A Multiprotocol Low-Cost Automated Testbed
for BLE Mesh

Yuri Murillo, Brecht Reynders, Alessandro Chiumento and Sofie Pollin
{yuri.murillo, brecht.reynders, alessandro.chiumento, sofie.pollin} @esat.kuleuven.be
KU Leuven, Department of Electrical Engineering (ESAT), Kasteelpark Arenberg 10, 3001 Heverlee, Belgium

Abstract—Bluetooth Low Energy (BLE) is envisioned as one of
the most prominent technologies for the Internet of Things (IoT).
The recent release of BLE mesh has attracted interest from both
the industrial and academic communities, with new proposals
for optimizing its performance being published on a regular
basis. However, the majority of these publications rely on analysis
and simulations, potentially neglecting the effect of real life envi-
ronments and hardware limitations. Moreover, no framework is
available to experimentally compare the performance of different
mesh protocols on top of BLE. This paper presents the design
and implementation of a low-cost, modular and fully automated
testbed capable of running multiple mesh protocols. It is also
remotely accessible for any third party interested in performing
network experiments with it. Apart from discussing the testbed
architecture, we provide results obtained from a measurement
driven comparison of two protocols that fit within BLE operation:
flooding and connection based. These results show that there is
a trade off between the two approaches and that the optimal
mesh protocol to use is application dependent, which should be
taken into consideration when heading towards the next release
of BLE mesh.

I. INTRODUCTION

The Internet of Things (IoT) presents a paradigm shift
in which wireless networks are expected to become densely
populated. Industry leaders estimate that by 2021 there will
be 11.6 billion wirelessly connected devices in the world, a
figure 1.5 times greater than the projected global population
[1]. Such dense networks introduce several challenges in terms
of interference, power efficiency, mobility and hierarchical
organization [2].

Wireless Mesh Networks (WMN) are emerging as an ad-
equate solution: large areas can be covered by adding more
low power devices that forward packets to the destination,
creating ad-hoc networks that guarantee reliability by using
alternate paths and channels. This approach becomes partic-
ularly interesting for well known, widely spread and cheap
short-range technologies like Bluetooth Low Energy (BLE).
In fact, enabling mesh operation in BLE has recently attracted
much interest, with proprietary protocols released by industry
[3] and approaches proposed by academic research [4], [5].
This process lead to the release of the first official BLE mesh
specification in July 2017 [6].

Being such a novel technology, the number of publications
and use cases for BLE mesh at the time of writing this work is
very limited. Moreover, the majority of them focus on theoret-
ical analysis and simulations [5], with few papers presenting
experimental work [4]. As a result, there is no clear knowledge

on the real performance of the protocol or its main aspects that
should be optimized. In order to explore these uncertainties we
implemented a multiprotocol BLE mesh automated testbed. Its
multiprotocol nature means that several mesh protocols can
run simultaneously, not being limited to just standard BLE
mesh. This way, both connected and flooding based mesh
protocols can be characterized. The automated nature allows
to perform large batches of unsupervised experiments. The
framework proposed can inspire researchers to design and
implement their own wireless networking testbed based on the
choices hereby presented. Although previous work has been
done on building custom BLE mesh protocols and testbeds [4],
to the best of the authors’ knowledge there is no other current
testbed implementation capable of running multiple BLE mesh
protocols with the aim of experimentally comparing them.

The proposed architecture presents several strong aspects
that help overcome the limitations of analytical and simulation
methods:

« Using off-the-shelf nodes guarantees that the performance
results obtained are representative of any real life appli-
cation using BLE mesh networks. Moreover, it provides
insight into additional issues, such as interference, clear
versus obstructed environments, varying network load,
etc.

« Support for several protocols allows comparison of dif-
ferent mesh flavors against regular BLE mesh. Real-time
network behavior can be tested and strong and weak
aspects of every protocol depending on the application
targeted can be extracted. This serves as a powerful tool
to further taylor the BLE mesh specification in the future.

Additionally, the design and implementation choices pre-
sented are chosen to solve the main impediments for network
testing and testbed evaluation:

¢« A modular design along with a set of single-board
computers, off-the-shelf nodes and open-source software
makes the testbed scalable and reduces its overall cost.

« All network parameters, topologies, parsing and data stor-
ing functions can be pre-configured. These configuration
files can be reused and stored as templates for generating
new tests. This workflow simplifies the task of setting
up an experiment, often a tedious and time-consuming
process.

o Once the network tests are configured, any number of
them can be programmed and performed automatically.
Therefore, a large batch of experiments can be conducted

802.11 board ' I [] i [i

Cloud senver

—h

>

Metwork switch

E

Single board computer
Testbed server

BLE node

BLE mesh network

Fig. 1: Overview of the architecture of the testbed. The BLE mesh network becomes the data network slice, while the
management network slice is subdivided into two parts: a wired IP network and a 802.11n network. The singe board computers
and 802.11 boards are the main elements of the management network slice, which connect to the testbed server through a
network switch. The PC acts as database, status visualization platform and gateway. A cloud server is used for remote login

and backup purposes.

without intervention of the researcher, resulting in a more
time efficient and less error-prone process.

« Full integration with state of the art platforms for testbed
remote access [7]. Operators of the testbed have the possi-
bility of remotely login to it and manage the experiments.
This feature is completely free and available to any third
party interested.

The rest of the paper is structured as follows. Section II
describes the design and implementation of the testbed in fine
detail. Section III introduces a case study of its use for a
comparison of BLE mesh protocols, and finally Section IV
concludes this work.

II. BLE TESTBED: DESIGN, IMPLEMENTATION, FEATURES
AND CONFIGURATION

This section presents a description of the architecture and
hardware used, an introduction of the several protocols sup-
ported and an overview of the software developed.

A. Architecture and Layout

Figure 1 depicts the architecture of the testbed. It consists
of a set of BLE nodes, single-board computers, 802.11 boards,
a network switch and a local and cloud PC servers. The
main reason behind the proposed design choice is ensuring
modularity of the testbed.

Two different network slices are defined: management and
data. The management slice is subdivided into two parts:
a wired IP network, used to control and establish a serial
communication with the BLE nodes; and a 802.11n network,
used to seamlessly access mobile nodes located far away from
the testbed and disconnected from the wired backbone. The
data network is the short-range mesh network established by
the BLE nodes.

Although the current protocol developed for BLE supports
individual node addressing and over-the-air parameter con-
figuration, this task is only performed through the wired or
802.11n management slice. Therefore, control packets are sent
over this network slice while data packets are sent over the
data network slice. The former are used to configure the nodes

and report their status, while the latter are used to send actual
data from the sources to the sinks. This separation ensures that
both types of traffic do not conflict with each other.

The testbed is spread over two adjacent rooms in a regular
office environment. The main room is 6x9m and allocates 12
BLE nodes, one 802.11 board (with an additional BLE node)
and the PC server. The second room is 4x8m and allocates 8
BLE nodes and one 802.11 board, plus its additional node.
The last 802.11 board and node are located in a separate
office, 30 meters away from the testbed. The Odroids and
nodes are hanging from rails 2.5m above the floor creating
a grid where the minimum separation between two nodes
is 2m. The nodes are placed facing down, although their
antennas are omnidirectional. There are no WiFi access points
in neighboring rooms and the only 2.4GHz traffic is the
one generated by the testbed. For this reason no interference
controlling mechanisms are specifically designed, relying on
802.11 CSMA/CA and BLE AFH to ensure the coexistence
between the data network slice and the wireless management
slice.

B. Hardware

1) BLE nodes: The BLE nodes chosen are the Nordic
Semiconductor nRF52 development boards [8]. They have four
LEDs and four buttons which are user-programmable; several
I/O interfaces available via connectors; support for Segger J-
Link OB; an integrated PCB antenna; a coin-cell battery and a
micro-USB connector for programming, powering and UART
serial port communication. The chip has a 32 bit ARM Cortex
MAF processor with 512 kB of flash memory and 64 kB of
RAM.

The BLE nodes are the only elements in the data mesh
network. They are flashed with a BLE stack and the mesh
protocol is developed as an application on top of it. Every four
nRF52s are connected to a single-board computer through their
USB connection for powering and terminal communication
purposes.

2) Single-board computers: Five Hardkernel Odroid-C2
single-board computers [9] have been selected. Each one has
four 64 bit ARM Cortex AS53 processors; a Mali 450 GPU; 2
Gigabytes of DDR3 SDRAM; 40 pin GPIOs; an HDMI port;
four USB 2.0 host ports plus an additional OTG miniUSB
for power and data; a Gigabit Ethernet port and an eMMCS5.0
HS400 / UHS-1 SDR50 MicroSD flash storage slot. We opted
for the eMMC card due to its faster speed and overall higher
performance, which is flashed with Ubuntu MATE 16.04 LTS.

The Odroid is the main element of the management net-
work: it runs the software needed for executing experiments
and establishes a UART session with each of its four connected
nRF52 nodes. When a node receives a mesh packet it sends it
over the UART to its corresponding Odroid, which parses it
into JSON format and logs it on the server database through
the Ethernet management backbone.

3) 802.11 boards: Three MikroTik RB912UAG-2HPnD
Routerboards [10] are used as 802.11 boards, which are small
integrated routers capable of operating in 2.4 and 5 GHz. They
have an Atheros AR9342 chipset at 600MHz; 64 MB of RAM;

[Component [Unit cost (€) |
23x nRF52 BLE Development boards 37
23x microUSB cables 2
10x USB extension cables 3
5x Odroid-C2 single-board computers 45
5x Power supply plugs 4
5x Odroid cases 3
5x 32 GB eMMC modules 35
3x RouterBoard 802.11 boards 85
3x PoE injectors 14
6x Omni antenna 2.4 and 5 GHz 6
1x Netgear Network Switch 70
4x 20m Ethernet cable 6

| TOTAL: | €1789 |

TABLE I: Testbed components and price. The cost of the
server PC is neglected, as any existing office computer is
powerful enough to run the software for the testbed.

128 MB of NAND flash memory; support for 802.11 b/g/n; 1
Ethernet port for traffic and PoE and finally a USB port. They
are flashed with OpenWrt/LEDE 17.01.4, a Linux distribution
targeted for embedded devices.

The three 802.11 boards create a long range mesh WiFi
network using B.A.T.M.A.N. Advanced, a linux kernel module
running the B.A.T.M.A.N. layer 2 routing protocol [11]. It
emulates a virtual network switch which encapsulates and
forwards all traffic to the destination.

A BLE node is connected to each 802.11 board through
USB. However, in this case a Serial to Network Proxy
(ser2net) [12] session is configured in the Routerboard, which
allows to establish a remote TCP connection and access the
UART serial communication of the BLE node. Then, in the
server the linux socat utility is used to establish a bidirectional
byte stream to this TCP session. As a result, the BLE nodes
attached to the 802.11 boards are seamlessly accessible from
the server and appear as if they were directly connected to
it. This provides a management link to these mobile nodes
that can be far away from the testbed, and since the three
Routerboards create a mesh network only one of them needs
to be directly connected to the server.

4) Network switch & Server: A Netgear GS108T 8-port
switch connects the Odroids to the server, which is a regular
PC running Linux Mint 18.3 Sylvia. It has three main roles:

1) Control server to configure, run and visualize network
experiments in real-time.

2) Database to log packets sent and received over the mesh
network along with metadata extracted from them.

3) Gateway to allow internet connectivity on the Odroids
and to push data to the cloud.

The server is the central point and the user interface of the
testbed. Therefore, it is critical that redundancy and backup
mechanisms are deployed in order to allow remote access and
to ensure minimal data loss in case of failure. In this case, all
mesh traffic is sent both to the testbed server and to a cloud
server for redundancy. Additionally, a backup of the database
is pushed to it on a daily basis.

Having this secondary server allows to specify two types
of users: operators and administrators. Operators may access
the cloud server remotely to get real-time information and

Settings Roles Control Data
[Field [Comment | [Field [Comment | [Field [Comment [Field | Comment

TEST_ID Test identifier TEST_ID Test identifier TEST_ID Test identifier TEST_ID Test identifier
REALIZATIONS # repetitions/test NODE Odroid NODE Odroid NODE Odoid
PACKETS # packets/repetition DEVICE BLE node DEVICE BLE node DEVICE BLE node
SOURCE_RATE # packets/s ADDRESS FM address ADDRESS FM address ADDRESS FM address
SIZE Size of the network ROLE [Source/Sink/Mesh] REALIZATION Run identifier REALIZATION Run identifier
POWER TX power NID TX address PID Packet identifier
CONINTERVAL Nodes PID Packet identifier DATA Data value
OUTCONNECTIONS ‘ Field ‘ Comment ‘ INCONN (Address, RSSI, queue) MODE [BLE/Trickle/FM]
MODE [BLE/Trickle/FM] - - OUTCONN1 (Address, RSSI, queue) NID TX address
DATE_START I{I%SDTE[D gedsrloligem’ﬁer OUTCONN2 (Address, RSSL queue) | | RSSI
DATE_END DEVICE BLE node OUTCONN3 (Address, RSSI, queue) HOP Hop count
DONE Flag for test finished ADDRESS | FM address BATTERY Battery level TIMESTAMP_TX
OBSERVATIONS User comments READY BLE node ready CONINTERVAL TIMESTAMP_RX

BUILT Flag network built TX_POWER))) TIME_BUILT Network building time

FINISHED | Flag repetition done DEVICE_TYPE [Sink/Static/Dynamic]

TIMESTAMP

TABLE II: MySQL database tables and fields for configuring network experiments and logging BLE mesh traffic. The TEST_ID
field is configured as a primary key and therefore uniquely identifies and links all table entries.

collect the measurements available, while administrators may
establish a secondary connection from the cloud to the testbed
server and manage it.

C. Cost

The estimated cost of the testbed is shown in Table I. Its
reduced cost comes from three main reasons: well known
off-the-shelf components, software specifically designed using
free publicly available tools and an already existing regular PC
as central server. As a result, parties interested in performing
BLE mesh experiments can duplicate the testbed. Alterna-
tively, it is also possible to remotely login to it through the
Fed4Fire+ project, explained next.

D. Fed4Fire+ integration

The testbed is integrated in the Fed4Fire+ project [7],
the largest federation of testbeds in Europe. It is part of
the European Union Horizon 2020 project, and its aim is
to provide accessible and reliable experimental facilities to
different research communities. A large set of tools is available
to enable configuration and execution of experimental research
using a wide range of testbeds. All facilities are remotely
accessible through the Internet and can be used free of charge.

The BLE testbed is part of the wireless networking testbeds,
and can be used to experimentally characterize any mesh
protocol that runs on top of BLE. Although currently three
different protocols are supported out of the box, users can flash
the nRF52 BLE nodes with any custom protocol developed
for them. Additionally, different network topologies can be
tested and parameter sweeping experiments can be performed
to optimize the performance of prototype BLE applications.

E. BLE mesh protocols

The BLE nodes are programmed with a pre-compiled bi-
nary file that contains the whole BLE stack, known as the
Softdevice. Any mesh protocol running on the testbed is an
application that sits on top of the Softdevice, programmed in
C++ and flashed into the BLE nodes.

The standard BLE mesh protocol [6] can be used to ex-
periment with different parameters and roles of the nodes.
Apart from it, two other mesh protocols that fit within BLE

operation can be selected: Trickle [13] and FruityMesh [14].
These are briefly introduced next, and the interested reader can
consult a more detailed description in [15]. The justification of
choosing such protocols is that both a flooding and a routing
mesh flavors were desired. Trickle is a well known flooding
protocol, which was implemented in the testbed prior to the
release of the standard BLE mesh; and Fruitymesh is the main
open source available BLE routing mesh implementation.

Trickle is a connectionless flooding protocol where BLE
advertising packets are rebroadcasted until they arrive at the
sink. In order to suppress excessive network activity, each
node increments a counter each time a packet is overheard
and proceeds to rebroadcast it only if this counter is below
a certain threshold. This rebroadcast is not done immediately,
but a random delay is set in order to avoid collisions. To allow
a fair comparison, this threshold is set so the average number
of rebroadcasts by Trickle matches the average number of
hops in Fruitymesh. Note that nodes are always scanning and
transmitting, which reduces end to end delay but increases
energy consumption.

Fruitymesh is a connection oriented routing protocol us-
ing BLE connection packets. Clusters are formed by nodes
connecting to their immediate neighbors. Then, larger clusters
absorb smaller ones until the network becomes a unique fully
connected cluster, resulting in a tree topology as shown in
Figure 2. The protocol uses neighbor-only routing, where a
packet is routed to the connected neighbor with lower number
of hops to the sink. Connected nodes are synchronized: they
turn on, exchange data using regular BLE connection mode
and go back to sleep. This reduces energy consumption but
increases end to end delay.

Finally, note that the testbed is fully BLE standard compli-
ant, and any BLE node that is not part of the mesh network
can still send packets through it. This is done by creating a
GATT server on the nRF52 nodes that supports the same topic
as the non-mesh node. Doing so, any node in the testbed can
connect to it. Then, the connected nRF52 will parse its data,
encapsulate it into a mesh data packet and inject it into the
mesh network. This behavior is similar to the friend feature
in the standard BLE mesh.

FE. Software

Along with the three main roles of the server, all software
developed for the testbed fits within three categories, described
below.

1) Database logging: A MySQL 5.7 database is respon-
sible for storing all useful data associated with a network
experiment, such as parameter configuration, traffic received
by every node and metadata extracted from it.

The database is divided into five tables, as shown in Table
II. Both the Settings and Roles tables are configured before
running a network experiment or test (used interchangeably)
and become read only during its execution. The remaining
tables are write only.

Settings Table

The Settings table is used to configure all the parameters for
a network experiment. The TEST_ID field uniquely identifies
each experiment. It is set as a primary key, becoming the field
that links all tables for a specific test. Each test is repeated for
a certain amount of times so the results can be averaged out to
reflect statistically representative values, controlled in the field
REALIZATIONS. Each of these will generate a certain num-
ber of packets that will be routed from the sources to the sinks.
Note that if a single value is introduced in (SOURCE_RATE,
POWER, CONINTERVAL, OUTCONNECTIONS), this value
will be shared for all nodes, while introducing several will
assign them individually following the order specified in the
Roles table. Additionally, the SOURCE_RATE can be used
for a constant or random (exponentially distributed) packet
generation rate. The remaining fields are self-explanatory.

Roles Table

The Roles table specifies whether a BLE node is a source,
sink or simply a mesh node that propagates packets. The
NODE field identifies each Odroid, while DEVICE refers to
each BLE node attached to it. The field ADDRESS reflects the
software assigned address of the node within the FruityMesh
network.

Nodes Table

The Nodes table is the first write only table, used for
enrollment and status checking purposes. Each node initially
connects to the database and identifies itself in the Nodes table.
Then, it checks its role and adjusts its parameters and behavior
accordingly. If the node does not have a role it means that it
should not be part of the test and therefore turns off its radio.
Once all parameters have been set the READY flag is set to
high and the network is built. Finally, once the whole run for
the test is finished (all packets have arrived at the sink) the
FINISHED flag becomes active.

Control Table

The Control table provides deeper hindsight of the real-
time status of the mesh network. Each BLE node periodically
generates a control packet and pushes it to the database
through the management network slice, with the structure
introduced next. The NID field shows the address of the node,
while the PID shows the packet identifier of the last data
packet transmitted by it. This is used to measure the activity
of the node. For its master connection (INCONN), as well as
up to three of its slave connections (OUTCONN), the address
of the node connected to, its average packet RSSI and the

Fig. 2: Real-time network topology extracted from the control
messages.

occupancy of the buffer is sent. The DEVICE_TYPE field
determines whether the node is a sink, a static node or a
dynamic node (an off-the-shelf mobile device that connects to
the testbed). The rest of the fields are self-explanatory. Finally,
note that one entry of this table will be filled per control packet
received.

Data Table

To conclude the description of the database, the Data table
stores information of the received mesh packets on every node.
This is done to extract knowledge of the path, packet delivery
ratio (PDR) and intermediate delay of every hop. The NID
address corresponds to the node originating the packet. The
HOP field determines the position of the node in the path from
source to sink, and the transmitted and received timestamps
(extracted from the Odroid OS clocks) are used to extract
the packet delay. The TIME_BUILT field gives the network
building time, i.e., from having all disconnected nodes to a
fully connected single cluster. As in the Control table, each
data packet received will correspond to an entry on this table.

2) Network experiment management and status visualiza-
tion: Three Python programs run the network experiments
and provide users with real-time status of the network. The
first one runs in the server and is used to configure a network
test. The user fills all the necessary fields and the Settings and
Roles tables are automatically configured, so no knowledge of
MySQL syntax is required. A Comma Separated Values (CSV)
file can also be extracted as a template for generating new
experiments. Additionally, this program remotely launches the
software in charge of executing the network tests.

All Odroids run this software in parallel and the server
is responsible of synchronizing its execution. For the nodes
attached to the 802.11 boards, the software runs directly on
the server and the nodes are accessed as a virtual device.

Finally, a Python front-end shows in real-time the status of
the network and the network topology is extracted from the
control packets, shown in Figure 2. All addresses of the nodes
are shown, as well as color coded information about them: red
nodes are sinks, while orange ones are regular mesh nodes.

6

W
o

N
o

N
o

Power consumption [mW]
s o

o

[]

4
I FruityMesh
[Trickle | | I FruityMesh
35 [Trickle
08} -
3l
L 25+
. 0.6 7
a & 2
o S
a
04 sl
1k
02
05F
0 .
1 5 10 1

Source rate [packets/s]

(a) Comparison metric: Packet Delivery Ratio.

5 10
Source rate [packets/s]

(b) Comparison metric: end to end delay.

Fruitymesh Trickle

(c) Comparison metric: estimation of power consump-
tion for successful transmission of 1 packet per inter-
val.

©
S

o
@
=)

o

N
S

IS

Convergence time [s]
N
o

Number of hops

W
1=}
=)

+ 10000

8000

6000

4000

2000

Number of rebroadcasts

(d) Fruitymesh metric: number of intermediate hops. (e) Fruitymesh metric: network building time delay.

Node in the mesh

(f) Trickle metric: rebroadcast spread per node.

Fig. 3: Comparison of the performance of FruityMesh and Trickle as BLE mesh protocols.

3) Gateway and cloud: The server acts as a gateway to
allow internet connectivity and remote access to the Odroids.
Additionally, it runs an NTP server for clock synchronization.

Control and data messages parsed and received at the testbed
server are pushed to the cloud server using MQTT, a TCP/IP
lightweight publish-subscribe messaging protocol. Doing so,
any user can set up an MQTT broker and connect to the cloud
server to receive all testbed data in real time.

G. Limitations

The proposed framework has three main limitations: lack
of specific co-channel interference mitigating features for the
traffic generated by the 802.11 boards (apart from native
802.11 CSMA/CA and BLE AFH); limited number of mesh
protocols implemented and finally a moderate number of mesh
nodes to perform network characterization. Given the modular
design approach chosen the latter can be easily solved, while
the former two are left as future work.

III. CASE STUDY

This section introduces the results of a measurement driven
comparison of Trickle [13] and Fruitymesh [14] using the
testbed. An overview of them is given, but the interested
reader is encouraged to consult [15] where they were orig-
inally published in further detail, along with a more extensive
explanation of the scenario and metrics used.

A. Scenario

The experiments conducted in [15] were performed at an
early stage in the development of the testbed, with a smaller
network size than the current one. A total of nine nodes where
deployed: one acting as a source, another one as a sink and
the remaining seven as mesh nodes, forwarding traffic to the
sink.

Trickle and Fruitymesh test realizations are alternated. For
each protocol, a total of 256 packets per realization are sent
by the source with constant rates of 1, 5 and 10 packets per
second, and each source rate is repeated for 20 realizations
in order to average the results. This accounts for 120 network
realizations and 30720 packets per protocol in total, where the
transmission power is set to -20 dBm, the interval duration to
100ms and the buffer size to 15 packets.

The two mesh protocols are compared in terms of PDR and
end to end delay (both measured at the sink), and additionally
an estimation of the power consumption for transmitting a
packet in each interval. This is based on the nRF52 online
power profiler [8], developed by Nordic Semiconductor based
on actual measurements on the nodes. Estimates of the average
consumption of scanning and transmitting events are given, as
well as startup, packet processing and idle operations. For each
mesh protocol, we account for all events present in the interval
and estimate the total consumption. For Trickle, we assume
that the node rebroadcasts one packet during an interval and

is scanning for its whole duration. For Fruitymesh, we assume
that the node has one master and three slave connections (the
usual values in the testbed). The node wakes up, exchanges one
data packet with the next hop plus an additional dummy packet
with the rest of its neighbors to maintain the connections and
then goes to sleep for the rest of the interval.

Finally, since local information of every node can be
consulted, protocol specific metrics are obtained. For Trickle,
the total number of rebroadcasts per node is presented. For
Fruitymesh, the average number of hops from source to sink
and the time needed to build the fully connected network are
given.

B. Results

Figure 3 shows the results obtained from the measurement
campaign. In terms of PDR both protocols show a decreasing
performance with the source rate: Trickle does not implement
acknowledgements and packets are lost due to interference
and collisions; FruityMesh retransmits the packet until it is
acknowledged, which leads to buffer overflow that cannot keep
up with a constant source rate.

The delay of Trickle is the lowest possible since packets
are flooded and may travel all paths in the network, including
the shortest one. For FruityMesh, the delay suffers from a
saturation effect since packets travel through all queues of all
intermediate nodes in the path.

In terms of power consumption, FruityMesh outperforms
Trickle. This is due to the synchronized nature of the con-
nected mesh where nodes can sleep, contrary to Trickle where
nodes listen for the whole interval.

As a conclusion, if the throughput in the network is constant
the performance in terms of PDR of the two mesh protocols
can be comparable, while Fruitymesh can reduce its power
consumption at the cost of increased end to end delay when
compared to Trickle. Therefore, a connected BLE mesh may
be more advantageous than a flooding mesh depending on the
target application. This result needs to be taken into account
for future versions of the current BLE mesh protocol.

Regarding the Fruitymesh specific metrics, it can be seen
that the time needed to have a fully connected network and the
average amount of hops in the path can be quite considerable.
This is due to the clustering process present in Fruitymesh,
where nodes connect at random to each other. This procedure
is repeated each time a test realization is performed, since the
whole network is reset. Given its random nature, some network
realizations may have excessive long paths and excessive time
may be needed to converge into a single cluster network.

In the case of Trickle, the rebroadcast spread per node is
fair, with no node showing a particularly different activity. This
fairness is a result of the random delay between overhearing a
packet and rebroadcasting it: nodes that have a shorter delay
will in fact rebroadcast it, while nodes with a longer delay will
be able to overhear all previous nodes and their packet counter
will exceed the threshold, thus suppressing the transmission.
Regarding this threshold, as it is set to be equal to the average
number of hops in the network, each node rebroadcasts an
average of 30720/4=7680 packets.

IV. CONCLUSIONS

This paper presents the design and implementation choices
of a BLE testbed used to experimentally characterize mesh
protocols. The testbed is low-cost, easily expandable due to its
modular design, supports multiple mesh protocols and is fully
automated. Additionally, it offers the possibility of establishing
a remote connection to it and perform any experiment to
third parties that may be interested in doing so. All hardware,
software and architecture of the testbed is described in detail to
inspire researchers that need to build their own testbed. Next,
a comparison of existing mesh protocols that fit within BLE
operation using the testbed is also given.

For the future we expect that this testbed will help optimize
the performance of future releases of BLE mesh, as well as
serve as a powerful tool for research in wireless mesh network
topics such as network tomography or end to end quality of
service.

ACKNOWLEDGMENTS

This work is supported by IWT CELTIC O&O project
ASUA/RoCCS. Yuri Murillo is funded by a PhD fellowship
of the Research Foundation Flanders (FWO).

REFERENCES

[1] Cisco, “Cisco visual networking index: Global mobile data traffic
forecast update, 2016-2021,” White Paper, March 2017.

[2] H. Peng, Y. Xiao, Y.-N. Ruyue, and Y. Yifei, “Ultra dense network:
Challenges, enabling technologies and new trends,” China Communica-
tions, vol. 13, pp. 30-40, 02 2016.

[3] Qualcomm, “Csrmesh product page,” https://www.qualcomm.com/
solutions/networking/features/csr-mesh, accessed: 2018-02-01.

[4] L. Leonardi, G. Patti, and L. L. Bello, “Multi-hop real-time communi-
cations over bluetooth low energy industrial wireless mesh networks,”
IEEE Access, pp. 1-1, 2018.

[5] H. S. Kim, J. Lee, and J. W. Jang, “Blemesh: A wireless mesh network
protocol for bluetooth low energy devices,” in 2015 3rd International
Conference on Future Internet of Things and Cloud, Aug 2015, pp.
558-563.

[6] Bluetooth SIG, “Ble mesh profile specification v1.0,” https://www.
bluetooth.com/specifications/mesh-specifications, accessed: 2018-02-01.

[7] “Fed4Fire european project page,” https://www.fed4fire.eu/, accessed:
2018-02-01.

[8] Nordic Semiconductor, “Nordic nrf52 development board web-
site,” https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/
nRF52-DK, accessed: 2018-02-01.

[9] Hardkernel, “Odroid-C2 single-board computer website,” http://www.
hardkernel.com/main/products/prdt_info.php?g_code=G145457216438,
accessed: 2018-02-01.

[10] Mikrotik, “RB912UAG-2HPnD routerboard website,” https://mikrotik.
com/product/RB912UAG-2HPnD, accessed: 2018-02-01.

[11] Open-mesh, “B.A.T.M.A.N. advanced project page,” https://www.
open-mesh.org/projects/batman-adv, accessed: 2018-02-01.

[12] “ser2net sourceforge project page,” https://sourceforge.net/projects/
ser2net/, accessed: 2018-02-01.

[13] P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko, “The trickle
algorithm,” Internet Requests for Comments, RFC 6206, March 2011.
[Online]. Available: https://tools.ietf.org/html/rfc6206

[14] M-Way Solutions, “Fruitymesh project page,” https://github.com/
mwaylabs/fruitymesh/wiki, accessed: 2018-02-01.

[15] Y. Murillo, B. Reynders, A. Chiumento, S. Malik, P. Crombez, and
S. Pollin, “Bluetooth now or low energy: Should ble mesh become a
flooding or connection oriented network?” in 2017 IEEE 28th Annual
International Symposium on Personal, Indoor, and Mobile Radio Com-
munications (PIMRC) - Special Session SP-04 on Resource-Efficient,
Reliable and Secure Internet of Things in the 5G Era, Oct 2017.

Yuri Murillo (yuri.murillo@esat.kuleuven.be) obtained his MSc degree in
telecom engineering from Public University of Navarre (UPNA), Spain, in
2013. He wrote his master thesis at TU Delft, the Netherlands. From 2013 to
2015 he worked as an IT security consultant at GMV and obtained a MSc in
business administration from UAH, Madrid. He is currently pursuing a PhD
at KU Leuven. His main research interests include optimization of wireless
mesh networks and channel prediction.

Brecht Reynders (brecht.reynders @esat.kuleuven.be) obtained his BSc and
MSc degree in electrical engineering from KU Leuven, Belgium, respectively
in 2012 and 2014. Currently he is working towards his PhD at KU Leuven,
focusing on multi-technology routing. In 2016 he obtained the Belgian FITCE
Young ICT Personality of the Year national award. His main research interests
are long range communication, distributed computing and network modeling.

Alessandro Chiumento (alessandro.chiumento@esat.kuleuven.be) received
his PhD degree in cellular network management from imec, Leuven, Belgium,
in 2015. He is currently with the Department of Electrical Engineering,
KU Leuven. His research interests include massive machine-to-machine
communication, channel prediction, very dense networks, and the applica-
tion of machine learning to theoretical problems in telecommunication and
information management.

Sofie Pollin (sofie.pollin @esat.kuleuven.be) obtained her PhD at KU Leuven
in 2006. She continued her research on wireless communications at the
University of Berkeley, California. In 2008 she returned to imec to become
a scientist in the green radio team. Since 2012, she has been an assistant
professor in the Electrical Engineering Department at KU Leuven. Her
research centers around networked systems that require networks that are ever
more dense, heterogeneous, battery powered, and spectrum constrained.

