Exploiting Justifications for Lazy Grounding of Answer Set Programs*

Bart Bogaerts' and Antonius Weinzierl*
7 KU Leuven, Department of Computer Science, Celestijnenlaan 200A, Leuven, Belgium
T Aalto University, Department of Computer Science, FI-00076 AALTO, Finland

Abstract

Answer set programming (ASP) is an estab-
lished knowledge representation formalism. Lazy
grounding avoids the so-called grounding bottle-
neck of ASP by interleaving grounding and solv-
ing; this technique was recently extended to work
with conflict-driven clause learning. Unfortunately,
it often happens that such a lazy grounding ASP
system, at the fixpoint of the evaluation, arrives at
an assignment that contains literals that are true but
unjustified. The system then is unable to determine
the actual causes of the situation and falls back to
chronological backtracking, potentially wasting an
exponential amount of time.

In this paper, we show how top-down query mech-
anisms can be used to analyze the situation, learn
a new clause or nogood, and backjump further in
the search tree. Contributions include a rephras-
ing of lazy grounding in terms of justifications and
algorithms to construct relevant justifications with-
out grounding. Initial experiments indicate that the
newly developed techniques indeed allow for an ex-
ponential speed-up.

1 Introduction

After Gelfond and Lifschitz [1988] defined the stable se-
mantics for logic programs, it was noticed that normal logic
programs under this semantics can be used to encode NP-
hard decision problems [Marek and Truszczyriski, 1999;
Niemeli, 1999; Lifschitz, 1999]. This observation started the
field of answer set programming (ASP). By now, ASP has
matured: ASP users have access to arich first-order language,
ASP-Core2 [Calimeri et al., 2013], to express their knowl-
edge in, and to many efficient ASP solvers [Gebser et al.,
20171, building on top of techniques such as conflict-driven
clause learning (CDCL) [Marques-Silva and Sakallah, 1999]
from satisfiability solving [Marques Silva et al., 2009] and
lazy clause generation [Stuckey, 2010] from constraint pro-
gramming [Apt, 2003].

*Bart Bogaerts is a postdoctoral fellow of the Research Founda-
tion — Flanders (FWO). Antonius Weinzierl has been supported by
the Academy of Finland, project 251170.

To translate ASP-Core2 programs to input for the solvers,
first-order variables need to be eliminated by means of
grounding. For a long time, progress in ASP mainly focussed
on improving efficiency of the solvers, while few grounders
were developed. Recently, more attention went to problems
where grounding is the bottleneck [Balduccini et al., 2013].
Examples include queries, such as reachability over a large
graph; planning problems, with a very large number of po-
tential time steps, or problems where the full grounding con-
tains a lot of unnecessary information and the actual search
problem is not very hard. To circumvent the grounding bot-
tleneck, different techniques are being developed. For ex-
ample, intelligent grounding [Calimeri et al., 2017] and rule
decomposition [Bichler er al., 2016] allow to mitigate the
grounding bottleneck and for query problems, top down eval-
uation is often used. For planning instances, and related types
of problems incremental grounding [Gebser et al., 2011] is
used, for instance, to introduce time steps on-the-fly, when the
solver notices no solution exists in the given window. More
generally, lazy grounding is a class of techniques that con-
struct parts of the grounding when the solver needs them.
Bottom-up lazy grounding systems include Omiga [Dao-
Tran et al., 2012], GASP [Dal Palu et al., 2009], ASPeRiX
[Lefevre and Nicolas, 2009] and the recently introduced AL-
PHA [Weinzierl, 2017] that integrates lazy grounding with
a CDCL solver. Also top-down lazy grounding techniques
[De Cat er al., 2015] and top-down stable model generation
techniques that avoid grounding [Marple and Gupta, 2012;
Marple et al., 2017] exist.

In this paper, we focus on ALPHA; more specifically, we
provide a solution for one of its weaknesses. ALPHA works
by grounding only those rules whose positive body is satisfied
(in the assignment maintained by the solver); it might happen
that a certain atom, say p, is true due to a constraint, while
there are no rules in the grounding that derive p. Consider the
following simple example

— p. (L
r(17).)
p < q(X)Ar(X). 3)
{q(1..20)}. @)

This program contains a constraint that p must be true, a fact
r(17), a rule that derives p if ¢(17) holds and a choice rule
for all g(X') with X € {1..20}. On this example, ALPHA will

give rules (1), (2), and (4) to the solver, but the rule (3) will
only be given to the solver if it reaches an assignment where
q(17) is true. Hence, as soon as the solver chooses ¢(17) to be
false, it loses the possibility to find a stable model. Currently,
ALPHA has no mechanism to analyze why rules deriving p are
missing. Using top down techniques, we present exactly such
a mechanism, that in this case allows ALPHA to back-jump to
the decision level where ¢(17) was decided. Intuitively, our
analysis works as follows. We start from an atom for which
deriving rules are missing (in our example: p). For each rule
that could derive p, it picks an atom from the body of the rule
that explains why this rule did not derive p. Whenever pos-
sible, it avoids instantiating. In our example, the algorithm
would pick ¢(17) and (r(X), X # 17), where the latter is
a symbolic representation of the set of all atoms r(X) with
X # 17. Our algorithm then recursively also searches for
explanations for those literals. In the current case, ¢(17) was
simply a choice and hence does not need to be explained fur-
ther and there are no rules that could derive an atom r(X)
with X # 17. Hence, the algorithm terminates and returns
the explanation that ¢(17) being false is what causes p to not
be derived. In the algorithm we present, there is some liberty
with respect to the order in which literals in a rule body are
considered. In our specific example, this could lead, for in-
stance to the algorithm picking ¢(17) and (¢(X), X # 17) as
an explanation for the lack of derivations of p. This is much
less optimal and would resort to chronological backtracking
again. As such, there is a lot of room for heuristics to opti-
mize our algorithm in the future.

We implemented this idea in ALPHA. Preliminary experi-
ments highlight a class of problems where exponential speed-
ups can be achieved.

Our main contributions are: (i) a novel formalization and
partial proof of correctness of ALPHA, based on justifications
[Denecker er al., 2015], (ii) algorithms to construct justifica-
tions in order to learn a new clause that makes ALPHA back-
jump, and (iii) an extension of ALPHA allowing up to expo-
nential speed up as initial benchmarks show. The ideas and
algorithms developed here are not just limited to ALPHA; they
are also applicable to other lazy grounding approaches to ASP
such as Omiga and ASPeRiX.

2 Preliminaries

Answer Set Programming. Let C be a set of constants, V
be a set of variables, and Q be a set of predicates, each with
an associated arity, i.e., elements of Q are of the form p/k
where p is the predicate name and k its arity. A (non-ground)
term is an element of C U V.!' The set of all terms is de-
noted 7. A (non-ground) atom is an expression of the form
p(t1,...,t,) where p/k € Q and t; € T for each i. The set
of all atoms is denoted A. If p € A, then var(p) denotes
the set of variables occurring in p. We say that p is ground if
var(p) = (. The set of all ground atoms is denoted Ag4,. A
literal is an atom p or its negation —p. The former is called

1Following Weinzierl [2017], we omit function symbols to sim-
plify the presentation. All our results still hold in the presence of
function symbols, except for termination, for which additional (syn-
tactic) restrictions must be imposed.

a positive literal, the latter a negative literal. Slightly abusing
notation, if [is a literal, we use —[to denote the literal that
is the negation of [, i.e., we use —(—p) to denote p. The set
of all literals is denoted £ and the set of ground literals L.
A clause is a disjunction of literals. A (normal) rule is an
expression of the form

p<+ L

where p is an atom and L a set of literals. If r is such
a rule, its head, positive body, negative body and body are
defined as H(r) = p, Bt (r) = ANL, B~ ={q e A|
—q € L} and B(r) = L respectively. We call r a fact if
B(r) = 0 and ground if p and all literals in L are ground.
We use var(r) to denote the set of variables occurring in 7. A
rule 7 is safe if all variables in r occur in its positive body, i.e.,
if var(r) C var(BT(r)). A logic program P is a finite set
of safe rules. P is ground if each r € P is. In our examples,
logic programs are presented in a more general format, using,
e.g., choice rules (see [Calimeri et al., 2013]). These can
easily be translated into the format considered here.

A variable substitution is a mapping o : V — T. We write
[t1/X1,...,tn/Xy] for the substitution that maps each X;
to t; and each other variable to itself. The result of applying
a substitution o to an expression (term/atom/literal/rule) e is
the expression obtained by replacing all variables X by o (X)
and is denoted o(e). If p and ¢ are two atoms, a substitution
o such that o(p) = o(q) is a unifier of p and ¢g. A unifier o
is most general, if for any unifier o; there is a substitution o9
such that 07 = o o 2. We denote the most general unifier
of p and ¢ by mgu(p, q). Given two (not necessarily ground)
atoms p and g, we say p is an instance of q if there exists a
substitution o such that p = o(g). Given an expression e, if
o maps var(e) into C, we call o a grounding substitution (of
e). The grounding of a rule is given by

gr(r) = {o(r) | o is a grounding substitution}

and the (full) grounding of a program P is defined as
gr(P) = U,ep gr(r).

A (Herbrand) interpretation I is a finite set of ground
atoms. The satisfaction relation between interpretations and
literals is given by I = pifp € Tand I | —pifp & I.
An interpretation satisfies a set L of literals if it satisfies each
literal in L. Given an interpretation I and a ground program
‘P, the FLP-reduct [Faber et al., 2011] of P with respect to I,
is P! = {r | I = B(r)}. An interpretation [is a model of a
ground program P if for each rule r € P with I |= B(r), also
I = H(r). An interpretation I is a stable model (or answer
set) of a ground program P [Gelfond and Lifschitz, 1988] if
it is a subset-minimal model of PL. If P is non-ground, we
say that 7 is an answer set of P if it is an answer set of gr(P).
The set of all answer sets of P is denoted AS(P).

A partial interpretation is a consistent set (does not contain
both p and —p) of ground literals. The value of a literal [in a
partial interpretation Z is [= tif | € Z,fif =l € T and u
otherwise.

Justifications. We briefly provide some background on jus-
tifications [Denecker et al., 2015; Denecker and De Schreye,
1993; Passchyn, 2017]. Our presentation is limited: we do not

cover the entire theory, but a version specialized for ASP, i.e.,
by only considering the stable branch evaluation. In this sec-
tion, assume P is a ground logic program. A P-justification
J with domain D; C L, is a function D — 20 guch that
e For each positive literal p € Dy, there is arule p < S
in P such that S C J(p).
e For each negative literal -p € D and rule p < S'in P,
it holds that ~.S'N J(—p) # 0, with =S = {—s | s € S}.
A justification explains for the literals it its domain why
they are true. For atoms, this explanation is a rule that derives
it, for negative literal, it is a witness that no rule can derive
its underlying atom (a set that contains at least the negation
of one literal in every rule that could derive that atom). Of
course, not every justification provides a sensible reason why
something is true, as illustrated below.

Example 2.1. Let P denote the logic program {p < p.} The
function p — {p} is a justification, depicted” below

p

It is clear that in the unique stable model of P, p is false.
Hence, any explanation why it is true should be rejected. A

A justification J is locally complete if J(D;) C Dy, ie.,
if every literal that is used as the explanation of another literal
is itself explained. A branch in a locally complete justifica-
tion is a sequence (I;)ic[o..n) OF (/;)ien such that for each i,
li+1 € J(1;). Abranchis positive if all its literals are positive,
negative if all its literals are negative and mixed otherwise. If
B = (l;) is a mixed branch, we denote by ch(B) the first
literal with a sign switch, i.e., its first negative literal if [is
positive and the first positive literal otherwise. A branch is
maximal if it cannot be extended to a longer branch. The
value of a branch B of a locally complete justification .J in a
partial interpretation Z, denoted v(B, Z) is a truth value (t, f
or u) defined as follows

e (B, I) = ch(B)? if B is mixed,

e v(B,I) = I if B = (l;)ic)..,) and B is not mixed,

e v(B,T) = f if B is an infinite positive branch,

e v(B,Z) =t if B is an infinite negative branch.

The truth values are ordered in the truth order f <; u <;
t. The value v(J,Z) of a locally complete justification .J is
defined as the <;-minimal value of its maximal branches. The
value of a justification .J (not neccesarily locally complete) in
T is t (respectively f) if all locally complete extensions of J
have value t (resp. f) in Z, and u otherwise. A justification J
Jjustifies aliteral [inZ ifl € Dy and v(J,Z) = t. We say [is
Jjustified by P if there exists a P-justification that justifies .

Example 2.2. Consider the following program
p < —q
q < p
T4 g
S r

P:

And consider the interpretations I; = {p,r} and Iy = {p, s}.
The former is a stable model of P, the latter is not. The fol-
lowing justification J; justifies p, r, 7q and —s in I;.

< T
8 =1 ——> ¢ p
~_~

2We often depict a justification J as a directed graph G = (V, E)
with V = Dy U J(Dy)and (I,I') € Eifand only if I’ € J(I).

There exists no justification that justifies —r in I5. In fact, the
following is a justification that justifies r in I5:

r —— g

The existence of such a justification means that —r cannot be
justified in /5. A

The following proposition explicates the link between sta-
ble models and justifications. It is due to Denecker et
al. [2015] (Theorem 1).

Proposition 2.3. The following statements are equivalent:
e [is a stable model of P,
o [is amodel of P and for each p € Awith I |= p, there
exists a justification that justifies p in I.

3 ALPHA and Justifications

The ALPHA algorithm. We present a new formalization
of the ALPHA algorithm [Weinzierl, 2017]. Our presenta-
tion differs from the original, as we rephrase conditions in
terms of justifications. One terminological differences worth
pointing out is that we do not use truth values MUST-BE-
TRUE, TRUE, FALSE and UNASSIGNED, but instead keep
track of the truth of atoms and whether or not they are jus-
tified. For instance, the truth value MUST-BE-TRUE from
Weinzierl [2017] corresponds to t but not justified in our set-
ting, while TRUE from Weinzierl [2017] corresponds to t
and justified in our setting. The state of ALPHA is a tuple
(P,Py,C,, Sy), where

e P is alogic program,

o P, C gr(P) is the so-far grounded program; we use
¥4 € Ay to denote the set of ground atoms that occur
in Pg,

o (is a set of (learned) clauses,

e « is the trail; this is a sequence of tuples (I, c) with !
a literal and c either the symbol d, a rule in P, or a
clause in C. « is restricted to not containing no two
tuples (I,¢) and (—I,¢'); in a tuple (I,¢) € a, c repre-
sents the reason for making [true: either decision (de-
noted d) or propagation because of some rule or clause;
« implicitly determines a partial interpretation denoted
Zo ={l| (I,¢) € a for some c}.

e S; C Ais the set of atoms that are justified by P, in I,,.

For clause learning and propagation, a rule p < L is

treated as the clause —p V \/,; [. Whenever we refer to “a
clause” in the following, we mean any rule in P, (viewed as
a clause) or clause in C. We refer to rules whenever the rule
structure is needed (for determining justified atoms).

ALPHA interleaves CDCL and grounding. It performs (it-

eratively) the following steps (listed by priority).

conflict If a clause in C' U Py is violated, analyze the con-
flict, learn a new clause (add to C) and back-jump
(undo changes to o and S that happened since a cer-
tain point) following the so-called 1UIP schema [Zhang
et al., 2001].

(unit) propagate If all literals of a clause c € C'U P, except
for [are false in Z,,, add (l, ¢) to .

justify If there is a rule r such that B*(r) C S, and
B~ (r) CZy,add H(r) to S;.

ground If, for some grounding substitution o and r € P,
Bt (o(r)) C Z,, add o(r) to P,.

decide Pick (using some heuristics [Taupe et al., 2017]) one
atom p, occurring in Py that is unknown in Z,, and add
(p,) or (=p, 9) to &>

Justification-conflict If all atoms in P, are assigned while
some atom is true but not justified, learn a new clause,
namely —ly V - - -V —l,, where the [; are all the decisions
in o and backtrack (undo changes to « and S; that hap-
pened in the last decision level).

Motivation. One of the weak points of ALPHA is the step
justification-conflict. This step is used when the solver ar-
rives in a state where an atom is true but not justified and
none of the other rules apply. Intuitively, this means that due
to choices of the solver, there are not enough rules to derive
this atom (or one of the atoms it depends on), either because
the grounder did not produce them, or because certain deci-
sions imply a rule does not fire. In that case, ALPHA resorts to
chronological backtracking. This is not optimal as the reason
why an atom is unjustified might only be related to certain
choices. To illustrate this, consider the following example.

Example 3.1. Let P denote the following program.

n(a). n(). n(c). n(d). n(e). (5)
q(X) < n(X), ng(X). ng(X) + n(X),~q(X). (6)

:) < q(X),—p(X). (D)
< —p(e). 3

When given this program, ALPHA starts by adding rules (5),
(8) and all ground instances of rules (6) to P,. Next, it propa-
gates p(e) to be t. Next, it makes a choice on one of the atoms
of g, say it chooses ¢(e) false, and subsequently all other gs
false too. Now, no rules but justification-conflict apply. The
atom p(e) is true but not justified. As can be seen, the reason
why p(e) is unjustified is the fact that no single rule with p(e)
in the head was grounded, which in turn is explained by the
fact that ¢(e) was chosen false. Instead of backtracking, the
reasonable option here would be to undo all choices (back-
track to level 0) and learn the clause g(e).

In the terminology of justifications, —p(e) is justified by
gr(P) in Z,, as witnessed by the following justification

—p(e)

The black part of this justification represents the relevant in-
formation, i.e., that the choice to make g(e) false blocks all
possibilities to justify p(e). A

—q(e) nq(e)

Lazy Grounding and Justifications. We now formally
prove our observation from the previous section. More con-
cretely, we show that whenever the rule justification-conflict
is used for p, —p is justified. From this, it follows that there
is no answer set that extends the current assignment. Hence,
we can conclude that backtracking is indeed correct when-
ever such a state is found. The proof of our main result is

3ALPHA actually only allows deciding on certain atoms, hence
our presentation is slightly more general.

constructive and hence yields a way to actually build a justi-
fication for —p. Such a justification provides valuable infor-
mation: it highlights parts of the current assignment respon-
sible for —p being justified. As such, by analyzing it, we can
devise a smarter back-jumping mechanism for justification-
conflict. In practice, however, this result not directly usable,
as it makes use of the full grounding of P. In the next sec-
tion, we provide an algorithm that builds such a justification
without constructing gr(P).

Theorem 3.2. Assume ALPHA is in a state (P, Py, C, o, Sy)
where no rules but justification-conflict apply. If p is true but
not justified by Py in L,, then —p is justified by gr(P) in L.

The proof is omitted due to page restrictions. The idea is
that using the fact that ALPHA did not ground certain rules,
we can construct a justification for rules in gr(P) \ P, Gf
ALPHA did not ground a rule, at least one positive literal in
its body is not true and hence, not justified) and using the fact
that p is not justified by Py, we can construct a justification of
—p in P,. With some caution, they can be “glued together”.

4 Analyzing Unjustifiedness

In the previous section, we showed that whenever the solver
arrives in a state where all atoms in 3, have been decided
and p is true but not justified, there exists a justification J of
—p by gr(P) such that v(J,Z,) = t. This justification ex-
plains why p is not justified. However, this is a justification
by gr(P), which we do not wish to construct (avoiding this
is why we apply lazy grounding in the first place). The al-
gorithm we present below avoids the grounding phase, taking
inspiration from top-down logic programming techniques. In
a nutshell, the algorithm performs a form of partial deduc-
tion (also known as partial evaluation) [Komorowski, 19921,
starting from the atom that is true but unjustified and itera-
tively unfolding rules. What we add are (i) a loop-breaking
mechanism for stable semantics, (ii) a way to take the cur-
rent interpretation of the solver into account, and (iii) a way
to keep track of which substitutions of each rule are relevant.

The idea underlying the algorithm is that instead of build-
ing a justification where nodes are ground literals, we build
a justification where nodes are sets of ground literals (rep-
resented symbolically using non-ground literals); the special
case where such a such a set is a singleton corresponds to a
justification. Such a set, called litset below, represents ground
literals that need to be justified without explicitly enumerat-
ing all those ground literals. Before providing formal defini-
tions, we illustrate this idea in a small example.

Example 4.1. Let P denote the following logic program.

r + p(X). — . t(1). t(2). t(3).
p(X) — UX) A g(X). g(X) e s(X).
s(X) « X € {1..10}, ~ns(X)

ns(X) + X € {1..10}, -s(X).

Consider an interpretation where all atoms over s are false
while r,¢(1),¢(2), and ¢(3) are true. In this case, r is true but

not justified. The following graph:

-r —q(1) — =s(1) —ns(1)
v _—
—p(X)(X € C) —— —¢q(2) — —s(2) — ns(2)
\
—t(X)(X e C\ {1..3}) —q(3) — —s(3) — ns(3)
describes (symbolically) why —r is justified without actually
computing the entire grounding of P. What it represents is:
e —r is justified because of a lack of constants c such that
p(c) holds.
e The lack of such constants is explained by ¢ not being
true outside {1..3}, and ¢ not being true in {1..3}
It can be seen as a first-order representation of the justification

-

Y \>m
—p(1) —_—p(2) .- = —q(1) —=—s(1) —=mns(1)
—q(2) — —8(2) — ns(2)
—t(4) —t(5) —q(3) —= ~s(3) —ns(3)

This justification is far from minimal. For instance —¢q(2) is
not required to explain —p(1). However, it is a good justifi-
cation of —r that is true in every partial interpretation where
s(1),s(2) and s(3) are false. Without constructing it, from
the first-order representation, we conclude that a reason for r
not being justified is that s(1), s(2) and s(3) are false. A

In order to represent nodes such as
—t(X)(X € C\ {1..3}), we formally introduce litsets.

Definition 4.2. A litset is a tuple (I, N) where [is a (possibly
non-ground) literal and N is a set of substitutions of variables
occurring in /.

The litset (I, N) is a first-order representation of the set

, 1 U is a ground instance of [and
set(l,N) := {l | ﬂEIange N s.t. I is an instance of o,,(]) }
We say that a (non-ground) literal ¢ is covered by a litset
(p, N) if each ground instance of ¢ is an element of set(p, N).

The intuition behind our algorithm is as follows. We start
from a ground literal —p such that p is true but unjustified.
This literal is represented by the litset (—p,). During a run,
we construct a graph of litsets as a compact, first-order repre-
sentation of a justification. The graph is constructed in such
a way that the corresponding justification evaluates to true in
T.: the domain of the justification consists only of negative
literals and the leafs of the justification (elements occurring
in the justification but not in the domain) are true positive lit-
erals. As such, all branches of the justification are: either
mixed and ending in a true literal or infinite and negative. To
construct it, we keep track of:

e A et D (for “done”) of litsets that are already explained,

e A set TD (for “todo”) of litsets that still need to be ex-

plained in terms of atoms known to the solver,

e A set L (for “leafs”) of ground literals that form the leafs

of the justification.

Algorithm 1: ANALYZE: High level overview of the
justification-conflict analysis.

Input: A true, but unjustified atom p, a set of justified
atoms Sy and a partial interpretation Z,,
Output: A set of ground literals L s.t. in each
interpretation that contains L, p is true but
unjustified
1 L,D, TD « {p},0,{(-p,0)}
2 while TD ## () do
3 Pick x € TD
4 (TD',L”) <~ EXPLAINUNJUST(x, S5, Z,)
5 D+ DU {z}
6 (TD,L)<—((TDUTD’)\D,LUL’)

7 return L

Algorithm 2: EXPLAINUNJUST: Find a set of litsets that
covers all bodies of rules with head p.

Input: A litset (—p, N) such that all literals in set(p, N)
are unjustified, a set of justified atoms S, and a
partial interpretation Z,,

Output: A set of litsets TD’ and a set of ground literals

L/
1 L/, TD < 0,0
2 foreach rule r € P s.t. 0 = mgu(H(r),p) exists do
3 if oy € N s.t. on(p) is an instance of o(p) then
4 | continue
5 N+ N
6 foreach literal l, € Z,,,1, € (B~ (r)) with
mgu(ly,lp) = og, do
7 if ~Jon € N s.t. on(p) is an instance of
ogb(o(p)) then
8 | N, L/ < N'U{og o0}, L U{l,}
9 | TD' +~ TD'UUNJUSTCOVER(B™ (), {c},N', S;)

o return TD’ L’

—

It is an invariant of the algorithm that the sets TD and D only
consist of negative literals (—p, N) such that set(p, N) is a set
of atoms not justified by P,. The algorithm iteratively picks
one literal from TD. For that literal, it iterates over all rules
of which the head unifies with this literal. For each such rule,
and each grounding substitution of that rule, it picks at least
one literal and adds its negation either to L. or to TD. In order
to pick literals, the following priorities are followed:

P1 If a negative literal in the body of the rule is false, add
the negation of such a literal to L, since there is no need
for further explanation of such literals.

P2 For the cases not covered by the above, add the negation
of some unjustified positive literal in the body of the rule.

Whenever possible, instead of resorting to actual ground lit-
erals, we use litsets, to avoid instantiating too much.

The complete algorithm is described as Algorithms 1, 2,
and 3. In the algorithms, whenever we compute a most gen-
eral unifier, we assume variables have been renamed so that
the two literals involved do not share any variables. Algo-

Algorithm 3: UNJUSTCOVER

Input: A set of positive literals B, two sets of variable
substitutions Y and NV and a set of justified
literals .Sy

Output: A set of litsets such that all their instances are

unjustified, and such that for each relevant
instance of B (those obtainable after applying a
substitution in Y but not by one in V), at least
one literal is covered by the result.

1 if B =0 orY = () then return {)

2 Pickbe B
3 TD+ 0
4 foreachoy, €Y do
, o(b) € Sy A o(b) instance of o, (b)A
’ Yie {U ‘ —-do, € N st o(b) instance of o, (b)

¢ | TD <« TDU {(0,(b),Y’ UN)}
U UNJUSTCOVER(B \ {b},Y' N, S;)

7 return TD

rithm 1 specifies the main control: it keeps track of the sets
sets D and TD as well as the collection of leaves L found so
far. It iteratively picks a litset from TD, calls Algorithm 2 on
it and moves it to D (lines 4 and 5); the results of the call to
Algorithm 2 are then added to TD and L (line 6), with the ex-
ception of litsets that are already explained: elements of D are
never added to TD again. By not adding them again, loops
are broken: the same litset can only be explained once. This
loop breaking is consistent with stable semantics as the jus-
tification we are (implicitly) constructing only has negative
literals in its domain.

Algorithm 2 explains why there are no more justified in-
stances of its input litset. For this, it iterates over all rules
that could derive the atom of the given litset (lines 2 — 9). For
each rule it first checks if the unifier required to derive the
current head is excluded by the set N and then skips the rule
(lines 3 and 4). Second, N is copied in order to have one ver-
sion per rule r. Then it implements above priority P1 (in the
loop on lines 6 — 8) as follows: it searches the current inter-
pretation Z,, for falsified instances of negative literals of the
body of (line 6), and if they are not already excluded by N
(line 7), adds them to the set of leafs L’ and excludes the cor-
responding substitutions from being considered subsequently
by adding them to N’ (line 8). Finally, Algorithm 3 is invoked
to deal with all cases not covered yet (line 9).

Algorithm 3 implements above priority P2 by searching
positive unjustified literals in the rule body for all substitu-
tions not excluded by the previous cases. For this, it picks a
literal in the positive body of the rule (line 2) and loops over
all substitutions to be handled (lines 4 — 6). There it splits into
two cases: (i) for all substitutions yielding justified instances
of that literal, it must pick another literal from the positive
body; (ii) all other substitutions yield positive unjustified lit-
erals. Those substitutions that yield justified literals that are
not excluded by NV are collected in Y (line 5). This is used in
the recursive call to UNJUSTCOVER that finds literals in the
rest of the body (for substitutions from (i)) as well as to form

the litset (oy (b), Y’ UN) representing all unjustified literals
of case (ii) (all in line 6). Finally, the union of all litsets found
in this and the recursive call is returned (line 7).

Theorem 4.3 shows how this algorithm can be used. It pro-
vides a clause that can be learned from a call to ANALYZE and
shows that learning that clauses advances the solver and that
learning it is indeed correct.

Theorem 4.3. Assume an atom p, a set of atoms S; and a
partial interpretation T are given such that

o S is the set of atoms justified by P in T,

o p& Syandpt =t,

o for each rule r € P and each grounding substitution o,
if o(B*(r)) consists of only atoms true in I, then all
atoms occurring in o(r) are assigned a value in T.

Let L = ANALYZE(p, S, Z) and let ¢ denote the clause —pV
Vicw I The following claims hold:

o The clause c is violated in L.

o The clause c holds in every answer set of P.

Sketch of the proof. The fact that c is violated follows by con-
struction: only false literals are added to L and p is true in Z.

By recording calls to EXPLAINUNJUST, we construct a
graph of ground literals. We show that this graph is a jus-
tification of —p by gr(P). The resulting justification has a
negative domain and only positive leafs. Hence, it evaluates
to true in each interpretation where its leafs hold. In partic-
ular this means that p must be false in each stable model in
which the leafs of the justification are true. Hence, ¢ holds in
each answer set of P. O

Example 4.4 (Example 4.1 continued). Con-
sider again the interpretation Z where all atoms
over s are false while r,¢(1),t(2), and ¢(3) are
true. Let S; denote {t(1),t(2),t(3)}. Assume
ANALYZE(r, S7,Z) is called. First, this algorithm will
call EXPLAINUNJUST((—r,®),S,Z), which returns the
explanation (—p(X), () to be added to TD. Subsequently,
the call to EXPLAINUNJUST((—p(X),0),Ss,Z) returns
D = (H(X),{[1/X], [2/X]. [3/X]}). (Ca(1),0),
(—¢q(2),0), (—q(3),0). The algorithm continues by adding
these to TD and calling EXPLAINUNJUST on each of them
until TD is empty. As can be seen: the arrows in the
first graph in Example 4.1 correspond exactly to the return
patterns of calls to EXPLAINUNJUST. A

5 Evaluation

We implemented the justification analysis in ALPHA* and
present the results of our experiments. The benchmarks were
run on a cluster of Linux machines with Intel Xeon E5-2680
v3 CPUs. Each benchmark was given 300 seconds and 8GB
of memory on a single core of the cluster. Every run requested
10 answer sets and if a problem admits random instances, the
reported run times are an average over 10 different random
inputs while for other problems it is the average over 5 runs
on the same instance. We use ALPHA to refer to the solver

“ALPHA is freely available at:
Alpha

https://github.com/alpha-asp/

without our modifications and ALPHA ; for our extended ver-
sion. For reference, we also show run times of CLINGO. Our
hypothesis is that on problems where justification-conflict
occurs, exponential speed-ups can be achieved by ALPHA ; in
comparison to ALPHA. We test this on four problem classes,
where the first two are synthetic problems, the third is graph
colorability, and the fourth is a problem inspired by com-
bined configuration problems [Gebser et al., 2015]. Ground-
ing is an issue only for the last problem, hence it is to be
expected that CLINGO performs significantly better than AL-
PHA or ALPHA ; on the first three (easy-to-ground) problems.
The instances used for benchmarking are available at https://
dtai.cs.kuleuven.be/krr/experiments/alpha_justifications.zip.

Two-way-derivation. The first synthetic problem designed
to trigger justification-conflict selects an interpretation for a
unary predicate ¢ and then derives atoms over p via two ways;
either directly or via an intermediate predicate r. Finally, it
enforces that p(5) and p(7) must hold.

dom(1..D). {¢(X)} + dom(X).
p(X) < q(X). p(X) & r(X). r(X) ¢ q(X).
< p(5). (7).

Since there are two possible ways to derive p(5) and p(7), the
explanation is simple but not trivial. The results are shown in
Table 1, where ALPHA hits the timeout already at a domain
of size 30 while ALPHA ; only needs 1.56 seconds for a do-
main even of size 1000. For CLINGO the same problem is
trivial, since the program is easy to ground and once the full
grounding is available, all rules deriving p(5) and p(7) are
known and tailored techniques to keep track of justifications,
such as completion no-goods and source pointers [Gebser et
al., 2012], can be employed.

Variable-projection. The second synthetic problem selects
an interpretation for a binary predicate g over a domain dom,
then derives atoms over a unary predicate p and finally en-
forces that p(5) and p(7) hold.

dom(1..D).

{¢(X,Y)} + dom(X),dom(Y), X <Y.

pX) q(X,Y). < -p(5). <« p(7).
The rule that derives p projects the variable Y away; hence,
there are multiple options to derive for instance p(5). As
such, the explanation of why it is not derived is non-trivial.
The results are given in Table 2. Without justifications analy-
sis, ALPHA hits the timeout even at size 20 while the time for
ALPHA ; increases at a much slower pace and seems in line
with the expected quadratic growth of the ¢ predicate. For
CLINGO, only the biggest instances require noticeably time.
We suspect the difference between CLINGO and ALPHA ; to
be mainly caused by CLINGO employing sophisticated rule
instantiation techniques while ALPHA ; still uses a semi-naive
instantiation mechanism.

Graph-5-coloring. The third benchmark is the well-known
graph coloring problem from the ASP competition [Calimeri
et al., 2014], which was previously used by Leutgeb and
Weinzierl [2017] to benchmark ALPHA. The original encod-
ing of the ASP competition contains for each node n an atom
colored(n) defined to be true when n is assigned at least one

Size ALPHA ALPHA; | CLINGO
10 0.81 0.79 0.00
20 2.55 0.81 0.00
30 300.00(5) | 0.85 0.00
40 300.00(5) | 0.92 0.00
50 300.00(5) | 0.90 0.00
65 300.00(5) | 0.86 0.00
100 300.00(5) | 1.02 0.00
200 300.00(5) | 1.04 0.01
400 300.00(5) | 1.23 0.01
1000 || 300.00(5) | 1.56 0.01

Table 1: Benchmark results for Two-way-derivation. Size is domain
size, runtime is in seconds, timeouts in parentheses.

Size ALPHA ALPHA y CLINGO
10 .06 0.84 0.01
20 300.00(5) | 1.10 0.01
30 300.005) | 1.21 0.01
40 300.00(5) | 1.33 0.01
50 300.005) | 1.78 0.01
60 300.00(5) | 1.81 0.01
100 | 300.005) | 3.49 0.03
200 || 300.00(5) | 12.06 0.11
400 || 300.00(5) | 29.53 0.46
1000 || 300.00(5) | 300.00(5) | 3.16

Table 2: Benchmark results for Variable-projection. Size is domain
size, runtime is in seconds, timeouts in parentheses.

color. Furthermore, it contains the constraint that each of
these atoms must be true. Such a constraint is prone to trigger
justification-conflict. However, in the experiments by Leut-
geb and Weinzierl [2017], the following redundant constraint
was added”:

«— node(X), —color(X, red), ..., —color(X, cyan).
With the additional constraint, justification-conflict cannot
occur since unit propagation guarantees that each node is col-
ored. If this constraint is present ALPHA is quite efficient. If
the above constraint is not present, i.e., in the original com-
petition setting, ALPHA is slow except for very small graphs.
Table 3 shows the comparison of ALPHA with ALPHA ; for
both versions and CLINGO as reference, where graphs with
10 to 1000 vertices and four times the amount of randomly
placed edges (i.e., 40 to 4000 edges) are tested. For the origi-
nal competition setting, ALPHA is able to handle graphs with
30 vertices and some with 40 vertices. ALPHAj, on aver-
age, can handle all graphs with 100 vertices within 6 sec-
onds. It can even solve all graphs with 1000 vertices in the
given time limit. In case that the constraint above is added,
hence no justification-conflict occurs, we see that ALPHA is
able to solve the same instances as ALPHA ;. Furthermore
ALPHA ; in this case requires about the same time as ALPHA,
which indicates that justification analysis incurs practically
no overhead. Comparing ALPHA ; on both versions of the
graph coloring, we see it is not much influenced by the re-
moval of the constraint: it, effectively, is able to discover dur-
ing search the relevant ground instances of the constraint us-

3See http://www.kr.tuwien.ac.at/research/systems/alpha/
benchmarks.html.

Size || ALPHA [ALPHA; [ALPHA [ALPHA; [[CLINGO
Original (no constraint) With constraint Both
10 5.58 1.10 1.11 1.07 0.01
20 39.20(1) 1.46 1.31 1.25 0.01
30 69.31(2) 1.92 1.59 1.62 0.01
40 252.74(8) 2.33 1.88 1.97 0.01
75 300.00(10) | 3.96 3.35 3.38 0.02
100 300.00(10) | 5.90 4.76 5.03 0.03
200 300.00(10) | 13.44 10.27 9.96 0.08
400 300.00(10) | 33.96 22.15 24.85 0.27
500 300.00(10) | 44.62 32.27 33.55 0.39
750 300.00(10) | 82.97 68.20 66.50 0.87
1000 || 300.00(10) | 131.17 101.88 | 105.93 1.54

Table 3: Benchmark results for Graph-5-coloring. Size is number
of vertices in the random graph, number of edges is four times size.
Runtime in seconds, timeouts in parentheses.

Size ALPHA ALPHA; | CLINGO

10 0.88 0.89 0.01

20 1.04 1.05 0.03

40 11.46 1.91 0.26

80 60.99(2) | 3.39 2.62

100 90.92(3) | 4.47 5.53

200 91.23(3) | 13.64 47.16

400 32.29(1) | 32.31(1) | 276.18(8 memout)
1000 || 3.80 3.69 300.00(10 memout)
2000 || 92.90(3) | 92.86(3) | 300.00(10 memout)
4000 || 97.16(3) | 97.05(3) | 300.00(10 memout)

Table 4: Benchmark results for Non-partition-removal-coloring.
Size is number of vertices in the random graph, number of edges
is two times size. Runtime in seconds, timeouts in parentheses, out
of memory indicated by memout.

ing justification analysis. For CLINGO, this benchmark again
poses no problem to ground and the decade of optimizations
put into CLINGO is clearly visible. Interestingly, the runtimes
of CLINGO with and without the constraint are the same (up
to 20ms maximum difference), hence the results for CLINGO
are only shown once.

Non-partition-removal-coloring. This benchmark is in-
spired by problems encountered in practice (cf. [Gebser et
al., 2015]), where a combination of graph problems has to
be solved. The problem is as follows: given a directed graph
G, remove one vertex v in such a way that the transitive clo-
sure of the original and the resulting graph are equal on the
remaining nodes and that the resulting graph is 3-colorable.
This is a benchmark where grounding becomes an issue and
for large graphs, CLINGO runs out of the provided 8GB of
memory and fails. For lazy-grounding ASP systems, this is
not an issue, but the problem is demanding by itself and AL-
PHA has several timeouts, but still manages to solve 7 out
of 10 random graphs for every instance size. With ALPHA ;,
some instances still cannot be solved within 300 seconds, but
the number of timeouts is more than halved: ALPHA ; has 7
timeouts while ALPHA has 15. Approximately 90 percent of
the test instances are unsatisfiable, as were all instances that
ALPHA ; could solve but ALPHA could not.

The benchmark results are promising. For a better under-
standing, however, more extensive evaluation is necessary. It

would be interesting to see if we can find problem classes
where the cost of running ANALYZE does not outweigh the
speed-up gained by not having to backtrack chronologically.

6 Conclusion

In this paper, we developed a new formalization of lazy
grounding ASP solving based on justifications and showed
that whenever a true but unjustified atom remains, its negation
is justified. Based on this, we presented a novel approach to
improve lazy grounding using a top-down justification analy-
sis. We presented algorithms that compute a justification and
turn it into a learned clause leading to backjumping instead of
chronological backtracking. Initial experiments are promis-
ing and show that exponential speedups can be achieved.

Compared to state-of-the-art ground-and-solve systems
like CLINGO, ALPHA is not (yet) competitive on problems
where the grounding is (relatively) easy to construct and
search is difficult. The majority of applications currently con-
sidered by the ASP community is of this type. The difference
in performance can partially be explained by two important
factors. Firstly, by grounding lazily, the solver inevitably is
given less information; this causes a reduce in propagation
power. The justification analysis we presented partly com-
pensates for this difference. Secondly, years of careful engi-
neering and performance optimization were spent on an ef-
ficient implementation of CLINGO (in C++), while only a
fraction of that manpower has been spent on ALPHA (writ-
ten in Java). We showed that problems exist where ground-
ing eagerly simply does not work (such as for instance non-
partition-removal-coloring) and our work considerably nar-
rows the gap between lazy-grounding and the ground-and-
solve approach in certain areas. As such, the main value
of our research lies not in the development of improvements
to current state-of-the-art solvers, but in the development of
techniques with the potential to, in the long-term, redefine
how state-of-the-art solvers work.

In principle, our justification analysis and backjumping can
be applied to related lazy-grounding ASP systems. Omiga
[Dao-Tran et al., 2012] implements some conflict-driven
learning but can run into similar problems where certain lit-
erals are true but unjustified. In such case, we observed in the
past that also Omiga resorts to chronological backtracking.
An implementation of our justification analysis for Omiga
would help here as well to skip large parts of the search space.
ASPeRiX [Lefevre and Nicolas, 2009], to the best of our
knowledge, does not implement any form of conflict-driven
learning or backjumping. Since its evaluation proceeds along
strongly-connected components (SCC) of the input program,
however, the lack of justifications may be less detrimental
for some encodings but it general, it will encounter the same
problems as ALPHA. GASP [Dal Palu et al., 2009] works
similar to ASPeRiX and hence would also benefit from our
techniques.

Regarding future work: justifications recently have been
used for goal-driven lazy grounding of FO(-) theories [De Cat
et al., 2015] and for defining a notion of relevance [Jansen et
al., 2016]. We would like to investigate how those ideas can
be exploited in lazy grounding for ASP.

Acknowledgments

We thank the anonymous reviewers for their valuable com-
ments. We acknowledge the computational resources pro-
vided by the Aalto Science-IT project and are grateful to Jori
Bomanson for his help in setting up our benchmarks.

References

[Apt, 2003] Krzysztof R. Apt. Principles of Constraint Program-
ming. Cambridge University Press, 2003.

[Balduccini et al., 2013] Marcello Balduccini, Yuliya Lierler, and
Peter Schiiller. Prolog and ASP inference under one roof. In
Proceedings of LPNMR, pages 148-160, 2013.

[Bichler et al., 2016] Manuel Bichler, Michael Morak, and Stefan
Woltran. lpopt: A rule optimization tool for answer set pro-
gramming. In Proceedings of LOPSTR, Revised Selected Papers,
pages 114-130, 2016.

[Calimeri er al., 2013] Francesco Calimeri, Wolfgang Faber, Mar-
tin Gebser, Giovambattista Ianni, Roland Kaminski, Thomas
Krennwallner, Nicola Leone, Francesco Ricca, and Torsten
Schaub. ASP-Core-2 input language format. Technical report,
ASP Standardization Working Group, 2013.

[Calimeri et al., 2014] Francesco Calimeri, Giovambattista Ianni,
and Francesco Ricca. The third open answer set programming
competition. TPLP, 14(1):117-135, 2014.

[Calimeri er al., 2017] Francesco Calimeri, Davide Fusca, Simona
Perri, and Jessica Zangari. I-DLV: the new intelligent grounder
of DLV. Intelligenza Artificiale, 11(1):5-20, 2017.

[Dal Palu et al., 2009] Alessandro Dal Pali, Agostino Dovier, En-
rico Pontelli, and Gianfranco Rossi. GASP: Answer set program-
ming with lazy grounding. Fundam. Inform., 96(3):297-322,
2009.

[Dao-Tran et al., 2012] Minh Dao-Tran, Thomas Eiter, Michael
Fink, Gerald Weidinger, and Antonius Weinzierl. Omiga: An
open minded grounding on-the-fly answer set solver. In Proceed-
ings of JELIA, pages 480483, 2012.

[De Cat et al., 2015] Broes De Cat, Marc Denecker, Maurice
Bruynooghe, and Peter J. Stuckey. Lazy model expansion: In-
terleaving grounding with search. J. Artif. Intell. Res. (JAIR),
52:235-286, 2015.

[Denecker and De Schreye, 1993] Marc Denecker and Danny De
Schreye. Justification semantics: A unifying framework for the
semantics of logic programs. In Proceedings of LPNMR, pages
365-379, 1993.

[Denecker et al., 2015] Marc Denecker, Gerhard Brewka, and
Hannes Strass. A formal theory of justifications. In Proceedings
of LPNMR, pages 250-264, 2015.

[Faber et al., 2011] Wolfgang Faber, Gerald Pfeifer, and Nicola
Leone. Semantics and complexity of recursive aggregates in an-
swer set programming. AlJ, 175(1):278-298, 2011.

[Gebser et al., 2011] Martin Gebser, Orkunt Sabuncu, and Torsten
Schaub. An incremental answer set programming based system
for finite model computation. Al Commun., 24(2):195-212,2011.

[Gebser et al., 2012] Martin Gebser, Benjamin Kaufmann, and
Torsten Schaub. Conflict-driven answer set solving: From the-
ory to practice. AlJ, 187:52-89, 2012.

[Gebser et al., 2015] Martin Gebser, Anna Ryabokon, and Got-
tfried Schenner. Combining heuristics for configuration problems
using answer set programming. In Proceedings of LPNMR, pages
384-397, 2015.

[Gebser et al., 2017] Martin Gebser, Marco Maratea, and
Francesco Ricca. The sixth answer set programming com-
petition. J. Artif. Intell. Res., 60:41-95, 2017.

[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladimir Lif-
schitz. The stable model semantics for logic programming. In
Proceedings of ICLP/SLP, pages 1070-1080, 1988.

[Jansen et al., 2016] Joachim Jansen, Bart Bogaerts, Jo Devriendt,
Gerda Janssens, and Marc Denecker. Relevance for SAT(ID). In
Proceedings of IJCAI, pages 596-603, 2016.

[Komorowski, 1992] Henryk Jan Komorowski. An introduction to
partial deduction. In Proceedings of META, pages 49—69, 1992.

[Lefevre and Nicolas, 2009] Claire Lefevre and Pascal Nicolas.
The first version of a new ASP solver: ASPeRiX. In Proceed-
ings of LPNMR, pages 522-527, 2009.

[Leutgeb and Weinzierl, 2017] Lorenz Leutgeb and Antonius
Weinzierl. Techniques for efficient lazy-grounding ASP solving.
In Proceedings of Declare 2017, pages 123-138, 2017.

[Lifschitz, 1999] Vladimir Lifschitz. Answer set planning. In Pro-
ceedings of ICLP, pages 23-37, 1999.

[Marek and Truszczyniski, 1999] Victor Marek and Mirostaw
Truszczynski. Stable models and an alternative logic program-
ming paradigm. In The Logic Programming Paradigm: A
25-Year Perspective, pages 375-398. Springer-Verlag, 1999.

[Marple and Gupta, 2012] Kyle Marple and Gopal Gupta. Galli-
wasp: A goal-directed answer set solver. In Proceedings of LOP-
STR, Revised Selected Papers, pages 122—-136, 2012.

[Marple et al., 2017] Kyle Marple, Elmer Salazar, and Gopal
Gupta. Computing stable models of normal logic programs with-
out grounding. CoRR, abs/1709.00501, 2017.

[Marques-Silva and Sakallah, 1999] Jodo P. Marques-Silva and
Karem A. Sakallah. GRASP: A search algorithm for propo-

sitional satisfiability. IEEE Transactions on Computers,
48(5):506-521, 1999.

[Marques Silva et al., 2009] Jodo P. Marques Silva, Inés Lynce, and
Sharad Malik. Conflict-driven clause learning SAT solvers. In
Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh,
editors, Handbook of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications, pages 131-153. 2009.

[Niemeld, 1999] Ilkka Niemeld. Logic programs with stable model
semantics as a constraint programming paradigm. Ann. Math.
Artif. Intell., 25(3-4):241-273, 1999.

[Passchyn, 2017] Nico Passchyn. Justification frames. introducing
splittable branch evaluations, 2017. Master Thesis; Denecker,
Marc (supervisor).

[Stuckey, 2010] Peter J. Stuckey. Lazy clause generation: Combin-
ing the power of SAT and CP (and mip?) solving. In Proceedings
of CPAIOR, pages 5-9, 2010.

[Taupe er al., 2017] Richard Taupe, Antonius Weinzierl, and Got-
tfried Schenner. Introducing Heuristics for Lazy-Grounding ASP
Solving. In Proceedings of PAoASP, 2017.

[Weinzierl, 2017] Antonius Weinzierl. Blending lazy-grounding
and CDNL search for answer-set solving. In Proceedings of LP-
NMR, pages 191-204, 2017.

[Zhang et al., 2001] Lintao Zhang, Conor F. Madigan, Matthew W.
Moskewicz, and Sharad Malik. Efficient conflict driven learning
in Boolean satisfiability solver. In Proceedings of ICCAD, pages
279-285, 2001.

