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Abstract—This paper discusses the first design of an ASIC
coprocessor for Elliptic Curve Cryptography (ECC) using the
complete addition law of Renes et al. The main reason for
using the complete addition law is the reduced vulnerability
to side-channel analysis (SCA) attacks, since point addition
and point doubling can be performed with the same addition
formulas. Further, all inputs are valid, so there is no need for
conditional statements handling special cases such as the point at
infinity. The proposed hardware architecture is optimized for area
efficiency, targeting applications such as smart cards and RFID
tags. A bottom-up design approach is used, minimizing the total
implementation area by optimizations in each abstraction layer.
The design implements a full-word Montgomery Multiplier ALU
(MMALU) with built-in adder functionality. Additionally, an
exploration is done on the design parameters of the MMALU and
the scheduling of the modular operations in order to minimize the
size of the register file. For point multiplication, a Montgomery
ladder is implemented with the option of randomizing the
execution order of the point operations as a countermeasure
against SCA attacks. The post-synthesis implementation results
are generated using the open source NANGATEA45 library.

Index Terms—Elliptic Curve Cryptography (ECC), complete
addition formulas, Montgomery ladder, balanced point opera-
tions, side-channel analysis (SCA), Montgomery multiplication,
ASIC coprocessor

I. INTRODUCTION

The amount of embedded systems used in everyday life
grows rapidly in devices like mobile cell phones, RFID tags,
IoT devices, etc. These applications introduce new challenges
concerning the protection of data and communication. First of
all, they have design constraints due to the very limited imple-
mentation surface and energy budget. The second challenge is
the physical accessibility of the devices to potential malicious
users, which makes the devices vulnerable to side-channel
analysis attacks (SCA) [1]. The goal of a SCA attack is not
to break the cryptographic algorithms mathematically, but to
extract secret information from the physical implementation of
the algorithms. For example, the processed information leaks
through the power consumption, the timing behavior and the
electromagnetic radiation of the device.

When embedded devices need public-key cryptography,
Elliptic Curve Cryptography (ECC) [2] [3] is preferred, thanks
to smaller key sizes compared to e.g. RSA [4]. This leads to

a reduction of the power consumption and the computational
resources. ECC was introduced in 1985 and 1987 indepen-
dently by Victor Miller [2] and Neal Koblitz [3], respectively.
They proposed the use of a group of points on an elliptic
curve (EC) to create discrete-log based cryptosystems and
defined the addition law for the resulting group structure. This
addition law results in a different set of equations for a pair of
identical points and for a pair of different points in the group.
These equations are called point doubling and point addition,
respectively. The most straightforward way of implementing
an EC point multiplication, i.e. the basic operation in an EC-
based cryptosystem, is through iterative conditional branching
of point doublings and point additions. This is disadvantageous
for SCA resistance, because the conditional branching reveals
information on the executed operation through side channels,
as shown by Ors et al. on an FPGA implementation [5].

In [6], Bernstein and Lange show the benefits of complete
addition formulas, which use the same set of equations for
point doubling and point addition. This leads to constant-time
and exception-free implementations, mitigating the behavioral
effects of branching. While the authors of [6] present their
formulas for specific types of curves over binary extension
fields, namely Edwards curves, Renes et al. are the first
to propose complete addition formulas for the broadly used
Weierstrass curves over prime fields. The authors of [7] also
notice that in some cases, performance loss will be unnotice-
able in comparison to traditional incomplete formulas.

Our contribution. We present the first ASIC implemen-
tation of the complete formulas introduced in [7]. In com-
bination with the implementation of the Montgomery ladder
algorithm for point multiplication, this results in an inherently
balanced implementation (without dummy operations) of ECC
over Weierstrass curves. The design is optimized for area in the
interest of lightweight embedded applications in three ways.
(1) A full-word Montgomery multiplier with integrated adder
functionality is designed, eliminating the need for separate
modular addition hardware. (2) A careful exploration of the
design parameters and bounds of the Montgomery multiplier
is done, in order to minimize the operation count in the
point addition formula. (3) The size of the register file is
minimized by optimizing the number of registers, by reducing



the number of writable registers (through the intelligent use
of shift registers), and by optimizing the size of the input
multiplexers (by limiting left-operand and right-operand ac-
cessibility). Important to note is that a completely balanced
operation of the coprocessor mainly protects against simple
power analysis (SPA) attacks. Therefore, the randomization of
the point operations is integrated as well as a countermeasure
against differential power analysis (DPA) attacks.

Organization. Section II gives a brief overview of the
necessary preliminaries and used notations. In Sect. III, a
summary of related literature on complete formula implemen-
tations is given. Next, Sect. IV discusses the design choices
and the experimental setup. Finally, Sects. V and VI elaborate
on the results and formulate a conclusion, respectively.

II. PRELIMINARIES

ECC is based on a group structure on an EC. An EC is a set
of points (z,y), which are solutions of a polynomial equation
defined over a Galois field of the following form":

v =a4+azr+0 (1)

Prime fields, i.e. GF(p), and binary extension fields, i.e.
GF(2™), are the most commonly used finite fields in the
context of ECC. In this paper, only prime fields are considered
and therefore a and b in Eq. (1) are constants in GF'(p) and
p is a large prime.

Next, an additive Abelian group can be obtained by defining
an addition law (4) on an EC that is nonsingular, requiring
4a® 4 27b* # 0 mod p. The elements in the group are the
points on the EC, along with an additional point called the
point at infinity. The point at infinity is denoted by O and can
be expressed as O = (x, c0). The obtained Abelian group can
be represented as follows:

({(z,y) | #,y € GF(p) satisfying Eq. (1)} UO,+) (2)

The addition law can be implemented using the following
operations modulo p: addition, subtraction, multiplication and
inversion. In hardware, inversions modulo p are very costly
operations. Nevertheless, they can be avoided when embedding
the elliptic curve in the projective plane, i.e. P2(GF(p)). In
order to do so, every point (z,y) is mapped to (x : y : 1) and
the point at infinity is mapped to (0 : 1 : 0). The projections
(z:y:z)and (Ax : Ay : Az) are equal, and thus (£ : £ :1)
equals (x : y : z). When embedding the EC in the projective
space, Eq. (1) becomes

vz = 2% + axz?® + b25. 3)
A series of point additions is called a point multiplication or
scalar multiplication and is defined as follows:
mP=P+P---4+ P, (€))
————
m times

with P an element of an EC group structure and m a
positive integer. For negative m, Eq. 4 becomes m(—P).
Point multiplication is used in ECC schemes, because the

(MThis holds for short Weierstrass elliptic curves, which are isomorphic
with every possible elliptic curve.

security relies on the elliptic curve discrete logarithm problem
(ECDLP). The ECDLP states that it is unfeasible to calculate
m, such that Q = mP, when the points P and ) are known.

A commonly used technique to design implementations of
such ECC schemes, is a bottom-up design approach, wherein
each abstraction level uses the operations of the abstraction
level below. Fig. 1 depicts the different abstraction levels for
ECC applications. The remainder of this section discusses the
different abstraction levels up to the point multiplication and
introduces the algorithms we use in our design.

Protocol

Point multiplication

Point addition &
Point doubling

/ \
/ N\

Fig. 1: Abstraction levels in the design of an ECC coprocessor.

Field Arithmetic

A. Field Arithmetic

At the lowest level are the field arithmetic operations. When
using the projective representation of the EC, only modular
addition, modular subtraction and modular multiplication suf-
fice to implement the addition laws. Modular multiplication
modulo p is significantly more complex than modular addition
and subtraction, due to the required trial divisions. Therefore,
a variety of techniques were designed to speed up or scale
down this operation in hardware. For modular multiplication,
Montgomery multiplication is a popular technique with a small
chip area, a low power consumption and a high throughput
in mind. The Montgomery Modular Multiplication (MMM)
algorithm was introduced by Peter Montgomery in 1985 [8].
In 1999, Colin Walter suggested an improvement, which
made the final reduction at the end of the original algorithm
unnecessary by introducing modified input bounds as well
as a lower bound for the Montgomery parameter [9]. This
improvement is advantageous for SCA resistance since it
leads to a time-constant implementation. The Montgomery
multiplication algorithm, which we use in our design, is given
in Algorithm 1.

Algorithm 1: Montgomery Modular Multiplication [9]

t A= (an-1,--.,00)r, B = (bp-1,...,bo)r,p =
(Pa—1,---,p0)r, R (With RR™' =1 mod p)
Output: S = MMM(A, B) = ABR™' mod p
S :=0;
for i <~ 0ton—1do
g = (so + aibo)(—pgl) mod 7r;
S:=(S+a;B+ qp) div r;
end
Return S

Input
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In Algorithm 1, a; stands for the i-th digit of the word
A. When A is an n-digit number expressed in base r, A

—1
can be written as A = ) a;r". B and p are represented

in a similar way. The poZv;c(t]r of the Montgomery algorithm
is the ability to calculate a modular operation by replacing
costly trial divisions by a prime with divisions by a power
of 2. The latter comes for free in hardware, by implement-
ing logical shift operations. MMM, working on the input
operands A and B, computes ABR~' mod p, where p is the
modulus and R~ is an element of the finite field satisfying
RR™!' — pp’ = 1 or identically RR™' = 1 mod p®®,
R is a power of two, i.e. ", such that R = r" > p;
R is also called the Montgomery parameter. The algorithm
becomes useful when the operands are first transformed to
Montgomery representation, mapping A and B to respectively
Apjont = AR mod p and Bprony = BR mod p. This way,
Montgomery multiplication can be used to calculate modular
multiplications, because the algorithm ensures Sy, = SR
mod p = MMM(Apront, Byont), with S = AB mod p. At
the end of the calculations in the Montgomery domain, the
result needs to be converted back. As a consequence, Mont-
gomery multiplication requires two additional steps. However,
this overhead becomes negligible when a large series of
consecutive operations is performed, which is the case in the
context of scalar multiplication.

B. Point Addition & Point Doubling

The next abstraction layer involves the point operations,
namely point addition and point doubling. As mentioned in
Sect. I, point doubling and point addition use a different set
of equations in most addition laws. When implemented in
hardware or software, this leads to different execution times
and power traces for both, inevitably leaking information on
the scalar m in the computation of the point multiplication
mP. Evidently, this side-channel leakage needs to be avoided
to avert weakening the implemented ECC scheme.

Therefore, we use the complete addition law proposed
in [7], which uses the same addition formulas for point addi-
tion and point doubling. More specifically, we use Algorithm 7
in [7], since it has a minimal number of operations and
no input restrictions. This algorithm targets short Weierstrass
curves with a = 0, i.e. j-invariant O curves. These curves are
also used in practice, such as the secp256kl curve used in the
Bitcoin Protocol [10].

The concerned formulas of Algorithm 7 in [7], giving new
point coordinates (X3 : Y3 : Z3) dependent on input points
(Xl ZYl : Zl) and (X2 : 5/2 : Zg), are

@Bézout’s identity ensures the existence of R~ 8] [9].
AR~ and p’ can be calculated using the extended Euclidean algorithm.

X3 =(X1Ys + XoY1)(V1Ys — 3671 75)
— 3b(Y1 Zs + YaZ1 ) (X120 + XoZ1),

Y3 =(Y1Ya + 3621 Z5) (V1 Ya — 3071 25)
+9X X9 (X170 + XoZ1),

Zs =(Y1Z5 + Y2 Z1)(Y1Ya + 3021 Zo)
+3X1 Xo(X1Ys + XoV7).

C. Point Multiplication

The most straightforward algorithm for point multiplication
is the double-and-add algorithm, consisting of consecutive
point additions and point doublings. To overcome the side-
channel leakage caused by the conditional branches in the
algorithm, a better solution is to use the Montgomery ladder
algorithm for point multiplication. The Montgomery ladder,
as presented by Peter Montgomery in [11], is shown in
Algorithm 2. In contrast with the double-and-add method,
each iteration executes the same operations, namely one point
addition and one point doubling.

Algorithm 2: Montgomery ladder [11]
Imput : P, m = (m¢—1,..
Output: R = mP

1 Ry :=P; R, :=2P;

2 for i <t —2 to 0 do

.,m0)2 with mi_1 =1

3 if m; = 1 then

4 Ro := Ry + R1; R1 :=2Ry;
5 else

6 Ry := Ro + R1; Ro := 2Ry;
7 end

8 {R1 — Ry remains invariant}

9 end

10 R := Ryo;

11 Return R;

When using the Montgomery ladder in Algorithm 2, first
a point addition and then a point doubling is performed,
independent of m;. In [12], the authors introduce additional
randomization by using a random bit which decides on the
execution order of both operations. This order introduces an
additional uncertainty independent of the key, further com-
plicating SCA attacks. The resulting Montgomery ladder is
shown in Algorithm 3 and is applied in our ASIC design.

III. RELATED WORK

The first work to introduce a fully balanced ECC imple-
mentation was by Batina et al. [13]. The authors modified the
non-complete addition formulas over binary extension fields
in order to make them balanced. For point multiplication, the
Montgomery ladder algorithm was used. The implementation
was implemented on an FPGA and the resistance against an
SPA attack was evaluated.

Examples of elliptic curves with complete addition laws are
Edwards curves [6], twisted Edwards curves [14] and twisted
Hessian curves [15]. They all operate over binary extension
fields. The work of Renes et al. [7] was the first to propose



Algorithm 3: Montgomery ladder for point multiplication
with random order execution [12]

Inmput : P, m = (mt,l, . ,mo)g with m;_1 =1,

random bits 7;_o,...,7Tg
Output: R = mP

1 Ry = P;

2 Rl = 2P,

3fori<t—2to0do

4 if m; = 1 then

5 if r; = 0 then

6 Ty == Ro+ Ry ; T := 2Ry;
7 RO = TO ) R1 = Tl;

8 else

9 T1 = 2R1 ;To = R0+R1;
10 RO = TO ) R1 = Tl;

1 end

12 else
13 if r; = 0 then
14 T1 = RO + R1 5 TQ = 2R0;
15 RO = TO ; Rl = Tl;
16 else
17 T() = 2R0 N T1 = R() + Rl;
18 Ry =Ty ; Ry :=1T1;
19 end
20 end
21 {R1 — Ry remains invariant}

22 end

23 R := Ry;

24 Return R;

complete addition formulas on Weierstrass curves over prime
fields.

In [16], Massolino et al. present the first FPGA implemen-
tation of the formulas in [7]. The result is a competitive design
emphasizing parallelization possibilities. The design executes
a number of field operations simultaneously by using two up
to six processors, which increases throughput, but also silicon
area. In [17], Chmielewski et al. implement and evaluate three
FPGA implementations of the formulas in [7]: a non-protected
architecture and two architectures protected by randomization
countermeasures for DPA protection.

Our paper realizes the first ASIC implementation of the
complete formulas of Renes et al., optimized towards minimal
silicon area.

IV. DESIGN

This section elaborates on the functionality and design
choices of the ASIC implementation in a bottom-up way,
following the abstraction layers in Fig. 1. After giving an
overview of the design parameters of full-word Montgomery
multipliers, the Montgomery Modular ALU (MMALU) is
discussed, which enables modular multiplication, addition and
subtraction. Hereafter, the design choices for the control logic,
implementing the complete point addition formulas in Eq. 5,
are explained. Finally, the Montgomery ladder implementation
for point multiplication is discussed.

A. Design Parameters of the MMM

This paragraph discusses the influence of certain design
parameters on the function of Algorithm 1, inspired by the
doctoral thesis of Lejla Batina [18]. Especially important is the
relation between the input bounds and the Montgomery param-
eter R. This relationship influences speed and area, because it
is directly linked to the required number of iterations of the
algorithm and the size of the input and output registers. To
understand the influence of these parameters, the operation of
the algorithm is explained below. For simplicity, it is assumed
that all data are expressed in binary form and therefore the
base r is 2.

1) Working principle: The correctness of the MMM al-
gorithm depends on two statements, both easily verified via
induction. The first statement,

0<S<p+B, (6)

holds during each operation of the for loop in Algorithm 1
and ensures the output remains bounded. After n iterations,
S = ABR™! mod p with R = r™. This is verifiable with the

help of the following statement, in which @ = (g¢,—1,-.-,q0)
(cfr. Alg. 1):
RS=AB+Qp=S=ABR™ ! modp @)

2) Divisibility by 2: In Algorithm 1, addition with ¢;p
always ensures an outcome divisible by 2 in the last step of the
for loop. In other words, the least significant bit (LSB) of the
outcome on line 4 is 0. This is easily validated by replacing
q; with the expression on line 3 in Algorithm 1. As a result,
the LSB of S becomes:

50 + aibo + qipo
= 50+ aibo + ((s0 + aibo)(—py ")) po
so + a;bo + (so + aibo)(—1)
=0

3) Upper Bound on @Q: () cannot be bigger than R — 1,
because () has maximum n bits and therefore has a maximum
value of r* —1 =R — 1.

4) Lower Bound on the Inputs: A design parameter with
significant influence on the implementation is the bound on
the inputs; it directly determines the size of the inputs, the
output and the intermediate registers in the implementation.
Let us assume that the inputs are bounded by a multiple k£ of
the modulus p:

A, B <kp ES

S<p+kp=(k+1)p

Thus, when the inputs are smaller than £ times the modulus p,
the input registers need to store [log, (k)| more bits than the
number of bits needed to represent p. Further, the intermediate
result needs [log,(k 4 1)] bits more than p.

5) Lower Bound on the Montgomery Parameter: The Mont-
gomery parameter (R = 7r") determines the number of
iterations (n) to obtain the result. We assume that the lower
bound on the Montgomery parameter is a multiple [ of p.



TABLE I: Influence of the boundaries of the MMM design
parameters on register sizes

6) Lower Bound on the Output: The relation between the
Montgomery parameter and the input bound has an important
effect on the output of the MMM. Assuming that both the
inputs and the Montgomery parameter are bounded by a
multiple (< kp and > Ip, respectively) of p, we obtain the
following bound on S

A,B<kpand R > Ip

i o AB Qp

= S= i + I
k*p®  (R—1)p
k*p*  (R—1p

= S< Ip +T
k2 p

S <« — =
= <lp+p R

k‘2

As an example, assume that the input bounds are A, B < 2p
and the Montgomery parameter is larger than 4p. Then the
output remains smaller than 2p, in accordance with the original
result in the paper of Walter, enabling MMM without final
subtraction [9].

7) Summary: Table I gives an overview of the design
parameters of the MMM for a prime of z bits. By carefully se-
lecting the lower bound of the Montgomery parameter (Ip) and
the upper bound of the inputs (kp), the number of iterations
(n) and the bound on the output and the intermediate values
can be determined. These bounds determine the register sizes
in the design and are therefore important design parameters.

B. Montgomery Modular ALU

Most literature on Montgomery multipliers in hardware is
focused on fast implementations of the MMM algorithm, often
at the expense of area efficiency. For these fast implemen-
tations, systolic arrays (e.g. [19]), pipelining (e.g. [20]) and
high-radix approaches (e.g. [21]) are very popular. However,
this paper focuses on low silicon area implementations. As a
result, a full-word implementation of the Montgomery multi-
plication algorithm without final subtraction [9], inspired by
the Modular ALU (MALU) design of Sakiyama et al. [22],
was chosen.

Parameter Bound # bits Upper limit Number of bits
Prime (p) - x Prime p k
Mon_tgo?ery parameter > Ip n+1 Montgomery parameter 2(’“+4)(> 16p) | k+5
(R=r1") Inputs 4p k+2
Inputs < kp z + [log2(K)] # iterations k+4 [loga(k + 4)]
# iteratiops = n [log2(n)] Intermediate result 5p k43
Interme@gte result < (k+1)p 2 + [loga(k + 1)] (after shlft)
(after shift) Intermediate result 10p E+4
Intermediate result (before shift)
(before shift) < 2(k +1)p @+ [log2(k +1)] +1 Output 2p k+1
O t k2 l k? 1

utpu < (T+1)p 2?+(092(T+ )-\

TABLE II: Necessary recourses of the MMALU, with corre-
sponding upper bounds for R > 16p

As discussed in Sect. II-A, the MMM has a bounded output
dependent on the upper bound of the inputs and the lower
bound of the Montgomery parameter R. When the inputs
of the MMM are limited to numbers smaller than 4p, the
intermediate results of Algorithm 1 are numbers smaller than
5p (after the shift operation). If we choose the Montgomery
parameter to be larger than 16p, the output is bounded by 2p.
Table II summarizes the previous reasoning.

The functionality of the MMALU can be selected using two
control signals, cmd and sub. This can also be seen in Fig. 2.
When cmd is set to 0, a MMM is performed on the input
operands. When operating in MMM mode, the sub control
signal selects either the MMM of the two input operands,
i.e. when sub equals 0, or otherwise the MMM of one input
operand with the second input operand equal to 1. The second
feature can be used to scale down the input operand to ensure
an outcome smaller than or equal to p, because

A<4pand B=1 and R > 16p

RS =AB+Qp
RS <4p-1+(R-1)p
RS < (R+3)p

3
S<p+l

Eq, 7
=N
=
=
=

16p

= S<p

Normally, the MMM of an input operand and 1 trans-
forms the input from the Montgomery representation back
to the original domain. However, when performed on all
coordinates of a point on the EC, this operation only results
in a scaling. Remember that the complete formulas to be
implemented have inputs and an output in the projective
space. Consequently, the formulas yield the same output for
scalar multiples of either of the input points, i.e. the output
remains unaffected when loading a set of inputs (X,Y, Z) or
(AX, XY, \Z) for either input point. It should also be noted
that this property renders transformation of the input coor-
dinates, i.e. {X1,Y1, 71, Xo,Ys, Z5}, to their Montgomery
representation and transformation of the output coordinates
back to the original domain unnecessary. This follows directly
from (X : Y : Z) = (RX : RY : R2Z).

Fig. 3 gives a conceptual view of the MMALU when
cmd equals 0. This is a straightforward implementation of
Algorithm 1 with two ripple carry adders (RCA).
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Fig. 2: Interface of the MMALU functional block.
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Fig. 3: Architecture of MMALU when cmd = 0.

Fig. 4 shows the functionality of the MMALU when
cmd = 1. In this mode, the integrated adder functionality is
selected. As a result, two field element inputs can be added or
subtracted depending on the value of sub. When sub equals
0, the adder adds two 2p inputs to an output of maximum 4p.
Additionally, subtraction is implemented when sub equals 1.
The same output range is available, due to the addition of 2p
with use of the second RCA, after subtracting with the first
RCA. Without this extra addition of 2p, the output would be
larger than —2p and smaller than 2p. When sub = 1, all bits
of B are inverted and the carry input of the RCA is set to 1
to obtain the 2’s complement representation of B.

logop+3
s ]
Fig. 4: Architecture of MMALU when ¢cmd = 1.

In summary, the MMALU can perform addition and subtrac-
tion without dedicated modular addition hardware, which en-
sures outputs between 0 and 4p when handling inputs smaller
than 2p. Therefore, an output of the MMALU in MMM mode,
which takes 4p inputs and returns a 2p output, can be used
as input of a subsequent addition. More generally, a series of
additions, subtractions and multiplications becomes possible,
when the input bounds of each operation are respected. This
also means that a series of subsequent additions is not always
possible without intermediate scaling or MMM, which can
increase the number of operations of the respective algorithm.
Nevertheless, other properties of the MMM are useful for

Functionality Input Output
add/subtract 2 X 2p 1 x4p
add/subtract 3x2p [ 1x4p
add 2X0p 1x2p
multiply 2 x 4p 1x2p
multiply 2 X 2p 1x %p
scale 1 x4p 1xp

TABLE III: Bounds of the inputs and outputs of the MMALU

performing such a series of operations. For example, three
outputs of Montgomery multiplications of values smaller than
2p can be added resulting in an output smaller than 4p. This
is because an MMM with two 2p input values results in the
following output bound:

A, B < 2pand R > 16p

. AB
Eyszf;%; 1
:>S<4'Pf72 (Rz%l)p
:>S<l€;?p ( ;%)p
:xS<(i+1)p—%
:>S<Zp

Table III specifies all functions of the MMALU. All calcula-
tions must respect these upper bounds on the input, otherwise
a correct operation of the MMALU is not guaranteed. As a
consequence of the optimizations made, not all algorithms will
be directly compatible with this design, i.e. without appending
scaling operations.

C. Point Addition

Moving one abstraction level up in Fig. 1, the next step is
to implement the complete point addition using Algorithm 7
in [7], given in Eq. 5, using the previously designed MMALU.
An overview of common architectures for ECC processor
designs is given in [23]. We implement a finite state machine
(FSM) to implement the rules for point addition in combina-
tion with a register file to store the intermediate results. The
output of the FSM consists of a write enable (WE) signal,
a write address (Address) and two read adresses (LO and
RO) for the register file. It also contains an OPCODE field
to control the operation of the MMALU.

In [7], the authors already present an implementation algo-
rithm for the proposed addition law in the form of consecutive
field operations. Algorithm 4 is a modified version of this
sequence of operations, taking into account the restrictions
given in Table IIl and the optimizations explained in the
following paragraph, resulting in a minimization of the number
of registers and the size of the multiplexers.

Originally, Algorithm 7 in [7] presumes 14 registers, i.e. 6
input, 3 output and 5 temporary registers. Our design utilizes

(4)Register data of ¢; is shifted into tg (tg < t1)



Algorithm 4: Complete, projective point addition for prime order
j-invariant O short Weierstrass curves E/F) : y2 = 3 +b

Require: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z32) on
E:Y?Z=X3+0bZ3andb3=3-b
Ensure: (X3:Y3:7Z3)=P+Q

1. 61 + X1 - Xo
4. t3+ X1+ Y1
T.tg < to+1t1

2.t1 < Y1 - Yo S
5.t4 +— Xo+ Yo
8. t3 < t3 —t4

3.ty 21+ 2o
6. t3 < t3 - tg
9.ty Y1+ 21

10. Yo < Yo + Zo 11. Y1 <+ t4 - Yo 12. Yo + t1 + t2
13.t4 < Y1 — Yo 14. Yo +— X1 + 21 15. Z1 + Xo + Z>
16. Z1 + Y2 - Z3 17. Y7 + to + t2 18 Y1+ 21—V
19. X1 < to +to 20. t1 + X3 +t0(4) 21. Yo < b3 - to
22. Z1 < to+ Yo 23.t1 < to — Y2(4) 24. Y1 < b3-Y1
25. X1« ty- Y1 26. Yo < t3 - t1 27. X1+ Yo — X3
28. Y1+ Y1 - to 29. Yo «— t1 - 21 30. Y1 < Yo+ Y,
31ty +to - t3@ 32. Z1 + Z1 -ty 33. 21+ Z1+ 11

34. X1 < scale(X1) 35.Y7 < scale(Y1) 36.Z1 < scale(Zy)

only 11 registers, reusing 3 input registers (X;, Y7 and Z;)
as output registers. In addition, the algorithm ensures only
3 address bits to select the left and right operand for the
MMALU and to select the write address. This is accomplished
by organizing the formulas in Algorithm 4 such that maximum
8 registers need to be accessible as left or right operand. In
order to reduce the number of writable registers, register ¢
is made not directly writable; instead, when writing to t;, the
value of ¢; is shifted to tg. This is incorporated in Algorithm 4,
which writes to ¢ty and ¢; alternately. Figure 5 gives the
resulting architecture implementing the point addition.

D. Point Multiplication

The next design stage is implementing point multiplication
with a Montgomery ladder as described in Algorithm 2.
Important to note is that this algorithm assumes the MSB of
m is not 0, therefore cutting the key space in half and making
brute force attacks more feasible. This assumption was made
to avoid addition with the point at infinity, which was not
possible whilst using the typical addition formulas. However,
this is not the case for their complete counterparts. Therefore,
the algorithm can be altered, restoring all possibilities in the
key space. In order to do so, Ry and R; are initialized to O
and P respectively and the loop must iterate through all bits
of m, i.e. from ¢t — 1 to 0.

It should be noted that by using the Montgomery ladder
instead of the double-and-add method, a possible speedup
and reduction of resources is not feasible. The reason is that
the output of a point addition is directly written in the input
registers. In other words, the output of a point addition will
automatically be the input for the next point addition without
the need for additional loading. In the double-and-add method,
one input remains unmodified. Consequently, only one input
should be reloaded during the next iteration. However, the
benefits of a balanced ladder method outweigh the lost speed
gain and resource reduction, in spite of the lost opportunity.

V. RESULTS

All blocks in the design were implemented in VHDL and
simulated with ModelSim PE. The ASIC area, expressed in

gate equivalents (GE), and the maximum clock frequency are
calculated by Synopsis Design Compiler 2016 using the open
source NANGATE4S5 library [24]. For testing of correctness of
operation, test vectors are constructed in Magma [25]. The test
bench also implements the secpl60kl and secp256kl curve
used in the Bitcoin protocol.

For the implementation without randomization in the Mont-
gomery ladder, Table IV shows the utilized silicon area in
kilo gate equivalents and the maximum clock frequency of
the design with respect to the size of the prime. For an easy
comparison to future designs, the silicon area is given with
and without the inclusion of the register file. Also, for the
secpl60kl and the secp256kl curves, which are described
in [26], the duration of a single scalar multiplication is
simulated at maximum frequency. The results show that the
size of the prime and the area of the implementation are
linearly correlated. Each increase of 32 bits for the prime,
results in an increase in implementation size of approximately
6.5 kGE. In contrast, the maximum clock frequency decreases
with an increasing prime size. This decline is slower than
linear decrease. For completeness, Table V gives the results for
an implementation with the randomization of the order of the
point operations. Note that the speed is unaffected. However,
the area increases due to the extra temporary registers in the
Montgomery ladder.

VI. CONCLUSION AND FUTURE WORK

This work presents the first ASIC coprocessor design
implementing ECC with complete formulas in GF(p). The
design consists of a fully balanced implementation, targeting
protection against SPA attacks. As a first step towards DPA
protection, the randomization of the execution order of the
point operations was incorporated in the Montgomery ladder.

# bits | Area Area w/o reg. | max. Freq. | Scalar mult. (ms)
(kGE) | file (kGE) (MHz)

64 17.77 10.03 333.33 -

96 26.30 14.77 250.00 -

128 34.12 18.64 166.67 -

160 42.48 23.22 166.67 5.52 (secpl60k1)
192 51.02 27.96 142.86 -

224 59.12 32.45 111.11 -

256 66.51 36.06 100.00 23.06 (secp256k1)

TABLE IV: Results generated using Design Compiler 2016
with the NANGATE45 library, with and without (w/o) ran-
domization of operations in the Montgomery ladder.

# bits | Area (KGE) | Area w/o reg. file (kGE)
64 21.58 13.84
96 31.91 20.38
128 41.51 26.03
160 51.08 31.81
192 61.35 38.29
224 71.59 44.92
256 81.89 5145

TABLE V: Results generated using Design Compiler 2016
with the NANGATE45 library, with and without (w/o) ran-
domization of operations in the Montgomery ladder.
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Fig. 5: Architecture of the point addition module.

Additionally, the design was optimized for minimal silicon
area by (1) using complete formulas for short Weierstrass
curves with a = 0, i.e. j-invariant 0 curves; (2) performing
datapath optimizations in the Montgomery modular ALU
(MMALU) with integrated adder functionality; (3) minimizing
the size of the register file by exploring the design parameters
of the MMALU and intelligent scheduling of the modular op-
erations. The silicon area, the maximum operating frequency
and the scalar multiplication execution time are evaluated
using Synopsys Design Compiler 2016.

Future work includes a side-channel analysis of the pro-
posed architecture. We expect that the design will be re-
sistant against SPA attacks and some DPA attacks. More
countermeasures need to implemented, however, to provide a
fully protected implementation. We also expect that a further
reduction of the silicon area is possible by using scalable
approaches to decrease the size of the MMALU.
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