Mathematics of Communications 12(1) (2018), 1–16.

[148] Liu, Y., and Rijmen, V. New observations on invariant subspace attack.
Information Processing Letters 138 (2018), 27 – 30.

[149] Liu, Y., Rijmen, V., and Leander, G. Nonlinear diffusion layers. To
appear in Design, Codes and Cryptography (2018).

https://who.rocq.inria.fr/Gaetan.Leurent/arxtools.html
https://who.rocq.inria.fr/Gaetan.Leurent/arxtools.html

152 BIBLIOGRAPHY

[150] Liu, Y., Wang, Q., and Rijmen, V. Automatic search of linear trails
in ARX with applications to SPECK and Chaskey. In International
Conference on Applied Cryptography and Network Security - ACNS 2016
(2016), Springer, pp. 485–499.

[151] Luby, M., and Rackoff, C. How to construct pseudorandom
permutations from pseudorandom functions. SIAM Journal on Computing
17, 2 (1988), 373–386.

[152] Matsui, M. Linear cryptanalysis method for DES cipher. In Advances
in Cryptology - EUROCRYPT’93 (1994), Springer, pp. 386–397.

[153] Matsui, M. New block encryption algorithm MISTY. In International
Workshop on Fast Software Encryption - FSE’97 (1997), vol. 1267,
Springer, pp. 54–68.

[154] Matsui, M., and Tokita, T. MISTY, KASUMI and Camellia cipher
algorithm development. Mitsubishi Electric Advance (Mitsubishi Electric
corp.) 100 (2001), 2–8.

[155] Méaux, P., Journault, A., Standaert, F.-X., and Carlet, C.
Towards stream ciphers for efficient FHE with low-noise ciphertexts. In
Advances in Cryptology - EUROCRYPT 2016 (2016), Springer, pp. 311–
343.

[156] Mendel, F., Rechberger, C., Schläffer, M., and Thomsen, S. S.
The rebound attack: Cryptanalysis of reduced Whirlpool and Grøstl. In
International Workshop on Fast Software Encryption - FSE 2009 (2009),
pp. 260–276.

[157] Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev,
S. B., Rocklin, M., Kumar, A., Ivanov, S., Moore, J. K., Singh,
S., Rathnayake, T., Vig, S., Granger, B. E., Muller, R. P.,
Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F.,
Curry, M. J., Terrel, A. R., Roučka, v., Saboo, A., Fernando,
I., Kulal, S., Cimrman, R., and Scopatz, A. SymPy: symbolic
computing in Python. PeerJ Computer Science 3 (2017).

[158] Morris, B., Rogaway, P., and Stegers, T. How to encipher messages
on a small domain. In Advances in Cryptology - CRYPTO 2009. Springer,
2009, pp. 286–302.

[159] Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D.,
Preneel, B., and Verbauwhede, I. Chaskey: An efficient MAC
algorithm for 32-bit microcontrollers. In International Workshop on
Selected Areas in Cryptography - SAC 2014. Springer, 2014, pp. 306–323.

BIBLIOGRAPHY 153

[160] Mouha, N., Velichkov, V., De Canniere, C., and Preneel, B.
The differential analysis of S-functions. In International Workshop on
Selected Areas in Cryptography (2010), Springer, pp. 36–56.

[161] Mouha, N., Wang, Q., Gu, D., and Preneel, B. Differential
and linear cryptanalysis using mixed-integer linear programming. In
Information Security and Cryptology - Inscrypt 2011 (2012), Springer,
pp. 57–76.

[162] Nakahara Jr, J. 3D: A three-dimensional block cipher. In International
Conference on Cryptology and Network Security (2008), Springer, pp. 252–
267.

[163] NBS. Data encryption standard. Federal Information Processing
Standards Publication 46, US Department of Commerce (1977).

[164] Needham, R. M., and Wheeler, D. J. TEA extensions. Tech. rep.,
1997.

[165] Nikova, S., Rechberger, C., and Rijmen, V. Threshold
implementations against side-channel attacks and glitches. In International
Conference on Information and Communications Security (2006), Springer,
pp. 529–545.

[166] Nordstrom, A., and Robinson, J. An optimum nonlinear code.
Information and Control 11 (1967), 613–616.

[167] Nyberg, K. Linear approximation of block ciphers. In Advances in
Cryptology - EUROCRYPT’94 (1995), Springer, pp. 439–444.

[168] Nyberg, K., and Wallén, J. Improved linear distinguishers for SNOW
2.0. In International Workshop on Fast Software Encryption - FSE 2006
(2006), Springer, pp. 144–162.

[169] Paul, S., and Preneel, B. Solving systems of differential equations of
addition. In Australasian Conference on Information Security and Privacy
(2005), Springer, pp. 75–88.

[170] Prud’homme, C., Fages, J.-G., and Lorca, X. Choco Documentation.
TASC, INRIA Rennes, 2016.

[171] Ranea, A., Liu, Y., and Ashur, T. An easy-to-use tool for rotational-
XOR cryptanalysis of ARX block ciphers. Proceedings of the Romanian
Academy, Series A 18.3 (2017): 307-316 .

[172] Rijmen, V. Cryptanalysis and design of iterated block ciphers. PhD
thesis, KU Leuven, 1997.

154 BIBLIOGRAPHY

[173] Ristenpart, T., and Yilek, S. The mix-and-cut shuffle: small-domain
encryption secure against N queries. In Advances in Cryptology - CRYPTO
2013. Springer, 2013, pp. 392–409.

[174] Sasaki, Y., and Todo, Y. New impossible differential search tool
from design and cryptanalysis aspects. In Advances in Cryptology -
EUROCRYPT 2017 (2017), Springer, pp. 185–215.

[175] Schulte-Geers, E. On CCZ-equivalence of addition mod 2n. Designs,
Codes and Cryptography 66, 1-3 (2013), 111–127.

[176] Shamir, A. How to share a secret. Communications of the ACM 22, 11
(1979), 612–613.

[177] Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita,
T., and Shirai, T. Piccolo: An ultra-lightweight blockcipher. In
International Workshop on Cryptographic Hardware and Embedded
Systems - CHES 2011 (2011), vol. 6917, Springer, pp. 342–357.

[178] Shimoyama, T., Moriai, S., and Kaneko, T. Improving the
higher-order differential attack and cryptanalysis of the KN cipher. In
International Workshop on Information Security (1997), Springer, pp. 32–
42.

[179] Shirai, T., Shibutani, K., Akishita, T., Moriai, S., and Iwata,
T. The 128-bit blockcipher CLEFIA. In International Workshop on Fast
Software Encryption - FSE 2007 (2007), vol. 4593, Springer, pp. 181–195.

[180] Sinz, C. Towards an optimal CNF encoding of boolean cardinality
constraints. In Principles and Practice of Constraint Programming - CP
2005. Springer, 2005, pp. 827–831.

[181] Soos, M. A blog about SAT solving and cryptography. http://www.
msoos.org.

[182] Soos, M., Nohl, K., and Castelluccia, C. Extending SAT solvers
to cryptographic problems. In Theory and Applications of Satisfiability
Testing - SAT 2009. Springer, 2009, pp. 244–257.

[183] Standaert, F.-X., Piret, G., Gershenfeld, N., and Quisquater,
J.-J. SEA: A scalable encryption algorithm for small embedded
applications. In Smart Card Research and Advanced Applications. Springer,
2006, pp. 222–236.

[184] Stevens, M., Bursztein, E., Karpman, P., Albertini, A., and
Markov, Y. The first collision for full SHA-1. In Advances in Cryptology
- CRYPTO 2017 (2017), pp. 570–596.

http://www.msoos.org
http://www.msoos.org

BIBLIOGRAPHY 155

[185] Strassen, V. Gaussian elimination is not optimal. Numerische
mathematik 13, 4 (1969), 354–356.

[186] Sun, B., Liu, M., Guo, J., Rijmen, V., and Li, R. Provable security
evaluation of structures against impossible differential and zero-correlation
linear cryptanalysis. In Advances in Cryptology - EUROCRYPT 2016
(2016), pp. 196–213.

[187] Sun, B., Liu, Z., Rijmen, V., Li, R., Cheng, L., Wang, Q.,
AlKhzaimi, H., and Li, C. Links among impossible differential, integral
and zero-correlation linear cryptanalysis. In Advances in Cryptology -
CRYPTO 2015 (2015), pp. 95–115.

[188] Sun, S., Gerault, D., Lafourcade, P., Yang, Q., Todo, Y., Qiao,
K., and Hu, L. Analysis of AES, Skinny, and others with constraint
programming. IACR Transactions on Symmetric Cryptology 2017, 1
(2017), 281–306.

[189] Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., and Song, L.
Automatic security evaluation and (related-key) differential characteristic
search: Application to SIMON, PRESENT, LBlock, DES (L) and other
bit-oriented block ciphers. In Advances in Cryptology - ASIACRYPT
2014. Springer, 2014, pp. 158–178.

[190] Suzaki, T., Minematsu, K., Morioka, S., and Kobayashi, E.
TWINE: A lightweight, versatile block cipher. In ECRYPT Workshop on
Lightweight Cryptography (2011), vol. 2011.

[191] Tiessen, T. Polytopic cryptanalysis. In Advances in Cryptology –
EUROCRYPT 2016 (2016), Springer, pp. 214–239.

[192] Todo, Y. Integral cryptanalysis on full MISTY1. Journal of Cryptology
30, 3 (2017), 920–959.

[193] Todo, Y., Leander, G., and Sasaki, Y. Nonlinear invariant attack. In
Advances in Cryptology – ASIACRYPT 2016 (2016), Springer, pp. 3–33.

[194] Tolba, M., Abdelkhalek, A., and Youssef, A. M. Truncated
and multiple differential cryptanalysis of reduced round Midori128. In
International Conference on Information Security - ISC 2016 (2016),
pp. 3–17.

[195] Van Lint, J. H. Introduction to coding theory, vol. 86. Springer Science
& Business Media, 2012.

156 BIBLIOGRAPHY

[196] Vanhoef, M., and Piessens, F. Key reinstallation attacks: Forcing
nonce reuse in WPA2. In ACM SIGSAC Conference on Computer and
Communications Security - CCS 2017 (2017), ACM, pp. 1313–1328.

[197] Velichkov, V. YAARX: yet another toolkit for the analysis of ARX
cryptographic algorithms. https://github.com/vesselinux/yaarx,
2016.

[198] Wagner, D. The boomerang attack. In International Workshop on Fast
Software Encryption - FSE ’99 (1999), Springer-Verlag, pp. 156–170.

[199] Wallén, J. Linear approximations of addition modulo 2n. In
International Workshop on Fast Software Encryption - FSE 2011 (2003),
Springer, pp. 261–273.

[200] Wang, G., Keller, N., and Dunkelman, O. The delicate issues of
addition with respect to XOR differences. In International Workshop on
Selected Areas in Cryptography - SAC 2007 (2007), pp. 212–231.

[201] Wang, M., Sun, Y., Tischhauser, E., and Preneel, B. A model
for structure attacks, with applications to PRESENT and Serpent. In
International Workshop on Fast Software Encryption - FSE 2012 (2012),
pp. 49–68.

[202] Wang, X., Yin, Y. L., and Yu, H. Finding collisions in the full SHA-1.
In Advances in Cryptology - CRYPTO 2005 (2005), pp. 17–36.

[203] Wang, X., and Yu, H. How to break MD5 and other hash functions.
In Advances in Cryptology - EUROCRYPT 2005 (2005), pp. 19–35.

[204] West, D. B. Introduction to graph theory, vol. 2. Prentice hall Upper
Saddle River, 2001.

[205] Wheeler, D. J., and Needham, R. M. TEA, a tiny encryption
algorithm. In International Workshop on Fast Software Encryption -
FSE’95 (1995), Springer, pp. 363–366.

[206] Wolfram, S. Theory and applications of cellular automata, vol. 1. World
scientific Singapore, 1986.

[207] Wu, H. ACORN: a lightweight authenticated cipher (v3). Submission to
CAESAR (2016).

[208] Wu, W., and Zhang, L. LBlock: a lightweight block cipher. In
International Conference on Applied Cryptography and Network Security
- ACNS 2011 (2011), Springer, pp. 327–344.

https://github.com/vesselinux/yaarx

BIBLIOGRAPHY 157

[209] Xiang, Z., Zhang, W., Bao, Z., and Lin, D. Applying MILP
method to searching integral distinguishers based on division property for
6 lightweight block ciphers. In Advances in Cryptology - ASIACRYPT
2016 (2016), Springer, pp. 648–678.

[210] Yao, A. C.-C. How to generate and exchange secrets. In Annual
Symposium on Foundations of Computer Science (1986), IEEE, pp. 162–
167.

[211] Yao, Y., Zhang, B., and Wu, W. Automatic search for linear trails of
the SPECK family. In International Information Security Conference -
ISC 2015 (2015), Springer, pp. 158–176.

[212] Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., and
Verbauwhede, I. RECTANGLE: a bit-slice lightweight block cipher
suitable for multiple platforms. SCIENCE CHINA Information Sciences
58, 12 (2015), 1–15.

Curriculum Vitae

Yunwen Liu was born on January 26, 1991 in Shiyan, China. She studied Applied
Mathematics in National University of Defence Technology, Changsha, China.
In 2012, she obtained her Bachelor degree and a postgraduate recommendation
without examination (equivalent to the highest distinction, ranking top 2 in the
department). In 2014, she received a Master degree in Applied Mathematics
with her master thesis focused on systematic authentication codes constructed
from cyclic codes.

Starting from September 29, 2014, Yunwen is a doctoral student in the research
group COSIC (Computer Security and Industrial Cryptography) at ESAT
(Department of Electrical Engineering) of KU Leuven, Belgium. Her research
is supported by a doctoral scholarship from CSC (China Scholarship Council).
During her doctoral study, Yunwen has been active in research and academic
activities, and coauthored more than twelve research papers. She presented
research results in FSE 2018, FSE 2017 and ACNS 2016, gave invited talks at
ASK 2017 and the workshop on ZUC-256 and 5G in 2018.

159

List of Publications

Journal Publications:

1. Yunwen Liu, Vincent Rijmen, and Gregor Leander. Nonlinear diffusion
layers. To appear in Designs, Codes and Cryptography, 2018.

2. Yunwen Liu and Vincent Rijmen. New observations on invariant subspace
attack. Information Processing Letters 138 (2018), 27-30.

3. Yunwen Liu, Longjiang Qu, Chao Li. New constructions of systematic
authentication codes from three classes of cyclic codes. Advances in
Mathematics of Communications 12 (1), 1-16, 2018.

4. Wei Li, Vincent Rijmen, Zhi Tao, Qingju Wang, Hua Chen, Yunwen Liu,
Chaoyun Li, Ya Liu. Impossible meet-in-the-middle fault analysis on the
Led lightweight cipher in VANETs. Science China Information Sciences
61 (3), 032110, 2018.

5. Yunwen Liu, Glenn De Witte, Adrián Ranea, and Tomer Ashur.
Rotational-XOR cryptanalysis of reduced-round Speck. IACR Transac-
tions on Symmetric Cryptology 2017, 3 (2017), 24-36.

6. Adrián Ranea, Yunwen Liu, and Tomer Ashur. An easy-to-use tool for
rotational-XOR cryptanalysis of ARX block ciphers. Proceedings of the
Romanian Academy, Series A 18.3 (2017), 307-316.

7. Tomer Ashur and Yunwen Liu. Rotational cryptanalysis in the presence of
constants. IACR Transactions on Symmetric Cryptology 2016, 1 (2016),
57-70.

161

162 LIST OF PUBLICATIONS

International Conferences:

1. Yunwen Liu, Yu Sasaki, Ling Song, Gaoli Wang. Cryptanalysis of reduced
sLiSCP permutation in sponge-hash and duplex-AE modes. In Selected
Areas in Cryptography - SAC 2018, Springer.

2. Yunwen Liu, Qingju Wang, and Vincent Rijmen. Automatic search of
linear trails in ARX with applications to Speck and Chaskey. In
International Conference on Applied Cryptography and Network Security
- ACNS 2016, Springer, 485-499.

3. Hua Chen, Jingyi Feng, Vincent Rijmen, Yunwen Liu, Limin Fan, Wei Li.
Improved fault analysis on Simon block cipher family. In Workshop on
Fault Diagnosis and Tolerance in Cryptography - FDTC 2016, 16-24.

4. Itai Dinur, Yunwen Liu, Willi Meier, and Qingju Wang. Optimized inter-
polation attacks on LowMC. In Advance in Cryptology - ASIACRYPT
2015, Springer, 535-560.

National Conferences:

1. Glenn De Witte, Tomer Ashur, and Yunwen Liu. An automated tool
for rotational-XOR cryptanalysis of ARX-based primitives. In 38th
Symposium on Information Theory in the Benelux (2017).

Manuscripts:

1. Bing Sun, Yunwen Liu, Guoqiang Liu, Chao Li and Shaojing Fu. The
phantom of differential characteristics.

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF ELECTRICAL ENGINEERING

ESAT - COSIC
Kasteelpark Arenberg 10 - bus 2452

B-3001 Leuven
yunwen.liu@esat.kuleuven.be

https://www.esat.kuleuven.be/cosic/

	Abstract
	Beknopte samenvatting
	Abbreviations
	List of Symbols
	Contents
	List of Figures
	List of Tables
	Introduction
	Modern Cryptography
	Symmetric-key Primitives
	Block Ciphers
	Stream Ciphers
	Hash Functions
	MAC Algorithms
	Permutation-based Primitives
	Lightweight Symmetric Cryptography

	Cryptanalytic Techniques
	Models of Cryptanalysis
	The Toolbox of a Cryptanalyst
	Provable Resistance Against Certain Attacks

	Thesis Outline

	Automatic Search Techniques on ARX
	ARX Primitives
	SPECK Family of Block Ciphers

	Previous Cryptanalytic Techniques
	Differential Cryptanalysis
	Linear Cryptanalysis
	Variants of Differential and Linear Cryptanalysis
	Rotational Cryptanalysis

	Rotational-XOR Cryptanalysis
	Rotational-XOR Difference
	Theoretical Propagation of RX-difference
	An Example in SPECK32/64

	A General Framework for Automatic Search on ARX Primitives
	A General Model for Automatic Search
	State-of-the-art Search Engines
	Search Strategy
	A Fully Automated Tool ARXPY

	Applications to the SPECK Family
	Automatic Search in Linear Cryptanalysis
	Automatic Search for RX-characteristics

	Conclusion

	Optimised Interpolation Attacks on LowMC
	Motivation
	Higher-Order Differential Cryptanalysis and Interpolation Attacks
	Description of LowMC
	A Basic 9-Round Attack on LowMC-80
	The Higher-Order Differential Property
	Bounding the Number of Variables
	Obtaining the Data
	The Basic Interpolation Attack

	The Optimised Interpolation Attack
	Transformation of Variables
	Applications to LowMC-80

	Conclusions

	Observations on Invariant Subspace Attack
	Invariant Subspace Attack
	Linear properties of a nonlinear function
	Characterise Subspace Propagations in the S-box Layer

	Bounding the Invariant Subspaces
	AES-like* Ciphers
	Bounds on Invariant Subspace Attacks in AES-like*
	Countermeasures and Discussions

	Conclusions

	Nonlinear Diffusion Layers
	Motivation
	A General Definition of Branch Number
	A Nonlinear Function Based on the Kerdock Code
	Kerdock Codes
	Diffusion Function Based on K(4)

	A General Construction of Nonlinear Diffusion Functions Based on T-functions
	The Nonlinear Diffusion Functions and
	Diffusion Functions and

	Example Ciphers with a Nonlinear Diffusion Layer
	Nonlinear Diffusion Function
	Nonlinear Diffusion Function and

	Conclusions

	The Phantom of Differential Characteristics
	Motivation
	Basic Observation
	Singular Characteristic and Singular Cluster
	Singular Characteristic
	Singular Clusters

	Differential Properties of the AES
	Singular Characteristics of the AES
	Density of Singular Characteristics in the AES
	Singular Cluster in the AES

	A Tale of Two Perspectives
	Concluding Remarks

	Conclusion
	Mathematical Background
	Bibliography
	Curriculum Vitae

