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A novel shape evolution in the Sn isotopes by the state-of-the-art application of the Monte Carlo shell
model calculations is presented in a unified way for the 100–138Sn isotopes. A large model space consisting
of eight single-particle orbits for protons and neutrons is taken with the fixed Hamiltonian and effective
charges, where protons in the 1g9=2 orbital are fully activated. While the significant increase of the

BðE2; 0þ1 → 2þ1 Þ value, seen around 110Sn as a function of neutron number (N), has remained a major
puzzle over decades, it is explained as a consequence of the shape evolution driven by proton excitations
from the 1g9=2 orbital. A second-order quantum phase transition is found around N ¼ 66, connecting the
phase of such deformed shapes to the spherical pairing phase. The shape and shell evolutions are thus
described, covering topics from the Gamow-Teller decay of 100Sn to the enhanced double magicity of 132Sn.
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Shape is one of the fundamental concepts in the physics
of atomic nuclei, and its variation has been studied from
many angles [1–3]. In such studies, Sn isotopes, where the
proton number (Z) is equal to the magic number 50, have
played an anchor point, as their shapes have been consid-
ered to be basically spherical. Consequently, their structure
has been often described in the (generalized) seniority
scheme [4,5], where the ground state is a condensate of a
collective pair of two valence neutrons coupled to the
angular momentum J ¼ 0, which can be regarded as a BCS
pair with the isotropic amplitudes [1,2,6]. The 2þ1 state is
then described as a seniority-two (i.e., two-quasiparticle)
state [2,7,8], while rather constant excitation energies are
observed for isotopes with even neutron number (N)
between the magic numbers N ¼ 50 and 82 [9] [see
Fig. 1(b)]. E2 transition probabilities are direct indicators
of the deformation from a sphere to an ellipsoid, and are
quantified through BðE2Þ values [1,10]. For Sn isotopes,
anomalous deviations from the spherical picture were
observed for the BðE2; 0þ1 → 2þ1 Þ value as a function of
N [11–29], but a unified theoretical description of these
anomalies is missing. In this Letter, we present, for the first
time, results of state-of-the-art calculations with the
Monte Carlo shell model (MCSM) [30,31] on Sn isotopes,
performed in a large model space including single-particle
orbits below and above the magic numbers 50 and 82. We
demonstrate that these anomalies, a long-standing chal-
lenge to nuclear theory, are now solved, clarifying how the
shape and structure evolve in those Sn isotopes.

We perform shell-model (SM) calculations (called also
configuration interaction calculations) by taking the full
sdg harmonic oscillator (HO) shell consisting of the
1g9=2;7=2, 2d5=2;3=2, and 3s1=2 single-particle orbits as well
as the lower part of the next HO shell, i.e., the 1h11=2, 2f7=2,
and 3p3=2 orbits. The same set of the orbits are taken for
protons and neutrons, keeping the isospin (T) conserved.
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FIG. 1. (a) Two-neutron separation energy, S2nðNÞ, and (b) 2þ1
levels are shown, as a function of N, for experimental [9] and
present values by blue dashed and red solid lines, respectively.
The inset of the panel (b) displays the R4=2 ratio: the 4

þ
1 level over

the 2þ1 level energy. In (a), ΔS2n × 10 is shown with averages by
the dashed-dotted lines. In (b), alternative values are shown by
green dashed-dotted lines.
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The conventional SM calculation is not tractable as the
maximum dimension reaches 7.5 × 1023, beyond 1012

times its current limit.
The SM calculations including only valence neu-

trons in the N ¼ 50–82 shell have been carried out
[13,15,21,22,27,32,33]. Another example was the SNBG3
Hamiltonian [34], producing a perfect agreement of
the 2þ1 levels with experiment over N ¼ 52–80 [see
Fig. 1(b)]. However, it failed to explain observed bump
of BðE2; 0þ1 → 2þ1 Þ values around N ¼ 52–64 [see
Fig. 2(a)]. Although this objective has been pursued by
various theoretical approaches [13,21,22,32,33,35], no
clear picture has been reported [23] and, for instance,
an α correlation was discussed instead of the then
unsuccessful shell model [15]. It is therefore required
to apply the MCSM to Sn isotopes in order to see if this
serious discrepancy can be solved and how. We mention
that Sn isotopes are relevant to the neutrinoless ββ decay
[36] and the processing of the long-lived fission prod-
uct [37].
The MCSM can diagonalize the Hamiltonian with many

active protons and neutrons in a wide model space [30,31].
We use a single Hamiltonian throughout this work, aiming
at a unified description of the varying structure of the even-
N Sn isotopes including proton degrees of freedom. The
SM Hamiltonian is represented in general by so-called two-
body matrix elements (TBME) of the effective nucleon-
nucleon interaction between two-nucleon states,where the
nucleons are in assigned single-particle orbits and are

coupled to given J and T. In the present work, TBMEs
are grouped and were taken from existing, well-tested sets
as much as possible, with minor modifications possibly due
to different inert cores. The TBMEs involving only 1g9=2
are taken from the JUN45 set [38]. The SNBG3 set is taken
for other orbitals as stated later [34]. Note that the JUN45
(SNBG3) set was obtained, in the corresponding model
space, by modifying TBMEs calculated from microscopic
interactions called G matrix [39] based on the CD-Bonn
[40] (N3LO [41]) interaction, so as to better reproduce
relevant experimental energies [34,38]. The VMU interac-
tion [42] is taken for the rest of TBMEs except for some
cases stated below. It consists of the central part given by a
Gaussian function in addition to the π- and ρ-meson
exchange tensor force [42]. The parameters of this
Gaussian function were fixed from monopole components
of known SM interactions [42]. No adjustment is made
for the T ¼ 0 interaction. The T ¼ 1 TBMEs for 1g7=2,
2d5=2;3=2, 3s1=2 and 1h11=2 are taken first from the SNBG3
set, and are fine-tuned based on the so-called linear-
combination (LC) method [43,44], so as to reproduce
observed 2þ1 and 4þ1 levels of 102–138Sn. As the present
calculation requires huge computer resources, we calculate
only 0þ1 , 2

þ
1 , and 4þ1 levels for the fitting purpose. With the

next generation of supercomputers, the situation can be
improved. Thus, levels considered in this fit are quite
limited, and the fit here means a minor improvement.
Regarding the remaining T ¼ 1 TBMEs, most of them are
given by the VMU interaction, for which the central part is
reduced by a factor of 0.75 except for TBMEs involving the
1f7=2 and 2p3=2 orbits, similarly to Ref. [45]. On the other
hand, Jπ ¼ 0þ TBMEs are given by the simple pairing
ones, being ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2jþ 1Þð2j0 þ 1Þp

for orbitals j and j0 with
appropriately fitted strengths, as the VMU interaction may
not be so suitable. All TBMEs are scaled, as usual, in
proportion to A−1=3 (A ¼ Z þ N). The single-particle
energies are determined so as to be consistent with the
predictions of the JUN45 and SNBG3 sets, and those
outside them are estimated by a standard Woods-Saxon
potential. The SM Hamiltonian is thus fixed and kept
unchanged, with the results labeled “present.” For the
purpose of comparison, we show the results labeled
“alternative,” where the diagonal TBME of Jπ ¼ 6−

3s1=2 − 1h11=2 state is changed by ∼0.1 MeV and the VMU

interaction is used for T ¼ 1 Jπ ¼ 0þ TBMEs outside the
SNBG3 model.
Figure 1(a) shows the two-neutron separation energies,

S2n, in comparison to experiment [9]. The Coulomb correc-
tion is included [46,47]. Note that the fit to the excitation
energies leaves an overall common shift for all single-particle
energies open. It is fixed here to be -0.25 MeV. The
agreement is quite good.
Figure 1(b) shows the 2þ1 levels and, in the inset, the ratio

of the 4þ1 level over the 2þ1 level energy, denoted R4=2. The
results labeled present show the overall trends rather well,
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FIG. 2. (a) Calculated and measured BðE2Þ values, and (b) E2
matrix elements and proton ratio (%). Experimental data are
indicated by symbols shown in the inset with the correspondence:
RIKEN [23], ORNL [11,12,19,24], GSI [13,16,18,22],
GSI_ANU [20], ISOLDE [14,17], LBNL [25], MSU [15,21],
IUAC [26], TUD [28], Koeln [29].
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with the 2þ1 level and the R4=2 ratio both being fairly flat
and close to experiment, including certain variations near
the magic numbers. These agreements suggest that the
present Hamiltonian gives a reasonable description of the
structure of the Sn isotopes, apart from fine details. We then
look into signatures of novel characteristics of Sn isotopes,
hidden in the constancy of the energy levels.
One such signature is the variation of E2 transi-

tion strength as N changes. As mentioned earlier,
Fig. 2(a) displays BðE2; 0þ1 → 2þ1 Þ values, where the large
bump of experimental values around N ¼ 60 [11–26]
shows distinct discrepancy with theoretical calcula-
tions [13,15,21,22,32,33,35]. This discrepancy must be
resolved because BðE2; 0þ1 → 2þ1 Þ is a sensitive and
crucial probe of the nuclear shape. The present calculation
indeed reproduces the measured BðE2Þ trend quite well,
with fixed effective charges, ðep; enÞ ¼ ð1.25e; 0.75eÞ.
Because of this salient agreement, it is of extreme interest
to explore the essential underlying mechanism of the
structure evolution in the Sn isotopes.
This mechanism is investigated first in terms of the

occupation numbers of the 1g9=2 orbit, which is completely
occupied in the models such as SNBG3. Figures 3(a), 3(b)
depict, respectively, the number of proton and neutron
holes in the 1g9=2 orbit. This number is about 0.4 (0.8) for
both protons and neutrons in the ground (2þ1 ) state of
100Sn, yielding a larger BðE2Þ. As shown in Fig. 3(b), this
number for neutrons becomes swiftly smaller as N
increases, and almost vanishes for N > 74. In contrast,
Fig. 3(a) shows that for protons, this number increases up to
N ¼ 60 for all states, and then decreases. These large
numbers of proton holes suggest significant breaking of the
Z ¼ 50 magic core and associated deformation [21].
Figure 2(b) displays E2 matrix elements (including effec-
tive charges) as well as their decomposition into proton and
neutron contributions. Figure 2(b) also shows the ratio of
the proton contribution in the total matrix element, which
exceeds 30% for N ¼ 50–64, where the 1g9=2 → 2d5=2
excitation is most important. The strong proton excitations
and the BðE2Þ bump are consequences of enhanced effects

of the proton-neutron interaction leading to a stronger
quadrupole deformation. These effects and resulting shapes
vary as a function of N. This proton-neutron interaction,
thus crucial, is taken primarily from the VMU interaction,
which has been fixed [42] and well tested, e.g., with Zr
isotopes [45]. We stress that the basic trend presented here
is quite robust in this respect.
The MCSM eigenstate is given by a superposition of

MCSM basis vectors. Each MCSM basis vector is a
deformed Slater determinant, for which intrinsic quadru-
pole moments Q0 and Q2 can be calculated. Such Q0 and
Q2 can be used as “partial coordinates,” and a given MCSM
basis vector is placed as a circle on the potential energy
surface. The importance of this basis vector in the eigen-
state is expressed by the area of a circle. This visualization
of the shape is called the T-plot [48,49].
Figure 4 exhibits the T-plot for selected cases. While

100Sn shows a spherical shape [panel (a)], already in 104Sn
[panel (b)] a moderate deformation emerges with no T-plot
circles around the spherical limit. Such departure from the
sphericity is further driven in 108Sn [panel (c)]: the shape is
more deformed due to more neutrons, and the tendency
towards prolate shape arises. This is because neutrons
occupying the 1g7=2 and 2d5=2 orbits favor the prolate
deformation and likewise protons excited from the 1g9=2
orbit can cause the same, producing coherently a prolate
shape. As the 1g7=2 and 2d5=2 orbits are more filled, the T-
plot extends farthest in 110Sn [panel (d)] with the maximum
calculated BðE2Þ [see Fig. 2 (a)], while the tendency is
changed from the prolate to the oblate shape. Note that a
recent BðE2Þ value on 112Sn, the next nucleus, [28] is in
good agreement with the present work. For 116Sn [panel (e)],
a notable displacement between the 0þ1 and 2þ1 T-plot
circles appears, which will be discussed later. As shown in
panel (f), the T-plot circles for the 0þ1 state of 122Sn are
shifted from the oblate minimum to the spherical region
due to the pairing correlation, whereas those for the 2þ1 state
are around the minimum, being a quadrupole excitation
from the spherical shape. In going from 122Sn to 132Sn
[panels (f),(g),(h)], the overall spread of T-plot circles is
reduced gradually, keeping relative “topological” relations
unchanged to a good extent, as a new feature. The doubly
magic 132Sn exhibits a concentration of T-plot circles near
the spherical corner for the ground state [panel (h)]. We
note that the valence mirror symmetry of neutrons is broken
severely; e.g., the T-plot of 104Sn [panel (b)] is more spread
than that of 128Sn [panel (g)].
The quadrupole component of the proton-neutron inter-

action produces stronger deformation as N increases up to
∼60. Beyond this, neutron 1g7=2 and 2d5=2 orbits are more-
than-half filled, which makes the deformation saturated and
then weaker. Beyond N ∼ 66, the pairing correlations take
over, and the spherical ground states appear. The shell
evolution driven by the tensor and central forces [42,50]
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FIG. 3. Occupation numbers of (a) proton and (b) neutron holes
in the 1g9=2 orbit. For each value of N, histograms for the
0þ1 ðblueÞ, 2þ1 ðredÞ, and 4þ1 ðgreenÞ states are shown from left to
right, except for the missing 4þ1 for N ¼ 50.
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contributes: the proton 1g9=2-2d5=2 splitting, for instance,
becomes wider, first (N up to ∼66) by neutrons in the 1g7=2
and 2d5=2 orbits and later by neutrons in the 1h11=2. Thus, the
Z ¼ 50 gap increases gradually, leading to the highly stable
doubly-magic 132Sn. This is not the full story, however.
Figure 2(b) depicts E2 matrix elements as functions of

N, with kinks at N ¼ 66. These kinks imply that the
dynamical mechanism may change there. Figure 1(a)
shows ΔS2n ¼ −½S2nðNÞ − S2nðN − 2Þ�, which is remark-
ably constant for N=54–66 and for N ¼ 70–80, separately.
Figure 1(a) also shows their averages, including a dis-
continuity between them. Since ΔS2n corresponds to the
second derivative of the ground-state energy, this disconti-
nuity points to a second-order quantum phase transition
with control parameter N [51,52]. While Fig. 1(a) shows
experimental ΔS2n values, a similar overall trend is
obtained in the present calculation. Coming back to
Fig. 2(b), the “derivative” of E2 matrix elements as a
function ofN shows discontinuity similarly toΔS2n. This is
consistent with the change of the T-plot pattern. These
experimental and theoretical observations imply coher-
ently: until N ∼ 66, the moderate deformation phase
dominates the low-lying eigenstates, and the transition
occurs such that the pairing phase takes over with the
seniority-zero (pair-condensed) ground state and its exci-
tations. We note that the present case differs from the first-
order quantum phase transition in Zr isotopes, where a level
crossing occurs between spherical and strongly deformed
states without mixing [45]. The search for other cases of the
second-order quantum phase transition is of extreme
interest in clarifying nuclear dynamics.
Certain properties of the critical (transition) point of the

second-order phase transition are seen around N ¼ 66.
Figure 4(e) shows the T-plot of the 0þ1 state extending over

a wide area though not reaching the spherical limit. This is
consistent with a large quantum fluctuation typical for the
critical point. The T-plot circles of the 2þ1 state are
discretely displaced from those of the 0þ1 state, keeping
the 2þ1 state in the deformed phase. The angular momentum
J can thus be another control parameter. This 0þ1 –2

þ
1

difference causes a suppression of the BðE2Þ value, to
be concrete, due to more neutrons in the 3s1=2 (1h11=2) orbit
for the 0þ1 (2þ1 ) state. Since some experiments do not
show this suppression, the alternative set of TBMEs was
introduced mainly for obtaining a larger BðE2Þ value.
Figures 4(j), 4(k), 4(l) exhibit, respectively, T-plots for
110;116;122Sn obtained from this set. A notable difference
from the present set appears only for 116Sn, and the overall
structure evolution remain unchanged. A consistent feature
is seen in Fig. 2(a), where the dip is shifted only to N ¼ 64

with the alternative set. Thus, the features around the
critical point may give certain constraints on particular
TBMEs, keeping the present overall picture basically
intact.
The magnetic moment of the 2þ1 state has been measured

recently [24], providing a sensible measure of configura-
tions. The calculated g factor of 112–124Sn is, respectively,
0.13, 0.08, 0.02, -0.01, -0.04, -0.05, and -0.07 in an
agreement with these data, whereas other theoretical results
are for limited nuclei or deviate more [24].
The T-plot of 100Sn [panel (a)] is similar to the one for

132Sn [panel (h)], but the circles are spread more outwards,
i.e., stronger ground-state correlations, certainly because of
the N ¼ Z nucleus. The Gamow-Teller decay of the 100Sn
0þ1 state to the 100In 1þ1 state was measured, giving the
largest BðGTÞ value. The T-plots of these states [panels (a),
(i)] are similar to each other, suggesting a large BðGTÞ.

FIG. 4. (a)–(h) T-plots for 0þ1 and 2þ1 states of selected Sn isotopes and (i) T-plot for 1þ1 state of 100In, with the present interaction.
(j)–(l) the same as (a)–(h), with the alternative interaction.
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In fact, the calculated value, BðGTÞ ¼ 9.2 (10.3), with the
usual quenching factor 0.70 (0.74) [53] ([54]), shows a
good agreement with this recent experimental value 9.1þ2.6

−3.0
[55], implying that the amount of the holes in the 1g9=2
orbit shown in Fig. 3 is appropriate.
In summary, we present a unified description of the

structure of even-A Sn isotopes for N ¼ 50–88 owing to
state-of-the-art Monte Carlo shell model calculations. The
huge bump of the BðE2; 0þ1 → 2þ1 Þ value around N ¼ 60,
a decade-long puzzle or challenge, is reproduced by activat-
ing protons in the 1g9=2 orbit. The second-order quantum
phase transition is shown to occur around N ¼ 66 from the
moderately deformed phase to the pairing (seniority) phase,
as seen in E2 matrix elements and S2n values. The shape
evolution in Sn isotopes is linked with the breaking of the
Z ¼ 50magic number, and this work presents a new picture
involving the shell and shape evolutions and the quantum
phase transition. Experimental studies on relevant physical
observables, e.g., charge radius, are of urgent interest, as
well as similar studies on neighboring nuclei.
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