
Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Technical report 7.11.2016

A Fresh Ruin & Recreate Implementation for the
Capacitated Vehicle Routing Problem

Jan Christiaens, Greet Vanden Berghe
KU Leuven, Department of Computer Science, CODeS & iMinds-ITEC

Gebr. De Smetstraat 1, 9000 Gent, Belgium, jan.christiaens@cs.kuleuven.be, greet.vandenberghe@cs.kuleuven.be

Problems such as the Capacitated Vehicle Routing Problem (CVRP) attract both mathematical modellers

and heuristic approaches. At present, exact mathematical approaches are capable of solving some CVRP

instances with up to 360 customers. The excessive computation times incurred by such exact models does,

however, severely limit their practical applicability within logistics and transportation sectors. By contrast,

heuristic approaches are generally faster and easier to adapt to other problems, albeit at the expense of

solution quality. Ruin & recreate represents one such heuristic approach. However, recent ruin & recreate

heuristics, while being deployed for more and more problems, have been concomitant with an additive trend

whereby the quantity of ruin methods and recreate methods has been systematically increasing. Essentially,

improved ruin & recreate results regularly coincide with challenging to reproduce methods. This paper’s

approach (ASB-RR), by contrast, is formed of a single ruin method, adjacent string removal, and a single

recreate method, greedy insertion with blinks. ASB-RR exhibits low computation times, robustness and

yields a high number of improved benchmark solutions when compared against state of the art CVRP

algorithms. Furthermore, the approach may be easily redeployed for similar problems within the field of

vehicle routing.

Key words : capacitated vehicle routing; ruin & recreate heuristic

1. Introduction

The capacitated vehicle routing problem (CVRP) was introduced by Dantzig and Ramser (1959) as

the truck dispatching problem, a generalization of the traveling salesman problem (TSP). Despite

over 55 years of research (Laporte 2009), the CVRP remains a highly active field of research and

it continues to represent a significant computational challenge. Research concerning the problem

mostly falls into one of two categories: exact algorithms or heuristics.

Developing exact algorithms is an interesting activity in itself while also providing objective

function bounds which enable accurate heuristic quality assessment. Toth and Vigo (2002) provide

a comprehensive overview of exact algorithms to solve CVRPs with either symmetric or asym-

metric cost matrices. They primarily focus on Branch and Bound-based algorithms and review

a set of original powerful approaches. The Branch-Cut-and-Price (BCP) algorithm by Fukasawa

1

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

2 Technical report 7.11.2016

et al. (2006), improved upon previous Branch-and-Cut algorithms. Several improvements such

as by Baldacci, Christofides, and Mingozzi (2008) are combined with new elements (Pecin et al.

2014), and prove capable of solving CVRPs of up to 350 customers and even 650 in some cases.

Computation times can, however, be as long as five days, which makes such solvers impractical

for many real-world purposes.

Heuristics, by contrast, are characterized as fast and adaptable methods. Absolute optimality is,

however, not ensured - a necessary trade-off in terms of accommodating many real-world situations

which rely on the presence of timely solutions. Heuristics generally employ specific neighborhoods

which are explored by a metaheuristic to gradually improve candidate solutions. Prior to the

latest improvements, classical neighborhoods such as 2-opt* (Potvin and Rousseau 1995) and

CROSS-exchange (Taillard et al. 1997) are explored in single-solution-based heuristics. Larger

neighborhoods are explored by Shaw (1998) and Pisinger and Røpke (2007) in a ruin & recreate

framework. Prins (2004) contributed a hybrid genetic algorithm, the first population-based frame-

work for VRPs, which improved significantly upon the prior approaches. Recently this approach

was refined by Vidal et al. (2015), thereby realizing the state of the art VRP heuristic. While the

initial ambition of heuristics is noble, they have gradually become increasingly complicated. The

present paper seeks to remedy this by introducing a low-level, yet simultaneously powerful and

fast, approach which is sufficiently adaptable and, as such, may be easily incorporated into any

current or future VRP approach. This ruin & recreate approach’s improvements to the state of

the art will subsequently be demonstrated and documented.

Regarding the structure of the paper, it begins by first offering a problem definition of the CVRP.

Following this a general introduction to heuristics and metaheuristics is provided, with particular

attention paid to Simulated Annealing. Next, a comprehensive review of classical neighborhoods

is presented. Expert readers already familiar with classical neighborhoods are free to skip this

section, although some original terminology is introduced which helps unify the field and aid in the

subsequent presentation of this paper’s original contribution. An introduction to ruin & recreate

is provided during the following section. Section 6 introduces ABS-RR, adjacent string removal

& greedy insertion with blinks, this paper’s ruin & recreate contribution. Computational results

are detailed in the following section and the paper ultimately ends with a conclusion section

summarising the results and delineating the scope and possibilities for future research.

2. Problem description and methodology

The CVRP, considered by the current paper, is defined as follows. Let G = {V,E} be a complete

undirected graph in which V is the set of vertices and E the set of edges. The vertices vi ∈ V for

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

Technical report 7.11.2016 3

i∈ {0, ..., n} represent locations in a 2-dimensional space where v0 corresponds to the depot and the

other n vertices with customers having a demand qi. Each edge (i, j) in E = {(i, j) : i, j ∈ V, i �= j} is

associated with a cost cij. An unlimited homogeneous fleet of vehicles with capacity Q is situated at

the depot. The CVRP consist of designing vehicle tours at minimum cost such that each customer

is served exactly once by a single vehicle while each tour starts at the depot v0, serves customers

without exceeding the vehicle’s capacity Q and finally ends at the same depot v0.

3. Heuristics and metaheuristics

While exact mathematical optimization methods attempt to find the optimal solution for a given

problem, heuristics search for reasonably good solutions within a small amount of computation

time. Local search (LS) heuristics begin with an initial solution s0 for the problem provided by a

constructive method (CM). LS seeks better solutions by iteratively replacing the current solution

s with an improving or equal neighbor solution s← s′, a substitution referred to as a move. The

neighborhood function N is a mapping of solution s to the set of its neighbors s �→N (s) or simply

its neighborhood. LS terminates in a local optimum s̄ when N (s̄) contains no improving neighbor.

By contrast, metaheuristics are capable of ‘escaping’ from such local optima by their ability of

moving to lower quality neighbors. The subset C(s)⊆N (s) represents a set of candidate solutions,

from which s′ is selected (neighbor selection NS) by a local search method and possibly accepted by

the neighbor acceptance (NA) criterion. The metaheuristic terminates when a certain stop criterion

(SC) is satisfied, for example computation time limit or maximum number of iterations. Fig. 1

introduces a schematic representation of a metaheuristic.

Constructive method (CM)

Neighbor selection (NS)

Neighbor acceptance (NA)

Stop criterion (SC)

s (s) (s)

s s0

s s

sfinal s no?

Figure 1 Local search metaheuristic.

A sequence of moves denotes a walk, or a search trajectory, through the solution space by iter-

atively moving from the current solution to one of its neighbors (Crainic and Toulouse 2003). The

search trajectory in Fig. 2, for example, begins at the initial solution (s← s0). The neighborhood

N (s0) contains nine neighbors of which four are present in the set of candidates C(s0). Solution

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

4 Technical report 7.11.2016

s1 is accepted from C(s0) by the first move m1 (s← s1) and neighborhood N (s2) is reached after

performing the second move m2 (s← s2).

s0

(s0)

(s1)

s1

(s2)

s2

(s) (s)

s (s) \ (s)
s (s)

mi (s si

m1

m2

Figure 2 Search trajectory through the solution space.

Notice that neighborhood N (s2) overlaps with initial neighborhood N (s0), potentially resulting

in metaheuristic ‘cycling’. The Tabu Search metaheuristic (Glover 1986), for example, maintains

characteristics of previously visited solutions in a set T to avoid such cycling behavior. Simulated

Annealing is an often-employed meta-heuristic whose NA criterion accepts non-improving neighbors

based upon the annealing process of metals. Given that the algorithm presented in Section 6 is

guided by this metaheuristic, a more detailed explanation of Simulated Annealing is located within

the following section.

3.1. Simulated Annealing

The field of metallurgy defines annealing as the process by which the physical properties of materials

are modified through controlled heating and cooling. A statistical model concerning the energy

changes in such annealing systems was developed by Metropolis et al. (1953). Based on this work,

Kirkpatrick, Gelatt, and Vecchi (1983) introduced Simulated Annealing (SA) as a metaheuristic

capable of solving combinatorial optimisation problems. The transition to a new state s← s′ is

dependent upon the energy change of the system ΔE =E(s′)−E(s) and the current temperature

T . While improving or equal quality neighbors (ΔE ≤ 0) are always accepted, the transition to a

non-improving neighbor occurs with an acceptance probability function h(ΔE,T) = exp(−ΔE/T).

Non-improving solutions are therefore more likely to be accepted at high values of T or low values

of ΔE (Fig. 3a). This probability distribution is employed by SA as the probabilistic NA criterion.

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

Technical report 7.11.2016 5

(a) (b)
E

0 2 10864
0

0.2

0.4

0.6

0.8

1.0

0 0.2 1.00.80.60.4
0

0.2

0.4

0.6

0.8

1.0

i

T(i)

h(E,T) e

- E
T

T 2

T 1/2

T 1

Linear

Cauchy

Quenching

Boltzmann

h(E,T)

Figure 3 Simulated Annealing: acceptance distribution (a) and cooling scheme (b).

SA begins at an initial temperature, T0, high enough such that all non-improving neighbors are

likely accepted. Assuming the system is cooled to the theoretical final temperature T1 = 0 over

an infinite length of time, SA will converge to the problem’s optimum solution. In practice, the

system is cooled to a final temperature T1 > 0 (the stop criterion). The cooling rate is specified by a

cooling scheme T (i) as a function of the normalized annealing time i (0≤ i≤ 1). Fig. 3b illustrates

the envelopes of the Linear, Exponential, Hyperbolic and Logarithmic cooling schemes when the

system is cooled from T0 = 1 to T1 = 0.1. The corresponding equations are provided by Table 1.

The influence on the acceptance distribution is visualized in Fig. 4 for the Linear (a), Quenching

(b) and Cauchy (c) cooling schemes.

Table 1 Cooling schemes.

Temperature Cooling constant

Linear T (i) = T0 + c.i c= T0 −T1

Exponential T (i) = T0.c
i c= T1/T0

Hyperbolic T (i) = T0/(1+ c.i) c= (T0 −T1)/T0

Logarithmic T (i) = T0/(1+ ln(c.i)) c= exp((T0 −T1)/T1)

When the linear scheme is applied (Fig. 4a), non-improving solutions are potentially accepted

quite far into the search, thus implying a rather diversified search. The hyperbolic scheme (c)

only accepts non-improving solutions at the very beginning of the search. An exponential scheme

represents a good compromise for many researchers, wherein a diversified search is obtained during

the first half of annealing-time, while the search becomes strongly intensified during the second

half (b).

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

6 Technical report 7.11.2016

(a) (b) (c)

i

h(E,T(i))

E

T(i) = Tlin

i

h(E,T(i))

E

T(i) = Tque

i

h(E,T(i))

E

T(i) = Tcau

Figure 4 Envelope of the acceptance probability h based on three cooling schemes: Linear (a), Exponential (b)

and Hyperbolic (c).

Most metaheuristics require parameter tuning when applied to a given problem as there are no

parameter settings ensuring good performance on all problem types. For example, larger problems

generally require more iterations to obtain gradual convergence. SA requires T0 and T1 to be ‘tuned’

which further impacts upon the cooling scheme shape, and therefore finding good values for these

parameters proves a difficult task.

4. Classical neighborhoods

Before explaining the incentive behind the algorithm introduced by this paper, the present section

first analyzes the local search improvement operators employed by TSP, CVRP and VRPTW

(VRP with Time Windows) heuristics. Such an analysis will indicate the common mechanisms of

the corresponding neighborhoods. While readers already familiar with such details are free to skip

over this section, it does in fact contribute a comprehensive comparative overview of local search

developments in a vehicle routing context.

The following subsections refer to a sequence of consecutive nodes in a tour as a string. Strings

may contain zero customers to, at most, all customers served by the tour. The number of customers

included in a string is referred to as the cardinality of the string and denoted by |string|. A string’s

origin tour T is referred to as T -string. The string’s direction is defined relative to its origin tour

A which may be preserved (A-string+), reversed (A-string−) or arbitrary (A-string) (see Fig. 5a).

The term string may be substituted by the term head (B-head) or tail (B-tail) when the string

includes, respectively, the first or last customer served by the tour B (Fig. 5b).

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

Technical report 7.11.2016 7

A-string

B-head B-tail

(a) (b)

A-stringA-string

A B

Figure 5 String definitions.

4.1. TSP neighborhoods

Optimising the TSP essentially implies reaching an optimum sequence for connecting an entire set

of spatially-distributed nodes. Such a sequence cannot be optimum whenever an edge intersects

another, as confirmed by Flood:

“There is one useful general theorem, which is quickly discovered by each one who considers the

traveling-salesman problem. In the euclidean plane it states simply that the minimal tour does not

intersect itself.” (Flood 1956)

This theorem represents the foundation for the most powerful TSP heuristics, detailed in the

following sections.

4.1.1. 2-opt (Croes 1958) One possible suggestion for remedying the optimality violation

detailed by Flood is to locate such intersecting edges and reverse the direction of the intermediate

nodes between these edges. The most basic implementation of such a suggestion corresponds to

the well-known 2-opt move (Croes 1958), which considers two non-consecutive edges. Fig. 6(a-b)

illustrates a 2-opt move which removes two intersecting edges before reconnecting the nodes by two

non-intersecting edges. Using the string terminology introduced earlier, we could interpret such a

move as simply reversing the string’s direction (string+ → string−).

(a - b) (b - c) (c - d)

Figure 6 Three 2-opt moves modifying a solution from (a) to (d).

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

8 Technical report 7.11.2016

Although no pair of edges intersect in solution (b), solution (c) represents an improved neighbor

in its 2-opt neighborhood. As with the (b− c) move, (c) has no intersecting edges. The optimal

solution (d) is obtained by a two-opt move applied to solution (c). Nevertheless, 2-opt does not

guarantee generating the global optimum, as demonstrated by Fig. 7. Solution (a) has five neighbors

in its 2-opt neighborhood while only three distinct solutions exist: (b), (c) and (d). Solution (a)

has a tour length of 26 whereas neighbors (b), (c) and (d) have tour lengths of 26.06, 35.88 and

29.12 respectively. Therefore no improving solutions within the 2-opt neighborhood are available

and solution (a) is said to be 2-optimal. Metaheuristics may be employed to escape from this local

optimum. Flood’s theorem served as the foundation for the creation of the 2-opt move which is

known to be reasonably effective with neighborhood sizes of O(n2), where n denotes the number

of edges.

(a) (a-b) (a-c)

8

4

5
8.94

4.12

(a-d)

Figure 7 A 2-optimal solution (a) without any improving neighbors (b, c and d).

4.1.2. 3-opt (Lin 1965) The 2-opt move provides the basic principle for the 3-opt move

(Lin 1965), which considers three rather than two edges, thus enabling the exploration of a larger

neighorhood. Fig. 8a reproduces the same solutions as Fig. 7a, proven 2-optimal by enumeration,

and is consequently employed to illustrate 3-opt neighborhoods. Three edges are removed and

replaced with others from the 3-opt neighborhood. If one of the removed edges were replaced by its

original edge, it would result in a 2-opt neighbor. Due to this property, removing three consecutive

edges in the current solution (a) always results in a 2-opt neighbor, given one of the three edges

will always be replaced by its original edge. There are only five possibilities to remove three non-

consecutive edges, of which only three - ab, ac and ad - are symmetrically distinct. There exist

three distinct possibilities for replacing the selected edges in (ab). Only one option, (b), replaces all

three edges with new ones, thus resulting in a neighbor not part of the 2-opt neighborhood. This

situation also occurs in solutions (c) and (d).

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

Technical report 7.11.2016 9

(a) (ab- b) (ac- c)

8

4

5

(ad- d)

Figure 8 Three 3-opt neighbors (b, c and d) for the 2-optimal solution (a).

Evidently, it is possible to reach optimal solution d, which was not one of the 2-opt neighbors,

using only improving moves. One should be aware, however, that exploring the 3-opt neighborhood

increases the neighborhood size from O(n2) to O(n3).

4.1.3. k-opt (Lin and Kernighan 1973) and or-opt (Or 1976) The k-opt heuristic devel-

oped by Lin and Kernighan (1973) represents the most general -opt, wherein the value of k is

deduced by a clever mechanism embedded within the move itself. Or-opt exchanges (Or 1976) are

subset of the 3-opt which also consider three edges. However, or-opt iteratively relocates a 3-string+

to another location until no further improvements are possible. The procedure is subsequently

executed with a 2-string+ and, finally, a 1-string (single node).

4.2. CVRP neighborhoods

Given the CVRP represents a generalisation of the TSP, all TSP heuristics may be applied

to a single tour in CVRP solutions as intra-route neighborhoods which are employed as either

independent neighborhoods, parts of compound moves or post-processing procedures.

4.2.1. 2-opt as an inter-route operator In the 2-opt neighborhood, as previously detailed,

two edges are selected and the direction of the enclosed string reversed (string+ → string−). In a

CVRP solution, two edges from different tours A and B are considered, enabling 2-opt to operate

as an inter-route neighborhood. The edge selected in tour A splits the tour into A-head+ and

A-tail+ strings, the edge selected in tour B splits it into B-head+ and B-tail+ strings. There are

now two possibilities insofar as reconnecting the resulting strings. In Fig. 9a-b A-tail+ and B-tail+

are swapped by connecting them to B-head+ and A-head+, respectively. In this case, no strings

are reversed. The second option is shown in Fig. 9a-c. B’s head string is reversed (B-head−) and

connected to A’s head-string (A-head+). The same process occurs for the tail-strings, with a-tail

being connected to B-tail−.

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

10 Technical report 7.11.2016

(a - b) (a - c)

A B A B

A-head B-tail

B-head A-tailA

A-head B-tail

B-head A-tail

A-head B-tail

B-head A-tailA

A-head B-tail

B-head A-tailA

Figure 9 Inter-route 2-opt move, string directions preserved (a-b) and reversed (a-c).

4.2.2. Or-opt as an inter-route operator The or-opt neighborhood may be easily employed

as a CVRP inter-route neighborhood by inserting the removed string into a different tour with

sufficient capacity. However, when all vehicle capacities are completely utilized or all remaining

capacities are less than the smallest demand, or-opt functions only as an inter-route neighborhood,

provided customers are relocated to a new empty tour.

4.2.3. Single, double, pair+single and double pair procedures (Waters 1987)

Greater capacity slack may be introduced into the solution by exploring other neighborhoods.

Waters (1987) introduced single, double, pair+single and double pair procedures. These proce-

dures remove one or two strings from the solution before reinserting them into optimal positions.

The single procedure removes only one node (1-string) from the solution. The double procedure

removes two 1-strings. The pair+single procedure removes both a 2-string (pair) and 1-string

(single). Finally, two 2-strings are removed by the double pair procedure. The overall improvement

method explores the two-opt neighborhood first, followed by the double pair, pair+single, double

and finally the single neighborhood.

4.2.4. Chain-exchange (Fahrion and Wrede 1990) While Waters (1987) restricted the

operation to string cardinalities of one and two, Fahrion and Wrede (1990) permitted two larger

string cardinalities (M -string and P -string) through their chain-exchange procedure. String car-

dinalities M and P are bounded to be no more than one half of the average tour size as their

research indicates that larger strings do not generally result in further improvements. Finally, as

with Waters (1987), strings are reinserted into optimal positions.

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

Technical report 7.11.2016 11

4.3. VRPTW neighborhoods

The neighborhoods described in the previous section enable the reversal of the removed strings, a

process which often results in time window infeasibilities for VRPTW solutions. Therefore, string

order is usually preserved by the neighborhoods applied to VRPTWs.

4.3.1. Exchange, cross and relocate (Savelsbergh 1988) The exchange, cross and relo-

cate neighborhoods are introduced in Savelsbergh’s Ph.D. dissertation (Savelsbergh 1988) and

related research paper (Savelsbergh 1992). These neighborhoods relocate strings between two tours

A and B. Exchange simply swaps two strings: an A-string+ is inserted at the B-string’s original

location and vice-versa (Fig. 10a-b). Cross swaps the tails of two tours, equivalent to the inter-

route extension of the two-opt neighborhood which preserves the string orders (Fig. 10c-d). Finally,

relocate inserts an A-string+ into another tour B (Fig. 10e-f). Relocate represents a generalization

of the or-opt neighborhood given that the A-string’s cardinality is not limited to three.

(a - b) (c - d) (e - f)

Figure 10 Exchange (a-b), cross (c-d) and relocate (e-f).

Neighborhoods are explored simultaneously, with the best neighbor in each iteration selected

until no improvements are possible. A computational analysis of these neighborhoods is detailed

by both Prosser and Shaw (1996) and Van Breedam (1994). These studies conclude that relocate

improves solutions the most, and exchange the least.

4.3.2. 2-opt* (Potvin and Rousseau 1995) Equivalent to Savelsbergh’s cross move, 2-opt*

(Potvin and Rousseau 1995) generalized the 2-opt neighborhood into an inter-route neighborhood

for the VRPTW, with the aim of preserving node order. Their first implementation applies 2-opt*

until a 2-opt* optimal solution is found. Next, or-opt is applied to this solution until an or-opt

optimal solution is found. The procedure is repeated until the optimum solution is achieved for

both neighborhoods. The second implementation explores neighborhoods simultaneously. Results

indicate their approaches perform well on VRPTW problems with tight time windows.

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

12 Technical report 7.11.2016

4.3.3. CROSS-exchange (Taillard et al. 1997) Taillard et al. (1997) combine Savels-

bergh’s inter-route exchange, cross and relocate neighborhoods in the CROSS-exchange

neighborhood. They also enable relocate to operate within a single tour. NS is performed using a

neighborhood reduction technique. An approximation matrix is employed which stores previous

calculations, thus reducing computation time.

The following section will introduce ruin & recreate which enables one to interpret each of these

classical neighborhoods in a more general manner.

5. Ruin & recreate strategies

The neighborhoods for VRP heuristics detailed throughout the previous section were defined via

slight modifications of the incumbent solution. They therefore exhibit reasonable size complexity,

implying a full neighborhood N (s) may be evaluated within a reasonable amount of computational

time. Very large neighborhoods often occur when a significant part of the solution undergoes

modification, making a full neighborhood exploration impractical. Therefore, neighbors may be

selected by the NS from a reduced candidate set C(s)⊆N (s).

Consider a simple NS which generates a single neighbor by first ruining the current solution

before recreating it into a feasible one. The resulting neighbor is passed to the NA. Such an NS

may be defined by a ruin phase R− and recreate phase R+. This underlying concept is present in a

variety of research papers. To our knowledge, it was established for the first time by Dees and Smith

(1981) in their Rip-Up and Reroute strategies for wiring point-to-point connections in electronic

design automation. Shaw (1998) introduced Large Neighborhood Search (LNS) wherein the ruin

phase is implemented as the removal of related customers (related in terms of time, distance and

being served by the same vehicle). A branch and bound technique optimally inserts the removed

customers in the recreate phase. The term Ruin & Recreate (R&R) was introduced by Schrimpf

et al. (2000) who applied the technique to a number of prominent problems including the TSP and

VRPTW. They ruined solutions by removing either randomly selected customers, customers within

a certain radius or consecutive customers in a single string. The solution is recreated by greedily

reinserting the removed customers in a random order at minimum cost. Pisinger and Røpke (2007)

defined several ruin & recreate methods which compete to modify the solution in their Adaptive

Large Neighborhood Search (ALNS) framework. They applied their method to the Rich Pickup and

Delivery Problem with Time Windows (RPDPTW) and implemented seven different strategies for

selecting customers for removal: random, worst, related, cluster, time oriented, historical node-

pair and historical request-pair. The solution is recreated using either greedy or regret insertion

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

Technical report 7.11.2016 13

(Potvin and Rousseau 1993) with or without noise function. An overview of these ruin & recreate

methodological implementations is provided by Table 2.

Table 2 LNS, R&R and ALNS methodologies.

Shaw (1998) (LNS)

R− → related removal R+ → optimal insertion (branch and bound)

Schrimpf et al. (2000) (R&R)

R− → random, radial or string removal R+ → greedy insertion

Pisinger and Røpke (2007) (ALNS)

R− → random, worst, related, cluster, time-
oriented or historical removal

R+ → greedy or regret insertion with or without
noise function

Recent heuristic development based on the ruin & recreate principle build upon the general

ALNS framework by enlarging the set of ruin and insertion methods. Examples of such studies

include, but are not limited to: Gilbert Laporte (2010), Ribeiro and Laporte (2012)

Given the generality of R&R, one may define the classical neighborhoods detailed in Section

4, as R&R strategies. Generally, all these neighborhoods are obtained by removing a number of

strings (R−) and reinserting the, possibly reversed, strings into the solution at certain positions

(R+). Evidently, recreating the solution via string insertions potentially yields fewer possibilities

since it requires more free capacity in a single vehicle than inserting customers separately into

multiple vehicles. Consequently, greedy insertion techniques are more likely to achieve feasible

solutions by considering customers separately, rather than in the form of strings.

In distinct contrast to the recent trend of introducing more and more R− and R+ methods, the

present paper introduces a simplified yet powerful R&R implementation using a single R− and R+

method: adjacent string removal and greedy insertion with blinks (ASB-RR), respectively. The R−

and R+ combines elements of classical neighborhoods and a modified version of greedy insertion

methods employed in recent R&R heuristics (Table 3), with the significant additional benefit of

being highly reproducible.

Table 3 Classical neighborhoods and ASB-RR methodologies.

Classical neighborhoods

R− → string removal R+ → string insertion

ASB-RR

R− → adjacent string removal R+ → greedy insertion with blinks

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

14 Technical report 7.11.2016

6. Adjacent String Removal & Greedy Insertion with Blinks

The following principle guides the implementation of the ASB-RR ruin & recreate phases:

“Customers should be removed in the ruin phase with the ambition of improving inter-route

relocations in the recreate phase.” Furthermore, one should not only consider which customers are

to be relocated but simultaneously also consider the consequent capacity slack and spatial slack

engendered by their removal.

Spatial slack implies vehicles are free to serve all customers without incurring large detours

or significantly greater travel distances. There exists vehicle flexibility with regard to which

customers to serve. In essence, vehicles are not bound to a specific geographic region. Spatial bond,

by contrast, implies travelling to certain customers would introduce significantly longer detours

and, consequently, greater costs. There exists less freedom when choosing which customers to

serve and their geographic location is a deciding criteria.

In Fig. 11 below, for example, (f) represents the ruined state with the most spatial slack. By

contrast, ruined states (b) and (d) emerging from (a) and (c), respectively, continue to be bonded

to the same regions.

(a - b) (c - d) (e - f) (g)

Figure 11 Random (a-b), radial (c-d), adjacent string (e-f) removal and recreated state (g) which may emerge

only from ruined state (f).

This results in the following three propositions:

Proposition 1. Remove a ‘sufficient’ number of customers

A small number of removed customers (such as 1 to 5) fails to introduce sufficient capacity slack

and subsequently ease customer relocations during the recreate phase.

Proposition 2. Remove ‘adjacent’ customers

Removing non-adjacent customers (randomly-selected customers such as in Fig. 11a-b), gener-

ally introduces capacity slack scattered across multiple tours. Removed customers are unlikely to

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

Technical report 7.11.2016 15

benefit from the capacity slack introduced by other removed customers which often results in single-

customer relocations.

Proposition 3. Remove adjacent ‘strings’

Customers which are only distance-adjacent (as in the case of radial removal, Fig. 11c-d) often

introduce scattered capacity slack and minimal spatial slack if the removed customers are non-

consecutive (d). An example of removing adjacent strings is depicted in Fig. 11e-f, the only ruined

state from which (g) may emerge.

6.1. Ruin phase - Adjacent string removal

Proposition 1 states the ruin phase should remove a sufficient number of customers by removing

adjacent strings. The number of strings k and the cardinality of these strings l may be selected

randomly from the ranges [Kmin,Kmax] and [Lmin,Lmax], respectively. By fixing the average com-

putational effort to an average number of removed customers c̄, it is possible to investigate the

influence of removing many strings of small cardinality or few strings of high cardinality. Parameter

c̄ may be expressed as a function of the average number of strings k̄ and the average string length

l̄, as demonstrated in Eq. 1.

c̄= k̄.l̄=
Kmin +Kmax

2
.
Lmin +Lmax

2
K,L∈N>0 (1)

Solutions may consist of many short tours serving few customers or only a few long tours serving

many customers, depending upon the specific problem instance. Therefore, it may not be possible

to remove Kmax strings if the solution contains fewer tours, or to remove strings of cardinality Lmax

in cases where all tours are short. Given that it is more likely that the number of served customers

in a tour is smaller than the number of tours in a solution, especially for large instances. Kmax is

dynamically calculated while the values of c̄, Lmin, Lmax and Kmin are fixed input parameters, as

per Eq. 2.

Kmax =
4.c̄

Lmin +Lmax

−Kmin Kmax ∈R>0 (2)

Given that the input parameter Lmax may be too large in the current solution, an adjusted value

lmax, limited by the average tour length |t| (Eq. 3), is used to calculate the adjusted value kmax

(Eq. 4).

lmax =min(|t|, Lmax) lmax ∈R>0 (3)

kmax =
4.c̄

Lmin + lmax

−Kmin kmax ∈R>0 (4)

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

16 Technical report 7.11.2016

(a) (b)

Lmin

Lmax

t

Kmin kmax

Lmin

lmax

lmax

Lmax

t

Kmin kmaxtours

tour length

Figure 12 Ranges for k and l when |̄t|>Lmax (a) and |̄t|<Lmax (b).

Fig. 12 illustrates the adjustment of kmax according to the current solution. Assume the following

parameter settings: c̄= 12, Lmin = 2, Lmax = 6 and Kmin = 2. The current solution’s average tour

cardinality |t| is equal to 7 (Fig. 12a), which is greater than Lmax. Therefore lmax is set to 6 (Eq. 3)

and kmax becomes 4 (Eq. 4). When the average tour cardinality |t| is smaller than Lmax (4 and

6 respectively in Fig. 12b), lmax is set to 4 and kmax becomes 6. This enables the selection of a

random integer value for k, the number of strings to be removed in the range [Kmin, kmax] by way

of Eq. 5. Similarly, for each string, an integer value for its cardinality is randomly selected in the

range [Lmin, lmax,t] by way of Eq. 7. Although lmax is adjusted for the current solution, its value

may be too large according to a certain tour, as illustrated in Fig. 12. Therefore, the adjusted value

lmax,t (Eq. 6) is required by Eq. 7 to be no greater than the current tour cardinality |t|.

k= 	 U([Kmin, kmax +1[)
 k ∈N>0 (5)

lmax,t =min(|t|, lmax) lmax,t ∈R>0 (6)

lt = 	 U([Lmin, lmax,t +1[)
 lt ∈N>0 (7)

The procedural steps of the ruin phase are given by Algorithm 1. First, values for lmax, kmax and

k are calculated by employing the settings found in Table 4.

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

Technical report 7.11.2016 17

Table 4 ASB-RR parameter settings for the Ruin method.

c̄= 10

An average of 10 removed customers has been proven ‘sufficient’ after exhaustive analysis. A figure of 10
implies the removal of at least 1 and at most 19 customers.

Lmin = 1, Lmax = 10

Removed string lengths should be between 1 and 10 since removing longer strings failed to improve final
results. This confirms the observations of Fahrion and Wrede (1990) whose approach, while similar, limits
string cardinality to half the average tour length.

Kmin = 1

The minimum number of removed strings is set to 1. By employing Eq. 5 and the previous settings, the
number of removed strings kmax will be in the range [1,3] for solutions with large tours (|t| ≥ Lmax = 10)
and [1,19] for solutions’ tours exclusively of cardinality one (|t| = 1). This situation almost always only
occurs during the first iteration of the search (see Section 6.3)

Algorithm 1 ASB-RR - Ruin method

1: procedure removeCustomers(s)

2: lmax, kmax, k← calculate(Eq. 3,4,5)

3: C ←∅ � Set of removed customers

4: T ←∅ � Set of ruined tours

5: cseed ← randomCustomer(s)

6: for c∈ adj(cseed) and |T |< k do � Increasing distance to seed

7: if tour(c) /∈ T then

8: lt ← calculate(Eq. 7)

9: C ←C ∪ removeSelected(c, l)

10: T ← T ∪ tour(c)

11: end if

12: end for

13: return C

14: end procedure

Removed customers are stored in set C and their original tour in set T . Adjacent strings are

selected near a randomly chosen seed customer cseed. For each customer c ∈ P an adjacency list

adj(c) of all customers ordered by increasing distance from c is assumed to be available. The list

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

18 Technical report 7.11.2016

adj(c) includes customer c as its first element. List adj(cseed) is iterated over to select strings

close to cseed. If a customer’s serving tour t(c) has not yet been ruined (t(c) /∈ T), customers are

removed from t(c) via the ‘string’ or ‘split string’ procedure. Thereafter the ruined tour is added

to set T . This procedure is repeated until k strings are removed, implying |T |= k.

One should recall that all customers are iterated over by increasing distance from cseed

using adj(cseed). This iteration continues until a customer c is encountered who is served by a

not-yet-ruined tour t(c). When such a customer is found, no customer served by t(c) preceded c

in the list adj(cseed). All other customers succeed c in list adj(cseed), indicating they are further

from cseed than c. Therefore, c represents the customer closest to cseed out of all customers served

by t(c), and is denoted as c̆.

The ‘string’ procedure removes a random string of length l which includes customer c̆. Including

c̆ implies all removed strings are adjacent to cseed and, consequently, adjacent to all other removed

strings. In essence, only adjacent strings are removed. An example where l = 3 is illustrated in

Fig. 13. One of the three possible strings is randomly selected for removal.

c

t(c)

(

(

Figure 13 Possible ‘string’ removals which include c̆ from tour t(c̆) when l= 3.

The ‘split string’ procedure begins much like ‘string’, by randomly selecting a string of cardinality

l +m which includes customer c̆ (Fig. 14a). However, the ruin phase bypasses and preserves a

random substring of m intervening customers as shown in Fig. 14b. The number of preserved

customers m is determined as follows. Initially m= 1 and the current value of m is maintained if

a random number is smaller than α (U([0,1[) < α = 0.01) or when the maximum value for m is

reached (m= |t(c)|− l). If neither of these conditions is satisfied, m is incremented (m=m+1) and

the incrementation process repeats. This results in values for m= 1,2,3, ...,mmax having respective

probabilities p= 1.00%,0.99%,0.98%, ..., (100− pm=1 − pm=2 − pm=3 − ...− pm=mmax−1)%.

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

Technical report 7.11.2016 19

c

t(c)

(

(

(a) (b)

ci

cj

Figure 14 ‘Split string’ removal when l= 5 and m= 2.

Both ‘string’ and ‘split string’ are executed with equal probabilities. Fig. 15 represents three

distinct situations concerning how tours are ruined. In half of cases the ‘string’ procedure removes

a string, introducing spatial slack (Fig. 15a-b), whereas in the other half tours are ruined by the

‘split string’ procedure. Furthermore, there exists a very small value for m, occurring with a very

low probability, where the original tour is preserved (c-d). Otherwise m=mmax, where the removed

customers are close to the depot (e-f).

(a - b) (c - d) (e - f)

Figure 15 ‘String’ removal (a-b) and ‘split sting’ removal (c-d), (e-f).

Fig. 16 presents an example of the ruin phase where two strings are removed. First, the seed

customer cseed is randomly selected (a). Following this, the list adj(cseed), is iterated over. Since

cseed is always the first element in the list and no tours are ruined, c̆ = cseed. A string of length

l= 4 is removed by the ‘string’ procedure which includes c̆ (b-c). In (d) adj(cseed) is iterated over

until the next customer is found who is served by a not-yet-ruined tour. The second string is

also removed by the ‘string’ method and l is, coincidentally, 4 again (e). The final ruined state is

illustrated in (f).

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

20 Technical report 7.11.2016

(a) (b) (c) (d) (e) (f)

c(

c(

cseed

Figure 16 An example of the ASB-RR ruin method..

6.2. Recreate phase - Greedy insertion with blinks

The recreate phase is based on greedy insertion which sequentially inserts a set of customers C

into a solution s (Algorithm 2). First, set C is sorted by one of the following orders: Random,

Demand, Far or Close. ‘Random’ enables the set’s insertion without any ordering. ‘Demand’ sorts

customers by demand, placing those with the largest demand first. ‘Far’ inserts the most-distant

customers from the depot first, thereby introducing spatial bond in the existing tours. Finally,

‘Close’ inserts customers closest to the depot first. Set C is sorted by Random, Demand, Far and

Close by weights 4, 4, 2 and 1, respectively.

While basic greedy places each customer at the best position, one may deviate slightly from the

best position. Pisinger and Røpke (2007) apply greedy insertion with noise function by adding a

randomized noise term to the insertion cost. This paper, by contrast, introduces greedy insertion

with blinks. Each customer c∈C is inserted into solution s at the ‘best’ position P as follows. All

current tours part of the solution are iterated over in a random order. When a tour t has enough

capacity slack to serve c, all positions inside this tour, Pt ∈ r, are iterated over. Each position is

evaluated with a probability of 1− β, otherwise skipping the position as if the algorithm ‘blinks’.

If a position Pt is found for which the cost of inserting c is lower than the current best position

P , Pt becomes the new best position (P ← Pt). If no position was found in existing tours, a new

empty tour is created to serve c, otherwise c is inserted at P . β = 0 denotes that customers are

always inserted at the best position, a strategy proven to be sub-optimal after experimentation.

During the experiments reported in Section 7, it was observed that a blink rate of 1% (β = 0.01)

was the most effective in terms of improving final solution quality. A result that may, at first,

appear somewhat counter-intuitive.

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

Technical report 7.11.2016 21

Algorithm 2 ASB-RR - Recreate

1: procedure insertCustomers(C,s)

2: C ← sort(C)

3: for c∈C do

4: P ← null � Best insert position

5: for t∈ s (which can serve c) do

6: for Pt in t do

7: if U [0,1[< 1−β then � ‘Blink’ sometimes

8: if costAt(P)< costAt(Pbest) then

9: P ← Pt

10: end if

11: end if

12: end for

13: end for

14: if P = null then

15: t← createEmptyTour()

16: P ← positionIn(t)

17: end if

18: insertCustomerAt(P)

19: end for

20: end procedure

There exist multiple positions or options for inserting a customer when they are about to be

inserted. Out of these options, one may make a random choice or utilize a heuristic to pick the best

option (greedy insertion). The effect of blinks is reflected by the probability p of selecting a specific

option based on its rank r. A blink rate of β implies the best option, which is ranked first r= 1, is

selected with probability p(1) = (1− β). If the best ranked option is blinked over, the probability

of selecting the second best option is p(2) = (1− β).β. Selection probability of the third ranked

option equals p(3) = (1−β).β2. The selection probability for each rank is expressed by exponential

function:

p(r) = (1−β).β(r−1) r ∈ {1, ...,∞} (8)

Notice how the blinking algorithm itself is unaware of each option’s rank, it only blinks with

probability β while iterating over all options. Thus, blinking results in rank-based selection prob-

abilities without requiring one to rank the options first, in contrast to heuristic-biased stochastic

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

22 Technical report 7.11.2016

sampling (HBSS) (Bresina 1996), a closely related selection algorithm which is compared against

the blinking algorithm in Appendix A.

6.3. Constructive method

The heuristic begins with the simplest one-to-one relationship: each vehicle serves only one customer

(OTO-CM). Clearly, this assignment process represents the worst solution possible. No additional

effort was dedicated to improving the CM since it was observed that the computational effort

required for creating a higher-quality initial solution is better spent by the improvement method.

Moreover, the OTO-CM solution is not biased towards any specific solution structure or customer

clustering.

6.4. Simulated annealing

The ASB-RR neighborhood is guided by Simulated Annealing (see Section 3.1). The temperature of

the system is lowered by the exponential cooling schedule: T (i) = T0.c
i where c= T1/T0. The search

begins at an initial temperature T0 = 100 and ends at the final temperature T0 = 1. The number of

iterations it is determined as a function of problem size v by linear interpolation as in Eq. 9. The

minimum problem size is vmin = 100 and maximum vmax = 1000, as per Uchoa et al. (2014). The

present study set it(vmin) = 30.106 and it(vmax) = 300.106, thus enabling direct comparison of the

present paper’s calculation times with those from the aforementioned paper.

it(v) = it(vmin)+
it(vmax)− it(vmin)

vmax − vmin

(v− vmin) (9)

7. Computational results

Uchoa et al. (2014) introduced a benchmark set since “the existing sets became too easy, are too

artificial or do not cover the wide range of characteristics found in real applications”. The new

benchmark set contains 100 instances where problem size ranges from 100 to 1000 customers,

covering a wide variety of characteristics. The accompanying technical report includes the results

of three state of the art methods (Table 5): BCP (Pecin et al. 2014), ILS-SP (Subramanian, Uchoa,

and Ochi 2013) and UHGS (Vidal et al. 2014).

Table 5 State of the art methods.

BCP Branch-Cut-and-Price (2014) Exact

ILS-SP Iterated Local Search with Set Partitioning (2013) Heuristic

UHGS Unified Hybrid Genetic Search (2014) Heuristic

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

Technical report 7.11.2016 23

This study’s experiments were performed on Xeon(R) CPU E5-2650 v2 @ 2.60GHz, and com-

pared against the results of ILS-SP and UHGS, which were conducted on Xeon CPU @ 3.07 GHz.

The full benchmark set is divided into three sets based on the problem size: Small, Medium and

Large (Table 6).

Table 6 Subsets of the complete benchmark.

n Instances # Instances

Small 100 – 250 X-n101-k25 – X-n247-k47 32

Medium 250 – 500 X-n251-k28 – X-n491-k59 36

Large 500 – 1000 X-n502-k39 – X-n1001-k43 32

Complete 100 – 1000 X-n101-k25 – X-n1001-k43 100

The ILS-SP, UHGS and ASB-RR heuristics were run 50 times. The average (Avg*), best (Best*)

and the average computation time in minutes (T) from these obtained results are aggregated in

Appendix B. The minimum (Min), maximum (Max), average (Avg), median (Median) and number

of best (# Best) values from these aggregated results are presented in Table 7. Heuristics are

ranked first (the best), second and third place by use of the colors dark gray, gray, and light gray

respectively.

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

24 Technical report 7.11.2016

Table 7 Summarized computational results.

ILS-SP UHGS ASB-RR

Avg* Best* T Avg* Best* T Avg* Best* T

Small (100-250)

Min 0.00 0.00 0.1 0.00 0.00 1.4 0.00 0.00 0.2

Max 2.50 1.19 17.8 0.30 0.06 20.4 0.50 0.16 18.4

Avg 0.31 0.12 2.4 0.07 0.00 6.0 0.11 0.01 5.2

Median 0.19 0.00 1.6 0.03 0.00 5.4 0.05 0.00 5.0

Best 9 18 25 22 30 0 8 24 7

Medium (250-500)

Min 0.00 0.00 2.0 0.00 0.00 6.5 0.05 0.00 9.8

Max 1.69 0.89 60.6 0.58 0.21 86.7 1.35 0.28 58.4

Avg 0.56 0.20 23.1 0.27 0.04 30.3 0.22 0.04 27.0

Median 0.47 0.15 16.8 0.28 0.02 22.4 0.20 0.02 22.4

Best 8 9 24 8 18 3 20 20 9

Large (500-1000)

Min 0.00 0.00 27.3 0.11 0.00 33.1 0.06 0.00 60.9

Max 2.18 1.89 792.8 0.92 0.47 560.8 0.38 0.15 412.7

Avg 0.93 0.66 195.7 0.46 0.22 268.6 0.17 0.04 152.0

Median 0.94 0.56 144.7 0.43 0.18 258.6 0.16 0.03 144.8

Best 1 2 15 1 2 2 30 29 15

Complete (100-1000)

Min 0.00 0.00 0.1 0.00 0.00 1.4 0.00 0.00 0.2

Max 2.50 1.89 792.8 0.92 0.47 560.8 1.35 0.28 412.7

Avg 0.60 0.32 71.7 0.27 0.09 98.8 0.17 0.03 60.0

Median 0.47 0.15 17.7 0.26 0.03 22.4 0.15 0.01 22.4

Best 18 29 64 31 50 5 58 73 31

UHGS outperforms the other methods for Small instances. For the Medium set, UHGS and

ASB-RR perform equally well insofar as obtaining the best solutions (Best*). Additionally, it was

observed that ASB-RR became the most robust method. Meanwhile, for the Large set of instances,

ASB-RR outperforms both heuristics on all aspects - it is the most robust method which finds the

best solutions in the least amount of computation time. These observations are supported by the

results of the Wilcoxon rank-sum test. The average results obtained by ASB-RR (Avg*, Appendix

B) are compared against the results of ILS-SP and UHGS in Table 8. When statistical significance

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

Technical report 7.11.2016 25

exceeds 95%, cells are colored gray. The null-hypothesis (X=Y) is always rejected indicating ASB-

RR significantly differs from both other heuristics. ASB-RR obtains better results (X>Y) except

for the small benchmark instances, where UHGS represents the best approach.

Table 8 P-values of the Wilcoxon rank-sum test.

X=Y X>Y X<Y

X=ILS-SP, Y=ASB-RR

Small 0,026626 0,987409 0,013313

Medium 0,000052 0,999976 0,000026

Large 0,000001 1,000000 0,000000

Complete 0,000000 1,000000 0,000000

X=UHGS, Y=ASB-RR

Small 0,024641 0,012320 0,988427

Medium 0,002555 0,998787 0,001278

Large 0,000001 1,000000 0,000000

Complete 0,000000 1,000000 0,000000

Detailed results are presented in Appendix B. The best known solution (BKS) is provided for

each instance if proven optimal by the BCP method. Furthermore, ASB-RR method improved 36

BKSs and obtained 31 results equal to the BKS during the experiment of 50 runs. Throughout the

entire experimental campaign, 40 BKSs were improved and 40 equal solutions were found which

are marked dark and light gray respectively in the BKS column of Appendix B.

8. Conclusions

This paper introduced a single ruin and single recreate method - ASB-RR - which exhibited

low computation times, robustness and high performance for large CVRP problems containing

500-1000 customers. Across all benchmark instances (Uchoa et al. 2014) ASB-RR was on average

the most robust, high-quality solution method, improving 40 Best Known Solutions, while

simultaneously averaging the shortest computation times.

Laporte (2009) provided much of the motivation behind this paper’s original contribution

when writing: “There is, however, a sense that several of the most successful metaheuristics are

over-engineered and one should now attempt to produce simple and flexible algorithms capable of

handling a larger variety of constraints, even if this were to translate into a small loss in accuracy”

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

26 Technical report 7.11.2016

Reapproaching ruin & recreate by shifting away from a perspective increasingly weighed

down by a degree of entrenched complexity and its constituent highly-detailed approaches and

instead returning to a more fundamental, low-level perspective can result in the adaptation of

older technology to meet a more computationally demanding present and future. Indeed, despite

Laporte’s comment that such a shift is worthwhile even if a small loss in accuracy were incurred,

this approach’s results promisingly indicate that no such loss takes place.

The contemporaneous trend of adding more and more ruin methods and recreate methods, while

often resulting in good quality or improving results, represents a more intellectual than practical

endeavour. By examining the functionality of such approaches and distilling their essences into

a single ruin & recreate method - ASB-RR - a previously challenging reproducibility is achieved

while simultaneously producing, on average, better results. To reiterate, ASB-RR is not necessarily

restricted to CVRP optimisation and may be easily adapted to a variety of other vehicle routing

problems. Problems concerning, for example, time windows or pick-up and delivery, may also be

successfully optimized via minimal algorithmic modification. ASB-RR demonstrates an impressive

convergence speed which engenders an array of future real-world applications, thus providing a

multitude of exciting avenues for future research.

Acknowledgments

Work funded by IWT 130855 grant of the Institute for the Promotion of Innovation through Science

and Technology in Flanders (IWT-Vlaanderen) in cooperation with Conundra (www.conundra.eu), and

supported by the Belgian Science Policy Office (BELSPO) in the Interuniversity Attraction Pole COMEX

(http://comex.ulb.ac.be). Statistical advice provided by Wim Vancroonenburg (KU Leuven), editorial

consultation provided by Luke Connolly (KU Leuven).

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

Technical report 7.11.2016 27

Appendix A: Blinks and HBSS

Iterative sampling (Langley 1992) builds an empty solution into a complete solution, which represents a

‘sample’ of the solution space, by incrementally making random decisions at each decision point. For example

when applied to VRP, an unserved customer is randomly selected and inserted at a random position in the

partial solution until all customers have been inserted. By contrast, decisions may be made based solely

on a specific heuristic. As such, an unserved customer is inserted at the best position by greedy insertion.

Meanwhile, in Heuristic-biased Stochastic Sampling (HBSS) (Bresina 1996), the heuristic’s preferred options

are applied with a certain probability as follows. The heuristic ranks all R options at a decision point. A

rank-based weight bias(r) is assigned to each option by way of a specific bias function. The probability p(r)

of selecting an option based on its rank r is obtained by dividing its weight by the sum of all option weights:

p(r) =
(R∑

k=1

bias(k)
)−1

bias(r) r ∈ {1, ...,R} (10)

Table 9 presents the rank-based probabilities obtained by the following bias functions: constant, logarith-

mic, linear, cubic and exponential. For each bias function, the left column represents p(r) assuming there

exist only five options (R= 5) at the considered decision point. Thirty options are assumed (R= 30) within

the right hand column and the remaining probability of selecting one of the options r = 6..30 is detailed in

the last row.

Table 9 HBSS rank selection probabilities.

Constant Logarithmic Linear Cubic Exponential

r 1 log−1(r+1) r−1 r−3 e−r

1 0.200 0.033 0.339 0.109 0.438 0.250 0.843 0.832 0.636 0.632

2 0.200 0.033 0.214 0.069 0.219 0.125 0.105 0.104 0.234 0.233

3 0.200 0.033 0.170 0.055 0.146 0.083 0.031 0.031 0.086 0.086

4 0.200 0.033 0.146 0.047 0.109 0.063 0.013 0.013 0.032 0.031

5 0.200 0.033 0.131 0.042 0.088 0.050 0.007 0.007 0.012 0.012

6-30 - 0.833 - 0.678 - 0.429 - 0.013 - 0.006

Clearly, probabilities are dependent upon the number of options. With regard to the logarithmic bias

function, the probability p(r) of selecting the best option r = 1 is three times smaller when thirty options

are available (presented in the right column) compared to when only five options are available (presented

left). This influence is negligible when the bias function quickly converges to zero and the partial sum∑R

k=1 bias(k) converges to the infinite sum (R=∞). This occurs for strong bias functions, such as the cubic

and exponential bias function.

In contrast to HBSS, greedy insertion with blinks, introduced by the present paper in Section 6.2, does not

require one to explicitly rank the options in advance to obtain rank-based selection probabilities. Nevertheless,

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

28 Technical report 7.11.2016

the exponential rank-based probability function of the blinking algorithm (Eq. 8 and 11) may be expressed

as HBSS with exponential bias function as follows:

p(r) = (1−β) β(r−1) r ∈ {1, ...,∞} (11)

=

(
1−β

β

)
βr (12)

=

(
β

1−β

)−1

βr (13)

Based on the sum of an infinite geometric sequence
∑∞

k=0 ab
k = a

1−b
for |b|< 1 and a= b:

=

(∞∑
k=0

β(k+1)

)−1

βr (14)

=

(∞∑
k=1

βk

)−1

βr (15)

which allows the blinking algorithm’s probability function (Eq. 11) to be expressed as HBSS (Eq. 10) with
exponential bias function (bias(r) = βr) when there exists an inifinite number of options (R=∞):

p(r) =
(R∑

k=1

bias(k)
)−1

bias(r)

⎧⎪⎪⎨
⎪⎪⎩
r ∈ {1, ...,R}
R=∞
bias(r) = βr =

(
1
β

)−r
(16)

The condition R = ∞ implies HBSS bias weights should be divided by the infinite sum
∑∞

k=1 bias(k), a

value approximated by the partial sum for strong bias functions. For example, HBSS probabilities with

bias(r) = e−r are equal to those obtained by the blinking algorithm when β = 1
e
, while the blink rate β = 0.01

(applied in Section 6.2) is equal to HBSS with bias(r) = 100−r. These results are presented below in Table

10.

Table 10 Comparison of rank selection probabilities for HBSS
and Blinks.

HBSS: bias(r) Blinks: β

r e−r 100−r r 1
e

0.010

1 0.632 0.990 1 0.632 0.990

2 0.233 0.010 2 0.233 0.010

3 0.086 0.000 3 0.086 0.000

4 0.031 0.000 4 0.031 0.000

5 0.012 0.000 5 0.012 0.000

6-30 0.006 0.000 6-∞ 0.006 0.000

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

Technical report 7.11.2016 29

Appendix B: Detailed results

T
a
b
le

1
1

A
g
g
re
g
a
te
d
co

m
p
u
ta
ti
o
n
a
l
re
su
lt
s
(S

m
a
ll)
.

B
K
S

B
C
P

IL
S
-S

P
U
H
G
S

A
S
B
-R

R

#
N
a
m
e

B
K
S

n
v

O
p
t

R
L
B

T
G
a
p

A
v
g
*

B
e
st
*

T
G
a
p

A
v
g
*

B
e
st
*

T
G
a
p

A
v
g
*

B
e
st
*

T

1
X
-n

1
0
1
-k

2
5

2
7
5
9
1

2
6

�
2
7
5
9
1

0
.1

0
.0
0

2
7
5
9
1
.0

2
7
5
9
1

0
.1

0
.0
0

2
7
5
9
1
.0

2
7
5
9
1

1
.4

0
.0
0

2
7
5
9
1
.0

2
7
5
9
1

0
.8

2
X
-n

1
0
6
-k

1
4

2
6
3
6
2

1
4

�
2
6
3
6
2

3
.5

0
.0
5

2
6
3
7
5
.9

2
6
3
6
2

2
.0

0
.0
8

2
6
3
8
1
.8

2
6
3
7
8

4
.0

0
.0
7

2
6
3
8
1
.5

2
6
3
6
2

1
.3

3
X
-n

1
1
0
-k

1
3

1
4
9
7
1

1
3

�
1
4
9
7
1

0
.3

0
.0
0

1
4
9
7
1
.0

1
4
9
7
1

0
.2

0
.0
0

1
4
9
7
1
.0

1
4
9
7
1

1
.6

0
.0
0

1
4
9
7
1
.1

1
4
9
7
1

1
.0

4
X
-n

1
1
5
-k

1
0

1
2
7
4
7

1
0

�
1
2
7
4
7

2
.1

0
.0
0

1
2
7
4
7
.0

1
2
7
4
7

0
.2

0
.0
0

1
2
7
4
7
.0

1
2
7
4
7

1
.8

0
.0
0

1
2
7
4
7
.0

1
2
7
4
7

0
.2

5
X
-n

1
2
0
-k

6
1
3
3
3
2

6
�

1
3
2
3
4

8
8
.1

0
.0
4

1
3
3
3
7
.6

1
3
3
3
2

1
.7

0
.0
0

1
3
3
3
2
.0

1
3
3
3
2

2
.3

0
.0
0

1
3
3
3
2
.0

1
3
3
3
2

1
.6

6
X
-n

1
2
5
-k

3
0

5
5
5
3
9

3
0

�
5
5
5
3
9

2
.5

0
.2
4

5
5
6
7
3
.8

5
5
5
3
9

1
.4

0
.0
1

5
5
5
4
2
.1

5
5
5
3
9

2
.7

0
.0
3

5
5
5
5
6
.3

5
5
5
4
2

3
.1

7
X
-n

1
2
9
-k

1
8

2
8
9
4
0

1
8

�
2
8
8
9
7

2
.5

0
.2
0

2
8
9
9
8
.0

2
8
9
4
8

1
.9

0
.0
3

2
8
9
4
8
.5

2
8
9
4
0

2
.7

0
.0
3

2
8
9
4
8
.8

2
8
9
4
0

1
.5

8
X
-n

1
3
4
-k

1
3

1
0
9
1
6

1
3

�
1
0
8
4
0

3
9
9
.1

0
.2
9

1
0
9
4
7
.4

1
0
9
1
6

2
.1

0
.1
7

1
0
9
3
4
.9

1
0
9
1
6

3
.3

0
.2
2

1
0
9
4
0
.1

1
0
9
1
6

2
.8

9
X
-n

1
3
9
-k

1
0

1
3
5
9
0

1
0

�
1
3
5
9
0

1
7
.0

0
.1
0

1
3
6
0
3
.1

1
3
5
9
0

1
.6

0
.0
0

1
3
5
9
0
.0

1
3
5
9
0

2
.3

0
.0
4

1
3
5
9
5
.4

1
3
5
9
0

2
.0

1
0

X
-n

1
4
3
-k

7
1
5
7
0
0

7
�

1
5
6
3
4

1
5
5
3
.0

0
.2
9

1
5
7
4
5
.2

1
5
7
2
6

1
.6

0
.0
0

1
5
7
0
0
.2

1
5
7
0
0

3
.1

0
.0
4

1
5
7
0
5
.8

1
5
7
0
0

2
.1

1
1

X
-n

1
4
8
-k

4
6

4
3
4
4
8

4
7

�
4
3
4
4
8

0
.3

0
.0
1

4
3
4
5
2
.1

4
3
4
4
8

0
.8

0
.0
0

4
3
4
4
8
.0

4
3
4
4
8

3
.2

0
.0
5

4
3
4
6
9
.2

4
3
4
4
8

2
.8

1
2

X
-n

1
5
3
-k

2
2

2
1
2
2
0

2
3

�
2
1
1
4
0

3
7
.7

0
.8
5

2
1
4
0
0
.0

2
1
3
4
0

0
.5

0
.0
3

2
1
2
2
6
.3

2
1
2
2
0

5
.5

0
.0
4

2
1
2
2
9
.4

2
1
2
2
0

5
.6

1
3

X
-n

1
5
7
-k

1
3

1
6
8
7
6

1
3

�
1
6
8
7
6

1
.0

0
.0
0

1
6
8
7
6
.0

1
6
8
7
6

0
.8

0
.0
0

1
6
8
7
6
.0

1
6
8
7
6

3
.2

0
.0
2

1
6
8
7
8
.6

1
6
8
7
6

3
.7

1
4

X
-n

1
6
2
-k

1
1

1
4
1
3
8

1
1

�
1
4
0
5
3

1
8
7
.0

0
.1
6

1
4
1
6
0
.1

1
4
1
3
8

0
.5

0
.0
2

1
4
1
4
1
.3

1
4
1
3
8

3
.3

0
.1
3

1
4
1
5
7
.1

1
4
1
3
8

3
.4

1
5

X
-n

1
6
7
-k

1
0

2
0
5
5
7

1
0

�
2
0
4
7
6

1
0
2
4
.0

0
.2
5

2
0
6
0
8
.7

2
0
5
6
2

0
.9

0
.0
3

2
0
5
6
3
.2

2
0
5
5
7

3
.7

0
.0
2

2
0
5
6
0
.8

2
0
5
5
7

3
.2

1
6

X
-n

1
7
2
-k

5
1

4
5
6
0
7

5
3

�
4
5
5
4
9

3
.8

0
.0
2

4
5
6
1
6
.1

4
5
6
0
7

0
.6

0
.0
0

4
5
6
0
7
.0

4
5
6
0
7

3
.8

0
.0
3

4
5
6
1
9
.2

4
5
6
0
7

5
.3

1
7

X
-n

1
7
6
-k

2
6

4
7
8
1
2

2
6

�
4
7
7
2
1

9
.2

0
.9
2

4
8
2
4
9
.8

4
8
1
4
0

1
.1

0
.3
0

4
7
9
5
7
.2

4
7
8
1
2

7
.6

0
.0
8

4
7
8
4
9
.6

4
7
8
1
2

5
.2

1
8

X
-n

1
8
1
-k

2
3

2
5
5
6
9

2
3

�
2
5
5
1
1

1
8
.2

0
.0
1

2
5
5
7
1
.5

2
5
5
6
9

1
.6

0
.0
9

2
5
5
9
1
.1

2
5
5
6
9

6
.3

0
.0
4

2
5
5
7
9
.8

2
5
5
6
9

5
.5

1
9

X
-n

1
8
6
-k

1
5

2
4
1
4
5

1
5

�
2
3
9
8
0

7
3
0
5
.0

0
.1
7

2
4
1
8
6
.0

2
4
1
4
5

1
.7

0
.0
1

2
4
1
4
7
.2

2
4
1
4
5

5
.9

0
.1
4

2
4
1
7
8
.4

2
4
1
4
9

4
.0

2
0

X
-n

1
9
0
-k

8
1
6
9
8
0

8
�

1
6
9
3
9

0
.9
6

1
7
1
4
3
.1

1
7
0
8
5

2
.1

0
.0
5

1
6
9
8
7
.9

1
6
9
8
0

1
2
.1

0
.0
3

1
6
9
8
4
.9

1
6
9
8
0

9
.1

2
1

X
-n

1
9
5
-k

5
1

4
4
2
2
5

5
3

�
4
4
2
2
5

2
.4

0
.0
2

4
4
2
3
4
.3

4
4
2
2
5

0
.9

0
.0
4

4
4
2
4
4
.1

4
4
2
2
5

6
.1

0
.1
7

4
4
2
9
8
.5

4
4
2
4
1

6
.1

2
2

X
-n

2
0
0
-k

3
6

5
8
5
7
8

3
6

�
5
8
4
5
5

9
0
1
.7

0
.2
0

5
8
6
9
7
.2

5
8
6
2
6

7
.5

0
.0
8

5
8
6
2
6
.4

5
8
5
7
8

8
.0

0
.1
0

5
8
6
3
6
.1

5
8
5
7
8

6
.7

2
3

X
-n

2
0
4
-k

1
9

1
9
5
6
5

1
9

�
1
9
4
8
4

5
0
1
.6

0
.3
1

1
9
6
2
5
.2

1
9
5
7
0

1
.1

0
.0
3

1
9
5
7
1
.5

1
9
5
6
5

5
.3

0
.5
0

1
9
6
6
2
.3

1
9
5
6
5

4
.9

2
4

X
-n

2
0
9
-k

1
6

3
0
6
5
6

1
6

�
3
0
4
8
0

1
3
0
3
.0

0
.3
6

3
0
7
6
5
.4

3
0
6
6
7

3
.8

0
.0
8

3
0
6
8
0
.4

3
0
6
5
6

8
.6

0
.0
4

3
0
6
6
9
.4

3
0
6
5
6

6
.0

2
5

X
-n

2
1
4
-k

1
1

1
0
8
5
6

1
1

1
0
8
0
9

2
.5
0

1
1
1
2
6
.9

1
0
9
8
5

2
.3

0
.2
0

1
0
8
7
7
.4

1
0
8
5
6

1
0
.2

0
.4
8

1
0
9
0
8
.6

1
0
8
7
3

8
.7

2
6

X
-n

2
1
9
-k

7
3

1
1
7
5
9
5

7
3

�
1
1
7
5
9
5

0
.5

0
.0
0

1
1
7
5
9
5
.0

1
1
7
5
9
5

0
.8

0
.0
1

1
1
7
6
0
4
.9

1
1
7
5
9
5

7
.7

0
.0
5

1
1
7
6
5
0
.4

1
1
7
5
9
5

8
.0

2
7

X
-n

2
2
3
-k

3
4

4
0
4
3
7

3
4

�
4
0
3
1
1

3
0
3
.5

0
.2
4

4
0
5
3
3
.5

4
0
4
7
1

8
.5

0
.1
5

4
0
4
9
9
.0

4
0
4
3
7

8
.3

0
.2
3

4
0
5
2
9
.9

4
0
4
4
8

7
.6

2
8

X
-n

2
2
8
-k

2
3

2
5
7
4
2

2
3

�
2
5
6
5
7

2
5
2
.3

0
.2
1

2
5
7
9
5
.8

2
5
7
4
3

2
.4

0
.1
4

2
5
7
7
9
.3

2
5
7
4
2

9
.8

0
.1
9

2
5
7
9
0
.9

2
5
7
4
4

1
0
.5

2
9

X
-n

2
3
3
-k

1
6

1
9
2
3
0

1
7

1
9
0
7
0

0
.5
5

1
9
3
3
6
.7

1
9
2
6
6

3
.0

0
.3
0

1
9
2
8
8
.4

1
9
2
3
0

6
.8

0
.2
1

1
9
2
6
9
.7

1
9
2
3
2

8
.1

3
0

X
-n

2
3
7
-k

1
4

2
7
0
4
2

1
4

�
2
6
9
3
0

1
3
9
8
.0

0
.1
4

2
7
0
7
8
.8

2
7
0
4
2

3
.5

0
.0
9

2
7
0
6
7
.3

2
7
0
4
2

8
.9

0
.1
8

2
7
0
8
9
.7

2
7
0
4
2

7
.2

3
1

X
-n

2
4
2
-k

4
8

8
2
7
5
1

4
8

�
8
2
5
8
9

8
1
9
.0

0
.1
5

8
2
8
7
4
.2

8
2
7
7
4

1
7
.8

0
.2
4

8
2
9
4
8
.7

8
2
8
0
4

1
2
.4

0
.1
6

8
2
8
8
4
.4

8
2
7
7
5

9
.9

3
2

X
-n

2
4
7
-k

4
7

3
7
2
7
4

5
1

�
3
7
2
5
6

9
.5

0
.6
3

3
7
5
0
7
.2

3
7
2
8
9

2
.1

0
.0
3

3
7
2
8
4
.4

3
7
2
7
4

2
0
.4

0
.1
3

3
7
3
2
3
.2

3
7
2
7
4

1
8
.4

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

30 Technical report 7.11.2016

T
a
b
le

1
2

A
g
g
re
g
a
te
d
co

m
p
u
ta
ti
o
n
a
l
re
su
lt
s
(M

ed
iu
m
).

B
K
S

B
C
P

IL
S
-S

P
U
H
G
S

A
S
B
-R

R

#
N
a
m
e

B
K
S

n
v

O
p
t

R
L
B

T
G
a
p

A
v
g
*

B
e
st
*

T
G
a
p

A
v
g
*

B
e
st
*

T
G
a
p

A
v
g
*

B
e
st
*

T

3
3

X
-n

2
5
1
-k

2
8

3
8
6
8
4

2
8

�
3
8
4
7
3

4
7
6
7
.0

0
.4
0

3
8
8
4
0
.0

3
8
7
2
7

1
0
.8

0
.2
9

3
8
7
9
6
.4

3
8
6
9
9

1
1
.7

0
.2
8

3
8
7
9
1
.0

3
8
6
8
7

9
.8

3
4

X
-n

2
5
6
-k

1
6

1
8
8
8
0

1
7

�
1
8
8
2
6

1
2
5
5
.0

0
.0
2

1
8
8
8
3
.9

1
8
8
8
0

2
.0

0
.0
0

1
8
8
8
0
.0

1
8
8
8
0

6
.5

0
.0
5

1
8
8
8
8
.9

1
8
8
8
0

1
1
.5

3
5

X
-n

2
6
1
-k

1
3

2
6
5
5
8

1
3

2
6
4
0
7

1
.1
7

2
6
8
6
9
.0

2
6
7
0
6

6
.7

0
.2
7

2
6
6
2
9
.6

2
6
5
5
8

1
2
.7

0
.3
2

2
6
6
4
2
.3

2
6
5
5
8

1
1
.8

3
6

X
-n

2
6
6
-k

5
8

7
5
4
7
8

5
8

�
7
5
3
5
0

1
5
0
.1

0
.1
1

7
5
5
6
3
.3

7
5
4
7
8

1
0
.0

0
.3
7

7
5
7
5
9
.3

7
5
5
1
7

2
1
.4

0
.1
9

7
5
6
1
7
.8

7
5
4
7
8

1
0
.8

3
7

X
-n

2
7
0
-k

3
5

3
5
2
9
1

3
6

�
3
5
1
5
6

3
4
2
2
.0

0
.2
1

3
5
3
6
3
.4

3
5
3
2
4

9
.1

0
.2
2

3
5
3
6
7
.2

3
5
3
0
3

1
1
.2

0
.2
0

3
5
3
6
2
.2

3
5
3
2
3

1
1
.4

3
8

X
-n

2
7
5
-k

2
8

2
1
2
4
5

2
8

�
2
1
2
4
5

3
.7

0
.0
5

2
1
2
5
6
.0

2
1
2
4
5

3
.6

0
.1
7

2
1
2
8
0
.6

2
1
2
4
5

1
2
.0

0
.1
1

2
1
2
6
8
.6

2
1
2
4
5

1
3
.3

3
9

X
-n

2
8
0
-k

1
7

3
3
5
0
3

1
7

3
3
2
8
6

0
.8
0

3
3
7
6
9
.4

3
3
6
2
4

9
.6

0
.3
1

3
3
6
0
5
.8

3
3
5
0
5

1
9
.1

0
.3
7

3
3
6
2
8
.1

3
3
5
2
9

1
7
.7

4
0

X
-n

2
8
4
-k

1
5

2
0
2
2
6

1
5

2
0
1
3
9

1
.1
0

2
0
4
4
8
.5

2
0
2
9
5

8
.6

0
.3
0

2
0
2
8
6
.4

2
0
2
2
7

1
9
.9

0
.3
0

2
0
2
8
6
.6

2
0
2
4
0

1
5
.3

4
1

X
-n

2
8
9
-k

6
0

9
5
1
5
1

6
1

�
9
4
9
2
8

0
.3
1

9
5
4
5
0
.6

9
5
3
1
5

1
6
.1

0
.3
3

9
5
4
6
9
.5

9
5
2
4
4

2
1
.3

0
.2
1

9
5
3
5
2
.2

9
5
2
3
3

1
4
.3

4
2

X
-n

2
9
4
-k

5
0

4
7
1
6
7

5
1

4
6
9
1
1

0
.1
9

4
7
2
5
4
.7

4
7
1
9
0

1
2
.4

0
.2
0

4
7
2
5
9
.0

4
7
1
7
1

1
4
.7

0
.2
3

4
7
2
7
4
.5

4
7
2
1
0

1
4
.7

4
3

X
-n

2
9
8
-k

3
1

3
4
2
3
1

3
1

�
3
4
1
0
5

5
3
1
.1

0
.3
7

3
4
3
5
6
.0

3
4
2
3
9

6
.9

0
.1
8

3
4
2
9
2
.1

3
4
2
3
1

1
0
.9

0
.1
3

3
4
2
7
6
.0

3
4
2
3
4

1
4
.5

4
4

X
-n

3
0
3
-k

2
1

2
1
7
4
4

2
1

2
1
5
4
6

0
.7
0

2
1
8
9
5
.8

2
1
8
1
2

1
4
.2

0
.4
9

2
1
8
5
0
.9

2
1
7
4
8

1
7
.3

0
.1
5

2
1
7
7
6
.5

2
1
7
5
1

1
7
.3

4
5

X
-n

3
0
8
-k

1
3

2
5
8
5
9

1
3

2
5
5
8
7

0
.9
4

2
6
1
0
1
.1

2
5
9
0
1

9
.5

0
.1
4

2
5
8
9
5
.4

2
5
8
5
9

1
5
.3

1
.3
5

2
6
2
0
7
.7

2
5
9
3
1

2
5
.7

4
6

X
-n

3
1
3
-k

7
1

9
4
0
4
4

7
2

9
3
8
5
1

0
.2
7

9
4
2
9
7
.3

9
4
1
9
2

1
7
.5

0
.2
4

9
4
2
6
5
.2

9
4
0
9
3

2
2
.4

0
.1
5

9
4
1
8
2
.4

9
4
0
6
3

1
8
.9

4
7

X
-n

3
1
7
-k

5
3

7
8
3
5
5

5
3

�
7
8
3
3
4

4
.6

0
.0
0

7
8
3
5
6
.0

7
8
3
5
5

8
.6

0
.0
4

7
8
3
8
7
.8

7
8
3
5
5

2
2
.4

0
.0
5

7
8
3
9
2
.4

7
8
3
5
5

2
2
.0

4
8

X
-n

3
2
2
-k

2
8

2
9
8
4
8

2
8

2
9
7
2
2

0
.4
8

2
9
9
9
1
.3

2
9
8
7
7

1
4
.7

0
.3
6

2
9
9
5
6
.1

2
9
8
7
0

1
5
.2

0
.2
7

2
9
9
2
7
.6

2
9
8
4
9

1
6
.9

4
9

X
-n

3
2
7
-k

2
0

2
7
5
4
6

2
0

2
7
3
7
8

0
.9
7

2
7
8
1
2
.4

2
7
5
9
9

1
9
.1

0
.3
0

2
7
6
2
8
.2

2
7
5
6
4

1
8
.2

0
.3
1

2
7
6
3
1
.4

2
7
6
0
8

2
1
.6

5
0

X
-n

3
3
1
-k

1
5

3
1
1
0
2

1
5

�
3
1
0
2
7

0
.4
3

3
1
2
3
5
.5

3
1
1
0
5

1
5
.7

0
.1
9

3
1
1
5
9
.6

3
1
1
0
3

2
4
.4

0
.0
8

3
1
1
2
8
.2

3
1
1
2
2

2
0
.4

5
1

X
-n

3
3
6
-k

8
4

1
3
9
1
3
5

8
6

1
3
8
7
0
6

0
.2
3

1
3
9
4
6
1
.0

1
3
9
1
9
7

2
1
.4

0
.2
9

1
3
9
5
3
4
.9

1
3
9
2
1
0

3
8
.0

0
.1
7

1
3
9
3
7
3
.4

1
3
9
2
0
9

2
2
.8

5
2

X
-n

3
4
4
-k

4
3

4
2
0
6
8

4
3

4
1
8
8
1

0
.5
1

4
2
2
8
4
.0

4
2
1
4
6

2
2
.6

0
.3
3

4
2
2
0
8
.8

4
2
0
9
9

2
1
.7

0
.2
2

4
2
1
5
8
.5

4
2
0
7
9

2
1
.5

5
3

X
-n

3
5
1
-k

4
0

2
5
9
2
8

4
1

2
5
8
0
9

0
.8
6

2
6
1
5
0
.3

2
6
0
2
1

2
5
.2

0
.3
3

2
6
0
1
4
.0

2
5
9
4
6

3
3
.7

0
.2
1

2
5
9
8
2
.1

2
5
9
3
8

2
6
.5

5
4

X
-n

3
5
9
-k

2
9

5
1
5
0
5

2
9

5
1
3
8
1

1
.1
1

5
2
0
7
6
.5

5
1
7
0
6

4
8
.9

0
.4
2

5
1
7
2
1
.7

5
1
5
0
9

3
4
.9

0
.1
4

5
1
5
7
7
.8

5
1
5
0
5

2
3
.1

5
5

X
-n

3
6
7
-k

1
7

2
2
8
1
4

1
7

2
2
7
4
7

0
.8
3

2
3
0
0
3
.2

2
2
9
0
2

1
3
.1

0
.1
1

2
2
8
3
8
.4

2
2
8
1
4

2
2
.0

0
.0
9

2
2
8
3
3
.4

2
2
8
1
4

3
6
.1

5
6

X
-n

3
7
6
-k

9
4

1
4
7
7
1
3

9
4

�
1
4
7
7
1
3

3
.3

0
.0
0

1
4
7
7
1
3
.0

1
4
7
7
1
3

7
.1

0
.0
3

1
4
7
7
5
0
.2

1
4
7
7
1
7

2
8
.3

0
.0
5

1
4
7
7
8
3
.6

1
4
7
7
2
1

3
2
.0

5
7

X
-n

3
8
4
-k

5
2

6
5
9
4
3

5
3

6
5
6
8
1

0
.6
5

6
6
3
7
2
.5

6
6
1
1
6

3
4
.5

0
.5
0

6
6
2
7
0
.2

6
6
0
8
1

4
0
.2

0
.2
5

6
6
1
0
7
.4

6
5
9
6
3

2
5
.9

5
8

X
-n

3
9
3
-k

3
8

3
8
2
6
9

3
8

3
8
1
6
7

0
.4
9

3
8
4
5
7
.4

3
8
2
9
8

2
0
.8

0
.2
8

3
8
3
7
4
.9

3
8
2
6
9

2
8
.6

0
.3
3

3
8
3
9
4
.1

3
8
3
3
1

3
0
.4

5
9

X
-n

4
0
1
-k

2
9

6
6
1
8
7

2
9

6
5
9
7
1

0
.8
0

6
6
7
1
5
.1

6
6
4
5
3

6
0
.4

0
.2
7

6
6
3
6
5
.4

6
6
2
4
3

4
9
.5

0
.0
9

6
6
2
4
8
.5

6
6
1
8
9

3
8
.0

6
0

X
-n

4
1
1
-k

1
9

1
9
7
1
8

1
9

1
9
6
4
0

1
.2
0

1
9
9
5
4
.9

1
9
7
9
2

2
3
.8

0
.1
3

1
9
7
4
3
.8

1
9
7
1
8

3
4
.7

0
.2
6

1
9
7
6
8
.5

1
9
7
3
1

5
8
.4

6
1

X
-n

4
2
0
-k

1
3
0

1
0
7
7
9
8

1
3
0

�
1
0
7
7
0
4

1
1
5
.0

0
.0
4

1
0
7
8
3
8
.0

1
0
7
7
9
8

2
2
.2

0
.1
2

1
0
7
9
2
4
.1

1
0
7
7
9
8

5
3
.2

0
.0
8

1
0
7
8
7
9
.2

1
0
7
8
1
7

4
7
.9

6
2

X
-n

4
2
9
-k

6
1

6
5
4
8
3

6
2

6
4
9
3
0

0
.4
0

6
5
7
4
6
.6

6
5
5
6
3

3
8
.2

0
.2
5

6
5
6
4
8
.5

6
5
5
0
1

4
1
.5

0
.1
7

6
5
5
9
3
.6

6
5
4
8
5

3
5
.0

6
3

X
-n

4
3
9
-k

3
7

3
6
3
9
1

3
7

�
3
6
2
8
9

0
.1
4

3
6
4
4
1
.6

3
6
3
9
5

3
9
.6

0
.1
7

3
6
4
5
1
.1

3
6
3
9
5

3
4
.5

0
.2
3

3
6
4
7
3
.8

3
6
4
2
6

4
2
.1

6
4

X
-n

4
4
9
-k

2
9

5
5
2
6
9

2
9

5
4
9
2
8

1
.6
9

5
6
2
0
4
.9

5
5
7
6
1

5
9
.9

0
.5
1

5
5
5
5
3
.1

5
5
3
7
8

6
4
.9

0
.2
6

5
5
4
1
1
.2

5
5
2
7
2

3
8
.0

6
5

X
-n

4
5
9
-k

2
6

2
4
1
7
3

2
6

2
3
9
3
1

1
.2
0

2
4
4
6
2
.4

2
4
2
0
9

6
0
.6

0
.4
1

2
4
2
7
2
.6

2
4
1
8
1

4
2
.8

0
.2
9

2
4
2
4
2
.2

2
4
1
7
5

5
6
.5

6
6

X
-n

4
6
9
-k

1
3
8

2
2
1
9
0
9

1
4
0

2
2
1
4
2
9

0
.1
2

2
2
2
1
8
2
.0

2
2
1
9
0
9

3
6
.3

0
.3
2

2
2
2
6
1
7
.1

2
2
2
0
7
0

8
6
.7

0
.1
4

2
2
2
2
2
7
.1

2
2
1
9
8
4

4
8
.0

6
7

X
-n

4
8
0
-k

7
0

8
9
4
5
8

7
0

8
9
2
3
5

0
.4
6

8
9
8
7
1
.2

8
9
6
9
4

5
0
.4

0
.3
4

8
9
7
6
0
.1

8
9
5
3
5

6
7
.0

0
.1
1

8
9
5
5
9
.2

8
9
4
5
8

5
0
.5

6
8

X
-n

4
9
1
-k

5
9

6
6
5
1
0

5
9

6
6
2
6
3

1
.0
8

6
7
2
2
6
.7

6
6
9
6
5

5
2
.2

0
.5
8

6
6
8
9
8
.0

6
6
6
3
3

7
1
.9

0
.2
0

6
6
6
4
5
.5

6
6
5
1
7

5
1
.4

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

Technical report 7.11.2016 31

T
a
b
le

1
3

A
g
g
re
g
a
te
d
co

m
p
u
ta
ti
o
n
a
l
re
su
lt
s
(L

ar
g
e)
.

B
K
S

B
C
P

IL
S
-S

P
U
H
G
S

A
S
B
-R

R

#
N
a
m
e

B
K
S

n
v

O
p
t

R
L
B

T
G
a
p

A
v
g
*

B
e
st
*

T
G
a
p

A
v
g
*

B
e
st
*

T
G
a
p

A
v
g
*

B
e
st
*

T

6
9

X
-n

5
0
2
-k

3
9

6
9
2
3
0

3
9

6
9
1
2
0

0
.1
7

6
9
3
4
6
.8

6
9
2
8
4

8
0
.8

0
.1
4

6
9
3
2
8
.8

6
9
2
5
3

6
3
.6

0
.0
6

6
9
2
7
4
.7

6
9
2
4
3

6
0
.9

7
0

X
-n

5
1
3
-k

2
1

2
4
2
0
1

2
1

2
4
0
5
3

0
.9
6

2
4
4
3
4
.0

2
4
3
3
2

3
5
.0

0
.4
0

2
4
2
9
6
.6

2
4
2
0
1

3
3
.1

0
.3
8

2
4
2
9
2
.1

2
4
2
3
8

7
7
.1

7
1

X
-n

5
2
4
-k

1
3
7

1
5
4
5
9
4

1
5
5

�
1
5
4
5
3
3

2
1
2
.1

0
.2
7

1
5
5
0
0
5
.0

1
5
4
7
0
9

2
7
.3

0
.2
5

1
5
4
9
7
9
.5

1
5
4
7
7
4

8
0
.7

0
.1
4

1
5
4
8
0
7
.2

1
5
4
6
5
1

1
5
1
.4

7
2

X
-n

5
3
6
-k

9
6

9
4
9
8
8

9
6

9
4
4
0
9

0
.7
5

9
5
7
0
0
.7

9
5
5
2
4

6
2
.1

0
.3
6

9
5
3
3
0
.6

9
5
1
2
2

1
0
7
.5

0
.2
0

9
5
1
7
3
.2

9
5
0
0
6

7
4
.7

7
3

X
-n

5
4
8
-k

5
0

8
6
7
0
1

5
0

8
6
6
0
4

0
.2
0

8
6
8
7
4
.1

8
6
7
1
0

6
4
.0

0
.3
4

8
6
9
9
8
.5

8
6
8
2
2

8
4
.2

0
.1
1

8
6
7
9
8
.0

8
6
7
1
0

6
4
.5

7
4

X
-n

5
6
1
-k

4
2

4
2
7
2
2

4
2

4
2
4
9
5

0
.9
6

4
3
1
3
1
.3

4
2
9
5
2

6
8
.9

0
.3
4

4
2
8
6
6
.4

4
2
7
5
6

6
0
.6

0
.3
4

4
2
8
6
8
.1

4
2
7
7
4

7
3
.8

7
5

X
-n

5
7
3
-k

3
0

5
0
7
1
9

3
0

5
0
5
7
5

0
.9
0

5
1
1
7
3
.0

5
1
0
9
2

1
1
2
.0

0
.3
9

5
0
9
1
5
.1

5
0
7
8
0

1
8
8
.2

0
.1
7

5
0
8
0
4
.6

5
0
7
3
7

1
1
3
.0

7
6

X
-n

5
8
6
-k

1
5
9

1
9
0
4
2
3

1
5
9

1
8
9
9
5
0

0
.2
6

1
9
0
9
1
9
.0

1
9
0
6
1
2

7
8
.5

0
.2
2

1
9
0
8
3
8
.0

1
9
0
5
4
3

1
7
5
.3

0
.0
9

1
9
0
6
0
0
.7

1
9
0
4
8
4

8
6
.3

7
7

X
-n

5
9
9
-k

9
2

1
0
8
4
9
0

9
3

1
0
8
0
0
0

0
.8
2

1
0
9
3
8
4
.0

1
0
9
0
5
6

7
3
.0

0
.5
3

1
0
9
0
6
4
.2

1
0
8
8
1
3

1
2
5
.9

0
.1
8

1
0
8
6
8
8
.6

1
0
8
5
4
8

7
5
.4

7
8

X
-n

6
1
3
-k

6
2

5
9
5
5
6

6
2

5
9
3
2
3

1
.4
9

6
0
4
4
4
.2

6
0
2
2
9

7
4
.8

0
.6
8

5
9
9
6
0
.0

5
9
7
7
8

1
1
7
.3

0
.2
9

5
9
7
3
1
.3

5
9
5
8
5

8
8
.1

7
9

X
-n

6
2
7
-k

4
3

6
2
2
1
0

4
3

6
2
0
1
8

1
.1
2

6
2
9
0
5
.6

6
2
7
8
3

1
6
2
.7

0
.5
0

6
2
5
2
4
.1

6
2
3
6
6

2
3
9
.7

0
.1
7

6
2
3
1
7
.1

6
2
2
1
9

8
9
.3

8
0

X
-n

6
4
1
-k

3
5

6
3
7
3
7

3
5

6
3
2
2
8

1
.3
6

6
4
6
0
6
.1

6
4
4
6
2

1
4
0
.4

0
.7
1

6
4
1
9
2
.0

6
3
8
3
9

1
5
8
.8

0
.1
8

6
3
8
5
0
.3

6
3
7
5
0

9
2
.5

8
1

X
-n

6
5
5
-k

1
3
1

1
0
6
7
8
0

1
3
1

�
1
0
6
7
6
6

4
1
.5

0
.0
0

1
0
6
7
8
2
.0

1
0
6
7
8
0

4
7
.2

0
.1
1

1
0
6
8
9
9
.1

1
0
6
8
2
9

1
5
0
.5

0
.0
6

1
0
6
8
4
4
.6

1
0
6
8
1
3

1
0
9
.6

8
2

X
-n

6
7
0
-k

1
2
6

1
4
6
4
5
1

1
3
3

1
4
6
2
1
1

0
.8
4

1
4
7
6
7
6
.0

1
4
7
0
4
5

6
1
.2

0
.5
3

1
4
7
2
2
2
.7

1
4
6
7
0
5

2
6
4
.1

0
.1
8

1
4
6
7
2
0
.4

1
4
6
4
5
1

1
9
8
.9

8
3

X
-n

6
8
5
-k

7
5

6
8
2
6
1

7
5

6
7
9
2
5

1
.0
7

6
8
9
8
8
.2

6
8
6
4
6

7
3
.8

0
.5
8

6
8
6
5
4
.1

6
8
4
2
5

1
5
6
.7

0
.1
6

6
8
3
6
9
.0

6
8
2
7
1

1
3
5
.1

8
4

X
-n

7
0
1
-k

4
4

8
1
9
3
4

4
4

8
1
6
9
4

1
.3
5

8
3
0
4
2
.2

8
2
8
8
8

2
1
0
.1

0
.6
8

8
2
4
8
7
.4

8
2
2
9
3

2
5
3
.2

0
.1
6

8
2
0
6
5
.4

8
1
9
7
4

1
2
2
.5

8
5

X
-n

7
1
6
-k

3
5

4
3
4
1
4

3
5

4
3
1
1
3

1
.7
5

4
4
1
7
1
.6

4
4
0
2
1

2
2
5
.8

0
.5
2

4
3
6
4
1
.4

4
3
5
2
5

2
6
4
.3

0
.1
6

4
3
4
8
3
.8

4
3
4
2
6

1
5
8
.3

8
6

X
-n

7
3
3
-k

1
5
9

1
3
6
2
5
0

1
6
0

1
3
5
7
4
8

0
.5
8

1
3
7
0
4
5
.0

1
3
6
8
3
2

1
1
1
.6

0
.2
5

1
3
6
5
8
7
.6

1
3
6
3
6
6

2
4
4
.5

0
.1
0

1
3
6
3
8
9
.3

1
3
6
2
5
5

1
4
3
.2

8
7

X
-n

7
4
9
-k

9
8

7
7
3
6
5

9
8

7
6
9
2
4

1
.1
8

7
8
2
7
5
.9

7
7
9
5
2

1
2
7
.2

0
.6
5

7
7
8
6
4
.9

7
7
7
1
5

3
1
3
.9

0
.1
9

7
7
5
0
9
.2

7
7
3
8
0

1
4
6
.3

8
8

X
-n

7
6
6
-k

7
1

1
1
4
5
2
5

7
1

1
1
4
1
0
8

1
.0
6

1
1
5
7
3
8
.0

1
1
5
4
4
3

2
4
2
.1

0
.5
4

1
1
5
1
4
7
.9

1
1
4
6
8
3

3
8
3
.0

0
.2
1

1
1
4
7
6
1
.1

1
1
4
5
9
0

1
7
4
.4

8
9

X
-n

7
8
3
-k

4
8

7
2
4
4
5

4
8

7
1
7
2
8

1
.7
6

7
3
7
2
2
.9

7
3
4
4
7

2
3
5
.5

0
.7
8

7
3
0
0
9
.6

7
2
7
8
1

2
6
9
.7

0
.3
0

7
2
6
6
0
.7

7
2
4
9
2

1
7
0
.2

9
0

X
-n

8
0
1
-k

4
0

7
3
3
3
1

4
0

7
3
1
2
4

0
.9
2

7
4
0
0
5
.7

7
3
8
3
0

4
3
2
.6

0
.5
5

7
3
7
3
1
.0

7
3
5
8
7

2
8
9
.2

0
.1
4

7
3
4
3
6
.7

7
3
3
4
7

1
3
7
.1

9
1

X
-n

8
1
9
-k

1
7
1

1
5
8
2
6
7

1
7
2

1
5
7
5
5
8

0
.7
3

1
5
9
4
2
5
.0

1
5
9
1
6
4

1
4
8
.9

0
.4
0

1
5
8
8
9
9
.3

1
5
8
6
1
1

3
7
4
.3

0
.1
0

1
5
8
4
2
3
.0

1
5
8
3
0
5

1
7
2
.5

9
2

X
-n

8
3
7
-k

1
4
2

1
9
3
8
1
3

1
4
2

1
9
3
2
4
5

0
.6
3

1
9
5
0
2
7
.0

1
9
4
8
0
4

1
7
3
.2

0
.3
4

1
9
4
4
7
6
.5

1
9
4
2
6
6

4
6
3
.4

0
.0
8

1
9
3
9
7
6
.9

1
9
3
8
2
4

1
6
6
.8

9
3

X
-n

8
5
6
-k

9
5

8
9
0
0
7

9
5

8
8
8
3
9

0
.3
0

8
9
2
7
7
.6

8
9
0
6
0

1
5
3
.7

0
.2
6

8
9
2
3
8
.7

8
9
1
1
8

2
8
8
.4

0
.1
4

8
9
1
3
1
.3

8
9
0
5
0

1
6
0
.0

9
4

X
-n

8
7
6
-k

5
9

9
9
3
3
1

5
9

9
8
8
8
0

1
.0
9

1
0
0
4
1
7
.0

1
0
0
1
7
7

4
0
9
.3

0
.5
6

9
9
8
8
4
.1

9
9
7
1
5

4
9
5
.4

0
.1
5

9
9
4
8
3
.2

9
9
3
8
8

2
1
7
.4

9
5

X
-n

8
9
5
-k

3
7

5
3
9
4
6

3
7

5
3
1
4
7

1
.8
8

5
4
9
5
8
.5

5
4
7
1
3

4
1
0
.2

0
.9
2

5
4
4
3
9
.8

5
4
1
7
2

3
2
1
.9

0
.2
6

5
4
0
8
5
.8

5
3
9
9
3

2
1
2
.5

9
6

X
-n

9
1
6
-k

2
0
7

3
2
9
2
4
7

2
0
7

3
2
8
5
8
8

0
.5
2

3
3
0
9
4
8
.0

3
3
0
6
3
9

2
2
6
.1

0
.2
9

3
3
0
1
9
8
.3

3
2
9
8
3
6

5
6
0
.8

0
.0
8

3
2
9
5
0
9
.5

3
2
9
2
9
9

2
1
5
.3

9
7

X
-n

9
3
6
-k

1
5
1

1
3
2
9
2
6

1
5
8

1
3
2
4
9
6

1
.2
1

1
3
4
5
3
0
.0

1
3
3
5
9
2

2
0
2
.5

0
.4
4

1
3
3
5
1
2
.9

1
3
3
1
4
0

5
3
1
.5

0
.1
4

1
3
3
1
1
7
.3

1
3
3
0
1
4

4
1
2
.7

9
8

X
-n

9
5
7
-k

8
7

8
5
4
8
2

8
7

8
5
3
2
8

0
.5
3

8
5
9
3
6
.6

8
5
6
9
7

3
1
1
.2

0
.4
0

8
5
8
2
2
.6

8
5
6
7
2

4
3
2
.9

0
.1
6

8
5
6
2
0
.0

8
5
5
4
6

2
0
2
.4

9
9

X
-n

9
7
9
-k

5
8

1
1
9
0
0
8

5
8

1
1
8
3
9
9

1
.0
5

1
2
0
2
5
3
.0

1
1
9
9
9
4

6
8
7
.2

0
.4
2

1
1
9
5
0
2
.1

1
1
9
1
9
4

5
5
4
.0

0
.0
9

1
1
9
1
2
0
.4

1
1
9
0
6
5

2
7
6
.6

1
0
0

X
-n

1
0
0
1
-k

4
3

7
2
4
0
4

4
3

7
1
8
1
2

2
.1
8

7
3
9
8
5
.4

7
3
7
7
6

7
9
2
.8

0
.7
6

7
2
9
5
6
.0

7
2
7
4
2

5
4
9
.0

0
.1
7

7
2
5
2
8
.1

7
2
4
1
5

2
8
4
.3

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

32 Technical report 7.11.2016

References

Baldacci R, Christofides N, Mingozzi A, 2008 An exact algorithm for the vehicle routing problem based on

the set partitioning formulation with additional cuts. Mathematical Programming 115(2):351–385.

Bresina JL, 1996 Heuristic-biased stochastic sampling. AAAI/IAAI, Vol. 1, 271–278.

Crainic TG, Toulouse M, 2003 Handbook of Metaheuristics, chapter Parallel Strategies for Meta-Heuristics,

475–513 (Boston, MA: Springer US).

Croes GA, 1958 A method for solving traveling-salesman problems. Operations Research 6(6):791–812.

Dantzig GB, Ramser JH, 1959 The truck dispatching problem. Management Science 6(1):80–91.

Dees W, Smith I RJ, 1981 Performance of interconnection rip-up and reroute strategies. Design Automation,

1981. 18th Conference on, 382–390.

Fahrion R, Wrede M, 1990 On a principle of chain-exchange for vehicle-routeing problems (1-vrp). The

Journal of the Operational Research Society 41(9):821–827.

Flood MM, 1956 The traveling-salesman problem. Operations Research 4(1):61–75.

Fukasawa R, Longo H, Lysgaard J, Aragão MPd, Reis M, Uchoa E, Werneck RF, 2006 Robust branch-and-

cut-and-price for the capacitated vehicle routing problem. Mathematical Programming 106(3):491–511.

Gilbert Laporte FV Roberto Musmanno, 2010 An adaptive large neighbourhood search heuristic for the

capacitated arc-routing problem with stochastic demands. Transportation Science 44(1):125–135.

Glover F, 1986 Applications of integer programming future paths for integer programming and links to arti-

ficial intelligence. Computers & Operations Research 13(5):533–549.

Kirkpatrick S, Gelatt CD, Vecchi MP, 1983 Optimization by simulated annealing. SCIENCE 220(4598):671–

680.

Langley P, 1992 Systematic and nonsystematic search strategies. Proceedings of the First International Con-

ference on Artificial Intelligence Planning Systems, 145–152 (San Francisco, CA, USA: Morgan Kauf-

mann Publishers Inc.).

Laporte G, 2009 Fifty years of vehicle routing. Transportation Science 43(4):408–416.

Lin S, 1965 Computer solutions of the traveling salesman problem. Bell System Technical Journal

44(10):2245–2269.

Lin S, Kernighan BW, 1973 An effective heuristic algorithm for the traveling-salesman problem. Operations

Research 21(2):498–516.

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E, 1953 Equation of state calculations by

fast computing machines. The Journal of Chemical Physics 21(6):1087–1092.

Or I, 1976 Traveling Salesman-Type Combinatorial Problems and their relation to the Logistics of Regional

Blood Banking (Xerox University Microfilms).

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

Technical report 7.11.2016 33

Pecin D, Pessoa A, Poggi M, Uchoa E, 2014 Improved Branch-Cut-and-Price for Capacitated Vehicle Routing,

393–403 (Cham: Springer International Publishing).

Pisinger D, Røpke S, 2007 A general heuristic for vehicle routing problems. Computers & Operations Research

34(8):2403–2435.

Potvin JY, Rousseau JM, 1993 A parallel route building algorithm for the vehicle routing and scheduling

problem with time windows. European Journal of Operational Research 66(3):331–340.

Potvin JY, Rousseau JM, 1995 An exchange heuristic for routeing problems with time windows. The Journal

of the Operational Research Society 46(12):1433–1446.

Prins C, 2004 A simple and effective evolutionary algorithm for the vehicle routing problem. Computers &

Operations Research 31(12):1985–2002.

Prosser P, Shaw P, 1996 Study of greedy search with multiple improvement heuristics for vehicle routing

problems.

Ribeiro GM, Laporte G, 2012 An adaptive large neighborhood search heuristic for the cumulative capacitated

vehicle routing problem. Computers & Operations Research 39(3):728–735.

Savelsbergh MW, 1992 The vehicle routing problem with time windows: Minimizing route duration. ORSA

journal on computing 4(2):146–154.

Savelsbergh MWP, 1988 Computer Aided Routing. Ph.d. dissertation, Centrum voor Wiskunde en Informat-

ica, Amsterdam, Amsterdam.

Schrimpf G, Schneider J, Stamm-Wilbrandt H, Dueck G, 2000 Record breaking optimization results using

the ruin and recreate principle. Journal of Computational Physics 159(2):139–171.

Shaw P, 1998 Using constraint programming and local search methods to solve vehicle routing problems.

Proceedings of the 4th International Conference on Principles and Practice of Constraint Programming,

417–431, CP ’98 (London, UK, UK: Springer-Verlag).

Subramanian A, Uchoa E, Ochi LS, 2013 A hybrid algorithm for a class of vehicle routing problems. Com-

puters & Operations Research 40(10”):2519–2531.

Taillard É, Badeau P, Gendreau M, Guertin F, Potvin JY, 1997 A tabu search heuristic for the vehicle

routing problem with soft time windows. Transportation Science 31(2):170–186.

Toth P, Vigo D, 2002 Models, relaxations and exact approaches for the capacitated vehicle routing problem.

Discrete Applied Mathematics 123:487–512.

Uchoa E, Pecin D, Pessoa A, Poggi M, Subramanian A, Vidal T, 2014 New benchmark instances for the

capacitated vehicle routing problem. Technical report, Research Report Engenharia de Produção, Uni-

versidade Federal Fluminense.

Van Breedam A, 1994 An Analysis of the Behavior of Heuristics for the Vehicle Routing Problem for a

selection of problems with Vehicle-related, Customer-related, and Time-related Constraints. Ph.d. dis-

sertation, University of Antwerp, Faculty of Applied Economics, Antwerp.

Please consider the REVISED VERSION:
Slack Induction by String Removals for Vehicle Routing Problems

available at: https://lirias.kuleuven.be/handle/123456789/624431

Jan Christiaens and Greet Vanden Berghe: ASB-RR for the CVRP

34 Technical report 7.11.2016

Vidal T, Crainic TG, Gendreau M, Prins C, 2014 A unified solution framework for multi-attribute vehicle

routing problems. European Journal of Operational Research 234(3):658–673.

Vidal T, Crainic TG, Gendreau M, Prins C, 2015 Time-window relaxations in vehicle routing heuristics.

Journal of Heuristics 21(3):329–358.

Waters CDJ, 1987 A solution procedure for the vehicle-scheduling problem based on iterative route improve-

ment. The Journal of the Operational Research Society 38(9):833–839.

