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Abstract 

Microbial networks are an increasingly popular tool to investigate microbial community structure, as 

they integrate multiple types of information and may represent systems-level behaviour. Interpreting 

these networks is not straightforward, and the biological implications of network properties are 

unclear. Analysis of microbial networks allows researchers to predict hub species and species 

interactions. Additionally, such analyses can help identify alternative community states and niches. 

Here, we review factors that can result in spurious predictions and address emergent properties that 

may be meaningful in the context of the microbiome. We also give an overview of studies that 

analyse microbial networks to identify new hypotheses. Moreover, we show in a simulation how 

network properties are affected by tool choice and environmental factors. For example, hub species 

are not consistent across tools, and environmental heterogeneity induces modularity. We highlight 

the need for robust microbial network inference and suggest strategies to infer networks more 

reliably.   

Introduction 
Engineered plant and soil microbiomes are likely to provide substantial improvements in 

yields in the near future (Busby et al. 2017), while the modification or transfer of animal 

microbiomes has already been shown to confer resistance to or even cure infections (Van Nood et al. 

2013; Buffie et al. 2015). The rational design of such microbiome modifications requires investigators 

to understand how microbes affect their environment, how they affect each other, and to what 

extent their dynamics are shaped by stochastic events. However, this mechanistic understanding is 

lacking in most cases.  

As a result, researchers often search for bacteria that differ in abundance when comparing 

healthy to diseased ecosystems, which are then targeted as candidates for new therapeutics. Yet, 

inconsistent performance of microbial therapeutics affects a range of fields, from clinical 

microbiology to plant protective agents. For example, studies on fecal transplants have shown that 

not all transplanted species become established in every recipient (Li et al. 2016; Paramsothy et al. 

2017). Plant scientists face a similar conundrum, as field performance is often variable and less 

effective than demonstrated in the laboratory environment (O’Callaghan 2016).  
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This unpredictability in clinical and field trials may be due to our poor understanding of 

microbiomes. The mechanisms behind eubiosis and dysbiosis are not fully understood. Several 

microbiomes have been shown to display resilience and return to their original state after a 

perturbation (Dethlefsen and Relman 2011). However, some antibiotics treatments and dietary 

interventions alter the microbiome permanently (Xiao et al. 2014; Mahana et al. 2016). In some 

cases, the phylogenetic composition changes after a perturbation, while the functional composition 

remains the same (Moya and Ferrer 2016). Moreover, dysbiotic microbiomes are often more variable 

than healthy ones, a phenomenon called the “Anna Karenina principle” after the opening sentence of 

Tolstoy’s famous novel (Holmes, Harris and Quince 2012; Zaneveld, McMinds and Thurber 2017). 

While our understanding of dysbiosis is improving, development of novel therapies would benefit 

from a more detailed map of its causes and effects (Olesen and Alm 2016).  

Solving the discrepancy between the laboratory and in vivo settings will require a better 

understanding of all aspects of microbial communities. With information from ecology, 

metagenomics and metabolomics to consider, networks provide a flexible analytical tool. Biological 

networks are useful visualizations of microbiome data, as they can handle both their scale and 

diversity. In addition to data visualization, a major strength of networks is their ability to represent 

emergent properties. Emergent properties are those that would not be observed if parts of the 

network are investigated on their own (Aderem 2005). These properties may help explain the 

behaviour of complex systems, such as their apparent robustness or modularity (Aderem 2005).  

In systems biology, investigators have already recognized the value of networks in multiple 

applications. For example, Emig et al. (2013) developed a network approach that combines gene 

expression data with drug target data. As a result, they were able to identify multiple new drug 

targets. In plant science, gene regulatory networks have been used to identify new regulators or 

functional modules (Taylor-Teeples et al. 2015). As the popularity of Cytoscape demonstrates, 

network approaches have become a key visualization technique in a range of biological sciences 

(Shannon et al. 2003).  

For the microbiome, networks may help identify new targets for probiotic or prebiotic 

treatments, or identify factors that are likely to alter it. Advancing our understanding of the 

microbiome requires an analytical approach that preserves a representation of complex behaviour. 

Microbial networks accommodate such approaches. In this review, we describe some of the 

limitations and possibilities of microbial network analysis. Additionally, we provide a summary on 

emergent properties of interest to microbiologists and use simulations to assess whether 

microbiome data allow for inference of these properties. Finally, we conclude with some 

observations on microbial networks as hypothesis-generating tools.  

Networks as representations of a complex world 
Microbial networks are temporary or spatial snapshots of ecosystems that are made up of 

two components: nodes and edges. Nodes usually represent microbes, but they can also represent 

other variables of interest, such as oxygen saturation or acidity. Edges represent statistically 

significant associations between nodes, with the number of edges connected to a node referred to as 

the node’s degree. Calculations for statistical significance of microbial associations are diverse, but all 

require a null model to compute the association strengths expected in the absence of interactions. 

While a number of such null models have been developed and employed (Harvey et al. 1983; 
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Pascual-García, Tamames and Bastolla 2014), the most frequent method to generate data under the 

null model is to simply apply permutations. Associations are assigned low p-values if their association 

score is higher for the real data than for many instances of the permuted data. The p-value cut-off 

controls the false positive rates, under the assumption that the null model is a good representation 

of the real data without interactions. Statistical significance is then usually corrected for multiple 

testing to control the false discovery rate, as each association between two microbes can be 

considered a unique test.  

Building networks from abundance data requires specialized approaches 
When defining nodes, limitations in 16S rRNA marker gene data can be problematic. Three 

aspects of these data are relevant to network construction: resolution, varying sequencing depth and 

sparsity. As a result of low resolution, investigators may be unable to differentiate between strains 

and species. This limits the range of questions that networks can help answer. For instance, we know 

that many species from the Bacillus cereus group have near identical 16S sequences. Yet, they 

function differently in ecosystems due to their host specialization. As a result, 16S sequences for 

Bacillus cereus group species are unlikely to shed light on pathogenicity (Liu et al., 2015). This is not 

unique to Bacillus cereus. Hence, researchers cannot analyse networks to study closely related 

species or strains. Improved denoising algorithms such as the core algorithm of DADA2, alternative 

sequencing strategies and better classification methods are likely to improve the maximal 

phylogenetic resolution in microbiome datasets (Callahan et al. 2016; Singer et al. 2016). At the same 

time, the detected natural variation in intragenomic 16S rRNA genes may cause these methods to 

exaggerate biodiversity and fail to recover ecologically meaningful species (Sun et al. 2013). Because 

of these unsolved issues, microbial association networks are generally more useful in studies of 

conserved phenotypes than in studies of pathogenic strains or rare metabolic functions.  

Apart from the qualitative issue of species assignment, technical variation during sequencing 

results in varying sequencing depths. To take out this variation, counts from sequencing data are 

frequently converted into relative abundances, rarefied to the same total sum per sample or 

normalized in other ways. Consequently, researchers work with compositional rather than absolute 

data. Certain statistical methods, such as correlations, can lead to erroneous results when applied to 

compositional data (Tsilimigras and Fodor 2016; Gloor et al. 2017). However, Spearman correlation 

has outperformed compositionality-robust network inference approaches in simulated data in terms 

of accuracy (Weiss et al. 2016), which implies that robustness to compositionality alone does not 

guarantee a correct network.  

To tackle compositionality, data are either transformed or compositionally-robust association 

measures are employed. Both techniques rely on ratios, since ratios do not change when dividing the 

nominator and denominator by the same constant (i.e. by the total count sum of the sample). The 

centered log ratio, which is the logarithm taken after dividing a taxon’s count by the geometric mean 

of its sample, is a popular transformation (Kurtz et al. 2015). Bray-Curtis dissimilarity and Aitchison’s 

distance are examples of compositionality-robust association measures based on ratios (Bray and 

Curtis 1957; Aitchison 1986; Weiss et al. 2016). 

In addition to being compositional, microbiome data are sparse, i.e. zero-rich. This poses 

another problem for analysis, as log-ratios used to tackle compositionality are sensitive to zeros. 

Calculating the log-ratio for a dataset with zeros requires those to be removed in advance to avoid 

negative infinities. Generally, adding a pseudocount will resolve this issue. Yet, pseudocounts can 
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have an impact on the final conclusions if used on highly sparse data, as they alter the covariance 

structure of data (Martín-Fernández, Barceló-Vidal and Pawlowsky-Glahn 2003; Costea et al. 2014). 

Although alternatives exist that do not distort the structure of the original data, they make additional 

assumptions about zeros that have not yet been validated (Martín-Fernández et al. 2012; Tsilimigras 

and Fodor 2016). For example, these methods make assumptions on the source and distribution of 

zeros in data, even though we do not know if zeros represent absence (essential zeros) or 

undersampling (rounded zeros). This is not only a problem for log transformation, but also for 

network inference in general. Correlations computed on many matching zeros will be strongly 

significant, although the taxa involved may vary randomly below the detection limit. While some 

association measures (e.g. Bray-Curtis) are not biased by matching zeros directly, they suffer 

indirectly, since they will have less usable data points available. For these reasons, a prevalence filter 

that removes rare taxa is unavoidable when inferring microbial networks from 16S data. Rare taxa 

that are occasionally abundant form an exception to this rule: despite the problems caused by many 

zeros, a low-high pattern is informative and may represent for instance specialisation. While there is 

not yet any guideline available on how to optimally set the prevalence filter, an ideal setting should 

strike a balance between avoiding biased associations while keeping potential specialists.  

Moreover, network inference tools have to tackle indirect edges. An indirect edge is present 

between two taxa when their association is due to a third taxon or environmental factor. For 

example, Bifidobacteria degrade fructo-oligosaccharides and produce lactates and acetates that can 

then be utilized by other species (Belenguer et al. 2006). If other species have direct associations to 

these lactate consumers, they will have an indirect association to the Bifidobacteria. In the inferred 

network, such indirect edges cannot be distinguished from edges representing direct associations. In 

gene regulatory networks, indirect edges can result in “shortcuts” that do not reflect the actual 

pathways (Marbach et al. 2010). This may also be the case in microbial association networks, but the 

lack of validated microbial interactions impedes identification of indirect edges. 

Relative abundances can be converted to absolute abundances when the total number of 

microorganisms in a sample is known. For example, flow cytometry has been combined with 

rarefaction and 16S copy number correction to obtain absolute abundances for fecal samples 

(Vandeputte et al. 2017). Other methods that allow the estimation of absolute abundances include 

spiking with DNA, qPCR and in situ hybridization techniques (Gifford et al. 2011; Nakatsuji et al. 

2013). As few datasets are complemented by these quantitative techniques, we consider microbiome 

data to be compositional in this review.  

Inferring microbial networks with dedicated tools 
 For different types of data, different tools are available. Cross-sectional datasets do 
not contain temporal information, so tools for cross-sectional analysis look at associations 
between taxa without taking the order of samples into account. In contrast, tools for time 
series analysis exploit the order of samples to compute associations or to fit an equation. We 
first discuss tools for cross-sectional data analysis before we continue with the analysis of 
time series.    
 

The toolkit for network inference is diverse, with tools using a range of different methods to 

infer associations and to handle challenging properties of microbial data. As one of the first microbial 

network inference tools, SparCC was developed to tackle compositionality with a correlation 

measure derived from Aitchison’s variance of log-ratios (Friedman and Alm 2012). Unlike the 
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correlation-based SparCC, SPIEC-EASI makes use of inverse covariance to infer associations. 

Moreover, its regularization algorithm was developed with high precision in mind (Kurtz et al. 2015). 

CoNet attempts to increase network accuracy through an ensemble approach including 

compositionally robust dissimilarity measures such as Bray-Curtis (Faust and Raes 2016). There are 

other tools available; for example, gCoda tackles compositionality by estimating absolute 

abundances from a logistic normal distribution and uses this to compute the inverse covariance 

matrix (Fang et al. 2017), while the maximal information coefficient (MIC) uses mutual information to 

infer associations (Reshef et al. 2011). Some of these tools attempt to remove indirect edges. For 

example, SPIEC-EASI computes the inverse covariance matrix, where non-zero entries represent 

direct interactions (Kurtz et al. 2015). In contrast, correlation-based tools like CoNet and SparCC do 

not remove indirect edges (Faust and Raes 2016, Friedman and Alm 2012). 

Network inference tools differ in their network inference methods and hence in their 

strengths and weaknesses. For example, Weiss et al. (2016) evaluated multiple tools with simulated 

data and showed that not all tested tools are able to detect competition or relationships with more 

than two members. No tool was able to infer particular ecological interactions such as amensalism 

(when one species harms another without benefitting), and SparCC and LSA were the only tested 

tools that could identify competitive three-species relationships in their simulation. When they 

tested the effect of small amounts of noise in the form of repeated rarefactions, only CoNet and MIC 

inferred similar networks across rarefactions. Finally, Weiss et al. (2016) found that less than a third 

of the edges was shared between networks inferred with two different approaches. Hence, 

microbiologists intending to use networks must be wary of their potentially low accuracy and the lack 

of overlap between inferred networks.  

Most cross-sectional tools are unable to infer directed networks. In ecological terms, the 

directionality indicates whether one species affects another species, is affected by the other species 

or both. This means that undirected networks cannot tell apart amensalism from competition or 

mutualism from commensalism. Some cross-sectional tools do infer directed networks; for example, 

Xiao et al. (2017) built directed networks assuming that cross-sectional data were generated through 

Lotka-Volterra dynamics. In contrast, most tools that require time series data use the temporal 

information to infer directionality.  

Although cross-sectional tools can be used to analyze time series data, specialized tools have 

been developed to make better use of this type of data (Faust et al. 2015a). For example, Local 

Similarity Analysis (LSA) and its successor eLSA employ dynamic programming to align time series, 

which allows them to identify the time window with the optimal local similarity and also to detect 

time delayed associations (Ruan et al. 2006; Xia et al. 2011). In addition, eLSA is able to include 

replicates of time series data. A notable example of an analysis with eLSA is provided by Pollet et al. 

(2018), who used the tool to study dynamics and succession in coastal marine biofilms.   

Models for the analysis of time series data have also been studied extensively in 

epidemiological studies (Allard 1998; Zhang et al. 2014), and are now finding their way to 

microbiome data. For example, Ridenhour et al. (2017) use an autoregressive integrated moving 

average (ARIMA) model to describe microbial interactions. The autoregressive component of an 

ARIMA model means that current values depend on previous values, while ARIMA models can also 

remove non-stationarity by differencing between consecutive values. Ridenhour and colleagues left 
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out the differencing; in their model, a taxon’s current abundance only depends on a noise term and 

the abundance of the taxon itself and its interaction partners in the preceding time point. 

In this form, their model is similar to the generalized Lotka-Volterra (gLV) model, which 

describes the abundance change of taxa over time as a function of their growth rates and all pairwise 

taxon interactions. These pairwise interactions form the interaction matrix, which is equivalent to a 

directed microbial network. A number of algorithms has been proprosed to parameterize the gLV 

model or its discrete version, the Ricker model. Since these algorithms estimate the interaction 

matrix, they carry out a form of network inference. LIMITS is a popular algorithm that parameterizes 

the Ricker model with forward stepwise regression (Fisher and Mehta 2014). In contrast to LIMITS, 

MDSINE uses a Bayesian approach to denoise data and provides uncertainty estimates of 

parameters. Another approach to network inference in the presence of noise is implemented in 

sGLV-EKF. This approach includes an extended Kalman filter, an algorithm that estimates the true, 

noiseless state of a system based on its dynamical model (Alshawaqfeh, Serpedin and Younes 2017). 

These dynamic network inference approaches have not been extensively evaluated in the context of 

microbial network inference.   

In most cases, it is not straightforward to determine the most appropriate model (and 

consequently, the most appropriate tool) for analysis of microbial community dynamics. For 

example, a Lotka-Volterra model may fit a long-term cross-feeding interaction in a community well, 

while spatial structuring of that community could be better reflected in an individual-based model 

(Zeng and Rodrigo 2018). Moreover, the extent to which different processes govern community 

dynamics is probably variable for each ecosystem and species. For example, Liao et al. (2016) 

observed that a neutral model could explain the community composition of lake water for generalist 

species, but not for specialist species. In the plant microbiome, Cregger et al. (2018) found that the 

strong niche filtering induced by plant structures was sufficient to explain community structure.  

Moreover, the contributions of specific processes may be more or less visible depending on 

the spatial or temporal scale of sampling. However, it is difficult to choose an optimal sampling 

frequency when the underlying dynamics are still poorly understood. In this context, Gibbons et al. 

(2017) investigated different dynamic regimes governing the microbiome. The most abundant 

species appeared to be autoregressive. In contrast, abundances of rare species were not 

autoregressive, and Gibbons et al. (2017) suggest these species are influenced more by external 

drivers, e.g. diet. The authors also evaluated the time lag at which autocorrelation disappeared; in 

their dataset, this lag was three to four days. This implies that a sufficiently high sampling rate is 

necessary to fit dynamical models. In addition, Faust et al. (2018) suggest to test for dependency on 

previous time points. This can help differentiate between dynamics governed by underlying rules 

from dynamics that are entirely stochastic, as the latter can arise due to high noise or an insufficient 

sampling rate. The authors argue that models such as gLV or the neutral model should only be fitted 

to time series when there is evidence for time dependency.  

Overall, this offers two considerations for experimental design: a high sampling rate will 

result in improved accuracy of the inferred network (Cao et al. 2017), and tool choice depends on the 

sampling interval of the time series. For instance, the impact of environmental factors may be 

identified from sparsely sampled time series or cross-sectional data, whereas tools that parameterize 
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gLV require denser sampling. If time series are not sampled densely enough, a wrong function may fit 

the data well (aliasing), which can result in incorrect interaction directions (Gerber 2014). 

Biotic and abiotic factors introduce spurious edges 

Apart from the limitations of network inference tools, network analysis can suffer from 

experimental design. Microbes do not live in isolation, and they interact with their abiotic as well as 

their biotic environment. If two species co-occur together with an unreported factor, they may 

acquire an indirect edge in the final interaction network only because they are both affected by this 

factor. These edges can be caused by species not accounted for in 16S datasets. For example, protists 

frequently remain unreported inhabitants of the human gut (Parfrey et al. 2014). In ruminant guts, 

anaerobic fungi may possess a large number of unique functions (Solomon et al. 2016) , and while 

mycorrhiza have been studied extensively in the plant sciences, new types of interactions with 

microbes are still being identified (Desiro et al. 2014). When such species are present, associations 

with those species will result in indirect edges. In fact, cross-domain analysis with SPIEC-EASI has 

illustrated that network properties change significantly when fungi are included (Tipton et al. 2018). 

Phages are especially likely to play a major role in the microbiome (Mirzaei and Maurice 2017), and 

failing to include them may reduce the relevance of microbial association networks. 

Additionally, abiotic drivers of microbial communities may go unreported; changes in pH can 

favor acidophiles, and bioreactor (or human) retention time can also result in increased abundances 

of particular groups of microbes (Roager et al. 2016; Vandeputte et al. 2016; Vasquez et al. 2016). 

These factors may be studied more easily at larger spatial scales. For example, Delgado-Baquerizo 

(2018) recently showed that dominant taxa of a global soil dataset co-occurred more often if they 

shared habitat preferences, with pH, aridity and net primary productivity being important drivers of 

those preferences.  

Figure 1 illustrates some sources of indirect edges. If the environment is constant across 

samples, indirect edges will be less prominent. In contrast, a changing environment can cause sample 

heterogeneity and may have profound effects on network structure.  

 

Indirect edges can be a result of sample heterogeneity. Such heterogeneity occurs when 

environmental factors differ within the studied ecosystem and may be a result of experimental 

design. The phenomenon is problematic for network analysis due to diverging niche preferences of 

microbes, as shared niche preferences in a variable environment can be a source of co-occurrence 

patterns. When two species have growth optima in the same niches, they will co-occur, while the 

opposite effect will result in mutual exclusion. Niche preference may also explain why closely related 

species frequently co-occur, as they are likely to have more niche overlap than more distantly related 

species (Chaffron et al. 2010; Faust et al. 2012; Pascual-García, Tamames and Bastolla 2014).  

Despite the possible influence of niche preferences on network structure, network inference 

tools often do not incorporate environmental data. This can result in a sharp increase in 

environmentally-induced indirect edges. Tools based on inverse covariance such as SPIEC-EASI are 

theoretically able to remove these edges, under two assumptions: first, that the data are multivariate 

normally distributed and second, that all components of the systems have been considered. The first 
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assumption can be relaxed, but the second is not so easy to tackle in the presence of a variable 

environment.   

Regardless, a good sampling strategy can mitigate the effect of niches. Investigators may 

work with controlled environments, such as bioreactors or artificial biofilms. In such situations, niche 

preferences are less likely to cause spurious associations, as sample variation is reduced and 

remaining niches (e.g. anoxic zones in the biofilm) can be accounted for with a thorough monitoring 

strategy.  In less structured environments, investigators can choose to split up a dataset when there 

are large differences between sets of samples that can be attributed to environmental factors. This 

could be justified because associations between relevant taxa and environmental factors have 

previously been described in the literature, or because the environmental features correlate to 

community variation. Alternatively, the effect of niche preferences can be mitigated by selecting for 

generalist species. Investigators can choose highly heterogeneous samples and set a stringent 

prevalence filter; consequently, only species occurring in many samples will be preserved. Pascual-

García, Tamames and Bastolla (2014) used this approach to study cosmopolitan species. They were 

able to find species that co-occurred across different environments, and showed that some of these 

co-occurrences were supported by the literature and therefore likely represented biotic interactions.  

While niches can introduce environmentally-induced indirect edges, the visualization of 

environmental influence is a major strength of association networks. Most researchers collect 

additional clinical or environmental data in their microbiome studies, which can be included in an 

integrated network. Visualizing niche preferences can be valuable in systems where little is known 

about the microbes of interest, and in fact, recent observations on macro-ecological co-occurrence 

networks have shown that these networks may represent niche preferences better than they 

represent biotic interactions (Freilich et al. 2018). The networks’ sensitivity to environmental factors 

is also beneficial for the reconstruction of community structure. Network-based measures of β-

diversity, such as TINA and PINA, resolved habitat-induced clusters in the human microbiome more 

clearly than other approaches (Schmidt, Rodrigues and Von Mering 2017) 

Moreover, networks can represent niches as mediators of microbial interactions. Some 

microbes change environmental properties to create new niches. They may cause acidification, 

provide spatial structure or remove oxygen from the environment (Ziegler et al. 2013; Welch et al. 

2016). Co-occurrence patterns can show microbes' abilities to generate spatial structures or an 

anaerobic environment. For example, early and late colonizers in dental plaques are negatively 

associated (Faust et al. 2012). This is not a direct interaction, but the result of aerobic bacteria 

creating an anaerobic environment that favours the oxygen-sensitive late colonizers (Kolenbrander et 

al. 2006; Welch et al. 2016). 

Of all the discussed network inference tools, few support inclusion of environmental or host 

data. For example, CoNet computes associations between taxa and environmental factors such as pH 

or host metadata such as weight. MInt assumes that there is an additive linear influence of 

environmental or host factors on species abundances. It removes this influence by first regressing 

out these factors and then inferring the taxon network from the residuals (Biswas et al. 2016). 

Associations between taxa and environmental factors are usually computed for relative abundances. 

It remains to be evaluated to what extent conclusions based on these associations hold for absolute 

abundances.  
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Correlations to environmental abundances are not the only approach to include 

environmental data. For categorical variables (e.g. sampling method or location), appropriate 

differential abundance tests such as ALDex2 or DESeq2 can be used (Love, Huber and Anders 2014; 

Gloor 2015). Species that are differentially abundant could then be connected to a node representing 

the environmental factor of interest, or the effect size could be added as a node property. If 

investigators include such data in a network, it may become more obvious how certain modules of 

the network represent environmental conditions, even though not all species of the modules may be 

significantly differentially abundant. As networks are a flexible form of data storage and visualization, 

there is little reason to limit them to abundance data.  

Biological interpretation of network properties 
With microbial associations only predicting biotic interactions in a minority of cases, 

emergent properties may be more reliable in the search for new biological insights. Microbial 

interaction networks provide an excellent tool for studying them. Abstract concepts from network 

theory may hint at biological emergent properties, such as antibiotics tolerance in microbial 

communities, where microbes lacking resistance genes can tolerate antibiotics if they are part of a 

community (Kim et al. 2013; de Vos et al. 2017). However, the link between these concepts and 

experimental observations is unclear. In this section, we address the following network properties: 

hub species, betweenness centrality, network motifs, assortativity, transitivity, modularity and 

network robustness. A graphical summary of these properties is provided in Figure 2.  

 

Defining node importance in networks 

In the search for meaningful biological knowledge, hub species are frequently an outcome of 

microbial network analysis. Hub species are nodes that have the highest degree in the network and 

are therefore associated with a high number of other species. Identifying these species is 

straightforward, and their importance to community structure seems almost intuitive. Yet, the 

ecological role of hub species is still unclear. For example, hub species may represent keystone 

species, which are known to be important for ecosystem structure and functioning. Their removal 

can cause the ecosystem to collapse (Paine 1969). Hub species do not necessarily share the same 

biological implications, as investigators cannot infer such major changes unless they carry out 

experiments that involve removal of hub species and randomly selected control species (Berry and 

Widder 2014). Moreover, recent work has demonstrated that known keystone species in macro-

ecological networks do not necessarily result in detectable signals in co-occurrence networks (Freilich 

et al. 2018). This further weakens the assumption that hub species are likely to represent keystones.  

A related concept to hub species are the Strongly Interacting Species (SIS) (Gibson et al. 

2016) In simulations, these “levers” were shown to be able to steer ecosystems towards certain 

community types. For these community shifts to occur, heterogeneous interaction strengths are 

necessary, with SIS having the strongest interactions. Overall, the role of hub species in community 

structure is poorly defined and may contain aspects of keystone species as well as lever species. In 

general, without further experimental validation, it is unclear whether predicted hub species or SIS 

act as keystones or levers in the ecosystem of interest.  

Beyond degree, other types of node centrality can be a proxy for node importance (Borgatti 

2005). For example, the betweenness centrality of a node is calculated as the total number of 
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shortest paths from all nodes to all other nodes that pass through the node (Freeman 1977). 

Therefore, a node that has a degree of two can have the highest betweenness centrality in a network 

if it connects clusters that make up the network. Despite its low degree, it can affect large sections of 

the network. Apart from shortest paths, random walks through a network can also be used to 

estimate node centrality (Newman 2005). Nodes that are visited more frequently during a random 

walk are then assigned greater centrality estimates. Other forms of centrality exist as well, each 

making different assumptions on the nature of interactions between nodes. For example, 

betweenness centrality assumes that the shortest path matters (e.g. package delivery from one 

location to another), whereas centrality measure based on random walks assumes that information 

or metabolites travel randomly (e.g. gossip in a social network). Applying the wrong centrality 

measure to a network can result in incorrect measures of node importance (Borgatti 2005). As the 

mechanisms behind microbial interactions may be diverse and are generally unknown, we cannot 

recommend an optimal choice for centrality measures of microbial networks.  

Moreover, some measures of centrality rely on the simulation of movement on networks. 

Their interpretation and relevance differs depending on the type of network; walks on an undirected 

network faces fewer limitations than walks on a directed network. Hence, directed networks 

constructed from time series data represent community structure differently from undirected 

networks constructed from cross-sectional datasets. Figure 3 showcases this issue. In the undirected 

network shown in Figure 3A, the blue node appears to be a hub species. However, as the 

directionality pattern in 3B shows, it benefits from the presence of other species, but does not 

influence them. In the directed network shown in Figure 3B, the blue node appears to be a “dead 

end”, whereas walks can pass freely from the grey node to other nodes. Hence, simulations that rely 

on random walks will indicate that the grey node is the most influential one, as most random walks 

will pass through it.  

 

Linking network properties to biology  

While measures of centrality describe network components, higher-level descriptions of 

networks may be informative as well. For example, a motif is an overrepresented subnetwork with at 

least three nodes, with overrepresentation meaning that the motif occurred significantly more often 

than expected by chance (Milo et al. 2002). Motifs have frequently been found in gene regulatory 

networks, and models have shown that they can stabilize signals in transcriptional networks (Shen-

Orr et al. 2002). Hence, they may play a role in efficient and robust flows of information in 

intracellular signalling pathways. Regardless of their function, investigators have used motifs to 

identify key regulators in gene regulatory networks (Green et al. 2017).  

Microbial networks are less organized than gene regulatory networks are, since they are not 

exposed to the same selection pressure. While genes and gene motifs are conserved due to unique, 

vital functions that these genes provide, host-associated microbial communities may contain more 

redundancy and express more opportunistic behaviour. Yet, they are also exposed to selection on 

the community level, as microbes’ intimate associations with their hosts imply that they experience 

at least part of the selection pressure their hosts face. To mitigate opportunistic behaviour by 

microbes, hosts have evolved several strategies to control community composition (Walter and Ley 

2011; Foster et al. 2017). This unique selection pressure may lead to patterns in community 

structure, but it is not evident what those patterns would look like in a microbial network.  
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At this point, the role of motifs in microbial networks has not been established. It is possible 

that such motifs represent conserved information transfer or conserved cross-feeding interactions. 

Information transfer could involve processes such as quorum sensing or electrical communication. 

Inter-species communication has been observed in aquatic environments and human pathogens 

(Canovas et al. 2016; Mori et al. 2017). Similarly, microbes can use electrical communication to 

coordinate metabolic activity in biofilm communities (Prindle et al. 2015). Even if direct interactions 

have not been demonstrated, microbes may change their transcriptome in response to other species 

(Plichta et al. 2016). The ability to coordinate behaviour on the inter-species level suggests that 

microbes can collaborate. If conserved, such relationships could form motifs.  

Currently, the presence and function of motifs in microbial networks remains confined to 

speculation. There are already hints that they may at least be useful as biomarkers. Ma and Ye (2017) 

investigated the presence of triad motifs in human microbiome datasets. They found that specific 

motifs were over- or underrepresented in multiple diseases. We still do not know if such patterns are 

conserved across ecosystems (or even across tools) or why they would be there. Establishing the role 

of motifs in microbial networks requires more exploratory research.  

Similar to motifs, assortativity coefficients describe network structure. In an assortative 

network, nodes are more likely to connect to similar nodes. Multiple definitions of this similarity 

exist. Firstly, assortativity may be defined as similarity in node degree (Newman 2002). Based on this 

definition, Newman was able to calculate assortativity scores for multiple networks, with positive 

assortativity scores indicating that nodes are more likely to connect to nodes with similar degree. In 

contrast to social networks, Newman (2002) found that biological networks were disassortative. He 

demonstrated with a model that assortative networks are broken up less easily by removing high-

degree nodes than disassortative networks.  

Although Newman defined similarity with respect to node degree, similarity can also be 

calculated with respect to in- or out-degree for directed networks. The majority of microbial network 

inference tools do not provide directed networks, but assortativity could also be defined as similarity 

in co-occurrence or mutual exclusion. Investigators may also use local assortativity, where the degree 

is only compared to the degree of a node’s direct neighbours. Piraveenan, Prokopenko and Zomaya 

(2012) observed that many biological networks are assortative rather than disassortative when these 

alternative coefficients are used. Hence, assortativity coefficients should be interpreted carefully in 

the context of microbial networks, as the definition of assortativity employed changes the outcome 

entirely. Moreover, assortativity may also refer to similarity in taxonomic group (Kurtz et al. 2015). 

This type of assortativity indicates whether species are more likely to interact with closely related 

species. While such a coefficient contains more biological information, it is less amenable to 

evaluations based on network theory.   

While assortativity refers to heterogeneity of edges in a network, transitivity describes 

heterogeneity of global structure, i.e. it quantifies the extent to which nodes cluster together. Hence, 

this property is also referred to as the global clustering coefficient. To the best of our knowledge, 

transitivity has not been reported to be informative for microbial networks. In social networks, 

transitivity quantifies the statement “Friends of my friends are friends” (Burk, Steglich and Snijders 

2007). While microbes do not have friends, they can display cross-feeding, and high transitivity might 

be indicative of degradation pathways or niche filtering. However, as we may not be able to estimate 
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assortativity or transitivity without knowing the true interaction network, these coefficients may 

have little bearing on the interpretation of inferred networks. Currently, we do not know whether 

this has a relevant biological meaning or may be a consequence of community properties such as 

evenness (Faust et al. 2015b).  

Finally, modularity quantifies to what extent networks can be broken up into smaller 

components. For the identification of such modules, a rich toolkit is available. For instance, the 

Markov Cluster algorithm simulates random walks through a network to define clusters (Dongen 

2000; Van Dongen and Abreu-Goodger 2012). While the Walktrap algorithm also relies on random 

walks, it benefits from lower runtimes and can therefore handle larger networks than the Markov 

Cluster algorithm (Pons and Latapy 2005). An algorithm developed by Newman and Girvan (2004) 

separates networks into modules by iteratively removing the highest betweenness nodes in the 

network. As each of these algorithms returns modules with different structural properties (i.e. highly 

compact modules or a minimal number of inter-module edges), their performance in module 

identification differs depending on the desired properties of a module (Leskovec, Lang and Mahoney 

2010).  

Regardless of the choice of algorithm, the source of modularity in microbial networks is not 

entirely clear. Modules may visualize different niches and have been used to study habitat 

preferences, e.g. in soil (Chaffron et al. 2010). In another example, Guidi et al. (2016) studied carbon 

export in plankton communities sampled during the TARA Oceans expedition and found that two 

modules were associated to this process. One module contained prokaryotes and explained 

approximately 60% of the variation in carbon export. The other module contained phages and could 

predict 89% of the same variation. Interestingly, the most important nodes in these networks were 

Synechococcus, a cyanobacterium and two Synechococcus phages. This indicates how these modules 

represented carbon export as an interplay between phages and their hosts and shows the potential 

of network modules as indicators of important ecological processes.  

Although the study system may be the same, drivers behind the modules can differ. In 

another study on free-living communities in a marine ecosystem, modules were shown to 

correspond to the depths where samples were collected, supporting the existence of 

environmentally driven modules (Cram et al. 2015). Cram et al. identified two modules, one of which 

corresponded to surface chlorophyll and daylight length. It may be challenging to distinguish 

modules due to shared pathways and cross-feeding from those introduced through environmental 

factors. For example, Jiang et al. (2015) observed that modules corresponded to soil variables as well 

as potential nitrification activity. The difference between these may be impossible to identify when 

little is known about the organisms in a module.  

Overall, modules may be indicative of ecological processes governing community structure, 

but further information is required to identify their origin. In part, this information can be gathered 

from overrepresentation of specific functions or taxonomic groups in a module. If specific groups of 

enzyme-coding genes are overrepresented, the taxa in the module may be specialized on a specific 

nutrient. The metabolic pathways concerned may be inferred from the overrepresented genes. For 

example, a network of forest soils could contain a module with species that play a role in nitrogen 

fixation (Menezes et al. 2015). Alternatively, if taxa are overrepresented, this could indicate the 

effect of niche filtering.    
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Network robustness is an in silico property 

Newman (2002) posed that assortativity can be an indicator of network robustness. 

However, how is robustness measured in the context of microbial networks? First, we would like to 

clarify that we are not referring to robustness in the statistical sense, where robustness means that 

method choice does not affect research outcomes (Huber 2011). While this definition of robustness 

has value to microbial networks and would ideally be reported, the next section focuses on 

robustness as a concept from network theory.  

Robustness, as a network property, can be studied using percolation theory (Cohen et al. 

2000). This theory describes how information can flow from one node to the next. One of its 

applications is to model the effect of node removal on a network. In this context, robustness refers 

to a network’s vulnerability to random or targeted node removal, where the network is considered 

vulnerable when it breaks up in smaller parts as a result of node removal. The percolation threshold 

is a quantitative measure of network vulnerability: when enough nodes are removed to move past 

this threshold, the network breaks down and the size of its largest component decreases sharply 

(Cohen et al. 2000).  

The robustness of biological networks is closely related to their degree distribution. This 

distribution of biological networks does not always follow a power law (where the degree 

distribution of the network have a heavy-tailed distribution), but there are frequently many more 

nodes with low than high degree (Camacho, Guimerà and Amaral 2002; Khanin and Wit 2006; Lima-

Mendez and van Helden 2009). As only few nodes have high degree and are therefore hubs, 

biological networks are in theory robust to random node removal, but sensitive to targeted node 

removal (Albert, Jeong and Barabási 2000; Kwon and Cho 2008). While percolation is difficult to 

demonstrate in practice, it is possible to compute which nodes are influencers. Influencers may be an 

in silico alternative to keystones, as removal of influencers causes a network to fragment (Morone 

and Makse 2015).  

There is also a third definition of robustness in the ecological sense, which is defined as the 

capacity of an ecosystem to maintain its current state despite fluctuations in the behaviour of its 

member species or its environment (Mumby et al. 2014). For example, the taxonomic composition of 

the gut microbiome may not be robust to dietary changes (David et al. 2014), even when the 

functional composition does display robustness (Eng and Borenstein 2018).  

To the best of our knowledge, there are no extensive evaluations on the use of percolation 

theory in microbiome research. Node removal analysis may not predict how systems respond in real 

life, since the network is only a simplified representation of the ecosystem. Moreover, while all 

association networks are static representations of ecosystems, directed networks inferred from time 

series may be more suitable for node removal simulations. Regardless, network robustness is far 

easier to evaluate than ecological robustness, and would therefore be a valuable diagnostic tool if it 

is predictive of ecological robustness.  

From a network to a hypothesis 
In the previous section, we addressed the nature of edges. We also hinted at how to improve 

experimental design to uncover or avoid sample heterogeneity. Inclusion of additional information 
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may allow researchers to distinguish indirect from direct edges and to elucidate functional 

mechanisms behind co-occurrence. Here, we provide examples of this approach. 

Environmental information can be included in networks 

Lima-Mendez et al. (2015) studied the Tara Oceans plankton dataset, which is unique in the 

area and range of organism sizes covered: samples were taken at two depths in eight oceanic 

provinces and included organisms ranging in size from viruses to small metazoans. As addressed 

previously, studying the effects of biotic and abiotic factors on ecosystem structure poses a problem 

for network construction: environments with changing abiotic factors can cause spurious co-

occurrences to appear. The authors attempted to tackle this problem by including all measured 

abiotic factors. Their initial network contained both environmental factors and taxa, which often 

formed triplets where two taxa were positively or negatively associated to the same environmental 

factor. Such triplets suggest that the edge between the two taxa is a consequence of their response 

to the environmental factor. To quantify the extent of indirectness in a triplet, they calculated its 

interaction information. Taxon edges in triplets with significantly negative interaction information 

were assumed to be due to an environmental factor and removed. 42% of previously known 

plankton interactions were found in the network, and a previously unknown, strongly significant 

candidate interaction was validated with confocal laser microscopy.  

In a similar manner, Wang et al. (2016) investigated lung microbiome data collected from 

patients with chronic obstructive pulmonary disease. Previous studies indicated that an increase in 

disease severity was associated with a decrease in α diversity (Rogers et al. 2004; Zakharkina et al. 

2013; Huang et al. 2014). Wang et al. (2016) exploited host metadata to find taxa that would play a 

role in this dysbiotic state. After excluding collinear variables, 66 clinical variables were included in 

the integrated network. Consequently, they found that several sputum biomarkers were hub nodes 

in the co-occurrence network. These biomarkers were mostly associated with inflammation, 

indicating that the dysbiotic state was correlated with an inflammatory response in the patients. 

They suggest that specific hub species were drivers of the inflammatory response.  

Identifying key players in the microbiome 
While Agler et al. (2016) did not include metadata in this way, they carried out in silico 

experiments to quantify the importance of hub species in the Arabidopsis microbiome. The 

Arabidopsis phyllosphere (above-ground plant surface) network contained three hubs that were 

correlated to most other nodes. Agler et al. (2016) hypothesized that those nodes had a 

disproportionate effect on the ecosystem. To test this hypothesis, they performed a node removal 

experiment in silico, where they removed each of the hubs and observed that their removal affected 

more edges than removal of non-hub species did. They then confirmed the effects of two hubs, 

Albugo sp. and Dioszegia sp., through host colonization experiments and interaction assays. As 

Albugo needs a living host to survive, they were unable to study individual interactions. Nonetheless, 

host colonization experiments showed a decrease in microbial α diversity on infected Arabidopsis 

plants. For Dioszegia, interaction assays revealed that this hub reduced leaf colonization efficiency of 

some bacteria. Their approach demonstrates how causal relationships can be tested with species 

that cannot ordinarily be cultured and how keystone behaviour of identified hub species can be 

experimentally validated.  

Microbial networks may be especially valuable in the study of pathobionts. Unlike true 

pathogens, pathobionts can be present in the microbiome of healthy individuals. As a result, 
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identifying causal relationships between a pathobiont and a disease is not as straight-forward, but 

network analysis can help elucidate the principles through which pathobionts cause disease. Meyer 

et al. (2016) approached Black Band Disease in coral metaorganisms in this manner. As Black Band 

Disease is a polymicrobial infection, there is no single causal agent. However, one cyanobacterium, 

Roseofilum reptotaenium, was present in most samples taken from black bands (Miller and 

Richardson 2010). Meyer et al. (2016) first compared healthy to diseased coral microbiomes. They 

found that the microbiomes of healthy corals were more uniform than those of diseased corals, 

further supporting the validity of the Anna Karenina principle (Zaneveld, McMinds and Thurber 

2017).  

As R. reptotaenium is present in healthy coral as well, the authors hypothesized that it was 

not a primary pathogen and interactions in the microbiome were responsible for disease 

progression. Indeed, they found that genera associated with diseased microbiomes co-occurred with 

other disease-associated genera. The position of R. reptotaenium in the network was particularly 

interesting, as its low number of associations were mostly with highly connected species. The 

authors’ follow-up analysis on R. reptotaenium showed that it was indeed directly affecting highly 

connected hub species through a compound that disturbed quorum sensing, thereby altering 

microbial interactions. Overall, the network structure successfully highlighted the pathobiont’s 

mechanism of infection in addition to its importance in disease progression.  

Network approaches have also been applied to mouse studies. In such studies, causal 

relationships are more readily observed than in clinical trials. Standardization of mouse studies 

implies reduced sample heterogeneity, and as these studies are better controlled, it is more likely 

that changes in network structure are the result of microbial interactions rather than environmental 

factors. For example, Mahana et al. (2016) investigated the effect of antibiotics treatments on mice 

fed with a high-fat diet. Mice treated with antibiotics had increased adiposity compared to untreated 

mice on the same high-fat diet. They applied unsupervised clustering on physiological data to cluster 

samples in six groups. Most of the clusters corresponded to specific phenotypes (e.g. mice on 

antibiotics or young control mice). The authors then constructed separate networks for each cluster. 

To compare them, they identified potential keystone species. They quantified network robustness by 

performing targeted node removal and suggest based on this analysis that specific antibiotics could 

target keystone taxa and result in ecosystem collapse. While this is an attractive hypothesis, their 

analysis was conducted in silico, and the ecological role of hub or bottleneck taxa is still not fully 

understood.  

The above approaches highlight two key strategies to learn more from microbial networks. 

Firstly, networks can integrate measurements of environmental parameters. We cannot recommend 

a standard parameter set; each of the studies above included their own relevant parameters. A good 

understanding of the ecosystem under consideration is therefore vital for experimental design. In 

many studies, abiotic parameters or biomarkers will be measured regardless of their use in network 

construction. However, while the data are there, incorporating it is not yet a trivial exercise, since no 

microbial network inference tool supports all types of environmental data. Categorical data may also 

guide the division of data into groups, for instance according to treatment. A separate network can 

then be constructed for each group, as Mahana et al. (2016) did. This can reduce sample 

heterogeneity.  

Downloaded from https://academic.oup.com/femsre/advance-article-abstract/doi/10.1093/femsre/fuy030/5061627
by guest
on 01 August 2018



 

 

Secondly, researchers can apply concepts from network theory and percolation theory to 

further analyse their networks, as demonstrated by Agler et al. (2016) and Mahana et al. (2016). As 

promising as their work is, it is unclear how predictive in silico results are of ecosystem behaviour, 

and experimental verification remains a necessity. 

Properties of inferred networks are not reliable 
 

Overall, most of the properties we addressed above can be calculated in a straightforward 

and user-friendly manner. Yet, the effect of environmental conditions and tool choice on emergent 

properties is unclear, and it is therefore unknown if emergent properties can be inferred reliably 

from microbial networks. Following Berry and Widder (2014), we generated interaction matrices with 

the Klemm-Eguíluz algorithm and simulated community dynamics with the generalized Lotka-

Volterra (gLV) equation. Not all microbial communities may follow gLV dynamics. For instance, their 

dynamics may be better described by neutral models (Sloan et al. 2006), and gLV-type models may 

be unable to correctly describe all interaction mechanisms (Momeni, Xie and Shou 2017). 

Nonetheless, despite their simplifying assumptions, studies have demonstrated the merit of gLV 

models in microbiome analysis (Bucci and Xavier 2014; de Vos et al. 2017). The simplicity of these 

models makes them easy to implement and fast to solve numerically in simulations.   

As there are no fully verified microbial interaction networks, we can only estimate their 

topology. However, Sung et al. (2017) showed that only 17.6% of microbes in a literature-curated 

metabolic interaction network were highly connected. Experimental work has also shown that 

inferred networks could be fitted to a (truncated) power law (Zhou et al. 2011). Moreover, food webs 

have been found to have skewed degree distributions (Solé and Montoya 2001; Dunne, Williams and 

Martinez 2002). Overall, this supports the existence of hub species in microbial networks, and those 

can be simulated with  the Klemm-Eguíluz algorithm, which generates networks through preferential 

attachment (Klemm and Eguíluz 2002). Consequently, we generated synthetic interaction networks 

with this algorithm and then used these “known” networks to test tools’ abilities to infer emergent 

properties from data. A graphical summary of the simulation is provided in Supplementary Figure 1, 

while a more elaborate explanation of the methodology and a code repository are provided as 

supplementary files.  

Network structure is changed by sample heterogeneity  

To study the effect of environmental factors, we changed growth rates in half of the samples 

in each dataset, effectively simulating different environmental conditions in a single dataset. A 

similar approach included environmental parameters in a gLV model before, and this model could be 

fitted to seasonal fluctuations in a lake population (Dam et al. 2016).  

 
We expected the increasing environmental influence to be accompanied by a decrease in 

precision, as more environmentally-induced indirect edges are formed. This is indeed reflected in 

Figure 4B and 4C. While not all tools reported an increase in degree (especially SPIEC-EASI kept 

inferring sparse networks), precision decreased for all tools, Moreover, the environmental factors 

changed the network structure, as transitivity increased markedly. While the transitivity is expected 

to increase as the degree increases, it also increases for tools that do not report a sharp increase in 

degree. The differences between the SPIEC-EASI algorithms is especially noteworthy, as precision 
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does not change much whereas the transitivity coefficients are strikingly different. Moreover, the 

small increase in degree indicates that the networks inferred by SPIEC-EASI are rewired as the 

environmental factors become stronger.  

Finally, Figure 4D indicates how assortativity varied wildly for all tools across conditions. 

Assortativity is generally assumed to be negative in biological networks. The Klemm-Eguíluz 

interaction matrices reflect this. Yet, most tools fail to return a negative assortativity; if they do, that 

changes once the dataset conditions change. For SPIEC-EASI, positive assortativity can at least 

partially be explained by the low number of edges (sparsity) of its inferred networks. With nodes in 

the SPIEC-EASI networks following a narrower degree distribution, they are less likely to be 

disassortative as there are fewer high-degree nodes to connect to. In contrast, networks inferred 

with CoNet have negative assortativity scores at low environmental strength, but the scores become 

positive when the influence of the environment increases. This may be explained by an increase in 

node degree once CoNet starts correlating species as a result of environmental factors.  

Global network properties in inferred networks frequently failed to match the values 

measured in the Klemm-Eguíluz interaction matrices. Network theory provides a valuable resource, 

but some measures may not be suitable for microbiome studies. As topological characteristics of 

networks are easily calculated with the R igraph package or within Cytoscape, authors do sometimes 

report them in a publication. Based on our simulation, it seems unwise to attribute biological 

relevance to such properties. If the underlying interaction network is unknown, they are as likely to 

be a result of tool bias as they are to be a result of organized, complex behavior. These results reflect 

those obtained by Connor, Barberán and Clauset (2017), who showed that network properties can 

change entirely when threshold settings for Spearman correlation are altered.  

As we addressed previously, modules may represent different niches. Hence, we would expect the 

introduction of two niches in our dataset to generate a modular structure of the network. Figure 5 

displays this structure for datasets from one specific Klemm-Eguíluz matrix.  

Notably, two clusters are formed when the environmental strength is increased. The colours 

of the nodes indicates that this is indeed a result of similar responses to the environment. While 

SPIEC-EASI still generated a sparse network, additional positive edges were formed between 

similarly-coloured nodes, and a few negative edges appear between dissimilar nodes. In contrast, the 

degree increased drastically with environmental strength in CoNet. This structure was only visible for 

the simulated datasets where there are distinct groups of microbes that respond differently to a 

strong environmental factor, so the effects of the factors are completely reversed for each of the 

groups in half of the dataset. We did not enforce this constraint, so not all of the inferred networks 

share this structure.   

This modular structure could not be identified without edge signs, as the modules consisted 

of co-occurring species. Our synthetic environment therefore appears to mimic the effects observed 

in experimental studies (Chaffron et al. 2010; Cram et al. 2015; Jiang et al. 2015). Moreover, 

experimental results suggest that modules may be consistent across tools even when specific edges 

are not (Wang et al. 2017). However, clustering approaches to identify such modules need to take 

the edge sign of microbial associations into account. 
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Centrality is different for each tool  

As degree and betweenness centrality are of interest to microbial ecologists, we evaluated 

whether tools could identify species with high degree or a high betweenness centrality score.  

For the highest degree species, abundance is generally very low. Since the interaction matrix 

used in the gLV simulations has a low percentage of positive edges, highly connected species have a 

higher chance than low-degree species to be exposed to negative interactions. As only SPIEC-EASI 

and CoNet attribute high degree to low-abundance species, this may explain their better 

performance in this simulation (Supplementary Figure 3).  

Supplementary Figure 2 shows that tools scoring high on precision are not necessarily the 

ones performing best when searching for hub species or highest betweenness centrality species. 

Even changing the settings for one of the SPIEC-EASI analyses caused a marked change in identified 

hubs. Moreover, while gCoda and SPIEC-EASI both scored well on precision, they did not score 

equally well when identifying hub species. The simulation shows that precision is not the only 

measure that should be incorporated when testing tools for emergent properties, although it is vital 

for interaction prediction.  

There is a striking lack of overlap in identified hub species, as tools mostly identify unique 

hubs (Supplementary Figure 4). This matches an experimental study on a paddy soil microbiome, 

where most hub species were not conserved across tools (Wang et al. 2017). As the tool predictions 

rarely overlap and the overlap was not enriched in true positives compared to individual tool 

predictions, we doubt whether an ensemble approach incorporating multiple tools will increase the 

accuracy of hub species inference. 

Accuracy increases when the top percentage is evaluated 
Previous work indicates that the sensitivity of degree and betweenness centralities to errors 

decreases when more nodes are considered, rather than the top 1 or top 3 hub nodes (Borgatti, 

Carley and Krackhardt 2006). We wanted to confirm this for our analysis and calculated the number 

of correctly predicted hubs when we analysed the top 3, 5, 7, 10, 20 and 30 hub species. In this case, 

we investigated the overlap between hub nodes in the true positive network and in the inferred 

networks, which is one of the most stringent measures of accuracy assessed by Borgatti and 

colleagues. A less stringent approach would be to test whether the highest centrality node is present 

in the top 10%. 

Figure 6 shows how the number of correct predictions increases as more nodes are 

evaluated. For example, if the top 10 hubs are taken from a network inferred with CoNet, 

approximately half will be correct; if the top 20 are taken, this increases to 11 correct predictions on 

average. Moreover, we computed p-values using the hypergeometric test, which gives the 

probability of drawing the observed number of correct hubs by chance. The p-values stop decreasing 

after more than 20 hub species are identified. This is likely to be an innate property of our true 

positive network, as exceeding this 20% means the degree of species is no longer part of the tail of 

the degree distribution, i.e. these species are no longer hubs.   

However, as none of the tested tools identified hub species well, identification and 

interpretation of hub species should be handled with care in real datasets. This implies that inference 

of hub species may be more accurate when ~10% of high-degree hubs are studied rather than a 
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select few. Moreover, the gLV simulation produced high-degree, low-abundance species, and not all 

tools appeared to be able to identify these. While analyses on the human microbiome and farm soils 

have also identified highly connected, low-abundance taxa (Faust et al. 2012; van der Heijden and 

Hartmann 2016; Claussen et al. 2017), we do not know whether those are true biotic interactions. 

Network interpretation benefits from data integration 
Even in our relatively simple simulation, networks were often dense and difficult to interpret. 

The situation is worse in practice: most investigators will find a “hairball” network when they start 

analysing their datasets. Reducing the size of that hairball down to a more informative version of 

itself is necessary before follow-up experiments can be done. For studying individual interactions, a 

low number of false positives is a requirement. It would also be useful to have more information on 

the interactions themselves. Once an investigator knows which associations are statistically robust 

and what mechanisms they represent, follow-up experiments can be reductionist without needing to 

be excessively high-throughput. For that purpose, we discuss some methods to reduce the number of 

edges in a network and to identify the mechanisms behind them.   

Agglomeration and prevalence reduce node number 
Agglomeration and prevalence filtering are relatively simple to perform, as they 

require no additional data nor well-annotated species. Agglomeration can “set” network detail 
at the taxonomic level. Researchers can apply an agglomeration step before network 
inference to study microbial networks at higher taxonomic levels. If species share specific 
functions with their phylogenetic group, their abundance may vary randomly, even though the 
total abundance of the higher phylogenetic group can be stable as a result of the unique 
function. An agglomeration step will filter out noise induced by these phylogenetic similarities, 
while revealing conserved interactions at higher taxonomic levels. As an example, Yun and 
Cho (2016) visualized how specific orders correlated to environmental factors and showed 
how different communities were associated to certain metabolites. If researchers are 
interested in highly conserved cross-feeding interactions (e.g. methanogens and hydrogen-
producing bacteria), agglomeration can be beneficial. 

 
In addition to taxonomy, ecological groups may also be used. For plankton, functional 

types such as autotrophs and silicifiers have previously been defined (Quere et al. 2005). 
Lima-Mendez et al. (2015) grouped species in their network according to these plankton 
functional types. The agglomerated network suggests that parasites are important interaction 
partners of many other plankton functional types, whereas silicifiers had less predicted 
interactions with parasites and grazers than did other functional types.  

 
However, agglomeration steps may result in loss of vital information, especially when strains 

possess unique functions. For example, the coral pathogen R. reptotaenium was unique in its ability 

to disrupt quorum sensing networks (Meyer et al. 2016). If the network is created at a higher 

taxonomic level, unique interactions may be “diluted” as relatives do not share the interaction. 

Unless the reaction is strong enough, it will not be part of the final network. This can be prevented if 

the agglomeration step is carried out on the constructed network, rather than on the supplied data. 

In that case, the agglomeration step can retain edges at lower taxonomic levels as part of the 

metadata, and taxa that have conflicting edge signs despite phylogenetic similarity can be retained as 

separate nodes. 

As mentioned previously, researchers can also choose to filter for high prevalence. This 

approach is beneficial in reducing sample heterogeneity and in increasing precision of network 

inference. The only remaining taxa will be more generalist in nature, and interactions for those may 
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be more reliable. Of course, rare taxa will be lost in the analysis. This may be detrimental in some 

cases, as rare taxa may be more likely to perform unique functions (Jousset et al. 2017). Although the 

goal of species reduction would also be achieved by an abundance filter, a prevalence filter may have 

less impact on inferred network structure. The influential species simulated by Gibson et al. (2016) 

were not always highly abundant and would be removed by abundance filters. Moreover, abundance 

filters do not remove sampling heterogeneity, as highly abundant taxa that are only present in a few 

samples would be retained.  

Visualizing functions in addition to taxa 
When species are sufficiently annotated or metagenomics data are available, more detailed 

information about the community members can be included in the network. While this will not 

directly reduce “hairball” size, association networks with such information are easier to interpret. For 

example, KEGG Orthology (KO) profiles or SEED subsystems can be used to predict specific traits or 

metabolic functions (Overbeek et al. 2013; Kanehisa et al. 2016). Moreover, metabolic information 

can reveal functional redundancy when incorporated as a node property. 

Integration of functional profiles in networks could also reveal specific niches. In a study on 

wheat and cucumber, KO profiles were used to identify functional differences between rhizobiomes 

and soil microbiomes (Ofek-Lalzar et al. 2014). The authors found that KOs associated with plant cell 

wall degradation, motility and chemotaxis were enriched in rhizobial communities, and that some 

enrichments were specific to the host species. In fact, specialized tools have been developed to 

perform such comparisons: FishTaco estimates shifts in functional profiles and was used to evaluate 

differences between healthy controls and a Type 2 diabetes cohort (Manor and Borenstein 2017). In 

these contexts, the investigators compared KO profiles of different communities. Similar approaches 

could be used to compare KO profiles of network modules.  

While KO profiles have been used extensively, more abstract descriptions of phenotypes may 

be easier to integrate in a network. For example, the Integrated Microbial Genomes database 

provides phenotypic annotations, and a standard ontology for microbial phenotypes has been 

developed (Markowitz et al. 2011; Chibucos et al. 2014). However, annotating microbial data with 

these phenotypes is not straightforward, as experimental verification of phenotypes may not be 

feasible for many species. Moreover, genotype-phenotype matching is not fully reliable (Power, 

Parkhill and de Oliveira 2017). Hence, ontologies have not been adopted in microbiology as they have 

been in protein research and genomics. For instance, BugBase provides sequence-based annotation 

of 16S and metagenomics datasets (Ward et al. 2017), but only a limited subset of the phenotypes 

described in the ontology of microbial phenotypes is currently available. In contrast, FAPROTAX uses 

functions described in the literature to annotate microbial data (Louca, Parfrey and Doebeli 2016). 

While it currently describes over 80 functions, its use in understudied microbiomes is limited.  

Despite these difficulties, annotation with a suitable ontology, whether this is a phenotype or 

gene-based one, would allow researchers to better integrate their data in databases and perform 

interdisciplinary studies (Bard and Rhee 2004). As sizes of databases increase, and interoperability 

becomes more important, adoption of standard ontologies will be vital to avoid further 

fragmentation of publically available data. Moreover, ontologies can identify the most informative 

features in a biological dataset and are therefore useful in data exploration (Mazandu, Chimusa and 

Mulder 2016). Ontologies also support automated reasoning and could therefore quantify 

differences at multiple levels of the ontological hierarchy (Rodríguez-García and Hoehndorf 2018). 
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Automated reasoning could be used to report all properties that are unique for each node, module 

or network, or to suggest phenotypes of uncultured species. For example, an uncultured species 

assigned to the order Methanomicrobiales could be assigned the methanogen phenotype because all 

cultured species in that order have methanogen activity. As network analysis is not always carried 

out by experts on a particular ecosystem, ontologies can support researchers who possess little in-

depth knowledge of the ecosystem under scrutiny.  

In addition to ontologies, metabolic information can be used to describe specific functions. In 

the context of networks, metabolic information can be mapped onto edges as well as nodes. As 

metabolic functions of microbes can differ or overlap, they can indicate metabolic complementarity 

or redundancy and thus whether edges are likely to represent mutualism or competition. Tools based 

on metabolic models can provide such predictions. For example, RevEcoR computes metabolite 

consumption and secretion to provide indices of complementarity or competition (Cao et al. 2016). 

In contrast, MMinte uses flux balance analysis to compute growth rates of species in mono- and co-

culture. Tools such as these allow investigators to predict ecological interactions between species. 

However, metabolic models require the full genome sequence, are limited by poor annotation and 

may be inaccurate without manual curation (Henry et al. 2010). Hence, their use is limited to a small 

number of well-studied species.  

Strikingly, competition for nutrients may result in associations between species, as habitat 

filtering can have a larger effect on species abundance than competition (Freilich et al. 2009; Levy 

and Borenstein 2013). Hence, predicted competition may appear as co-occurrence in a network, 

while mutualistic cross-feeding relationships can also be inferred as co-occurrence. Consequently, 

metabolic information has the potential to reveal more about the nature of associations than co-

occurrence alone. Positive associations combined with competition predicted from metabolic models 

could be indicative of strong habitat filtering. 

As far as we are aware, there is no optimal choice for agglomeration steps or metadata 

choices. Those depend on the quality of the data and the nature of the experiment.  

Quantifying the performance of network tools 
 Due to lacking benchmark data, researchers frequently have to resort to synthetic 

datasets to identify tool properties. Weiss et al. (2016) evaluate several tools with a synthetic 

dataset, as we did. Their evaluation shows how tools are affected by some of the challenging aspects 

of microbiome data, such as compositionality, sparsity and noise. In contrast, we focused on 

emergent properties and the often overlooked influence of the environment. Our datasets had 

relatively even species abundance distributions and included no additional noise. Hence, tool 

performance in our simulation does not necessarily reflect tool performance on actual datasets. 

However, the simulation highlights to what extent microbial network inference tools differ, both in 

their response to simulated environmental factors and in their ability to identify hub species.  

While both evaluations rely on synthetic datasets, validation through experiments and 

literature are likely to be even more informative, as these reflect the real-world application of 

microbial networks. Moreover, analyses that describe the statistical robustness of microbial 

networks could also highlight problematic conclusions.   
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Synthetic communities validate networks 

Synthetic communities or reduced-complexity communities provide an attractive approach 

for the validation of microbial networks. As the work from Agler et al. (2016) demonstrates, not all 

species, such as those that require live hosts, can be cultured for in vitro interaction assays. To 

remedy this issue, synthetic communities can be established inside or on a host. In contrast to the 

full ecosystem, these communities reduce the size of the microbiome to a level that is more 

amenable to dynamic modelling. For example, Arabidopsis has been used to study the effect of 

reduced-complexity soil communities on plants traits (Panke-Buisse, Lee and Kao-Kniffin 2017). For 

gut microbes, gnotobiotic mice allow researchers to construct synthetic communities and collect 

tissue samples, so that the mechanisms behind host-microbe interactions can be studied more easily 

(Faith et al. 2010; Desai et al. 2016). For communities that can be cultured in vitro, high-throughput 

systems are available that support identification of metabolite-driven interactions (Chodkowski and 

Shade 2017). Hence, synthetic communities serve to validate microbial association networks and in 

some cases to elucidate the interaction mechanisms behind these associations. However, the extent 

to which microbial interactions depend on context is not entirely clear, and this may affect the ability 

of synthetic communities to validate assocations from real-world ecosystems. Microbial interactions 

can vary due to the composition of the background community, and leaving out species or their host 

to construct a synthetic community changes the context (de Muinck et al. 2013; Plichta et al. 2016). 

In addition to validation of networks, synthetic communities can be used to study dynamics 

of microbial communities (Vorholt et al. 2017). For example, competition may be required for a 

stable microbiome (Coyte, Schluter and Foster 2015) , and synthetic communities could test this 

hypothesis. Investigators could also perturb synthetic communities and observe the consequences 

for network structure, as was done for gene regulatory networks (Luscombe et al. 2004).  

Linking network properties to dynamic behaviour of microbial communities would allow us to 

discover novel applications of networks as a diagnostic tool. For example, in silico robustness may be 

predictive of an ecosystem’s robustness and may be a tool for management of such ecosystems. 

Identifying influencers or hub species would allow clinicians to prescribe alternative antibiotics that 

achieve a shift towards a healthier community state without affecting the entire gut microbiota, as 

proposed by Mahana et al. (2016). Such applications are still science fiction until a link between 

these in silico models and experimental observations has been thoroughly established. Synthetic 

communities may help in the establishment of this link.  

In fact, the role of microbial interactions in disease has already been characterized with 

relatively simple communities. For example, polymicrobial urinary tract infections (UTIs) are caused 

by bacterial communities. De Vos et al. (2017) constructed an interaction network from mono- and 

cocultures, which revealed that microbial interactions had two major effects: they resulted in the 

assembly of highly stable UTI communities, and they provided tolerance to antibiotics for sensitive 

strains. A study on Drosophila gut microbes showed that higher-order interactions were important in 

the maintenance of biodiversity, and that this diversity affected Drosophila fitness (Gould et al. 

2017).  

Even though validation of microbial association networks may still be out of reach in some (if 

not most) cases, establishing the effect of context dependency, the biological implications of hub 

species and the dynamics of microbial networks already represent valuable contributions.  
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Benchmark datasets are necessary to develop better tools 

Throughout this review, we have demonstrated that network analysis requires investigators 

to develop unique approaches that answer their research questions. As a result, no standard for data 

processing or parameter selection is available. Nor is there a “one size fits all” tool. Hence, 

developing standard protocols for network construction, as was done for amplicon sequencing in the 

Earth Microbiome Project, is currently not feasible (Thompson et al. 2017). This is in part due to our 

lack of knowledge on tool performance; we have no benchmark dataset to measure tool accuracy. It 

is also due to the possibility to integrate multiple data sources. The more metadata is included in a 

network, the larger the effect of multiple testing. Hence, expert knowledge will remain valuable in 

the selection of relevant biotic and abiotic factors. 

However, microbial network inference tools would benefit from standardized benchmark 

datasets, similar to those developed for microbiome studies or inference of gene regulatory 

networks (Marbach et al. 2010; Sinha et al. 2015). What would these benchmark datasets look like? 

Firstly, there would be no single ideal dataset, but rather, a suite of datasets. While the tools make 

different assumptions and implement different methods, there is no clear best tool for the job. This 

is for two reasons; firstly, we do not know sufficiently well which jobs a tool does well (e.g. high-

precision prediction of associations, hub taxon identification, module detection etc.), and secondly, 

we do not yet know which aspects of microbial networks are meaningful for the analysis of real-

world datasets. For example, high precision may not be a requirement for accurate assessments of 

node importance, but we do not yet understand which measure of node importance best reflects the 

ecological importance of a species.   

To tackle that first reason, it is necessary to evaluate biases and limitations that particular 

tools may have. For example, we found that CoNet and SPIEC-EASI were able to find hub species with 

low relative abundances, while the other tools did not identify them. Hence, if identification of these 

species is important, SparCC and gCoda may not be the best choice. At the same time, SparCC may 

do better when handling datasets with low numbers of effective species (Weiss et al. 2016). 

Revealing such biases requires (simulated) datasets with a pre-specified evenness, species centrality 

or other property of interest. However, the novelty of such evaluations, especially when repeated on 

newer tools, may be insufficient to garner interest in the scientific community. Therefore, any such 

benchmark datasets should be accessible and simple to use to support systematic adoption by tool 

developers. NeSSM provides an example of such a resource for microbiome sequencing, as it 

constructs artificial metagenomes from a reference database (Jia et al. 2013). With data simulators 

such as NeSSM, users are able to evaluate how their tools perform on low- versus high-complexity 

communities, or how they are affected by different sequencing technologies. As it is still poorly 

understood how data quality and pre-processing affects microbial network inference, network 

inference tool developers would benefit from such a resource.  

However, NeSSM output, as other simulations, may not reflect real-world microbial 

communities. For example, we assumed in our simulation that microbial communities follow 

relatively simple Lotka-Volterra dynamics. As real-world communities may only partially be governed 

by such dynamics and since we did not simulate measurement noise, tool performance on our 

simulated datasets will differ from the real-world situation. At the same time, in most cases we do 

not know the interactions and dynamics underlying real-world microbiomes, so performance cannot 
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be evaluated on these datasets. Data from synthetic communities would provide an intermediate 

representation of complexity. For sequencing analysis, the mockrobiota resource, which contains 

data from mock communities, serves this purpose (Bokulich et al. 2016).  

Yet, synthetic communities face similar limitations as mockrobiota: they are still poor 

reflections of real-world data, as they only contain a fraction of the diversity and noise. While there is 

no complete ground truth available for real-world datasets (e.g. all interactions and processes have 

been quantified), a database could be constructed that would contain known associations. This could 

be used to conclude whether inferred networks are supported by literature, or to more 

systematically evaluate to what extent network structure reflects ecology. Figure 7 provides an 

illustration of such benchmarks. With different types of benchmarks available, we can expect a more 

diverse range of performance estimators. These would allow users to make more informed choices 

regarding the network inference tool and the experimental design.  

Statistical robustness of network properties  

Overall, there are some key methodological issues that need to be resolved to reduce bias in 

the field. Such issues go beyond the performance of microbial network inference tools, and require 

researchers to understand the limitations of their approaches. Firstly, the number of errors in 

microbial association networks is large and may be mitigated with appropriate pre-processing steps. 

Yet, the high false positive rate of these tools and apparent sensitivity to settings implies that 

statistical robustness of networks properties (in the sense that they are not affected by different 

settings, missing values, noise or errors) may be low.  

Conclusions drawn from association networks would therefore benefit from statistical 

robustness analysis. The centrality of a node could be reported together with a confidence interval or 

some other measure of statistical robustness. For example, networks can be rewired while 

preserving the degree and number of associations (Karrer, Levina and Newman 2008). The authors 

used this rewiring strategy to calculate a “variation of information” coefficient. This coefficient 

quantifies how similar an emergent property (e.g. betweenness centrality) of a slightly rewired 

network was to the original network; if the network property is statistically robust, the coefficient is 

small. Hence, their coefficient identifies emergent properties that would change if some of the edges 

are incorrect. It may not be sensible to report hub species if their confidence interval overlaps with 

~50% of the nodes in the network.   

While the previous example addresses statistical robustness, the coefficient does not 

explicitly address incomplete data. Borgatti, Carley and Krackhardt (2006) tested the effect of four 

different types of errors on network properties: edge deletion, node deletion, edge addition and 

node addition. Accuracy for nearly all evaluated measures, i.e. degree and different types of 

centrality, decreased as the number of errors increased. However, they found that properties of 

observed networks, even with errors, reflected the properties of their synthetic networks. Wang et 

al. (2012) expanded upon this analysis by testing real-world networks and exploring different types 

of error. Interestingly, they found that false aggregation, which occurs when two nodes are wrongly 

described as one node, had a major effect on centrality.  

Not only is false aggregation inherent to species assignment, it may also be introduced by 

taxonomic agglomeration of species. Hence, network properties may be far less robust when 

abundance data are generalized to higher taxonomic levels. This contrasts to our earlier statement 
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that taxonomic agglomeration can make a network more interpretable; if the network is 

agglomerated, in silico experiments may not be as reliable as the global structure of the network is 

changed. Moreover, network properties like the clustering coefficient or node centralities will 

change.  

Overall, publishing a confidence estimate would allow readers to judge network properties 

appropriately. Frantz and Carley (2017) developed a statistic, the confidence level, that quantifies 

how reliable centrality (i.e. degree, betweenness) estimates are when the false negative error rate is 

known. While such a statistic would be valuable for microbiome studies, we do not know what the 

error rates are, and how they relate to sequencing depth, aggregation or network inference method. 

Consequently, estimating error rates is likely to be guesswork until complex, validated networks are 

available. While a confidence interval that includes methodologically introduced errors may not be 

achievable, information coefficients based on rewired networks can already be calculated.  

Networks do not explain mechanisms (yet) 

Even if we were able to infer network properties with high accuracy, such properties may not 

yield useful biological knowledge. For example, network robustness is a representation of ecological 

robustness, but we do not know if this is a biologically relevant representation. If the value of 

network properties in microbiology is to be realized, we need to better understand how network 

robustness reflects ecological robustness, or in what sense hub species are important to microbial 

communities. As these are still open questions, experimental validation remains vital to any study 

reporting these properties, and studies that do not validate network properties should be careful to 

attribute meaning to them.  

Networks provide a valuable tool, but they are best considered as a generator of new 

hypotheses rather than a solid conclusion. Moreover, they are likely to represent different aspects of 

microbial communities depending on the tool used to construct the network. If the hypothesis 

focuses on causal relationships, tools that exploit time-series data may be more suitable due to their 

ability to provide directed networks. Similarly, if environmental factors are expected to significantly 

influence community structure, a tool that can take these factors (e.g. CoNet or MInt) into account 

may be more appropriate.    

The integration of external data provides additional support for hypotheses based on 

microbial networks. Besides information on metabolism or the phenotype, that could include a 

reference database. Such databases have already been developed for protein interactions and 

macro-ecological interactions (Poelen, Simons and Mungall 2014; Szklarczyk et al. 2016). It is possible 

that certain trophic chains, cross-feeding, host-parasite or other interactions are conserved over 

space and time. Like genes, those interactions could be mapped to “orthologous” groups that 

represent cross-feeding, quorum sensing or even indicators of environmentally-induced indirect 

interactions. Edge curation is time-consuming. A reference database could, especially for well-

studied systems such as the gut, indicate conserved interactions. Standardized metadata annotations 

would allow for more robust inter-sample comparisons and permit larger-scale, more informative 

meta-studies.  

Microbiome datasets are being produced faster than ever, but we only begin to understand 

the structure and functioning of microbial communities. Microbial networks provides a flexible and 

valuable tool in increasing that understanding, even though they have some pitfalls. Without context, 
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they mean little; hence, it is up to microbiologists to provide that context, and to analysts to 

integrate it into the networks.  
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Figure 1: Sources of co-occurrence in microbial interaction networks. 

(A) Co-occurrence relationships can be driven by microbial interactions. Cross-feeding between 

species can be detected as co-occurrence relationships, while competition can cause mutual 

exclusion. (B) Organisms that share niches are more likely to co-occur. If samples were taken from a 

heterogeneous environment, differing niche specialization may induce spurious interactions. (C) Not 

all interacting species are detected in a 16S rRNA dataset. (D) The final inferred network contains 

both spurious and true interactions. 
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Figure 2: Emergent node properties in networks.  

(A) Network with the green node representing a hub, as it has the highest degree. (B) Network with 

the green node having the highest betweenness centrality. (C) Examples of motifs that can be found 

in networks. The feed-forward motif is a known motif in gene regulatory networks (Shen-Orr et al. 

2002), while the clique and triad motifs are examples of motifs that can be found in undirected 

microbial networks (Ma and Ye, 2017). (D) Assortativity in a network. The green node is assortative, 

because it only connects to other nodes with the same degree. The blue node is disassortative. (E) 

Fragility or robustness in a network. This network is fragile to targeted attacks, because any attack on 

the green nodes fragments the network. 
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Figure 3: Node directionality can influence node importance.  

(A) In this undirected network, the red-bordered blue node scores best on centrality measures. As 

movement across this node is possible, in silico simulations of random walks, shortest paths or other 

types of movement will support the hypothesis that this node plays a key role in network structure. 

(B) In this directed network, in silico simulations of movement processes will not traverse the blue 

node. Hence, the red-bordered grey node can now be identified as having the most influence. 
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Figure 4: Network statistics for association networks inferred by CoNet, gCoda, SparCC, Spearman 

correlation and SPIEC-EASI from datasets with increasing environmental strength.  

For CoNet, two p-value merging methods were tested: Fisher p-value merging and Brown p-value 

merging. For SPIEC-EASI, two different algorithms were included: the graphical lasso as well as the 

Meinshausen-Bühlmann method. These settings are referred to as GL and MB. (A) Precision versus 

sensitivity curve for all generated networks. Sensitivity measures how many of the known 

interactions are predicted, whereas precision quantifies how many of the predicted interactions are 

correct. In (B-E) a quadratic function was fitted to the data points, and the gray area represents the 

95% confidence interval for the predicted quadratic function. (B) Average degree for all networks, 

with the average degree for the Klemm-Eguíluz matrices indicated at x = 0. The average degree 

increases drastically for CoNet and Spearman. (C-E) Precision, assortativity and transitivity of all 

networks. Precision decreases for all tools when environmental strength increases, whereas 

transitivity increases. However, no general trend can be observed for assortativity.   
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Figure 5: Network structure across the environmental gradient for networks inferred with SPIEC-

EASI and CoNet. 

SPIEC-EASI was run with the Meinshausen-Bühlmann method, while CoNet used Brown p-value 

merging. For visualization of SPIEC-EASI networks, a circular layout was used, while the CoNet 

networks were visualized with a force-directed layout that takes edge sign into account. Two 

modules become visible as the environment becomes stronger. Similar to the modules found by 

SPIEC-EASI, those displayed in the CoNet 0.7 network are connected by positive edges. The fill and 

border colours of the nodes indicate the effect of the two environmental conditions on growth rates, 

with green implying that the condition has a positive effect on the growth rate and red implying a 

reduced growth rate. In the last two CoNet networks, the blue nodes represent environmental 

factors.  
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Figure 6: Number of correct predictions and p-values in networks inferred with CoNet, gCoda, 

SparCC, Spearman correlation and SPIEC-EASI. In both figures, the standard deviation is shown. For 

CoNet, two p-value merging methods were tested: Fisher p-value merging and Brown p-value 

merging. For SPIEC-EASI, two different algorithms were included: the graphical lasso as well as the 

Meinshausen-Bühlmann method. These settings are referred to as GL and MB. (A) Mean number of 

correctly predicted hubs for increasingly large sets of hubs. A quadratic equation was fitted to the 

data points. (B) Mean p-values for increasingly large sets of hubs, with the p-values calculated 

individually for each replicate. These values were calculated from the hypergeometric test, where 

the p-value represents the probability that the correctly predicted hubs were drawn randomly from 

the population (n=100). Values below the purple line are smaller than 0.05. 
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Figure 7: Types of benchmark suites for evaluation of network inference tools.  

(A) Simulated datasets using different models can help evaluate whether tools are able to identify 

ecological interactions and network properties (B) Synthetic communities can provide a ground-truth 

network with known interactions, which can then be used to evaluate tool precision on real-world 

data. (C) Network modules can be associated to specific environmental factors or metabolic 

properties. Inferred networks could be evaluated for their visualization of such modules, if prior 

biological knowledge is available. (D) A reference database could be used to match inferred edges to 

known interactions. In this way, the sensitivity of network inference can be assessed for real-world 

communities. While it is straightforward to assess precision in simulated and synthetic communities, 

it is difficult to measure it for real-world communities, since the absence of a predicted interaction is 

hard to prove. 
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