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1. Introduction: bio-inspired surface textures-nature’s tool for
delivering functional surfaces

‘It is not the strongest of the species that survives, nor the most
intelligent, but the most responsive to change,’ said Charles
Darwin. Survival of the fittest is a famous phrase of Herbert
Spencer, which describes the idea that, in nature, there is a
competition to survive and reproduce. Survival and change are two
critical terms, especially as species on earth over millions of years
are in continuous combat with changing environments. These
environments are typically harsh for organisms to live in, but
despite these difficulties organisms have survived and thrived by
building harmonic ecosystems within divergent environments
including marshy and muddy; deep cold and snowy; hot, dry and
desert; and more. Living organisms interact and interface with
their surroundings through their outer layers, their surfaces which
have adapted and evolved with novel but simple designs and
functional properties in this process of combat and survival.

The surface (and sub-surface) of an organism, also called skin, is
an important interface between an organism and its environment,
serving a mission critical role in the process of adaptation and
survival. Skin surfaces interact with aggressive environmental
factors such as temperature, moisture, abrasive agents such as
sand and ice, pH, bacteria and viruses, light, mating abrasive or

(but not limited to) adhesion, hydrophobicity, hydrophilic
thermal-management, anti-reflection, structural colors, and sph
ical vision as highlighted in Fig. 1.

The skins of organisms, from here onwards called surfa
deliver these environment-specific properties by combin
textures and material chemistries to exploit classical laws
physics to achieve superior functional properties. The term sur
texture captures various facets of a construct including 

repetitive arrangement of features, the various shapes and s
of features (in 2-D and 3-D), and the hierarchical distributio
quasi-periodic connected structures in a multi-dimensional sp
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Textures are abundantly exploited in nature for securing superior functionalities including adhes
color manipulation, anti-reflection, and drag management. Over millions of years, these advan
properties are endowed to various organisms on the planet to survive and adapt in harsh environme
conditions. Texture characteristics such as feature size, shape, periodicity, aspect ratio, orientation
hierarchy are critical in nature’s ‘tool-box’. Manufacturing of cutting-edge products require m
functionalities for efficiency, durability and sustainability for improving the quality of life of grow
population. This paper analyzes and discusses convergence and underlying science and engineerin
well proven natural strategies of surface textures and their effective synthetic implementatio
engineered products.
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super smooth surfaces, etc. and their combinations. To combat
these aggressive factors, skins have evolved unique design
architectures that achieve multifunctional properties including
* Corresponding author. Fig. 1. Diversity in biological textures and their functions (images reproduced with
permissions from [20,26,61,100,157,180,247]).
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lting in novel morphologies. Succinctly “surface texture is the
etrical irregularities present at a surface. Surface texture does

include those geometrical irregularities contributing to the
 or shape of the surface” [168]. In other words, surface texture
een as a design tool in nature’s “tool box”: they enable multi-
tionality in many natural and biological surfaces [197]. Fig. 1
marizes some of the commonly observed multi-functional
ured surfaces in nature and the endowed functionalities of
e surfaces.
o further understand texture as a design architecture or a
truct, one needs to realize that all textures are convergence of
truction features including the shapes of features, the sizes of
ures, their aspect ratio, their periodicity and pitch, their
ntation and directionality, and their hierarchical arrangements

 2). As a result, there are more than 700 types of possible
ures allowing a tremendous degree of freedom for surface
ipulation. It is observed that these surface texture features
erge to deliver a desired surface function (or multifunctions)
id the organism’s combat with the environment and survival.
urface functions are also important for designing and
ufacturing advanced products for growing populations.
hermore, consumer demands are growing for higher efficiency
durability in products’ performance and sustainability offered
unit currency of price. Also, demands are growing to deliver
e functions per unit surface area per unit currency. Examples of

 products are displays, personal data assistants (PDA), self-
ing cars, sustainable buildings, clothing, cosmetics, and more.
 but not least, with a growing global population, natural
urces are dwindling, and well-established strategies are
ed to engineer the next generation of sustainable products

 can be produced by using less resources. Bio-inspired texture
tegies have been refined over millions of years by organisms on
h and are examples of efficiency, durability and sustainability.
e properties have made them a recent focus of products and
uction engineering.
unctional surfaces have been a subject of extensive scholarly

classified into Tier I and Tier II characteristics for designing surfaces
for specific functionality; (4) effective convergence and imple-
mentation of these characteristics for realizing product applica-
tions where these textures are utilized.

In the following sections, this paper discusses specific examples
of surface textures and their resultant functionalities in nature and
the fundamental science that is utilized through these texture
constructs to achieve these functions. This is followed by the
elaboration on metrological approaches, process methodologies
and instrumentations used for studying complex surface textures.
Further, it is discussed and highlighted for product systems where
such functions are of major values and the manufacturing
processes used to realize advanced products by corporations.

2. Understanding the science of surface textures in nature

The following section describes the construct of surface texture and
theunderlying sciencealongwith thedesign strategies formanufactur-
ing via examples of multi-functional textures observed in nature.

2.1. Design components of surface texture

Surface texture can be further analyzed into multiple design
components as shown in Fig. 2. These components, along with the
specific material properties, deliver the desired functionalities upon
interaction with the environment. Based on the extensive analysis of
the literature for multiple bio-inspired textures, it is realized that for
specific surface texture enabled functions, certain texture design
components dominate over the others. These primary (dominant)
component(s), alongwith complementarysecondarycomponent(s),
lead to the desired functional effect as illustrated by following
examples. Over time, researchers have studied textured metals,
semiconductors, polymers, ceramics and composites for delivering
variety of functionalities and product applications. Examples of
different materials are demonstrated later in this paper. Typically,
selection of material(s) is guided by the intended function,
application environment and manufacturing process capabilities.

2.2. Natural examples of superhydrophobicity

Lotus leaf iswellknownforitssuperhydrophobicandself-cleaning
properties those are enabled by random and hierarchical arrange-
ment of nodules and hairs at micro and sub-micron scales. Apart from
lotusleaves,riceleavesalsoshowsuperhydrophobiceffects.However,
in case of rice leaves, the surface features are arranged in a periodic
manner along the length of the leaf, leading to directional and
anisotropic wettability [79]. Several other plants’ surfaces as well as
some animal skins (such as water strider legs, peacock feather and
butterfly wings) also exhibit multi-functional superhydrophobicity
[97,160,182,209,280]. Rose petals are particularly interesting as they
exhibit superhydrophobicity owing to convergence of hierarchical
micro-scale and submicro scale features. However, the waterdroplets
on rose petals have high adhesion to the surface so no roll-off effect
can be observed [25,180]. Fig. 3 shows some of the natural
superhydrophobic surfaces and their diverse texture features.

The wetting properties of a solid depend on the interfacial
energy balance between the solid–liquid–air interfaces as depicted

Fig. 2. Components that contribute to surface texture.
Fig. 3. (a) Surface structure of lotus leaf showing the micro-scale texture [180]
(reprinted with permission from Elsevier); (b) photograph and SEM micrographs of
rice leaf showing the directional micro-texture [96] (reprinted with permission from
Elsevier); and (c) photograph and SEM images of rose flower and micro-texture [80]
(reprinted with permission. Copyright 2008 American Chemical Society).
arch for decades [78,91,161,173,230]. Some of the most notable
ributions through the years are the CIRP keynote papers in the
s of structured surfaces, engineering of functional surfaces,
aces in precision engineering and bio-inspired functional
aces [44,64,77,197] along with notable contributions in surface
rology [65,99,106,145,171,186,219,257]. This paper builds upon
e previous contributions and is unique in following discussion
ts on bio-inspired textures: (1) bio-inspired functional
aces with an emphasis on specific design aspects of bio-
ired “textures”; (2) methodical analysis of texture into
truction components; (3) biological texture characteristics
ase cite this article in press as: , et al. Bio-inspired textures for functional applications. CIRP Annals - Manufacturing Technology
018), https://doi.org/10.1016/j.cirp.2018.05.001
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by Young’s equation (Fig. 4(a)) on a perfectly flat substrate. Wenzel
[274] proposed an equation (Eq. (1)) that predicts the effect of
surface roughness on contact angle. Where r is the roughness ratio
defined by the ratio of total surface area due to roughening of
substrate over the original surface area before roughening and is
always greater than 1. Thus, the addition of surface roughness to
flat hydrophobic surfaces increases their hydrophobicity
[181]. When the right-hand side of Eq. (1) exceeds a value of 1,
liquid droplets transition from a Wenzel state (Fig. 4(b)) into a
Cassie–Baxter regime (Fig. 4(c)) due to excess increase in solid–
liquid surface area and associated increase in interfacial energy. In
a Cassie–Baxter regime, the liquid partially wets the surface
leading to the formation of stable air pockets. The Cassie–Baxter
model [50] is described by Eq. (2), where fs is the fraction of solid–
liquid interface. In the case of hierarchical roughness features, the
wetting phenomenon is driven by multiple components and can
have different wetting scenarios summarized in following report
[28].

cos uW ¼ r cos uY ð1Þ

cos uCB ¼ f sðr cos uY þ 1Þ � 1 ð2Þ

The hierarchical arrangement of texture at micro and submicron
scales enables selectivity in wettability characteristics. In the case of
lotus leaves, the water droplets do not penetrate into the micro and
submicron scale features and thus roll-off with even the slightest tilt
while collecting dirt particles and enabling efficient self-cleaning
[26]. With the example of rice leaves, directional roll off is enabled by
anisotropic orientation and arrangement of features. In the differing
case of rose petals, water droplets are pinned due to penetration into
the micro-scale valleys, leading to high contact angle hysteresis
[28]. The transition between these various wetting states is governed
by the size of the droplets as well as the submicron nanoscale feature
sizes and their arrangement [28,25]. Thus, primarily, the hierarchical
arrangement of features, size and their distribution along with
surface chemistry are the primary components (Fig. 5) responsible
for superhydrophobic effect.

have the highest mass amongst species with fibrillar attachm
pads. Fig. 6 shows the arrangement of setae on gecko feet and t
branching [100]. The tips of each individual seta are furt
segmented into several spatula tips. The terminal shape of 

features along with hierarchical arrangement is essential for
dry adhesion observed in geckos and other species [26]. Van 

Waal’s forces of attraction between spatula tips and substrate
shown to be the primary cause of adhesion for geckos [10]. T
type of interfacial energy driven adhesion is differentiating fr
other excellent adhesion mechanisms found in nature that m
use of a sticky glue as secreted by mussels (wet adhesion
interlocking hook and loop structures as found in pollens 

cocklebur seeds.
The adhesion force of a single tip is given by Johnson–Kend

Roberts (JKR) theory [147] as shown in Eq. (3) below: adhesive p
off force (FC) is related to the contact radius (R) and adhes
energy per unit area (F). If the spatula tip is further subdivi
into ‘n’ multiple identical smaller tips (known as contact splitt
while keeping the area constant, then the adhesion force increa
by a factor of

ffiffiffi
n

p
as shown in Eq. (4) [9]. Thus, multiple con

points enabled by hierarchical arrangement of hair collectiv
contribute to high adhesion forces generated by geckos. Apart fr
the primary contribution of attractive contact forces, other eff
such as capillary forces are also responsible for adhesion in gec
[29].

FC ¼ 3
2
pgR 

F
0
C ¼ ffiffiffi

n
p

FC

The attachment strategy in geckos is unique since it allows
efficient dry adhesion as well as easy detachment or peel off. 

pull off force decreases with the orientation of the tips with resp
to a surface. Geckos detach their feet by curling their toes in su
fashion that the spatula tips are easily detached from the subst
[29]. Thus, apart from the size and shape of contact features,
orientation of hair with respect to the plane of mating surface 

plays a key role in the dry adhesion shown by geckos. For design
a gecko-inspired adhesive, the elastic modulus of the material
well as the aspect ratio of features should also be taken 

account [246]. Primary design components and application
gecko inspired surfaces are presented in Fig. 7.

Fig. 5. Controlling design components for lotus-leaf inspired superhydrophobic/
self-cleaning surfaces and potential industrial product applications.

Fig. 6. Micrographs of gecko feet fibrillar structures showing the hierarc
arrangement and contact splitting [100] (copyright (2005) National Academ
Sciences, USA).

Fig. 4. Different wetting modes for a droplet on (a) flat substrate and (b)–(c) rough
surfaces [240] (reproduced under the Creative Commons Attribution 4.0 Generic
license).
Fig. 7. Controlling components for gecko- inspired adhesive surfaces and potential
industrial product applications.
2.3. Natural examples of dry adhesion

Serval insects and animals such as beetles, flies, spiders and
lizards [74] rely on their hairy terminal attachment structures to
facilitate gripping on a variety of surfaces while walking. The
adhesion mechanisms of geckos are of particular interest since
geckos can walk easily on smooth substrates such as glass and also
Please cite this article in press as: , et al. Bio-inspired textures for functional applications. CIRP Annals - Manufacturing Technology
(2018), https://doi.org/10.1016/j.cirp.2018.05.001
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Natural examples of antifouling and drag reduction

everal marine species such as Mollusk shells and sharks have
loped multifunctional surface structures that allow fast and
ient swimming under water and while resisting the adhesion
uling species on their skin [31,32,233].
hark skin surface features are widely studied for their
fouling as well as drag reducing properties. The surface
cture of sharks consists of overlapping scales, known as dermal
icles arranged in a periodic manner. Fig. 8 shows the
ngement of dermal denticles in 2 species of sharks near the

 region [20]. Microscopic details of each denticle (such as
ure size, spacing, height) varies from one part of the body to the
r, but the overall macroscopic arrangement of denticles
ains similar [233]. Sharks orient the scales in the direction
eir movement to align the ridges parallel to the flow of water,
ing swift movement underwater [32].
part from shark skin, microtopographies of several seashells

 exhibit antifouling properties. Fig. 9 shows the typical ridge like
o-pattern from mytilid shells of species Mytilus edulis obtained

 different parts of the world. It is evident from the figures that
pacing, arrangement and aspect ratio of the grooves is different
he same species in different environment [24].
he riblet structure of shark skin is believed to be essential for
rag reduction properties. The texture of the riblets enables
k skin to pin and lift the high-pressure vortices formed due to
ulent flow [32,208]. These vortices only contact the tip of the
ts. As a result, the overall contact area and shear stress are
ced, decreasing the drag experienced by sharks [33,34]. This
nomenon is illustrated in Fig. 10 and is similar to the drag
ction provided by dimples on a golf ball [33,166].
ouling is a time dependent dynamic process and hence is a
plex phenomenon to model and understand. Several contribut-
theories have been proposed and are discussed below: (1) the
ation of vortices and the efficient flow of a viscous boundary
rmakes itdifficult forfoulingspeciestoadhereonsurface; (2)the
inuous adjustment and re-orientation of riblets bysharks makes
rder for any micro-organisms to adhere on to a ‘moving target’
; (3) ‘attachment point theory’ (illustrated in Fig. 11) suggests
 fouling is reduced if the total number or attachment points (or
surface area) available for fouling species are reduced
,234]. In reality, all of these mechanisms converge contributing

to the antifouling properties of shark skin to a certain extent and the
complete science of the process is yet to be fully understood.

The effectiveness of a microtextured surface was evaluated
using key surface texture components and show that size,
periodicity and directionality of surface features play an important
role in deterring species from attaching to a surface [232]. The
above discussion illustrates that the size of the features, their
arrangement, and the orientation of the features are the
controlling components for the drag reduction and antifouling
properties of the skin surfaces represented in Fig. 12. Further, it is
important to note that material parameters such as surface
chemistry as well as the external factors such as fluid flow, and the
nature (size, shape, chemistry) of any fouling species will also have
to be considered to design and fabricate bio-inspired artificial drag
reducing and antifouling surface textures.

Fig. 10. Visualization of vortices generated during turbulent flow conditions on flat
surface and riblet structure, width-200 mm [32] (reproduced with permission from
The Royal Society of Chemistry).

. SEM micrographs showing scale patterns of two species of fast-swimming
s [20] (reproduced with permission from Springer).

Fig. 11. Attachment point theory illustrating the effect of the relative size of features
on the attachment of fouling species; strong adhesion and fouling is expected for (a)
and (b) whereas weak adhesion and less fouling is expected in cases (c) and (d)
[234] (reprinted by permission of Taylor & Francis Ltd.).

Fig. 12. Controlling design components for shark skin inspired anti-fouling/drag-
reducing textures and potential industrial product applications.
. SEM micrographs showing microtopographies of Mollusk species M. edulis
 different geographic locations [24] (reprinted by permission of Taylor &
is Ltd.).

ase cite this article in press as: , et al. Bio-inspired textures for
018), https://doi.org/10.1016/j.cirp.2018.05.001
2.5. Natural examples of tribology and locomotion

Many reptile species such as snakes have evolved to have
ordered scales on their ventral (belly region) surface that aid
effective locomotion [2]. The scales on snakes are different in shape
and size depending on the location they are found on the body
[1]. Typically, ventral scales on the main body of a snake are
hexagonal in shape, a common feature shape in many natural
systems which allows the most efficient packing on in a repetitious
fashion [3]. These scales are made up of micro-fibrils and
denticulations arranged in a periodic manner [4,3,19,103]. The
 functional applications. CIRP Annals - Manufacturing Technology

https://doi.org/10.1016/j.cirp.2018.05.001
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microscopic fibrils are oriented in a caudal direction (towards the
tail of the snake) and form a wavy pattern as depicted in Fig. 13
below [18,103]. The shape, aspect ratio, spacing and overall
distribution of the microfibrils are specific to particular families of
snakes and are a possible result of evolutions to aid survival in their
respective habitat [4].

The frictional response and wear of interacting surfaces is a
highly stochastic and complex behavior that is dependent on
several environmental factors. Surface chemistry, roughness and
mechanical properties as well as external factors such as load,
speed, actual contact area between the two interacting surfaces
and the presence of third body particles and lubricating fluids
dictate the actual tribological response. Thus, even for snake skin
and other natural tribological systems, the effect of surface
features is very situational and environmentally dependent.
Surface texture at the sub-micron level on snake skin controls
the points of contact leading to effective and energy efficient
forward motion while maintaining the ability to grip on irregular
surfaces [185,199]. The orientation and directionality of fibrils
create ‘friction anisotropy’ such that friction is reduced in the
forward direction while it is increased in backward direction of
motion as represented in Fig. 14 [1,127]. This ability of snakes to
actively control their scale orientation allows them to maneuver on
different terrains and prevents slipping. Furthermore, the skin
membrane also shows the presence of micropits and micropores
that may act as delivery mechanisms or reservoirs for lubricating
fluids [2,4,103].

As noted in the reported study, the interlocking between the
scales on a snake’s skin and a mating surface roughness is essential
for effective locomotion [81]. Unidirectionally orientated micro-
scales and submicron sized denticulations are responsible for
friction anisotropy [81]. Similarly, study of jumping insects such as
planthoppers revealed a microscopic interlocked ratcheting gear
system between the two feet (Fig. 15) of the insect [45]. These
gears, textured on the surface, engage at the time of jumping and
aid the synchronous unidirectional movement of the legs and an
effective launch by the insect [45].

From these observations it is found that the shape, orienta
(actively controlled), size (necessary for effective interlock
depending on the surface roughness of the surface) and arran
ment/periodicity of microscopic features are the control
components for delivering effective friction and wear contro
shown in Fig. 16. These components will be useful to des
artificially textured tribological surfaces with tailored friction 

wear response.

2.6. Natural examples of anti-reflective surfaces

Moth-eye structures have been an area of interest due to t
excellent broadband anti-reflective (AR) properties and the rela
product applications [43,47,179]. The antireflective propertie
moth eyes are due to a periodic arrangement of sub wavelen
structures (SWS) on their facet lenses [224]. Similar features 

lead to anti-reflective functionality were observed on vari
species of butterflies as well as cicada and termite wi
[23,22,70,204,215,243,252,271]. The nano-nipples on vari
species show a regular periodic arrangement primarily i
hexagonal array as seen in Fig. 17. However, the height, shape 

periodicity of these submicron scale features differ from 

species to the other. This can be attributed to the evolution
species to serve a desired function in a specific environment 

are interpreted as key texture components for anti-reflec
surfaces.

Typically, inordertoachieveefficientanti-reflection, theheigh
the individual features needs to be of the order of half of 

wavelength of incident light. Furthermore, the spacing between
features is also of the same order, which ensures that the array is
resolved by the incident light [224,277]. This causes the ligh
interact with the structure in such a way that the average refrac
index (RI) at any given height ‘h’ is governed by the air/mate
volume ratio [179]. The effective RI at any given height h (neff(h))
be calculated by using Eq. (5) where nm is the RI of material, An(h
the cross-sectional material area at height h and Ab is the base are
sub-wavelength feature as shown in Fig. 18(a). Thus, the refrac
index of the surface layer changes gradually from the top to
bottom along the height of the nipples as depicted in Fig. 18(b). T
gradualchangeofRIresults inthe progressivebendingof lightate
layer, leading to anti-reflective behavior [47,277]. This strateg
different from multi-layer antireflective coatings that rely
destructive interference of reflected light at each layer inter
[47]. Such arrays show good anti-reflective behavior tha

Fig. 13. SEM images depicting micro-structural details of the ventral scales of snake
species, (a) Milk snake (L. triangulum), (b) King Cobra (Ophiophagus hannah) [61] (©
IOP Publishing. Reproduced with permission. All rights reserved).

Fig. 14. Active control of snake skin scales showing change in orientation of scales
on styrofoam substrate (a–b) [199] (reproduced with the permission of The Royal
Society); and (c) schematic mechanism of friction anisotropy based on interlocking
[185] (reprinted with permission from Elsevier).

Fig. 16. Controlling design components for snake-skin inspired textures
potential industrial product applications.
Fig. 15. Gears on the trochanter of grasshopper of species Issus nymph showing the
effective interlocking [45] (reprinted with permission from AAAS).

Fig. 17. SEM micrographs of nano-nipples in (a) Attacus atlas moth eye [159]
(reproduced with permission of The Royal Society of Chemistry); (b) lycaenid
butterfly Pseudozizeeria maha [247] (reproduced with the permission of The Royal
Society); (c) cicada wing of Meimuna durga [252] (© IOP Publishing. Reproduced
with permission. All rights reserved).

Please cite this article in press as: , et al. Bio-inspired textures for functional applications. CIRP Annals - Manufacturing Technology
(2018), https://doi.org/10.1016/j.cirp.2018.05.001
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dband and omnidirectional since the light sees the sub-
elength structures (SWS) as a mediumwith a graduallychanging
respective of the incident angle. This aspect makes moth-eye
ctured coatings suitable for many product applications. A similar
oach is implemented in designing efficient anti-echo walls and
owave enclosures [277].

h Þ ¼ nm � An hð Þ
Ab

þ Ab � An hð Þ
Ab

ð5Þ

t has been shown through observation and simulation studies
 the paraboloid shape of the nipples is critical and most
ient for effective AR while the height of the nipples controls
bandwidth of the wavelengths that can be effectively trapped
69,247,252]. Thus, the aspect ratio of the features (height), the
e of the features and the periodicity are the controlling
ponents for designing efficient AR structures for a given range
avelengths as represented in Fig. 19.

Natural examples of photonic structures and iridescence

utterfly wings are an excellent example of multi-functional
aces that show a diverse range of surface textures. Structural
ration or iridescence is one of the widely studied functional
butes of butterfly wings [133,180,197,210,280]. Structural
rs are a result of selective reflection (and trapping) of specific
elength(s) either due to optical interference/diffraction effects
ue to the formation of a photonic band gap [85,250].
epending on the alternative and periodic arrangement of
ures with different RI, these structures can be classified in 1-D
iodic in 1 direction) to 3-D (periodicity in all 3 directions)
tonic structures [265,282]. 1-D gratings can be found on
ace of plants such as Tulipa and Hibiscus [275], Mollusk shells
tada margaritifera, [184] and blue morpho butterflies [157]

incident light with surface and subsurface physical as well as
chemical textures; the mechanisms of reflective color formations
are discussed below.

Color exhibited by Mollusk shells (Fig. 20(a)) can be explained by
simple diffraction grating. The incident white light is diffracted from
the surfacefeaturesand decomposed into different wavelengths. The
scattering angle for each wavelength is governed by the order of
diffraction (m) and spacing between the grooves (d) as represented
by Eq. (6). The resultant color is dependent on the incident angle and
viewing angle as well as the order of diffraction [216].

dðsin ui � sin umÞ ¼ ml ð6Þ
Multi-layer interference is the primary reason for blue color

exhibited by morpho butterflies. Incident light rays travel through
alternate multi-layer stacks of chitin (high RI material) and air
(texture in Z-direction). Light rays are then subsequently reflected,
refracted and transmitted at each layer boundary [133]. In a morpho
butterfly, the thickness (in Z-direction) of each layer is about 250 nm
(Fig. 20(b)) which leads to preferential reflection of blue color due to
constructive interference [85]. Whilereflectionof otherwavelengths
issuppressed due to destructive interference.Additionally, thewidth
of each individual shelf (about 300 nm) is less than wavelength of
visible light which leads to the blue color being diffracted to a wider
angle [229]. Also, randomness in height of the individual shelves
(caused by subsurface waviness) suppresses multi-color interfer-
ence [157,229]. These design components of texture, together, lead to
brilliant blue iridescence of morpho butterflies.

3-D photonic structures in nature are a robust form of structural
color. Just as the interaction of electrons with periodic crystal lattice
leads to the formation of electronic band structures in solids, the
interaction of photons with a 3-D periodic arrangement of domains
with different RI leads to the formation of photonic bands and band
gaps [85]. In the absence of external sources, Maxwell’s equation can
be simplified asEq. (7)where H(r) is the magnetic field ofphoton,v is
the frequency and er is the macroscopic dielectric function of the
material. For a given 3-D photonic structure, Eq. (8) can be solved
with appropriate boundary conditions imposed by the arrangement
of periodic domains and their RI values to give a complete photonic

9. Controlling design components for moth-eye antireflective textures and
tial industrial product applications.

Fig. 20. Examples of the variety of iridescent photonic structures in nature: 1-D
structures of (a) grooves on the shell surface of Mollusk Pinctada margaritifera [184]
(©1999 Optical Society of America) (b) cross-section of ground scales of M. didius
[157] (reproduced with permission from John Wiley And Sons); 2-D structures of (c)
peacock feather and transverse SEM image of barbule [180] (reprinted with
permission from Elsevier) (d) top view of cover scales of butterfly Papilio nireus
[189] (reproduced with permission of The Royal Society of Chemistry); and 3-D
structures of (e) inverse opal structures appearing in the green color of parides
sesostris [264] (reprinted by permission from Nature Publishing Group).

18. Schematic showing the gradual change of the refractive index in
avelength moth-eye nanostructures. Incident light, independent of the

 of incidence sees the nanostructure array as a gradually changing
ctive index medium and is transmitted with reduced reflectivity [47,205]
eproduced under the Creative Commons Attribution 4.0 Generic license and
produced with permission of The Royal Society of Chemistry).
ture/periodicity in cross sectional arrangement). Peacock
hers and butterfly Papilio nireus [189] are examples of 2-D
ctures while 3-D photonic structures, observed in gemstones

 as opals, are also observed in beetles and the Parides sesostris
erfly [184,265,298]. Fig. 20 depicts representative examples of
 2-D and 3-D structures observed in nature. Apart from
erflies, several other species such as beetles [237], fish [86] and
ts [40] also show structural colors. The attractive colors in
ral systems serve a variety of functions including enticing
, camouflaging for survival, attracting mates, or transferring
en [250,265]. Structural color is a result of the interaction of
ase cite this article in press as: , et al. Bio-inspired textures for
018), https://doi.org/10.1016/j.cirp.2018.05.001
band diagram in 3-D. The resultant photonic band gap leads to the
complete reflection of a specific wavelength irrespective of the
incident angle [133]. Such 3-D photonic structures are also seen in
gemstones such as opals.

r � 1
e rð Þr � H rð Þ

� �
¼ v2

c2
H rð Þ ð7Þ

For all the photonic structures described above, the size of the
features (of the order of wavelength of light) along with the
periodicity/arrangement of the features are the primary compo-
 functional applications. CIRP Annals - Manufacturing Technology
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nents that contribute to the structural coloration as represented
in Fig. 21. These controlling components, along with RI of
material, are crucial in designing synthetic structural color
structures. Furthermore, if the components such as spacing can
be controlled via external stimulus such as the electric/magnetic
field, temperature, or pH then the resultant colors can be tuned
accordingly [229]. Such tunable structural colors are also seen in a
variety of natural systems such as blue damselfish [86] and neon
tetra-fish [85] and are very promising for numerous industrial
product applications such as sensors, security enhancement and
displays [282].

2.8. Natural examples of chemical texturing

Apart from the examples discussed above, certain plants and
animals show unique functionalities enabled by a combination of
the physical attributes of texture and the variation of surface
chemistry in distinct domains. This subsection illustrates the use of
surface chemistry as a functional design attribute with the help of
the desert beetle Stenocara sp. and water floating fern Salvinia
molesta as illustrative examples.

It has been reported that beetles from the Namib Desert use the
surface structures on their backs to capture and harvest water from
the moisture in the air [217]. Fig. 22(a) shows the surface structures
of fog harvesting beetles. The back of the beetle is made up of
microbumps and microchannels [182]. Furthermore, the morphol-
ogy is also divided into superhydrophilic and superhydrophobic
domains. The superhydrophilic tips are responsible for capturing
moisture from the air [217]. Once the water droplet size grows
above the critical size, it rolls off via the superhydrophobic
channels directly into creature’s mouth and thus is collected
[26,217]. This beetle is unique in the way that it makes effective use
of both physical texture as well as chemical texture. The spatial
arrangement of alternate hydrophilic/hydrophobic domains com-
bined with the physical channels for water movement enable the
desert beetle to harvest water from the moisture in air, which is

necessary for survival in the extreme conditions of the des
Along with the Stenocara desert beetle shown in Fig. 22(a), ot
varieties of fog basking beetles have also been investigated [211
was found that the architecture on fog basking beetles 

microridges and grooves, possibly physically aiding the w
collection [211].

Thus, it can be concluded that the arrangement and distribu
of features (along with their size) serve as the primary sur
texture components for bio-inspired water harvesting surface
should also be noted that the chemistry (hydrophilic 

hydrophobic) serves as a material design parameter for synth
water harvesting design architectures.

On the other hand, the hierarchical hairy architecture of 

plant S. molesta along with the surface chemistry of its cutic
wax enables superhydrophobicity as depicted by a spher
droplet on the surface of the leaf (Fig. 22(b)-inset) [51,162]. 

surface of these plants is superhydrophobic but not self-cleanin
the water droplet is retained on the surface and does not rol
[162,163]. Low temperature scanning electron microscopy o
frozen leaf revealed the unique design architecture of the h
[15]. Fig. 22(b) depicts the egg-beater shaped terminal structu
observed on each hair. Also shown is the terminal attachm
point where four individual hairs attach and collapse to for
patch of dead cells. The entire leaf surface is covered w
hydrophobic wax crystals except the terminal cells [15]. T
arrangement of hydrophilic tips enables the effective pinnin
the air–water interface and aids the formation of stable air pock
[131]. It was further noted that the air pockets formed on 

Salvinia surface features are stable for several days [160] and
beneficial for reducing drag [8]. Similar to the desert beetle c
the size of the features and the distribution of chemical dom
plays a critical role in the formation of stable air pockets and can
viewed as the design components for bio-inspired functio
applications [8] as depicted in Fig. 23.

2.9. Interaction of surface texture with external agents

Further along with the above uniqueness in nature, there
additional characters, which make this topic intriguing. A
surface or a texture here is an interface between an organism 

the surrounding environment, functionalities are result of 

interaction between the design and material components of 

texture and the environmental parameters. Natural sur
textures have evolved in such a way that the system react

Fig. 23. Controlling design components for fog harvesting desert beetle surface
Salvinia along with possible product applications.

Fig. 21. Controlling design components for structural coloration and potential
industrial product applications.
ort
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Fig. 22. (a) Photograph of Namib desert beetle Stenocara sp. and SEM micrograph
showing bumps on its back used to capture moisture [26] (reprinted by permission
from Nature Publishing Group); (b) water droplet on water fern Salvinia molesta
(inset) and SEM images showing details of ‘egg-beater’ shaped hairs and their
terminal cell morphology at different magnifications [15] (reproduced with
permission from John Wiley And Sons).

Please cite this article in press as: , et al. Bio-inspired textures for
(2018), https://doi.org/10.1016/j.cirp.2018.05.001
the external factor(s) to enable the desired functionality over sh
or extended period of times. During this interaction, the sur
has dynamic responsive characteristics, for example the abilit
refresh and/or regenerate to maintain the pristine character of
functionalities. Engineered systems and their synthetic textu
discussed below, are at the early stage of development.

Further, in addition to the design components discus
above, nature also demonstrates the following characteris
necessary for building a robust textured system: (1) redunda
for example in features; (2) simplicity of design and of choic
 functional applications. CIRP Annals - Manufacturing Technology
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(2
erials; (3) regeneration ability; (4) calling (multi-) function-
 on-demand; (5) length scale dependent architectures (in
ition to hierarchy discussed above); (6) heterogeneous
gration of materials and (7) complementary subsurface with
ithout sensory system [197]. Furthermore, it appears that
re has built precision in systems’ functional response at the
roscopic level like the magenta color in butterflies but has
t defects at micron and submicron length scales. This can be
trated by the imperfect arrangement of the lamellae on
erfly wing as depicted in Fig. 20(b). These defects, irregulari-
and randomness are crucial to provide the necessary
stness to the surface and build redundancy. A more detailed
erstanding of these characteristics will be important in order
esign robust and adaptive textures that can be manufactured

 utilized in a broad range of environments with wide
tionalities.
he following section underlines the current approaches and
s of development for surface texture measurement. The
surement of the design components of novel and complex bio-
ired surface textures discussed above is necessary to under-
d and replicate them in engineered systems.

easurement of surface texture and parameters according
O standards

General considerations

n the bio-world, the ‘image’ of a surface is the most natural
s for further investigation. The human eye is trained and
stomed to ‘looking’ to – mainly – 2-D images and draws its
lusions even about 3-D features in a split second from
gnition, relative sizes, shadow effects, contrast, etc. Most of the
ges in this field and also in this paper use this feature of human
erstanding implicitly. For example, insets in Fig. 3 omit a scale
which is not considered problematic as any human recognizes
t is depicted. Images taken by scanning electron microscopy
) especially benefit from this feature, as the imaging system

s shadow effects as they are observed by the human eye in real
[223]. One example – from many in this paper – is Fig. 17(b).

 is essentially a 2-D image in grey tones, but it is readily
rpreted as an array of small features on a surface, where the
th’ is implied by gradual changes in the features towards the
of the image.
owever, to interpret features in scientific concepts, i.e. being
oducible and having a predictive value, care must be taken
n deriving quantitative measurement values and any related
rtainties.
he used measurement techniques must be appropriate for the
th scale of the structures studied. For texturing, feature sizes
cally range from the mm-size features that determine the
logical properties of shark skin, to the nm-size features of
-reflective moth-eye structures.
efore any measurement task can be defined, the functional
erty under study must be defined: is it the anti-fouling, the
r, the adhesive properties, etc. that is being studied? Following
design components that contribute to the surface texture as
e are given in the scheme of Fig. 2, combined with the
iderations that were discussed in Ref. [276], the following

� The periodicity/pitch that can be defined as the average distance
between features oriented in the same direction. Example: the
grating distance on the Mollusk shell surface (Fig. 20(a)).

� The shape of features, e.g. the ‘egg-beater’ shaped hairs of a
water fern (Fig. 22b)

� Profile and areal surface parameters defined as geometries of
surface structures whose dimensions are small compared to the
object under investigation. An example is the Ra-value of snake
skin as used in Ref. [1]. The full range and definitions of
parameters are given in Refs. [134] and [136].

3.2. Measurement traceability and calibration

Measurement traceability is the property of a measurement
result whereby the result can be related to a reference through a
documented unbroken chain of calibrations, each contributing to
the measurement uncertainty [30,76,98]. For measurements of
biological textures, this implies that some calibration steps must
be taken before traceability can be achieved. Calibration is multi-
step operation undertaken in specified conditions. In the first step,
a relationship is established between the quantity values with
measurement uncertainties provided by measurement standards
and corresponding indications with associated measurement
uncertainties. In the second step, this information is used to
establish a relation for obtaining a measurement result from an
indication [30,48].

In the cases of measurement involving biological specimens,
the calibration issue is often given little explicit attention as the
nature of the measurement does not demand a reference standard
for components as comparison. However, the aim of both
calibration and traceability is that, in the end, an uncertainty
can be attributed to a measurement, or to features of a bio-inspired
product, which is relevant for designs based on these features.

3.3. Commonly used instrumentation

3.3.1. Scanning electron microscopy (SEM)
Topography images are usually obtained using SEM. SEM has

some unique properties that, combined together, are not matched
by any other microscopy technique. These include: magnification
levels (100� to 100.000�), resolution down to 2 nm (for highest
magnification), large depth of field, long working distance
(allowing multiple positioning measurement strategies), elemen-
tal analysis capability and minimum diffraction effects [223]. How-
ever, SEM photographs are still inherently 2-D, and no height
information can be extracted directly from the images. Further-
more, calibration of scales and uncertainty estimation is a
prerequisite for the use of SEM pictures for quantitative evalua-
tions. For example, the commonly used ‘scale bar’ in SEM
micrographs can be considered to have a relative uncertainty
between 1 and 5% [14].

3.3.2. 3-D SEM
To reconstruct the third dimension of surface features,

photogrammetry methods can be used. 3-D information can be
generated via reconstruction from stereo pairs [38]. Few results of
such 3-D imaging with SEM are reported with a focus on the
establishment of traceability [14]; it was shown that especially the
surement tasks can be distinguished:

ze of features-The relevant size can be a width that is
fined by the distance between two opposing surfaces.
ample: the width of grating lines in a Mollusk shell (Fig. 20
)). A feature size can also be defined as a height: the distance
tween two surfaces of same orientation but placed in a
rtical direction. Example: the height of a moth-eye nano-
ucture (Fig. 17(a))
pect ratio as defined by the depth of a structure divided by its
dth. Example: the aspect ratio of features of Gecko feet [246].
ase cite this article in press as: , et al. Bio-inspired textures for
018), https://doi.org/10.1016/j.cirp.2018.05.001
height (z-) coordinates can have quite disappointing deviations up
to 20%. In an alternative approach [16], 3-D images of beetle skins
are reconstructed by milling away 30 nm layers of the skin and
taking a new SEM image after each step.

Most measurements and conclusions in the literature on bio-
inspired surfaces (especially where it comes to distances, heights,
aspect ratio’s and others) are based on SEM technology.

3.3.3. 3-D optical microscopy
In optical microscopy, various methods can be used to obtain 3-

D information from an image. Several technologies are used for this
 functional applications. CIRP Annals - Manufacturing Technology
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type of microscopy: interference, confocal, and focus variation.
However, each of these technologies have weaker and stronger
points in vertical resolutions and carry the risk of measurement
artifacts. Further details are given in handbooks [169]. Although
they lack the extreme lateral resolutions of the SEM technology,
the combination of the measurement of a relatively large area
combined with good vertical resolution makes optical 3-D
techniques most appropriate for the measurement of surface
roughness parameters, though some issues must be addressed
before these measurements can be considered as traceable and
comparable [170,256].

3.3.4. Scanning probe microscopy (SPM)
SPM is a branch of microscopy that forms images of surfaces

using a physical probe that scans the specimen. Commonly a
feedback loop is used to maintain a constant force, or another
physical phenomenon, between the specimen and the probe. In
cases where the force is kept constant, the technique is called AFM
(Atomic Force Microscopy). The resolution varies somewhat from
technique to technique, but some probe techniques reach atomic
resolution. The data are typically obtained as height coordinates on
a two-dimensional grid of data points, making the data essentially
2.5-D, however for convenience the term 3-D will be used
throughout this paper. 3-D AFM has the advantage of a better
potential lateral resolution than optical techniques and compared
to SEM technology it has the advantage of directly delivering 3-D
coordinates. The horizontal and vertical ranges are well within the
range of interest of bio-inspired surfaces: from a few mm2 to
1 � 1 mm x–y range with a vertical (z-) resolution in the nm range
and a range up to 10 mm. Although the measurement time can be
rather long, the low measurement force combined with the
appropriate range and resolution make this technology apropos for
characterizing bio- and bio-inspired surfaces. These principles are
discussed in [101], and more recently in several textbooks [60]. For
larger scan lengths, direct contact mechanical probing can be used
with a mm sized tip-radius. Because of the slow scanning speed
these measurements are commonly restricted to 2-D [29] i.e. the
height along a single line is measured.

3.4. Profile and areal roughness parameters

Surface roughness is characterized in parameters that are fully
standardized for 2-D (‘line’) and 3-D (‘surface’) cases in ISO 4287
[136] and ISO 25178:2 [134], respectively. Apart from these
definitions, the filtering conditions and probing conditions are
essential, as given in ISO 4288 [137] and ISO 25178:3 [135]. These
areal surface texture parameters that were standardized in
2012 were proposed and in use in the dimensional metrology
community since the early 1990’s [49].

The complex nature of bio-inspired surface implies that a
combination of two or more parameters is desirable to make a
useful distinction between surfaces. For example, the Sq parameter
is sometimes called ‘rms height’. It should be kept in mind that
these parameters are all defined relative to a defined reference
surface and depend on a defined bandwidth in terms of spatial
frequencies. This bandwidth is too often neglected and present in
the measurements in an implicit way, e.g. by the pixel resolution at
the high-spatial frequency side and the size of the measurement
area at the low spatial frequency side. The too-implicit treatment

3.5.1. Super hydrophobicity
The dependence of super hydrophobicity on surface topogra

in general, with a particular focus on rose leaves was repor
[28]. SPM measurements of 100 � 100 mm areas of rose leaves
taken, and own-defined features such as peak-to-base height, m
width peak height, radius bump density, are determined fr
these measurements. As no uncertainty is estimated, it may
questioned whether a statement like “the mid-width is 16.7 mm
generally valid and can be reproduced by other researchers.

3.5.2. Dry adhesion
An original approach to solving the problem of time consum

3-D macroscopic measurements was reported in context
studying the self-cleaning effects of Gecko feet [100]. The 

pad areas are ‘measured’ using a flatbed scanner, giving a qu
image of the 2-D structures, while the finer structures at the m
level are measured using SEM.

3.5.3. Anti-fouling
A detailed study was performed on the anti-fouling proper

of Mollusk surfaces [232]. Overall, 36 species were investiga
using laser scanning confocal microscopy. The surface roughn
parameters used in this study are mean roughness (Sa), m
waviness (Wa), skewness of the surface roughness profile 

skewness of the surface waviness profile (Wk), texture aspect r
(Str) and fractal dimension (Fsk). This study correlates th
parameters to some measures of fouling resistance. The m
significant correlation is found between anti-fouling proper
and the skewness (Sk) parameter. Still it is concluded that “the fi

is hindered by the lack of quantified surface characteristics to gu
the development of new antifouling materials.” This may be
case for several other properties of bio-inspired surfaces as w

The same group put the measurement efforts at the mm and
level in perspective by stating [233]: “While there are numer
new developments in surface modification technologies that ta
surfaces at the scale of nanometers, the over-riding theme for 

inspired materials is microstructured surfaces ranging from 1
300 mm. This focus is based on the extensive evidence from nat
and manufactured surfaces that structures smaller than 

settling propagule reduce settlement and attachment strengt

3.5.4. Drag reduction
Researchers [1], while studying snake skins, report use of 

roughness parameters from single lines that are extracted from
D topography measurements taken by a white-light interfero
ter. In this case, a chance was missed to use all of the topogra
measured, to define 2-D parameters and to characterize the sur
using these parameters.

In another paper [4], it was concluded, probably correctly, 

the use of the Ra-parameter makes little sense and they spe
parameters that would better characterize snake-skins (Fig. 

However, a combination of spatial and areal parameters from
25178:2 might have been more appropriate.

3-D measurements by laser confocal microscope and AFM
study snake surfaces were also reported [19]. Ra-values 

discussed, but it is unclear how these were obtained, and it is lik
Fig. 24. Proposed Python-skin parameters as reported in Ref. [4] (© IOP Publishing.
Reproduced with permission. All rights reserved).
of the bandwidth concept seriously impedes the incredible
potential these parameters have as general characterizing param-
eters for a wide variety of bio-inspired surfaces, from the mm-size
features that determine the tribological properties of shark skin, to
the nm-size features of moth-eye structures that have inspired the
production of close-to-ideal optical AR structures.

3.5. Examples of surface texture measurements

In this section, specific examples of bio- and bio-inspired
surface measurements are given for elaboration.
Please cite this article in press as: , et al. Bio-inspired textures for functional applications. CIRP Annals - Manufacturing Technology
(2018), https://doi.org/10.1016/j.cirp.2018.05.001
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(2
 in fact the Sa-parameter values are used. The researchers [18]
rted fabrication of snake-inspired micro structured polymer
aces where the Ra – parameter is calculated from lines of a
te light interferometry (WLI)-measurement. In this case as
, the Sa parameter could have been used, as the full 3-D
graphy was available.

. Anti-reflection
 comprehensive study on moth-eye textures was published
re the texture parameters measured on 20-different moth-
ies using AFM combined with SEM measurements are
rted [247]. This study even indicates measurement errors,
nly based on statistics. As the errors in the (mean) nipple
hts are indicated as 10 nm, the same scale used to round the
le heights, the general validity of these values may be
tioned, and the significance of the differences found.
io-inspired moth-eye and cicada wings structures are
essfully applied as anti-reflection structures to solar cells.
xample is given in Ref. [299], where measurement of bio-
ired moth’s eye nanostructures is reported. The produced
aces are measured with AFM in tapping mode, and rms-values
reported that can be identified as the Sq-parameter.

Concluding remarks on surface texture measurements

he development of advanced measurement instrumentation
enabled the measurement, modeling and reproduction of bio-
ired surfaces with considerable success, but, the field would
fit from the consistent use of the defined ISO parameters on a
e regular basis. On the other hand the ISO parameters are
gned for surfaces produced by traditional mechanical engi-
ing production technologies, and the field of bio-inspired
aces could consider alternative evaluation methods such as the
nition of surface texture parameters on freeform surfaces
], or filtering free-form surfaces using the lifting wavelet
sform [5]. Also the shearlet-based separation method of 3-D
neering surfaces [73] might open a way to quantify surfaces

 are composed on an hierarchical arrangements such as the
 flower illustrated in Fig. 3. Also, the field would benefit from a
er consideration of the concepts of bandwidth [170], traceabil-
and uncertainty estimation [171] as that would make the
surements and conclusions more applicable and reproducible.

pplication specific bio-inspired functional engineered
ures and their manufacturing

he science of textures in the nature, discussed above, is being
ely implemented in multiple real-world product applications.
following discussion elaborates on these applications, the
ted materials and manufacturing processes of choice and their
lementation approaches.

Bio-inspired textures for dry adhesion

ibrillar structures found in several lizards and insects
cially geckos have attracted major research in last two
des as discussed in Section 2. The excellent ability of geckos
imb on a variety of substrates is remarkable for the following

4.1.1. Manufacturing processes and approach
As discussed in the previous section, the hierarchical arrange-

ment, size and shape of terminal contact points, aspect ratio and
orientation of features are important texture design components
for fabricating fibrillar adhesive structures. A research group
presented key design aspects for constructing efficient adhesive
structures [246]. It is important to note that the aspect ratio,
elasticity and stiffness of the fibrous structures are critical material
and texture design attributes to consider for ensuring that the
fibrous structures do not break during their intended target
application. Ideal dry adhesive fibrillar structures should also have
enough compliance to facilitate effective contact on variety of
terrains and allow for possible ‘switching’ by controlling the fiber
orientation [74,138]. Considering these design and material
requirements, polymeric materials such as poly-dimethyl siloxane
(PDMS) are most commonly used to develop synthetic bio-inspired
dry adhesives.

The most commonly applied manufacturing approach involves
top-down processing of the desired mold followed by the casting
and demolding of textured polymers to fabricate gecko-inspired
adhesive pillar structures (Fig. 25). The density of pillars can be
controlled by changing the process variables used during the
patterning process while the shape and size of terminal features
can be controlled by adjusting the material removal process
variables.

Fig. 26 shows examples of micropillar arrays with a variety of tip
shapes and hierarchical arrangements. A master mold is first
created using conventional photolithography and etching techni-
ques. A soft curable polymer like PDMS or polyurethane (PU) can
then be cast, cured and demolded to achieve desired array of
pillars. Multiple photoresist patterning, developing and etching
steps were used to create negative Si-master molds [146,294] and
negative silicone rubber mold [151,152]. These molds can then be
used to fabricate dual-shape/dual-level architectures using soft
polymeric materials such as depicted in Fig. 26(a) and (b). In
another approach, angled polyurethane acrylate (PUA) pillars
(Fig. 26(c)) were first fabricated on a stiff polyethylene terephthal-
ate (PET) backing layer using Si-master mold [270]. Two PET
substrates with single sided pillars were then joined back-to-back

Fig. 25. Manufacturing approaches to fabricate dry adhesives.
Fig. 26. SEM images of variety of structures fabricated by using lithographic
techniques with different tip shapes, orientations and hierarchical arrangement: (a)
polyurethane (PU) fibers with prismatic (first level) and rectangular adhesion pads
(second level) [146] (reproduced with permission from John Wiley And Sons); (b)
polystyrene micropillars with textured rectangular feature [151] (reprinted with
permission. Copyright 2014 American Chemical Society); (c) dual angled
polyurethane acrylate (PUA) pillars [270] (reproduced with permission of The
Royal Society of Chemistry); (d) PDMS micropillars with mushroom shaped tips
[286] (reprinted with permission, Copyright 2016 American Chemical Society); (e)
Hierarchical PDMS mushroom shaped micropillars with nano cone tips [267]
(reprinted with permission, Copyright 2014 American Chemical Society).
ons: (1) the adhesive forces generated by geckos are primarily
to Van der Waals’s forces of attraction and does not rely on use
y chemical glue; (2) the attachment is controllable, meaning

 geckos can easily detach as well as adapt to different terrains
ontrolling the movement of the limbs and adjusting the
ntation of attachment points. These features of dry adhesion
particularly interesting for several engineered applications

 as robotic arms, grippers and others, which can be used in
e and as biomedical adhesives. The following sections discuss
manufacturing methods and strategies as well as product
ications for gecko-inspired surface textures.
ase cite this article in press as: , et al. Bio-inspired textures for functional applications. CIRP Annals - Manufacturing Technology
018), https://doi.org/10.1016/j.cirp.2018.05.001
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to achieve double-sided adhesive structures. Separate micropat-
terned and nanopatterned masters have been used in the
processing sequence to achieve dual-level hierarchical texture as
seen in Fig. 26(e) [267]. Scalability of processes is key in their
selection.

Apart from using conventional photolithography for patterning,
several other processes for fabricating negative molds are also
reported. A metallic mold with angled cavities was prepared via
micro-end mill and used to fabricate anisotropic silicone rubber
fibers with variety of tip shapes [238]. Similarly, holes created by
milling [201] and CNC machining [132] were used to cast PDMS
based micro and macro pillars. Laser cutting was used to
manufacture PTFE molds containing arrays of holes in triangular,
circular and square cross-sections those can be used to fabricate
PDMS pillars [177]. A 3-D porous Ni/NiO was used as a template in
manufacturing. The template was prepared by electrodeposition of
Ni from a nickel chloride and ammonium chloride electrolyte
solution [292]. The hydrogen gas bubbles that form during the
electrochemical reaction create a porous Ni/NiO template after
annealing. This porous mold can then be used to cast large scale
PDMS to obtain PDMS micro-pillars with hierarchical shapes
(Fig. 27(c)) [292]. In another approach, mushroom shaped
elastomeric pillars were fabricated using a 2-photon lithography
technique with UV-curable negative photoresist. [200]. Laser
micromachining was used to fabricate molds to create wall-shaped
poly-vinyl siloxane (PVS) adhesive structures [149]. An ultrapreci-
sion machining lathe equipped with a diamond tool was used to
machine wedge-shaped structures on an aluminum mold that was
used to fabricate wedge shaped PDMS adhesive structures shown
in Fig. 27(a) [254].

Tip shape can be effectively manipulated using a variety of
techniques. Mushroom shaped tips for pillars are commonly
reported for gecko-inspired adhesives. The mushroom shape
(Fig. 26(d)) can be obtained by developing an undercut during
the fabrication of master mold negative. Undercut can be realized
by using lift-of-resist (LOR) along with photoresist followed by
selective etch of LOR [286] or by using a glass substrate with a
double side exposure lithography [128,268]. The mushroom
shaped pillars in PDMS were used to fabricate flexible polyure-
thane acrylate (PUA) negatives that can be used as patterned molds
in a roll-to-roll process to yield flexible adhesive structures on UV-
curable resin [285]. In another approach, uncured PDMS was
applied selectively on the tips of the cured PDMS pillars and then
cured while being pressed against a fixed substrate resulting in
flattened tip ends (Fig. 26(c)) [201,270]. A stretching imprint
process was reported to fabricate high aspect ratio PMMA pillars
(Fig. 27(b)) using a micropatterned Teflon mold [144]. The tip
shape can be controlled by changing the cooling speed during the
stretching operation and the orientation of the pillars can be
controlled by varying the lateral displacement of the mold during
stretching [144].

Another material of interest for fabrication of dry adhesive
structures is carbon nanotubes (CNTs) and Fig. 28 shows
representative examples. Vertically aligned CNT arrays (VACNT)
are being researched because of their smaller feature sizes and

high aspect ratios that can lead hierarchical architectures 

better conformal contact and higher adhesive strength t
polymeric materials. CNT structures are also promising beca
of their superior controllable thermal, mechanical and electr
properties and their applicability in switchable adhesives as w
as for fabricating flexible adhesive patches [62,129]. Typically, C
based fibrillar structures are produced using a bottom
manufacturing approach. Variations of chemical vapor deposi
(CVD) including thermal CVD [178], low pressure CVD [283] 

cold-wall CVD [54] have been utilized to synthesize VACNT arr
Additionally, VACNT arrays with better alignment, narro
diameter distribution and higher density using CVD are 

reported [62,63]. Apart from CNT-based fibrous structures, 

adhesive structures made up of polymethyl methacrylate (PMM
and polyvinylidene fluoride (PVDF) fibers fabricated us
electrospinning have also been investigated [226,227].

4.1.2. Adhesive functional surfaces and related product applicati
Gecko-inspired adhesive structures are interesting for a w

variety of commercial applications such as robotics (climb
pads), space grippers and even for medical adhesive pads. Fro
practical application standpoint, easy detachment is as impor
as effective attachment. Thus, research effort is focused on crea
‘switchable’ dry adhesive structures where the adhesion can
controlled via external stimulus. Since the adhesive force is dire
proportional to the total contact area between the dry adhe
structures and the counter surface, switching between the ‘on’ 

‘off’ stage can be achieved by changing the contact area.
Si nanowire arrays were fabricated by chemical etching and w

modified using polymer brushes. Composite arrays based on pol
sulfopropyl methacrylate potassium salt (PSPMA) can be contro
by changing the humidity while nanowire arrays with p
methacrylic acid sodium (PMAA) brushes show pH sensi
response [194]. A bio-inspired photocontrollable microstructu
transport device (BIPMTD) was developed using an azobenz
containing a cross-linked liquid crystalline elastomer. A ph
responsive film issandwichedbetweenmushroom-shaped adhe
micropillars and PDMS backing layer [158]. When illuminated w
UV light, the photoresponsive units change their shape and ca
bending which leads to the detachment of the adhesive pillar
illustrated in Fig. 29(a). Contact area and thus adhesive force can 

be manipulated by using anisotropic and directional attachm
structures. PDMS pillars with large overhanging caps and steps w
fabricatedleading to anisotropicbehavior. When the tips are drag
to the right, the contact area is increased, leading to strong adhes
[269]. The off state is achieved by dragging the pillars to the 

Fig. 28. CNT based dry adhesives; (a) VACNT array on flexible PET subs
fabricated by thermal CVD [178] (reproduced with permission of The Royal So
of Chemistry); (b) Vertically aligned double-walled CNT strands fabricated by
pressure CVD and bundled top nodes by plasma treatment [283] (reproduced u
the Creative Commons Attribution 4.0 Generic license); (c) VACNT a
synthesized by cold-wall CVD process [54] (reprinted with permis
Copyright 2015 American Chemical Society); (d) SEM image of spinnable VA
arrays [62] (reproduced with permission of The Royal Society of Chemistry).
ion)
off-
]. In
was
ith

 be
 to
d by
cro-
ane

Fig. 27. Dry adhesive structures fabricated using (a) PDMS wedges cast from
aluminum mold machined using a ultraprecision diamond tool [254] (reproduced
with permission from John Wiley And Sons); (b) high aspect ratio PMMA pillars
fabricated using a stretching imprinting process-capped pillars are obtained by fast
cooling [144] (reproduced with permission of The Royal Society of Chemistry); (c)
side view of hierarchical PDMS microarrays cast from a porous Ni/NiO mold
obtained using electrodeposition of nickel [292] (reproduced with permission of
The Royal Society of Chemistry).

Please cite this article in press as: , et al. Bio-inspired textures for
(2018), https://doi.org/10.1016/j.cirp.2018.05.001
where only part of tip makes contact (see Fig. 29(b) for illustrat
[269]. In a similar approach, PDMS wedges switch from on- to 

state by application of shear force as shown in Fig. 29(c) [218
another approach, a soft gripper for pick and drop applications 

developed containing an inflatable soft membrane covered w
adhesive micro-pillars [245]. The inflatable membrane can
controlled via changing air pressure through a central tubing
control the adhesion. When the membrane is in a flat state create
low pressure, the adhesion force is strongeras high numberof mi
pillars is in conformal contact with the object. When the membr
 functional applications. CIRP Annals - Manufacturing Technology
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Ple
(2
flated the number of pillars in contact reduces due to bending of
embrane leading to a low- adhesion state. The ‘pick and drop’

ation of soft gripper is depicted in Fig. 30 using steel balls as an
ple object.
ry adhesives can also be potentially used for medical and surgical
ications. A biodegradable and biocompatible tissue adhesive
e of poly glycerol-co-sebacate acrylate was reported previously
]. Similarly, a bio-compatible adhesive for tissue repair was
loped from chitosan and showed excellent bonding capability
. A conductive patch was fabricated with a composite structure of
o-inspired dry adhesive along with co-doped CNT and graphene.
conductive pad showed comparable adhesive forces to commer-
wet adhesives. Furthermore, these pads have excellent stretching
bending properties while preserving their adhesive and electrical
erties, making them suitable for application to human skin as an
face while serving as an ECG monitor (Fig. 31) [155]. Adhesive
 made fromwedge-shapedPDMSadhesivesdiscussedabovehave

 used as shear adhesive grippers for space and other applications
,218]. Shear adhesive grippers under zero gravity were success-

 tested to grasp and release both flat and curved objects [142].

Gecko-inspired adhesive technologies have also been commer-
cialized. Nanogriptech [111] have developed pressure-sensitive dry
adhesive tape SetexTM along with custom gripping and fastening
solutions. Another product GeckskinTM [119] combines the gecko-
inspired elastomeric adhesives with stiff fabrics to yield synthetic
dry adhesive that can be repeatedly applied onto a variety of
surfaces without leaving any residue. In summary, for the texture
design, materials and process selection typical non-glue adhesive
products demand scalable and low-cost processes for materials
with flexibility, electro-mechanical multifunctionality and mold-
ability with disposable property.

4.2. Bio-inspired textures for controlled wettability

Bio-inspired wettable surfaces (superhydrophobic, superhy-
drophilic, superoleophobic, superomniphobic and their combina-
tions) have attracted significant attention due to their applicability
in a variety of commercial applications such as self-cleaning
coatings, water harvesting, antifouling, friction reduction, and
others. As noted previously, physical and/or chemical textures are
responsible for controlling the wettability of surfaces. This section
is intended to discuss scalable and/or low cost manufacturing
processes employed to replicate bio-inspired texture designs such
as from lotus leaf and S. molesta.

The hierarchical arrangement of features along with their sizes
plays a key role in fabricating lotus leaf inspired superhydrophobic
surfaces along with hydrophobic surface chemistry as a material
property of interest. Superhydrophobic structures have been
fabricated on a broad range of materials and with a combination
of manufacturing approaches as summarized in Fig. 32. A top-
down manufacturing approach is typically used to process
polymers, metals, alloys and semiconductor-based materials.
These approaches include lithography/etching methods as well
as laser surface texturing. Bottom-up manufacturing methods
include sol-gel processing, colloidal assembly, CVD, and others
addressing materials of interest such as metal oxide nanostruc-
tures, CNT, graphene, and more. A sequential manufacturing
approach is typically employed to either fabricate a hierarchical
texture (commonly achieved by bottom-up nanostructures grown
on top-down manufactured micro-scale features) or for processing
soft polymeric materials via molding/imprinting as well as for
hydrophobic surface functionalization of textured surfaces. Table 1
illustrates some of the commonly reported processes, materials
and texture designing methods. Due to space limitations, most
commonly observed representative examples are chosen to
highlight the use of different texturing methods to develop
superhydrophobic surfaces with the desired micro structure size,
distribution and hierarchy of features. More comprehensive
examples for superhydrophobic structures can be found in
following review articles and references therein
[6,27,288,94,143,153,167,193,244,272,284].

Apart from manipulating surface topography to achieve
superhydrophobic effect, laser textured surfaces were also studied
in vitro to selectively enhance cell adhesion for biomedical
applications [66].

As discussed in the previous section, S. molesta shows super-
hydrophobic behavior with highly stable underwater air retention

0. Soft gripper containing a central tubing in ‘pick and drop’ experiment with
rical steel balls [245]. (reproduced with permission from John Wiley And Sons).

9. Illustration of switchable gecko-inspired adhesive structures (a) the contact
e mushroom shape tips can be controlled by exposure to UV light [158]
inted with permission from AAAS); (b) pillar tips with anisotropic overhangs
change the contact area depending on the dragging direction from high
sion ‘off’ state on left to low adhesion ‘on’ state on right [269] (reprinted with
ission. Copyright 2016 American Chemical Society); and (c) wedge shaped
sive structures that can be activated by application of shear force; in off state
the tips of triangular wedge makes contact thus creating low adhesion while
illars bend to increase the contact area and adhesion when shear force is
ed [218] (© 2013 IEEE. Reprinted with permission).
31. Proposed use of flexible and bendable conductive dry adhesive patch
rmally attached to human body [155] (reprinted with permission. Copyright

 American Chemical Society).
Fig. 32. Manufacturing approaches for fabricating bio-inspired textures with
controlled wettability.

ase cite this article in press as: , et al. Bio-inspired textures for functional applications. CIRP Annals - Manufacturing Technology
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and can be potentially useful for applications such as drag
reduction. Air retaining superhydrophobic structures were real-
ized using vertically aligned carbon nanotubes (VACNT) grown by
CVD technique. The hydrophilic tips of CNT were due to presence of
carbonaceous nanostructure [207] or because of –OH groups on
regrown CNTs [11]. In another approach, polycarbonate nanofur
were hot pulled from sandblasted steel plates (Fig. 33(a)) to
fabricate air retaining hairy structures [150,225]. Egg beater
shaped hairy hydrophobic structures were also reported (Fig. 33
(b)) by using hydrophilic photoresist patterns developed using
direct 3-D laser lithography and two photon polymerization [258].

Alternative hydrophobic/hydrophilic domains inspired from the
desert beetle are also being researched for fog harvesting applica-
tions [297]. A chemical modification was reported to a super-
hydrophobic state using heptadecafluorodecyl-trimethoxysilane

applicability. Relevant product applications involving drag/fric
reduction, antifouling, and their combination with AR coatings
discussed in the following sections.

Bio-inspired superhydrophobic surfaces have inspired m
technologies with applications in self-cleaning paints (Lotus
[248], textiles [7] and biomedical field [240]. The silica-ba
water and oil repellent coating GreenShieldTM was developed
BigSky Technologies [120]. Superhydrophobic metallic structu
fabricated by laser surface texturing are being investigated un
the TresClean project [126]. Similar hydrophobic textured coati
have also been developed by ARLD [109] and Lotusleafcoati
[110]. Another company NBD Nano has developed anti-ic
superhydrophobic glass coatings as well as beetle-inspired 

harvesting coatings [112]. In summary, texture design, mater
and process selection for typical products with superhydropho
superhydrophilic, superoleophobic, superomniphobic and t
combination properties demand region selectivity, mas
scalablility and ultra low-cost processes for materials w
flexibility as well as stiffness, chemical affinity but corros
resistance and moldability with disposable property.

4.3. Bio-inspired textures for hydrodynamic and boundary
lubrication

To increase the efficiency of machines as well as manufac
ing processes, it is important to reduce energy losses. Frictio
losses are one of the primary causes of concern in the majorit
mechanical systems. It has been estimated that almost 30% of 

is utilized in overcoming frictional losses in vehicles such
passenger cars, buses and trucks [107,108]. Thus, develop
effective surface designs and dry as well as wet lubrica
strategies are critical in combating these challenges. Fig.
depicts three distinct stages of lubrication and the correspond
friction as a function of the lubricant parameters and opera
conditions. On the right extreme, in a hydrodynamic regime,
friction coefficient starts to rise because of the hydrodyna
drag of the lubricant even though the two surfaces are no
direct contact. The friction goes up in a boundary lubrica
regime (left extreme) because the two surfaces are in di
contact and the applied load is dissipated through the aspe
contact.

As described in Section 2, nature has developed mu
functional surfaces for friction management making use of spec
textures for species’ habitat environments. Examples span fr
marine animals such as sharks where hydrodynamic friction d
is manipulated via riblet structures -to- biological lubricant flu
such as those observed in the toes of tree frogs and lizards -to-
energy management under boundary conditions observed in
limbless locomotion of snakes [185]. This section is focused on
design and manufacturing processes for bio-inspired surfaces 

strategies to reduce frictional losses and is divided into two p
(1) textures for hydrodynamic drag reduction and (2) textures
boundary and dry lubrication.

Fig. 33. (a) Polymer nanofur fabricated by hot pulling [150] (reprinted with
permission. Copyright 2015 American Chemical Society); (b) egg-beater
morphology fabricated by laser lithography and 2-photon polymerization [258]
(reproduced with permission of ACS Publications).

Table 1
Manufacturing approaches for fabricating superhydrophobic textures.

Manufacturing method and
materials

Comments Ref.

Top down: laser surface
texturing of copper surface

Micron scale arrangement controlled
by the CAD model, submicron surface
morphology can be varied by
changing the scanning speeds

[187]

Top-down: wet etching of
copper substrate were
etched with FeCl3 + HCl
etchant with optional
oxidation using NH4OH
solution

Random micro-texture is obtained by
etching. The morphology and
distribution of features can be
controlled by varying etchant
concentration, etching time and
temperature and subsequent
oxidation

[82]

Bottom-up: spray coating and
curing expanded
polystyrene foam (EPF)/
camphor soot composite
films on glass substrate

Self-organized, random micro-
submicron sized structures are
obtained because of spray coating
followed by curing. The roughness
and morphology of features can be
controlled by changing the curing
temperature

[228]

Sequential: anodized
aluminum oxide mold was
used to imprint hierarchical
textures on polypropylene
films

Anodization of micropatterned Al-
coated mold. The submicron scale
feature size can be controlled by
changing anodization parameters
and/or subsequent H3PO4 etching
parameters

[105]

Sequential: Ti6Al4V substrate
was sand-blasted followed
by hydrothermal growth of
TiO2 nanowires

Micro-scale features can be
controlled by size of abrasive media
used during sand-blasting.
Submicron features can be controlled
by hydrothermal growth temperature
and time

[239]
Fig. 34. Stribeck curve illustrating the relationship between friction coefficient,
lubricant properties and operating conditions [164] (reproduced under the Creative
Commons Attribution 3.0 Generic license).
(FAS) followed by patterned UV exposure to fabricate star-shaped
superhydrophilic domains [12]. In similar approach, direct laser
writing was employed to create patterned domains on TiO2 surface
for water collection [266]. Using another method, steel needles were
punctured through hydrophobic polymer-silica nanocomposite to
create nucleation sites for droplet formation and growth [203].

4.2.1. Controlled wettable functional surfaces and related product
applications

Bio-inspired superhydrophobic/hydrophilic surfaces have in-
spired a variety of product applications because of their wide
Please cite this article in press as: , et al. Bio-inspired textures for functional applications. CIRP Annals - Manufacturing Technology
(2018), https://doi.org/10.1016/j.cirp.2018.05.001
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Ple
(2
. Surfaces for hydrodynamic drag reduction

.1. Manufacturing processes and approach. Shark skin is an
llent example of a multifunctional surface as it can be used as a
el for developing drag reduction schemes and low friction
ological applications) surfaces along with antifouling surfaces
iscussed in the next section. Hence, some of the manufacturing
esses discussed in this section will also overlap with
ufacturing approaches discussed in Section 4.4.
he pattern on skin of fast swimming sharks can be simplified

 a 2-D riblet type structures and can be produced using variety
p-down manufacturing processes as the features’ sizes are
cally of the order of micron scale. The size and distribution of
features can be effectively controlled during the material
oval processes either by controlling the movement of the tool
ng machining or by defining the pattern using lithographic
niques. A roller embossing process was utilized to fabricate
k-skin inspired micro-riblet pattern on soft polymeric
erials such as polyvinyl chloride (PVC) and polyethylene
phthalate (PET) [95]. A simplified micro-riblet pattern was first
ted on Ni roller mold using a Ultra-Violet Lithographie
anoformung Abformung (UV-LIGA) process and then applied
olymer films (Fig. 35(a)). In another attempt, a hierarchical
ure was fabricated on Ni, containing nanostructures on micro-
ts using laser interference lithography, nanoimprinting and
e-reverse-current electrochemical deposition [156]. Similarly,
of a wire EDM process was reported to fabricate a simplified
o-riblet pattern [214]. Micro-riblet structures fabricated on
pressor blades using grinding techniques were also investi-
d and optimized to improve geometrical accuracy of micro-
ures [67,68]. In another approach, bio-inspired shark skin
aining rigid denticles on flexible membrane substrate was
ized using 3-D printing. A micro-CT scanner was used to scan
skin of a Mako shark and a representative skin denticle was
ed and used to create a 3-D model. The denticle model was

 duplicated and arranged to form a denticle array to create a
l 3-D object, which was printed using a 3-D printer with
tiple nozzles to print both rigid and flexible regions as shown
g. 35(b) [273]. Apart from shark skin inspired geometries, the S.
sta inspired texture described in previous section is also being
stigated for development of drag reducing structures due to
tive pinning of water-air interface [15,131], which results in
ction of skin friction.

10% reduction in wall friction was reported for riblet structures
fabricated using grinding process on compressor blades [67]. Simi-
lar riblet structures also contributed to faster swimming speeds
and a reduction of swimming energy under kinematic tests
[273]. Shark skin fabricated by a bio-replication method (discussed
in Section 4.4) also showed an improvement in drag reduction
properties [190,192]. Apart from shark skin inspired textures, S.
molesta inspired nanofur also resulted in improved drag reduction
properties [150].

Drag reduction coatings can be utilized to reduce fuel consump-
tion in marine and air transport vehicles. A research project FAMOS
conducted by Lufthansa airways is experimenting to develop
sharkskin inspired coating on aircraft. The durability and efficiency
of the coatings has been successfully demonstrated during testing
and the coating is expected to be launched on commercial aircraft in
the near future [124]. Sharkskin has also inspired swimsuits that
enable faster speeds due to drag reduction and have been introduced
into the market by several corporations, for example Speedo
corporation under the brand name FASTSKIN [118].

4.3.2. Surfaces for boundary lubrication related friction manipulation
Surface texture has also been widely studied for developing

effective boundary lubrication strategies [75]. It is widely
recognized that texture aids lubrication via the following effects:
(1) decreasing the actual contact area; (2) serving as a reservoir for
supplying lubricant as well as for capturing wear debris; (3) aiding
the formation of lubricant film and aid the fluid flow through the
channels [37]. This section is focused specifically on bio-inspired
surfaces developed for tribological applications. It is also impor-
tant to note that the tribological processes and phenomena are
highly stochastic and thus the optimized design of surface texture
for improved tribological response is also very specific to the
nature of application, mating materials, lubricant properties and
intended application.

4.3.2.1. Manufacturing processes and approach. The size of surface
features and distribution of features along with their directionality
are key design components for developing bio-inspired surfaces for
friction and wear management as previously discussed. These
texture attributes together with material properties such as
elasticity and hardness govern the tribological response. Top-down
manufacturing processes such as lithography and etching as well as
laser surface texturing (LST) are commonly used to fabricate bio-
inspired textured surfaces asthe sizeanddistributionof micron scale
features can be easily replicated with precision. Polymeric samples
can be prepared by using molding technique from micropatterned
molds that are typically created using lithography and etching
methods. Similar bio-inspired texture patterns fabricated using
micro-milling setup on hardened tool steel were also reported and
tested under dry and lubricated conditions [255].

A snake-skin inspired texture as shown in Fig. 36(a) was
fabricated on 100Cr6 bearing steel pins by using a Q-switched
ytterbium fiber laser [93]. Directional features were created in
epoxy resin via a two-step molding process using negative
polyvinylsiloxane (PVS) molds from biological samples
[18,92]. TiO2 masks were utilized to fabricate textured Ti6Al4V

35. (a) (top) Nickel mold with micro-riblet pattern fabricated by UV-LIGA
ss and (bottom) image of PET film and with shark-skin-inspired micro-riblets
reproduced by permission of the Institution of Engineering & Technology); (b)
rinted rigid denticles on flexible substrate membrane and single synthetic
cle of 1.5 mm length on a human finger (inset) [273] (reproduced with
ission from Journal of Experimental Biology).
Fig. 36. A snake-skin inspired surface textures fabricated by (a) laser surface
texturing of 100Cr6 steel [93] (© IOP Publishing. Reproduced with permission. All
rights reserved); (b) 2-step molding with PVS negative molds [18] (reproduced
under the Creative Commons Attribution 2.0 Generic license).
.2. Drag reducing functional surfaces and product applications:.
micro-riblet patterns discussed above were tested for their

 reduction properties under various conditions. The metallic
archical textures fabricated using laser interference lithogra-
were tested in a turbulent flow regime and showed a
imum drag reduction of 36% compared to an untextured
ace [156]. Similarly, the 3-D printed riblets have demonstrated
t an 8.7% drag reduction in low speed conditions [273]. Up to
ase cite this article in press as: , et al. Bio-inspired textures for functional applications. CIRP Annals - Manufacturing Technology
018), https://doi.org/10.1016/j.cirp.2018.05.001
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alloy pins employed as a part of the bio-compatible Ti6Al4V-
UHMWPE pair used as artificial hip joints [61].

Bio-inspired textures for friction management in engineered
systems have also been inspired by the toe pads of tree frogs,
crickets and newts as well as shark skin and lotus leaves as
depicted in Fig. 37. Lithographically patterned masters were used
to fabricate hexagonal pattern on curable polymers such as PDMS
[130,176] and PVS [259,263]. A lotus leaf like texture was created
on cBN-TiN composite coating by using an electrostatic spray
coating (ESC) followed by chemical vapor infiltration (CVI) [278]
and overcoating of molybdenum di-sulphide (MoS2).

4.3.2.2. Lubrication management control functional surfaces and
product applications. Textures for friction management can be
used for both reducing friction as well as increasing friction
depending on the intended use and application environment. Lotus
leaf inspired cBN-TiN coatings have shown major friction reduction
under dry conditions when tested with a MoS2 solid lubricant
embedded in textured micro-reservoirs [278]. Similarly, the snake-
skin inspired surface textures described above showed a reduction
in friction as compared to untextured control samples under dry
conditions [17,93]. However, under wet lubricated conditions with
additive free mineral oil, friction was higher than with smooth
surface [93]. Similar observations were made for hexagonally
patterned substrates inspired from tree frogs where hexagonal
textured PVS pads were applied on razor blades and their
performance was tested under shaving foam [259]. The hexagonal
patterned structure allows higher contact area between the razor
and stretchable skin. Also, at the same time, the micro-channels
among the hexagonal pads allow the effective drainage of the fluid
avoiding any hydrodynamic gliding. As a net result, researchers
have enhanced the efficiency of the razors through this bio-
inspired engineering [259]. LST is being widely investigated as a
texturing strategy to reduce friction in many industrial and
biomedical engineering products such as piston rings, engine
liners, hip joints, and others. However, the majority of the research
is based on curiosity driven approaches involving specific material
(s) and lubricant(s), a process unlike the one that natural
organisms have used to develop superior surface structures via
evolution that are environment specific. Scale like features found
on snake skin and shark skin are directional and dynamic as the
orientation of the scales can be manipulated by the active motion
of the snakes and sharks. This result can be utilized to develop
adaptive locomotion strategies, a future direction for artificial
engineered systems. In summary, the texture design, materials and
process selection for typical products with adaptive friction and
wear properties demand scalablility and occasionally ultra low-
cost processes for materials typically with abrasion resistance from

natives to avoid biofouling [208]. Surface topographies inspired f
underwater species such as sharks and seashells [195] provid
promising strategy to develop environmentally friendly antifou
solutions and will be discussed in this section.

4.4.1. Manufacturing processes and approach:
Key design considerations for fabrication of antifouling (

structures have been discussed in previous sections. Especially
per Section 4.3.1.1, shark skin inspired riblet textures for antifou
applications have been fabricated via several top- down machin
techniques such as the lithographic techniques used for fabrica
the Sharklet AFTM micropattern [236,235]. However, th
approaches are mainly suitable for creating simplified 2-D sh
skin like features and fail to capture the intricate 3-D detail of sh
skin topography [191]. Hence, direct bio-replication methods
being investigated to fabricate synthetic shark-skin topographie
typical fabrication approach is summarized in Fig. 38.

Bio-replication methods to fabricate AF structures use cura
polymers such as PDMS [55,220] or silicone rubber [190]
replicate shark skin pattern and form a negative mold. I
important to clean and pre-treat the shark skin before formin
mold in order to remove mucus, moisture and any contaminant
the skin surface, which could lead to defects in the mold [55,190
positive replica of the shark skin can then be obtained from
negative mold using micro-imprinting methods. Curable 

polymers and resins are typically used to fabricate positive repl
from the PDMS molds either by imprinting or molding techniq
A similar strategy has also been adapted to fabricate AF structu
inspired from rice leaves, white crab and Mollusk shells [13,36,
Fig. 39 shows AF replicas prepared by bio-replication meth
using direct bio- templating techniques.

It is also important to manufacture bio-replicated and 

inspired riblet AF patterns on a large scale for their use in ta
industrial applications. Thus, different manufacturing strate
are being explored and promising results have been reported
discussed below. A roller-based continuous fabrication appro
has been adopted using a bio-replicated using AW-01 epoxy r
and silicone rubber [290]. The biological shark skin is first modi
using sputtering and a lithography technique to make it suita
for pasting on a roll. The modified shark skin roller can then
used to create a continuous negative template on an AW-01 re
which was used to cast silicone rubber into positive shark s
replica [290].

Fig. 37. (a) Hexagonal textures in PDMS fabricated from lithographically etched Si-
masters [176] (reprinted with permission. Copyright 2015 American Vacuum
Society); (b) lotus-leaf like cBN-TiN coating fabricated by ESC-CVI [278] (reprinted
with permission from Elsevier); (c) hexagonal textures in PVS from a Si-master
[259] (reproduced under the Creative Commons Attribution 4.0 Generic license).

Fig. 38. Processing flow chart for manufacturing AF surface structures or coat
Fig. 39. (a) Replicated shark-skin coating formed on UV-curable resin polyurethane
diacrylate (PUC) using PDMS negative mold using a UV transparent 3-wheel
embossing belt setup [55] (reprinted with permission from Elsevier); (b) liquid
urethane polymer replica of rice leaf texture formed using a two-step soft
lithography molding using a silicone rubber mold [35] (reproduced with permission
of The Royal Society of Chemistry).
operating environment and corrosion resistance.

4.4. Bio-inspired textures for antifouling (AF)

Biofouling can be defined as the undesirable accumulation of
biological micro- and macro- scale organisms [32,198] and it poses a
severe problem to water submerged vehicles and equipment such as
ships and submarines as well as for medical and surgical devices
[195]. The use of chemical agents and paints to reduce biofouling is
discouraged because of their potential harm to the environment.
Hence, it is necessary to develop environmentally friendly alter-
Please cite this article in press as: , et al. Bio-inspired textures for functional applications. CIRP Annals - Manufacturing Technology
(2018), https://doi.org/10.1016/j.cirp.2018.05.001
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. Anti-fouling functional surfaces and related applications
his section is focused on discussion of antifouling strategies
ired from sharkskin and other examples, unlike the previous
ion which highlighted the drag reduction and tribological
tionality for engineered applications.
he bio-replicated surface textures described above were tested
heir antifouling response and showed enhanced performance
]. Fig. 40 shows a comparison of smooth PDMS and micro-
ured sharkskin replica obtained by soaking samples for 70 days
e Pearl river, China and subsequent removal and washing. The
kskin replica surface shows a superior antifouling response
re the fouling algae species are loosely attached and get
hed away easily as seen in image [220]. Similarly, another
p tested the effect of surface morphology on the fouling
onse of algae using a UV-curable resin PUC [55]. It was noted

 sharkskin surface morphology shows remarkable anti-fouling
erties as compared to smooth and micro-grooved texture
ed on the same material. White crab replica texture also
ed effective anti-fouling response as compared to smooth

ples when tested using settlement assays of Closterium and
icula algae [56]. Anti-fouling response of shell replica molds

 studied using different resin materials and it was found that
 resin better replicates the shell surface topography and better
ts the attachment of fouling organisms [13]. Thus, material
erties, physical and chemical, in terms of replicating the
ern on a biological surface ultimately dictates the desired
onse.

part from shark skin replicas, shark skin inspired micro
graphies have been widely studied for their antifouling
erties. Most notably, coatings developed by Sharklet technol-
s have been used for a variety of submarine and medical
ications [125]. The patterned coating was applied on a variety
edical instruments such as stethoscope covers (StethoskinTM)
showed resistance to bacterial growth [113]. Another compa-
Micanti [115] has developed textured coatings (Thorn-D1)
e from nylon fibers that can be applied on ships to enhance
fouling as well as fuel efficiency [41]. Anti-fouling is relatively
erstudied for engineering applications and has significant real-
ld opportunities. Also, regenerative textures are essential for
application as textures are likely to dull due to wear from
ating environment. In summary, the texture design, materials
process selection for typical products with tailored AF
erties demand massive scalablility and ultra low-cost
esses for materials typically with abrasion resistance from

several key consumer and strategic applications such as displays,
security coding, clothing, cosmetics and more.

4.5.1. Manufacturing processes and approach:
Structural colors can be obtained by creating photonic

structures with an alternating refractive index in a 1-D or 2-D
or 3-D network. As evident from Fig. 20, the complexity of photonic
structures increases from 1-D periodic structures �to- 3-D
periodic structures. Accordingly, the manufacturing approaches
also vary depending on the complexity of the structure and end
applications. This section summarizes manufacturing approaches
and some of the commonly reported fabrication techniques with
suitable examples of 1-D, 2-D and 3-D periodic structures. 1-D and
2-D structures can typically be realized using top-down
manufacturing processes whereas bottom-up and sequential
manufacturing approaches are mainly used for fabricating desired
2-D and 3-D photonic structures. Patterning (that controls size and
periodicity of features) can either be performed using lithographic
tools or by the thermodynamic self-assembly of colloidal particles.
Like antireflective structures (Section 4.6), the size of features
should be of the order of the wavelength of incident light. Hence
lithography/etching along with self-assembled colloidal particles
are employed as the size and periodicity of features can be
effectively controlled, as required. These approaches are summa-
rized in Fig. 41.

Morpho butterfly inspired lamellar structures are fabricated
using lithography. A research effort reported alternate layers of
PMMA/lift of resist (LOR) to fabricate lamellar structures with
branches [296,295]. A multilayer assembly was patterned using e-
beam exposure. An alternating development/dissolution process
led to the formation of branch-like structures by creating
undercuts in the LOR layer. The length of the undercut can be
controlled by varying the etching time as shown in Fig. 42(c). In
another approach, the branch like structure was obtained by using
laser interference lithography with dual beam exposure with the
help of a reflective layer deposited under the photoresist layer
[242]. 1-D grating structure was fabricated in amorphous Si with a
nanoimprint lithography process by using PMMA resist and a SiO2

mold [172]. By changing the widths of the grating structures,
assorted colors were realized as seen in Fig. 42(a) [172]. In another
approach, 1-D gratings were fabricated on Cu substrates via laser
ablation technique. A picosecond laser with a 1064 nm wavelength
[188] as well as a femtosecond Ti:Sapphire laser with a 800 nm

Fig. 41. Processing flow chart for manufacturing bio-inspired structural colors.

0. Comparison of SEM images of fouling tests performed on smooth PDMS and
 skin microtextured PDMS with algal cells by soaking in a river after removal
washing [220] (reproduced under the Creative Commons Attribution
eneric license).
Fig. 42. Structural color fabrication by top down approaches: 1D patterned
amorphous silicon (a-Si) gratings of 50 nm width and 220 nm period for color filter
application [172] (reproduced with permission from John Wiley And Sons); (b) TiO2

nano-bowl arrays prepared by anodization [260] (reprinted with permission.
Copyright 2016 American Chemical Society); (c) Butterfly type architectures formed
using PMMA/LOR layers, undercut lengths in LOR layer as function of etching time
[296] (reproduced with permission of The Royal Society of Chemistry).
ating environment and corrosion resistance.

Bio-inspired textures for structural colors (photonics)

any natural systems such as butterfly wing and peacock
her show vivid and beautiful structural colors. The observed
rs are due to the selective absorption of certain wavelength(s)
cident light interacts with a physically textured (structured)
erial with a varying refractive index, a key material property for
gn consideration. Since the color originates from only the
ical effects and not from the pigments, structural colors have
ase cite this article in press as: , et al. Bio-inspired textures for functional applications. CIRP Annals - Manufacturing Technology
018), https://doi.org/10.1016/j.cirp.2018.05.001
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wavelength [183] were used to fabricate periodic surface
structures. 2-D periodic structures have also been fabricated using
top-down manufacturing processes. A silver-silica-silver (MIM)
meta-surface containing a triangular 2-D lattice of periodic holes
on top of a silver layer was fabricated using a one-step focused ion
beam milling [58]. Peacock feather like photonic structures were
prepared by using anodization and etching with TiO2 [260]. The
anodization potential controls the size of nano-bowl/pore (Fig. 42
(b)) and ultimately controls the resultant color.

Colloidal assembly of nanoparticles offers an attractive alternate
strategy to fabricate photonic structures (Fig. 43), especially for
making3-Dphotonicstructures. Inadditiontoprovidingflexibility in
the manufacturing of a variety of structures, such solution-based
processing also allows for photonic structure coatings for potential
textile applications and inkjet printing. The arrangement of particles
and thus the resultant color can be controlled by controlling process
variables such as particle size, concentration and curing time.
Structural colors were realized in colloidal crystal (CC) thin films by
controlling the size of silica nanoparticles (SiNP) during synthesis
[87]. The films were formed by a gravity sedimented self-assembly of
nanoparticles and drying from a colloidal suspension (Fig. 43(b)).
Inkjet printing using CdS nanosphere ink was used to print structural
colored films on paper (Fig. 43(a)). CdS nanosphere size was
controlled by changing the concentration of the precursor during
synthesis [279]. Use of sacrificial CC template of SiNP is discussed to
realize structurally colored hydrogels [84]. A pregel solution of
methacrylated gelatin (GelMA) was infiltrated into the nanopores of
a dried self-assembled SiNP network and then polymerized. The
SiNPs were then etched using HF acid solution resulting in inverse
opal structured hydrogels (Fig. 43(c)) [84]. A combinatorial approach
involving quasi-ordered ZnO nanostructures was demonstrated.
[154]. The resultant color was controlled by adjusting the growth
times for ZnO on a seed layer. The seed layer can also be masked and
patterned for selective growth and etching to create the ability to
control the domains of desired colors [154].

4.5.2. Structural colored functional surfaces and product applications
Bio-inspired structural colors have major applications including

filters, displays, cosmetics and security. They can also be used for
aesthetic purposes such as painting or for low-cost approaches for
replicating images. Films and coatings can also be applied for
creating colored fabrics for dye-free textiles. This subsection gives
an overview and outlook of structural color product applications.

1-D gratings (Fig. 42(a)) and 2-D meta-surfaces can be used as
reflective [172,241] or subtractive [213] color filters. The color can be
tunedbyadjustingthesizeandperiodof thesurfacefeatures.2-Dcolor

any deterioration even after 10 washing cycles [291]. P(St-MM
AA) was also used to obtain dye-free flexible colloidal fibers us
electrospinning [289].

Structural colors can also be used for anti-counterfei
applications. Monodispersed SiNP [206] and CdS [279] part
(Fig. 43(a)) films were applied using inkjet printing those are l
incident angle and illumination sensitive. These can be used 

tamper-proof seal as illustrated in Fig. 44(c). Nanotech secu
corp. [117] have developed KolourOptik1 technology with e-be
lithography based molds that can be used in a roll-to-roll or di
stamping method for fabricating anti-counterfeit banknotes 

tax stamps. Morphotonix have also developed injection mold
based structural color templates that can be used to fabric
custom-made secure plastic seals [116]. Similarly, holograp
structures manufactured by embossing techniques on polym
and sheet metal substrates have also been investigated for a
counterfeiting applications [21,221].

In another application, structurally colored hydrogels w
inverse opal morphology were used to create colored contact len
as seen in Fig. 44(b) [281]. A team reported use of a 3-D prin
dendritic block copolymer (BCP), where the phase separation of 

at the nozzle of 3-D printer due to localized heating creates diffe
surface morphology resulting in structural colors [39]. The color
be tuned by changing the molecular weight (Mw) of BCP. Hol
tubes fabricated from such 3-D printed textured architectures ca
used as light guides. Structural colors are also finding their way 

the cosmetics consumer market as a potential solution to cre
pigment free makeup [114]. In realizing structural colors and
coatings by design one must consider combination of optic
sensitive and active or passive soft materials along with parti
with or without texture patterns. Spatial precision and redunda
have been observed to be key for achieving application spe
texture design(s). Manufacturing processes desired for most of th
applications demand massive scalability along with environme
sustainability for disposal of applied materials.

4.6. Bio-inspired textures for anti-reflection (AR)

AR structures and coatings are important for a wide variet
photovoltaic and optoelectronic applications such as solar c
lasers, flat panel and flexible displays and light emitting devi
Multilayer films of alternate high-low refractive index and s
wavelength structures (SWS) are the two primarily used strategie
achieve AR structures. Bio-inspired, moth-eye mimicking SWS

Fig. 44. Applications for structural colors: (a) colored fabrics obtained by s
coating P(St-MMA-AA) nanoparticles of sizes 217 nm [291] (reproduced unde
Creative Commons Attribution 3.0 Generic license); (b) colored hydrogel con
lenses fabricated from inverse opal scaffolds created with SiO2 nanoparticles [
(reproduced with permission from John Wiley And Sons); (c) anti-counterfe
applications of monolayered silica films fabricated by inkjet printing sho
covert-overt transformation of the printed image under bright illumination [
(reproduced under the Creative Commons Attribution 4.0 Generic license).

Fig. 43. Structural color fabrication by bottom up approaches: (a) SEM image of
structural colored films formed by inkjet printing CdS spheres [279] (reprinted with
permission. Copyright 2017 American Chemical Society); (b) SEM image of colloidal
crystal films formed by gravity sedimentation and self-assembly of silica
nanoparticles [87] (reprinted with permission from Elsevier); (c) GelMA
hydrogels prepared from inverse opal scaffold (right) and resultant structural
colored hydrogels (inset) [84] (reprinted with permission from PNAS).
e of
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filters have also been developed using plasmonic metal-dielectric
structures with silver [241,251] and aluminum [72] contacts [139].

Photonic crystal structures formed with colloidal crystals can
be used to create pigment-free fabrics. Use of self-assembled SiNP
(Fig. 43(b)) was demonstrated to successfully coat cotton and nylon
fabrics with different colors [88,89]. In another approach, a
mixture of colloidal poly-styrene-methyl methacrylate – acrylic
acid (P(St-MMA-AA)) particles, carbon black and polyacrylate was
demonstrated to develop a spray coating technique for coloring
cotton fabrics. The coated fibers show a range of colors (Fig. 44(a))
depending on the size of microspheres and the color did not show
Please cite this article in press as: , et al. Bio-inspired textures for
(2018), https://doi.org/10.1016/j.cirp.2018.05.001
promising when compared with the multi-layer stacks becaus
their broadband application window (multi-layer stacks are deig
to have AR property in a limited range of wavelengths) and supe
wide-angle response [43,47,179]. These types of AR structures 

either be created on the substrate or be applied in the form 

textured coating. Some of the common manufacturing processes
applications for bio-inspired AR textures are discussed below.

4.6.1. Manufacturing processes and approach:
The critical design aspects for effective moth-eye insp

structures, as discussed previously, are guided by size (s
 functional applications. CIRP Annals - Manufacturing Technology
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on), shape and the periodic arrangement of nano-nipples.
 top-down and sequential manufacturing approaches can be
zed to fabricate SWS. Top-down manufacturing approaches
isting of patterning, lithography and etching are commonly
zed as they allow process flexibility in terms of materials and
process control necessary to fabricate precise feature sizes and
eve the desired periodicity. Additionally, this approach aligns

 with a variety of materials and respective target applications
 as solar cells and optoelectronics. Apart from achieving the
ired pattern via lithography, a variety of self-assembly
niques can also be utilized to create the periodic pattern that
be followed by selective material removal to achieve SWS.
ther sequential manufacturing approach includes the use of
down techniques to create SWS molds that can be used to
ess a variety of polymeric materials. Fig. 45 summarizes the
e approaches and highlights the typical process methodology
bricate AR structures and coatings.
elf-assembled nanoparticles have been used as etching masks to
te SWS structureson avarietyof substrate materials. Polystyrene

 nanoparticles are used to create pillars and cones or different
hts on transparent substrates such as glass substrate [140] and
tz [141] as well as on SiNxfilm [287]. Si-masters were fabricated
g a PS monolayer and Reactive Ion Etching (RIE) with a SF6, C4H8

O2 gas mixture [104]. The height and shape of pillars can be
rolled by controlling the size of the nanoparticles and etching
. Similarly, colloidal silica particle assemblies have also been
zed as etching masks to create SWS on Si [90,104,249] and CdTe
 substrates. Plasma etching using CH4/H2/Ar was used to obtain

 nanopillars shown in Fig. 46(b). After the colloidal self-
mbly of particles in a hexagonal array, an additional etching step

 CF4/Ar isotropic RIE can be employed to reduce the size of
particles mask to manipulate the size and periodicity of etched

ures.

A moth-eye pattern fabricated on Si wafers can be used as a
master template to create a SWS on optically transparent
polymeric materials and resins (Fig. 46(a)) by imprinting and
pattern transfer techniques. Si-masters with moth-eye architec-
tures can also be fabricated onto Si wafers using conventional
photolithography [148] or laser interference lithography [174] and
etching. Similarly, a team has created PDMS stamps by casting
PDMS onto self-assembled PS spheres that can be used for
nanoimprint lithography and patterning [165].

Self-assembled block copolymer (BCP) domains can also be
used as templates to fabricate AR structures. The domain size and
distribution can be easily controlled by changing the molecular
weights of individual polymer blocks [222]. BCP domains are then
selectively infused with Au nanoparticles [42,71], iron oxide [202]
or alumina [222] to create metallic masks for subsequent etching.

In another approach, porous alumina templates were used to
fabricate moth eye structures [59,175,261,293]. Aluminum sub-
strate was first anodically oxidized to obtain porous alumina
followed by multiple etching cycles using phosphoric acid
solutions to widen the pores [261]. The size, shape and distribution
of pores can be controlled by controlling the anodizing and etching
times. These porous alumina molds can then be used to transfer
the moth eye pattern onto soft polymeric materials by imprinting.
Fig. 46(c) shows PMMA plates imprinted from a porous alumina
mold with feature size 200 nm height and period [175]. The
alumina mold can also be used as a patterning roll in a roll-to-roll
imprinting on transparent polymers such as PET for large scale
production [59,261].

4.6.2. Anti-reflection functional surfaces and product applications
AR coatings have been studied for solar cell applications to

enhance the sunlight collection due to enhanced transmittance
and thus increase the efficiency of solar cells [53]. Increased power
conversion efficiencies using AR structures have been reported in a
variety of solar cell structures including organic solar cells [57,174],
crystalline Si solar cells [222], moth eye textured TiO2/perovskite
solar cells [148], dye sensitized solar cells (DSSC) [104] and triple
junction InGaP/InGaAs/Ge solar cells [287]. Furthermore, some of
the AR coatings, owing to their surface roughness, also show a self-
cleaning effect, which is beneficial for keeping the surface of solar
cells clean [104,174]. AR structures fabricated using the techniques
mentioned above are either directly incorporated into the device
architecture or applied on the transparent electrode or protective
encapsulation.

A liquid silica solgel-based coating fabricated from a PDMS
stamp using a single step nanoimprinting process was reported.
This method is suitable for large area applications such as solar
panels and is scalable to a roll-to-roll process [262]. A 2.8% increase
in power output from a c-Si solar cell module was achieved using
the above AR coating. This coating was also successfully used as an
anti-glare film for smartphone screens resulting in improved
readability.

AR coatings also have wide range of potential applications in
displays and photography to reduce glare. A team of researchers
fabricated PMMA plates with moth eye structures using alumina
template and reported their potential use (9% increase in
transmittance) in optical diffusers to enhance the extraction
efficiency of LED light [175]. Similarly, moth eye structures were
imprinted from perfluoropolyether (PFPE) molds onto ZnO or

5. Processing flow chart for manufacturing AR surface structures or coatings.
6. (a) (top) Negative perfluoropolyether (PFPE) mold obtained by stamping on
master (bottom) oblique views of moth eye structure fabricated on FTO glass

 NAO 63 resin pressed onto PFPE mold [104] (reproduced with permission
 John Wiley And Sons); (b) CdTe nanopillars formed by plasma etching using
nanoparticles as etching masks with (bottom) and without (top) mask size
tion [52] (reprinted with permission. Copyright 2017 American Vacuum
ty); (c) top view of porous nanopores in alumina fabricated using anodizing
et etching and oblique view of imprinted PMMA plate [175] (reproduced with
ission from John Wiley And Sons).

ase cite this article in press as: , et al. Bio-inspired textures for
018), https://doi.org/10.1016/j.cirp.2018.05.001
PEDOT:PSS buffer layers in Organic Light Emitting Device (OLED)
structures as well as on the back side of Indium Tin Oxide (ITO)
electrode, showing an enhancement in the external quantum
efficiency (EQE) of the OLEDs [299]. AR coatings have also been
used in fiber optics laser systems to reduce damage due to high-
energy lasers. High transmittance reaching the theoretical maxi-
mum limit was achieved using moth eye structures fabricated on
one side of a Nd:YAG single crystal [46]. Another study reported
less than 0.2% total optical loss in the 500 nm–2500 nm range
using AR structures formed on fused silica substrates for potential
applications for high power laser systems [71].
 functional applications. CIRP Annals - Manufacturing Technology
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SWS coatings and films can also be employed in readers/display
applications to reduce glare and improve readability. A flexible
polyethylene terephthalate (PET)/triacetyl cellulose (TAC) AR film
was reported which can be used for flexible display applications
[253]. Moth-eye films are also incorporated in several commercial
display products such as TFT touchscreen displays developed by
AndersDX [122] as well as in Samsung’s ultra-black technology TV
screens [121]. A plasma etching process developed by the
Fraunhofer Institute for Applied Optics and Precision Engineering
(AR-plas1) was used to create AR lenses by Jenoptik [123].

5. Summary and future directions

In conclusion, surface textures including their design architec-
tures, materials and functionalities offer an important mechanism as
a tool for realizing the next generation of functional products across
multiple industrial sectors. The diverse textures discovered in
biological organisms offer a well-established platform for engineer-
ing functional surfaces using novel materials and natural strategies
involving combination of features- shapes, sizes, hierarchical
organization length scales, aspect ratios, isotropy/anisotropy, region
selectivity and many more of basic building blocks (features). These
textures are manufacturable in production factories in 1-D, 2-D and
3-D features on polymers, metals, semiconductors, ceramics and
composites using established industrial production processes to
achieve reliability, reproducibility and repeatability in the
manufacturing of millions of consumer products. As discussed
above, measurement techniques and procedures are essential to
analyze complex textures from nature as well as for qualitycontrol in
production. Table 2 summarizes the natural examples, relevant
texture components, the manufacturing processes and product
applications discussed above.

The field of bio-inspired texturing, and in general, the field of
bio-inspired systems is at the nascent stage. Today, the field is
driven largely by curiosity rather than “production-by-design.”

There is a vast directory of textures in nature. Selection of suita
application specific texture(s) need not only scientific but crit
engineering considerations, such as understanding degrada
modes of textures, when making decisions for what texture
select and how to select. Further, existing materials are limite
their ability to regenerate (self-healing) allowing adaptive con
when reacting to their operating environments. Nature 

mastered this talent of synthesizing self-healing material surfa
regenerative material surfaces and sub-surfaces, sustainable 

degradability, and more. Nature demonstrates extraordin
ability to effectively converge various technologies includ
micro and submicron technologies, top-down and bottom
processing like 3-D printing and etching, massive data dri
adaptive and distributed intelligence and more for realiz
multifunctional surfaces and systems specific to the spec
natural habitat as a result of continuous combat and survival, o
a long period of time. Though, unlike nature, synthetic enginee
is limited in the use of redundancy and forgiveness when allow
high fault tolerance and reliability. The future of bio-inspi
science and engineering is assembling in the direction
nature/biology- driven designs, materials, processes and 

tems as an onset of a new era of “convergence” or “biolizati
or also called “biogicalization”. The goal will be to enha
human performance and oneness with the ecosystem.
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Table 2
Highlights of key examples of biological texture components, functions and manufacturing of bio-inspired products.

Examples in nature Functionality Texture design attributes Manufacturing processes Product applications

Common Differentiating

Hairy attachment
pads on the feet
of gecko, flies,
beetle, spiders

Dry adhesion Size and
distribution of
features

Aspect ratio,
hierarchy,
orientation

Bottom up: chemical vapor deposition
(CVD)

Medical adhesives, reusable adhesiv
tapes, robotic pads, space grippers

Sequential: top down manufacturing of
mold followed by casting/imprinting

Lotus leaf, rice leaf,
rose petals.
Water strider
legs, butterfly
wings

Super-
hydrophobicity

Size and
distribution of
features

Orientation,
hierarchy

Top down: lithography/etching, laser
surface texturing

Self-cleaning paints, water resistant
coatings/fabrics, glass, surgical
instruments, anti-corrosive coatingsBottom up: colloidal self-assembly and

coating techniques, CVD
Sequential: top down process followed
by imprinting or bottom up growth

Desert beetle,
Salvinia molesta

Controlled
wettability

Size and
distribution of
features

Periodic variation
of surface
chemistry

Top down: laser lithography, laser
surface treatment

Fog/water harvesting

Sequential: top down manufacturing of
mold followed by hot pulling

Butterfly wings,
peacock feathers,
Mollusk shells,
opal

Structural
coloration

Size and
distribution of
features

Periodicity Top down: Lithography/etching,
anodization,

Displays, pigment-free colors for
paints, textiles and makeup, securit
color filtersBottom up: colloidal self-assembly and

coating techniques

Moth eyes, cicada
wings, lycaenid

Anti-reflectivity Size and
distribution of

Shape, aspect ratio
(height)

Top down: Lithography/etching Solar cell packaging, displays, laser
guides, photographic and optical lenSequential: Self-assembly followed by
butterfly features etching

Snake/fish scales,
Salvinia molesta,
tree frog. cricket
leg attachment
pads

Drag and friction
management

Size and
distribution of
features

Orientation Top down: Laser surface texturing Drag reducing coatings/paints for
submarines as well as planes,
swimsuits, wet and dry lubrication
strategies for gears, valves, bio-
implants

Bottom up: Direct bio-replication,
Sequential: Top-down patterning
followed by imprinting/casting

Shark skin, mollusc
shells, white crab,
lotus and rice leaf

Anti-fouling Size and
distribution of
features

Shape Bottom up: Direct bio-replication Anti-fouling paints/coatings, anti-
bacterial coatings for medical and
surgical use

Sequential: Top-down patterning
followed by imprinting/casting
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