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Özgür Can Sakinci∗, Jef Beerten

KU Leuven, Dept. ESAT, ELECTA Research Group & EnergyVille, 3001 Leuven Belgium
Email: ∗ozgurcan.sakinci@kuleuven.be

Abstract—This paper presents a comparison of two different frame-
works to develop linear averaged state-space models of power electronic
converters: linear time-invariant framework and linear time-periodic
framework. Small-signal stability analysis methods that accompany the
aforementioned frameworks are introduced and compared in terms of
their applicability to power-electronics based systems. Both frameworks
are applied to a two-level voltage-source converter, and the results of a
stability study are introduced. It is shown how models developed using
both frameworks can effectively capture the small-signal behavior of the
converter if certain parameters are varied.

Index Terms—linear time-invariant, linear time-periodic, small-signal
stability, power electronics, state-space model

I. INTRODUCTION

With the global incentives towards more renewable energy gener-
ation pushing the installment of wind turbines and PV installations
and the advances in the power electronic industry enabling high-
power semiconductor-based grid control elements, the amount of
power electronics connected to the electricity grid is showing a
rapid increase over the past years. Also for power transmission,
high-voltage direct-current (HVDC) transmission systems based on
voltage-source converters (VSC) composed of several hundreds of
semiconductor switches are becoming increasingly popular, since
they allow flexible power transmission and control. From the system
operators’ point of view, the increasing usage of power electronic
devices provides numerous advantages, but at the same time makes
the analysis of the system stability more challenging. One of the
main challenges is related to ensuring the small-signal stability of the
system. High switching frequencies of the VSCs result in interactions
with the power system at higher frequencies, which are ignored
during traditional power system small-signal stability assessment.
To tackle such undesired interactions, many small-signal stability
analysis methods exist in the literature. Within these methods, the
impedance-based stability criterion and eigenvalue analysis are com-
monly applied [1]. Although the impedance-based stability criterion
can evaluate the stability of two connected systems at the connection
interface by applying the Nyquist stability criterion, it is a local
method and lacks further analysis techniques since the instabilities
cannot easily be traced to certain state variables.

Traditional power system small-signal stability analysis mainly
relies on the calculation of the eigenvalues of the system matrix,
which gives insight on the global stability of the system, and the
effect of different state variables on stability [2]. To overcome
discontinuities at system states due to the switching action of the
converters, averaged models are used, which generally result in
linear time-invariant (LTI) systems, enabling the usage of system
eigenvalues to assess the stability. Because of the periodic nature of
most power system states, some converter topologies cannot be easily
represented as an LTI system. In that case, it is usually more beneficial
to model the system as a linear time-periodic (LTP) one, and to

carry out the stability analysis of such systems [3]. Depending on the
chosen modeling framework, both LTI and LTP models of the same
converter can be developed. However, stability analysis of power
electronic converters using LTP models has not been extensively
implemented, mainly due to the post-processing methods being not
as straightforward as the LTI case.

In light of the challenges described above, this paper carries out
a comparative study of small-signal stability analysis of linearized
state-space models obtained using the LTI and LTP frameworks.
Section II presents a general introduction to the theory of small-
signal stability analysis using both frameworks, general assumptions
that accompany the development of such models and their limitations.
In Section III, time-invariant and time-periodic models of a two-level
VSC and its current controllers are developed. Section IV presents
the linearization of both models, and a stability study in which the
controller gains are varied to observe their effect on the small-signal
stability of the VSC. Section V discusses the effect of the chosen
controller architecture on the modeling framework to be used and
finally, Section VI draws the conclusions of the paper, and provides
further points towards future research on the application of the LTP
framework.

II. SMALL-SIGNAL STABILITY ASSESSMENT

The small-signal stability of a system can be defined as the ability
of the system to return to a stable equilibrium point when it is
subjected to a small disturbance. For linear systems, if the state
vector and the input vector are written as a linear superposition
of their small-signal components ∆~x(t) & ∆~u(t) and steady-state
components ~x0(t) & ~u0(t) as:

~x(t) = ∆~x(t) + ~x0(t) & ~u(t) = ∆~u(t) + ~u0(t) (1)

then the small-signal dynamics of the system are governed by the
following state-space equation:

∆~̇x(t) = A(t)∆~x(t) + B(t)∆~u(t) (2)

where the matrices A(t) and B(t) define the system dynamics
for the system state vector ~x(t) and the input vector ~u(t). For LTI
systems, which satisfy d

dt
A(t) = 0, the system is stable in the small-

signal sense if A(t) has all its eigenvalues in the left-half plane.
For most of the three-phase power system equipments (including

VSCs), the first step during modeling to obtain an LTI system is
to apply averaging based on the switching period. This is common
practice in system-level studies, since instead of the high-frequency
switching phenomena, the slow transients are the main concern. By
replacing the switched signals with their moving average as [4]:

x̄(t) =
1

Ts

∫ t

t−Ts

x(τ)dτ (3)
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where Ts is the constant switching period, one can focus on
the slow-varying dynamics, instead of the high-frequency switching
behavior. Doing so, average models allow to replace the switching
with a controlled source, making it easier to analyze the system [4].

When the switching effects are removed by applying averaging, the
analysis of the eigenvalues of the system matrix is usually enough to
arrive at a statement regarding the small-signal stability of the system.
Moreover, by means of the left and right eigenvectors, eigenvalue
analysis also provides information about states that can be used to
control a certain oscillatory mode, and in which system states a
certain mode can be observed, respectively [2].

If the system is time-varying, however, the eigenvalues of the
system matrix A(t) cannot be used to judge the system stability.
For LTP systems, a special class of time-varying systems that satisfy
A(t+T ) = A(t) for a certain period T , the stability of the system
can be analyzed by using the Floquet-Lyapunov theory. The theory
makes use of the state transition matrix Φ(t1, t2) of the system,
which defines the evolution of the system states from time t1 to t2
as:

~x(t2) = Φ(t1, t2)~x(t1) (4)

For the system to be stable in the small-signal sense, the mon-
odromy matrix—the state transition matrix after one period—,
Φ(T,0), needs to have its eigenvalues inside the unit circle [3].
The eigenvalues of the monodromy matrix are also called Poincaré
multipliers [3]. The stability analysis of LTP systems is relatively
straightforward, yet it is generally perceived to be less powerful
than the stability analysis of LTI systems, because of the lack of
widespread post-processing tools such as eigenvectors and partici-
pation factors [2]. Moreover, an inherent challenge exists when the
monodromy matrix is to be calculated during stability analysis. As
the complexity of the system increases, it gets harder to arrive at
a closed-form analytical expression for the monodromy matrix, or
such an expression might even be non-existent [5]. Alternatively, the
monodromy matrix can be numerically calculated by following the
steps below:
Step 1: For a system with N states, the equation ∆~̇x(t) =
A(t)∆~x(t) needs to be solved for N independent initial conditions.
The N different initial conditions, ~x1(0), ... ,~xN (0), which produce
the solutions ~x1(T ), ... ,~xN (T ) after one period of Φ(T,0), are
obtained as the independent columns of the N ×N identity matrix.
Step 2: Once the solutions are calculated through numerical integra-
tion, the monodromy matrix is obtained as:

Φ(T,0) = [~x1(T )|~x2(T )| . . . |~xN (T )]

The LTP framework utilizing the Poincaré multipliers for small-
signal stability assessment has previously been applied by many
researchers to conduct stability studies of switched power-electronic
converters. Mazumder et al. presented a comparison of an averaged
model with a model that accurately models the switching behavior of
a single-phase bidirectional boost converter, and discovered fast-scale
instabilities by analyzing the Poincaré multipliers [6]. This instability
was not captured by the averaged model due to the exclusion of the
switching behavior. In a similar fashion, possible bifurcations leading
to structural instabilities in a DC-DC resonant converter have been
analyzed by means of its Poincaré multipliers in [7]. Such an analysis
of the Poincaré multipliers was able to detect controller gains that
result in an unstable converter.

III. CONVERTER MODEL

As an example, the concepts introduced in the previous section
are illustrated on a standard three-phase two-level VSC. The LTI
framework is applied after the application of Park transform which

results in variables in the rotating DQ frame, and the LTP framework
is applied to the variables in the stationary ABC frame. The converter
is modeled together with a simplified AC grid representation, an LCL
filter and the DC-side capacitor. A current controller controls the
converter current ic with PI controllers in the DQ frame. It is assumed
that a perfect PLL is present, which tracks the grid voltage angle to
perform the Park transform. The converter topology, including the
AC-side representation with the filter, is depicted in Fig. 1.
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Fig. 1. Three-phase two-level VSC topology

A. Time-Periodic Modeling

An averaged model is being used, which implies that the terminal
voltage of the converter for an arbitrary phase j, vcj , is given as:

vcj = mj
vdc
2

(5)

where mj ∈ {0, 1} is the modulation index of phase j. The per-
phase operation of the converter is then modeled by using four state
variables: the AC-side current ig , converter current ic, LCL filter
voltage vf and DC voltage vdc. The corresponding equations guiding
the derivatives of these state variables for an arbitrary phase j are
defined as follows:

LG
digj
dt

=vfj − vgj −RGigj (6a)

LF
dicj
dt

=vcj − vfj −RF icj (6b)

CF
dvfj
dt

=icj − igj (6c)

Cdc
dvdc
dt

=icap (6d)

In its current form, (6) does not completely model the two-level
VSC, since the power balance between the AC & DC sides needs to
be defined to arrive at an expression for the capacitor current. This
power balance is defined as:

vdc(idc − icap)=vcaica + vcbicb + vccicc (7a)

icap=
vdcidc − vcaica − vcbicb − vccicc

vdc
(7b)

The substitution of icap with (7b) and vcj with (5) completes the
per-phase state-space description of the two-level VSC. For a three-
phase VSC, the model consists of ten state variables. It contains
multiplications of system states, thus it is nonlinear. After lineariza-
tion, since the modulation indices mj are sinusoidal signals, A
becomes a periodic matrix. Therefore, the model naturally becomes
a time-periodic one in the ABC frame if no precautions are taken to
overcome the periodicity.
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B. Time-Invariant Modeling

In steady state, the modulation indices are fundamental-frequency
sinusoids calculated by the current controller. To arrive at a time-
invariant model, the model can be developed in the rotating DQ
frame, since the fundamental-frequency sinusoids become constants
in the DQ frame. A power-variant Park transform is used, with the
transformation matrix given by:

TPark =
2

3

[
cos(wt) cos(wt− 2π/3) cos(wt− 4π/3)
sin(wt) sin(wt− 2π/3) sin(wt− 4π/3)

]
(8)

In terms of the DQ variables, the converter terminal voltages are
written as:

~vc,dq = ~mdq
vdc
2

(9)

The power balance in terms of the DQ variables is written as:

vdc(idc − icap)=
3

2
(vcdicd + vcqicq) (10a)

icap=idc −
3

2

(
mdicd

2
+
mqicq

2

)
(10b)

By using (10b), the model in the DQ frame which has eight state
variables is written as:

LG
d~ig,dq
dt

=~vf,dq − ~vg,dq −RG
~ig,dq − LG

[
0 w
−w 0

]
~ig,dq (11a)

LF
d~ic,dq
dt

=~vc,dq − ~vf,dq −RF
~ic,dq − LF

[
0 w
−w 0

]
~ic,dq (11b)

CF
d~vf,dq
dt

=~ic,dq −~ig,dq − CF

[
0 w
−w 0

]
~vf,dq (11c)

Cdc
dvdc
dt

=idc −
3

2

(
mdicd

2
+
mqicq

2

)
(11d)

C. Inclusion of Current Controller

Equations (6) and (11) define the converter dynamics in a time-
periodic model and a time-invariant model, respectively. However,
the models are not complete since the controller dynamics also need
to be represented. The controller block diagram is given in Fig. 2.
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Fig. 2. Current controller block diagram

The states associated with the PI current controllers in the DQ
frame are guided by the following error signals:

dεd
dt

=i∗cd − icd (12a)

dεq
dt

=i∗cq − icq (12b)

The current controllers create the modulation indices md and mq

as outputs, which are defined as:

md=
KP (i∗cd − icd) +KIεd − wLf icq

vdc
2

(13a)

mq=
KP (i∗cq − icq) +KIεq + wLf icd

vdc
2

(13b)

The inclusion of the current controller in the time-invariant con-
verter model is straightforward. However, for the time-periodic model
in the ABC frame, one further step is needed for this control to
convert the modulation indices in the DQ frame to their equivalents
in the ABC frame, which is implemented as:

~mabc =

 ma

mb

mc

 =

 cos(wt) sin(wt)
cos(wt− 2π/3) sin(wt− 2π/3)
cos(wt− 4π/3) sin(wt− 4π/3)

[ md

mq

]
(14)

Equation 14 completes the time-periodic VSC model. With the
current controller included, the time-invariant state-space VSC model
in the DQ frame has 9 states, whereas the time-periodic state-space
VSC model in the ABC frame has 12 states, with the state vectors
defined as:

~xLTI =
[
igd igq icd icq vfd vfq vdc εd εq

]
~xLTP =

[
iga igb igc ica icb icc vfa vfb vfc vdc εd εq

]
(15)

The details of the modeled converter are given in Table I.

TABLE I
CONVERTER DESIGN DATA.

Parameter Description Value

RG Grid-side resistance 0.012 Ω

LG Grid-side inductance 42.9 mH

RF Filter resistance 0.3429 Ω

LF Filter inductance 62.9 mH

CF Filter capacitance 2.3463 µF

Cdc DC-side capacitance 62.7 µF

vdc Rated DC voltage 620.54 kV

vRMS
g,LL RMS value of the line voltage at the grid 380 kV

KP Current controller proportional gain 87.7171 V/A

KI Current controller integral gain 62900 V/As

IV. STABILITY ANALYSIS

A. Linearization at a Steady-State Operating Point

The models developed in the previous section become nonlinear
with the inclusion of the controllers, since the modulation indices,
which are functions of system states, are multiplied with the state
variables. To conduct stability analysis based on the eigenvalues of the
system matrix, the converter system including the controllers has to
be linearized. The linearized system matrix is obtained by calculating
the Jacobian of the system matrix and evaluating it at a steady-state
operating point, and then its eigenvalues are calculated. When the
Jacobian is evaluated at an operating point in which the AC grid
voltage vg and the DC-side voltage vdc are at their nominal values
and the d and q axis components of the converter current, icd and
icq , are both controlled to -500 A, the corresponding eigenvalues of
the LTI system are presented in Fig. 3.

For an LTI system to be stable in the small-signal sense, all its
eigenvalues need to have negative real parts. This is exactly the case
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Fig. 3. Eigenvalues of the LTI model

in Fig. 3, which enables us to conclude that the two-level VSC with
the specs given in Table I is stable in the small-signal sense at the
operating point described above. In such a case, since both the LTI
model and the LTP model are based on the same physical converter,
one would expect to arrive at an LTP model that is also stable in
the small-signal sense with the same converter and operating point
properties. To validate this claim, the time-periodic model developed
in Section III is linearized and its Poincaré multipliers are calculated
at the same operating point by using the methodology introduced in
Section II. The result is given in Fig. 4, together with the unit circle
representing the stability limit.
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Fig. 4. Poincaré multipliers of the LTP model

The stability condition for the system in terms of its Poincaré
multipliers is to have all of them lying inside the unit circle. We
see that this is the case in Fig. 4, even though two of them are close
to the stability limit. Hence, the LTP model of the VSC is also stable
in the small-signal sense.

B. Variation of Controller Gains

Next, we analyze the impact of controller gains on the stability of
the converter. We simulate a parametric sweep of the controller gains
and observe the eigenvalue trajectories to independently define their
effect. Specifically, the current controller gains KP and KI have
been varied from 0 to twice their original values in both models.
For the LTI model, results of these sweeps are given in Fig. 5 and
Fig. 6. The eigenvalues with the original controller gains are depicted
in turquoise.

It is observed that for different values of the proportional gain
KP , 8 eigenvalues show major changes, and they get closer to the
stability limit for low KP values. For the integral gain KI , only four
eigenvalues show major changes, and two of them come closer to the
origin for low values of KI .
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Fig. 5. Trajectories of the LTI system eigenvalues during variations of KP
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Fig. 6. Trajectories of the LTI system eigenvalues during variations of KI

For the LTP model, the trajectories of the Poincaré multipliers
during the same sweep are given in Fig. 7 and Fig. 8. The multipliers
with the original gains are plotted in turquoise.
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Fig. 7. Trajectories of the Poincaré multipliers of the LTP system during
variations of KP
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Similar to the LTI model, for low values of KP 8 out of 12
Poincaré multipliers grow in magnitude, thereby getting closer to
the unit circle indicating the stability limit. For the variations in KI ,
two multipliers show major changes, moving towards the point (1,0).

As a result of the parameter variations presented above, we
conclude that both models can effectively represent the small-signal
stability behavior of a two-level VSC. Variations in the converter
parameters result in similar changes for the eigenvalues of the LTI
model and the Poincaré multipliers of the LTP model. When both
approaches are compared, it can be said that the LTI model is more
preferable since it offers the possibility to discover the inherent
oscillatory modes of the system and associate them with system states
through modal analysis, a feature which is not commonly applied
to LTP systems [8]. In modal analysis, the participation factors are
calculated from the left eigenvectors w and the right eigenvectors
v. Different definitions of the participation factors exist, yet in this
paper, the approach of Abed et al. is followed, which results in real
values for participation factors [9]. For an arbitrary eigenvalue λi, its
participation factor associated with state j is calculated as:

Pij =

{
vijwij if λi ∈ IR

2Re(vij)Re(wij) if λi ∈ C
(16)

The application of modal analysis to the system with the original
gains helps us associate the converter eigenvalues with the system
states. The results for the 5 states that have the maximum impact on
the eigenvalues are given in Table II.

TABLE II
PARTICIPATION FACTORS OF THE EIGENVALUES OF THE LTI MODEL.

Eigenvalue/rad/s
State 1 State 2 State 3 State 4 State 5

Name PF/% Name PF/% Name PF/% Name PF/% Name PF/%

−9.72 vdc 100

−324.44±4442.29j vfq 49.57 igd 28.34 icd 22.65 εq 1.18

−264.45±3700.98j vfq 50.75 igd 30.88 icd 18.35 εq 1.37

−550.30 ± 977.30j icd 27.11 igd 18.16 icq 17.68 εq 16.78 igq 11.55

−261.09 ± 461.97j εq 41.61 εd 29.88 icd 9.96 igd 7.11 icq 6.66

From the participation factors depicted in Table II, we see that the
eigenvalue at -9.72 is solely associated with the DC voltage, therefore
if a DC voltage controller is added to the system, its small-signal
stability can be significantly improved.

V. THE IMPACT OF THE CONTROL ARCHITECTURE

In this paper, the converter current of a two-level VSC is controlled
by means of PI controllers in the DQ frame. Since the DQ frame
is rotating with the same frequency as the converter current of the
VSC, the variables appear as constants in the DQ frame. This will
also be the case if proportional-resonant (PR) controllers at the
fundamental frequency are used to control the sinusoidal currents:
the controller signals, which oscillate with the fundamental frequency,
can be transformed to the DQ frame, even though the controllers that
are being used are not based on that frame. However, such a transform
is only applicable in case of a three-phase VSC. Moreover, in case the
controller generates signals at frequencies other than the fundamental
frequency, such as the controllers used for active filtering or negative-
sequence current injection applications, the controller variables in
the DQ frame are not constants during steady state, resulting in a
time-varying system. Therefore, a linearized converter model utilizing
variables on a DQ frame rotating with the fundamental grid frequency
might not always result in a time-invariant system.

Conversely, if such time-periodicity is allowed in the system by
carrying out the stability analysis using the linear time-periodic

framework, no problems will be faced since as long as the period of
the system matrix is known, the Poincaré multipliers can be calculated
to assess the small-signal stability of the system. Hence, the usage of
the LTP framework brings up the possibility of studying the small-
signal stability of single-phase converters and a much broader family
of converter controllers.

VI. CONCLUSIONS

This paper introduced a comparison of different small-signal mod-
eling and stability analysis methods for power-electronic converters,
namely the LTI framework and the LTP framework. Following intro-
ductions of the theoretical background of both methodologies, time-
invariant and time-periodic models were developed for a three-phase
two-level VSC. After linearization, the eigenvalues of the LTI model
and the Poincaré multipliers of the LTP system —the eigenvalues of
its state-transition matrix— are illustrated for a steady-state operating
point in which the voltages are at their nominal values and the d and
q axis currents are both controlled to -500 A. Finally, both models are
used to assess the effect of the controller gains on the small-signal
stability of the system by varying the controller gains. It was observed
that in both models, the eigenvalues and the multipliers approached
stability limits for extreme values of the controller gains, the limits
being the imaginary axis for LTI systems and the unit circle for LTP
systems. A discussion on the impact of the chosen control architecture
revealed that even though the LTI framework seems to provide more
insight regarding the stability of the converter through modal analysis
methods, the LTP framework might be inevitable to study the small-
signal stability of certain controller architectures. Future research will
be focusing on the inclusion of additional controllers to the system,
the extension of the LTP framework to the stability analysis of more
complicated converter topologies and tools that can provide further
insight on stability when the LTP framework is being used.
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