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Abstract
For the last few decades, the persistent downscaling of the metal oxide

semiconductor field-effect transistor (MOSFET) has been the main reason for
the enormous increase in the computational performance of everyday electronics.
Currently, the fundamental 60 mV/decade subthreshold swing (SS) limits the
downscaling of the MOSFET supply voltage which in turn makes it difficult
to further downscale the dimensions, because the power density of integrated
circuits can not be kept constant or lowered. Of all novel solutions to replace the
MOSFET, the tunnel field-effect transistor (TFET) promises to surmount the SS
limitation, because of its inherent band-to-band tunneling (BTBT) mechanism
for carrier transport. However, there is a substantial discrepancy in theoretical
predictions and experimental results of TFET performance. In particular, the
latter exhibits a degraded SS and considers trap-assisted tunneling (TAT) as
one of the probable reasons for SS degradation. Simultaneously, the TAT
increases the unwanted stress-induced leakage current and gate-induced drain
leakage current in the MOSFET. Owing to such importance, the accurate
modeling of TAT in semiconductor devices is essential to assess the device
performance. We therefore present an approach towards an all-inclusive, fully
quantum-mechanical simulator of TAT in semiconductor devices.

In the first part of the thesis, we investigate the electric field effects on
the traps in semiconductors and oxides, with as aim to present the significance
of quantum effects in determining TAT and to justify the need for a quantum-
mechanical based TAT model. In particular, we determine the impact of high
electric field on the characteristic trap energy level. We find that the traps
in semiconductors exhibit a field-induced level shift and broadening at TFET-
relevant electric fields. We further find that the field-effects of traps in oxides
depend on the trap position, trap charge state, tunneling barrier type and
the host material parameters. We study the impact of electric field on the
TAT-relevant emission rates in semiconductors by including the field-induced
level shift and broadening in the existing semi-classical emission rate formalism.
To determine the implications of field-effects on the oxides emission rates, we
formulate a semi-classical based emission rate based on the standard Wenzel-
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Kramer-Brillouin approximation for the tunneling probability through a finite
barrier. We find that the field-induced quantum effects can increase the emission
rates of a semiconductor trap level at high electric field, while the impact for
the oxide traps is much smaller due to the higher effective mass and barrier
heights.

Since the fundamental mechanism underlying TAT in a semiconductor
device is phonon-assisted tunneling (PAT), we present a formalism to calculate
the PAT current for bi-dimensional semiconductor devices. We formulate the
PAT current equation by revising an existing approach of calculating Zener
tunneling in indirect-bandgap devices. We apply a quantum transmitting
boundary method approximation and calculate the electron-phonon coupling
(EPC) strength for homostructure and heterostructure devices, while using the
envelope function approximation of electron wavefunctions. To allow for a faster
calculation of PAT current, we use the physics based lattice approach and apply
the low phonon wavevector approximation to eliminate the basis functions in
the overlap integrals of the EPC strengths.

To allow for simulations of the PAT current in homostructure III-V devices,
we implement the PAT current formalism in an existing direct-BTBT simulator
(Pharos) and study the PAT in In0.53Ga0.47As p-n diodes with a 2 and 15-band
implementation of the formalism. We find that there is a limited difference for
the calculated PAT current densities between the 2 and 15-band model of our
formalism. We discover that the electron-phonon coupling strength is inefficient
across the tunneling junction due to the phase-shift between the envelope
functions injected from bands corresponding to basis function with different
parity. We find that the PAT current densities depend on the minimum allowed
phonon wavevector and on the device length along the transport direction
because of the PAT contributions in the near-tunneling regions. We also find
that the combined effects of the near-tunneling region length and the effective
tunneling-energy interval determine the observed doping dependence of the
PAT current density. Finally, we present the future framework to calculate
multiphonon assisted tunneling to enable the accurate predictions of TAT
currents in semiconductor devices.



Beknopte samenvatting
De aanhoudende schaling van de metaal-oxide-halfgeleider-

veldeffecttransistor (MOSFET) is de laatste decennia de belangrijkste reden
geweest voor de enorme toename van de computationele prestaties van
alledaagse elektronica. Op dit moment beperkt de fundamentele 60mV/decade
subthreshold swing (SS) de verlaging van de MOSFET voedingsspanning, wat
het op zijn beurt moeilijk maakt om de dimensies verder te verkleinen omdat
de vermogensdichtheid van geïntegreerde circuits niet kan worden constant
gehouden of verlaagd. Van alle nieuwe oplossingen om de MOSFET te vervangen,
belooft de tunnel-veldeffecttransistor (TFET) de SS-beperking te overwinnen,
vanwege het inherente band-tot-band tunneling (BTBT) mechanisme voor
ladingsdrager transport. Er is echter een aanzienlijke discrepantie tussen
theoretische voorspellingen en experimentele resultaten van TFET prestaties.
In het bijzonder vertoont de laatste een gedegradeerde SS en defect-geassisteerd
tunnelen (TAT) wordt als een van de meest waarschijnlijke redenen voor SS
degradatie beschouwd. Tegelijkertijd verhoogt TAT de ongewenste stress-
geïnduceerde lekstroom en gate-geïnduceerde drain lekstroom in de MOSFET.
Vanwege dit belang is het nauwkeurig modelleren van TAT in halfgeleider
componenten essentieel voor het beoordelen van de prestaties van de component.
We presenteren daarom een eerste stap naar een allesomvattende, volledig
kwantummechanische simulator van TAT in halfgeleider componenten.

In het eerste deel van het proefschrift onderzoeken we de elektrische
veldeffecten op defecten in halfgeleiders en oxides, met als doel de impact
van kwantumeffecten te presenteren bij het bepalen van TAT en om de
noodzaak van een kwantummechanisch gebaseerd TAT-model te rechtvaardigen.
In het bijzonder bepalen we de impact van een hoog elektrisch veld op
het karakteristieke defect-energieniveau. We merken dat de defecten in
halfgeleiders een veldgeïnduceerde niveauverschuiving en verbreding vertonen
bij voor TFET relevante elektrische velden. We vinden verder dat de
veldeffecten van defecten in oxides afhankelijk zijn van de defect positie,
defect ladingstoestand, tunnelingbarrière en de parameters van het halfgeleider
materiaal. We bestuderen de impact van het elektrisch veld op de
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TAT-relevante emissiesnelheden in halfgeleiders door de veldgeïnduceerde
niveauverschuiving en verbreding in het bestaande semiklassieke emissiesnelheid
formalisme op te nemen. Om de implicaties van veldeffecten op de oxide
emissiesnelheden te bepalen, formuleren we een semiklassiek gebaseerde
emissiesnelheid op basis van de standaard Wenzel-Kramer-Brillouinbenadering
voor de tunnelwaarschijnlijkheid door een eindige barrière. We constateren dat
de veldgeïnduceerde quantumeffecten de emissiesnelheden van een halfgeleider
defect niveau bij een hoog elektrisch veld kunnen verhogen, terwijl de impact
voor de oxide defecten veel kleiner is vanwege de hogere effectieve massa en
barrièrehoogtes.

Aangezien het fundamentele mechanisme dat ten grondslag ligt aan
TAT in een halfgeleider component fonon-geassisteerde tunneling (PAT) is,
presenteren we een veralgemeend formalisme om de PAT-stroom voor bi-
dimensionale halfgeleider componenten te berekenen. We formuleren de PAT-
stroomvergelijking door een bestaand formalisme voor het berekenen van
Zener-tunneling in indirecte-bandgap-componenten te herzien. We passen
een quantum-transmitterende grensmethodebenadering toe en berekenen de
elektron-fononkoppeling(EPC) sterkte voor homostructuur en heterostructuur
componenten, terwijl de enveloppe functie benadering voor elektronengolffunc-
ties wordt gebruikt. Om een snellere berekening van de PAT-stroom mogelijk te
maken, gebruiken we de op fysica gebaseerde rooster benadering en passen we de
lage fonon golfvectorbenadering toe om de basisfuncties in de overlap-integralen
van de EPC-sterktes te elimineren.

Om simulaties van de PAT-stroom in homostructuur III-V-componenten
mogelijk te maken, implementeren we het PAT-stroom formalisme in een
bestaande directe BTBT-simulator (Pharos) en bestuderen we de PAT in
In0.53Ga0.47As pn-diodes met een 2- en 15-band implementatie van het
formalisme. We vinden dat er een beperkt verschil is voor de berekende
PAT-stroomdichtheden tussen het 2- en 15-banden model van ons formalisme.
We ontdekken dat de elektronen-fononkoppeling sterkte inefficiënt is over de
tunneling-junctie als gevolg van de faseverschuiving tussen de enveloppe functies
die worden geïnjecteerd uit banden die overeenkomen met basisfunctie met
verschillende pariteit. We vinden dat de PAT-stroomdichtheden afhankelijk
zijn van de minimaal toegestane fonon-golfvector en van de lengte van de
component langs de transportrichting vanwege de PAT-bijdragen in de nabij-
tunnelinggebieden. We vinden ook dat de gecombineerde effecten van de lengte
van het nabije tunnelinggebied en het effectieve tunneling-energie-interval de
waargenomen doperingsafhankelijkheid van de PAT-stroomdichtheid bepalen.
Ten slotte presenteren we het toekomstige raamwerk voor het berekenen van
door meerdere fotonen ondersteunde tunneling om de voorspellingen van TAT-
stromen in halfgeleider componenten mogelijk te maken.
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Chapter 1

Introduction

The first technical use of a semiconductor copper-oxide as a rectifier in
1926 by Grondahl and in photocells by Lang in 1932, marked the beginning
of the exploration of semiconductors [1]. The quest for a solid-state-based
electronic switching element to replace vacuum tubes initiated the research
of elemental Silicon and Germanium semiconductors, which turned out to be
decisive for the development of semiconductor devices. Some highlights were the
discovery of the p-n junction in 1939 by Russell Ohl [1] followed by the invention
of the Germanium-based bipolar transistor in 1947 by W.Shockley [2, 3] and the
realization of the Silicon-based metal oxide field effect transistor (MOSFET) in
1964 by Fairchild and RCA [4]. Meanwhile, the advent of Integrated Circuits (IC)
by Jack Kilby and Robert Noyce (1958-1959) laid the foundation for the creation
of microprocessors and supported the substantial growth of semiconductor
industry.

Apart from the efficient processing of an IC, the scaling down of MOSFETs
in size and the subsequent increase in transistor density on a chip while improving
power efficiency and speed, positioned MOSFETs as the dominant electronic
switching technology over the last four decades. Therefore, we start by briefly
discussing the working principle and scaling challenges of MOSFETs followed
by exploring a novel device, the Tunnel Field-Effect Transistor (TFET) and
the parasitics limiting the optimum TFET performance. Since trap-assisted
tunneling (TAT) is seen as one of the many reasons for TFET performance
degradation, an extensive discussion of TAT is presented. Finally, the objective
of this thesis is defined.

1
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Figure 1.1: Schematic representations of (a) an n-MOSFET, in which orange
and green colors show n-type and p-type semiconductors, respectively. (b)
Fermi-Dirac statistics at the source region, (c) Band diagram at the indicated
cross-section z − z′ of Fig. 1.1(a) and in steps from OFF-to-ON state, (d) the
transfer-characteristics of the n-MOSFET. The dual-rounded orange arrows
show the I − V data points corresponding to high energy Fermi-tails, preventing
the abrupt switching of the transistor.

1.1 MOSFET and scaling limitation

Gordon Moore noted in 1965 that the scaling down of MOSFETs lead to
the doubling of the number of transistors on a chip every year, which became
Moore’s law [5]. However, the failure to follow the criteria of constant field
scaling resulted in the modification of Moore’s law, which suggested the doubling
of transistor density on a chip every two years [6]. According to Dennard, to
enforce the constant field scaling, the scaling of voltage is necessary by the
same factor used for the scaling of the device dimensions [7]. However, the
scaling down of gate voltage requires the scaling of threshold voltage (Vth),
to maintain constant overdrive voltages. Consequently, assuming an ideally
scaled on-current, this increases the static power dissipation of a transistor due
to the exponential increase of subthreshold currents as the threshold voltage
decreases [8, 9]. Moreover, the leakage currents associated with tunneling
through the gate dielectric, which are more pronounced for smaller devices due
to reduced dielectric thickness, resulted in severe static power dissipation and
self-heating problems. It further limited the scaling of the threshold voltage
and, in turn, of the operating voltage [7].
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A better understanding of the scaling restrictions is attained by
investigating the characteristics of an ideal MOSFET at room temperature,
which is illustrated graphically in Fig. (1.1). In an ideal MOSFET (Fig. (1.1)
(a)), the gate efficiently controls the electrostatic potential in the channel, since
there are no presumed trap states present at the oxide substrate interface.
In the subthreshold region of the transfer characteristics (Fig. (1.1) (d)), the
gate-controlled channel barrier (Fig. (1.1) (c)) is large, limiting the entering
of source region electrons into the channel. The electrons and holes in the
source region obey Fermi-Dirac statistics (Fig. (1.1) (b)), and therefore have a
non-zero occupational probability for electrons in high energy states (thermionic
tails). The electrons in these states can surmount the channel-barrier which
results in appreciable diffusion currents in the subthreshold operation of the
MOSFET. The process of such thermionic emission is characterized by a well
known Subthreshold Swing (SS) parameter given by [8]

SS =
(
ln(10)kBT (Cox + Cdep)

eqCox

)
(1.1)

where Cdep stands for the depletion layer capacitance per unit area, Cox is the
oxide capacitance, eq is the elementary charge, kB is the Boltzmann constant
and T is the temperature. For an ideal MOSFET, the SS approximately equals
ln(10)kBT/eq and at room temperature (T = 300K), this is 60mV/dec. This is
the fundamental limit of SS for an ideal MOSFET, and it implies a minimum of
0.3V of threshold voltage to attain five orders of magnitude for the ION/IOFF
ratio. For gate voltages greater than the threshold voltage, a strong inversion
layer of electrons is created in the channel (Fig. (1.1)c). As a result, the electrons
can drift towards the drain.

1.2 TFET: A promising low-power device

In order to overcome the fundamental limit of the MOSFET, a novel device
is needed based on either new materials or unconventional switching mechanisms.
The potential devices which can replace or complement the MOSFET are
classified into three categories [10]. The first category of devices deals either
with improving the gate control over the channel electrostatics (nanowires,
FinFETs) or with enhancing the field dependent transport properties of the
channel material (high mobility III-V and SiGe). The second category is based
on novel techniques to introduce and control charge carriers in the channels, such
as negative-capacitance and Nano-Electro-Mechanical Field-Effect Transistor
(NEMFET) devices. The last category of novel devices are non-charge based
devices which use electron-spin states as the variables (Spintronics). Of all
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Figure 1.2: Schematic illustrations of (a) an n-TFET, in which orange, grey
and green colors show n-type, intrinsic and p-type semiconductors, respectively.
(b) Fermi-Dirac statistics at the source region, (c) Band diagram at the indicated
cross-section z − z′ of Fig. 1.2(a) and in steps from OFF-to-ON state, (d) the
transfer-characteristics of the n-MOSFET (dash-orange) and n-TFET (blue).
The dual-rounded orange arrows represent the I − V data points corresponding
to high energy Fermi-tails. The transfer-characteristics of an n-MOSFET
(dash-orange) is shown for comparison with the n-TFET.

these categories, TFET is considered as one of the Steep-Subthreshold Swing
(Steep-SS) devices using novel transport mechanism, which could theoretically
allow to achieve sub-60mV/dec SS. It is seen as the most promising alternative
for the MOSFET for low power applications, as it can easily be integrated in
the existing CMOS technology to fabricate the devices.

In TFETs, the transport of charge carriers is determined by transmission
through a classically forbidden bandgap region, specifically by a quantum
mechanical (QM) phenomenon called Band-to-Band tunneling (BTBT) [11].
Historically, the Esaki-tunnel diode was the first device demonstrating BTBT
as the transport mechanism [12]. The working principle of the TFET and
the possibility to overcome the fundamental SS-limit of the MOSFET are
schematically shown in Fig. (1.2)(a)-(d). The major difference between TFET
and MOSFET is that BTBT in TFET mostly determines the transport of the
charge carriers, whereas the transport in MOSFET is determined by the classical
drift-diffusion of charge carriers along the channel. The structure of a n-type
TFET is graphically shown in Fig. (1.2)(a), in which the source is degenerate
p-type, the channel is lowly doped intrinsic and the drain is highly doped n-type
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semiconductor. The electrons in the source region obey Fermi-Dirac statistics
Fig. (1.2)(b), where the probability of finding an electron in the high energy
states is non-zero. However, for the TFET subthreshold gate voltages, these
high energy states are filtered by the effective bandgap of the intrinsic channel
Fig. (1.2)(c). Subsequently, negligible currents are observed in the transfer
characteristics Fig. (1.2)(d) and the device is still in the OFF-state. When
the gate voltage is higher than a certain onset voltage, the valence and the
conduction band overlap and a steep onset is expected (blue line in Fig. (1.2)(d))
in the transfer characteristics which can attain sub-60mV/dec SS as compared
to MOSFET (orange dashed line in Fig. (1.2)(d)).

1.3 Parasitics limiting the TFET performance

As the transport mechanism is determined by BTBT, the on-currents ION
in TFETs are low compared to MOSFET, particularly for silicon TFETs due to
the large effective indirect-bandgap [13]. This resulted in an ongoing extensive
research in pursuit of alternative device structures and materials to boost the
low ION currents [14, 15]. For instance, a line-TFET configuration is proposed
for group-IV semiconductors, which is different from the conventional TFET
(also known as point TFET) in its structure that the tunneling is oriented
orthogonal to the gate [16, 17]. Another example for group-IV semiconductors
is the introduction of localized doping “pocket” regions to boost ION or to
reduce the impact of field-induced quantum confinement [18, 19]. Additionally,
recent advances predicted substantial improvement in both steep onset and
ION current by using heterostructure configurations of direct-bandgap III-V
materials [20].

However, the theoretical predictions tend to provide promising TFET
performance while experimentally obtained results tend to fall short [21]. One
reason for such discrepancy is the overlooking of parasitic effects in theoretical
calculations. These parasitics can considerably impact the SS and ION of
TFETs. Some of the parasitics detrimental for TFET performance are phonon-
assisted tunneling (PAT) [22], trap-assisted tunneling (TAT) [23, 24, 25, 26],
heavy doping induced band tail effects [27], Auger recombination [28], the
adverse effects from the traps at the semiconductor-oxide interface and surface
roughness [29]. One such parasitic effect is graphically described in Fig. (1.3)(a)-
(c), where a trap (red dot) is indicated near the tunneling junction. A comparison
is made between the On-state and Off-state TFET electrostatics in Fig. (1.3)(b).
In the Off-state, an electron can gain sufficient energy from the heat bath and
can advance through the indicated trap into the conduction band, as opposed to
non-existent direct tunneling transmission. This transition through a trap state
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Figure 1.3: Schematic diagrams of (a) n-TFET, in which orange, grey and
green colors show n-type, intrinsic and p-type semiconductors, respectively. (b)
Band diagram at the indicated cross-section z − z′ of Fig. 1.3(a) illustrating a
TAT process, where the blue and red lines correspondingly represent the ON-
and OFF-state of the TFET. (c) the transfer I − V characteristics showing the
qualitative impact of TAT on SS-degradation.

is known as the trap-assisted tunneling (TAT) mechanism. Consequently, the
combinations of all such transitions can add up to the transfer characteristics
in the form of leakage currents and thereby deteriorating TFET performance
(SS degradation).

1.4 Literature review of trap-assisted tunneling in
semiconductor devices

The initial step in pursuit of adding non-idealities to TFETs is to identify
and understand the dominant mechanism responsible for the observed SS-
degradation. In experimental TFETs, the trap assisted tunneling is observed
as one of the most probable reasons for SS-degradation [30]. Apart from the
standard thermionic and BTBT currents, the leakage currents associated with
the TAT process are found as temperature dependent in the subthreshold
voltage range of TFET [30]. In fact, the TAT current is first observed as an
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Figure 1.4: Schematic diagrams of (a) n-MOSFET, in which orange and
green colors show n-type and p-type semiconductors, respectively. (b) Band
diagram at the indicated cross-section x− x′ of Fig. 1.4(a) illustrating the TAT
impact on GIDL, where the red arrows represent the additional contribution of
the TAT, (c) the transfer characteristics at high VDS showing qualitatively the
increase in OFF-state leakage currents due to the impact of TAT on GIDL. (d)
Band diagram at the indicated cross-section x1 − x′1 of Fig. (1.4)(a) describing
the effect of the TAT process on SILC, where DT refers to ballistic tunneling
process. (e) Band diagram at the indicated cross-section x2−x′2 of Fig. (1.4)(a)
describing the impact of the TAT process on the drain-substrate tunneling.

excess current during the forward-bias characteristics of a P-N tunnel diode
(Esaki) [31, 32]. The excess currents calculated for these diodes without the
inclusion of intermediate states (the trap states near the space charge region),
are found as negligible compared to the experimentally observed currents, even
though the currents are taken into account due to the interactions of an electron
with photons, phonons, electrons and the Auger recombination [33]. However,
the calculations with the trap states are found in good agreement with the
experiments, thereby leading to the advent of TAT theory [34].
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After a prolonged disinterest in tunnel diode leakage currents [35, 36], the
recent progress in the scaling of CMOS devices has revived and promoted the
interest in the TAT phenomena. In MOSFETs, the TAT increases the ballistic
tunneling based gate induced drain leakage (GIDL) [37] currents in MOSFETs,
as it provides an additional transmission across the drain-tunneling region.
Therefore, the TAT in MOSFETs is responsible for the increase in OFF-state
currents. Moreover, the TAT process is seen as the most probable reason for the
generation of stress-induced leakage currents (SILC) [38] compared to ballistic
tunneling based SILC for the moderately thick gate dielectric MOSFETs,
whereas the ballistic tunneling process is observed as dominant over TAT
for SILC in ultra-thin gate dielectric MOSFETs (<3nm oxide thickness) [38].
Fig. (1.4) graphically illustrates the impact of TAT on GIDL and the resultant
increase in Off-state leakage currents at high VDS. Moreover, Fig. (1.4) illustrates
the impact of TAT on SILC and across substrate-drain tunneling region, whereby
TAT can correspondingly increase the gate and drain leakage currents. On top
of that, the impact of high oxide electric fields (upon aggressive scaling) and
the elevated temperatures (due to compact device integration) on the MOSFET
characteristics, particularly a shift in the threshold voltage and a change in SS,
is partially assumed to be due to the TAT process in the form of capture of
either a conduction or valence band electron into an oxide trap state through
an interface trap [34, 39].

Moreover, the strong temperature dependence of TAT, observed in the
reverse bias of trap limited diodes suggests a phonon-assisted TAT process[40].
In these diodes, reducing the temperature decreases the current by orders of
magnitude, thereby suppressing the thermal part of the TAT process. Owing to
such significance of TAT in semiconductor devices, the next section is devoted
to a theoretical description and the limitations of the existing approaches to
model the TAT process.

1.5 Modeling perspective of TAT

Over the years, numerous approaches have been proposed to describe
the TAT process in a semiconductor device. The differences among these
approaches is based on the methods to describe the underlying fundamental
mechanisms of TAT such as the ballistic tunneling and thermal transitions
of charge carriers into/from a trap state. An accurate description of these
fundamental mechanisms and the associated sub-processes would manifest
a good TAT model. Although the ballistic tunneling mechanism is similar
among these models, it is described either by a semi-classical or a quantum
mechanical method. Additionally, there exists a discrepancy in describing
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Figure 1.5: Graphical illustrations of (a) n-TFET, in which orange, grey and
green colors show n-type, intrinsic and p-type semiconductors, respectively. The
trap is presented as a circle at the source junction. (b) Band diagram with a
trap state at the indicated cross-section z − z′ of Fig. 1.5(a), with a focused
region representing, (c) two ballistic-trap tunneling transitions, (d) ballistic
tunneling followed by phonon-assisted tunneling, (e) phonon-assisted tunneling
followed by ballistic tunneling, (f) phonon-assisted tunneling and phonon-assisted
tunneling, (g) NMP-based recombination, followed by ballistic tunneling and
(h)SRH-generation, from the valence band to the conduction band via a trap
state.

the thermal part of the TAT process among these models. In particular, the
thermal transition of TAT is mostly described either by a thermally-excited
tunneling [40], phonon-assisted tunneling [26] or non-radiative multiphonon
(NMP) based recombination [41, 42].

The sub-processes associated with the ballistic and phonon-assisted
tunneling via trap states, which exemplify the possible transitions required to
be included in the accurate formulation of a TAT model, are graphically shown
for a TFET in Fig. (1.5)(c)-(h). Assuming that the charge state of trap is
neutral (also applicable for acceptor-type trap), the first sub-process of ballistic
tunneling from the valence band state to a conduction band state via a trap
(Fig. (1.5)(c)), also known as the ballistic-trap tunneling transition, is similar
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to the resonant tunneling mechanism. However, the ballistic-trap tunneling
transition cannot explain the temperature dependence in the subthreshold region
of direct-bandgap TFETs as there are no thermal excitations involved in this
process. The second sub-process of ballistic tunneling to a trap state (capture)
followed by a phonon-assisted tunneling transition (emission) is presented in
Fig. (1.5)(d), whereas the third sub-process (Fig. (1.5)(e)) is the result of
phonon-assisted tunneling of an electron from the valence band state into a
trap state (capture) followed by ballistic tunneling into a conduction band
state (emission). The fourth sub-process is the phonon-assisted tunneling of
an electron from the valence band to the conduction band via a trap state
(see Fig. (1.5)(f)). The fifth sub-process is different in a particular way: the
electron capture in a trap state is a combination of two sub-processes, specifically,
ballistic tunneling (capture) to a trap state which is in the excited state of
the vibrational subsystem and the subsequent lattice relaxation (also known
as structural relaxation) upon an electron capture [41, 42]. In particular, the
electron capture requires readjustment of the bonding of the lattice ions with
their nearest neighbor ions such that the lattice site is polarized in the vicinity
of the captured electron. During the electron capture, the trap is assumed
not to change position yet. Next, during the subsequent lattice relaxation, the
new equilibrium position of the trap is reached with the simultaneous emission
of multiple phonons (Fig. (1.5)(g)). In this particular recombination process,
which is based on non-radiative multiphonon (NMP) theory and also known as
Lattice Relaxation Multiphonon Emission (LRME) [43], the ballistic tunneling
and the thermal transitions are coupled such that the capture process of TAT
is mediated by multiphonon emission due to the structural relaxation upon
an electron capture into the trap state. One of such transition together with
the ballistic tunneling (emission process of TAT) from the trap is illustrated
in Fig. (1.5)(g). Note that the emission process of lattice relaxation based
TAT (emission of a trapped electron into the conduction band) can also be
mediated by multiphonon absorption, which is not shown in Fig. (1.5), such
that the trap is thermally excited to one of the high energy states of the
vibrational subsystem prior to the emission process [41]. The final sub-process
of Fig. (1.5)(h) is a standard Shockley-Read-Hall (SRH) generation in which an
electron is thermally excited from a valence band state to a trap-state followed
by its thermal excitation (emission) into a conduction band state. The SRH
based leakage currents can easily be dominant in a tunnel diode, if there is a
sufficiently large trap concentration [44].

Based on the possible TAT sub-processes in Fig. (1.5)(c)-(h), the existing
modeling approaches of TAT can be generally classified into two categories,
namely thermally-assisted tunneling models [40, 26, 45] and structural relaxation
based models [41, 42]. The first four TAT sub-processes (Fig. (1.5)(c)-(f))
are included in the thermally-assisted tunneling models, such as Hurkx’s
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TAT [40] and Non-Equilibrium Green’s Function (NEGF) based phonon-assisted
tunneling [26, 45] models (as will be discussed in Section 1.5.1), in which the
ballistic trap transition (Fig. (1.5)(c)) is intrinsically involved, making these
models complete. However, Schenk’s structural relaxation based TAT [41]
and the extended-NMP (eNMP) [42] models (as discussed in Section 1.5.2)
are formulated based on the fifth TAT sub-process (Fig. (1.5)(g)), which does
not account for phonon-assisted tunneling of carriers into/out of a trap state
(Fig. (1.5)(d)-(f)). Although good experimental agreement has been achieved
for specific semiconductor structures, a better understanding of these models
is essential to address their limitations. In the next subsections, we therefore
discuss these models in detail and explain the limitation of these models.

1.5.1 Thermally-assisted tunneling models

In this section, we discuss the first category of TAT models described by
the combination of direct tunneling and thermally-assisted transitions of charge
carriers into (or from) the trap states. In particular, we begin the discussion
with the semi-classical TAT model of Hurkx followed by the quantum mechanical
NEGF based phonon-assisted tunneling approach.

Hurkx’s TAT model

The underlying mechanism in Hurkx’s TAT model is based on the
combination of ballistic tunneling and the thermally-excited transitions (in
energy steps of kBT ) of charge carriers from the trap into either conduction
or valence band. The ballistic tunneling part of TAT is included through
the calculation of the carrier densities in the trap region whereas the thermal
transitions are manifested in the form of electric field enhanced emission rates
of trapped (captured) carriers into the conduction or valence bands.

In more detail, in this statistical based phenomenological model, TAT is
calculated as the net recombination rate determined by the detailed balance
between the net capture rate of the holes and that of electrons, which is governed
by the expression [40]:

RTAT = NT
cpF cnFntpt − enF epF

cnFnt + cpF pt + enF + epF
(1.2)

where NT refers to the trap density, nt and pt are the captured electron and
hole densities in the trap (across the depletion region) with the field-dependent
capture rates cnF and cpF , respectively. Similarly, enF and epF are the electron
and hole emission rates. The total carrier densities inside the trap or in the
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conduction band at the trap location xt in Eq. (1.2) are determined by solving
the 1D-Schrödinger equation, while assuming a homogeneous electric field across
the tunneling junction, with an analytical Airy solution and are given by [46]

nt(xt) =

n(xt) +
xt∫

0

dxi
(
−dn(xt)

dxt

)∣∣∣∣
xt=xi

Ai2((2eqFm∗e/~2)1/3(xt − xi))
Ai2(0)


(1.3)

where n(xt) is the conventional electron density in the conduction band, xi is
the starting (or ending) position of a tunnel path from the conduction band
through a triangular electrostatic potential and ending at the trap location xt,
~ is the reduced Planck constant, F is the electric field strength and m∗e is the
electron effective mass and the lower limit of the integral (“0”) is the left-most
allowed onset of a tunnel path into the trap. Note that the second term in
Eq. (1.3) refers to the ballistic tunneling contribution of TAT. The electric
field enhanced emission rate (representing thermally-excited transitions) is also
determined by solving the 1D-Schrödinger equation for an electron subjected to
a triangular electrostatic potential, which is obtained with either an analytical
solution (in the form of Airy functions [40]) or a solution based on the Wenzel-
Kramer-Brillouin (WKB) approximation [47]. Such field enhanced emission
rate is given by [40]

enF
en0

=

1 + 1
kBT

Ei∫
0

dξ exp
(

ξ

kBT

)
Ai2((√2m∗e/eq~F )2/3ξ)

Ai2(0)

 (1.4)

where en0 is the zero-field emission rate and Ei is energetic difference between
the measured zero-field trap level (Et) and the conduction band minimum
(which is determined from the thermal ionization of the trap). Moreover, the
capture rates are determined by the detailed balance equation, which states
that each capture process is balanced by its reverse emission process, and are
related to emission rates by [44]:

enF (E)
cnF (E) = cpF (E)

epF (E) = exp
(
Et − E
kBT

)
(1.5)

Due to the similar form of expressions for the carrier densities (Eq. (1.3))
and emission rates (Eq. (1.4)), the field enhancement for these quantities are
related by a common factor, which further simplifies the net recombination
rates for TAT (Eq. (1.2)).

Since the trapped carrier densities, the capture and the emission rates are
formulated for a triangular electrostatic barrier, the TAT rates determined with
Hurkx’s model are inaccurate when there is an electron capture process into
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the trap from the valence band or a hole capture process into the trap from the
conduction band, because the charge carriers in this case are subjected to a
trapezoidal electrostatic potential and the Eqs. (1.3) and (1.4) must accordingly
be modified to account for this potential. Note that the structural (lattice)
relaxation upon either the capture or emission of charge carriers into the trap
state is not considered in this model.

NEGF based phonon-assisted tunneling approach

The inevitable limitations of semi-classical models in determining the
exact description of TAT lead to the development of quantum-mechanical based
numerical methods [26, 45]. One such method is based on solving the 3D
Schrödinger equation using an 8-band k.p electron basis and Non-Equilibrium
Green’s Functions (NEGF) [26]. A 1nm3 cubic trap potential is arbitrarily added
to the device electrostatics, specifically at an oxide-semiconductor interface. The
acoustic and optical phonon scattering are included in the form of self-energies
and the Schrödinger equation is solved in the framework of the self-consistent
Born approximation (SCBA) [48], thereby resulting in the local-density of energy
states (LDOS) for a given trap configuration. The phonon-assisted tunneling
through these LDOS at low gate voltages can then explain the observed SS-
degradation, in a regime where there is no tunneling window for direct-BTBT.
To complete the study, the spatial and energetic depths of the trap are varied
to determine the impact on the SS-degradation of a theoretical InAs-based
TFET [26].

Although most of the aspects of TAT are considered in this approach
(Fig. (1.5)(c)-(f)), it lacks in accounting for the structural relaxation
(Fig. (1.5)(g)) which is still required to comply with an experimental device
configuration. Note that since the model is based on SCBA, it typically demands
an enormous amount of computational resources.

1.5.2 Structural relaxation based TAT models

Initially, the experimentally observed large capture cross sections of a
shallow impurity level lead to the theory of cascade-phonon emission, whereby
a carrier is captured through ballistic tunneling into an electronically excited
state and loses energy by cascading down the ladder in steps of the energetic
distance between the excited levels to the ground state [49]. However, multi-
transitions among non-uniformly spaced excited levels require the separation
between the excited levels to be less than the phonon energy. This therefore
implies an improbable single phonon transition from the first excited state to
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the ground state and this transition requires instead a multiphonon process
due to its energetic separation larger than the single phonon energy. These
restrictions however could not explain the large cross sections measured at
room temperatures [49]. Note that the cascade-phonon emission is defined as a
reversible process, whereby the release of captured carriers is characterized by
multi-absorption of single phonon energies.

Meanwhile, the NMP theory is also being developed to explain the
experimentally observed large capture cross sections of a deep trap state in III-V
semiconductors under zero-field conditions [50]. The large cross sections of a trap
measured by Deep Level Transient Spectroscopy (DLTS) are found in agreement
with the calculations made with NMP theory [41]. Due to such agreement
with experimental results, TAT models based on multiphonon recombination
processes are formulated, which are fundamentally based on the NMP theory [51].
The major distinction between the cascade-phonon and NMP theory is that
the former is based on ballistic tunneling and multi-transitions (with single
phonon emission or absorption) for capture or release of the carriers through
the different energy levels of a trap, whereas the latter accounts for ballistic
tunneling and an intrinsic single thermal transition (with multiphonon emission
or absorption) because of structural (lattice) relaxation upon the capture (or
release) of carriers into (or from) the trap state. Owing to the importance of
NMP theory, the underlying fundamental microscopic processes (multiphonon
assisted transitions and structural relaxation) are detailed in the Appendix
A. The different approaches to apply NMP theory to model TAT are briefly
discussed in the next subsections.

NMP recombination model (Andreas Schenk)

Since the multiphonon recombination model by Schenk [41] accounts for
an inhomogeneous electric field across the tunneling junction during a TAT
process, it is the most widely used model to describe TAT in semiconductor
devices. The microscopic process defining Schenk’s TAT recombination model
is the combination of an NMP process [51] and the theory of Bloch electrons
under large electric fields [52]. In general, the trap-assisted transition rate
is derived by using the following Fermi’s Golden rule with electric field and
electron-phonon interactions as the transition inducing operators:

wif = 2π
~
∑
n,n′

∑
λ,λ′

pλ

∣∣∣〈Φ(1)
n,λψ

(0)
n

∣∣∣ [−eqF.r + Vel-ph]
∣∣∣ψ(0)
n′ Φ(1)

n′,λ′

〉∣∣∣2 δ(En,λ−En′,λ′)

(1.6)
where Vel−ph is the electron-phonon coupling potential, F is the electric field,
Φ(1)
n,λ is the first-order perturbed lattice vibrational function due to the electron-
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phonon interaction, ψ(0)
n′ is the stationary state eigenfunction of the one-electron

Hamiltonian, En,λ is the total energy of the system, n, λ represent the electron
and phonon quantum numbers corresponding to the electronic and vibrational
subsystems, pλ is the statistical weight of the initial lattice states and where
the summation of electronic states extends over initial occupied and final empty
states [53]. With the static approach (explained in Appendix A) of adiabatic
theory (Eqs. (A.1)-(A.15) of Appendix A), the coupled-transition matrix of
Eq. (1.6) is transformed into the (separate) product of electronic and vibrational
transition matrix elements [53].

As mentioned in Appendix A, the ballistic tunneling (electronic transition)
part of the NMP theory can be described by using the wavefunctions of the
electronic subsystem Eq. (A.14). Therefore, the stationary state electron-
Hamiltonian in Eq. (A.14) is described by including the terms corresponding to
the externally applied inhomogeneous electric field and the quasi-δ trap potential(
Vtr(r) = V 0

trδ(r) [1 + r∇r]
)
[53]. The electronic subsystem of Eq. (A.14) is then

transformed into[
H0 + V 0

trδ(r) [1 + r∇r]− eqF.r
]
ψ(0)
n (r) = E(0)

n ψ(0)
n (r) (1.7)

where H0 is the electron Hamiltonian for the bulk semiconductor, V 0
tr is the

zero-field trap potential strength with one bound state in the bandgap and
described in terms of the binding energy. The electronic wavefunctions are
expanded using envelope functions fk⊥

n (x) in the framework of Bloch theory,
while assuming a constant potential along the (y, z)-directions, orthogonal to
the electron transport in the x-direction. With the following definition for the
electronic wavefunctions in the framework of the 2-band (n = (c, v) in Eq. (1.7))
effective mass approximation (EMA) [52],

ψ(0)
c,v(r) =

√
2
Ω
∑

k

exp(ik⊥.r⊥)uc,v(r)fk⊥
c,v (x) (1.8)

where uc,v(r) are the Bloch functions corresponding to the conduction and
valence bands. The electronic subsystem of Eq. (1.7), after changing to spectral
coordinates, is simplified to [53]

[Ec(k− k0)− E + ieqF.∇k]Ak⊥
c (kx) = 0 (1.9)

[Ev(k)− E + ieqF.∇k]Ak⊥
t (kx) +

∑
k′

〈k|Vtr(r)
∣∣k′〉Ak′

⊥
t (k′x) = 0 (1.10)

Note that the trap potential is defined in the valence band part of the electron
Hamiltonian relative to its band maximum. Further note that k0 in Eq. (1.9)
is equated to zero for direct-bandgap materials. The spectral functions of
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Eqs. (1.9) and (1.10) are determined analytically, without the field-induced
effects on the trap-states (neglecting the electric field in Eq. (1.10)) [53]. Using
Eqs. (1.8)-(1.10), the initial and the final electronic states’ wavefunctions are
determined. The electronic transition matrix elements (ballistic tunneling part
of TAT) of an approximated form of Eq. (1.6) are then determined using the
initial and final electronic states’ wavefunctions and result in the field enhanced
density of band-states [53].

Now the electronic transition matrix elements are known, the next step is
to determine the vibrational transition matrix elements related to multiphonon
absorption or emission during structural relaxation, which are calculated using
Eq.(A.15) and the electronic wavefunctions (Eq.(1.8)) constructed with the
spectral functions of Eqs. (1.9) and (1.10). In order to make the calculation
of vibrational transition probabilities feasible with Eq. (A.15), the Einstein
model [54, 55] is applied for the vibrational subsystem, which neglects the
dispersion of the phonon and which considers only one effective local-mode
phonon energy (~ω0).

Additionally, a linear approximation (similar to Eq. (A.18)) of the electron-
phonon coupling is applied in Eq. (A.15) [54, 55], in which the electron-lattice
interactions are assumed to be linear in the displacement Q of the host atoms.
In second quantization, it is described by〈

ψ(0)
n

∣∣∣Vel-ph(r,Q)
∣∣∣ψ(0)
n

〉
= gnλ b̂

†
nb̂n

(
âλ + â†−λ

)
(1.11)

where gnλ represents the electron-phonon coupling strength, b̂†n, â
†
λ are

the single particle creation operators and b̂n, âλ are the single particle
annihilation operators for the electrons and phonons, respectively. With these
approximations, the vibrational transition matrix elements are solved in the
framework of first order time-dependent perturbation theory while using the
equation of motion for the lattice vibrations (Eq. (A.15)) and yields the following
characteristic line shape function (LSF) of phonons [55, 56], which describes
the frequency spread of a thermal transition process mediated by phonon (also
known as vibrational broadening),

Lsf (E) = 2π~ exp [−S (2υ(~ω0) + 1)]
+∞∑
p=−∞

(
υ(~ω0) + 1
υ(~ω0)

)p/2

× Ip
(

2S
√
υ (~ω0)(υ(~ω0) + 1)

)
δ(E + p~ω0) (1.12)
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and subsequently resulting in the following multiphonon transition probabil-
ity [41],

Mc,v(p) = (p∓ S)
S

exp [−S (2υ(~ω0) + 1)]

× exp
(
p~ω0

2kBT

)
Ip
(

2S
√
υ (~ω0)(υ(~ω0) + 1)

)
(1.13)

with the following definition for the Huang-Rhys factor S [54, 55]:

S~ω0 =
∑
f

∣∣gni − gnf ∣∣2 (1.14)

where gf and gi are the final and initial state’s electron-phonon coupling
strengths. In Eq. (1.12), υ(E) is the Bose-Einstein probability distribution
function for phonons and Ip is the modified-Bessel function of order p. Note
that there exists a line shape function for the phonon absorption process similar
to Eq. (1.12) which is included in the calculation of multiphonon transition
probability of Eq. (1.13). Moreover, the Huang-Rhys factor S in Eqs. (1.12)
and (1.13) acts as a measure of the difference in electron and phonon coupling
strengths between the initial and final system states and determines the lattice
relaxation energy. These lattice relaxation energies (S~ω0) are often assumed to
be smaller in semiconductors [57] than in the oxides [58]. Such assumption can
be attributed to the fact that traps in oxides exhibit greater lattice relaxation
(due to the amorphous nature of these materials) than in semiconductors, when
an electron is captured or emitted into/from the defect site [42].

With both the electronic and vibrational transition matrices, the final
solution of Eq. (1.6) results in the superposition of the field and temperature-
dependent trap-assisted transition rates, which is described in the terms of
spectral capture and emission rates. These spectral rates are manifested in terms
of carrier lifetimes, which in turn determine the SRH-based net recombination
rates of Eq. (1.2) [41]. The integration of these SRH recombination rates over
real-space results in TAT currents.

Extended-NMP (eNMP) recombination model (Wolfgang Gös)

In recent years, a recombination model based on an extended NMP theory
is able to successfully explain the essential features of Negative Bias Temperature
Instability (NBTI) degradation curves and is able to reproduce the experimental
findings of Time Dependent Defect Spectroscopy (TDDS) related to single
defects. Although this model is formulated based on the exchange of carriers
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between the substrate and oxide defects, which is different from a TAT process,
the underlying microscopic processes are identical to those of TAT. The emission
τe and capture τc time constants determined from this eNMP approach can be
applied in the following expression to determine TAT currents [59]:

JTAT = eq
tb∫

0

dx NT (x)
τc(x) + τe(x) (1.15)

where NT denotes the trap concentration and tb is the barrier thickness. The
electron capture and emission time constants of Eq. (1.15) in the eNMP approach
are defined as

1
τc(x) =

∞∫
Ec

dE cn(E)Dn(E)fFD(E)

∞∫
Ec

dE Dn(E)fFD(E)
n(x) (1.16)

1
τe(x) =

∞∫
Ec

dE en(E)Dn(E)fFD(E)

∞∫
Ec

dE Dn(E)fFD(E)
n(x) (1.17)

where Ec is the conduction band energy, cn is the electron capture rate, en is the
electron emission rate, Dn is the density of electronic states in the conduction
band, fFD is the Fermi-Dirac statistics for electrons and n(x) is the conventional
electron density in the conduction band. In the eNMP approach, the electron
capture and emission rates of Eqs. (1.16) and (1.17) are determined from

cn(E) = xtAyzrn,t(E)Ln,tsf (E) (1.18)

en(E) = xtAyzrt,n(E)Lt,nsf (E) (1.19)

where rn,t is the electronic transition rate from a band state to a trap state,
Ln,tsf is the corresponding line shape function (LSF) of multiphonon theory, xt is
the position of the trap with respect to the oxide-substrate interface and Ayz is
the planar area of the trap orthogonal to the transport of an electron. Similarly,
rt,n is the electronic transition rate from a trap state to a band state.

The interesting aspect of this model is the calculation of electronic
transition rates (related to the ballistic tunneling part of TAT), which is based
on the Fermi’s Golden rule in the framework of Bardeen’s approximation [60, 61].
This approximates the total system Hamiltonian as the linear combination of
independent and partial-system Hamiltonians. For instance, the system of a
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semiconductor substrate and an oxide, with the conduction band interacting
with an oxide defect is treated as a separate conduction band and an oxide
subsystem based on the assumption that both of these subsystems are weakly
coupled. In other words, the transmission probability of a band state electron
is negligible at the defect. In this approach, the electronic transition rates from
a band state to a trap state at a given energy, for one-dimensional systems,
are [62]

rn,t =
∑
n

2π
~
|Mn,t|2δ(Et − E(0)

n )

Mn,t = ~2

2m∗n

∫
dx
∫

dy

ψ∗t ∂ψ(0)
n

∂z

∣∣∣∣∣
z=zif

−
(
ψ(0)
n

)∗ ∂ψt
∂z

∣∣∣∣
z=zif

 (1.20)

where ψ(0)
n (r) and ψt(r) are stationary state band-state and δ-type trap state

wavefunctions, respectively, m∗n is the effective mass of band n and zif is
the position of the interface between oxide and substrate. Note that in the
calculation of the transition matrix Mn,t, the initial band-state and final-trap
state wavefunctions are the eigenfunctions of the two independent subsystems,
which are the semiconductor substrate with an infinitely long oxide (without
an oxide trap) subsystem and an infinitely long oxide subsystem with a trap.
This is entirely different from the conventional Fermi’s Golden rule (Eq. (1.6)),
where the initial and final states electronic wavefunctions are eigenfunctions of
the unperturbed Hamiltonian (Eq. (A.14)).

The eigenfunctions ψ(0)
n (r) and ψt(r) in Eq. (1.20), characterizing the

behavior of electrons in the semiconductor and trap regions, are determined
using the Wenzel-Kramer-Brillouin (WKB) method as [62]

ψ(0)
n (r) =

√
kxexp (ik⊥.r⊥)√

2ΩKx,n(x)
exp

− xt∫
xif

dx′Kx,n(x′)

 (1.21)

ψt(r) = Kx,t(xif )exp (ik⊥.r⊥)√
2AyzKx,t(x)

exp

− xt∫
xif

dx′Kx,t(x′)

 (1.22)

with,

Kx,nt(x) =
√

2m∗n,t
[
E

(0)
n (x)− Ex

]
/~2 ; kx =

√
2m∗nEx/~2 ; Ex = E− ~2|k⊥|2

2m∗n
(1.23)
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where m∗t is the tunneling mass and E
(0)
n (x) is the respective band edge

energy. With Eqs. (1.21)-(1.23), the electronic transitional rates of Eq. (1.20)
are determined, while assuming no phonons are involved in the tunneling
process [42]. In this model, these tunneling transitional rates are encoded as the
temperature-independent capture cross sections (the first factor in the integral
of the denominator of Eqs. (1.16)and (1.17) equals σnvth,n, with σn being the
capture cross section and vth,n the thermal velocity) in either the capture or
emission rates of the carrier lifetimes (specifically in r(E) of Eqs. (1.18) and
(1.19) [42]).

Another striking feature of this model is that it accounts for the exact
configuration of an oxide defect, based on the local environment of bonding of
the defect site as well as the charge state of the defect, and configures the defect
site into a combination of stable state and metastable state sub-configurations,
thereby determining the temporal behavior of defects [42]. Due to the inclusion
of such a defect configuration, this approach is known as extended-NMP model.
In this model, the defect state configurations are determined from the adiabatic
Eqs. (A.7) and (A.8) under zero-field conditions, however, in the framework
of density functional theory (DFT). This results in a thermodynamic trap
level (the trap energy level calculated after the structural relaxation) based on
whether the charge carrier is in the channel of the MOSFET or in an oxide
defect.

Since the underlying approach to determine the capture and emission
rates is similar to Eq. (1.6) (specifically, Condon-approach of the adiabatic
theory [63]), the convoluted transition rates of Eq. (1.6) are simplified as the
product of the electronic and vibrational (structural relaxation based) transition
rates, where the latter results are in the form of LSF of multiphonon theory
(similar to Eq. (1.12)) [51].

1.5.3 Limitations of the models

Most of the discussed models employ certain approximations in agreement
with either a specific device or an experimental configuration. For instance,
unidirectional tunneling is assumed in Hurkx’s and Schenk’s model to explain
TAT in sufficiently large p− n diodes. As an another example, in the eNMP
model the set up is assumed to comply with TDDS experiments in which the
source and drain of MOSFETs are connected to ground. Hence, it is essential
to assess the limitations of each of these models before they can efficiently be
applied to determine TAT.

The major drawback of Hurkx’s model is the fact that transitions for
trap levels which are below the minima/maxima of the conduction/valence
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band are disregarded. This means that in TFETs, Hurkx’s model would
underestimate the prediction of TAT before the onset of BTBT. Apart from
this, the tunneling into a defect is determined by either analytical Airy functions
or WKB approximations. In the former case, the solutions of the Schrödinger
equation cannot adequately replicate the exponential tails into the dielectric
due to the approximation that the discontinuity at an interface is modeled as
an infinitely high barrier. At the classical turning points, where the electron
enters/leaves the forbidden gap, and hence where the electron energy equals the
band edge energy, the WKB approximation breaks down in determining the
wavefunctions, as the wavefunctions diverge at these edge points [64]. Therefore,
neither of the approaches are efficient in describing the tunneling aspect of TAT
in Hurkx’s model. Additionally, the electron is presumed as fully localized in
the trap state irrespective of the barrier type.

In Schenk’s TAT model, the determination of the electron envelope function
assumed the wavefunction to be a plane wave in two directions orthogonal to
the tunneling barrier, implying that the electrostatic potential is constant for
these directions. This assumption is incorrect for gated devices, where the
electrostatics vary in other directions and thereby prevents the application
of this model to gated devices. Additionally, the orthogonal direction plane
wave description is also inaccurate for describing very small devices, where size
confinement effects are crucial. This model is derived for a homostructure, hence
it is inadequate for heterostructures where the effective mass and the effective
bandgap are position dependent. The initial state of the trap is assumed to
be neutral and this decreases the accuracy of the application of this model
to acceptor, donor and extended defects, where the initial-state of the trap
is no longer neutral. The aforementioned limitation in Hurkx’s model that
the electron is presumed as fully localized in the trap state irrespective of the
barrier type is equally applicable to Schenk’s model. However, Schenk’s model
can account for such high electric field effects in the form of changes in local
trap density of states and level shifts, while retaining the electric field term
in Eq. (1.10). These effects can also be incorporated in Hurkx’s model by
modifying the emission term accordingly, which will be discussed in the next
chapter.

The aforementioned limitations related to the plane wave definition of
electronic wavefunctions are equivalently applicable to Gös model. Additionally,
these wavefunctions are determined by the splitting of the system Hamiltonian
into two weakly coupled partial subsystems of the isolated trap and substrate
(semiconductor without trap) configurations, presuming that the tunneling
is inefficient across the common region of these subsystems (barrier). This
approximation is applicable for barriers of which the thickness is sufficiently
large. However, for thin and ultra thin oxides with very light effective mass,
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these approximation are inaccurate owing to a strong coupling of the subsystems,
which will be seen in the next chapter.

It is evident from the discussion of models and from Fig. (1.5), that each
model can only be applied to certain TAT processes. For instance, Hurkx’s
model can describe the TAT process (c)-(f) of Fig. (1.5), while it cannot calculate
TAT current based on structural relaxation (Fig. (1.5)(g)) assuming that the
structural relaxation is negligible for the traps in semiconductors. Apart from
this, it is also clear that the thermal aspect of TAT lacks a unified approach.

1.6 Goal of the thesis

It is clear from the previous section that there is no unified approach
to model TAT in semiconductor devices. There is inaccuracy in either
determining tunneling or thermal transitions of TAT due to simplifications
made in the models. Therefore, the major objective of this thesis is to develop
an approach towards the all-inclusive, fully quantum-mechanical modeling of
TAT in semiconductor devices. The following are the key sub-goals of this thesis:

1) Investigate the impact of the electric field on traps and on the
TAT-emission rates:

• Develop a quantum-mechanical based approach to quantify the high-field
effects on the semiconductor traps and on the traps in MOS capacitor
systems.

• Derive an emission rate including the field-induced effects on traps and
investigate how the field effects can impact the device performances.

2) Develop a quantum-mechanical phonon-assisted tunneling formal-
ism to simulate phonon-assisted transport:

• Derive a QM formalism to simulate phonon-assisted tunneling currents
for bi-dimensional semiconductor device potentials (with an infinite third
dimension).

• Derive the electron-phonon coupling strength equations for direct bandgap
materials including the dispersion of phonons.

• Implement the QM formalism to enable the PAT-current calculations in
direct-bandgap semiconductors such that it is inline with the existing
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direct-BTBT simulator and optimize the implementation for efficient
simulation times of the PAT current calculation.

3) Investigate the impact of PAT on the device characteristics:

• Determine whether the phonon-assisted tunneling is behaving similar to
direct-BTBT.

• Determine the impact of the device dimensions on the PAT current
calculations.

• Investigate the dependencies of the PAT current density on the doping
concentration of p-n diodes.

4) Outline the framework towards TAT calculations in semiconductor
devices:

• Present the future framework to calculate multiphonon assisted tunneling
to enable TAT current calculation, where an additional structural
relaxation step can be invoked.

1.7 Organization of the thesis

After the discussion of limitations of the existing TAT models in this
chapter 1, we investigate the importance of field-induced effects on traps in
chapter 2 and explain why it is crucial to model TAT using QM based methods.
Chapter 2 starts with a brief description of the QM based method to extract
trap levels in semiconductor and MOS capacitor systems. We describe the
normalization procedure to attain constant probability amplitudes for trap
wavefunction in the contacts. We present a numerical approach to quantify the
field-induced effects on traps and explain the importance of such effects on TAT
events. We derive an analytical expression for the trap emission rates including
the field-induced effects. We calculate the emission rates for semiconductor and
oxide trap systems.

In Chapter 3, as a first step towards a QM-based TAT formalism we develop
the QM-based PAT current formalism and discuss in detail the determination
of the electron-phonon coupling (EPC) strengths. We derive the PAT current
equation based on the time-dependent perturbation theory using the number
operator approach. We determine the EPC in the framework of envelope
function theory and apply the low-wavevector approximation for local-based
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Fröhlich interactions in direct-bandgap materials. The PAT current density
equation is further simplified for bi-dimensional semiconductor devices. We
present the numerical procedure to calculate the PAT current densities based on
the existing direct-BTBT simulator, while making use of parallel determination
of electron envelope functions. We discuss different implementations and outline
their respective short comings.

Chapter 4 illustrates the application of the PAT current formalism to
different direct-bandgap homostructure device configurations. It starts with the
in-depth analysis of the electron-phonon coupling across tunneling junctions
using the 2- and 15-band model of our formalism. We also compare the full
PAT current densities with both models. We explain the impact of device
dimensions on the PAT current characteristics of p-n diodes, thereby describing
a shortcoming of our formalism. We explain the doping dependence of PAT
current densities to determine whether PAT dominates direct-BTBT current
densities in certain diode configurations.

The thesis concludes with the major findings and outlines the framework
towards the implementation of TAT calculations using a QM approach. In
particular, we present how a two-phonon assisted transition can be added to
our formalism and can determine the associated currents. We further present a
possible pathway of including the lattice-based structural relaxation into our
formalism.



Chapter 2

Impact of high electric field
on traps in semiconductors
and oxides

In the previous chapter, we presented a brief discussion on the challenges
in the scaling of MOSFET and introduced TFET as a potential candidate
to replace MOSFET as a low power device. We briefly mentioned that TAT,
in addition to other parasitic effects, restricts the capability of TFETs as it
degrades the sub-60mV/dec SS. We also reviewed the existing semi-classical TAT
models in literature and discussed their limitations, which in turn compromise
accurate predictions of TAT currents. One limitation is that these models do
not account for the intrinsic trap energy level shift with the externally applied
electric field, despite the rigorous treatment of the other field contributions on
TAT currents.

Since the electric fields in TFETs and across the gate oxides in MOSFETs
can typically reach beyond 1MV/cm, we expect it could impact substantially the
intrinsic trap characteristics and subsequently the corresponding TAT currents.
In this chapter, we therefore present the significance of such field effects on
intrinsic trap characteristics and determine the impact on trap emission rates,
which itself serves as an initial step to understand the possible impact on the
TAT process.

The structure of this chapter is as follows. We start with the theory to
extract the trap energy level, which is based on the existing modified transfer
matrix (MTM) method of determining spectral states, namely the bound and

25
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the quasi-bound energy states. Although the exact theory of MTM is outlined in
Ref.[65], the normalization for the wavefunction is not explicitly mentioned. We
therefore rewrite a part of the derivation of MTM followed by the normalization
procedure in Section 2.1, which is essential for comparing the probability
densities of the wavefunctions at different energies. Section 2.2 details the
numerical implementation to extract trap energy levels and to quantify the
possible electric field effects. Such field effects on the semiconductor and on the
oxide trap configurations are discussed in Section 2.3. Section 2.4 considers the
field-induced impact on the emission rates of semiconductor and oxide traps.
Finally, we conclude this chapter in Section 2.5.

2.1 Trap energy level extraction

The presence of traps establishes a band discontinuity in the electrostatics,
which resembles that of heterostructures. However, such discontinuity is on the
sub-microscopic scale. Therefore, the trap system in semiconductor devices can
conveniently be constructed as a quantum well in the electrostatic potential.
Similar to the determination of spectral states of semiconductor heterostructures,
which are the allowed energy states irrespective of their occupation by charge
carriers, we will determine the characteristic trap energy levels. Note that
the trap energy level is fundamental to the study of TAT. In general, there
are three distinguishable spectral (energy) states based on their wavefunction
behavior in the infinitely long asymptotic contact regions, namely bound, quasi-
bound and free states. The bound energy states are characterized by decaying
wavefunctions whose amplitudes are zero in both of the asymptotic contact
regions. The quasi-bound states’ wavefunctions decay in either of the contacts,
whereas the free states’ wavefunctions are non-decaying plane wave-like functions
in both of the contact regions.

In recent years, numerous methods have been proposed to determine the
spectral states of heterostructures. These methods can generally be classified as
“large matrix” methods, based on a full system Hamiltonian [66, 67] and “small
matrix” methods, involving the elementary transfer-matrices [68]. Among the
small matrix methods, the modified transfer matrix (MTM) method is selected
for our study of the electric field effect on the trap level in a one dimensional
structure [69]. The preference for the MTM method is based on its efficient
numerical implementation and handling of the abrupt electrostatic potential
transition at a heterointerface, which we will use to configure the trap. Note
that the extension of the MTM method to determine the trap level in higher
dimensional (2D or 3D) heterostructures is uncertain[70]. For such applications,
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the “large matrix” methods can be employed which however require enormous
computational resources.

2.1.1 Modified transfer matrix method

In this method, the 1D heterostructure is presumed to consist of l segments
(not necessarily of equal lengths) of piecewise constant effective mass m∗e,l as
shown in Fig. (2.1). For numerical simplicity, we assume that the wavevector
component k⊥ (ky, kz) = 0 orthogonal to the transport x-direction at the
extreme contact regions, which are also known as the asymptotic regions.
Note that k⊥ (ky, kz) 6= 0 would provide a different solution depending on the
materials used. For the asymptotic regions, the symbols α and β are used (see
Fig. (2.1), where the injected right-traveling electron in segment α and the
injected left-traveling electron in segment β are indicated with arrows).

Given the previous assumption that k⊥ (ky, kz) = 0, the motion of a
charged particle through a 1D-heterostructure is described by the following
effective-mass Schrödinger equation[

−~2

2
∂

∂x

1
m∗e(x)

∂

∂x
+ V (x)

]
ψ(x) = Eψ(x) (2.1)

where V (x) represent the potential energy, which includes the external potential
in addition to lattice and trap potential, and the effective mass m∗e changes
with the x-coordinate. For a given segment l of constant effective mass m∗e,l,
the Schrödinger Eq. (2.1) is simplified as:[

~2

2m∗e,l
d2

dx2 + E − Vl(x)
]
ψl(x,E) = 0 (2.2)

where Vl(x) represents the potential energy of the lth segment. As a second
order differential equation, Eq. (2.2) can possess two linearly independent basic
functions composing the so-called fundamental system of solutions, whereby any
physical solution (wavefunction) can be constructed as the linear combination of
these basic functions. With the basic functions ϕl,(1,2)(x,E), the wavefunction
over the interval of the lth segment is written as:

ψl(x,E) = Cl,1ϕl,1(x,E) + Cl,2ϕl,2(x,E) ; x ∈ [xl−1, xl] (2.3)

where Cl,(1,2) denote the unknown coefficients. With the above definition of
wavefunction (Eq. (2.3)), the equation of motion for each segment is solved using
the variation of parameter approach, whereby each basic function is constructed
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Figure 2.1: An example of a one-dimensional potential of a finite length
along the x-axis, which corresponds to the conduction band edge of a MOSCAP
biased in accumulation. The inset shows a zoomed-out version of the oxide trap
implemented as a square well potential. The asymptotic regions are indicated by
α and β, respectively.

as linear combinations of right and left traveling plane-wave type functions and
written as:

ϕl,η(x,E) = eik
0
l xF

(+)
l,η (x,E) + e−ik

0
l xF

(−)
l,η (x,E) ; η = 1, 2 (2.4)

where F±l,(1,2) denote the right-traveling (+) and the left-traveling (−) unknown
functions and k0

l represents the wavenumber of a electron state at energy E(
k0
l =

√
2m∗e,lE/~2

)
. With this method, the solution of Schrödinger Eq. (2.2)

requires the determination of four unknown functions
(
F

(±)
l,(1,2)

)
compared

to the initial two unknown basic functions. The following approach in the
variation of parameters, also known as the Lagrange condition (also known as
the Lagrange method of undetermined multipliers), relates the four unknown
functions

(
F

(±)
l,(1,2)

)
with the assumption that the first derivative of the basic
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functions can be determined from only the derivatives of the exponential factors
in Eq. (2.4) [65, 71]. In the framework of the MTM method, this condition
using Eq. (2.4) results in:

eik
0
l x

∂

∂x
F

(+)
l,η (x,E) + e−ik

0
l x

∂

∂x
F

(−)
l,η (x,E) = 0 ; η = 1, 2 (2.5)

With Eqs. (2.2), (2.4) and (2.5), the Lagrange condition is simplified and results
in the following set of coupled differential equations for the unknown functions
F

(±)
l,(1,2),

∂

∂x
F

(+)
l,η (x,E) =

m∗e,l
ik0
l ~2 e

−ik0
l xVl(x)

[
eik

0
l xF

(+)
l,η (x,E) + e−ik

0
l xF

(−)
l,η (x,E)

]
η=1,2

∂

∂x
F

(−)
l,η (x,E) = −

m∗e,l
ik0
l ~2 e

ik0
l xVl(x)

[
eik

0
l xF

(+)
l,η (x,E) + e−ik

0
l xF

(−)
l,η (x,E)

]
η=1,2
(2.6)

Eq. (2.6) represent an initial value problem (IVP).

Note that the above choice of basic functions
(
ϕl,(1,2)(x,E)

)
is not unique

unlike the basis function in a Hilbert space. Therefore, the following set of
boundary conditions, which also determine the nature of wavefunction in the
asymptotic regions for a given spectral state, are defined as [65],

ϕl,1(xj , E) = 0 ; d

dx
(ϕl,1(xj , E)) = 1

;xj ∈ [xl−1, xl]
ϕl,2(xj , E) = 1 ; d

dx
(ϕl,2(xj , E)) = 0

(2.7)

thereby satisfying the following criterion [65],

W(ϕl,1, ϕl,2) = −1 (2.8)

where W is the Wronskian of two basic functions of Eq. (2.2) and ensures the
linear independence of the two chosen basic functions for all the position points
over the interval (−∞,+∞) [65].

The initial conditions of the IVP of Eq. (2.6) are determined based on
the linearly independent condition of basic solutions (Eq. (2.7)), while applying
boundary conditions analogous to the quantum transmitting boundary method
(QTBM), which result in the following set of equations:

F
(+)
l,1 (xj , E) = e−ik

0
l xj

2ik0
l

; F
(−)
l,1 (xj , E) = −e

ik0
l xj

2ik0
l

F
(+)
l,2 (xj , E) = e−ik

0
l xj

2 ; F
(−)
l,2 (xj , E) = eik

0
l xj

2

(2.9)
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With the above defined initial boundary conditions (Eqs. (2.9)) and with
Eq. (2.6), the unknown functions

(
F

(±)
l,(1,2)

)
of Eq. (2.4) in the lth segment are

determined, followed by the calculation of the basic functions itself (Eq. (2.4)).
Then, the wavefunctions at an interface xl between two adjacent segments
(l, l + 1) are made continuous with the following continuity condition:

ψl(x,E)|x=xl = ψl+1(x,E)|x=xl (2.10)

and their derivatives are related by the so-called Ben-Daniel-Duke-Bastard
continuity condition, specifically for heterostructures, defined by

1
m∗e,l

d

dx
(ψl(x,E))

∣∣∣∣∣
x=xl

= 1
m∗e,l+1

d

dx
(ψl+1(x,E))

∣∣∣∣∣
x=xl

(2.11)

Matching the wavefunction in any two adjacent segments (l, l+ 1) through these
two conditions of Eqs. (2.10) and (2.11), a relation between the coefficient pairs
Cl,η of adjacent segments can be determined by transforming the corresponding
set of equations into self-contained segment matrices as:

 ϕl,1(xl, E) ϕl,2(xl, E)
1
m∗e,l

ϕ′l,1(xl, E) 1
m∗e,l

ϕ′l,2(xl, E)

Cl,1
Cl,2



=

 ϕl+1,1(xl, E) ϕl+1,2(xl, E)
1

m∗e,l+1
ϕ′l+1,1(xl, E) 1

m∗e,l+1
ϕ′l+1,2(xl, E)

Cl+1,1

Cl+1,2

 (2.12)

Rewriting Eq. (2.12) as [
Cl,1
Cl,2

]
= Kl,l+1

[
Cl+1,1
Cl+1,2

]
(2.13)

results in the so-called segment transfer matrix Kl,l+1 described by,

Kl,l+1 =

 ϕl,1(xl, E) ϕl,2(xl, E)
1
m∗e,l

ϕ′l,1(xl, E)) 1
m∗e,l

ϕ′l,2(xl, E)

−1

×

 ϕl+1,1(xl, E) ϕl+1,2(xl, E)
1

m∗e,l+1
ϕ′l+1,1(xl, E) 1

m∗e,l+1
ϕ′l+1,2(xl, E)

 (2.14)
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The elements of the segment transfer matrix are given by Eq. (2.4) and the first
derivative of Eq. (2.4) is given by

ϕ′l,η(x,E) = ik0
l

[
eik

0
l xF

(+)
l,η (x,E)− e−ik

0
l xF

(−)
l,η (x,E)

]
; η = 1, 2 (2.15)

The transfer-matrix, which relates the combination coefficients of the left-most
and right-most segments of the physical structure is then described by,[

Cα,1
Cα,2

]
=M

[
Cβ,1
Cβ,2

]
(2.16)

where M represents the modified transfer matrix of the total system and is
obtained by the product of the segment matrices as can be understood by a
recursive expansion of Eq. (2.13),

M = Kα,1K1,2K2,3 . . .KL,β (2.17)

As mentioned earlier, the spectral states (or quasi-bound states) are
characterized by energy values (spectral points) in the complex plane at which
the wavefunction has only outgoing waves in the extreme asymptotic regions.
Therefore, for the spectral points, the amplitudes of the incoming waves at the
far left-most and at the far right-most segments of the potential (see Fig. (2.1))
are zero, which results in the following set of equations:

Cα,1F
(+)
α,1 (−∞, E) + Cα,2F

(+)
α,2 (−∞, E) = 0

Cβ,1F
(−)
β,1 (+∞, E) + Cβ,2F

(−)
β,2 (+∞, E) = 0

(2.18)

From Eq. (2.16), the combination coefficients of the left-most segment are
related to the right-most segment of the physical structure by the following
expression,

Cα,η =Mη,1Cβ,1 +Mη,2Cβ,2 ; η = 1, 2 (2.19)

Using Eq. (2.19), Eq. (2.18) is transformed into matrix form as

Jsp(E)
[
Cβ,1
Cβ,2

]
=
[
0
0

]
(2.20)

where Jsp represent the Jost matrix, which can determine the physical solution
of the structure from the two independent solutions of the asymptotic regions:

Jsp(E) =
[
J11 J12
J21 J22

]
(2.21)
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with the following matrix elements:

J11 =M1,1F
(+)
α,1 (−∞, E) +M2,1F

(+)
α,2 (−∞, E)

J12 =M1,2F
(+)
α,1 (−∞, E) +M2,2F

(+)
α,2 (−∞, E)

J21 = F
(−)
β,1 (+∞, E)

J22 = F
(−)
β,2 (+∞, E) (2.22)

From the earlier definition of spectral states and using Eq. (2.20), the spectral
points, which also represent the required trap energy level Et, are the complex
roots of the following equation:

||Jsp(E)|| = 0 (2.23)

Once the energy Et is extracted, the corresponding wavefunction can also be
determined. Therefore, the state at the edge of an asymptotic region is fixed
by choosing the amplitudes of the left-most right-traveling and the right-most
left-traveling components of the wavefunction. In general, these amplitudes are
defined by

Cα,1F
(+)
α,1 (x0, E) + Cα,2F

(+)
α,2 (x0, E) = Iα

Cβ,1F
(−)
β,1 (xL, E) + Cβ,2F

(−)
β,2 (xL, E) = Iβ

(2.24)

Using Eq. (2.19), this condition can be expressed in matrix form as:

Jin(E)
[
Cβ,1
Cβ,2

]
=
[
Iα
Iβ

]
(2.25)

where the Jost-matrix Jin is identical to Jsp. In Eq. (2.25), the injection of a
state at a specific asymptotic region is described by setting the amplitude of the
other asymptotic region to zero. For instance, the left-injection type is defined
by (Iα = 1, Iβ = 0) in Eq. (2.25) and vice versa for the right-injection type.
Note that the bound state energy Et extraction is independent of the choice of
the injection type, which means the trap energy level Et is identical for both left-
and right-injected wavefunctions. Moreover, once the energy Et is known, the
right-injected wavefunction (in this thesis) is determined by first constructing
the Jost-matrix Jin with the substitution of E = Et in the set of Eqs. (2.22),
followed by determining the coefficients (Cβ,1, Cβ,2) for the right-most segment
β from Eq. (2.25) (with Iα = 0, Iβ = 1). Subsequently, the coefficients for the
next left segments are determined, while using Eq. (2.13), all the way to the
left-most segment α. Meanwhile, the unknown functions F (+)

l,η (x,E) of each lth
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segment are determined (with the substitution of E = Et) from Eq. (2.6) by
using the boundary conditions of Eq. (2.9), followed by determining the shape
of the basic functions (from Eq. (2.4)). Finally, the complete wavefunction at
energy Et is constructed using the formerly determined coefficients and basic
functions. So far, we showed that the solution of Eq. (2.25) at the energy
Et determined from Eq. (2.23) with the condition (Iα = 0, Iβ = 1) gives the
wavefunction assuming injection from the right contact. However, Eq. (2.23)
can only be properly solved for a bound state. Hence a normalization procedure
is required, which is presented in the next subsection.

2.1.2 Wavefunction normalization

The next essential step required for the characterization of the trap level
is the wavefunction normalization, which will allow to compare wavefunction
amplitudes at different energies, and which will be needed to determine the
broadening of the trap level Et. We will start with imposing the delta
normalization condition as it conforms with the theory of the MTM method [65].
We make use of the asymptotic conditions of the MTM theory, where we assume
that the potential profile in the contacts is a segment of constant potential
energy Vα,β . For each of these regions, the momentum is determined, while
considering the constant values of the potential and the effective mass, by

kl =

√
2m∗e,l (E − Vl)

~
; l =

α x ∈
(
−∞, x0

]
β x ∈

[
xL,+∞

) (2.26)

with xL the start of the right-most segment. Here we repeat the procedure
outlined in Section 2.1.1. Using Eq. (2.26), the Schrödinger Eq. (2.2) of each
segment in the outer-most asymptotic regions is simplified as[

d2

dx2 + k2
l

]
ψl(x,E) = 0 ; l = α, β (2.27)

where Eq. (2.27) is a second order differential equation which can be solved by
considering the wavefunction as a linear combination of two independent basic
solutions (similar to Eq. (2.3)).

ψl(x,E) = Cl,1ϕl,1(x,E) + Cl,2ϕl,2(x,E) ; l = α, β (2.28)

where, in alignment with the asymptotic conditioning of Eq. (2.3), the basic
solutions in Eq. (2.28) are defined by,

ϕl,η(x,E) = eiklxF
(+)
l,η (E) + e−iklxF

(−)
l,η (E) ; l = α, β ; η = 1, 2 (2.29)
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Note the introduction of F (±)
l,η in Eq. (2.29) as position independent in

comparison with the unknown functions of Eq. (2.4), which is in alignment
with the MTM theory. In particular, when the potential in the asymptotic
regions is unvarying, the F (±)

l,η in Eq. (2.6) become constant as their partial
derivative is zero, thereby resulting in energy-dependent constant factors. The
linear independence of the basic solutions in Eq. (2.28) is ensured by similar
conditions as in Eq. (2.7),

F
(+)
l,1 (E) = e−iklxj

2ikl
; F

(−)
l,1 (E) = −e

iklxj

2ikl
;xj =

{
x0, l = α
xL, l = β

F
(+)
l,2 (E) = e−iklxj

2 ; F
(−)
l,2 (E) = eiklxj

2

(2.30)

To this end, the system of equations for the outer-most asymptotic regions,
which are characterized by a constant potential and effective mass are defined.
In the subsequent subsections, the normalization methods essential to obtain
physical wavefunctions (non-spurious) are outlined.

Delta normalization method

Due to the plane wave nature of the wavefunction in the asymptotic
regions, the method of delta normalization is imposed, which is described by
the following condition:

+∞∫
−∞

dx ψ∗(x,E′)ψ(x,E) = 2πδ (E′ − E) (2.31)

where for a given energy the specific asymptotic region wavefunction is described
by the type of injection (see Eq. (2.25)). For instance, for a left-injection type
state, the asymptotic region wavefunction is a linear combination of the right/left
traveling left-most (α) and the right-traveling right-most (β) basic functions.
In general, such description of the wavefunction is given by

ψ(x,E) = Nd

2∑
η=1

Θl(x)Cl,η
[
eiklxF

(+)
l,η (E) + e−iklxF

(−)
l,η (E)

]
+ Θl′(x)Cl′,ηe±ikl′xF (±)

l′,η (E) (2.32)

where Nd is the normalization constant, which we are trying to determine. In the
last term of Eq. (2.32) (which defines the transmission part of the wavefunction),
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the upper (+) sign indicates the left-type injection whereas the lower (−) sign
specifies the right-type injection. There must either be an upper (+) or lower (−)
sign related term (correspondingly with either +kl′ or −kl′ in the exponential
function) present in the wavefunction description Eq. (2.32) depending on the
type of injection, which is described by the following notations:

l = α ⇐⇒ l′ = β ; left injection
l = β ⇐⇒ l′ = α ; right injection (2.33)

In Eq. (2.32), Θα,β are the unit step-functions defined in accordance with the
piecewise-description of the wavefunction in Eq. (2.32) and are given by,

Θα(x) =
{

1, x ∈
(
−∞, x0

]
0, x > x0

; Θβ(x) =
{

1, x ∈
[
xL,+∞

)
0, x < xL

(2.34)

Substitution of Eq. (2.32) into the left hand side of Eq. (2.31) yields,

+∞∫
−∞

dx ψ∗(x,E′)ψ(x,E) = |Nd|2
+∞∫
−∞

dx

∑
η,η′

(Θl(x))2
C∗l,η′Cl,η

×
{
F

(+)∗
l,η′ (E′)F (+)

l,η (E)ei(kl−k
′
l)x + F

(+)∗
l,η′ (E′)F (−)

l,η (E)ei(−kl−k
′
l)x

+F (−)∗
l,η′ (E′)F (+)

l,η (E)ei(kl+k
′
l)x + F

(−)∗
l,η′ (E′)F (−)

l,η (E)ei(k
′
l−kl)x

}
+ (Θl′(x))2

C∗l′,η′Cl′,ηF
(±)∗
l′,η′ (E′)F (±)

l′,η (E)e±i(kl′−k
′
l′)x
]

(2.35)

In Eq. (2.35), the cross terms related to Θl (x) Θl′ (x) vanish while making
use of the definitions of the step function in Eq. (2.34). With the following
approximation for the x-integral, where we assumed that the contribution of
xL∫
x0

dx is negligible in determining the normalization factor, and subsequently
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using the property of the delta function,
+∞∫
−∞

dx (Θl(x))2
ei(kl−k

′
l)x ≈

 x0∫
−∞

dx +
+∞∫
xL

dx

 (Θl(x))2
ei(kl−k

′
l)x (2.36)

≡
x0∫
−∞

dx ei(kl−k
′
l)x ≈ πδ(kl − k′l) (2.37)

+∞∫
−∞

dx (Θl′(x))2
e±(kl′−k′

l′)x ≈

 x0∫
−∞

dx +
+∞∫
xL

dx

 (Θl′(x))2
e±i(kl′−k

′
l′)x

(2.38)

≡
−∞∫
xL

dx e±i(kl′−k
′
l′)x ≈ πδ(kl′ − k′l′) (2.39)

Eq. (2.35) reduces to

+∞∫
−∞

dx ψ∗(x,E′)ψ(x,E) =

π |Nd|2
∑
η,η′

C∗l,η′Cl,η

{
F

(+)∗
l,η′ (E′)F (+)

l,η (E)δ(kl − k′l)

+ F
(+)∗
l,η′ (E′)F (−)

l,η (E)δ(−kl − k′l) + F
(−)∗
l,η′ (E′)F (+)

l,η (E)δ(kl + k′l)

+ F
(−)∗
l,η′ (E′)F (−)

l,η (E)δ(k′l − kl)
}

+ C∗l′,η′Cl′,ηF
(±)∗
l′,η′ (E′)F (±)

l′,η (E)δ(kl′ − k′l′)
]

(2.40)
It should be noted that the wavefunction definition (Eq. (2.32)) is unreasonable
over the device length (from x0 to xL) as the potential energy is no longer
constant due to the externally applied electric field (see Fig. (2.1)). We therefore
disregard the wavefunction normalization over the device length (from x0 to
xL) in Eqs. (2.36) and (2.38). Remembering from Eqs. (2.29) and (2.32) that
the independent wavenumbers kl > 0 and k′l > 0. Therefore, the terms with
−kl − k′l and kl + k′l vanish due to:

δ(−kl − k′l) = δ(kl + k′l) = 0 (2.41)
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The above result brings Eq. (2.40) to

+∞∫
−∞

dx ψ∗(x,E′)ψ(x,E) =

π |Nd|2
[∑
η,η′

C∗l,η′Cl,η

{
F

(+)∗
l,η′ (E′)F (+)

l,η (E) + F
(−)∗
l,η′ (E′)F (−)

l,η (E)
}
δ(k′l − kl)

+ C∗l′,η′Cl′,ηF
(±)∗
l′,η′ (E′)F (±)

l′,η (E)δ(k′l′ − kl′)
]

(2.42)

The independent wavenumbers kl,l′ and k′l,l′ are energy dependent and therefore
the delta functions in Eq. (2.42) can be rewritten as

δ(k′l,l′ − kl,l′) = δ(kl,l′(E′)− kl,l′(E)) (2.43)

By using the following property of the delta function,

δ(kl,l′(E′)− kl,l′(E)) = δ(E′ − E)∣∣∣∣∂kl,l′(E′)∂E′

∣∣∣∣
E′=E

= δ(E′ − E) ~2kl,l′

m∗e,(l,l′)
(2.44)

The probability density of a wavefunction is determined by

+∞∫
−∞

dx ψ∗(x,E′)ψ(x,E) =

πδ(E′−E) |Nd|2
[∑
η,η′

C∗l,η′Cl,η

{
F
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l,η′ (E)F (+)

l,η (E) + F
(−)∗
l,η′ (E)F (−)

l,η (E)
} ~2kl
m∗e,l

+ C∗l′,η′Cl′,ηF
(±)∗
l′,η′ (E)F (±)

l′,η (E)~
2kl′

m∗e,l′

]
(2.45)
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Comparing the right hand side of Eq. (2.45) with that of the normalization
condition Eq. (2.31), the normalization factor is thus obtained by

|Nd| =
1√√√√√√√1

2
∑
η,η′

C
∗
l,η′Cl,η

{
F

(+)∗
l,η′ (E)F (+)

l,η (E) + F
(−)∗
l,η′ (E)F (−)

l,η (E)
} ~2kl
m∗e,l

+C∗l′,η′Cl′,ηF
(±)∗
l′,η′ (E)F (±)

l′,η (E)~
2kl′

m∗e,l′


(2.46)

Note that the above normalization method of wavefunction works well for
bound states. For quasi-bound states, this normalization can not resolve the
problem of unphysical solutions appearing due to the imaginary component
of the calculated energies. We therefore propose an alternative approach to
circumvent this problem, which is described in the subsequent section.

Constant density normalization method

In the previous section, we determined the normalization of the trap
wavefunction. However, for quasi-bound or free states the energies associated
with the trap are points in a complex plane, where the complex components
are related to the life times and determine the energy-width of the line shape
function of a resonant state. However, this complex component can result
in an unphysical exponential modulation of the plane wave amplitude of the
wavefunction in the asymptotic regions. We therefore, propose a constant
density normalization to mitigate such unphysical solutions.

In this normalization approach, we first artificially replace the imaginary
component of the determined trap energies with zero, which will circumvent
the exponential modulation due to the imaginary component. Consequently, we
assume that the E − k relation in the asymptotic region is linear in the range
of trap levels of interest, to obtain a reasonable comparison of the probability
densities at different energies, which is needed for quantifying the broadening of
a trap state discussed in the next section. With the previous assumption that
k⊥(ky, kz) = 0, and the typical proportionality |E − En| ∼ k2 (with En a band
extremum), this hypothesis suggests that the energy window of interest is far
away from the material’s band edge in the lower-potential asymptotic region.
Under these assumptions, the state density at different energies is constant in
the lower-potential contact region. Therefore, the wavefunction densities are
normalized to this constant state density and we term such normalization as
constant density normalization method. Later, it has been verified that when
using this approach, the broadness of the peaks varies smoothly and continuously,
in a physically consistent way, which justifies the procedure used. Note that
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Figure 2.2: The electrostatics of a MOSCAP biased in accumulation shown
with an inset of a zoomed-in version of the oxide trap configuration. The
wavefunctions are shifted along the y-axis for the illustrative purpose of showing
the behavior of the oxide trap wavefunction in the trap region and in the
asymptotic regions. The unphysical exponential growth of the wavefunction
(red) obtained with the delta normalization is indicated by a magenta circle,
where as the wavefunction obtained with the constant density normalization is
indicated with green.

this constant density normalization does not provide an absolute normalization,
but rather a relative comparison between wavefunctions at energies sufficiently
far from the band edge.

Application of the normalization methods

The differences in both of these normalization methods is depicted
in Fig. (2.2), which compares the wavefunctions normalized with the
aforementioned methods. For a delta-type normalized wavefunction, the
unphysical exponential rise in the amplitude at the extreme contacts (asymptotic
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Figure 2.3: The flowchart depicting the numerical procedure of finding the
trap level and FWHM spectral range.

regions), indicated by the magenta circle, is due the imaginary component
in the trap energy Et. However, the constant density normalization is able
to circumvent such unphysical solutions, which can be seen with a constant
wavefunction (green colored) amplitude at the contacts, particularly in the lower
potential region of the far right contact.
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2.2 Numerical procedure

In the previous section, we described the theory of determining the
trap energy level and the normalized trap wavefunctions. To estimate these
physical solutions, we propose a numerical implementation procedure described
by the flowchart in Fig. (2.3). We start by a discretization of the 1D
heterostructure using a finite difference (FD) scheme, in which the potential
energy is replaced by a combination of the trap potential Vt(x) and the
electric field F (V (x) = Vt(x)− eqF (x)x). In our study, we limit ourselves
to the different cases of a semiconductor trap, which is configured with a
one dimensional single quantum well having the same effective mass as the
surrounding semiconductor, while a MOS capacitor (MOSCAP) system is
used for analyzing oxide traps. The traps are assumed to be invariant planar
structures in the other two (y, z)-dimensions. The initial set of conditions for
the unknown functions F±l,(1,2) are found in Eqs. (2.9). These initial conditions
are used to determine the basic functions, while making use of the IVP of
Eqs. (2.6), by applying the Runge-Kutta method of solving coupled differential
equations. Subsequently, the basic functions are used to construct the modified
transfer (M) and the spectral Jost (Jsp) matrices.

The energy range of interest, which covers the entire range of the
electrostatic potential of a trap configuration, is an input to the solver. The
characteristic roots of the asymptotic Jost matrix system (Jsp) can efficiently
be determined from Eq. (2.23) using the iterative Newton-Raphson method and
represent the trap energy level Et (see Figs. (2.2) and (2.4)). The correctness
of the proposed numerical scheme is in agreement with the spectral states and
their corresponding wavefunctions (without applying any normalizations) of the
heterostructures described in literature [66, 69].

The broadening of a spectral state at high electric field is anticipated.
The solver is therefore extended with an optimization routine to determine the
broadening of the trap energy state at high fields. The solver requests for this
routine only if the maximum probability density of the wavefunction within the
trap region has reduced with less than 50% at 1 µeV from the extracted energy
Et.

In the optimization routine, a comparison is made between the
wavefunction probability density peak inside the trap regions. The energy
interval corresponding to full-width half-maximum (FWHM) is determined.
During this optimization routine, the constant density normalization method is
employed to compare the probability densities for a quasi-bound system. For a
bound system, the delta normalization is used.
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Figure 2.4: The electrostatic potential (solid black), the characteristic level
(Et ≈ -0.002 eV) and the corresponding wavefunction of a square well 2 nm-
wide trap configuration in a 30 nm long In0.53Ga0.47As region at 100 kV/cm
electric field strength. EF

i is the energetic difference taken between EC and Et
at the trap center.

2.3 Electric field effects: Level shift and broaden-
ing

In this section, we apply the aforementioned method of determining the
trap level (see Sections 2.1 and 2.2) in different cases of semiconductor and
oxide traps. Further, we examine the electric field-induced effects of a trap
level.

2.3.1 Semiconductor traps

The effect of a TFET-like source-channel junction field on the trap is
examined with different quantum well configurations in a uniform electric field.
The characteristic bound state and the corresponding wavefunction of the
square well (SW) trap structure at low uniform electric field (F = 100 kV/cm)
is illustrated in Fig. (2.4). A 30 nm long section of In0.53Ga0.47As is considered.
The arbitrarily chosen well depth and width are 0.5 eV and 2 nm, at zero-field
conditions, respectively. The first bound state of the system is at 169 meV from
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Figure 2.5: (a) The electrostatic potential and the characteristic sub-levels
specifying the lower and the upper bounds of full-width half-maximum spectral
range (EMax

t ≈ -1.003 eV, EL
t ≈ -1.034 eV and EU

t ≈ -0.962 eV) , (b) The
wavefunctions corresponding to the trap levels of (a), for a 2 nm-wide SW trap
in a 30 nm long section of In0.53Ga0.47As.

the top of the conduction band (Ei=169 meV) and could describe a shallow
acceptor-like trap.

The sharp low-field energy level depicted in Fig. (2.4) spreads into a
spectral range

[
EL

t ,EU
t
]
at 750 kV/cm field strength as illustrated in Fig. (2.5)(a).

The densities in correspondence with the levels EMax
t , EL

t and EU
t are shown in

Fig. (2.5)(b). It is apparent from the comparison of Figs. (2.4) and (2.5) that
this spread in spectral states can be associated with the tunneling of the trap
wavefunction into the adjacent lower potential region (right side in Fig. (2.5)).

The electric field is further varied from 0 to 3 MV/cm for the SW trap
configuration in Fig. (2.4). The resultant plots show the trap level shifts against
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Figure 2.6: Trap level shift and broadening determined as a function of
electric field strength for the 2 nm-wide SW of Fig. (2.4). The closed and the
open symbols represents the localization and the non-localization of the trap-level
Et in the SW trap region.

the respective fields in Fig. (2.6), where the level shift is calculated as the
difference between the zero-field trap level Ei and the non-zero field trap level
EF

i . From Fig. (2.4), the trap level EF
i is the energetic difference between

EC and Et, determined at the trap center. The shift of the upper bound of
the FWHM spectrum, most probable level (Max) and the lower bound of the
FWHM spectrum (L) and (U) are also shown in Fig. (2.6).

The level broadening for the above trap configuration increases with
electric field (see Fig. (2.6)), which is attributed to a reduction in potential
barrier and therefore an increase in tunneling-of trap wavefunction into the
continuum states of the lower potential region. Moreover, the curve symbols
change from closed to open when the probability density of the level becomes
marginally peaked (less than or equal to) in the trap SW compared to the
probability density peaks outside of the trap SW, which occurs when no energy
barrier is left at one side of the trap and hence, the wavefunction becomes
non-local. Note that the maximum density energy level need not be at the
center of its FWHM spectrum, as it is apparent from Fig. (2.6).

The comparison of the level shift lines for a reduced width SW and a
Coulomb well (CW, which represents the configuration of the trap system in
semiconductor devices by a Coulomb potential) with the previously defined 2nm
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Figure 2.7: Electric field-induced level shift and broadening for the 2 nm-
wide SW, 1 nm-wide SW and the CW trap configurations. The open symbols
represents the non-local trap states. The inset depicts the described trap
configurations at zero-field condition and the wavefunction probability densities
for the indicated trap levels Et.

wide SW (Fig. (2.4)) is illustrated in Fig. (2.7). Note that the energetic depth
EF

i increases (see Fig. (2.7)), when both the depth and the width of the trap well
increases. The energetic distance from the quantized energy level Et (in the inset
of Fig. (2.7)) to the bottom of the well increases with decreasing trap width and
increasing trap depth. However, the different trap configurations in Fig. (2.7)
are defined such that their zero-field trap energy levels Et are identical (see the
inset of Fig. (2.7)). It is evident that the level shift and the level broadening
depend on the barrier type. The 1 nm- wide trap has an increased effective
barrier width and therefore, a smaller level shift is noticed than the 2 nm-wide
trap. The Coulomb trap encounters a hyperbolic barrier which is smoother than
the triangular barrier of SWs in an electric field. This results in a reduction of
the effective barrier and hence, it shows a larger level broadening than that of a
SW. The impact of the well-known barrier lowering (Poole-Frenkel effect) [47]
can also be noticed as the early out-shift (open symbols) of the CW trap level
compared to the SW level, which is apparent from Fig. (2.7). Therefore, the
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Figure 2.8: A PolySi/SiO2/p−Si MOSCAP with an oxide trap in accumulation
with an inset of a zoomed-in view of the conduction band energy. The oxide trap
is configured as a 0.5 nm wide and 3.55 eV deep SW and is located at 0.25 nm
from the SiO2/p−Si interface. The trap exhibits broadening as shown with the
varying probability densities in the trap region.

specific choice of the 1nm3 wide SW trap potential [72] in device electrostatics
(see NEGF based TAT model in Section 1.5.1) may have a quantitative impact
on the predicted TAT current.

2.3.2 Oxide traps

The numerical procedure of the trap spectrum extraction (Fig. (2.3)) is
now employed to find the intrinsic characteristics of oxide traps in a MOSCAP
system in the presence of an electric field. In particular, we examine the traps
in PolySi/SiO2/p−Si and Al/HfO2/p−In0.53Ga0.47As MOS heterostructures. In
these structures, the substrate is doped with 1017 at/cm3 p-type concentration,
while the substrate depth and the oxide thickness are 175 nm and 4 nm,
respectively (see Figs. (2.8) and (2.9)). The trap in the oxide is configured with
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Figure 2.9: A PolySi/SiO2/p−Si MOSCAP with an oxide trap in inversion
with an inset of a zoomed-in view of the conduction band energy. The oxide
trap is configured as a 0.5 nm wide and 3.55 eV deep SW and is located at
0.25 nm from the SiO2/p−Si interface. The trap state is a fully localized bound
state. The higher amplitudes of the wavefunction, right before entering into the
conduction band, could probably be related to the interference process occurring
between the incident and the reflected elements of the wavefunction.

a constant 0.5 nm wide SW. These MOS structures are biased from accumulation
(Fig. (2.8)) to inversion (Fig. (2.9)).

In the PolySi/SiO2/p−Si MOSCAP system, the 0.5 nm wide SW type
trap configuration is located at 1 nm from the SiO2/p−Si interface in the SiO2
(see Fig. (2.8)). The depth of the well is varied from 2.05 eV to 3.55 eV with
reference to the SiO2 conduction band edge. This combination of the MOS and
the oxide trap structure is subjected to external applied biases. The results of
field-induced trap level shifts and broadenings are plotted against the oxide field
strength in Fig. (2.10). It is apparent from this figure that the level shifts and
level broadenings are low in comparison to those of the semiconductor traps
of Fig. (2.7). This is due to the higher effective mass and barrier heights in
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Figure 2.10: Level shift (solid) and broadening (dashed) as a function of
oxide electric field strengths for the 0.5 nm-wide SW oxide-trap configuration in
the PolySi/SiO2/Si MOSCAP system. The traps are configured with varying
well-depth and are positioned at 1 nm from the oxide-substrate interface.

the oxide (Ei >2 eV, m∗SiO2
≈ 0.5m0) [73] compared to the semiconductor trap

configurations (Ei=0.17 eV, m∗InGaAs ≈ 0.043m0).

The levels shift in opposite direction to inversion, when the MOSCAP is
biased in accumulation. The combined effects of the lowering of the substrate
conduction band minimum (CBM) and lowering of the effective barrier height
determine the negative level shift with increasing accumulation, which is shown
in Fig. (2.8). In contrast, the rise of the substrate CBM and the barrier height
(see Fig. (2.9)), results in the positive level shift of the trap level with increasing
depletion. The data in Fig. (2.10) also show that the level broadening exhibits
an inverse dependence with the depth of the trap level, which is obvious since
deeper traps allow for less leakage.

The impact of the location of the trap with respect to the oxide-substrate
interface is presented in Fig. (2.11). The trap is configured with a constant
0.5 nm wide and 3.05 eV deep SW inside SiO2. The position of the trap is
varied in the range of 1.75 nm-0.25 nm from the SiO2/p−Si interface. It is
apparent from Fig. (2.11) that the level shifts and broadenings depend on the
tunneling of its wavefunction through the tunneling barrier: these field-induced
quantum effects are more pronounced when the trap is positioned closer to the
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Figure 2.11: Level shift (solid) and broadening (dashed) as a function of
oxide electric field strengths for the 0.5 nm-wide 3.05 eV deep SW oxide-trap
configuration in the PolySi/SiO2/Si MOSCAP system. The trap-level is at
around 1 eV above the substrate conduction band edge at flat-band voltage
condition. The traps are positioned at varying distance from the oxide-substrate
interface. The traps near to the oxide-substrate interface show significant level
broadening. The black dashed box indicates the transition from quasi-bound to
bound systems.

SiO2/p−Si interface.

Note that these traps are configured such that the trap level is fixed to
be around 1 eV above the substrate CBM at zero-field condition and could
correspond to trap energy levels related to the neutral-type three fold-Silicon
defect pair found in SiO2 [74]. As the bias brings the MOSCAP more in
depletion, the trap level moves closer to and eventually below the substrate
CBM, as can be seen from Fig. (2.9). From the latter bias condition on, the
trap level is fully localized (from a quasi-bound to a bound state as indicated
in Fig. (2.11)) and the level broadening disappears. The level values in the
quasi-bound to bound transition region indicated with a black dashed box
are not reliable, as the approximation of fixed state density (constant density
normalization at the lower potential contact region) no longer holds close to the
conduction band edge. Hence, the comparison between the trap energy levels is
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Figure 2.12: Level shift (solid) and broadening (dashed) as a function of
oxide electric field strengths for the 0.5 nm-wide SW oxide-trap configuration
in PolySi/SiO2/Si and Al/HfO2/InGaAs MOSCAP systems. The traps are
configured with 3.05 eV and 3.5 eV well-depths and are positioned at a fixed
distance of 1 nm from the oxide-substrate interface, respectively. The trap-levels
in both MOSCAP systems are at 1 eV above the substrate conduction band edge
in flat-band voltage condition. The trap in Al/HfO2/InGaAs exhibits substantial
broadening compared to PolySi/SiO2/Si MOSCAP systems. The quasi-bound to
bound transition region is indicated with a black dashed box

no longer straightforward. The kinks observed in the depletion regime of the
0.25 nm spectral line, are due to the coupling between the quantized-inversion
states and the localized trap state in the substrate.

The oxide trap level characteristics also depend on the oxide material
parameters such as the effective mass. One such example is illustrated in
Fig. (2.12). With the 1 nm position away from the oxide-semiconductor interface
of a 0.5 nm wide SW trap, the trap well-depths for both MOSCAP systems
in Fig. (2.12) are varied such that the energetic distance of the trap levels
from the corresponding substrate conduction band edge are identical at zero-
field condition. Note that the trap level in the Al/HfO2/InGaAs MOSCAP
is arbitrarily fixed at 1 eV (above the substrate conduction band edge under
flat-band voltage conditions) to allow for a relative comparison of the field-
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induced effects with respect to a similar trap level (related to neutral-type three
fold-Silicon defect pair [74]) in the PolySi/SiO2/Si MOSCAP system.

The substantial level shifts and broadenings of the Al/HfO2/In0.53Ga0.47As
MOSCAP system can be attributed to the lighter electron effective mass
(m∗HfO2

≈ 0.11m0, m∗InGaAs ≈ 0.043m0) than in PolySi/SiO2/p−Si (m∗SiO2
≈

0.5m0,m
∗
Si ≈ 0.09m0) [73]. The gradual disappearance of the level broadening

in the depletion region and the corresponding inter-state coupling (between
the bound trap and the bound substrate states) for Al/HfO2/In0.53Ga0.47As
MOSCAP system can also be noticed in Fig. (2.12). Moreover, Figs. (2.11) and
(2.12) suggest that the field-induced trap level broadening (a few 100meV) is
smaller in magnitude than the defect-bands (a few 1000meV) formed due to the
intrinsic variability in the local environment of a defect site in amorphous (or
poly-crystalline) oxides [74].

However, it is also evident from the Figs. (2.8), (2.11) and (2.12) that the
system of substrate and oxide trap potentials are strongly coupled, which is
visible in the form of an increased tunneling of the trap wavefunction into the
substrate and the substantial broadening of the trap states. This implies that the
Bardeen approximation [60, 61] of decoupling the total system into independent
partial systems of substrate and trap potentials is no longer accurate not only
for the trap potentials near the oxide interface in PolySi/SiO2/p−Si MOSCAP
system but also for the Al/HfO2/In0.53Ga0.47As MOSCAP system. As a result,
the tunneling transition rate in the eNMP recombination model, which is based
on the Bardeen approximation (see eNMP based TAT model in Section 1.5.2),
requires an appropriate correction.

2.4 Impact of field-effects on the emission rate

The field-induced level shift and broadening could impact the prediction of
trap related capture and emission rates in semiconductors and oxides, as well as
the calculation of TAT currents. One example is shown in Fig. (2.13)(a)-(d) for
both thermally-assisted (Fig. (2.13)(c)) and structural-relaxation (Fig. (2.13)(d))
based TATmodels, which also graphically depicts the TFET electrostatics during
the off-state. For the indicated mid-gap trap, the high doping concentration
in the TFET source exhibits a strong band bending and thereby can result in
an apparent trap spectrum (Fig. (2.13)(a)-(b)) as opposed to the presumed
sharp trap level in literature [75, 46] (Et). As illustrated in Fig. (2.13)(c), the
lower bound of the spectrum can be responsible for larger TAT currents in
TFETs, this is, as the carriers can advance through this spectrum with higher
probability since capture requires less thermal energy for a TAT event (n < m),
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Figure 2.13: Graphical illustrations of (a) n-TFET, in which orange, grey
and green colors show n-type, intrinsic and p-type semiconductors, respectively.
The trap is presented as a circle at the source junction. (b) Band diagram with
a trap state at the indicated cross-section z− z′ of Fig. 2.13(a), with the focused
regions representing the impact of electric field on the TAT in the off-state of
a simple p-i-n TFET for (c) the thermally-assisted TAT models and (d) the
structural relaxation based TAT models, respectively.

where (m,n) are the number of phonon required for a TAT process in the
thermally-assisted TAT models (described in Section 1.5.1).

For the structural-relaxation based models, the field-induced broadening
will result in a spectrum of the configuration coordinate (CC) representation
of a trap (illustrated in Fig. (A.1) and in Fig. (2.13)(d) with level broadening)
rather than a discrete trap CC representation (see Fig. (1.5)(g)), whereas
the trap level shift will result in a correction of the energetic distance of the
trap’s non-equilibrium CC relative to its equilibrium CC representation. The
combination of these two field-effects can result in the correction of capture and
emission barrier heights in relaxation based TAT models and eventually can
lead to increases in capture and emission rates. However, these assumptions
would require an efficient tunneling process of the TAT event. We expect that
these assumptions, which are based on the field-induced effects of traps, could
probably result in higher TAT currents than those calculated with the existing
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semi-classical TAT models.

In this section, we present initial steps towards a TAT calculation by
determining the semi-classical average emission rate from a trap in the presence
of an electric field. In TFETs, the TAT current associated with a specific trap
state is proportional to its emission rate. We follow the work in literature [47]
describing the field-dependent emission rates, as it is used in determining TAT
currents in the field enhanced thermal ionization model (the Hurkx’s TAT model
described in Section 1.5.1). In this Section, the phonon-assisted emission rate
formula for the SW and the CW are modified to account for the field-induced
quantum effects on the trap level. In particular, the broadening of the trap
level is implemented as a summation of emission rates weighted with probability
density and normalized with the total sum of the probability densities of all
sub-levels in the spectrum, whereby the spectrum is linearly discretized.

For the SW type semiconductor trap configuration, this results in the
following average emission rate 〈enF〉 in the presence of field-induced quantum
effects (see also Fig. (2.14)(a) for symbols use)

〈enF 〉
en0

=

U∑
µ=L

χµ exp
{
δEµ
kBT

}
∑
µ
χµ

×

1 +
Eµ/kBT∫

0

dξ exp
{
ξ − ξ3/2

(
4
√

2m∗e(kBT )3

3eq~F

)} (2.47)

Where,

en0 = e∞n exp
{
−Ei
kBT

}
; χµ = |ψ (xp, Eµ)|2; ξ = Eµ − Eth

kBT

and where e∞n (= σn0 〈vth〉NC
DOS) is the zero-field emission rate coefficient, σn0

is the zero-field capture cross section, 〈vth〉 is the average thermal velocity of the
carrier, NC

DOS is the effective density of states in the conduction band, χµ is the
probability density peak value for the trap sub-level Eµ (xp being the position
of the peak), Eµ is the trap sub-level at the trap center measured from EC , δEµ
(= Ei − Eµ) is the trap sub-level shift compared to the zero-field value, Eth is
the net thermal energy which the carrier uses to emit from the trap, kB is the
Boltzmann constant and T is the temperature. In Eq. (2.47), the exponential
pre-factor (exp {δEµ}) reflects the dependence of the emission rates on the level
shift and the summation over µ denotes the impact of broadening.
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Similarly, the average emission rate for the CW type trap can be extended
as

〈enF 〉
en0

=

U∑
µ=L

χµ exp
{
δEµ
kBT

}
∑
µ
χµ

[
exp

{
δEPFi
kBT

}

+
Eµ/kBT∫

δEPF
i

/kBT

dξ exp
{
ξ − ξ3/2

(
4
√

2m∗e(kBT )3

3eq~F

)[
1−

(
δEPFi
ξkBT

)5/3]}]
(2.48)

In Eq. (2.48), the barrier lowering
(
δEPFi = eq

√
eqF/πεrε0

)
[47], responsible

for the Poole-Frenkel mechanism is unvaried with respect to the described effects.
In the expression of δEPFi , εr and ε0 represent the relative permittivity of the
host material at high frequency and the vacuum permittivity, respectively.

The average emission rates of Eqs. (2.47) and (2.48) are applied to the Cr
acceptor impurity [47] with σn0 = 10−14cm2 in GaAs (see Fig. (2.14)(a)). This
trap is configured as SW and CW

(
−Ze2

q/4πεrε0 |x|
)
with Z = 1, εGaAs

r = 12.9ε0.
The ionization energy of this impurity in GaAs is 0.8 eV and is considered
to be the ground state of an isolated trap (Ei = 0.8 eV) [47]. Therefore, the
SW is described with an approximately one lattice constant (0.6 nm) wide and
2.4 eV deep configuration, while the CW is configured as a 0.6 nm wide at the
bottom and 2.8 eV deep hydrogenic well. Fig. (2.14) replicates the results of
phonon-assisted emission rates [47] at room temperature (300K), superimposed
with the average emission rates of Eqs. (2.47) and (2.48). Considering only
the impact of the level shift first (replacing the summation of µ with Max in
Eq. (2.47)), the average emission rates are marginally impacted compared to the
emission rates of the fixed Cr level for the SW (dotted violet and green emission
line in Fig. (2.14)). The combined effect of level shift and spectral broadening
can further enhance the average emission rates for both trap configurations.
This increase in average emission rates is most pronounced in the high-field
region and is negligible below 1 MV/cm.

The enhanced average emission rates above 1 MV/cm field strengths in
Fig. (2.14) suggest that the approximation of constant field-enhanced factor
between the emission rates and the carrier density of states, used in the Hurkx’s
TAT model discussed in Section 1.5.1, can no longer be accurate in determining
TAT currents, because the field enhanced carrier density of state equation has a
similar formula as the field dependent emission rate[47], when it does not account
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Figure 2.14: (a) The Cr acceptor type trap configured as a SW and CW,
(b)Replication of the emission rates outlined in Ref.[47] on a different scale,
along with the derived intrinsic impact of the field on the emission rates. The
field effects are reflected as the increase in the average emission rates as can be
seen from the level shift-only (dot) and the spectrum based solid lines.

for the field-induced broadening and level shift. However, in Schenk’s TAT
model discussed in Section 1.5.2, there is a provision to include field-induced
level shift and broadening by retaining the electric field term in the description
of the trap state Eq. (1.10), which could result in a local density of trap states
in contrast to the assumed single bound state.

The emission rate equations Eqs. (2.47) and (2.48) are limited to the
triangular and hyperbolic barriers, respectively. In addition to this, the effective
density of states into which the trap states can leak is assumed to be an abundant
continuum of free states. However, the oxide-traps in a MOS capacitor system
experience finite-width trapezoidal-like barrier structures. This example is
illustrated in Fig. (2.15). For a SW-type oxide trap configuration of Fig. (2.15),
the trapezoidal barrier can be treated as the combination of a triangular-type
barrier and a fixed-width barrier. This results in the following emission rate



56 IMPACT OF HIGH ELECTRIC FIELD ON TRAPS IN SEMICONDUCTORS AND OXIDES

Figure 2.15: Graphical illustration of the field enhanced emission mechanism
in a finite-width barrier type structure. The trapezoidal barrier is treated as a
combination of a fixed-width type and a triangular-type barrier with a common
thermal ionization energy Er.

expression for a fixed trap level [47]:

enF
e∞n

= exp
{
−Ei
kBT

} 1 +
Er/kBT∫

0

dξ exp
{
ξ − ξ3/2

(
4
√

2m∗e(kBT )3

3eq~F

)}

+ exp
{
−Ei
kBT

}  Ei/kBT∫
Er/kBT

dξ exp
{
ξ −

(
ξ + eqFLt

2kBT

)1/2
(

2Lt
√

2m∗ekBT
~

)}
(2.49)

where Lt is the tunneling length for a fixed-width barrier, Er is the energy at
which the triangular barrier changes into a fixed-width barrier (see Fig. (2.15))
measured from the oxide conduction band edge and at the center of the trap.
The first integral of Eq. (2.49) corresponds to the emission through a triangular-
type barrier. The emission through a fixed-width barrier is given by the second
integral term of Eq. (2.49). This fixed-width barrier emission is based on the
standard WKB-approximation for the tunneling probability through a finite
barrier. In this integral term, the tunneling through a barrier is assumed to
occur with an average imaginary wavevector (Kav

i in Fig. (2.15)) corresponding
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to the value of the imaginary wavevector at the center of the barrier. The
field-induced level shift and the broadening is now added into Eq. (2.49) and
results in the following average emission rate:

〈enF 〉
e∞n

=

U∑
µ=L

χµ exp
{
−Eµ
kBT

}
∑
µ
χµ

×


1 +

Er/kBT∫
0

dξ exp
{
ξ − ξ3/2

(
4
√

2m∗e(kBT )3

3eq~F

)}

+

 Eµ/kBT∫
Er/kBT

dξ exp
{
ξ −

(
ξ + eqFLt

2kBT

)1/2
(

2Lt
√

2m∗ekBT
~

)}
 (2.50)

Note that Eq. (2.50) is used for finding the oxide trap emission rates which
exhibit level broadening at zero-field condition, whereas Eqs. (2.47) and (2.48)
assume a sharp trap level for the semiconductor traps at zero-field condition.

The field dependent average emission rates based on Eq. (2.50) for the oxide
traps of PolySi/SiO2/p−Si and Al/HfO2/In0.53Ga0.47As MOSCAP structures
with σn0 = 10−15cm2 at 300K are shown in Fig. (2.16). The lower and the
upper branch of each of the emission rate lines in Fig. (2.16) correspond to
respectively the depletion and the accumulation electrostatic domains of the
considered MOSCAP structures and reflects the impact of the effective barrier
width towards the substrate. The different cases of the trap configuration are
identical to the ones of Figs. (2.10), (2.11) and (2.12). Comparison with the
fixed-trap level emission rate (determined with Eq. (2.49)) shows negligible
difference (which is not visible on the order of magnitude of Y-axis limits),
implying that the level shift and broadening have a negligible impact in the
considered parameter space.

From Fig. (2.16), the typical decrease of average emission rate with the
increase in trap energetic depth can be noticed. For the case of varying distance
of the trap level from the SiO2/ p−Si interface, the increase in emission rates
with the decrease in barrier width is quite apparent in this figure. The effect
of the decrease in tunneling length tends to decrease the split between the
accumulation and depletion branches of emission lines. Additionally, it is found
that an around 5% increase in average emission rate for the HfO2 trap compared
to that of SiO2, which can be related to the correspondingly lower effective
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Figure 2.16: Electric field dependent average emission rates at 300K
as a function of oxide electric field strengths for different instances of the
0.5 nm-wide SW oxide-trap configuration in the PolySi/SiO2/Si and the
Al/HfO2/In0.53Ga0.47As MOSCAP systems. The increase in the average
emission rates for MOSCAP systems is negligible in comparison with that
of semiconductors.

mass in Eq. (2.50). Also for the HfO2 MOSCAP configuration, the differences
in the trap level shift and broadening (see Fig. (2.12)) have a negligible impact
on the emission rates.

Even though the emission rate model (Eqs. (2.49) and (2.50)) has the
potential to include any trap-type configuration, it lacks the ability to account
for the relaxation effects [75, 46, 73] associated with the trapping dynamics.
However, this study provides a reference framework for the expected level shifts
and broadenings, which could be incorporated into the effective capture and
emission barrier heights in models including the relaxation effects [75, 46, 73].
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2.5 Conclusions

In this chapter, we explored the implications of high electric fields on
the characteristic trap energy level. We defined the normalization method to
circumvent the problem of unphysical wavefunction amplitudes at the trap
location due to the complex part of the spectral energy states. For the planar
semiconductor and oxide traps in a one-dimensional structure, we outlined the
numerical procedure to capture the field-induced level broadening, which is
typically hundreds of meV for the former and tens of meV for the latter at
electric fields of 2 MV/cm. The amount of broadening is sensitive to the chosen
trap configuration and may have a quantitative impact on the calculation of
the TAT current in the existing NEGF-based TAT models.

The field effects are implemented in the existing semi-classical emission
rate formalism. We found that the field-induced quantum effects can increase
the emission rates of a semiconductor trap level at high electric field, while the
impact for the oxide traps is much smaller due to the higher effective mass and
higher barrier heights than those in the former. The field-induced quantum
effects for the trap level and the associated emission rates enhancement in a
semiconductor device depend on the combined influence of the field strength,
trap charge state (neutral, donor or acceptor trap), trap position, tunneling
barrier type and the host material parameters. It is expected that the broadening
predicted in our chapter will impact the TAT current calculations of the existing
semi-classical TAT models and therefore, a more rigorous QM based calculation
of TAT is required.

The key findings of this chapter have been published in Journal of Applied
Physics [1].





Chapter 3

Phonon-assisted tunneling
current formalism

In the previous Chapter 2, we presented a comprehensive study of the
impact of electric field-induced quantum effects on the traps and on their
emission rates. We determined that the traps in semiconductors and in oxides
exhibit a trap level shift, which depends on the barrier type. We further
presented that the traps exhibit a trap-level broadening due to the tunneling
of the wavefunctions into the continuum states of the lower potential region.
Consequently, these effects increase the emissions rate of a semiconductor trap,
specifically at operating electric fields of TFETs, and suggest for the modification
of existing TAT models to accurately calculate the TAT currents. Owing to such
importance of quantum effects on traps, a quantum-mechanical based model of
TAT is required. Since phonon-assisted tunneling (PAT) is an essential element
in the TAT process in a semiconductor devices, it can be studied separately,
while assuming the absence of traps in the devices studied. As an initial step
towards an accurate description of TAT in semiconductor devices, we therefore
present in this chapter, a formalism to calculate the phonon-assisted tunneling
(PAT) current, specifically for bi-dimensional semiconductor devices having two
finite dimensions and an infinite third dimension.

In literature, there are different frameworks of determining quantum
transport in semiconductor devices, such as the Landauer-Büttiker method,
Fermi’s Golden rule, the density matrix approach and others. In the Landauer-
Büttiker method, the transport is determined with the effective transmission
probability of a carrier injected from an initial to a transmitted final state,
whereas Fermi’s Golden rule determines the transport with the effective

61
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transition rates (from an initial to a final state). Although both of these
frameworks are similar, they are incomplete as these frameworks need not
necessarily include all the transition (interaction/scattering) processes. However,
these frameworks can be made complete by invoking the remaining transition
processes. For instance, these frameworks would require the additional terms
to account for the opposite PAT currents from final to initial state, and in
turn these frameworks would require the prior knowledge of all transition
inducing processes. In the density matrix approach, the transport (an observable
quantity) is determined from the statistical averages of the corresponding
quantum-mechanical operator, whereby the operator intrinsically includes all
transition inducing processes and makes the framework complete. Among
all the aforementioned frameworks, we prefer the density matrix approach in
formulating the PAT current density equation, due to its advantageous complete
framework and possible future extensions. In this chapter, we therefore present
the formulation of PAT current density based on the density matrix approach.

The structure of this chapter is as follows: we begin with the introductory
theory of many-particle physics to determine the statistical average of an
observable quantity in Section 3.1, which is essential in the formulation of the
PAT current equation in the subsequent sections of this chapter. In Section 3.2,
we derive the PAT current in the framework of second quantization, while
applying the quantum transmitting boundary method (QTBM) approximation.
Section 3.3 details the calculation of the electron-phonon coupling strength for
direct-bandgap materials in the framework of the envelope function description
of wavefunctions, in which we apply the low phonon wavevector approximation
for direct-bandgap materials. We determine the PAT current density equation
for bi-dimensional semiconductor structures in Section 3.4. Section 3.5 briefly
discusses the numerical implementation of the formalism followed by conclusions
in Section 3.6.

3.1 A many-particle description of electrons and
phonons

Since we will formulate the PAT current equation while using the QTBM
approximation, in particular the injection of electrons will be considered from
the semi-infinite contacts into the active region, it is necessary to determine
the statistical average of the single-electron or single-phonon state occupation
number operator in these contacts. For this purpose, we present the system of
non-interacting electrons and free phonons in this section.

Some of the formalism described in this chapter make use of the equilibrium
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statistical mechanics. We refer readers who are not familiar with the theoretical
concepts of equilibrium statistical mechanics. such as Fermi-Dirac and Bose-
Einstein statistics in the framework of grand canonical ensemble, to Appendix
B for a brief introduction.

3.1.1 System of non-interacting electrons

To determine the statistical average of a single-electron state occupation
number in the contacts, we first characterize these contacts as a system of N
electrons. In general, the equation of motion of a N -electron system is described
by the following N -electron Schrödinger equation [76],

Hel(r1, r2, . . . , rN )Ψϑ1,ϑ2,...,ϑN (r1, r2, . . . , rN )

= E Ψϑ1,ϑ2,...,ϑN (r1, r2, . . . , rN ) (3.1)

where Hel denotes the N -electron Hamiltonian operator, Ψ represents the N -
electron eigenfunction and rj , ϑj are the position and the quantum (energy)
state of jth electron, respectively. The probability distribution as a function
of the above representation of the N -electron wavefunction describes that an
electron, which is in the quantum state ϑ1, is probably located at position r1
and so on. In Dirac’s bra-ket notation, the N -electron wavefunction is defined
by [76],

Ψϑ1,ϑ2,...,ϑN (r1, r2, . . . , rN ) = 〈r1, r2, . . . , rN |ϑ1, ϑ2, . . . , ϑN 〉 (3.2)

Here, the N -electron wavefunction obeys the principle of indistinguishability of
identical fermions, in which the wavefunction is antisymmetric under particle
exchange (by interchanging either the two indices of position or of quantum
state). It also obeys the Pauli exclusion principle, in which no two electrons can
occupy the same state. In QTBM, where the contacts are usually described by a
constant potential and the electrons in these contacts are characterized by plane
wave like wavefunctions, we assume that the electrons under these conditions
can be treated as non-interacting particles. For such a non-interacting electron
system, the N -electron Hamiltonian splits into single-electron operators as [76]:

Hel(r1, r2, . . . , rN ) =
N∑
j=1

Hel(rj) (3.3)

whereby Hel denotes the single-electron Hamiltonian operator. Correspondingly,
the N -electron wavefunction is simplified as the following product of single-



64 PHONON-ASSISTED TUNNELING CURRENT FORMALISM

electron eigenfunctions of Hel.

Ψϑ1,ϑ2,...,ϑN (r1, r2, . . . , rN ) =
N∏
j=1

ψϑj (rj) ; E =
N∑
j=1

Eϑj (3.4)

where ψϑj (rj) is the single-electron eigenfunction of Hel. From Eq.(3.4), the
total energy is determined as the sum of the eigen energies of Hel. Note that the
above representation of the N -electron wavefunction (Eqs. (3.2)-(3.4)), which
is known as the state representation or first quantization formalism, is rather
cumbersome to work with in practice. An alternative and succinct way of
representing the N -electron wavefunction, known as the occupation number
representation or second quantization formalism, incorporates the essential
information of many-electron states and is practically convenient to solve the
N -electron system in question. We make a clear distinction between these two
representations by introducing a “hat” over the operators in the occupation
number representation. Therefore, the N -electron system can be equivalently
represented by the following occupation number representation, in which the
occupation number of the single-electron states rather than the quantum states
themselves are used to describe the system [76]:

|ϑ1, ϑ2, . . . , ϑN 〉 ≡ |n1, n2, . . .〉 (3.5)

Note that the ordering of single-state occupation numbers in Eq. (3.5) is
always arranged in accordance with the ascending order of the quantum states.
Moreover, to conserve the total number of electrons, Eq. (3.5) must fulfill the
following condition,

∞∑
ϑ=1

nϑ = N (3.6)

where N is the number of electrons and nϑ is the occupation number of a
particular single-electron state ϑ, which can either be 0 or 1 depending on
whether the state is unoccupied or occupied (from Pauli’s principle). Note
that in contrast to Eqs. (3.3) and (3.4), the index in Eq. (3.6) counts over all
single-electron states, and no longer over all electrons. In occupation number
representation, the number of electrons N in a given system can be described
by [76]

N̂el |n1, n2, . . .〉 = N |n1, n2, . . .〉 withN =
∞∑
ϑ=1

nϑ (3.7)

Since the occupation number nϑ of a particular single-electron state ϑ in Eq. (3.7)
is also an observable quantity, it can be defined by the occupation number
operator by the following equation [76],

n̂ϑ |n1, n2, . . .〉 = nϑ |n1, n2, . . .〉 with nϑ = 0, 1 (3.8)
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Subsequently, the equation of motion of the non-interaction system of electrons
(Eq. (3.1)) can be described in the following occupation number representation,

Ĥel |n1, n2, . . .〉 = E |n1, n2, . . .〉 with E =
∞∑
ϑ=1

Eϑnϑ (3.9)

Note that the occupation number vector |n1, n2, . . .〉 is a simultaneous
eigenvector of Eqs. (3.7)-(3.9) and must satisfy the following orthonormality
condition, as the two state vectors are identical if and only if all the occupation
numbers nϑ are equal.

〈n′1, n′2, . . .|n1, n2, . . .〉 = δn′
1,n1

δn′
2,n2

. . . (3.10)

Until now, we described the single-electron state occupation number operator.
To find the statistical average of a single-electron state occupation number,
which is presented in Appendix B, we first describe the method of determining
the statistical average of any observable quantity in the next subsection.

Statistical average of an observable

In this subsection we first present the approach of finding the statistical
average of any observable quantity in state representation followed by the
detailed description in the occupation number representation. In quantum
statistics and considering a system of non-interacting electrons, the statistical
average of any observable quantity, described by the operator O in state
representation, is determined from the following average of its quantum
mechanical expectation values weighted with the probabilities [76] %{ϑj},{ϑ′

j}:

〈O〉 =
∑

ϑ1,ϑ2,...,ϑN

∑
ϑ′

1,ϑ
′
2,...,ϑ

′
N

%{ϑj},{ϑ′
j} 〈ϑ

′
1, ϑ
′
2, . . . , ϑ

′
N |O |ϑ1, ϑ2, . . . , ϑN 〉

(3.11)
where the set {ϑj} accounts for all N -electron states. In Eq. (3.11), the density
matrix elements %{ϑj},{ϑ′

j} represent the probabilities with which the quantum
mechanical expectation values (〈ϑ′1, ϑ′2, . . . , ϑ′N |O |ϑ1, ϑ2, . . . , ϑN 〉) contribute
to the statistical average and are determined from “%” (also known as statistical
operator, % will be determined at the end of this subsection) [76],

%{ϑj},{ϑ′
j} = 〈ϑ1, ϑ2, . . . , ϑN | % |ϑ′1, ϑ′2, . . . , ϑ′N 〉 (3.12)

Substituting Eq. (3.12) into Eq. (3.11) and using the following completeness
property of eigen functions of Eq. (3.4) (also known as resolution of identity),

I =
∑

ϑ′
1,ϑ

′
2,...,ϑ

′
N

|ϑ′1, ϑ′2, . . . , ϑ′N 〉 〈ϑ′1, ϑ′2, . . . , ϑ′N | (3.13)
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the statistical average of an observable is simplified as the diagonal sum of the
QM expectation values of the observable quantity correspondingly multiplied
with the statistical probabilities, which is as follows:

〈O〉 =
∑

ϑ1,ϑ2,...,ϑN

〈ϑ1, ϑ2, . . . , ϑN | %O |ϑ1, ϑ2, . . . , ϑN 〉 ≡ Tr (%O) (3.14)

In Eq. (3.14), the diagonal sum of expectation values is identified with a Trace
operator.

In occupation number representation, the statistical average of an
observable can similarly be derived and simplified using Eqs. (3.5), (3.11)-
(3.14). This results in:

〈Ô〉 =
1∑

n1,n2,···=0
〈n1, n2, . . .| %̂Ô |n1, n2, . . .〉 ≡ Tr

(
%̂Ô
)

(3.15)

where
(

1∑
n1,n2,···=0

)
represents the abstract notation for

( 1∑
n1=0

1∑
n2=0

. . .

)
. In

general, the Gibbs entropy of a system is obtained from the density matrix
operator %̂ by,

S = −kBTr (%̂ log %̂) (3.16)
where kB is the Boltzmann constant. In a grand canonical ensemble, the total
number of electrons is not fixed, and instead it can vary by the exchange
of particles with an external reservoir characterized by a constant chemical
potential µ. In this framework, the density matrix (in occupation number
representation) is obtained by maximizing the entropy of Eq. (3.16) [76] with
the following constraints:

〈Nel〉 = Tr
(
%̂N̂el

)
〈E〉 = Tr

(
%̂Ĥel

)
(3.17)

such that the average energy and the average particle number have a fixed value
under constant temperature T and chemical potential µ, respectively. With
these constraints, the density matrix operator can be written as:

%̂el =
exp

{
−Γ
(
Ĥel − µN̂el

)}
Zel

(3.18)

whereby Γ = 1/kBT , T is the temperature and Z is the grand canonical
partition function which ensures the conservation of the statistical probabilities
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(Tr (%̂) = 1) described by

Zel = Tr
(
exp

{
−Γ
(
Ĥel − µN̂el

)})
(3.19)

Therefore, the statistical average of an observable, in occupation number
representation, can be obtained by using Eqs. (3.15), (3.18) and (3.19), which
is fully described in Appendix B.

3.1.2 System of free phonons

In the framework of the grand canonical ensemble, the statistical average
of a single-phonon (energy) state occupation number is determined in a similar
way as it is for electrons. For the free phonons system, the equation of motion
is described in the occupation number representation as [76]

Ĥph |m1,m2, . . .〉 = Eph |m1,m2, . . .〉 (3.20)

where Eph is the eigen energy of the free phonons system whereas the
Hamiltonian (of the free phonons system) splits into the summation over
the single-phonon Hamiltonian operators, which is described in the state
representation as follows:

Hph(Q1,Q2, . . . ,QM ) =
M∑
j=1

Hph(Qj) (3.21)

whereby Qj denotes the normal coordinate representing an independent
vibrational mode of the lattice with wavenumber j, which is known as a normal
mode. The eigen energy (Eph) of the free phonons system is simplified as
the summation of the single-phonon eigen energies, which is described in the
following equation. The occupation number of a single-phonon state λ counts
over all the natural numbers, which is due to the fact that the free phonons
wavefunction satisfy the principle of indistinguishability of identical bosons, in
which the wavefunction remains symmetric (unchanged) upon the exchange of
any two phonon states [76]. In other words, the principle describes that more
than one phonon can occupy the same single-phonon state.

Eph =
∞∑
λ=1

Eλmλ ; M =
∞∑
λ=1

mλ ; mλ = 0, 1, 2, . . . (3.22)

Similar to electrons, we are interested in determining the statistical average of
a single-phonon state occupation number. It can be determined with Eq. (3.15),
while using Eqs. (3.20) and (3.22), which is presented in Appendix B.
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3.2 Derivation of the PAT current equation

In this section, we first present the system of electrons and phonons in
the framework of second quantization followed by the application of the QTBM
approximation. To allow for simulations of PAT current in III-V devices, we
follow the framework of Zener tunneling in indirect-bandgap semiconductors,
proposed by Vandenberghe etal. [77], to formulate the PAT current equation.
However, there are some essential differences between our formalism and the
formalism of Vandenberghe [77]. Vandenberghe works with uncoupled valence
and conduction bands, this is: the effective mass approximation has been used.
Since we work with a coupled-band system, it is not possible to use the same
split-up in valence and conduction band electrons, as Vandenberghe did. Instead,
we split the system of non-interacting electrons into subsystems of the left and
the right contact electrons, while imposing QTBM in the contacts. Moreover,
we include the phonon dispersion in formulating the PAT current equation
(later in Section 3.3), in contrast to the presumed negligible phonon dispersion
in Ref. [77].

For a system of non-interacting and boosted electrons, which is a system of
non-interacting electrons under the influence of externally applied voltage, the
many-electron Hamiltonian in the framework of second quantization is defined
by [78]

Ĥel =
∫

dr ψ̂†(r)Hel ψ̂(r) (3.23)

whereby Ĥel denotes the second quantization description of the many-electron
HamiltonianHel and Hel represents a single electron Hamiltonian, which includes
external electrostatic potential profiles. Note that we are not introducing
a different description of the many-electron Hamiltonian, as the second
quantization description of Eq. (3.23) is equivalent to the many-electron
Hamiltonian of Eqs. (3.3) and (3.4). An operator that creates an electron
at a particular point in space rj for the system of non-interacting electrons
(Eq. (3.3)) is defined in second quantization as [78]

ψ̂†(rj) =
∑
ϑj

ĉ†ϑjψ
∗
ϑj (rj) (3.24)

where the operator ψ̂†(rj) is also known as electron field operator and represents
a many-electron wavefunction. Similarly, an operator that annihilates an
electron at a particular point in space rj is defined as follows [78]:

ψ̂(rj) =
∑
ϑj

ψϑj (rj)ĉϑj (3.25)
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where ĉ†ϑj , ĉϑj in Eqs. (3.24) and (3.25) correspond to the creation and
annihilation operators for an electron in the ϑth

j state, respectively, and are
defined by the inverse transformation of Eqs. (3.24) and (3.25) as:

ĉ†ϑj =
∫

drjψϑj (rj)ψ̂
†(rj)

ĉϑj =
∫

drjψ∗ϑj (rj)ψ̂(rj) (3.26)

where ψϑj
(rj) refers to the ϑth

j state single-electron wavefunction. Note that
the electron creation and annihilation operators must fulfill the following anti-
commutation relations, which manifest themselves the antisymmetric nature of
the many-electron wavefunction which results from fulfilling Pauli’s exclusion
condition and the principle of identical fermions indistinguishability [78].{

ĉϑi , ĉ
†
ϑj

}
= δϑiϑj ;

{
ĉϑi , ĉϑj

}
= 0 ;

{
ĉ†ϑi , ĉ

†
ϑj

}
= 0 (3.27)

where the indices ϑi , ϑj can denote any single-electron state. Using
Eqs. (3.7), (3.8) and (3.26), the second quantization description of the electron
number operator defined in Eq. (3.7) is given by [78]

N̂el =
∑
ϑj

ĉ†ϑj ĉϑj ≡
∑
ϑj

n̂ϑj (3.28)

where n̂ϑj represents the second quantization definition for the single-electron
state occupation number.

The second quantization Hamiltonian for the system of free phonons is
described by [78]

Ĥph =
∑
qν

~ωqν â
†
qν âqν (3.29)

where qν and ωqν are the phonon wavevector and frequency of a particular
ν-branch, respectively. The index ν in Eq. (3.29) specifies the polarization
vector (longitudinal : εqν ‖ q) or (transversal : εqν ⊥ q) as well as the phonon
branch (acoustic or optical). The phonon creation and annihilation operators
in Eq. (3.29) satisfy the canonical commutation relations, which are defined
as [78]:[

âq1ν1
, â†q2ν2

]
= δq1q2δν1ν2 ;

[
âq1ν1

, âq2ν2

]
= 0 ;

[
â†q1ν1

, â†q2ν2

]
= 0 (3.30)

Similar to Eq. (3.28), the second quantization description of the phonon number
operator is [78]

M̂ =
∑
qν

â†qν âqν ≡
∑
qν

m̂qν (3.31)
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Figure 3.1: A schematic representation of a QTBM approximation, redrawn
from Ref. [79].

where m̂qν denotes the second quantization definition for the single-phonon
state occupation number. We so far presented the description of a system of
non-interacting boosted electrons and free phonons in the context of second
quantization. In the next subsection, we formulate the PAT current equation
by applying the QTBM approximation.

A QTBM approximation

In QTBM [80], an electron (energy) state consists of a mode which is
injected from either of the two semi-infinite contacts into the active region
(refer to Fig. (3.1)) and which results in the reflection and the transmission
of the injected electron. Therefore, the state also comprises all the reflected
and the transmitted modes corresponding to the injected mode. However, we
identify a single-electron state with the wavevector k of the injected mode and
then split up the complete set of the electron states of the non-interacting
electron system in an α-set and a β-set, which correspond to the electron
states identified with the eigenstates of the left and right contacts, respectively.
These eigenstates therefore correspondingly determine the right-traveling (kα)
and the left-traveling (kβ) injected electron plane waves together with all the
corresponding reflected and transmitted modes. Substituting Eq. (3.24) in
Eq. (3.23) and including the possible combinations of creation and annihilation
operators for both contacts, while keeping in mind that all the electron states
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identified with eigenstates in the same contact are orthonormal (〈α|α′〉 = δαα′)
[81] and in different contacts are orthogonal (〈α|β〉 = 0), results in the following
Hamiltonian description of the system of the non-interacting electrons:

Ĥel =
∑
α

Eαĉ
†
αĉα +

∑
β

Eβ ĉ
†
β ĉβ = Ĥα + Ĥβ (3.32)

where Eα and Eβ in Eq. (3.32) correspond to the solutions of a single-electron
Schrödinger equation in the left and the right contact, respectively. The
electrons in each of the two contacts are exchanged with an external reservoir,
which is in equilibrium, thereby fixing the electro-chemical potential of these
contacts [80, 79].

The second quantization Hamiltonian for the system of both non-
interacting electrons and free phonons is described by a linear combination of
the system of non-interacting electrons and free phonons [78],

Ĥ0 = Ĥel + Ĥph (3.33)

Since we are interested in the statistical average of the PAT currents resulting
from a time-dependent perturbation, as will be discussed later, we also describe
the density matrix of the system of electrons-phonons in the framework of
the grand canonical ensemble. As mentioned in Section 3.1.1 (Eq. (3.14)),
the density matrix allows to readily determine the statistical average of an
observable. For the combined system of non-interacting electrons and free
phonons, while µphM̂ph is approximately zero for the system of free phonons,
the density matrix in the framework of the grand canonical ensemble can be
determined from the generalization of Eq. (3.18) and results as:

%̂ =
exp

{
−Γ
(
Ĥel − µN̂el + Ĥph

)}
Tr
(
exp

{
−Γ
(
Ĥel − µN̂el + Ĥph

)}) (3.34)

With the QTBM approximation, where we split the system of non-interacting
electrons into subsystems of the left and the right contact electrons (Eq. (3.32)),
and with the application of the particle number conservation, the total electron
number operator (described by N̂el) can also be separated into the combination
of the left

(
N̂el,α

)
and the right contact

(
N̂el,β

)
electron number operators

while characterized by the respective density matrices with electro-chemical
potentials µα and µβ . With these approximations, the density matrix of the
combined system of non-interacting electrons and free phonons is given by [77],

%̂0 =
exp

{
−Γ
(
Ĥα − µαN̂el,α + Ĥβ − µβN̂el,β + Ĥph

)}
Z

(3.35)
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where µα and µβ represent the electro-chemical potential of the left contact and
the right contact, respectively, and the electron number operators N̂el,(α,β) are
defined in accordance with Eq. (3.28) by replacing (ϑj = α, β). In Eq. (3.35),
while applying the assumption of non-interacting electrons and phonons, the
partition function is defined by [77]

Z = Tr
(
exp

{
−Γ
(
Ĥα − µαN̂el,α + Ĥβ − µβN̂el,β + Ĥph

)})
= Tr

(
exp

{
−Γ
(
Ĥα − µαN̂el,α

)}
⊗ exp

{
−Γ
(
Ĥβ − µβN̂el,β

)}
⊗ exp

{
−Γ
(
Ĥph

)})
(3.36)

Subsequently, the density matrix of the combined system of non-interacting
electrons and phonons reduces to the direct product of the density matrices
of electrons and phonons, while using the identity Tr (A1 ⊗A2 ⊗A3) =
Tr (A1)Tr (A2)Tr (A3), as follows:

%̂0 =

 exp
{
−Γ
(
Ĥα − µαN̂el,α

)}
Tr
(
exp

{
−Γ
(
Ĥα − µαN̂el,α

)})


⊗

 exp
{
−Γ
(
Ĥβ − µβN̂el,β

)}
Tr
(
exp

{
−Γ
(
Ĥβ − µβN̂el,β

)})
⊗

 exp
{
−Γ
(
Ĥph

)}
Tr
(
exp

{
−Γ
(
Ĥph

)})
 (3.37)

In abstract form, it is written as

%̂0 = %̂el ⊗ %̂ph ≡ %̂α ⊗ %̂β ⊗ %̂ph (3.38)

In the framework of perturbation theory, the electron-phonon interactions
are introduced by adding the electron-phonon interaction Hamiltonian to the
combined system of Eq. (3.33), which is defined in second quantization by [77, 78]

Ĥint =
∑
αβ
qν

[
gαβqν ĉ

†
β ĉα

(
âqν + â†−qν

)]
+
[
g∗αβqν

(
â†qν + â−qν

)
ĉ†αĉβ

]
(3.39)

where gαβqν denotes the electron-phonon coupling (EPC) strength related to the
interband transitions mediated by electron-phonon interactions (see Section 3.3).

The steady-state phonon-assisted current can be calculated by taking the
statistical average of the rate of change of the number of electrons in either of the
contacts. As mentioned earlier, the number of electrons is given by the number
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operator (ϑj = α, β in Eq. (3.28)). In the framework of the density matrix
approach, the statistical average of the PAT current is therefore determined
by [77],

Iph = −eq lim
t→∞

[
d
dt

{
Tr
(
Ñα(t)%̃(t)

)}]
(3.40)

with “%̃(t)” representing the time-dependent density matrix and where we use
tilde over N and % as the notation to specify the time dependence of the number
and density matrix operators.

In Eq. (3.40), the electron-number operator Ñα(t) is independent of time
as it commutes with the Hamiltonian Ĥ0 and hence it reduces to N̂α (ϑj = α in
Eq. (3.28)). The density matrix is constructed by a recursive expansion of the
following von-Neumann equation [82], combined with iterative time integrations:

d
dt %̃(t) = − i

~

[
H̃int(t), %̃(t)

]
(3.41)

The perturbative approximation consists of taking the first-order expansion of
“%̃(t)” from Eq. (3.41) and is of the following form [83, 77]

%̃(1)(t) ≈ %̂0 −
i

~

∫ t

0
dt1
[
H̃int(t1), %̂0

]
(3.42)

where H̃int(t) represents the time-dependent electron-phonon Hamiltonian in
the interaction picture. Formally, an operator in the interaction picture, which
is a formalism often convenient for investigating the response of the system to a
perturbation (in our case, the electron-phonon interactions) and in which both
states and the operators gain time dependence, is defined by [77, 78]

Õ(t) = e

iĤ0t

~ Ôe

−iĤ0t

~ (3.43)

where H0 is the time-independent Hamiltonian for the combined system of
electrons and phonons of Eq. (3.33). From this general definition, the time-
dependent electron-phonon Hamiltonian in the interaction picture is described
by [77, 78],

H̃int(t) = e

iĤ0t

~ Ĥinte

−iĤ0t

~ (3.44)
To determine the current (Eq. (3.40)), first the density matrix (Eq. (3.42)) has
to be known, and for this, the interaction Hamiltonian (Eq. (3.44)) has to be
known. We start with the latter. Using Eq, (3.39), Eq. (3.44) is rewritten as

H̃int(t) =
∑
αβ
qν

gαβqν e

iĤ0t

~
[
ĉ†β ĉα

(
âqν + â†−qν

)]
e

−iĤ0t

~ + h.c. (3.45)
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Making use of the identity property of the exponential function of operators(
Î = exp(Ô)exp(−Ô)

)
, Eq. (3.45) is rewritten in the following form:

H̃int(t) =
∑
αβ
qν

gαβqν e

iĤ0t

~

ĉ†βe−iĤ0t

~ e

iĤ0t

~ ĉαe

−iĤ0t

~

e

iĤ0t

~
(
âqν + â†−qν

) e−iĤ0t

~ + h.c. (3.46)

From the definition of an operator in the interaction picture (Eq. (3.43)),
Eq. (3.46) reduces to the following form, where the creation and annihilation
operators obtain time dependence.

H̃int(t) =
∑
αβ
qν

gαβqν

[
c̃†β(t)c̃α(t)

(
ãqν(t) + ã†−qν(t)

)]
+ h.c. (3.47)

Formally, the equation of motion for the creation operator (in fact, any
operator) is described in the interaction picture by the first line of Eq. (3.49).
Making use of the interaction description of Eq. (3.43), subsequently by
Eqs. (3.33), (3.32), (3.29), the time-dependent creation operator in Eq. (3.47) is
rewritten as follows [78]:

i~
d

dt c̃
†
β(t) =

[
c̃†β(t), H̃0(t)

]

= e

iĤ0t

~
[
ĉ†β , Ĥ0

]
e

−iĤ0t

~

= e

iĤ0t

~

ĉ†β ,∑
α′

Eα′ ĉ
†
α′ ĉα′ +

∑
β′

Eβ′ ĉ
†
β′ ĉβ′ +

∑
q′ν′

~ωq′ν′ â
†
q′ν′ âq′ν′



× e
−iĤ0t

~ (3.48)
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Using the canonical commutator relations of Eq. (3.27) and Eq. (3.30), followed
by applying Eq. (3.43), Eq. (3.48) is simplified as follows [78]:

i~
d

dt c̃
†
β(t) = e

iĤ0t

~
∑
β′

Eβ′

[
ĉ†β , ĉ

†
β′ ĉβ′

]
e

−iĤ0t

~

= e

iĤ0t

~
∑
β′

−Eβ′ ĉ
†
βδββ′e

−iĤ0t

~

= −Eβe
iĤ0t

~ ĉ†βe

−iĤ0t

~

= −Eβ c̃
†
β(t) (3.49)

The solution of the above differential equation is simply given by [78]

d

dt c̃
†
β(t) = iEβ

~
c̃†β(t)⇒ c̃†β(t) = e

iEβt

~ c̃†β(0) ≡ e
iEβt

~ ĉ†β (3.50)

Therefore, the electron creation operator in the interaction picture (Eq. (3.50))
retains its character as a single-electron operator, with the time dependence as
only the additional phase factor. Similar to Eqs. (3.49) and (3.50), the rest of
the time-dependent single-particle operators of Eq. (3.47) can be derived, and
are [78]

c̃β(t) = e
−
iEβt

~ ĉβ ; ã†-qν(t) = e

i~ω-qνt

~ â†-qν ; ãqν(t) = e
−
i~ωqνt

~ âqν (3.51)

Substituting Eqs. (3.50) and (3.51) in Eq. (3.47) for the time-dependent single
particle operators results in the following expression for the time-dependent
electron-phonon interaction Hamiltonian in the interaction picture [77, 78]:

H̃int(t) =
∑
αβ
qν

[
gαβqν ĉ

†
β ĉα

(
âqν exp

(
i (Eβ − Eα − }ωqν) t

}

)

+â†−qν exp
(
i (Eβ − Eα + }ωqν) t

}

))]
+ h.c. (3.52)

After the derivation of the above time-dependent electron-phonon interaction
Hamiltonian, we return to the PAT current equation formulation. We first
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replace the time derivative of the density matrix operator in the PAT current
equation Eq. (3.40) with the von-Neumann Eq. (3.41). We then insert Eq. (3.42)
for the time-dependent density matrix operator, followed by applying the linear
mapping of the Trace. Subsequently, we remove the first term from the resulting
equation as it corresponds to zero-PAT current, and we finally apply cyclic
permutations under the Trace operation after rearranging the remaining term.
This results in [77]:

Iph = eq
}2 lim

t→∞

t∫
0

dt1 Tr
([[

N̂α, H̃int(t)
]
, H̃int(t1)

]
%̂0

)
(3.53)

Eq. (3.53) is simplified in a similar way as in ref. [77]. For example, the double
commutator in Eq. (3.53) results in numerous terms associated with various
interband transitions, which can be brought together efficiently after identifying
the non-zero terms with the help of Wick’s theorem [84]. The trace of one such
combination is Tr(ĉ†β1

ĉα1
âq1ν1

â†q2ν2 ĉ
†
α2
ĉβ2

%̂0) and it is evaluated by making use
of Eq. (3.38), while keeping in mind that the density matrix %̂0 describes the
system of noninteracting electrons and phonons, and subsequently applying sets
of Eqs. [(B.5), (3.28), (B.12)] and [(B.5), (3.31), (B.20)] [77],

Tr(ĉ†β1
ĉα1

âq1ν1
â†q2ν2

ĉ†α2
ĉβ2

%̂0) = Tr(ĉ†β1
ĉβ2

%̂β)Tr(ĉα1
ĉ†α2

%̂α)Tr(âq1ν1
â†q2ν2

%̂ph)

(3.54)

= δβ1β2fβ1(Eβ1)δα1α2 (1− fα2(Eα2))

× δq1ν1q2ν2

(
υ(}ωq1) + 1

)
(3.55)

The individual Trace operations in Eq. (3.54) are the statistical averages of the
single particle occupation number described in Sections 3.1.1 and 3.1.2, which are
characterized by Fermi-Dirac statistics for electrons and Bose-Einstein statistics
for phonons, respectively. Under steady state condition, the time-dependent
exponential factors in the PAT current equation are approximated with an
energy-conserving delta function, resulting in the following expression [77, 85].

Iph = 2πeq
}
∑
αβ

∑
qν
|gαβqν |2

×


fα(Eα) (1− fβ(Eβ)) υ(}ωqν) δ(Eβ − Eα − }ωqν)

− fβ(Eβ) (1− fα(Eα)) (υ(}ωqν) + 1) δ(Eβ − Eα − }ωqν)
+ fα(Eα) (1− fβ(Eβ)) (υ(}ωqν) + 1) δ(Eβ − Eα + }ωqν)
− fβ(Eβ) (1− fα(Eα)) υ(}ωqν) δ(Eβ − Eα + }ωqν)

 (3.56)
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The first and last term in Eq. (3.56) correspond to the current contribution due
to the excitation of an electron from an α state in the left contact to a β state in
the right contact, mediated by phonon absorption. The second and third term
refer to the phonon-emission current contribution running in opposite direction
between the same left and right state contacts. Therefore, Eq. (3.56) represents
the PAT current equation in the framework of the QTBM approximation. An
essential parameter of Eq. (3.56) is the electron-phonon coupling (EPC) strength
gαβqν , which will be calculated for the direct-bandgap materials in the next
section by using the envelope function theory for an electron wavefunction.

3.3 Electron-phonon coupling strength calculation

Formally, the electron-phonon coupling (EPC) strength gαβqν for a given
α and β electron state, which are correspondingly identified with the (electron)
wavevector kα and kβ of the injected modes, is given in Dirac’s bra-ket notation
by [86]:

gαβqν = 〈kβ |∆V |kα〉 ≡ 〈kα + q|∆V |kα〉 (3.57)

where the phonon state is identified with its wavevector q and ∆V represents
the first-order electron-lattice interaction potential defined by the first-
order change in the crystal lattice potential (Vc) due to the displacement(

∆Rj,ν
u,i = Rj,0

u,i −Rj,ν
u,i

)
of a j-th atom in the i-th unit-cell from its equilibrium

position Rj,0
u,i along the ν-direction, which is denoted as [87, 86]:

∆V =
∑
i,j,ν

∂Hel

∂Rj,ν
u,i

∆Rj,ν
u,i ≈

∑
i,j,ν

∂Vc

∂Rj,ν
u,i

∆Rj,ν
u,i (3.58)

In wavefunction approach, the generalized form of the electron-phonon coupling
strength equivalent to Eq. (3.57), while including the acoustic and the optical
phonon branch, for the homostructure is defined by [86]

gαβqν = Mqν

∫
dr ψ∗β(r)eiq.rψα(r) (3.59)

where Mqν can either represent the deformation potentials (corresponding to
contributions from the longitudinal (εqν ‖ q) as well as the transverse (εqν ⊥ q)
branch of both acoustic and optical phonons) or Fröhlich model of interaction
potential (with dominant contributions from the longitudinal (εqν ‖ q) branch
of the optical phonons). The exact calculation of Eq. (3.59) would require
the detailed knowledge of the electron wavefunctions, which in turn would
substantially increase the computational time. We therefore use the envelope
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function theory for the electron wavefunctions and subsequently apply the
low-phonon wavevector approximation for the direct-bandgap homostructure
device in Section 3.3.1. In Section 3.3.2, we present the derivation to calculate
EPC strength for the direct-bandgap heterostructure device, while using the
approximations similar to the homostructure calculation.

3.3.1 EPC strength for direct-bandgap homostructures

As mentioned earlier, the EPC strength in Eq. (3.56) for a given α and β
electron state is defined by Eq. (3.59), where Mqν refers to the bulk electron-
phonon coupling strength coefficient. Since the materials under study are
III-V semiconductors, the Fröhlich-interaction is the dominant electron-phonon
interaction. Therefore, Mqν in Eq. (3.59) is described by the following bulk
polar coupling strength:

Mqν = 1
|q|

√
2πe2

q}ωqν

Ω

(
1
ε∞
− 1
ε0

)
(3.60)

where q is the phonon wavevector, eq is the elementary charge, } is the reduced
Planck constant, ωqν is the polar optical phonon frequency with respect to either
the longitudinal or transverse branch, Ω is the semiconductor device volume, ε∞
and ε0 are the high frequency and static dielectric constants, respectively [88].
To make the EPC strength calculation computationally feasible, we first apply
the envelope function theory of electron wavefunctions followed by the low-
phonon wavevector approximation in accordance with the larger EPC strengths
at low wavevectors of the polar coupling (Eq. (3.60)).

Envelope function theory of electron wavefunction

In this approach, the α and β state’s wavefunctions of Eq. (3.59) are
expanded with the following envelope function approximation,

ψ∗β(r) =
∑
m

U∗m(r)F ∗βm(r) ; ψα(r) =
∑
m

Fαm(r)Um(r) (3.61)

whereby Fαm(r) are the slowly varying envelope functions, whose Fourier
components lie within the first Brillouin zone (1BZ), and Um(r) constitute
a complete set of orthonormal basis functions [89], where m represents the
band index. Substituting Eq. (3.61) in Eq. (3.59) results in the following EPC
strength expression.

gαβqν = Mqν
∑
mn

∫
dr U∗n(r)F ∗βn(r)eiq.rFαm(r)Um(r) (3.62)
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Replacing the position vector r by a linear combination of the unit cell vector
Ru and the lattice vector R, transforms the volume integral in the EPC strength
(Eq. (3.62)) into

r = Ru + R⇒
∫

dr =
∑
R

∫
Ωc

dRu (3.63)

whereby Ωc is the volume of the unit cell. Note that the above transformation
is only valid for crystalline materials. The EPC strength of Eq. (3.62) can
therefore be written as

gαβqν = Mqν
∑
mn

∑
R

×
∫
Ωc

dRu U
∗
n(Ru + R)F ∗βn(Ru + R)eiq.(Ru+R)Fαm(Ru + R)Um(Ru + R)

(3.64)

By making use of the lattice periodicity of the basis functions and assuming that
the envelope functions are constants over the unit cell, the basis and envelope
functions in Eq. (3.64) can be simplified in the following way

U∗n(Ru + R) = U∗n(Ru) ; Um(Ru + R) = Um(Ru)
F ∗βn(Ru + R) ≈ F ∗βn(R) ; Fαm(Ru + R) ≈ Fαm(R) (3.65)

The above simplification leads to the separation of envelope functions from
basis functions in Eq. (3.64) and the EPC equation can be rewritten as

gαβqν = Mqν
∑
mn

∑
R

F ∗βn(R)eiq.RFαm(R)
∫
Ωc

dRu U
∗
n(Ru)eiq.RuUm(Ru)

(3.66)
Note that the phonon wavevector in Eq. (3.66) is not necessarily restricted to
the first Brillouin zone.

A low- phonon wavevector approximation

Since the polar EPC strengths of Eq. (3.59) are significantly larger for the
smaller phonon wavevectors (Eq. (3.60)), we apply a low-phonon wavevector
approximation. This approximation further allows to fully exploit the efficient
use of the envelope function approximation of electron wavefunction [89], as
the initial and final electron states’ wavevectors will be nearly identical and the
Fourier components of their envelope functions will always lie within the 1BZ.
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Mathematically, this approximation implies eiq.Ru ≈ 1 in Eq. (3.66) which then
simplifies the EPC strength to:

gαβqν = Mqν
∑
mn

∑
R

F ∗βn(R)eiq.RFαm(R)
∫
Ωc

dRu U
∗
n(Ru)Um(Ru) (3.67)

Making use of the following orthonormality of basis functions,∫
Ωc

dRu U
∗
n(Ru)Um(Ru) = Ωcδnm (3.68)

the EPC strength is determined by the phonon-mediated overlap of same-band
envelope functions

gαβqν = MqνΩc
∑
n

∑
R

F ∗βn(R)eiq.RFαn(R) (3.69)

By the inverse transformation of the lattice vector
(∑

R
→ 1

Ωc

∫
dr
)
, we regain

the spatial dependence of the slowly varying envelope functions, and the EPC
strength becomes:

gαβqν = Mqν
∑
n

∫
Ω

dr F ∗βn(r)eiq.rFαn(r) (3.70)

Each phonon-wavevector consists of its individual components (q→ qx , qy, qz).
Considering a semiconductor device, with dimensions Lx (along the transport
x-direction), Ly (along the translational invariant y-direction), Lz (along the
confined z-direction), the envelope functions are of the following form

F ∗βn(r) = F ∗βn(x, z)e−ik
β
y y ; Fαn(r) = eik

α
y yFαn(x, z) (3.71)

Inserting Eq. (3.71) in Eq. (3.70) and solving for the integral along the y-
direction, simplifies the EPC strength to

gαβqν = Mqν

(
ei(k

α
y−k

β
y+qy)Ly − 1

)
(
i
(
kαy − k

β
y + qy

)) ∑
n

∫
Lx

dx
∫
Lz

dzF ∗βn(x, z)ei(qxx+qzz)Fαn(x, z)

(3.72)
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Figure 3.2: Schematic depiction of the injection of a single mode γα (open
circle) into a diode at an injection energy Eα, whereas the injection of modes γβ
at the same energy are shown for illustrative purpose. Redrawn from Ref. [90].

From Eq. (3.72), the absolute square of the EPC strength is

|gαβqν |2 = |Mqν |2
sin2 (((kαy − kβy + qy)/2)Ly)(

(kαy − k
β
y + qy)/2

)2

∑
n

∫
Lx

dx
∫
Lz

dz φnβαq(x, z)



×

∑
m

∫
Lx

dx′
∫
Lz

dz′ φnαβq(x′, z′)

 (3.73)

where φn
βαq(x, z) and φn

αβq(x ′, z ′) denote the overlap functions defined by

φnβαq(x, z) = F ∗βn(x, z)ei(qxx+qzz)Fαn(x, z) (3.74)

φnαβq(x′, z′) = F ∗αn(x′, z′)e−i(qxx
′+qzz′)Fβn(x′, z′) (3.75)

The PAT current of Eq. (3.56) involves the summation over all possible

phonon-wavevectors
(∑

qν
=
∑
q

∑
ν

)
. The phonon-wavevector component along

the (x, y)-directions can have a continuous range of values within the first
Brillouin zone, therefore the summations over (qx , qy) are converted into integrals
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( ∑
qx,qy

∑
ν
→ LxLy

4π2
∑
ν

∫
dqx

∫
dqy

)
. The confinement along the z-direction

splits electron sub-bands and retains the discrete nature of qz , as can be seen
from Fig. (3.2). The summation over qz disappears as the conservation of
momentum along the z-direction during the transition from the state α (kαz ) to
the state β

(
kβz
)
allows for only one value of qz . With these transformations,

Eq. (3.73) can be written as∑
qν
|gαβqν |2 =

LxL
2
y

4π2

∑
ν

∫
dqx

∫
dqy w(kαy − kβy + qy)Gαβν(qx, qy, kβz − kαz )

(3.76)
where w(kαy − kβy + qy) is the weight function defined by

w(kαy −kβy +qy) =

 sin (((kαy − kβy + qy)/2)Ly)(
(kαy − k

β
y + qy)/2

)
(sinc(((kαy − kβy + qy)/2)Ly)

)
(3.77)

whereas, the absolute square of EPC strength is given by

Gαβν(qx, qy, kβz − kαz ) = |Mqν |2
∑

n

∫
Lx

dx
∫
Lz

dz φnβαq(x, z)



×

∑
m

∫
Lx

dx′
∫
Lz

dz′ φnαβq(x′, z′)

 (3.78)

In the limit Ly →∞, the first factor in the weight function “w” (Eq. (3.77))behaves

like a delta function πδ
(

kαy − kβy + qy

2

)
. As a consequence, the second cardinal-

sine function only matters if kαy − kβy + qy = 0, which results in a value of one.
This simplifies the absolute square of the EPC strength in Eq. (3.76) to∑

qν
|gαβqν |2 =

LxL
2
y

2π
∑
ν

∫
dqx

∫
dqy δ(kαy − kβy + qy)Gαβν(qx, qy, kβz − kαz )

(3.79)
The inner integral over dqy in Eq. (3.79) is simplified by using the sifting identity
of the delta function, thereby resulting in the following summation of absolute
square of the EPC strength∑

qν
|gαβqν |2 =

LxL
2
y

2π
∑
ν

∫
dqx Gαβν(qx, kβy − kαy , kβz − kαz ) (3.80)
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where Gαβν(qx , kβy − kαy , kβz − kαz ) has an absolute square of the following
Fröhlich interaction coefficient:

Mqν = 1√
q2
x +

(
kβy − kαy

)2
+
(
kβz − kαz

)2

√
2πe2

q}ωqν

Ω

(
1
ε∞
− 1
ε0

)
(3.81)

Note that the summation of ν in Eq. (3.80) counts over all the possible
longitudinal and transverse branches of the polar optical phonon. Note that the
PAT current calculation will be continued in Section 3.4, after the extension
made to EPC strengths in the next Section 3.3.2.

3.3.2 EPC strength for direct-bandgap heterostructures

In this section, we present the calculation of an electron-phonon coupling
(EPC) strength in heterostructures, because TAT is found to be more
pronounced in these structures due to an excess of traps at the hetero-interface.
The framework of determining the EPC strength for the direct-bandgap
homostructure, presented in the previous Section 3.3.1, can eventually be
extended to direct-bandgap heterostructures. In comparison with the direct-
bandgap homostructure, the major change in determining the EPC strength
for the heterostructure will be due to the material dependent electron basis
functions. It is therefore required to derive an expression for the heterostructure
EPC strength from the beginning. In this section, we present the detailed
derivation of the EPC strength for the lattice-matched heterostructure followed
by a brief discussion of extending it to lattice-mismatched heterostructures.

To begin with, the EPC for the lattice-matched heterostructure can be
defined by,

gk→lαβqν = Mqν

∫
dr ψk,∗β (r)eiq.rψlα(r) (3.82)

where we arbitrarily assume that the materials in the left (α)- and the right
(β)-contacts are made up of l and k direct-bandgap semiconductors, respectively.
The α and β state’s wavefunctions are expanded, similar to the homostructure
derivation, with the following envelope function approximation as

ψk,∗β (r) =
∑
m

Uk,∗m (r)F k,∗βm(r) ; ψlα(r) =
∑
m

F lαm(r)U lm(r) (3.83)

where F lαm(r) and F kβm(r) are the envelope functions slowly varying over the
unit cell of the l and k materials, respectively. U lm(r) and Ukm(r) correspondingly
represent the l and k material’s electron basis functions. Note that the basis
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functions of one material U lm(r) are not the eigenfunctions of the other material
(k) of the heterostructure. We therefore apply the unitary transformation of
U lm(r) on to the chosen reference basis set Ukm(r), developed by Maarten Van
de Put et.al. [91], so that it allows for employing only one set of basis functions
over the whole heterostructure. The unitary transformation is defined as:

U lm =
∑
j

Sk→lmj U
k
j (r) (3.84)

where Sk→lmj represent the transformation matrix elements which are defined
by [91]

Sk→lmj =
∫

drUk,∗m (r)U lj(r) (3.85)

The transformation of Eq. (3.85) between the basis solutions of bulk
Hamiltonians of different materials can be obtained by the common eigenvalue
decomposition of inter-band momentum matrices Pl and Pk corresponding to
the l and k material, without knowing the exact basis functions [91]. In matrix
form, the transformation of Eq. (3.85) is constructed as:

Sk→l = Ql
†
Qk (3.86)

where Ql is the matrix containing common eigenvectors of Pl, Ql† its element-
wise complex conjugate and Qk the matrix containing common eigenvectors
of Pk. It is apparent from the EPC definition of Eq. (3.82) that it can be
convenient to expand the wavefunction for one of the materials in terms of
the basis of the other material by using the basis transformation of Eq. (3.84).
Therefore, we construct the envelope function expansion of the wavefunction for
the left contact in the basis of the right contact’s bulk-Hamiltonian solutions,
while using Eqs. (3.83) and (3.84), in the following way:

ψlα(r) =
∑
m

F lαm(r)U lm(r)

=
∑
m

F lαm(r)
∑
j

Sk→lmj U
k
j (r)

=
∑
m

∑
j

F lαm(r)Sk→lmj U
k
j (r) (3.87)

Substituting Eqs. (3.87) and (3.83) in Eq. (3.82) and resolving the position
vector of the left and the right contact over the same set of lattice and unit-
cell vectors assuming the materials in both contacts are lattice-matched, then
applying the slowly varying approximation of envelope functions, the periodicity
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of basis functions and subsequently the low-phonon wavevector approximation
(similar to the homostructure EPC derivation from Eqs. (3.62)-(3.67)), the EPC
strength of lattice-matched heterostructures reduces to:

gk→lαβqν = Mqν
∑
nm

∑
j

∑
R

F k,∗βn (R)eiq.RF lαm(R)Sk→lmj

∫
Ωc

dRu U
k,∗
n (Ru)Ukj (Ru)

(3.88)
Using the following orthonormality condition of basis functions∫

Ωc

dRu U
k,∗
n (Ru)Ukj (Ru) = Ωcδnj (3.89)

and subsequently applying the inverse transformation of lattice-vector into
position vector, similar to the simplification from Eq. (3.69) to Eq. (3.70), the
EPC strength in lattice-matched heterostructures simplifies to:

gk→lαβqν = Mqν
∑
nm

∫
Ω

dr F k,∗βn (r)eiq.rF lαm(r)Sk→lmn (3.90)

Note the difference between the EPC strength for homostructures (Eq. (3.70))
and that for heterostructures (Eq. (3.90)) as the latter involves the overlap
integrals of the different bands’ envelope functions of the left and the right
contacts correspondingly multiplied with the transformation matrix elements
defined by Eq. (3.86). Similarly, the complex conjugate of the lattice-matched
heterostructure EPC strength can be derived as:

gk→l,∗αβqν = M∗qν
∑
nm

∫
Ω

dr
[
Sk→lmn

]∗
F l,∗αm(r)e−iq.rF kβn(r) (3.91)

For the bi-dimensional semiconductor system of Fig. (3.2) with the translational
invariance along the y-direction, the summation over all possible phonon
wavevectors of the absolute square of the EPC strength can also be simplified
by resolving the summation over all possible phonon wavevectors into their
directional components and using Eqs. (3.71), (3.78) and (3.79), while keeping
in mind that the momentum is conserved along the z-direction. It reduces to
the following form:

∑
qν

∣∣gk→lαβqν
∣∣2 =

LxL
2
y

2π
∑
ν

∫
dqx Gk→lαβν (qx, kβy − kαy , kβz − kαz ) (3.92)
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where

Gk→lαβν (qx, kβy − kαy , kβz − kαz ) =
∣∣Mqν

∣∣2
×

∑
nm

∫
Lx

dx
∫
Lz

dz F k,∗βn (x, z)ei(qxx+qzz)F lαm(x, z)Sk→lmn



×

∑
nm

∫
Lx

dx′
∫
Lz

dz′
[
Sk→lmn

]∗
F l,∗αm(x′, z′)e−i(qxx

′+qzz′)F kβn(x′, z′)

 (3.93)

where the indices (α, β) of G′,k→lαβν (qx, kβy − kαy , kβz − kαz ) in Eq. (3.93) refer to
the quantum numbers

(
kα,βx , kα,βy

)
. Similar to Eq. (3.80), the summation of

ν in Eq. (3.92) counts over the longitudinal and transverse branches of the
polar optical phonon. Note that Mqν in Eq. (3.93) is assumed to be identical
to Eq. (3.81), whereby we assumed the same frequency of the phonons in both
materials(through the commutation rules of Eq. (3.30)) as well as the same
static and high frequency dielectric constants in both materials. However, a
more accurate calculation of EPC strengths must include the mismatch of
the aforementioned parameters (phonon frequencies and dielectric constants)
between the materials, while adding the interface phonon modes to the system
of phonons. In such a calculation, the commutation rules of Eq. (3.30) are no
longer valid and the system of phonons (Eq. (3.29)) must be treated be in a
rigorous way as we did for the system of electrons (Eqs. (3.32) and (3.83)).

For the lattice-mismatched heterostructures, the EPC strength can be
determined from Eq. (3.82) by using the basis transformation of Eq. (3.87),
then resolving the position vector into two different sets of lattice and unit cell
vectors and subsequently applying the coordinate transformation prescribed
by Maarten Van de Put et.al. [92] for retaining the uniform periodicity in
both contacts. The resultant EPC strength and the subsequent PAT current
Eq. (3.56) for the lattice-mismatched heterostructure are at least solvable
as all required transformations are known. We leave the derivation for the
EPC strength in the lattice-mismatched heterostructure for future research.
Note that the EPC strength calculation in lattice-mismatched heterostructures
would further require higher computational efforts than in the lattice-matched
heterostructures, due to an additional coordinate transformation. Moreover, an
accurate calculation of EPC strength in lattice-mismatched heterostructures
must allow for the inclusion of the additional potential energy term in the
system of electrons (Eq. (3.32)), due to the local strain induced by the lattice-
mismatched hetero-interface.



PAT CURRENT DENSITY FOR A BI-DIMENSIONAL-
SEMICONDUCTOR STRUCTURE 87

3.4 PAT current density for a bi-dimensional-
semiconductor structure

Until now, we presented the calculation of EPC strengths for two different
cases. Combining the absolute square of EPC strengths of Sections 3.3.1-3.3.2
into the following form, while using Eqs. (3.80) and (3.92),

∑
qν
|gαβqν |2 =

LxL
2
y

2π
∑
ν

∫
dqx Λαβν(qx, kβy − kαy , kβz − kαz ) (3.94)

where

Λαβν(qx, kβy − kαy , kβz − kαz ) =


Gαβν(qx, kβy − kαy , kβz − kαz ) ; Case I

Gk→lαβν (qx, kβy − kαy , kβz − kαz ) ; Case II
(3.95)

where Cases I and II refer to the calculation of EPC strengths for the direct-
bandgap homostructures and (lattice-matched) heterostructures, respectively.
Substituting Eq. (3.94) in Eq. (3.56) and interchanging the order of the
summations over (αβ) and ν, the PAT current equation is of the following
form,

Iph =
eqLxL2

y

}
∑
ν

∑
αβ

∫
dqx Λαβν(qx, kβy − kαy , kβz − kαz )

×


fα(Eα) (1− fβ(Eβ)) υ(}ωqν) δ(Eβ − Eα − }ωqν)

− fβ(Eβ) (1− fα(Eα)) (υ(}ωqν) + 1) δ(Eβ − Eα − }ωqν)
+ fα(Eα) (1− fβ(Eβ)) (υ(}ωqν) + 1) δ(Eβ − Eα + }ωqν)
− fβ(Eβ) (1− fα(Eα)) υ(}ωqν) δ(Eβ − Eα + }ωqν)

 (3.96)

Due to translational invariance along the y-direction and the plane wave-like
envelope functions along the transport x-direction, the summations of the
electron-wavevector along these directions are transformed into integrals. The
summation of the electron-wavevector along the z-direction is retained due to
confinement along this direction (see Fig. (3.2)). These transformations are
represented by the followed equation∑

αβ

= 1
16π4

∫
dkαy

∫
dkβy

∫
dkαx

∫
dkβx

∑
kαz k

β
z

(3.97)
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By applying the transformation of Eq. (3.97) and by dividing both sides of
Eq. (3.96) by Ly, the PAT current density equation is described as

Jph = eqLxLy
16π4}

∑
ν

∫
dkαy

∫
dkβy

∫
dkαx



∫
dkβx δ(Eβ − Eα − }ωqν)

∑
kαz k

β
z

∫
dqx Λ′αβν(qx, kβy − kαy , kβz − kαz )

{fα(Eα) (1− fβ(Eβ)) υ(}ωqν)− fβ(Eβ) (1− fα(Eα)) (υ(}ωqν) + 1)}

+
∫

dkβx δ(Eβ − Eα + }ωqν)
∑
kαz k

β
z

∫
dqx Λ′αβν(qx, kβy − kαy , kβz − kαz )

{fα(Eα) (1− fβ(Eβ)) (υ(}ωqν) + 1)− fβ(Eβ) (1− fα(Eα)) υ(}ωqν)}


(3.98)

where the indices α and β in Λ′αβν(qx, kβy − kαy , kβz − kαz ) count over the quantum
numbers

(
kα,βx , kα,βy , kα,βz

)
. With the following kα,βx → Eα,β conversion factors,

dkαx
dEα

= Aα ; dkβx
dEβ

= Bβ (3.99)

the PAT current density equation is further simplified to:

Jph = eqLxLy
16π4}

∑
ν

∫
dkαy

∫
dkβy

∫
dEα Aα



∫
dEβ δ(Eβ − Eα − }ωqν)Bβ

∑
kαz k

β
z

∫
dqx Λ′αβν(qx, kβy − kαy , kβz − kαz )

{fα(Eα) (1− fβ(Eβ)) υ(}ωqν)− fβ(Eβ) (1− fα(Eα)) (υ(}ωqν) + 1)}

+
∫

dEβ δ(Eβ − Eα + }ωqν)Bβ
∑
kαz k

β
z

∫
dqx Λ′αβν(qx, kβy − kαy , kβz − kαz )

{fα(Eα) (1− fβ(Eβ)) (υ(}ωqν) + 1)− fβ(Eβ) (1− fα(Eα)) υ(}ωqν)}


(3.100)

The inner integrals over Eβ in Eq. (3.100) are solved by using the following
sifting property of the delta function∫

dEβ δ(Eβ − (Eα ± }ωqν))D(Eβ) = D(Eα ± }ωqν) (3.101)
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This reduces the complexity of the PAT current density equation to a single
energy integral over Eα. For a given energy Eα and kα,βy , the summation over
kα,βz counts all sub-band modes γα,β corresponding to the confinement along the
z-direction. This results in the final form of the PAT current density equation,

Jph = eqLxLy
16π4}

∑
ν

∫
dkαy

∫
dkβy



∫
dEα

∑
γαγβ

∫
dqx AγαB

+
γβ

Λ′αβν(qx, kβy − kαy , kβz − kαz ){
fα(Eα)

(
1− fβ(E+

β )
)
υ(}ωqν)− fβ(E+

β ) (1− fα(Eα)) (υ(}ωqν) + 1)
}

+
∫

dEα
∑
γαγβ

∫
dqx AγαB

−
γβ

Λ′αβν(qx, kβy − kαy , kβz − kαz ){
fα(Eα)

(
1− fβ(E−β )

)
(υ(}ωqν) + 1)− fβ(E−β ) (1− fα(Eα)) υ(}ωqν)

}


(3.102)

where
E+
β = Eα + }ωqν ; E−β = Eα − }ωqν (3.103)

thereby, fixing the conversion factors in the qx-integral accordingly as,

Aγα =
dkαx,γ
dEα

; B+
γβ

=
dkβx,γ
dEβ

∣∣∣∣∣
Eα+}ωqν

; B−γβ =
dkβx,γ
dEβ

∣∣∣∣∣
Eα−}ωqν

(3.104)

Note that the summation over ν in the PAT current density Eq. (3.102) must
be carried out in accordance with the selection of Λ′αβν(qx, kβy − kαy , kβz − kαz ) in
Eq. (3.95), thereby determining the PAT current densities for the corresponding
semiconductor materials. For instance, the summation of ν in Cases I and
II counts over the longitudinal and transverse branches of the polar optical
phonon.

3.5 Numerical implementation

At the moment of writing, we implement the formalism for the cases
of direct-bandgap homostructure and heterostructure (Cases I and II in
Eq. (3.95)), as an extension to an existing full-zone quantum-mechanical
simulator Pharos [81] which was used earlier for predicting direct-BTBT
currents in TFETs. The choice for implementing our formalism in Pharos
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is based on its ability to simulate large device structures, while efficiently
filtering the spurious solutions through spectral decomposition and therefore
reducing the computational demand [81]. The additional feature of Pharos
is to calculate direct-BTBT currents in unstrained/strained-heterostructure
TFET configurations, offering an eventual extension of our formalism to these
structures [90].

The formalism is implemented as a post-processing step in Pharos, where
we first calculate the direct-BTBT and save the envelope functions (EFs) for
all injected electron energies (Eα, Eβ). We retain these EFs to determine the
electron-phonon coupling strengths and subsequently calculate the PAT current
densities from Eq. (3.102). We prefer the post processing type implementation
due to its numerically efficiency. In contrast, the simultaneous calculation of
direct-BTBT and PAT would require communication between different CPUs
and subsequently increase the computational time.

3.6 Conclusions

In this chapter, as an initial step towards an accurate description of TAT
in semiconductor devices, we present a formalism to calculate the phonon-
assisted tunneling current, aimed for bi-dimensional semiconductor structures.
We formulate the PAT current equation by recycling an existing approach
of calculating Zener tunneling in indirect-bandgap devices, while applying a
quantum transmitting boundary method approximation.

We calculate the electron-phonon coupling strengths for the direct-
bandgap materials in the framework of envelope function theory of electron
wavefunctions. We apply the physics-based lattice approach and the low phonon
wavevector approximation to eliminate the basis functions in the electron-
phonon overlap integrals of both direct-bandgap homostructures and lattice-
matched heterostructure devices. We derive the PAT current density equation
for the bi-dimensional semiconductor device structures and implement the
formalism (for the cases of direct-bandgap homostructures and lattice-matched
heterostructures) as a post-processing step in an existing direct-BTBT simulator
(Pharos). In the next chapter, we will apply the developed formalism, while using
Case I of EPC strength calculation, to different direct-bandgap homostructure
device configurations in order to obtain an in-depth understanding of the PAT
contributions.



Chapter 4

Application of PAT current
formalism

In the previous Chapter 3, we developed a formalism for determining
PAT current densities in bi-dimensional semiconductor devices. We determined
the electron-phonon coupling (EPC) strength for the direct-bandgap materials,
while applying the envelope function theory of electron wavefunctions. In
particular, we applied the low-phonon wavevector approximation in determining
EPC for the direct-bandgap polar homostructures and heterostructures. For
direct-bandgap homostructures, this approximation resulted in the electron-
phonon overlap integral of same-band envelope functions. To allow for the
use of our formalism, we have implemented the formalism as a post-processing
extension in Pharos to determine the PAT current densities in homostructure
devices. In this chapter, we will now discuss the results, while using the 2-band
and 15-band material description of the formalism for an In0.53Ga0.47As p-n
diode, and examine the nature of the EPC in different diode configurations.

The chapter is organized as follows: We start with the details of the
numerical implementation and of the chosen simulation parameters, based on
which we further simplify the PAT current density Eq. (3.102), to calculate the
PAT current densities in In0.53Ga0.47As p-n diodes, in Section 4.1. Section 4.2
compares the PAT current densities between the 2-band and 15-band material
description for an In0.53Ga0.47As p-n diode. In Section 4.3, we investigate the
characteristic EPC across the tunneling junction, specifically for the 2-band
model, as there is insignificant difference found between the calculated 2-band
and 15-band PAT current densities. In Section 4.4, we discuss the dependence
of the PAT current densities on the device’s dimensions along the transport
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Figure 4.1: Simulated homostructure In0.53Ga0.47As p-n diode configuration.
Dopant profiles are abrupt and uniform. Translational invariance is assumed in
the y-direction.The black-dashed line refers to a cross-section along the center
of the diode.

direction, given that we observe a contribution of the PAT process in the near-
tunneling region, and on the minimum allowed phonon wavevector. Section 4.5
details the dependence of the PAT current density on the doping concentration
in a p-n diode. Finally, we conclude the chapter in Section 4.6.

4.1 Homostructure In0.53Ga0.47As p-n diode

In this section, we present the numerical parameters required for an
efficient implementation, which is usually determined by a trade-off between the
desired accuracy and the computational time. The formalism of the PAT current
density for homostructures (using Case I of Eq. (3.95) in Eq. (3.102)) presented
in Chapter 3, is applied to an up to 100nm long and 20nm wide In0.53Ga0.47As
p-n diode as shown in Fig. (4.1). The doping profiles are assumed as abrupt
and uniform. The simulated device’s spatial mesh sizes are 0.1nm and 0.5nm
along the x− and z−directions, respectively. The device is assumed to exhibit
translational symmetry along the infinitely large y-direction. The simulation
is performed on 40 adaptive energy points, 10 ky-points to cover all relevant
α, β-states and 6 kz-points depending on the width of the device.

We consider only the dominant Fröhlich interaction, which is based on
the longitudinal polar optical branch of the phonons, which physically induces
bond stretching of the lattice [93], in a local Fröhlich-based EPC strength
with a constant energy (}ωqν = }ω0) of 34meV. With this simplification, the
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summation of ν in Eq. (3.102) vanishes and the PAT current density of Eq. (3.102)
further reduces, while using Case I of Eq. (3.95) in Eq. (3.102), to the following
form:

Jph = eqLxLy
16π4}

∫
dkαy

∫
dkβy



∫
dEα

∑
γαγβ

∫
dqx AγαB

+
γβ
G′αβ(qx, kβy − kαy , kβz − kαz ){

fα(Eα)
(

1− fβ(E+
β )
)
υ(}ω0)− fβ(E+

β ) (1− fα(Eα)) (υ(}ω0) + 1)
}

+
∫

dEα
∑
γαγβ

∫
dqx AγαB

−
γβ
G′αβ(qx, kβy − kαy , kβz − kαz ){

fα(Eα)
(

1− fβ(E−β )
)

(υ(}ω0) + 1)− fβ(E−β ) (1− fα(Eα)) υ(}ω0)
}


(4.1)

where
E+
β = Eα + }ω0 ; E−β = Eα − }ω0 (4.2)

and the absolute square of EPC strength is given by,

G′αβ(qx, kβy − kαy , kβz − kαz ) =
∣∣Mq

∣∣2 ∑
n

∫
Lx

dx
∫
Lz

dz φnβαq(x, z)



×

∑
m

∫
Lx

dx′
∫
Lz

dz′ φnαβq(x′, z′)


(4.3)

Additionally, we adaptively determine the qx-integral with 40 mesh points,
starting from π/Lx till the edge of the first Brillouin zone. This defines the
criterion to determine the minimum amplitude |qmin| of the phonon wavevector,
which is an important parameter since the lower the magnitude of the phonon
wavevector, the larger is the Fröhlich-based EPC strength (see Eq. (3.60)).
This criterion further ensures that the phonon plane wave is matched to the
device length along the transport x-direction. Note that Eqs. (4.1)-(4.3) are
inapplicable for determining PAT current in homostructure devices, where the
dominant electron-phonon interactions are due to the transverse optical as well
as longitudinal and transversal acoustic phonons, as the energy of these phonons
is not constant with wavevector q.
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Figure 4.2: The direct-BTBT and PAT current densities of the homostructure
In0.53Ga0.47As p-n diode of Fig. (4.1) as a function of applied voltage. The
diode is 60-nm long and 20-nm wide and is uniformly doped with a concentration
of 5x1018 [at/cm3]. FB and RB stand for the forward-bias and reverse-bias,
respectively.

4.2 Comparison between the 2- and 15-band PAT
current density

In this section, the PAT current density calculated from Eq. (4.1) is
compared with direct-BTBT [81] for a 20nm wide and 60nm long In0.53Ga0.47As
p-n diode in Fig. (4.2). The comparison is made for both the 2-band and the
15-band material description of the formalism. As expected, the PAT current
density is larger than the direct-BTBT in both models, especially for the forward
bias. This is due to the insufficiently available effective energy tunneling window
for the direct-BTBT, during which PAT offers an auxiliary transmission path by
the gain of phonon energy. Moreover, it is obvious from Fig. (4.2) that the PAT
current densities of the 15-band and 2-band model are mostly identical, however
with a slight dissimilarity at high reverse bias. Such better agreement between
the 15-band and 2-band PAT current densities is obtained using 40 qx-points
in calculating Eq. (4.1). Moreover, the observed PAT and BTBT currents are
comparable, which has been reported for several direct-bandgap materials [94].
Due to the faster calculation and a limited difference between the 15-band and
the 2-band PAT currents for the given device structure (Fig. (4.1)), specifically
at low reverse and in forward bias (the extrapolation of this voltage range to
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Figure 4.3: Band diagram along the indicated cross-section of the
In0.53Ga0.47As p-n diode illustrated in Fig. (4.1). The solid-black lines
correspond to valence band maximum and conduction band minimum energies.
The grey-dashed vertical lines limit the region where tunneling across the junction
takes place at the given energies. The pink lines correspond to the quasi-Fermi
energy levels Efp and Efn.

TFETs can characterize the impact of PAT on the subthreshold swing), we
choose the application of the 2-band model for the remainder of this chapter.

4.3 Inefficient electron-phonon coupling across the
tunneling junction

To better understand the PAT current densities of the given device
structure, we perform an in-depth analysis of the EPC in this section, particularly
by examining the 2-band overlap function density based on Eq. (3.78). For this
purpose, the band diagram of a 60nm-long In0.53Ga0.47As p-n diode is shown
in Fig. (4.3) at the indicated cross-section of Fig. (4.1), where the probability
density of the electron wavefunction is maximum. The 2-band envelope function
densities (n=2 in Eq. (4.3)), averaged over the unit cell, are presented along the
transport x-direction in Fig. (4.4). These densities are taken at the indicated
energies (Eα,Eβ) of Fig. (4.3) and at the center of the z-direction. The overlap
function density at the center of the z-direction (see Eq. (3.74)) is shown as
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Figure 4.4: The 2-band envelope function densities averaged over the unit cell
at specific energies Eα and Eβ, indicated in Fig. (4.3). The orange (blue)-solid
line corresponds to an electron injected at Eα from the left contact (at Eβ from
the right contact), respectively. The brown-solid line represents the coupling
density, where we chose the phonon plane wave with the directional components
(qx, qy, qz) = (π/Lx, 0, 0). The limits of the tunneling junction region at (Eα,Eβ)
are indicated with the grey-dashed vertical lines and the drop of the EPC in this
region is highlighted with a grey-dashed circle. The contribution of the PAT
process in the near-tunneling regions is indicated with grey-dashed boxes.

a solid-brown line in Fig. (4.4). A drop in overlap function density in the
bandgap-region, which is pointed-out by a grey-circle in Fig. (4.4), suggests
that the EPC is inefficient across the tunneling junction.

The EPC inefficiency, indicated by a grey-circle in Fig. (4.4), can be
explained by examining the envelope functions of both α and β states. The real
and the imaginary components of the envelope functions corresponding to each
band of a two-band model, at the indicated energies (Eα,Eβ) of Fig. (4.3) and
at the center of the z-direction, are plotted along the x-direction in Fig. (4.5).
It is evident that the conduction band component (band 2) exhibits a 90◦-phase
shift relative to the valence band component (band 1) of the envelope function,
resulting from the different parity of the conduction and valence bands’ basis
functions (Un(r)). This 90◦-phase shift is valid as long as there is limited
transmission of electron wavefunction through the forbidden bandgap [95]. This
90◦-shift in both α and β states transforms the summation of the individual
band’s coupling φn

βαq(x, zcenter) into their subtraction and therefore, explains
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Figure 4.5: The real and imaginary components of each band of the EFs for
an electron injected from both contacts. The orange (blue)-solid (dotted) lines
correspond to the valence (conduction)-band real (imaginary) contributions of
the EF of an electron injected from the left contact. The red (dark yellow)-solid
(dot) lines refer to the valence (conduction)-band real (imaginary) contributions
of the EF of an electron injected from the right contact.

the drop of overlap function density in Fig. (4.4). Note that the drop in overlap
function is also observed in a 15-band model, due to the 90◦ phase-shift between
the conduction (S) and the valence (X) bands.

4.4 PAT dependence on the device length

In this section, we discuss another interesting aspect of Fig. (4.4), which
is the finite transmission of an electron’s envelope function at the given energies
(Eα,Eβ) into the region beyond the tunneling junction (indicated by grey
rectangles). We describe these regions as “near-tunneling regions”. Consequently,
the PAT process in these near-tunneling regions causes a dependence of the PAT
current densities on the device’s length along the transport direction Lx. Such
dependence can be observed from the solid- and dashed-blue lines of Fig. (4.6),
which compares the direct-BTBT and PAT current densities for a 100nm and
60nm long In0.53Ga0.47As p-n diode, where the 20nm width is constant in both
configurations.
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Figure 4.6: Dependence of direct-BTBT and PAT current densities on the
device length Lx along the transport direction and on the minimum phonon
wavevector. The simulated device is an In0.53Ga0.47As p-n diode with varying
Lx and a constant 20nm width, uniformly doped with a concentration of
5x1018 [at/cm3].

As expected, it is apparent from Fig. (4.6) that the direct-BTBT current
densities (orange) do not depend on the device length Lx. However, the PAT
current densities exhibit substantial dependence on the device length Lx with
higher reverse-bias (see solid- and dashed-blue lines in Fig. (4.6)), which is
due to the increased length of the near-tunneling regions. Moreover, the PAT
current density also exhibits a dependence on the minimum allowed phonon
wavevector, which is evident by comparing the solid-blue and the green-dashed
lines in Fig. (4.6). The PAT current density is found to be higher when a
larger phonon wavelength and hence smaller phonon wavevector is allowed,
which is resulting from the inverse dependence of EPC strengths on the phonon
wavevector (see Eqs. (3.59) and (3.60)). A rigorous calculation would accurately
limit the region contributing to the PAT current density based on the electron
mean-free path. Such restriction is however dependent on the energy of the
electron [96] and would increase the mathematical complexity and in-turn the
computational efforts. Because of these concerns, we leave it for future research.
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Figure 4.7: Band diagrams for the different doping concentrations along the
indicated cross-section of the p-n diode of Fig. (4.1). The solid-(dot-, dashed-)
lines correspond to the band-edge energies for 5x1019 (5x1018, 5x1017) [at/cm3]
doping concentrations, respectively. The orange (blue)-solid line refers to the
energies Eα (Eβ).

4.5 Doping dependence of PAT current density

Until now, we have studied the characteristics of the EPC strength, the
PAT current densities (both 2-band and 15-band models) and their dependence
on the device length for a moderately doped (5x1018 [at/cm3]) p-n diode. The
source region in TFETs is typically doped in the range of 1x1019-5x1019 [at/cm3],
which is done to provide a the strong band bending and hence to achieve high
on-currents. We therefore examine the dependence of the PAT current densities
on the doping concentration in this section, particularly ranging from high to
low doping concentrations, with a purpose to determine if PAT can be one of
the potential reasons for the SS-degradation in TFETs.

The band diagrams of a 20nm wide and 60nm long In0.53Ga0.47As p-n
diode, taken at the center along the z-direction, are depicted for different doping
concentrations in Fig. (4.7). The increase in tunneling length with decrease in
doping concentration is obvious from Fig. (4.7). The electron envelope function
densities, taken at the energies (Eα,Eβ) of Fig. (4.7), show the decrease in
tunneling-transmission in the more lowly doped diodes in Fig. (4.8), which is
due to the increase in tunneling length Lt indicated by arrows. Subsequently,
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Figure 4.8: The orange-(blue-) solid (dot,dashed) lines indicate the envelope
function density averaged over the unit cell in a 2-band model and for doping
concentrations of 5x1019 (5x1018, 5x1017) [at/cm3] corresponding to the band
diagram of Fig. (4.7). The tunneling regions are marked with the horizontal
arrows “Lt”.

the overlap function densities shown in Fig. (4.9) posses lower amplitudes for
the more lowly doped diodes. As a result, the PAT current density dependence
on the doping concentrations is illustrated in Fig. (4.10).

It is observed from Fig. (4.10) that the PAT current density partially
exceeds the direct-BTBT current density in reverse bias for high doping
concentration (5x1019 [at/cm3]), while it exceeds for a longer range of reverse-
bias in moderately doped p-n diodes (5x1018 [at/cm3]). For a given voltage
(see Fig. (4.7)), the effective direct-BTBT tunneling-energy window, which is
determined by doping dependent characteristic Fermi energy levels, is much
larger in the 5x1019 [at/cm3] diode than in the more lowly doped diodes. This
implies that the PAT current in the 5x1019 [at/cm3] diode can only be dominant
over direct-BTBT at more negative bias where this effective tunneling energy
window is sufficiently small compared to the phonon energy. The shift in
crossover (grey-circle in Fig. (4.10)) of PAT with respect to direct-BTBT for
the 5x1018 [at/cm3] diode versus 5x1019 [at/cm3] diode can be ascribed to the
occurrence of a smaller effective direct-BTBT tunneling window counteracted
by the lower contribution of the PAT process in the near-tunneling region. In
case of the lowest doped diode (5x1017 [at/cm3]), the reduction of the near-
tunneling region leads to the smaller PAT relative to direct-BTBT current
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Figure 4.9: The brown- solid (dot,dashed) lines refer to the coupling density of
a 2-band model and for 5x1019 (5x1018, 5x1017) [at/cm3] doping concentrations
corresponding to the band diagram of Fig. (4.7). The coupling density is
determined by considering the phonon plane wave with the directional components
(qx, qy, qz) = (π/Lx, 0, 0). The tunneling regions are marked with the horizontal
arrows “Lt”.

densities. Hence, the combination of the effective tunneling-energy window and
the length of the near-tunneling regions determines the doping dependence of
the PAT current density. Due to the large PAT currents, which are comparable
to direct-BTBT in Fig. (4.10), we expect that the PAT could be a potential
source of SS-degradation in TFETs. However, the quantitative assessment of
the impact of PAT on SS degradation in TFETs would require a multi-phonon
assisted tunneling current formalism, so that one can gain more insight in the
contributions of the underlying PAT processes.

Note that the valence band and the conduction band edges for different
doping concentrations in Fig. (4.7) are determined as the band edge energies of
the defect free and dopant free diode structures. However, with increasing doping
concentrations, the real devices are more prone to random dopant fluctuations
and the accurate band edge energy calculations would require an atomistic
based approach to self-consistently determine the device electrostatics [97].
Such a calculation would also require enormous computational resources to
determine current densities, even for smaller device dimensions [97]. If realistic
electrostatics are known based on such atomistic calculations, our approach
could drastically decrease the computational effort in calculating BTBT and
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Figure 4.10: Comparison of the direct-BTBT and PAT current densities for
different doping concentrations. The orange-(blue-) solid (dot, dashed) lines
represent the direct-BTBT (PAT) current densities for 5x1019 (5x1018, 5x1017)
[at/cm3] doping concentrations. The cross-over between the direct-BTBT and
PAT current density curves is indicated by a grey circle.

PAT current densities if a defect-inclusive electrostatic profile is used.

4.6 Conclusions

In this chapter, we further simplify our PAT current density formalism
of the previous Chapter 3, by considering only the longitudinal branch of
the polar optical phonon, and apply it to a In0.53Ga0.47As homostructure p-n
diode. We study the PAT current density in up to 100nm long and 20nm wide
In0.53Ga0.47As p-n diode with a 2 and 15-band implementation of the formalism.
We determine that the PAT current density exceeds over direct-BTBT for the
forward bias, at which the effective direct-BTBT energy interval is sufficiently
small compared to the phonon energy and PAT offers an additional transmission
path based on the gain of phonon energy. We observe that the PAT currents
are comparable to BTBT. We further find that there is no substantial difference
for the calculated PAT current densities in forward (and at low reverse bias)
between the 2 and 15-band model of our formalism.

We discover that the electron-phonon coupling strength is inefficient
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across the tunneling junction because of the phase-shift between the envelope
functions injected from different bands. We find that the PAT current densities
depend on the device’s length along the transport direction because of the
PAT contributions in the near-tunneling regions. We further observe that PAT
current densities depend on the minimum allowed phonon wavevector, which
is due to the inverse dependence of EPC strengths on the phonon wavevector.
We find that the combined effects of effective tunneling-energy interval and
near-tunneling region length determine the observed doping dependence of the
PAT current density. We expect that our PAT current density formalism can
eventually be applied to study the PAT current densities in direct-bandgap
heterostructures, as the framework of the implementation (carried out for
studying In0.53Ga0.47As p-n diodes) can be reused with a few minor changes.
We further expect that our PAT current density formalism can be extended
to include multi-phonon assisted tunneling and eventually to assess TAT in
devices, which is briefly outlined in the outlook of the next chapter.

The key findings of this chapter have been presented at the APS March
meeting 2018 [1] and a detailed report is submitted to the Journal of Applied
Physics [2].





Chapter 5

Conclusions and outlook

In this chapter, the conclusions of this thesis are summarized in Section 5.1.
Section 5.2 details the extension of the PAT formalism to include multi-phonon
assisted tunneling transitions and briefly discusses the prospect of this work,
which is eventually the approach to determine TAT in semiconductors.

5.1 Conclusions

The summary and conclusions of this thesis are organized in accordance
with the topical goals outlined in Chapter 1. As described in Chapter 1 when
discussing the limitations of the existing TAT models, it is clear that there
is no unified approach to model TAT in semiconductor devices. We aimed to
circumvent the limitations by making use of a quantum mechanical approach
to determine TAT.

Therefore, we began with the study of the impact of electric field-induced
quantum effects on semiconductor and oxide traps in Chapter 2, with as purpose
to determine if quantum effects are crucial in determining TAT. In particular,
we explored the implications of high electric fields on the characteristic trap
energy level. We defined a normalization method to circumvent the problem of
unphysical wavefunctions resulting from the complex part of the spectral energy
states. For the planar semiconductor and oxide traps in a one-dimensional
structure, we outlined the numerical procedure to capture the field-induced
level broadening and found typically hundreds of meV for the former and tens
of meV for the latter at TFET-relevant electric fields of 2 MV/cm. The amount
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of broadening is sensitive to the chosen trap configuration and may have a
quantitative impact on the calculation of the TAT current. In this chapter, the
field-induced quantum effects are implemented in the existing semi-classical
emission rate formalism. We found that these effects can increase the emission
rates of a semiconductor trap level at high electric field, while the impact for
the oxide traps is much smaller due to the higher effective mass and barrier
heights than those in the former and depend on the combined influence of the
field strength, trap charge state (neutral, acceptor or donor trap), trap position,
tunneling barrier type and the host material parameters.

In Chapter 3, we presented a formalism to calculate the phonon-assisted
tunneling current, aimed at bi-dimensional semiconductor devices. We
formulated the PAT current equation by recycling an existing approach of
calculating Zener tunneling in indirect-bandgap devices, while applying a
quantum transmitting boundary method approximation. We determined the
electron-phonon coupling in the framework of envelope function theory of
electron wavefunctions. We applied the physics based lattice approach and
the low phonon wavevector approximation to eliminate the basis functions in
the electron-phonon overlap integrals of both direct-bandgap homostructure
and heterostructure devices. We derived the PAT current density equation for
bi-dimensional semiconductor structures and implemented the formalism as a
post-processing step in an existing direct-BTBT simulator (Pharos).

In Chapter 4, we simplified our PAT current density formalism of the
previous chapter and applied it to an In0.53Ga0.47As p-n diode. We studied the
PAT current density in up to 100nm long and 20nm wide In0.53Ga0.47As p-n
diode with a 2 and 15-band implementation of the formalism. We observed
that the PAT currents are comparable to BTBT and found that there is no
substantial difference for the calculated PAT current densities between the 2
and 15-band model of our formalism. We discovered that the electron-phonon
coupling is inefficient across the tunneling junction because of the phase-shift
between the envelope functions injected from the different bands. We found that
the PAT current densities depend on the minimum allowed phonon wavevector
and on the device’s length along the transport direction because of the PAT
contributions in the near-tunneling regions. We further determined that the
combined effects of the effective tunneling-energy interval and the near-tunneling
region length result in the observed doping dependence of the PAT current
density.
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5.2 Outlook

Based on the chapters presented in this thesis, we provide a few suggestions
for future research that improve the presented models (Section 5.2.2) and can
result in new applications (Section 5.2.1).

5.2.1 Impact on experimental work

The field-induced effects observed in Chapter 2 for a single-oxide defect can
provide a better understanding of the microscopic defect properties, when these
observations are correlated with the statistical characterizations of Random
Telegraph Noise (RTN) signals related to a single-oxide defect in the ultra
scaled devices [98]. We suggest that these field effects can be incorporated
(by using the average emission/capture rates which were discussed at the end
of Section 2.3.2) in the applied physics-based models for the calibration of
trap time constants [98]. This could lead to a distribution of time constants
and subsequently, result in the field-dependent decrease of the average time
constants related to a single-oxide defect. These effects are mainly expected
for border trap states, or trap states close to the oxide-semiconductor interface
(0.5nm in Fig. (2.11) and 1nm in Fig. (2.12)).

The PAT currents calculated for different diode configurations in Chapter 4,
with the application of our formalism, provide more physical insight into parasitic
current contributions observed in experimental devices [99]. For instance, the
comparison of the oscillatory conductance obtained from the PAT curves of
the calculated and the experimental diodes, could validate the hypothesis that
the EPC strengths solely determined with longitudinal optical phonons are
indeed dominant in III-V direct bandgap materials [100]. Additionally, these
oscillatory conductances obtained from the PAT curves of nearly defect-free
tunnel diodes, which are determined at low external forward bias voltages, could
provide a rough estimate (after calibration and extrapolation) of the impact of
the PAT contribution on TFET performance (such as SS degradation). Note
that the observable PAT currents, which are intrinsic to the material, contribute
to the total currents of TFETs, whereby it can increase the total currents in
subthreshold region of the transfer characteristics, and thereby impact the
TFET performance. These PAT contributions, which are dependent on the
electron mean free path (see Fig. (4.6)), are also expected to moderately increase
the ION currents in TFETs by 20%. To obtain better estimations, we suggest
to compare the calculated PAT current with I − V measurements of defect-free
tunnel diodes in forward bias for the calibration of TFET-related parameters,
for which the diode dimensions are to be scaled with respect to the transport
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direction, with lengths varying up to 100nm in agreement with the mean free
path of electrons at room temperature in III-V direct bandgap materials [93].

5.2.2 Future research towards enhanced models

In Chapter 2, we used the MTM approach to determine the trap energy
level from the 1D- Schödinger equation using an effective mass approach and
adapted the same approach to qualitatively determine the impact of field-induced
effects on TAT based emission rates. However, this approach is too simplistic
to quantify these effects in real devices with 2D or 3D traps, as we assumed
the traps to be one-dimensional with invariant planar structures in the two
(y, z)-dimensions. We suggest that a more accurate calculation of trap levels
and the related field-induced effects in higher dimensional systems (with 2D or
3D traps) can be attained using approaches such as NEGF formalism [26, 97],
Wigner function method [79] and others.

In Chapter 3, we simplified the calculation of EPC strength in
semiconductors based on the properties of a crystalline lattice (Eq. (3.63)). The
same approximation is strictly speaking not applicable to amorphous materials
like oxides. However, this approximation can still be used to qualitatively
determine the PAT currents in oxides, by exemplifying oxides with wide bandgap
materials. A more accurate prediction of EPC strength in oxides would require
DFT-based approach [101].

Two-phonon assisted tunneling current formalism

Based on the successful implementation of PAT in homostructure and
heterostructure direct-bandgap semiconductors, we provide suggestions for
future research which eventually will lead to the calculation of TAT not only in
TFETs but also in general semiconductor devices. We first present the theory
of determining multi-PAT in semiconductors, and conclude the thesis with a
brief discussion of the approach towards TAT calculations.

In this thesis, we developed the formalism for single-phonon assisted
tunneling current in Chapter 3 and applied it to a homostructure In0.53Ga0.47As
p-n diode in Chapter 4. However, the trap-assisted tunneling process would
typically require a one-step multi-phonon assisted tunneling transition of either a
conduction or valence band electron into the trap site as illustrated in Fig. (1.5).
For developing such a multi-phonon assisted tunneling model, we found it to be
inappropriate to use higher order time dependent perturbation theory, whereby
the higher order perturbative approximation is obtained by taking the high-
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order expansion of the density matrix “%̃(t)” from Eq. (3.41). Substitution of
such a density matrix expansion in the PAT current Eq. (3.40) and solving the
resultant commutators, results in the time evolution of a single electron-phonon
interaction and eventually leads to a time-dependent multi-step single-PAT
current. For steady-state TAT currents, we are not interested in such current
calculation as we are looking for a time-independent one-step multi-PAT current.

In this section, we therefore briefly present the procedure to determine
the two-phonon assisted tunneling currents, which eventually can be applied
to determine steady-state TAT currents. We suggest that the calculation of
both single-phonon and two-phonon assisted tunneling currents can be obtained
by substituting the time-dependent version, in the interaction picture, of the
following time-independent electron-phonon interaction Hamiltonian in the PAT
current Eq. (3.53),

Ĥint = Ĥ(1)
int + Ĥ(2)

int (5.1)

where Ĥ(1)
int corresponds to the already known first-order electron-phonon

interaction Hamiltonian of Eq. (3.39), whereas Ĥ(2)
int is the interaction

Hamiltonian related to the two-phonon coupling with an electron [86, 102,
101, 103]. The second-order electron-phonon interaction Hamiltonian Ĥ(2)

int ,
which was recently reported in a DFT-based calculation of renormalized bulk
band structures [101], is defined by [86, 102, 101, 103]

Ĥ(2)
int =

∑
αβ

qνq′ν′

gαβqνq′ν′ ĉ
†
β ĉα

(
âqν + â†−qν

)(
âq′ν′

+ â†−q′ν′

)

+ g∗αβqνq′ν′

(
â†q′ν′

+ â−q′ν′

)(
â†qν + â−qν

)
ĉ†αĉβ (5.2)

where gαβqνq′ν′ represents the coupling strength between an electron and
two phonons. The corresponding time-dependent (in the interaction picture)
electron-phonon interaction Hamiltonian is

H̃int(t) = H̃(1)
int (t) + H̃(2)

int (t) (5.3)

where H̃(1)
int (t) is equivalent to Eq. (3.52) and the time-dependent second-order

electron-phonon interaction Hamiltonian H̃(2)
int (t) is, using Eqs. (5.2) and (3.43)-
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(3.51), is defined as:

H̃(2)
int (t) =

∑
αβ

qνq′ν′

gαβqνq′ν′ ĉ
†
β ĉα

[
âqν âq′ν′

exp
(
i
(
Eβ − Eα − ~ωqν − ~ωq′ν′

)
t

~

)

+ âqν â
†
−q′ν′

exp
(
i
(
Eβ − Eα − ~ωqν + ~ω−q′ν′

)
t

~

)

+ â†−qν âq′ν′
exp

(
i
(
Eβ − Eα + ~ω−qν − ~ωq′ν′

)
t

~

)

+â†−qν â
†
−q′ν′

exp
(
i
(
Eβ − Eα + ~ω−qν + ~ω−q′ν′

)
t

~

)]
+ h.c. (5.4)

where “h.c.” stands for the hermitian conjugate. Substituting Eq. (5.3) in
Eq. (3.53), the PAT current Eq. (3.53) becomes:

Iph = eq
}2 lim

t→∞

t∫
0

dt1 Tr
([[

N̂α, H̃(1)
int (t)

]
, H̃(1)

int (t1)
]
%̂0

)

+ eq
}2 lim

t→∞

t∫
0

dt1 Tr
([[

N̂α, H̃(2)
int (t)

]
, H̃(1)

int (t1)
]
%̂0

)

+ eq
}2 lim

t→∞

t∫
0

dt1 Tr
([[

N̂α, H̃(1)
int (t)

]
, H̃(2)

int (t1)
]
%̂0

)

+ eq
}2 lim

t→∞

t∫
0

dt1 Tr
([[

N̂α, H̃(2)
int (t)

]
, H̃(2)

int (t1)
]
%̂0

)
(5.5)

It is obvious from Eq. (5.5) that the second and third terms contribute zero
PAT current as these terms lead to zero expectation values, when using Wick’s
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theorem [84]. Therefore, Eq. (5.5) is further simplified as:

Iph = eq
}2 lim

t→∞

t∫
0

dt1 Tr
([[

N̂α, H̃(1)
int (t)

]
, H̃(1)

int (t1)
]
%̂0

)

+ eq
}2 lim

t→∞

t∫
0

dt1 Tr
([[

N̂α, H̃(2)
int (t)

]
, H̃(2)

int (t1)
]
%̂0

)
(5.6)

Note that the first term in Eq. (5.6) corresponds to the PAT current formalism
presented in Chapter 3, whereas the two-phonon assisted tunneling currents
can be derived by solving the double-commutator of the last term in Eq. (5.6).
So far, we proposed to determine the two-phonon assisted tunneling current
formalism based on the density matrix framework outlined in Chapter 3, where
we used the time-dependent interaction picture for the operators and the
second-order electron-interaction Hamiltonian (Ĥ(2)

int of Eq. (5.1)) to determine
two-PAT currents while maintaining a first-order expansion of the density matrix
(Eq. (3.41)).

Note that the crucial element in determining the two-phonon assisted
tunneling currents is the calculation of the second-order EPC strength gαβqνq′ν′ .
It has been calculated with a DFT-based implementation, which determined
the EPC strength for few nanometer wide bulk structures and in the absence of
external applied voltages [101]. At the moment of writing this thesis, these DFT-
based calculations (of gαβqνq′ν′) have not been reported yet for realistic device
sizes and structures (heterostructures). We therefore present the method to
calculate second order EPC strength in the presence of external applied voltages
by generalizing the approximations used for the DFT-based calculations. In our
method, the effects of the external applied voltages are intrinsically included
in the wavefunction description of electrons, which will be used in determining
second-order EPC strengths. In the aforementioned bra-ket notation (see
Eq. (3.57) of Section 3.3), the second-order EPC strength is defined by the
following second-order electron-lattice interaction potential [86],

gαβqνq′ν′ = 1
2 〈kβ |∆

2V |kα〉 ≡
1
2 〈kα + q + q′|∆2V |kα〉 (5.7)

whereby the second-order electron-lattice interaction potential is described as
the following second-order change in crystal lattice Vc potential due to the
atomic displacements

(
∆Rj,ν

u,i,∆Rm,ν′
u′,l

)
[86]

∆2V =
∑
i,j,ν

∑
l,m,ν′

∂2Vc

∂Rj,ν
u,i∂R

m,ν′
u′,l

∆Rj,ν
u,i∆Rm,ν′

u′,l
(5.8)



112 CONCLUSIONS AND OUTLOOK

The exact calculation of the second order EPC strength (Eq. (5.7)) for bulk-
materials is challenging from a computational point of view as it would
require the application of second-order density functional perturbation theory
(DFPT) [101]. To circumvent this, Allen and Heine [102] proposed the recasting
of Eq. (5.8), which is the second-order electron-lattice interaction potential
defined in first-order perturbation theory, into the linear combination of
two first-order electron-lattice interaction potentials defined in second-order
perturbation theory (refer Eqs. 1-4 of [103]), while applying the observed
translational invariance of atomic displacements within the harmonic and
adiabatic approximations (these approximations are explained in Appendix
A). These approximations are coupled with an additional condition that if
every atom is further displaced by ∆Rj,ν

u,i, the energy of the total crystal
is unchanged which prevents anharmonicity. This method is referred to as
“adiabatic Allen-Heine formula” of monoatomic crystals [102], which is later
extended to polyatomic unit cells by Allen and Cardona [103]. With these
approximations, the second-order EPC is simplified as

gαβqνq′ν′ =− 1
2

∑
kIα=kα+q′

〈kα + q + q′|∆V
j,ν
u,i |kIα〉 〈kIα|∆V

m,ν′
u′,l
|kα〉

Eβ − EI

− 1
2

∑
kIβ=kβ−q′

〈kα + q + q′|∆V
m,ν′
u′,l
|kIβ〉 〈kIβ |∆Vj,νu,i |kα〉

Eβ − EI
(5.9)

with

∆Vj,νu,i =
∑
i,j,ν

∂Vc

∂Rj,ν
u,i

∆Rj,ν
u,i ; ∆Vm,ν′

u′,l
=
∑
l,m,ν′

∂Vc
∂Rm,ν′

u′,l

∆Rm,ν′
u′,l

(5.10)

where |kIα〉 represents an intermediate state injected from the left contact and
identified with kIα = kα + q′ at energy EI . Similarly, |kIβ〉 represents an
intermediate state identified with kIβ = kβ − q′, while injected from the right
contact at energy EI . Note that the denominator in Eq. (5.9) represents a
phonon energy

(
Eβ − EI = ~ωq′ν′

)
.
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Using the definition of the first-order EPC strengths from Eq. (3.59), the
second-order EPC strength can further be defined in the following form:

gαβqνq′ν′ =− 1
2

 ∑
kIα=kα+q′

gIαβqν ∗ gαIαq′ν′

Eβ − EI
+

∑
kIβ=kβ−q′

gI
β
βqν ∗ gαI

β
q′ν′

Eβ − EI


(5.11)

=− 1
2

∑
kIα=kα+q′

MqνMq′ν′

Eβ − EI

×
∫

dr ψ∗β(r)eiq.rψIα(r)
∫

dr′ ψ∗Iα(r′)eiq′.r
′
ψα(r′)

− 1
2

∑
kIβ=kβ−q′

MqνMq′ν′

Eβ − EI

×
∫

dr ψ∗β(r)eiq.rψIβ(r)
∫

dr′ ψ∗Iβ(r′)eiq′.r
′
ψα(r′)

(5.12)

where ψIα(r) represent the intermediate-state’s electron wavefunction, injected
from the left contact at energy EI , characterized by either an emission or
absorption of a single phonon ~ωq′ν′ from the initial α state. Similarly, ψIβ(r)
represent the intermediate-state’s electron wavefunction, injected from the right
contact at energy EI , characterized by either an emission or absorption of a
single phonon ~ωq′ν′ from the final β state. Note that the above simplification
for the second-order EPC is also applicable for the heterostructure, where the
first-order EPC in Eq. (5.11) can be replaced with the definition of Eq. (3.82).
With the above simplifications for gαβqνq′ν′ , we expect that the calculation of
two-phonon assisted tunneling currents will be a straightforward extension of
the implementation presented in Chapters 3 and 4.

After determining the multi-phonon assisted tunneling currents, which
can generally be extrapolated from the aforementioned combination of single
and two-PAT currents, the TAT currents in semiconductors can eventually be
determined as

JTAT = JTrap
ph − JnoTrap

ph (5.13)

where JTAT is the desired TAT current density, JTrap
ph is the multi-PAT current

density calculated with the chosen trap potential profile and JnoTrap
ph is the

multi-PAT current density determined with a trap-free potential profile. Note
that the TAT current Eq. (5.13) does not account for the structural relaxation
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discussed in Appendix A. However, we suggest that the structural relaxation
process can be included in the formalism described in Section 3.2 of Chapter 3,
specifically, by including the trap subsystem Hamiltonian in the unperturbed
system Eq. (3.33). In the framework of second quantization, the trap subsystem
Hamiltonian can be defined by the so-called impurity models such as the Kondo
model [104] and Anderson impurity model [105, 78]. We expect that such
addition of models could result in the current equation similar to Eq. (3.56)
inclusive of trap energy level and occupational probability.

In addition to the above suggestions, we expect that the extension of the
PAT current density formalism to tri-dimensional semiconductor systems such
as nanowire-TFETs, by following again the framework described in Chapter 3,
could enable us to determine the TAT currents for realistic trap configurations.



Appendix A: Fundamentals of
NMP theory

In the NMP theory, the effective Hamiltonian describing the total system
of electrons and lattice vibrations [106] is:

H(r,Q) = Hel(r) + Vel-ph(r,Q) +Hph(Q) (A.1)

where Hel(r) is the Hamiltonian for the electronic subsystem, Hph(Q) is the
Hamiltonian of the free lattice and Vel-ph(r,Q) is the electron-phonon coupling
potential, r are electronic coordinates andQ are normal coordinates representing
the displacement of an atom from its equilibrium position. To solve the
Schrödinger equation (HΨ = EΨ) with the Hamilton-operator (Eq. (A.1)), the
delocalized electrons of the system are assumed to follow the motion of defects
and of host material atoms instantaneously, which is the well-known Born-
Oppenheimer approximation [106]. This approximates the total wavefunction
of the system of Eq. (A.1) as the following product of the electron and the
lattice vibration wavefunctions with ’n’ in Φn,λ(Q) implying that the lattice
vibrational state will generally depend on the state of the electronic subsystem.

Ψn,λ(r,Q) = ψn(r,Q)Φn,λ(Q) (A.2)

where n, λ denote the electron and phonon quantum numbers corresponding
to the electronic and vibrational subsystems, and where ψn(r,Q),Φn,λ(Q) are
the solutions of the electronic and vibrational subsystems, respectively. With
Eq. (A.2), the Schrödinger equation of the total system becomes

Φn,λ(Q)Hel(r)ψn(r,Q) + Vel-ph(r,Q) [ψn(r,Q)Φn,λ(Q)]

+Hph(Q) [ψn(r,Q)Φn,λ(Q)] = En,λ [ψn(r,Q)Φn,λ(Q)] (A.3)
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Subtracting ψn(r,Q)Hph(Q)Φn,λ(Q) while also dividing by the approximated
form of the total wavefunction (Eq. (A.2)), Eq. (A.3) of the total system becomes

1
ψn(r,Q)Hel(r)ψn(r,Q) + Vel-ph(r,Q)

+ 1
ψn(r,Q)Φn,λ(Q)

{
L̂(ψn(r,Q)Φn,λ(Q))

}
= En,λ−

1
Φn,λ(Q)Hph(Q)Φn,λ(Q)

(A.4)

where, the non-adiabatic operator L̂ is defined by

L̂(ψn(rQ)Φn,λ(Q)) = Hph(Q)ψn(r,Q)Φn,λ(Q)− ψn(r,Q)Hph(Q)Φn,λ(Q)

≡ [Hph(Q), ψn(r,Q)] Φn,λ(Q) (A.5)

In the framework of the adiabatic approximation, where the electronic subsystem
is assumed to follow the motion of the host material atoms adiabatically, the
term with the non-adiabatic operator “L” is zero [106]. With the following
definition of the electronic energy in terms of normal coordinates,

En(Q) = En,λ −
1

Φn,λ(Q)Hph(Q)Φn,λ(Q) (A.6)

the total system of Eq. (A.4) is separated into the following set of
coupled electronic and vibrational subsystems, which allows for the separate
determination of electronic and vibrational wavefunctions:

[Hel(r) + Vel-ph(r,Q)]ψn(r,Q) = En(Q)ψn(r,Q) (A.7)

[Hph(Q) + En(Q)] Φn,λ(Q) = En,λΦn,λ(Q) (A.8)

Here, the electron energies En(Q), which act as a coupling between the electronic
and vibrational subsystems, are additional contributions to the potential of the
nuclear oscillations in the lattice equation (Eq. (A.8)).

In the general case, the adiabatic system of Eqs. (A.7) and (A.8) can
not be solved exactly. To overcome this complexity the well-known Franck-
Condon approximation of the adiabatic wavefunctions (ψn(r,Q),Φn,λ(Q)) is
considered [63] [51], whereby it is assumed that the lattice cannot readjust
instantaneously when an electron capture or emission occurs. This results in
the electronic wavefunction of Eq. (A.7) to be expanded into an electronic
wavefunction independent of the normal coordinates Q, and perturbation terms
using perturbation theory. In the framework of the Condon-approximation, the
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approximated total wavefunction of Eq. (A.2) is

Ψn,λ(r,Q) =

ψ(0)
n (r) +

∑
n 6=m

V
(0)

el-ph(r,Q)
E

(0)
n − E(0)

m

ψ(0)
m (r)

Φ(1)
n,λ(Q) (A.9)

≈ ψ(0)
n (r)Φ(1)

n,λ(Q) (A.10)

where ψ(0)
n (r) refer to the stationary state eigenfunctions of the electronic

Hamiltonian Hel(r) which are assumed to simultaneously diagonalize the total
system Hamiltonian H(r,Q), and where Φ(1)

n,λ(Q) refers to the first-order
perturbed lattice vibrational function due to the electron-lattice interaction. In
order to make the calculations of transition probabilities (probabilities of either
a carrier capture or emission event) feasible, the higher order non-diagonal
contributions of the electronic wavefunctions in Eq. (A.9) are usually neglected
in the conventional NMP theory, which states that the capture or release of a
carrier occurs through a combination of ballistic tunneling and multiphonon
emission or absorption during structural relaxation of the lattice site. However,
these non-diagonal terms can correspond to the phonon-assisted NMP process,
which would be a second order effect of the conventional NMP theory (hence
ignored) [107], because they represent electron-phonon coupling during the
electronic transitions (tunneling transitions of the NMP theory). Note that these
assumptions are similar to the static approach of adiabatic theory [107]. The
total system of Eq. (A.1), while using the definition of Eq. (A.10) and keeping

in mind the identity of stationary electronic states
(
Î =

∑
n′

∣∣∣ψ(0)
n′

〉〈
ψ

(0)
n′

∣∣∣), can
be written as∑

n′

∣∣∣ψ(0)
n′

〉〈
ψ

(0)
n′

∣∣∣ [Hel(r) + Vel-ph(r,Q) +Hph(Q)]
∣∣∣ψ(0)
n

〉
Φ(1)
n,λ(Q)

=
∑
n′

∣∣∣ψ(0)
n′

〉〈
ψ

(0)
n′

∣∣∣ En,λ ∣∣∣ψ(0)
n

〉
Φ(1)
n,λ(Q) (A.11)

The orthonormality condition of the electronic state eigenfunctions(〈
ψ

(0)
n′

∣∣∣ψ(0)
n

〉
= δn,n′

)
brings Eq. (A.11) to[

E(0)
n +

〈
ψ(0)
n

∣∣∣Vel-ph(r,Q)
∣∣∣ψ(0)
n

〉
+Hph(Q)

]
Φ(1)
n,λ(Q) = En,λΦ(1)

n,λ(Q) (A.12)

Comparing Eqs. (A.12) and (A.8), the lattice-dependent electronic energy is
a linear combination of stationary state electronic energy and the expectation
value of the electron-phonon coupling strength, which is

En(Q) ≈ E(0)
n +

〈
ψ(0)
n

∣∣∣Vel-ph(r,Q)
∣∣∣ψ(0)
n

〉
(A.13)
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Combining this approximation with Eq. (A.10), the total system of electronic
and lattice vibrations (Eqs. (A.7) and (A.8)) is transformed into the following
simplified set of coupled equations:

Hel(r)ψ(0)
n (r) = E(0)

n ψ(0)
n (r) (A.14)[

Hph(Q) +
〈
ψ(0)
n

∣∣∣Vel-ph(r,Q)
∣∣∣ψ(0)
n

〉
+ E(0)

n

]
Φ(1)
n,λ(Q) = En,λΦ(1)

n,λ(Q) (A.15)

Note that the simplifications made from Eq. (A.1) until Eq. (A.15) are equally
carried out in formulating the Schenk TAT [41] and the extended-NMP based
TAT model [42], however with different approaches to determine the tunneling
and thermal transition rates (briefly described in Section 1.5.2 of Chapter 1).
In order to make the calculation of thermal transition probabilities feasible with
Eq. A.15, the harmonic approximation for the phonon Hamiltonian Hph(Q) is
applied, which states that the lattice displacement during vibrations around
their equilibrium position is small, and results in a quadratic dependence on
the normal coordinates:

Hph(Q)Φ(1)
n,λ(Q) = AQ2Φ(1)

n,λ(Q) (A.16)

Remember that the NMP theory is characterized by ballistic tunneling
followed by multiphonon emission (or absorption) due to structural relaxation
upon the capture (or release) of a carrier. The interpretation of these
underlying mechanisms can be explained by analyzing Eqs. (A.6), (A.13),
(A.14) and (A.15). First, the ballistic tunneling can be determined from the
tunneling transition rates, obtained while applying Fermi’s Golden rule, by
using the wavefunctions of the electronic subsystem Eq. (A.14).

Second, the structural relaxation is to be understood as follows. The total
energy of the system of delocalized electrons and the lattice site (defect) prior to
capture of an electron, while using the aforementioned harmonic and adiabatic
approximations, can be written from Eqs. (A.6) and (A.13) as

En,λ = En(Q) + 1
Φn,λ(Q)Hph(Q)Φn,λ(Q) ≡ E(0)

n +AQ2 (A.17)

In this case, we assumed insignificant coupling,
〈
ψ

(0)
n

∣∣∣Vel-ph(r,Q)
∣∣∣ψ(0)
n

〉
≈0, in

Eq. (A.13), between the delocalized electron and the lattice site and we further
assumed that the system energy is minimal when the lattice is in its undistorted
equilibrium (Q =0). The capture of an electron at the lattice site readjusts
the bonding of the lattice ions with their nearest neighbor ions. The lattice
site is then polarized in the vicinity of the captured electron and subsequently
the equilibrium position of the lattice ions changes. This effect is usually
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Figure A.1: Graphical illustration of configuration coordinate (CC) diagram
of (a) a system of a delocalized electron and the lattice (defect) site prior to
capture of an electron and (b) a system when an electron is captured at the
lattice (defect) site.

described by
〈
ψ

(0)
n

∣∣∣Vel-ph(r,Q)
∣∣∣ψ(0)
n

〉
in Eq. (A.13). The linear approximation

of
〈
ψ

(0)
n

∣∣∣Vel-ph(r,Q)
∣∣∣ψ(0)
n

〉
, which states that the lattice deformation linearly

modulates the electron energy, is defined as

δE(0)
n = −BQ = ∂E

(0)
n

∂Q
Q (A.18)

where B is the deformation potential. Upon electron capture, the total system
energy, while using Eqs. (A.6), (A.13) and (A.18), becomes

En,λ = E(0)
n +AQ2 −BQ

= E(0)
n +A(Q−Q0)2 −AQ2

0 (A.19)

where we defined Q0 = B/2A. Comparing Eqs. (A.17) and (A.19), it is clear
that the total system energy, upon the capture of an electron at the lattice site,
is decreased with the minimum energy AQ2

0 and the normal coordinate shifts
from Q to Q−Q0. This phenomenon is known as structural relaxation, which
is graphically illustrated by the configuration coordinate diagram in Fig. (A.1).
The difference in the total system energy between Eqs. (A.17) and (A.19), which
is due to structural relaxation, is released in the form of multiphonon. Hence,
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the theory is known as non-radiative multiphonon (NMP) recombination. There
are two widely used TAT models in literature which are based on the application
of the NMP theory. These models are briefly explained in Section 1.5.2, while
discussing their limitations in Section 1.5.3 of Chapter 1.



Appendix B: Fundamentals of
equilibrium statistical
mechanics

In this appendix, the statistical average of the occupation number operator
of a single particle state in a grand canonical ensemble, a many-particle
system characterized by the exchange of particles with an external reservoir, is
determined.

B.1 Fermi-Dirac statistics

As mentioned in the beginning of Section 3.1, we are interested in
determining the statistical average of a single-electron state occupation number
operator (〈n̂ϑ〉) from the system of many electrons. It can be determined with
Eq. (3.15), while using the single-electron state occupation number operator
(Eq. (3.8)) and the many-electron density operator (Eq. (3.18)) and results
in [76]

〈n̂ϑ〉 = Tr (%̂el n̂ϑ) ≡
Tr
((

exp
{
−Γ
(
Ĥel − µN̂el

)})
n̂ϑ

)
Zel

(B.1)

Using the definition of Trace operator from Eq. (3.14), the grand canonical
partition function of electrons in Eq. (B.1), however in occupation number
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representation, can be calculated from the following expression:

Zel = Tr
(
exp

{
−Γ
(
Ĥel − µN̂el

)})
=

1∑
n1,n2,···=0

〈n1, n2, . . .| exp
{
−Γ
(
Ĥel − µN̂el

)}
|n1, n2, . . .〉 (B.2)

The exponential function of the operator can be interpreted in the following
Taylor series expansion around −Γ

(
Ĥel − µN̂el

)
= 0:

exp
{
−Γ
(
Ĥel − µN̂el

)}
=
∞∑
j=0

{
−Γ
(
Ĥel − µN̂el

)}j
j! (B.3)

Using the fact that an occupation vector |n1, n2, . . .〉 is simultaneously an
eigenvector of Ĥel and N̂el with eigen values from Eqs. (3.9) and (3.7) as E
and N , respectively, one obtains exp {−Γ (E − µN)} by applying the above
Taylor series on this eigenvector and reconstructing the eigen values back into
an exponential function. With the descriptions of a non-interacting N-electrons
system and using Eq. (3.10), the grand canonical partition function can further
be simplified as:

Zel =
1∑

n1,n2,···=0
exp {−Γ (E − µN)} 〈n1, n2, . . .|n1, n2, . . .〉

=
1∑

n1,n2,···=0
exp

{
−Γ

∞∑
ϑ=1

(Eϑ − µ)nϑ

}
(B.4)

Using the property
[

exp
(∑

j

aj

)
=
∏
j

exp (aj)
]
of the exponential function

and subsequently applying the identity exp(ij) = (exp(i))j , the grand canonical
partition function can be rewritten as [76]:

Zel =
1∑

n1,n2,···=0

∞∏
ϑ=1

exp {−Γ (Eϑ − µ)nϑ}

=
1∑

n1,n2,···=0

∞∏
ϑ=1

(exp {−Γ (Eϑ − µ)})nϑ (B.5)
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Rewriting Eq. (B.5) and applying the possible single-electron state occupation
numbers (nk = 0, 1) simplifies the partition function as

Zel =
[ 1∑
n1=0

(exp {−Γ (E1 − µ)})n1

][ 1∑
n2=0

(exp {−Γ (E2 − µ)})n2

]
. . .

=
∞∏
ϑ=1

1∑
nϑ=0

[exp {−Γ (Eϑ − µ)}]nϑ ≡
∞∏
ϑ=1

[1 + exp {−Γ (Eϑ − µ)}] (B.6)

Since the partition function is determined, the statistical average of a single-
state occupation number can be calculated. From Eq. (B.1), it is rewritten in
the occupation number representation as:

〈n̂ϑ〉 = 1
Zel

1∑
n1,n2,···=0

〈n1, n2, . . .|
(
exp

{
−Γ
(
Ĥel − µN̂

)})
n̂ϑ |n1, n2, . . .〉

(B.7)
With the Taylor series expansion for the exponential function of operators and
the fact that a vector |n1, n2, . . .〉 is also an eigenvector of n̂ϑ, the statistical
average is simplified by applying Eq. (B.3) and subsequently, by using Eqs. (3.7)-
(3.10), which results in the following expression for the statistical average [76]:

〈n̂ϑ〉 = 1
Zel

1∑
n1,n2,···=0

(exp {−Γ (E − µN)}) 〈n1, n2, . . .| n̂ϑ |n1, n2, . . .〉 (B.8)

= 1
Zel

[ 1∑
n1,n2,···=0

(
exp

{
−Γ

∞∑
ϑ=1

(Eϑ − µ)nϑ

})
nϑ

]
(B.9)

The square bracket term of Eq. (B.9) can be rewritten, while using the partial
derivative with respect to an energy Eϑ of a particular single-electron state
ϑ [76], in the following form:

〈n̂ϑ〉 = 1
Zel

[
− 1

Γ
∂

∂Eϑ

[ 1∑
n1,n2,···=0

exp
{
−Γ

∞∑
ϑ=1

(Eϑ − µ)nϑ

}]]
(B.10)

Using Eq. (B.4), the statistical average Eq. (B.10) is rewritten as

〈n̂ϑ〉 = 1
Zel

[
− 1

Γ
∂

∂Eϑ
Zel

]
≡
[
− 1

Γ
∂

∂Eϑ
(ln (Zel))

]
(B.11)

Substituting Eq. (B.6) in Eq. (B.11) for the partition function, the statistical
average of a single-electron state occupation number is further simplified as:

〈n̂ϑ〉 = exp {−Γ (Eϑ − µ)}
1 + exp {−Γ (Eϑ − µ)} ≡ fFD(Eϑ − µ) (B.12)
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where fFD is the well-known Fermi-Dirac probability distribution function of
electrons, which is described in its final form by

fFD(Eϑ − µ) = 1
1 + exp {Γ (Eϑ − µ)} (B.13)

Therefore, the statistical average of a single-electron state occupation number in
a grand canonical ensemble results in the Fermi-Dirac statistics of the electron.

B.2 Bose-Einstein statistics

In a grand canonical ensemble, the statistical average of a single-phonon
state occupation number operator (〈m̂λ〉) can be determined, in the occupation
number representation [76], as follows:

〈m̂λ〉 = 1
Zph

∞∑
m1,m2,···=0

〈m1,m2, . . .| exp
{
−Γ
(
Ĥph − µphM̂

)}
m̂λ |m1,m2, . . .〉

(B.14)
Using the general definition of the grand canonical partition function, which is
similar to the case of electrons in the previous subsection, the partition function
of free phonons in Eq. (B.14) can be described in terms of the occupation
number representation, which is further simplified by applying the Taylor
series expansion for the exponential function of operators on the eigenvectors
|m1,m2, . . .〉 and using Eqs. (3.20) and (3.22), which results in the following
equation [76]:

Zph =
∞∑

m1,m2,···=0
〈m1,m2, . . .| exp

{
−Γ
(
Ĥph − µphM̂ph

)}
|m1,m2, . . .〉

=
∞∑

m1,m2,···=0
exp {−Γ (Eph − µphM)}

=
∞∑

m1,m2,···=0
exp

{
−Γ

∞∑
λ=1

(Eλ − µph)mλ

}
(B.15)

Using the aforementioned properties of the exponential function and similar to
the transitions made from Eq. (B.4) till Eq. (B.6), the phonons’ grand canonical
partition equation can be rewritten by using all possible occupation numbers



BOSE-EINSTEIN STATISTICS 125

for a single-phonon state, in the following forms [76]:

Zph =
[ ∞∑
m1=0

(exp {−Γ (E1 − µph)})m1

][ ∞∑
m2=0

(exp {−Γ (E2 − µph)})m2

]
. . .

=
∞∏
λ=1

∞∑
mλ=0

(exp {−Γ (Eλ − µph)})mλ (B.16)

The summation in Eq. (B.16) represents a geometric series, which can be
simplified and has the following value [76]:

∞∑
mλ=0

(exp {−Γ (Eλ − µph)})mλ = 1
1− exp {−Γ (Eλ − µph)} (B.17)

Substituting Eq. (B.17) into Eq. (B.16) results in the following simplified
expression for the phonons’ grand canonical partition function:

Zph =
∞∏
λ=1

1
1− exp {−Γ (Eλ − µph)} (B.18)

Similar to the case of electrons, the statistical average of Eq. (B.14) can be
simplified, while using Eq. (B.15), into the following expressions [76]:

〈m̂λ〉 = 1
Zph

∞∑
m1,m2,···=0

(
exp

{
−Γ

∞∑
λ=1

(Eλ − µph)mλ

})
mλ

=
[
− 1

Γ
∂

∂Eλ
(ln (Zph))

]
(B.19)

which is equal to:

〈m̂λ〉 = exp {−Γ (Eλ − µph)}
1− exp {−Γ (Eλ − µph)} ≡ fBE(Eλ − µph) (B.20)

where fBE is the expected Bose-Einstein probability distribution function for
phonons, which is described in its final form by

fBE(Eλ − µph) = 1
exp {Γ (Eλ − µph)} − 1 (B.21)

Note that the chemical potential µph for the free phonons system remains
close to zero until the temperature reaches the Bose-Einstein condensation
temperature TBE, at which the occupancy of the single-phonon ground state
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becomes vanishingly small [108]. For the temperatures above TBE, the chemical
potential µph for the free phonons system is negative [108]. In conclusion,
the statistical average of a single-phonon state occupation number in a grand
canonical ensemble results in Bose-Einstein statistics of the phonons.

In this appendix, we determined the mean occupation of electrons and
phonons under equilibrium conditions, which exemplifies the quantum statistics
in the semi-infinite contacts of a QTBM-based configuration. We use these
statistics in formulating the PAT current equation in Section 3.2 of Chapter 3,
while applying QTBM.
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