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1. Introduction 

In Asia and the EU, railways are a non-negligible passenger transport mode. In Japan, 30.5 per 

cent of passenger kilometers were made by rail while in China and India resp. 25 per cent and 

13 per cent of passenger kilometer were made by rail (IEA & UIC, 2015). In Europe, the share 

is smaller, ranging from 0.9 per cent in Greece to 17.1 per cent in Switzerland (Source: 

Eurostat3). In rail operations one distinguishes often between urban rail, regional rail and long 

distance high speed rail. In this paper we focus on the regional rail in Europe connecting several 

cities (30 to 150 km), where one of the dominant transport motives is commuting. 17 per cent 

of the commuters to Brussels use rail (Verhetsel, et al., 2007). For metropolitan areas the 

encouragement of the modal shift from car to rail is seen as an important component of the 

transport and environmental policy package. 

The last decennia, there has been academic interest in the properties of the cost function of rail, 

in the vertical separation of infrastructure and operation as well as in the regulation of public 

and private rail companies. This research was mainly motivated by the promises of more 

competition in this sector. The cost efficiency effects of this liberalization has been studied 

intensively using mainly firm level data. We do not study this competition but rather study the 

optimal pricing structure for regional rail operations. How to implement the optimal pricing 

structure is not studied. Important in our study of pricing is that we take into account the 

unpriced road congestion as this is one of the main motivations for public rail subsidies. We 

look into medium distance corridors connecting two cities to a metropolitan area and this in two 

countries. To travel from the city where they live to destination, the individuals choose between 

two modes and two periods, peak and off-peak. These modes are private car and rail. We 

                                                 
3 http://ec.europa.eu/eurostat/web/transport/data/database 
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distinguish different groups of representative travelers that differ in income, value of time and 

modal preferences. For each corridor we analyze the efficiency of current rail prices.  

More specifically we focus on the following four research questions. First what are the second 

best rail fare and corresponding frequency for a rail trip in peak and off-peak and how it deviates 

from the first best price and frequency? The first best pricing structure is not without interest as 

several EU countries contemplate the introduction of road pricing.  

Second what are the underlying forces of the second best price, how does it depend on density, 

aversion to crowding, value of time, road congestion and frequency. Structuring the railway 

fares in function of a few parameters is useful when the railway company has to present general 

fare setting principles that can be applied to the different corridors it is operating.  

Third, as most rail companies operate under a strict maximum deficit constraint, what mark-

ups are optimal to reach the deficit constraint? Fourth, are international differences in rail prices 

based on objective differences in the second best optimal charges? 

We analyzed present and optimal prices in comparable corridors in two countries: Belgium and 

France. Current rail prices differ by more than 50 per cent for comparable journeys and show a 

different profile of discounts for some categories of customers. Most current prices are above 

the second best optimal prices. In most European countries the main reason is the diversion of 

travelers away from the road mode. The exception is France where the current péage on the 

motorway result in overpricing of the use of cars so that the second best rail prices are above 

the marginal cost.  

Passenger rail is a sector that is not very transparent in terms of data and this explains the main 

limitations of this study. First we focus on one isolated corridor per country and neglect other 

network aspects. Second we focus only on passenger rail operations taking as given the charges 

for the use of the infrastructure. We also assume full control of all rail prices and all frequencies 
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and work with given unit operation cost data. So regulatory issues and possible cost inefficiency 

reactions are neglected. Finally, the cost and passenger volume data are often secret so we need 

many assumptions to complete the data for the reference situation. 

Section 2 reviews the literature. Section 3 presents the analytical model that is used to compute 

the optimal first and second best rail prices. Section 4 presents the most important data. Section 

5 analyzes in depth the results for a corridor in one country (Belgium). Section 6 broadens the 

analysis to a comparison with one corridor in France. Section 7 concludes.  

2. Literature Review 

We restrict the analysis to the pricing of the medium distance passenger rail trips. The freight 

market, the very short distance (tram and urban rail) and the long distance trips (HSR) are 

characterized by different production costs and market conditions. The setting of optimal rail 

prices faces three types of issues. 

The first issue has to do with the absence of competition: often there is only one supplier whose 

costs are uncertain. This requires looking for good production cost information and designing 

a good regulation scheme. Optimal prices will in general involve optimal deviations of the 

marginal costs so as to meet budget constraints (Ramsey-Boiteux pricing) together with the 

right incentive constraints.  

Second issue is the knowledge of the marginal costs of different types of products offered by a 

rail infrastructure manager and a rail operator. The third issue is to consider deviating from 

marginal cost pricing not only to meet budget constraints but also to take into account 

distortions on other transport markets. 

In his review, Nash (2015) did not find very clear effects of liberalization on production costs, 

it is case dependent. In this paper we focus on the operation of rail for given rail infrastructure 
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charges. So the “efficient” rail passenger prices we compute will be conditional on the 

infrastructure charges and the present unit operation costs. 

Determining the marginal cost of rail is a paper topic on its own. Most production cost studies 

for rail operation concentrate on aggregate output indicators like total seat kilometers or total 

passenger kilometers supplied. These studies allow to check for production efficiency (see 

Cantos, et al. (2010)) and for returns to scale and can compute the marginal cost of an extra 

passenger kilometer somewhere on the network.  

We take a more micro-or engineering approach as we consider one corridor only. The marginal 

cost of a passenger can be computed in two ways (Kraus (1991), Jara-Díaz & Gschwender 

(2003), Jansson, et al. (2015)). Simplest is to assume a rule of thumb for the accommodation of 

new passengers that trade-off between the cost of additional vehicles and the additional 

crowding. This approach was used for urban rail and bus by Parry & Small (2009) as well as 

by Kilani, et al. (2014). We use a more explicit approach and set the marginal cost of a passenger 

equal to the external crowding cost. The external crowding cost is then the result of 

simultaneous optimization of the frequency and the fare where crowding, schedule delay and 

congestion on the rail network are compared with the operating and rental cost of an additional 

train. This is also the methodology followed by Basso & Silva (2014) for urban busses and by 

de Palma, et al. (2015) and de Palma, et al. (2017) in a theoretical setting. 

The third issue in deriving efficient rail prices is to take into account the effects of rail prices 

on other distorted markets. The two distortions that have received most attention are the 

unpriced road congestion (de Palma, et al., 2015) and highly taxed labour market. In most 

countries road congestion is not priced and this implies that the optimal rail prices are lower 

than the marginal social costs. Lower rail prices allow to reduce road congestion by substituting 

car trips by rail trips. The optimal rail fare will then be lower, the better is the substitution 

between the two modes and the more important is the unpriced externality. Labour supply is 
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heavily taxed and when an increase of rail prices decreases labour supply, there will be an 

additional welfare loss that can be important. This may call for differentiation of fares between 

active and non-active passengers (Van Dender, 2003) and for the use of toll revenues to reduce 

labour taxes ((Parry & Bento (2001), Diaz & Proost (2014)). As we only study the optimization 

of rail fares, the net effect on labour supply will be marginal so that we do not need to address 

this issue. 

Optimal prices for rail were computed for the Netherlands by Van Vuuren (2002). Van Vuuren, 

contrary to us, uses an aggregate country level perspective, has no explicit frequency 

optimization and does not consider the distortions on other markets. Parry & Small (2009) look 

for optimal urban rail prices for metropolitan areas like London. They found very low optimal 

prices for peak (90 per cent subsidized) and off-peak service (78 per cent subsidized). In the 

peak period, this was mainly due to the large substitution effect with unpriced peak car use. In 

the off-peak period, this was mainly due to the economies of scale and the positive externality 

of more frequent service. Our results are in line with this paper, except that we deal with 

medium distance traffic and consider explicitly different user groups. These different user 

groups allow us to study rail fares that are optimally differentiated to reach budget constraints.  

3. Analytical model 

The model is a partial equilibrium model focusing on the passenger transport market. This is 

appropriate as long as the supply of labour is not affected by the transport costs and as long as 

we are not interested in the income distribution aspects. Locations are fixed. The total price 

elasticity for commuting trips that we use is very low so that we can focus on the transport 

market only.  

3.1. Model assumptions 
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We consider a simple intercity transport system connecting three cities, 𝐴, 𝐵 and 𝐷 (see Figure 

1). Individuals live in cities 𝐴 and 𝐵 and travel to a unique destination, city 𝐷. City 𝐷 can be 

seen as a metropolitan area. City 𝐴 is located further from the destination than city 𝐵. The 

distance by road between 𝐴 and 𝐵 is 𝑑𝐴𝐵
𝑟𝑜𝑎𝑑, between 𝐵 and 𝐷 𝑑𝐵𝐷

𝑟𝑜𝑎𝑑 and between 𝐴 and 𝐷 

𝑑𝐴𝐷
𝑟𝑜𝑎𝑑 = 𝑑𝐴𝐵

𝑟𝑜𝑎𝑑 + 𝑑𝐵𝐷
𝑟𝑜𝑎𝑑. The distance by rail between 𝐴 and 𝐵 is 𝑑𝐴𝐵

𝑟𝑎𝑖𝑙, between 𝐵 and 𝐷 𝑑𝐵𝐷
𝑟𝑎𝑖𝑙 

and between 𝐴 and 𝐷 𝑑𝐴𝐷
𝑟𝑎𝑖𝑙 = 𝑑𝐴𝐵

𝑟𝑎𝑖𝑙 + 𝑑𝐵𝐷
𝑟𝑎𝑖𝑙. 

[Figure 1 here] 

3.1.1. Consumers surplus 

The whole population living in areas 𝐴 and 𝐵 is made of 𝐼 groups of homogeneous individuals, 

𝑖  =  1,   . . . ,  𝐼. 𝑁𝑖,𝑗 individuals in group 𝑖 live in city 𝑗. Consequently, ∑ 𝑁𝑖,𝑗
𝐼
𝑖=1  individuals live 

in city 𝑗  =  𝐴,  𝐵. The 𝐼 groups differ with respect to their value of time, 𝛼𝑖, their income, 𝑅𝑖,
4 

and their travel preferences.  

To travel from the city where they live (𝐴 or 𝐵) to destination (𝐷), the individuals choose 

between two modes and two periods. These modes are 𝑚  =  𝐶𝐴𝑅 (auto) and 𝑅𝐴𝐼𝐿 (rail). The 

two periods are denoted by superscript 𝑘  =  𝑃 (peak) and 𝑂 (off-peak). The length of time of 

period 𝑘 is ℎ𝑘.  

𝑥𝑖,𝑗
𝑚,𝑘 is the number of trips made by the representative user of group 𝑖 departing from city 𝑗 by 

mode m during period 𝑘. 𝑋𝑗
𝑚,𝑘 = ∑ 𝑁𝑖,𝑗

𝐼
𝑖=1 𝑥𝑖,𝑗

𝑚,𝑘  is the total volume of trips departing from city 

𝑗 made by mode 𝑚 during period 𝑘. 𝑞𝑖,𝑗 is the quantity of a numeraire or general consumption 

good consumed by the representative user of group 𝑖 living in city 𝑗. Consequently, the utility 

function of the representative user of group 𝑖 living in city 𝑗 is 

                                                 
4 Value of time and revenue are correlated. 



8 

𝑈𝑖,𝑗 = 𝑈𝑖,𝑗(𝑞𝑖,𝑗, {𝑥𝑖,𝑗
𝑚,𝑘, 𝑚 = 𝐶𝐴𝑅, 𝑅𝐴𝐼𝐿; 𝑘 = 𝑃, 𝑂}).                                                                        (1) 

We assume that 𝑈 is increasing and quasi-concave in each of its arguments, implying that travel 

by different modes and times of day are imperfect substitutes.  

3.1.2. Transport supply  

Rail supply - 𝑉𝑅𝐴𝐼𝐿,𝑘 trains depart from city 𝐴 during period 𝑘. Each of those trains stops by 

city 𝐵, where users from city 𝐵 can board the train but where no user from city 𝐴 alight from 

the train, because their destination is 𝐷. Because it would be expensive to daily adjust the 

composition of trains between periods, the composition of a train is assumed homogeneous 

across periods: each run offers 𝑆𝑅𝐴𝐼𝐿 seats. Consequently, during period 𝑘, the train company 

offers 𝑌𝑅𝐴𝐼𝐿,𝑘 = 𝑉𝑅𝐴𝐼𝐿,𝑘 × 𝑆𝑅𝐴𝐼𝐿 seats from city 𝐴 to the destination. The occupancy rate in 

period 𝑘 between 𝐴 and 𝐵 is 𝑜𝐴𝐵
𝑅𝐴𝐼𝐿,𝑘 = 𝑋𝐴

𝑅𝐴𝐼𝐿,𝑘 𝑌𝑅𝐴𝐼𝐿,𝑘⁄ , and between 𝐵 and 𝐷, 𝑜𝐵𝐷
𝑅𝐴𝐼𝐿,𝑘 =

(𝑋𝐴
𝑅𝐴𝐼𝐿,𝑘 + 𝑋𝐵

𝑅𝐴𝐼𝐿,𝑘) 𝑌𝑅𝐴𝐼𝐿,𝑘⁄ .  

To operate 𝑉𝑅𝐴𝐼𝐿,𝑘 runs during period 𝑘, the train company needs (at least) �̆�𝑅𝐴𝐼𝐿 physically 

distinct trains, with  

�̆�𝑅𝐴𝐼𝐿 ≡ 𝑚𝑎𝑥
 
{2 × 𝑡�̅�𝐴𝐷

𝑅𝐴𝐼𝐿 × 𝑉𝑅𝐴𝐼𝐿,𝑃 ℎ𝑃⁄ ; 2 × 𝑡�̅�𝐴𝐷
𝑅𝐴𝐼𝐿 × 𝑉𝑅𝐴𝐼𝐿,𝑂 ℎ𝑂⁄ } 

where 𝑡�̅�𝐴𝐷
𝑅𝐴𝐼𝐿 is the travel time of rail between 𝐴 and 𝐷. Because the peak train frequency is 

always higher or equal to the off-peak train frequency, we assume that the number of trains 

constraint only depends on the number of runs during the peak period: �̆�𝑅𝐴𝐼𝐿 = 2 × 𝑡�̅�𝐴𝐷
𝑅𝐴𝐼𝐿 ×

𝑉𝑅𝐴𝐼𝐿,𝑃 ℎ𝑃⁄ . The train agency production cost is 

𝑇𝐶𝑅𝐴𝐼𝐿 = 𝜇0
𝑅𝐴𝐼𝐿 + �̆�𝑅𝐴𝐼𝐿 × 𝜇1

𝑅𝐴𝐼𝐿 

+(𝑉𝑅𝐴𝐼𝐿,𝑃 + 𝑉𝑅𝐴𝐼𝐿,𝑂) × (𝜇2
𝑅𝐴𝐼𝐿 + 𝜐𝑅𝐴𝐼𝐿 × 𝑝𝑓𝑢𝑒𝑙 × 𝑑𝐴𝐷

𝑟𝑎𝑖𝑙)                                                       (2) 
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Where 𝜇0
𝑅𝐴𝐼𝐿 is the fixed cost of the rail infrastructure, �̆�𝑅𝐴𝐼𝐿 × 𝜇1

𝑅𝐴𝐼𝐿 is the rental cost of rolling 

stock needed, and (𝑉𝑅𝐴𝐼𝐿,𝑃 + 𝑉𝑅𝐴𝐼𝐿,𝑂) × (𝜇2
𝑅𝐴𝐼𝐿 + 𝜐𝑅𝐴𝐼𝐿 × 𝑝𝑓𝑢𝑒𝑙 × 𝑑𝐴𝐷

𝑟𝑎𝑖𝑙) is the operating cost. 

𝜇1
𝑅𝐴𝐼𝐿  is the cost per train rented, it is a function of the capacity of the train, 𝑆𝑅𝐴𝐼𝐿. 𝑉𝑅𝐴𝐼𝐿,𝑃 +

𝑉𝑅𝐴𝐼𝐿,𝑂 is the number of runs operated, 𝜇2
𝑅𝐴𝐼𝐿 is the cost per run (including the drivers wages). 

𝜐𝑅𝐴𝐼𝐿 is the consumption of fuel per train vehicle kilometer, and f is the price of fuel. 𝑝𝑓𝑢𝑒𝑙  =

 �̅�𝑓𝑢𝑒𝑙  +  𝜅𝑓𝑢𝑒𝑙, where κfuel is the tax on fuel. The collected taxes on fuel are a revenue for the 

government.5 

The fare for a train journey departing from 𝑗 during period 𝑘 in class 𝑚 is 𝑝𝑗
𝑅𝐴𝐼𝐿,𝑘

. Therefore, 

the revenue of the train company is 

𝛱𝑅𝐴𝐼𝐿 = ∑ ∑ 𝑋𝑗
𝑅𝐴𝐼𝐿,𝑘

𝑘=𝑃,𝑂

× 𝑝𝑗
𝑅𝐴𝐼𝐿,𝑘

𝑗=𝐴,𝐵

− 𝑇𝐶𝑅𝐴𝐼𝐿 . 

Road supply - The road capacity is 𝑠𝐴𝐵
𝑟𝑜𝑎𝑑 between 𝐴 and 𝐵, and 𝑠𝐵𝐷

𝑟𝑜𝑎𝑑 between 𝐵 and the 

destination.  

Car supply - 𝑉𝑖,𝑗
𝐶𝐴𝑅,𝑘

 cars carrying user from group 𝑖 depart from city 𝑗 during period 𝑘, with 

𝑉𝑖,𝑗
𝐶𝐴𝑅,𝑘 = 𝑋𝑖,𝑗

𝐶𝐴𝑅,𝑘
  meaning that the car occupancy rate equals one over periods, users types, and 

origins. A toll is also imposed on each car: 𝜏𝐴𝐵
𝐶𝐴𝑅,𝑘

 between 𝐴 and 𝐵, and 𝜏𝐴𝐵𝐷
𝐶𝐴𝑅,𝑘

 between 𝐵 

and𝐷. Consequently, the fare paid by a car coming from 𝐴 is 𝜏𝐴
𝐶𝐴𝑅,𝑘 = 𝜏𝐴𝐵

𝐶𝐴𝑅,𝑘 + 𝜏𝐵𝐷
𝐶𝐴𝑅,𝑘

, and by 

a car coming from 𝐵, 𝜏𝐵
𝐶𝐴𝑅,𝑘 = 𝜏𝐵𝐷

𝐶𝐴𝑅,𝑘
. The fuel consumption of a car between an origin 𝑗 and 

destination 𝐷 is 𝜐𝐶𝐴𝑅 × 𝑑𝑗𝐷
𝑟𝑜𝑎𝐷 . 𝜐𝐶𝐴𝑅 is the car consumption of fuel per kilometer.  

3.1.3. Users costs  

                                                 
5 However, this tax on fuel is not considered as an instrument later in the analysis. 
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Depending on the mode they choose, individuals incur a variety of monetary and non-monetary 

costs when traveling (Ivaldi & Seabright, 2003). The monetary travel costs are obvious but 

there are different levels of precision for the non-monetary costs. All individuals incur a “free” 

travel time, depending on their value of time and on the travel length. Road travelers also incur 

a congestion cost which increases with the number of vehicles on road. Train users experience 

schedule delay and discomfort costs. The train service is characterized by discrete departure 

and arrival times at destination. Users have to choose within a finite set of possible arrival times. 

If the effective arrival time does not coincide with the preferred arrival time, the traveler incurs 

schedule delay costs. The comfort in train decreases with the occupancy rate: less seats are 

available, some travelers may have to stand during the trip... Finally, train users also incur a 

lateness cost. Indeed, late arrivals happen when there are too many trains on the line at the same 

time. Consequently, there is a potential lateness time which increases with the number of trains 

on rail during the same period, and decreases with the rail capacity. 

When individuals make a journey, they incur two types of costs: monetary and non-monetary 

cost. These costs are described below.  

Monetary user cost - 𝑀𝑈𝐶𝑗
𝑚,𝑘

 is the monetary cost per user from city 𝑗 using mode 𝑚 during 

period 𝑘. The monetary costs for train users is the fare ticket, 𝑝𝑗
𝑚,𝑘

. Car travelers incur a 

different type of monetary cost. Indeed, they have to pay a toll, a fixed cost of using a car and 

the fuel consumption.  

𝑀𝑈𝐶𝑗
𝑅𝐴𝐼𝐿,𝑘 = 𝑝𝑗

𝑚,𝑘 

𝑀𝑈𝐶𝑗
𝐶𝐴𝑅,𝑘 = 𝜏𝑗

𝐶𝐴𝑅,𝑘 + 𝜐𝐶𝐴𝑅 × 𝑝𝑓𝑢𝑒𝑙 × 𝑑𝑗𝐷
𝑟𝑜𝑎𝑑. 

We assume that the labour supply is not really affected by transport pricing. The budget 

equation of the representative user of group 𝑖 living in city 𝑗 can be written 
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𝑅𝑖,𝑗 ≥ 𝑞𝑖,𝑗 + ∑ ∑ 𝑀𝑈𝐶𝑗
𝑚,𝑘

𝑘 × 𝑥𝑖,𝑗
𝑚,𝑘

𝑚                                                                                                    (3) 

where 𝑅𝑖,𝑗 stands for the budget of the representative user of group 𝑖 living in city 𝑗. 𝑞𝑖,𝑗 is a 

numeraire good, its price equals 1.  

Non-monetary user cost - When traveling, users incur non-monetary costs which are mainly 

related to the time dimension: the length of the journey, the potential lateness, the utility of time 

when traveling in discomfortable conditions...  

Free travel time cost - The free travel time between 𝑗  =  𝐴,  𝐵 and 𝐷 with mode 𝑚, 𝑡�̅�𝑗𝐷
𝑚 , is the 

ratio of the distance to the average speed. The cost of travel time, denoted 𝑡𝑖𝑚𝑒, varies across 

modes and groups because individuals have different values of time,𝛼𝑖:  

𝑡𝑖𝑚𝑒𝑖,𝑗
𝑚 = 𝛼𝑖 × 𝑡�̅�𝑗𝐷

𝑚 .                                                                                                                  (4) 

Road congestion - The road congestion also includes road unreliability. The extra travel time 

𝑡�̿�𝑘 cost due to congestion depends on the number of vehicles which use the road at the same 

period, and on the capacity of the road, 𝑠𝐴𝐵
𝑟𝑜𝑎𝑑 between 𝐴 and 𝐵, and 𝑠𝐵𝐷

𝑟𝑜𝑎𝑑 between 𝐵 and the 

destination. We use a linear function of the volume/capacity ratio. 

𝑡�̿�𝐴𝐵
𝑘 = 𝜃𝑟𝑜𝑎𝑑 ×

∑ 𝑉𝑖,𝐴
𝐶𝐴𝑅,𝑘𝐼

𝑖=1

𝑠𝐴𝐵
𝑟𝑜𝑎𝑑ℎ𝑘

  

𝑡�̿�𝐵𝐷
𝑘 = 𝜃𝑟𝑜𝑎𝑑 ×

∑ 𝑉𝑖,𝐴
𝐶𝐴𝑅,𝑘𝐼

𝑖=1 + ∑ 𝑉𝑖,𝐵
𝐶𝐴𝑅,𝑘𝐼

𝑖=1

𝑠𝐵𝐷
𝑟𝑜𝑎𝑑ℎ𝑘

 

𝑡�̿�𝐴𝐷
𝑘 = 𝑡�̿�𝐴𝐵

𝑘 + 𝑡�̿�𝐵𝐷
𝑘  

𝜃𝑟𝑜𝑎𝑑 is the congestion parameter. The cost of congestion for a journey from city 𝑗, 𝑐𝑜𝑛𝑔𝑗, is 

𝑐𝑜𝑛𝑔𝑗 = 𝜃𝑖 × 𝑡�̿�𝑗𝐷
𝑘 .                                                                                                                                   (5) 
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Rail unreliability cost - The train free travel time equals the ratio of the distance over the average 

speed. However, late arrivals happen when there are too many train on the line at the same time. 

Consequently, there is a potential lateness time which increases with the number of trains on 

rail during the same period, and decreases with the rail capacity, 𝑠𝑅𝐴𝐼𝐿. The rail capacity is 

given and cannot be improved. Its cost is included in 𝜇0
𝑅𝐴𝐼𝐿 in Equation (2). The average lateness 

is given by 

𝑙𝑎𝑡𝑒𝑛𝑒𝑠𝑠𝑅𝐴𝐼𝐿,𝑘 = 𝜃𝑅𝐴𝐼𝐿 ×
(𝑡�̅�𝐴𝐵

𝑅𝐴𝐼𝐿 + 𝑡�̅�𝐵𝐷
𝑅𝐴𝐼𝐿)𝑉𝑅𝐴𝐼𝐿,𝑘

𝑠𝑅𝐴𝐼𝐿ℎ𝑘
 

where 𝜃𝑅𝐴𝐼𝐿 is the extra lateness time due to the presence of an extra train per hour on a given 

rail infrastructure. The cost of this lateness is the unreliability cost, 𝑢𝑛𝑟𝑒𝑙 

𝑢𝑛𝑟𝑒𝑙𝑖
𝑅𝐴𝐼𝐿,𝑘 = 𝛼𝑖 × 𝑙𝑎𝑡𝑒𝑛𝑒𝑠𝑠

𝑅𝐴𝐼𝐿,𝑘.                                                                                        (6) 

The increase in lateness costs can also be seen as a scarcity indicator for the rail network. When 

the ratio of the number of trains becomes too high compared to the track capacity, there is a 

need to rethink the priority or scheduling of the trains as well as the capacity of the tracks. 

Nilsson (2002) provides a methodology for this.  

Schedule delay cost - The train service is characterized by discrete departure and arrival time 

at destination. Users have to choose within a finite set of possible arrival times. If the effective 

arrival time does not coincide with the preferred arrival time, the traveler incurs schedule delay 

cost. This schedule delay cost is a linear function of the inverse of the frequency:  

𝑠𝑐ℎ𝑒𝑑𝑖
𝑅𝐴𝐼𝐿,𝑘 = 𝛼𝑖 × 𝛿 ×

ℎ𝑘

𝑉𝑅𝐴𝐼𝐿,𝑘
.                                                                                                            (7) 

In the 𝛼 − 𝛽 − 𝛾 schedule framework (Arnott, et al., 1993), assuming that preferred arrival 

times are uniformly distributed for each group, 𝛼𝑖 × 𝛿 =
𝛽𝑖𝛾𝑖

2(𝛽𝑖+𝛾𝑖)
. 𝛽𝑖 and 𝛾𝑖 can be written as 

linear function of the value of time, 𝛼𝑖.  
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Rail discomfort - The comfort in train is a linearly6 decreasing function of the occupancy rate: 

less seats are available, some travelers may have to stand during the trip (Tirachini, et al., 2013). 

𝑑𝑖𝑠𝑐𝑜𝑚𝑖,𝐴
𝑅𝐴𝐼𝐿,𝑘 = 𝛼𝑖 × 𝜂

𝑅𝐴𝐼𝐿 × (𝑜𝐴𝐵
𝑅𝐴𝐼𝐿,𝑘 × 𝑡�̅�𝐴𝐵

𝑅𝐴𝐼𝐿 + 𝑜𝐵𝐷
𝑅𝐴𝐼𝐿,𝑘 × 𝑡�̅�𝐵𝐷

𝑅𝐴𝐼𝐿) 

𝑑𝑖𝑠𝑐𝑜𝑚𝑖,𝐵
𝑅𝐴𝐼𝐿,𝑘 = 𝛼𝑖 × 𝜂

𝑅𝐴𝐼𝐿 × 𝑜𝐵𝐷
𝑅𝐴𝐼𝐿,𝑘 × 𝑡�̅�𝐵𝐷

𝑅𝐴𝐼𝐿 .                                                                               (8) 

𝜂𝑅𝐴𝐼𝐿 is the crowding cost parameter.  

Final non-monetary user cost – Equations (4), (5), (6), (7) and (8) give 𝑁𝑀𝑈𝐶𝑖,𝑗
𝑚,𝑘

, the non-

monetary cost per user of group 𝑖 living in city 𝑗 and using mode 𝑚 during period 𝑘 

 𝑁𝑀𝑈𝐶𝑖,𝑗
𝐶𝐴𝑅,𝑘 = 𝑡𝑖𝑚𝑒𝑖,𝑗

𝐶𝐴𝑅,𝑘 + 𝑐𝑜𝑛𝑔𝑖,𝑗
𝐶𝐴𝑅,𝑘 

𝑁𝑀𝑈𝐶𝑖,𝑗
𝑅𝐴𝐼𝐿,𝑘 = 𝑡𝑖𝑚𝑒𝑖,𝑗

𝑅𝐴𝐼𝐿,𝑘 + 𝑢𝑛𝑟𝑒𝑙𝑖,𝑗
𝑅𝐴𝐼𝐿,𝑘 + 𝑑𝑖𝑠𝑐𝑜𝑚𝑖,𝑗

𝑅𝐴𝐼𝐿,𝑘 + 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖,𝑗
𝑅𝐴𝐼𝐿,𝑘. 

The aggregate non-monetary users costs are written 

𝐶𝑂𝑁𝐺𝐶𝐴𝑅,𝑘 ≡∑∑𝑁𝑛,𝑟 × 𝑥𝑛,𝑟
𝐶𝐴𝑅,𝑘

𝑟𝑛

× 𝑐𝑜𝑛𝑔𝑛,𝑟
𝐶𝐴𝑅,𝑘 

𝐷𝐼𝑆𝐶𝑂𝑀𝑅𝐴𝐼𝐿,𝑘 ≡∑∑𝑁𝑛,𝑟 × 𝑥𝑛,𝑟
𝑅𝐴𝐼𝐿,𝑘

𝑟𝑛

× 𝑑𝑖𝑠𝑐𝑜𝑚𝑛,𝑟
𝑅𝐴𝐼𝐿,𝑘 

𝑈𝑁𝑅𝐸𝐿𝑅𝐴𝐼𝐿,𝑘 ≡∑∑𝑁𝑛,𝑟 × 𝑥𝑛,𝑟
𝑅𝐴𝐼𝐿,𝑘

𝑟𝑛

× 𝑢𝑛𝑟𝑒𝑙𝑛,𝑟
𝑅𝐴𝐼𝐿,𝑘 

𝑆𝐶𝐻𝐸𝐷𝑅𝐴𝐼𝐿,𝑘 ≡∑∑𝑁𝑛,𝑟 × 𝑥𝑛,𝑟
𝑅𝐴𝐼𝐿,𝑘

𝑟𝑛

× 𝑠𝑐ℎ𝑒𝑓𝑛,𝑟
𝑅𝐴𝐼𝐿,𝑘. 

3.1.4. Other externalities  

                                                 
6 Linearity is empirically supported by Jara-Díaz and Gschwender (2003), Haywood and Koning (2015) and 

Haywood et al. (2017). 
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Each mode also produces negative externalities other than congestion and discomfort, mainly 

due to pollution and accidents. These externalities are modeled as a linear function of the 

vehicles-kilometers: 

𝐸𝑋𝑇𝑅𝐴𝐼𝐿,𝑘 = 𝜄𝑅𝐴𝐼𝐿 × 𝑉𝑅𝐴𝐼𝐿,𝑘 × 𝑑𝐴𝐷
𝑟𝑎𝑖𝑙  

𝐸𝑋𝑇𝐶𝐴𝑅,𝑘 = 𝜄𝐶𝐴𝑅 × (𝑉𝐴
𝐶𝐴𝑅,𝑘 × 𝑑𝐴𝐷

𝑟𝑜𝑎𝑑 + 𝑉𝐵
𝐶𝐴𝑅,𝑘 × 𝑑𝐵𝐷

𝑟𝑜𝑎𝑑)                                                       (9) 

where 𝜄𝑚 is the combined pollution and accident external cost per vehicle kilometer of mode 

𝑚.  

3.2. First-best optimum  

The first-best optimum is obtained by maximizing the aggregate social welfare under constraint 

of user optimum. The aggregate social welfare, Ω, is defined as the sum of the total individual 

surplus, the rail company profit, the revenue of fuel tax and road tolls, minus the total individual 

non-monetary cost, the road capacity cost, and the pollution and accidents costs 

𝛺 =∑∑𝑁𝑖,𝑗 ×

[
 
 
 
 

𝑈𝑖,𝑗⏟
𝑈𝑠𝑒𝑟𝑠 𝑠𝑢𝑟𝑝𝑙𝑢𝑠

− ∑∑𝑥𝑖,𝑗
𝑚,𝑘𝑁𝑀𝑈𝐶𝑖,𝑗

𝑚,𝑘

𝑘𝑚⏟              
𝑈𝑠𝑒𝑟𝑠 𝑛𝑜𝑛−𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑐𝑜𝑠𝑡𝑠]

 
 
 
 

𝑗𝑖

 

+ 𝛱𝑅𝐴𝐼𝐿⏟  
𝑅𝑎𝑖𝑙 𝑐𝑜𝑚𝑝𝑎𝑛𝑦 𝑝𝑟𝑜𝑓𝑖𝑡

− ∑∑𝐸𝑋𝑇𝑚,𝑘

𝑘𝑚⏟          
𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑖𝑡𝑖𝑒𝑠

 

+𝜅𝑓𝑢𝑒𝑙 × [(𝑉𝑅𝐴𝐼𝐿,𝑃 + 𝑉𝑅𝐴𝐼𝐿,𝑂𝑃) × 𝜐𝑅𝐴𝐼𝐿 × 𝑑𝐴𝐵
𝑅𝐴𝐼𝐿 +∑∑𝑉𝑗

𝐶𝐴𝑅,𝑘 × 𝜐𝐶𝐴𝑅 × 𝑑𝑗𝐷
𝑟𝑜𝑎𝑑

𝑗𝑘

]

⏟                                                  
𝑅𝑒𝑣𝑒𝑛𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑢𝑒𝑙 𝑡𝑎𝑥

 

+∑ ∑ 𝑉𝑗
𝐶𝐴𝑅,𝑘 × 𝜏𝑗

𝐶𝐴𝑅,𝑘
𝑗𝑘⏟              

𝑅𝑒𝑣𝑒𝑛𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑜𝑎𝑑 𝑡𝑜𝑙𝑙𝑠

.                                                                                                        (10) 

We consider two sets of constraints. The first set of constraints ensures that each individual 

does not consume more than his revenue allows. The revenue of the representative individual 
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of group 𝑖 living in city 𝑗 has to be higher or equal to his expenditures. The corresponding 

inequality is given in Equation (3).  

The second set of constraints ensures that the individual behavior is rational. The rationality 

implies that individuals maximize their utility, and that the marginal utility of consumption of 

a good, which is also the willingness to pay for this good, equals the cost of consumption of 

this good, defined as the sum of the non-monetary user cost and the monetary user cost: 

𝜕𝑈𝑖,𝑗

𝜕𝑥𝑖,𝑗
𝑚,𝑘 = 𝑁𝑀𝑈𝐶𝑖,𝑗

𝑚,𝑘 +𝑀𝑈𝐶𝑖,𝑗
𝑚,𝑘 

𝜕𝑈𝑖,𝑗

𝜕𝑞𝑖,𝑗
= 1.                                                                                                                                 (11) 

We assume that the willingness to pay is higher for a peak journey than for an off-peak journey. 

This assumption is consistent with the observation that travelers are willing to support higher 

non-monetary costs during peak periods. The main consequence is that more users travel during 

peak periods.  

We maximize the aggregate social welfare (Equation (10)) subject to the revenue constraints 

(Equation (3)) and the constraints of user equilibrium in each mode and each period (Equation 

(11)). This social welfare problem can be solved by maximizing the following Lagrangian 

function 

ℒ = 𝛺 + ∑ ∑ 𝜆𝑖,𝑗(𝑅𝑖,𝑗 − 𝑞𝑖,𝑗 − ∑ ∑ 𝑥𝑖,𝑗
𝑚,𝑘𝑀𝑈𝐶𝑖,𝑗

𝑚,𝑘
𝑘𝑚 )𝑗𝑖⏟                            

𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑖𝑎𝑛 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

                                                                (12) 

where 𝜆𝑖,𝑗 is the Lagrangian multiplier associated with the revenue constraint of representative 

individual of group 𝑖 living in city 𝑗. We assume that there are no other distortions in the 

economy than those considered in our model. Differentiating ℒ with respect to 𝜆𝑖,𝑗 gives 
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𝜕ℒ

𝜕𝜆𝑖,𝑗
= 0 ⇔ 𝑅𝑖,𝑗 = 𝑞𝑖,𝑗 +∑∑𝑥𝑖,𝑗

𝑚,𝑘𝑀𝑈𝐶𝑖,𝑗
𝑚,𝑘

𝑘𝑚

, ∀𝑖, 𝑗. 

The equation above means that the revenue is fully spent.  

The road tolls and rail fares, the road capacity, the train size and frequencies are chosen to 

maximize the aggregate social welfare. Detailed calculations are available in appendices. The 

following notation is used: �̇�𝑊
𝑚,𝑟 =

𝜕𝑍𝑚,𝑟

𝜕𝑊
 is the derivative of 𝑍𝑚,𝑟 with respect to 𝑊.  

3.2.1. Optimal rail supply and fare  

Differentiating ℒ in Equation (12) with respect to the number of train trips taken by the 

representative user, 𝑥𝑖,𝑗
𝑅𝐴𝐼𝐿,𝑘

, setting to zero and rearranging give the optimal rail fare 

𝑝𝑗
𝑅𝐴𝐼𝐿,𝑘 =

𝜕𝑜𝑗
𝑅𝐴𝐼𝐿,𝑘

𝜕𝑋𝑗
𝑅𝐴𝐼𝐿,𝑘 × 𝐷𝐼𝑆𝐶𝑂𝑀̇ 𝑜𝑗

𝑅𝐴𝐼𝐿,𝑘
𝑅𝐴𝐼𝐿,𝑘 , ∀𝑘, 𝑗.         (13) 

This equation shows that the optimal fare charged on train users equals the marginal social cost 

of discomfort imposed on train users. To understand the optimal fare one needs to start from 

the idea that the frequency and size of the train is given. The cost of an extra passenger is then 

the discomfort for the other train users which is mainly crowding. There is a close parallel with 

the pricing of road congestion: an extra car will, for given road capacity, delay all other cars. 

There is one important difference: capacity of trains can be adapted easily by increasing the 

size and the frequency of trains. As the optimal frequency balances the reduction in crowding 

costs with the cost of frequency, the optimal rail fare equals to some extent also the marginal 

cost of bringing in an extra train.  

Equation (13) implies 𝑝𝐴
𝑅𝐴𝐼𝐿,𝑘 > 𝑝𝐵

𝑅𝐴𝐼𝐿,𝑘
: train users traveling from more distant city 𝐴 pay a 

higher fare than those traveling from city 𝐵. An additional user from 𝐴 and from 𝐵 equally raise 

the aggregate cost of discomfort imposed on train users between 𝐵 and 𝐷. But the additional 
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user from 𝐴 also increases the aggregate cost of discomfort imposed on train users between 𝐴 

and 𝐵.  

It seems reasonable to assume that both the number of users and the occupancy rate are higher 

during the peak period than during the off-peak period. If these two assumptions hold, the 

marginal social cost of discomfort and also the train fare are higher during peak period than 

during off-peak: 𝑝𝑗
𝑅𝐴𝐼𝐿,𝑃 > 𝑝𝑗

𝑅𝐴𝐼𝐿,𝑂
.  

Differentiating ℒ with respect to the number of train runs made during period 𝑘, 𝑉𝑅𝐴𝐼𝐿,𝑘, and 

setting the derivative equal to zero gives  

𝑇�̇�
𝑉𝑅𝐴𝐼𝐿,𝑘
𝑅𝐴𝐼𝐿 = −𝑈𝑁𝑅𝐸𝐿̇

𝑉𝑅𝐴𝐼𝐿,𝑘
𝑅𝐴𝐼𝐿,𝑘 −∑

𝜕𝑜𝑗
𝑅𝐴𝐼𝐿,𝑘

𝜕𝑉𝑗
𝑅𝐴𝐼𝐿,𝑘 𝐷𝐼𝑆𝐶𝑂𝑀

̇
𝑉𝑅𝐴𝐼𝐿,𝑘
𝑅𝐴𝐼𝐿

𝑗

 

−𝑆𝐶𝐻𝐸𝐷̇
𝑉𝑅𝐴𝐼𝐿,𝑘
𝑅𝐴𝐼𝐿,𝑘 − 𝐸𝑋𝑇̇

𝑉𝑅𝐴𝐼𝐿,𝑘
𝑅𝐴𝐼𝐿,𝑘 + 𝐹𝑈𝐸𝐿̇

𝑉𝑅𝐴𝐼𝐿,𝑘
𝑅𝐴𝐼𝐿,𝑘 , ∀𝑘.        (14) 

From Equation (14), we see that, other things being equal, an increase in the number of train 

runs operated introduces six effects:  

(i) an increase in the production cost of the rail operator, 𝑇�̇�
𝑉𝑅𝐴𝐼𝐿,𝑘
𝑅𝐴𝐼𝐿 . Operating more runs costs 

more because of the variable costs such as the drivers wage. Moreover, increasing the number 

of runs during the peak period implies also an increase in the rolling stock.  

(ii) an increase in the unreliability cost supported by users, 𝑈𝑁𝑅𝐸𝐿̇
𝑉𝑅𝐴𝐼𝐿,𝑘
𝑅𝐴𝐼𝐿,𝑘

. When more trains 

run on the rail network, the average unreliability increases because the probability that a train 

encounters a problem and then delays all the other trains is higher.  

(iii) a decrease in the discomfort cost supported by users, ∑
𝜕𝑜𝑗

𝑅𝐴𝐼𝐿,𝑘

𝜕𝑉𝑗
𝑅𝐴𝐼𝐿,𝑘𝐷𝐼𝑆𝐶𝑂𝑀̇ 𝑉𝑅𝐴𝐼𝐿,𝑘

𝑅𝐴𝐼𝐿
𝑗 . 

Mechanically, an increase in the number of train runs raises the supplied capacity, decreases 

the occupancy rate 𝑜𝑗
𝑅𝐴𝐼𝐿,𝑘

, and eventually reduces the discomfort experienced by passengers.  
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(iv) a decrease in the schedule delay cost supported by users, 𝑆𝐶𝐻𝐸𝐷̇
𝑉𝑅𝐴𝐼𝐿,𝑘
𝑅𝐴𝐼𝐿,𝑘

. The set of possible 

arrival times during period 𝑘 raises with the frequency of service, which itself increases with 

the number of runs operated. Consequently, users incur, in average, lower schedule delays costs 

(see Equation (7)).  

(v) an increase in the environmental and accidents externalities supported by all individuals, 

𝐸𝑋𝑇̇
𝑉𝑅𝐴𝐼𝐿,𝑘
𝑅𝐴𝐼𝐿,𝑘

. The cost of rail negative externalities increases with the number of runs operated 

(see Equation (9)). 

(vi) an increase in the fuel tax revenue collected by the government from rail, 𝐹𝑈𝐸𝐿̇
𝑉𝑅𝐴𝐼𝐿,𝑘
𝑅𝐴𝐼𝐿,𝑘

. The 

operation of more runs implies an increase in the fuel consumption.  

In optimum, the number of train runs operated is set such that the marginal social benefit (the 

sum of effects (iii), (iv) and (vi)) equals the marginal social cost (the sum of effects (i), (ii) and 

(v)).  

Rearranging Equation (14) with respect to the number of runs operated gives the optimal 

number of train runs operated during period 𝑘 

𝑉𝑅𝐴𝐼𝐿,𝑘 =

√
  
  
  
  
  
  
  
  
  ∑ ∑ 𝑁𝑖,𝑗∙𝑥𝑖,𝑗

𝑅𝐴𝐼𝐿,𝑘∙𝛼𝑖∙𝛿∙ℎ
𝑘

𝑗𝑖

+∑ 𝑁𝑖,𝐴∙𝑥𝑖,𝐴
𝑅𝐴𝐼𝐿,𝑘∙

𝛼𝑖∙𝜂
𝑅𝐴𝐼𝐿

𝑆𝑅𝐴𝐼𝐿
∙𝑋𝐴
𝑅𝐴𝐼𝐿,𝑘∙𝑡�̅�𝐴𝐵

𝑅𝐴𝐼𝐿
𝑖

+∑ [
(𝑁𝑖,𝐴∙𝑥𝑖,𝐴

𝑅𝐴𝐼𝐿,𝑘+𝑁𝑖,𝐵∙𝑥𝑖,𝐵
𝑅𝐴𝐼𝐿,𝑘)∙

𝛼𝑖∙𝜂
𝑅𝐴𝐼𝐿

𝑆𝑅𝐴𝐼𝐿
∙

(𝑋𝐴
𝑅𝐴𝐼𝐿,𝑘+𝑋𝐵

𝑅𝐴𝐼𝐿,𝑘)∙𝑡�̅�𝐵𝐷
𝑅𝐴𝐼𝐿

]𝑖

∑ ∑ 𝑁𝑖,𝑗∙𝑥𝑖,𝑗
𝑅𝐴𝐼𝐿,𝑘∙𝛼𝑖∙𝜃

𝑅𝐴𝐼𝐿∙
𝑡�̅�𝐴𝐵
𝑅𝐴𝐼𝐿+𝑡�̅�𝐵𝐷

𝑅𝐴𝐼𝐿

ℎ𝑘
𝑗𝑖

+∥𝑘=𝑃𝑡�̅�𝐵𝐷
𝑅𝐴𝐼𝐿2∙𝑡�̅�𝐴𝐷

𝑅𝐴𝐼𝐿∙𝑉𝑅𝐴𝐼𝐿,𝑃 ℎ𝑃⁄ ∙𝜇1
𝑅𝐴𝐼𝐿

+𝜇2
𝑅𝐴𝐼𝐿+[𝜐𝑅𝐴𝐼𝐿∙(𝑝𝑓𝑢𝑒𝑙−𝜅𝑓𝑢𝑒𝑙)−𝜄𝑅𝐴𝐼𝐿]∙𝑑𝐴𝐷

𝑅𝐴𝐼𝐿

,  ∀𝑘.        (15) 

where ∥𝑘=𝑝= 1 if 𝑘  =  𝑃 and 0 if 𝑘  =  0.  

The first line of the RHS of Equation (15) corresponds to the “pure” Mohring effect (Mohring, 

1972) for rail transit: other things and costs being equal, the number of operated vehicles 

increases with square root of the demand due to economies of scale in schedule delay costs.  



19 

However, the overall effect of the demand on the number of runs operated is uncertain. On the 

one hand, an increase in the train patronage makes an increase in runs operated socially more 

profitable due to positive schedule delay (line 1 of RHS in (15)) and discomfort (lines 2 and 3) 

effects. These two effects push into increasing the number of train runs. On the other hand, the 

unreliability cost per user increases with the number of trains. This pushes into decreasing the 

number of runs (fourth term in (15)).  

Adding more trains is costly in terms of equipment and operation costs. The cost of the rolling 

stock only affects the number of runs during the peak period (i.e. when∥𝑘=𝑝= 1). Not 

surprisingly, when this cost increases, the number of runs during peak period should decrease.  

The sixth (and last) line in RHS of Equation (15) gathers the negative effects of the operating 

cost and of the externalities and the positive effect of the rail fuel tax revenue on the number of 

runs operated.  

3.2.2. Optimal road tolls  

Differentiating ℒ in Equation (12) with respect to the number of private cars (or travelers in 

private cars) on road, 𝑥𝑖,𝑗
𝐶𝐴𝑅,𝑘

, setting equal to zero and rearranging give the optimal road toll for 

private cars. 

𝜏𝑗
𝐶𝐴𝑅,𝑘 = 𝐶𝑂𝑁𝐺̇

𝑉𝑗
𝐶𝐴𝑅,𝑘
𝐶𝐴𝑅,𝑘 + 𝐸𝑋𝑇̇

𝑉𝑗
𝐶𝐴𝑅,𝑘
𝐶𝐴𝑅,𝑘 − 𝐹𝑈𝐸𝐿̇

𝑉𝑗
𝐶𝐴𝑅,𝑘

𝐶𝐴𝑅,𝑘 , ∀𝑘, 𝑗,       (16) 

where 𝐶𝑂𝑁𝐺̇
𝑉𝑗
𝐶𝐴𝑅,𝑘
𝐶𝐴𝑅,𝑘

 is the total marginal cost of congestion of car drivers with respect to 𝑉𝑗
𝐶𝐴𝑅,𝑘

, 

𝐸𝑋𝑇̇
𝑉𝑗
𝐶𝐴𝑅,𝑘
𝐶𝐴𝑅,𝑘

 is the marginal variation of externalities due to a variation of 𝑉𝑗
𝐶𝐴𝑅,𝑘

, and 𝐹𝑈𝐸𝐿̇
𝑉𝑗
𝐶𝐴𝑅,𝑘

𝐶𝐴𝑅,𝑘
 

is the variation of fuel tax revenue due to an increase of 𝑉𝑗
𝐶𝐴𝑅,𝑘

.  

Other things being equal, Equation (16) shows that increasing the number of individual cars, 

𝑉𝑗
𝐶𝐴𝑅,𝑘

 has four main effects on social welfare:  
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(i) if 𝜏𝑗
𝐶𝐴𝑅,𝑘 > 0, more road toll revenues are collected.  

(ii) an increase in the travel time for car which use road segment 𝑗𝐷 during period 𝑘, 

𝐶𝑂𝑁𝐺̇
𝑉𝑗
𝐶𝐴𝑅,𝑘
𝐶𝐴𝑅,𝑘

. More vehicles use the same road whose capacity is fixed, creating longer traffic 

jams and increasing travel times.  

(iii) an increase in the other negative externalities produced by cars, 𝐸𝑋𝑇̇
𝑉𝑗
𝐶𝐴𝑅,𝑘
𝐶𝐴𝑅,𝑘

.  

(iv) an increase in the fuel tax revenue collected by the government, F𝐹𝑈𝐸𝐿̇
𝑉𝑗
𝐶𝐴𝑅,𝑘

𝐶𝐴𝑅,𝑘
.  

The optimal road toll for cars described in Equation (16) ensures that the average private cost 

of car road use equals the marginal social cost of this use. The toll (effect (i)) compensates the 

negative externality produced by car drivers (effects (ii) and (iii)) minus the increase in fuel tax 

revenue (effect (vi)). From the government perspective, the LHS of (20) plus the increase in 

fuel tax revenue is the marginal benefit with respect to the number of trips, whereas the RHS 

of (16) minus the increase in fuel tax revenue is the marginal social cost of such an increase.  

3.3. Second best optimum: only rail is optimally supplied and priced  

In many countries, use of road or motorways is not taxed, or motorways are owned by private 

companies that have other toll setting principles. In these cases, road tolls are constrained and 

𝜏𝑗
𝐶𝐴𝑅,𝑘

 cannot be changed. These instruments are not available anymore and the external 

congestion costs of road use are not internalized.  

The optimal second best fare for rail is then equal to: expression (13) + sum of price distortions 

over all other modes and all periods times 𝜒𝑘,𝑟𝑎𝑖𝑙
𝑚,𝑙

 where 𝜒𝑘,𝑟𝑎𝑖𝑙
𝑚,𝑙

 is the diversion ratio to another 

mode or period when the price of rails increases. It equals the increase in the number of trips of 

mode 𝑚 in period 𝑙 when there is one passenger less for rail in period 𝑘 (see Small & Verhoef 

(2007)). The most important distortion is the unpriced road congestion (LHS < RHS of (20)). 
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3.4. Second best optimum with additional rail deficit constraint  

When there is a constraint on the maximum deficit, the budget constraint will increase prices 

beyond marginal costs. The additional margins will be proportional to the inverse of the price 

elasticity and the cross price elasticities. 

4. Data 

The model is calibrated on two corridors: Bruges - Ghent - Brussels in Belgium and Grenoble 

- Bourgoin-Jailleu7 - Lyon. Four categories of users are distinguished: active people with 

relatively high revenue (“active +” in what follows), active people with low revenue (“active -

” in what follows), students and retired. Data have been collected for year 2017, and if 2017 

data were not available, we too the most recent sources.8 

Table 1 reports some of the technological and rail cost data that are identical for the two 

corridors. These data were taken from different railway sources, which are detailed in 

Appendix, as well as the entire dataset. The environmental and accident externalities are much 

larger for a train-km than for a car-km. Peak values of time are 1.4 times higher than off-peak 

values of time. 

[Table 1 here] 

Table 2 presents the main characteristics specific to each corridors. Again, entire dataset and 

complete sources are detailed in Appendix. There are several differences between the two 

corridors. First, there is a larger number of trips in the Brussels corridor than in the Lyon 

corridor, mainly due to the size of cities and to their attraction. Second, whereas the use of 

highways is free in Belgium, there are road tolls in France. Finally, we observe price 

differentiation in France but not in Belgium. 

                                                 
7 The city of Bourgoin-Jailleu is referred as “Bourgoin” in what follows. 
8 A detailed description of data is available in the appendices. 
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[Table 2 here] 

Price elasticities and diversion factors 𝜒 to other modes are presented to the Appendices. 

5. Results for one country 

5.1. First and second best prices for corridor to Brussels 

Table 3 reports the baseline (current prices and frequencies) as well as the second best and the 

first best scenario. For each scenario, the peak and off-peak results are reported for two types 

of trips: the trip from Bruges to Gent (52km) and the follow up trip from Ghent to Brussels 

(40km). As the same train equipment is used for both trips, the frequency and train composition 

is the same for both trips. We also assume all passengers have Brussels as their final destination. 

It is easier to start the analysis with the first best scenario. In this scenario, rail fares and 

frequencies as well as road charges are optimized. Consider now the morning peak from Bruges 

to Brussels. The rail fare from Bruges to Brussels (the full trip) equals 3.7 Euro in the peak. 

This is more one half higher than the current fare (2.5).9 The optimal fare equals 1 Euro 

crowding costs from Bruges to Ghent plus 2.8 Euro crowding costs from Ghent to Brussels. As 

the same train equipment is used for both parts of the trip, the crowding costs for the first part 

of the trip are naturally lower. The optimal peak fare from Ghent to Brussels is 2.5 Euro and 

more or less equal to the crowding cost. While current prices are very close in peak and off-

peak (2.5 and 2.1 Euro from Bruges to Brussels), the first best optimal fares are lower for the 

peak than for the off-peak because there is less crowding. Of course the crowding depends on 

the frequency. The optimal frequency in the peak (6.6 runs/hour) is clearly higher than the 

current frequency (4 runs/hour). The optimal off-peak frequency (2 runs/hour) is equal to the 

current frequency. The optimal frequency balances crowding and schedule delay (rigidity) 

advantages with lateness costs and rolling stock and operation costs. We see in Table 3 that 

                                                 
9 The current fare is an average fare; the fare structure is complex. 
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rolling stock costs only count for the frequency in the peak period. The peak frequency 

constraints the rolling stock quantity because it is much higher than the off-peak frequency. 

In the peak period (4h/day) there are 7921 pass/h while in the off-peak period (15h/day) there 

are 1899 pass/h. Comparing this with the frequencies peak and off-peak, we see that number of 

passengers per hour is six times higher in the peak than in the off-peak, but frequencies are only 

3 times higher in the peak than in the off-peak. The reason is the scheduling delay cost. While 

frequencies are mainly motivated by avoiding too much crowding (84 per cent of the 

contribution of the peak rail frequency to the total marginal utility is due to crowding, and 66 

per cent for the off-peak frequency contribution), off-peak frequencies are also significantly 

driven by schedule delay (34 per cent of the off-peak frequency contribution). 

In the first best scenario, road tolls are introduced mainly for the Ghent to Brussels section (5.7 

Euro/car trip). These are necessary to internalize the external congestion costs, which diminish 

by 3.4 per cent. The first best pricing scenario results in an increase of rail ridership in the peak 

of some 5 per cent (3.5 per cent from Bruges and 5.3 per cent from Ghent) and a decrease of 

car use by 5 to 8 per cent. The lower rail and higher car prices result in a very small overall 

decrease in the number of trips. 

For the train operator, higher prices and higher peak frequencies result in higher total revenues 

(+18 per cent) and higher operating costs (+23 per cent) as well as higher rolling stock costs as 

more peak equipment is needed (+65 per cent). The result is a much smaller gross margin to 

cover fixed costs (-61 per cent). 

For the government, the lower gross margin on rail operations and the loss of fuel taxes is more 

than compensated by the additional toll revenues. 
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The total welfare gain is small per passenger trip (0.22 Euro) but important when one considers 

the large numbers of trips. All four categories of agents loose with the reform, mainly because 

transport becomes more expensive. 

In the second best scenario, road tolls cannot be introduced so that the rail prices have now an 

important role in decreasing road congestion by attracting car users to rail. Optimal prices are 

now much lower: 1.6 Euro resp 0.7 Euro for Bruges and Ghent to Brussels in peak. The main 

drivers of the rail prices are now also different. Take Ghent to Brussels: the crowding costs 

would justify a rail fare of 2.8 Euro/trip but the reduction of car congestion associated to this 

low fare is 2.1 Euro, resulting in a net fare of 0.7 Euro/ trip. The optimal frequencies in the 

second best scenario are the same as in the first best scenario. The reason is that frequencies are 

determined by comparing benefits of existing rail users with rail costs. As the volume of rail 

use is close to the first best volume, the optimal frequencies are also close.  

The low rail fares have two effects on the number of trips. It increases the number of rail trips 

and decreases the number of car trips. The decrease in the number of peak car trips (-1.1 per 

cent for Ghent-Brussels) is more limited than in the case of a toll (-7.6 per cent). The increase 

in the number of rail peak trips (1146 for Ghent to Brussels) is larger than the decrease of car 

trips (-411) so that a lower rail fare attracts more passengers of which in the peak around 36 per 

cent were car trips in the past. The lower fares generate, in total more trips (+1 per cent). 

As prices are even lower in the second best scenario than in the first best scenario, the rail 

revenues decrease. As costs are more or less identical to the first best scenario, the gross margin 

of the rail company decreases further. Overall the second best scenario does a good job in terms 

of efficiency: even when car tolls cannot be introduced, one achieves 72 per cent of the welfare 

gains that can be achieved in the first best. One is tempted to conclude that controlling rail 

prices is an almost perfect substitute for road pricing. According to our model, the answer is 

yes with three important qualifiers. First it only holds for cars in a corridor where there is a 
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good rail connection, second lower rail fares attract new passengers that are for 50 per cent 

former car users, and third, in as far as a much higher subsidy for rail can be financed without 

additional inefficiencies. Our results are not very different from those of Basso and Silva (2014) 

where within a metropolitan area, heavily subsidized busses on bus lanes do more or less as 

good as road pricing. Parry and Small (2009) also find second best fares for metropolitan areas 

that are very low but they do not compute the First Best scenario. 

[Table 3 here] 

5.2. What are main determinants of the marginal cost? 

Rail companies serve areas with very different characteristics and their prices are often under 

public scrutiny as there are large public subsidies. Table 4 analyses the effects on second best 

rail prices of individual factors like a doubling of the population, halving the road capacity, 

halving the VOT and imposing a road toll of 2 Euro. In all these scenarios, the peak and off-

peak frequencies are kept fixed. In the two last scenarios, we double the frequency and halve 

the frequency. 

[Table 4 here] 

Doubling the population leads to a 300 per cent increase of the peak prices because with given 

frequencies, crowding externalities increase. This increase of the crowding externalities 

dominates the increased road congestion. Whenever road congestion becomes much worse 

(halving the road capacity), it becomes important to decrease rail prices in the peak and off-

peak. Whenever VOT is much higher rail fares should go up as the crowding externalities 

increase. These findings are important for a national rail company. If road congestion is 

structurally more important in one part of the country, or population growth makes the rail and 

road transport system in one region more prone to crowding and congestion, rail prices should 
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be systematically higher. Low income regions should be given lower rail prices and lower 

frequencies, not because they are poor but because their crowding costs are smaller. 

Road tolls, even limited to 2 Euro/ trip allow to move rail prices closer to marginal social costs 

of rail use. 

In the two final scenarios, we double and halve the frequencies and see how they affect the 

second best fares. Doubling the frequencies makes crowding almost disappear and peak and 

off-peak fares become very low. Halving the frequencies more than doubles the second best rail 

fare.  

5.3. Role of rail budget constraint 

First best pricing of rail and second best pricing in the presence of unpriced road congestion 

generates lower prices and higher frequencies in the peak. This implies a larger deficit or at 

least a smaller operating margin. For instance second best pricing with unpriced road congestion 

generated a margin that decreases from 14 893 Euro to -65 306 Euro (Table 5). 

When the margin (or deficit) has to be at least as high in the reference case, it is interesting to 

re-analyze the second best prices with unpriced road congestion. In order to address this 

question, we calibrate the model with price differentiation in the baseline scenario as well. 

Active people often enjoy discounted rail fares because of employer transportation benefits 

schemes.  

The result is on average much higher prices in the peak for Bruges to Brussels (3.8 instead of 

2.5 in baseline) and somewhat higher prices for Ghent to Brussels (2.2 instead of 1.9). In the 

off-peak period, the average prices are usually lower than the baseline prices. This is expected 

as the marginal social cost is much lower in the off-peak. Another interesting feature of the 

budget constraint scenario is the price discrimination across user groups. As students and retired 
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people have less flexibility in their transport mode choice and have a higher willingness to pay, 

they tend to pay the highest fares. Active passengers face less extra margins. 

[Table 5 here] 

The two types of second best optimal rail prices (with and without budget constraint) are 

compared in Figure 2 for Ghent to Brussels (the link with most parallel car congestion). We see 

that the budget constraint drives peak prices for students and retired people close to current rail 

prices. Also for the active that travel in the peak, prices will be much higher than in the baseline. 

The main reason is the high marginal cost of supplying peak capacity. For the off-peak period, 

optimal prices are higher than in the baseline. 

We find that the imposition of the budget constraint reduces strongly the efficiency gains of the 

second best. The efficiency gain is now half of that of the first best. We see higher prices (4.5 

instead of 3.7 to go from Bruges to Brussels in the peak) but only a slightly lower frequency 

(6.4 rather than 6.6 in the peak). This is due also to a change in the composition of the train use: 

the high VOT users (active) are less discouraged than the low VOT users to use the peak trains 

and this justifies that frequency stays more or less constant when a budget constraint is imposed. 

[Figure 2 here] 

6. Comparing current prices and optimal prices across countries 

We compare prices for corridors in 2 countries. For each of these corridors defined in Table 2 

we compute two second best scenario’s. The first is a second best scenario where current car 

prices are taken as given. The second scenario includes in addition a budget constraint. The 

budget constraint makes sure that the margin of the railway company is the same as in the 

baseline. 
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We concentrate on the results for the French corridor Grenoble – Bourgoin –Lyon. The detailed 

results for baseline, second best without budget constraint and first best are presented in Table 

6. The French corridor is interesting because it has already tolls (péages) implemented on the 

motorways that take the bulk of the car traffic on this corridor (resp. 6.7 and 3.5 Euro/trip). 

These motorway tolls are however not optimized as they are set to finance the motorway using 

administrative rules that allow cross-financing. Comparing these tolls with the optimized tolls 

in the First Best columns, we find that the present tolls (6.7 in peak and off-peak rather than 1.2 

or 0) are too high for the Grenoble to Bourgoin part and too high for the off-peak car traffic 

close to Lyon (At present it is 3.5 in off-peak while ideally it should be 0).  

Because the present motorway tolls are too high, the second best rail prices are actually higher 

than the first best prices. In order to take into account the overpriced car use, it becomes optimal 

to charge fares higher than the marginal social costs. This holds as well in the peak as in the 

off-peak. For Grenoble to Bourgoin where there are the largest inefficiencies in car pricing, the 

second best fares end up close to the baseline fares.  

As there is also a decrease in patronage for rail in the off-peak, it is also important to decrease 

the frequency in the off-peak (0.8 rather than 1 in the baseline).  

The gross margin of the rail company increases in the second best scenario by 50.6 per cent. 

The too high road tolls make that the second best rail fares have a difficult time to achieve the 

full welfare gain (0.06 Euro per trip rather than the 0.23 per trip). 

[Table 6 here] 

7. Conclusion 

This paper has looked into the efficiency of rail pricing for a corridor in Belgium and in France. 

We can conclude on some of our research questions.  
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First we find that for countries without road tolls, like Belgium, second best pricing of rail 

implies lower rail fares and higher frequencies. Peak fares are lower than in the first best 

because the low fares and higher frequency can achieve a large part of the efficiency gains of 

the first best. When the second best fares cannot increase the rail deficit, a large part of the 

second best efficiency gains is lost. In a country with a high road toll, like France, second best 

pricing of rail means actually higher fares than in the first best. Imposing a budget constraint is 

then not really an issue. The welfare gain of the second best scenario is rather small because 

the large distortion on the road market can not be corrected.  

Second, we find that the optimal rail fares are mainly driven by two factors: the external 

crowding costs and the under or overpricing of road use. This means that, within one country 

(and within one rail company), fares should be a function of road congestion in the corridor, 

total number of rail users as well as income of the rail users. This is rather different from a 

national rail fare in function of distance.  

Third, the crowding discomfort depends strongly on the value of time of the passenger. This 

means that passengers with a high aversion to crowding are prepared to pay extra when they 

can be sure to have a seat and travel in comfortable conditions. This means the distinction 

between First and Second class wagons and tickets can be welfare increasing.  

Fourth, present and optimal railway fares vary strongly over countries. 
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Figures 

Figure 1: A simple network with two origins (A and B) and one destination (D) 

 

 

Figure 2: Prices for a rail trip from Bruges to Brussels (Belgium) 
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Tables 

Parameters Value 

Train environmental + accident externalities (€/km) 4.16 

Car environmental + accident externalities (€/km) 0.012 

Rail crowding cost (hours/users/m²) 0.16 

Rail scheduling cost (hours/runs/hour) 0.24 

Rail delay cost (hours x runs/hour) 0.22 

Values of time Peak Off-peak 

Active + 17.7 12.6 

Active - 14 10 

Students 14 10 

Retired 9.5 6.8 

Table 1: Parameters whose value is the same for the two corridors 

 

 

  Belgium France 

City A Bruges Grenoble 

City B Ghent Bourgoin 

City D Brussels Lyon 

Number of daily trips   

 From A 40 000 20 000 

 From B 110 000 20 000 

Road tolls (€)   

A  D 0 6.7 

B  D 0 3.5 

Train fares (€)   

Peak A  D 2.5 5.0 

 B  D 1.9 2.3 

Off-peak A  D 2.1 7.5 

 B  D 1.9 3.3 

Rail frequency (train/hour)   

Peak  4 2 

Off-peak  2 1 

Table 2: Parameters whose value is corridor-specific 
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  Baseline Second-best opt. First-best opt. 
  Peak Off-peak Peak Off-peak Peak Off-peak 

Rail fares (€ per trip)       

From Bruges to Brussels 2.5 2.1 1.6 1.9 3.7 2.3 

Amount of optimal fare due to:       

Crowding Bg  G   1 0.3 1 0.3 
 G  Bl   2.8 1.3 2.8 1.3 

Substitution with other modes   -2.1 0.3 0 0.7 

From Ghent to Brussels 1.9 1.9 0.7 1 2.5 1.4 

Amount of optimal fare due to:       

Crowding G  Bl   2.8 1.3 2.8 1.3 

Substitution with other modes   -2.1 -0.3 -0.3 -0.1 

Rail frequency (runs/hour) 4 2 6.6 2 6.6 2 

Contribution to marginal utility:       

Crowding Bg  G   1 634 4 907 1 362 4 913 
 G  Bl   13 341 17 846 13 288 17 897 

Rigidity of service   2 716 11 915 2 709 11 924 

Contribution to marginal cost:       

Average lateness   18 329 2 238 18 283 3 441 

Operating costs   6 808 25 530 6 808 25 530 

Fuel consumption   472 1 769 472 1 769 

Rolling stock cost   4 406 - 4 406 - 

Environmental + accident externalities   1 530 5 737 1 530 5 737 

Road tolls (€/trip)       

From Bruges to Brussels 0 0 0 0 1 0 

Amount of optimal toll + fuel tax due to:       

Congestion      1.6 0.1 

Environmental + accident externalities     0.5 0.2 

Other effects     0.2 0.4 

From Ghent to Brussels 0 0 0 0 5.7 0 

Amount of optimal toll + fuel tax due to:       

Congestion     7 0.6 

Environmental + accident externalities     0.6 0.5 

Other effects     0 0.4 

Demand (trips per day)  (variations w.r.t. baseline) 

from Bruges Rail 9 029 8 156 3.6% 0.1% 3.5% 0.1% 
 Car 12 337 10 502 -0.8% -0.5% -5.3% 1.2% 

from Ghent Rail 21 215 19 322 5.4% 5.2% 5.3% 5.2% 
 Car 37 358 32 074 -1.1% -2.3% -7.6% 0.2% 

Labour supply  82 146 0.2% -1.1% 

Individual costs (minutes per trip)       

Rail crowding Bg  G 6.4 3.1 -37.2% 0.1% -37.3% 0.1% 
 G  Bl 16.6 8.1 -36.4% 3.7% -36.4% 3.7% 

Rail scheduling cost  3.5 7.1 -39.4% 0.0% -39.4% 0.0% 

Rail lateness  1.3 0.7 65.0% 0.0% 65.0% 0.0% 

Road congestion Bg  G 7.4 1.7 -0.8% -0.5% -5.3% 1.2% 
 G  Bl 30 6.9 -1.1% -1.9% -7.0% 0.4% 

Aggregates (€ per day)       

Train company   (variations w.r.t. baseline) 

Turnover (net of private or public subsidies) 116 267 -42.8% 18.4% 

Operating cost 83 749 22.6% 22.6% 

Rolling stock cost 17 624 65.0% 65.0% 

Margin 14 893 -538.5% -60.6% 

Government        

Toll revenues 0 0 275 095 

Fuel tax revenues  226 071 -1.3% -3.3% 

Environmental + accident externalities       

Rail  17 593 22.6% 22.6% 

Road  75 299 -1.3% -3.4% 

Net surplus per user (€ per day)  (variations w.r.t. baseline) 
  Bruges Ghent Bruges Ghent Bruges Ghent 

Active +  116.5 99.3 0.3% 0.3% -0.9% -1.4% 

Active -  99.3 90.2 0.3% 0.4% -0.9% -1.2% 

Students  56 51 0.9% 1.3% -0.5% -0.7% 

Retired  77.5 75.7 0.2% 0.4% -0.4% -0.4% 

Total welfare gain (€ per day) - 24 246 33 636 

Efficiceny (%)  - 12.1% 100% 

Welfare gain per baseline trips (€/trip) - 0.16 0.22 

Table 3: Baseline. optimal rail fares and frequency. and  first-best optimum estimates for trips from Bruges and 

Ghent to Brussels (Belgium). 
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Peak Bruges  Brussels 1.6 5.9 0.9 5.9 4.3 0.9 8.4 

 Ghent  Brussels 0.7 3.4 0 3.4 3.1 0.2 5.6 

Off-peak Bruges  Brussels 1.9 2.5 0.9 2.3 2.9 1.1 3.4 

 Ghent  Brussels 1 1.3 0.2 1.1 1.1 0.4 2 

Table 4: Optimal Second Best rail fares with baseline rail frequencies under alternative scenarios 

 

 

 

 

 

 Baseline  Optimal rail fares 
Optimal rails fares + 

freq. 

 Peak Off-peak Peak Off-peak Peak Off-peak 

Average rail fares (€ per trip)       

From Bruges to Brussels 2.5 2.1 3.8 2 4.5 2.7 

From Ghent to Brussels 1.9 1.9 2.2 1 2.4 1.5 

Detailed rail fares (€ per trip)       

Active + and Active -       

From Bruges to Brussels 1.4 1.4 3 2 4.5 3. 

From Ghent to Brussels 1.1 1.1 1 1 1.5 1.5 

Students and Retired       

From Bruges to Brussels 3.4 2.4 4.5 2 4.5 2.5 

From Ghent to Brussels 2.4 2.2 3 1 3 1.5 

Rail frequency (runs/hour) 4 2 4 2 6.4 2 

Rail company margin (€) 14 893 15 490 14 235 

Total welfare gain (€ per day) - 790 18 214 

Welfare gain per baseline trips 

(€ per trip) 
- 0.01 0.12 

Table 5: Baseline (0). optimal rail fares with baseline frequency (1) and optimal rail fares and optimal 

frequency (2) with budget constraint and price discrimination for trips from Bruges and Ghent to Brussels 

(Belgium) 
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  Baseline Second-best opt. First-best opt. 
  Peak Off-peak Peak Off-peak Peak Off-peak 

Rail fares (€ per trip)       

From Grenoble to Lyon 5 7.5 7.1 7.6 4 2.3 

Amount of optimal fare due to:       

Crowding G  B   1.9 0.6 1.9 0.6 
 B  L   1..8 0.7 1.8 0.7 

Substitution with other modes   3.4 6.3 0.3 1.0 

From Bourgoin to Lyon 2.3 3.3 2.5 2.6 1.8 0.9 

Amount of optimal fare due to:       

Crowding B  L   1.8 0.7 1.8 0.7 

Substitution with other modes   0.7 1.9 0 0.2 

Rail frequency (runs/hour) 2 1 2.3 0.8 2.3 0.8 

Contribution to marginal utility:       

Crowding G  B   3 729 5 777 3 718 5 806 
 B  L   6 601 6 468 6 581 6 455 

Rigidity of service   5 654 11  633 5 640 11 593 

Contribution to marginal cost:       

Average lateness   1 615 140 1 611 139 

Operating costs   7 384  27 690 7 384 27 690 

Fuel consumption   626 2 349 626 2 349 

Rolling stock cost   4 957 0 4 957 0 

Environmental + accident externalities   2 162 8 106 2 162 8 106 

Road tolls (€/trip)       

From Grenoble to Lyon 6.7 6.7 6.7 6.7 1.2 0 

Amount of optimal toll + fuel tax due to:       

Congestion      2.1 0.1 

Environmental + accident externalities     0.7 0.3 

Other effects     0.3 0.6 

From Bourgoin to Lyon 3.5 3.5 3.5 3.5 3.9 0 

Amount of optimal toll + fuel tax due to:       

Congestion     4.8 0.4 

Environmental + accident externalities     0.5 0.4 

Other effects     0 0.3 

Demand (trips per day)  (variations w.r.t. baseline) 

from Grenoble Rail 4 516 4 039 -1.4% -2.3% -1.4% -2.3% 
 Car 6 170 5 275 0.4% 1.0% 1.5% 15.7% 

from Bourgoin Rail 3 845 3 639 2.1% -11% 2.1% -10.9% 
 Car 6 783 5 771 0.1% 2.8% -0.9% 17.6% 

Labour supply  22 025 -0.1% 3.7% 

Individual costs (minutes per trip)       

Rail crowding G  B 9.4 4.5 -14.2% 22.1% -14.3% 22.1% 
 B  L 8.3 4.1 -13.4% 23.5% -13.5% 23.6% 

Rail scheduling cost  7.1 14.2 -13% 25% -13% 25% 

Rail lateness  0.7 0.3 15% -20% 15% -20% 

Road congestion G  B 9.3 2.1 0.4% 1% 1.5% 15.7% 
 B  L 19.4 4.4 0.1% 0.4% -0.5% 15.3% 

Aggregates (€ per day)       

Train company   (variations w.r.t. baseline) 

Turnover (net of private or public subsidies) 73 819 9.4% 9.4% 

Operating cost 46 059 -7.8% -7.8% 

Rolling stock cost 9 914 15% 15% 

Margin 17 846 50.6% 50.6% 

Government        

Toll revenues 160 677 0.5% -64% 

Fuel tax revenues  62 691 0.4% 7.3% 

Environmental + accident externalities       

Rail  12 430 -7.8% -7.8% 

Road  20 954 0.4% 7.3% 

Net surplus per user (€ per day)  (variations w.r.t. baseline) 
  Grenoble Bourgoin Grenoble Bourgoin Grenoble Bourgoin 

Active +  71.1 83.9 0% 0% 0.3% 0.6% 

Active -  54.4 70.8 0% 0% 0.3% 0.6% 

Students  35.5 42.9 -0.1% 0.1% 0.3% 0.9% 

Retired  61.9 69.6 0% 0% 0.3% 0.9% 

Total welfare gain (€ per day) - 2 253 9 203 

Efficiceny (%)  - 24.51% 100% 

Welfare gain per baseline trips (€/trip) - 0.06 0.23 

Table 6: Baseline, optimal rail fares and frequency, and first-best optimum estimates for trips from Grenoble 

and Bourgoin to Lyon (France). 
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Appendices  

A. Detailed data 

The specification of the gross utility function defined in Eq. (1) used in the empirical exercise 

in Sections 5 and 6 is: 

𝑈𝑖,,𝑗 = 𝑞𝑖,𝑗 + [𝑎𝑖,𝑗
𝐶𝐴𝑅,𝑃𝑥𝑖,𝑗

𝐶𝐴𝑅,𝑃 − 0.5𝑏𝑖,𝑗
𝐶𝐴𝑅,𝑃(𝑥𝑖,𝑗

𝐶𝐴𝑅,𝑃)2]

+[𝑎𝑖,𝑗
𝐶𝐴𝑅,𝑂𝑃𝑥𝑖,𝑗

𝐶𝐴𝑅,𝑂𝑃 − 0.5𝑏𝑖,𝑗
𝐶𝐴𝑅,𝑂𝑃(𝑥𝑖,𝑗

𝐶𝐴𝑅,𝑂𝑃)2]

+[𝑎𝑖,𝑗
𝑅𝐴𝐼𝐿,𝑃𝑥𝑖,𝑗

𝑅𝐴𝐼𝐿,𝑃 − 0.5𝑏𝑖,𝑗
𝑅𝐴𝐼𝐿,𝑃(𝑥𝑖,𝑗

𝐶𝐴𝑅,𝑃)2]

+[𝑎𝑖,𝑗
𝑅𝐴𝐼𝐿,𝑂𝑃𝑥𝑖,𝑗

𝑅𝐴𝐼𝐿,𝑂𝑃 − 0.5𝑏𝑖,𝑗
𝑅𝐴𝐼𝐿,𝑂𝑃(𝑥𝑖,𝑗

𝑅𝐴𝐼𝐿,𝑂𝑃)2]

−𝑒𝑖,𝑗
𝐶𝐴𝑅,𝑃/𝐶𝐴𝑅,𝑂𝑃

𝑥𝑖,𝑗
𝐶𝐴𝑅,𝑃𝑥𝑖,𝑗

𝐶𝐴𝑅,𝑂𝑃 − 𝑒𝑖,𝑗
𝐶𝐴𝑅,𝑃/𝑅𝐴𝐼𝐿,𝑃

𝑥𝑖,𝑗
𝐶𝐴𝑅,𝑃𝑥𝑖,𝑗

𝑅𝐴𝐼𝐿,𝑃

−𝑒𝑖,𝑗
𝐶𝐴𝑅,𝑃/𝑅𝐴𝐼𝐿,𝑂𝑃

𝑥𝑖,𝑗
𝐶𝐴𝑅,𝑃𝑥𝑖,𝑗

𝑅𝐴𝐼𝐿,𝑂𝑃 − 𝑒𝑖,𝑗
𝐶𝐴𝑅,𝑂𝑃/𝑅𝐴𝐼𝐿,𝑃

𝑥𝑖,𝑗
𝐶𝐴𝑅,𝑂𝑃𝑥𝑖,𝑗

𝑅𝐴𝐼𝐿,𝑃

−𝑒𝑖,𝑗
𝐶𝐴𝑅,𝑂𝑃/𝑅𝐴𝐼𝐿,𝑂𝑃

𝑥𝑖,𝑗
𝐶𝐴𝑅,𝑂𝑃𝑥𝑖,𝑗

𝑅𝐴𝐼𝐿,𝑂𝑃 − 𝑒𝑖,𝑗
𝑅𝐴𝐼𝐿,𝑃/𝑅𝐴𝐼𝐿,𝑂𝑃

𝑥𝑖,𝑗
𝑅𝐴𝐼𝐿,𝑃𝑥𝑖,𝑗

𝑅𝐴𝐼𝐿,𝑂𝑃.

 

are parameters to be calibrated. This is the same specification as in in Börjesson, et al. (2017). 

Data have been collected for year 2012. When data were not available for this year, we chose 

data whose publication date is close to this year. 

Table 7 reports technological and rail cost data which are identical for the two corridors. Peak 

period is four hours long, two hours during the morning peak (7am to 9am) and two hours 

during evening peak (5pm to 7pm). The total (fixed + variable) cost of a train has been 

computed by considering a cost of 10M euros per carriage, a lifespan of 30 years, a discount 

rate of 4 per cent and 350 days of use per year. The total cost is equally split between fixed cost 

and variable cost in the baseline. The variable cost takes the form of a cost per seat per train. 

We assume a train operating cost of 12 euros per km, based on the Belgium data in Steer Davis 

Gleave (2015). The train fuel consumption is kept voluntarily low because in Belgium and 

France a non-negligible part of the lines are electrified. The environmental and accident 

externalities for train and car have been found in the Update of the Handbook of External Costs 
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of Transport.10 The car fuel consumption corresponds to an average consumption of 7 liters per 

km. 

The rail crowding cost coefficient has been obtained by a linear approximation of the travel 

time multipliers estimated by Kroes, et al. (2013). The scheduling cost coefficient has been 

computed in the 𝛼 − 𝛽 − 𝛾 framework by using the estimations produced by Wardman, et al. 

(2012). The rail delay cost efficient we use is from Pérez Herrero, et al. (2014). 

The off-peak values of time are officially recommended values used in France (Quinet, 2013). 

The peak values of time have been obtained by using a factor 1.4 (Abrantes & Wardman, 2011). 

Parameters Value 

Peak period length (hours) 4 

Off-peak period length (hours) 15 

Cost of train ( €/train/day) 1 650 

Train operating cost ( €/km) 12 

Train fuel consumption (l/km) 1 

Train environmental + accident externalities (€ /km) 4.16 

Car fuel consumption (l/km) 0.07 

Car environmental + accident externalities (€ /km) 0.012 

Rail crowding cost (hours/users/m²) 0.16 

Rail scheduling cost (hours/runs/hour) 0.24 

Rail delay cost (hours \times runs/hour) 0.22 

Values of time (€ /hour) Peak Off-peak 

Active + 17.6 12.6 

Active - 14 10 

Students 14 10 

Retired 9.5 6.8 

Table 7: Parameters whose value is the same for all cases 

We assume that the four categories are uniformly represented among the population of each of 

the city. Table 8 gives the modal shares per period distribution for the 4 types of users in the 

initial equilibrium. These numbers have been inferred from different sources (Cornelis, et al. 

                                                 
10 https://ec.europa.eu/transport/sites/transport/files/handbook_on_external_costs_of_transport_2014_0.pdf  

https://ec.europa.eu/transport/sites/transport/files/handbook_on_external_costs_of_transport_2014_0.pdf
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(2012); Auvergne-Rhône-Alpes (2014); Duabresse et al. (2015); AURG and SMTC (2015); 

Andries (2016)). 

  Active + Active - Students Retired Total 

Distribution trips from A      

Train Peak 5.6% 4.6% 9.3% 3.1% 22.6% 

 Off-peak 3.7% 3.1% 6.2% 7.2% 20.2% 

Car Peak 13% 10.2% 4.2% 3.5% 30.9% 

 Off-peak 8.7% 6.8% 2.8% 8.1% 26.4% 

Total  30.9% 24.7% 22.4% 21.9% 100% 

Distribution trips from B      

Train Peak 3.5% 4.3% 8.6% 2.9% 19.3% 

 Off-peak 2.3% 2.9% 5.8% 6.7% 17.6% 

Car Peak 13.8% 11.1% 5.2% 3.9% 34% 

 Off-peak 9.2% 7.4% 3.5% 9.1% 29.1% 

Total  28.8% 25.7% 23% 22.5% 100% 

Table 8: Trips characteristics 

Table 9 presents the geographical and physical characteristics of the two corridors. The road 

distance between cities as well as the road free travel times have been obtained through website 

Google Maps. The rail distances between cities have been retrieved from Wikipedia pages 

dedicated to the railway stations.11 12 13  The rail average speeds have been retrieved from the 

timetables. The road congestion cost coefficient has been calibrated such that it reproduces the 

observed travel time while using a linear congestion function. 

 

 

 

                                                 
11 https://fr.wikipedia.org/wiki/Ligne_50A_(Infrabel)  
12 https://fr.wikipedia.org/wiki/Gare_de_Bourgoin-Jallieu  
13 https://fr.wikipedia.org/wiki/Gare_de_Grenoble  

https://fr.wikipedia.org/wiki/Ligne_50A_(Infrabel)
https://fr.wikipedia.org/wiki/Gare_de_Bourgoin-Jallieu
https://fr.wikipedia.org/wiki/Gare_de_Grenoble
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  Belgium France 

City A Bruges Grenoble 

City B Ghent Bourgoin 

City D Brussels Lyon 

Population living in A 100 000 700 000 

Population living in B 200 000 60 000 

Number of daily trips   

 From A 40 000 20 000 

 From B 110 000 20 000 

Distance AB rail (km) 52 88 

Distance BD rail (km) 40 42 

Distance AB road (km) 44 50 

Distance BD road (km) 56 64 

Average free train speed (km/hour) 69 87 

Average free car speed (km/hour) 78 92 

Road congestion cost (hours /veh/road capacity) 0.2 0.6 

Table 9: General parameters whose value is corridor specific 

Table 10 displays detailed transport data which are corridor specific. Comparable rail access 

(or infrastructure) charges for Belgium and France have been found in Thompson (2008). These 

data are less recent than the others, but this source assures comparability. Train capacities 

(number of seats per train) and frequencies have been computed from the description of the 

rolling stocks used on each of the lines and on the supplied service. 14 15 Different materials are 

used, so these figures have to be interpreted as average. Trains in Belgium are slightly larger 

than in France. Road capacity per hour corresponds to three lanes highway. Fuel prices and 

excises have been compiled from the Europe's Energy Portal.16 As there is no the same 

proportion of diesel and unleaded vehicles in both countries, we weighted prices and excise 

with respect to the shares of the vehicle types per country given by the European Automobile 

Manufacturers Association.17 

                                                 
14 https://fr.wikipedia.org/wiki/InterCity_(Belgique)  
15 https://fr.wikipedia.org/wiki/Ligne_Lyon_-_Grenoble  
16 https://www.energy.eu/fuelprices/  
17 http://www.acea.be/statistics/tag/category/passenger-car-fleet-by-fuel-type  

https://fr.wikipedia.org/wiki/InterCity_(Belgique)
https://fr.wikipedia.org/wiki/Ligne_Lyon_-_Grenoble
https://www.energy.eu/fuelprices/
http://www.acea.be/statistics/tag/category/passenger-car-fleet-by-fuel-type
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Road tolls for France have been retrieved from a local newspaper article.18 We met difficulties 

in estimating the average fare paid by train users: some users buy an annual or season ticket, 

some others pay full price for a one way trip... Consequently, we chose to retain the price of an 

annual ticket.19 20 This price is spread on 250 working days and 2 trips a day. As the annual 

ticket is usually the cheapest one, we apply on it a multiplicative coefficient of two. 

  Belgium France 

Rail access charges (€ /km) 6.5 2.2 

Train capacity (seats/train) 650 600 

Rail frequency (train/hour)   

Peak 4 2 

Off-peak 2 1 

Road capacity (veh/hour)   

 A  B 6 000 6 000 

 B  D 6 000 6 000 

Fuel price21 (€ /l) 1.28 1.2 

Fuel excise (€ /l) 0.51 0.52 

Road tolls (€)   

 A  B 0 6.7 

 B  D 0 3.5 

Train fares (€)   

Peak A  B 2.5 5.0 

 B  D 1.9 2.3 

Off-peak A  B 2.1 7.5 

 B  D 1.9 3.3 

Table 10: Transport parameters whose value is corridor specific 

B. Elasticities and cross elasticities 

Tables 11, 12, 13 and 14 present the price elasticities and diversion factors χ to other modes 

and this for the 4 categories of users. These data are consistent with the literature (Mayeres 

(2000); Litman (2004); Oum, et al. (2008); Dargay and Clark (2012)). In the absence of more 

                                                 
18 http://www.ledauphine.com/isere-nord/2012/01/31/si-vous-entrez-a-villefontaine  
19 http://www.belgianrail.be/en/tickets-railcards/age/adults-seniors/frequent/section-season-ticket.aspx  
20 https://www.ter.sncf.com/auvergne-rhone-alpes/tarifs/devis/recherche?oldRegion=RAL  
21 Includes VAT and excise. 

http://www.ledauphine.com/isere-nord/2012/01/31/si-vous-entrez-a-villefontaine
http://www.belgianrail.be/en/tickets-railcards/age/adults-seniors/frequent/section-season-ticket.aspx
https://www.ter.sncf.com/auvergne-rhone-alpes/tarifs/devis/recherche?oldRegion=RAL
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locally differentiated data, we use for the two corridors the same demand and price elasticity 

data. This makes the corridors more comparable but also loses some realism. 

Active +  Peak Off-peak 

 Rail Car Rail Car 

Elasticities     

Elasticity of demand wrt generalized cost -0.3 -0.3 -0.6 -0.6 

Fraction of increased transit coming from     

Peak Rail - End. End. End. 

 Car 0.5 - End. End. 

Off-peak Rail 0.15 0.15 - End. 

 Car 0.15 0.15 0.5 - 

Increased overall travel demand End. End. End. End. 

Note: “End.” means that the number is endogenously determined. 

Table 11: Cost-elasticities and origins of increased transit of the representative individual of the active + 

population 

 

Active -  Peak Off-peak 

 Rail Car Rail Car 

Elasticities     

Elasticity of demand wrt generalized cost -0.2 -0.2 -0.6 -0.6 

Fraction of increased transit coming from     

Peak Rail - End. End. End. 

 Car 0.7 - End. End. 

Off-peak Rail 0.05 0.05 - End. 

 Car 0.05 0.05 0.7 - 

Increased overall travel demand End. End. End. End. 

Note: “End.” means that the number is endogenously determined. 

Table 12: Cost-elasticities and origins of increased transit of the representative individual of the active – 

population 
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Students  Peak Off-peak 

 Rail Car Rail Car 

Elasticities     

Elasticity of demand wrt generalized cost -0.3 -0.3 -0.7 -0.7 

Fraction of increased transit coming from     

Peak Rail - End. End. End. 

 Car 0.2 - End. End. 

Off-peak Rail 0.1 0.1 - End. 

 Car 0.1 0.1 0.3 - 

Increased overall travel demand End. End. End. End. 

Note: “End.” means that the number is endogenously determined. 

Table 13: Cost-elasticities and origins of increased transit of the representative individual of the students 

population 

 

Retired  Peak Off-peak 

 Rail Car Rail Car 

Elasticities     

Elasticity of demand wrt generalized cost -0.5 -0.5 -0.7 -0.7 

Fraction of increased transit coming from     

Peak Rail - End. End. End. 

 Car 0.2 - End. End. 

Off-peak Rail 0.3 0.3 - End. 

 Car 0.3 0.3 0.6 - 

Increased overall travel demand End. End. End. End. 

Note: “End.” means that the number is endogenously determined. 

Table 14: Cost-elasticities and origins of increased transit of the representative individual of the retired 

population 
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C. First-best optimum 

a. Objective function 

The Lagrangian function is as follows 

ℒ =∑∑𝑁𝑖,𝑗 ×

[
 
 
 
 

𝑈𝑖,𝑗⏟
Users srplus

+∑∑𝑥𝑖,𝑗
𝑚,𝑘 ×𝑁𝑀𝑈𝐶𝑖,𝑗

𝑚,𝑘 

𝑘𝑚⏟                
𝑈𝑠𝑒𝑟𝑠 𝑛𝑜𝑛−𝑚𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑐𝑜𝑠𝑡𝑠 ]

 
 
 
 

𝑗𝑖

 

+ Π𝑅𝐴𝐼𝐿⏟  
Rail company profit

− ∑∑𝐸𝑋𝑇 
𝑚,𝑘 

𝑘𝑚⏟          
𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑖𝑡𝑖𝑒𝑠

 

+𝜅𝑓𝑢𝑒𝑙 × [(𝑉𝑅𝐴𝐼𝐿,𝑃 + 𝑉𝑅𝐴𝐼𝐿,𝑂𝑃) × 𝜐𝑅𝐴𝐼𝐿 × 𝑑𝐴𝐷
𝑟𝑎𝑖𝑙 +∑∑𝑉𝑗

𝐶𝐴𝑅,𝑘 × 𝜐𝐶𝐴𝑅 × 𝑑𝑗𝐷
𝑟𝑜𝑎𝑑

𝑗𝑘

]

⏟                                                  
Revenue of the fuel tax

 

+∑∑𝑉𝑗
𝐶𝐴𝑅,𝑘 × 𝜏𝑗

𝐶𝐴𝑅,𝑘

𝑗𝑘⏟              
Revenue of the road tolls

 

+∑∑𝜆𝑖,𝑗 × (𝑅𝑖,𝑗 − 𝑞𝑖,𝑗 −∑∑𝑥𝑖,𝑗
𝑚,𝑘 ×𝑀𝑈𝐶𝑗

𝑚,𝑘 

𝑘𝑚

)

𝑗𝑖⏟                                  
Revenue of the road tolls

 

We derive ℒ with respect to 𝜆𝑖,𝑗: 

∂ℒ

∂𝜆𝑖,𝑗
= 𝑅𝑖,𝑗 − 𝑞𝑖,𝑗 −∑ 

𝑚

∑𝑀𝑈𝐶𝑗
𝑚,𝑘𝑥𝑖,𝑗

𝑚,𝑘

𝑘

⟺ 𝑞𝑖,𝑗 = 𝑅𝑖,𝑗 −∑ 

𝑚

∑𝑀𝑈𝐶𝑗
𝑚,𝑘𝑥𝑖,𝑗

𝑚,𝑘

𝑘

 

The revenue is fully spent.  

b. Optimal quantity of the numeraire good consumed 

Optimal quantities of the numeraire goods is given by: 
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∂ℒ

∂𝑞𝑖,𝑗
= 𝑁𝑖,𝑗

∂𝑈𝑖,𝑗

∂𝑞𝑖,𝑗
− 𝜆𝑖,𝑗. 

Recalling that 
𝜕𝑈𝑖,𝑗

𝜕𝑞𝑖,𝑗
= 1, it implies  

𝜆𝑖,𝑗 = 𝑁𝑖,𝑗.                 (App. 1) 

c. Optimal train fares 

To find the optimal level of train fares, we derive ℒ with respect to 𝑥𝑖,𝑗
𝑅𝐴𝐼𝐿,𝑘. 

∂ℒ

∂𝑥𝑖,𝐵
𝑅𝐴𝐼𝐿,𝑘 = 𝑁𝑖,𝐵(

∂𝑈𝑖,𝐵

∂𝑥𝑖,𝐵
𝑅𝐴𝐼𝐿,𝑘 − 𝑁𝑀𝑈𝐶𝑖,𝐵

𝑅𝐴𝐼𝐿,𝑘)

−∑ 

𝑛

∑ 

𝑟

𝑁𝑛,𝑟 ⋅ 𝑥𝑛,𝑟
𝑅𝐴𝐼𝐿𝑘 ⋅ [

∂𝑋𝐵
𝑅𝐴𝐼𝐿,𝑘

∂𝑥𝑖,𝐵
𝑅𝐴𝐼𝐿,𝑘

∂𝑜𝐵
𝑅𝐴𝐼𝐿,𝑘

∂𝑋𝐵
𝑅𝐴𝐼𝐿,𝑘 ⋅

∂𝑑𝑖𝑠𝑐𝑜𝑚𝑛,𝐵
𝑅𝐴𝐼𝐿,𝑘

∂𝑜𝐵
𝑅𝐴𝐼𝐿,𝑘 ]

+𝑝𝐵
𝑅𝐴𝐼𝐿,𝑘 ∂𝑋𝐵

𝑅𝐴𝐼𝐿,𝑘

∂𝑥𝑖,𝐵
𝑅𝐴𝐼𝐿,𝑘 − 𝜆𝑖,𝐵𝑀𝑈𝐶𝐵

𝑅𝐴𝐼𝐿,𝑘

 

∂ℒ

∂𝑥𝑖,𝐴
𝑅𝐴𝐼𝐿,𝑘 = 𝑁𝑖,𝐴(

∂𝑈𝑖,𝐴

∂𝑥𝑖,𝐴
𝑅𝐴𝐼𝐿,𝑘 − 𝑁𝑀𝑈𝐶𝑖,𝐴

𝑅𝐴𝐼𝐿,𝑘)

−∑
 
 

𝑛

∑ 

𝑟

𝑁𝑛,𝑟 ⋅ 𝑥𝑛,𝑟
𝑅𝐴𝐼𝐿,𝑘 ⋅ [

∂𝑋𝐴
𝑅𝐴𝐼𝐿,𝑘

∂𝑥𝑖,𝐴
𝑅𝐴𝐼𝐿,𝑘

∂𝑜𝐴𝐵
𝑅𝐴𝐼𝐿,𝑘

∂𝑋𝐴
𝑅𝐴𝐼𝐿,𝑘 ⋅

∂𝑑𝑖𝑠𝑐𝑜𝑚𝑛,𝐴
𝑅𝐴𝐼𝐿,𝑘

∂𝑜𝐴
𝑅𝐴𝐼𝐿,𝑘

+
∂𝑋𝐵

𝑅𝐴𝐼𝐿,𝑘

∂𝑥𝑖,𝐴
𝑅𝐴𝐼𝐿,𝑘

∂𝑜𝐵
𝑅𝐴𝐼𝐿,𝑘

∂𝑋𝐵
𝑅𝐴𝐼𝐿,𝑘 ⋅

∂𝑑𝑖𝑠𝑐𝑜𝑚𝑛,𝐵
𝑅𝐴𝐼𝐿,𝑘

∂𝑜𝐵
𝑅𝐴𝐼𝐿,𝑘

]

+𝑝𝐴
𝑅𝐴𝐼𝐿,𝑘 ∂𝑋𝐴

𝑅𝐴𝐼𝐿,𝑘

∂𝑥𝑖,𝐴
𝑅𝐴𝐼𝐿,𝑘 − 𝜆𝑖,𝐴𝑀𝑈𝐶𝐴

𝑅𝐴𝐼𝐿,𝑘

 

Recall that 𝜆𝑖,𝑗 = 𝑁𝑖,𝑗 from Equation (App. 1), that 𝑀𝑈𝐶𝑗
𝑅𝐴𝐼𝐿,𝑘 = 𝑝𝑗

𝑅𝐴𝐼𝐿,𝑘 
, that 

𝜕𝑈𝑖,𝑗

𝜕𝑥𝑖,𝑗
𝑅𝐴𝐼𝐿,𝑘 −

𝑁𝑀𝑈𝐶𝑖,𝑗
𝑅𝐴𝐼𝐿,𝑘 = 𝑀𝑈𝐶𝑖,𝑗

𝑅𝐴𝐼𝐿,𝑘 from Equation (11) and that 
𝜕𝑋𝑗

𝑅𝐴𝐼𝐿,𝑘

𝜕𝑥𝑖,𝑗
𝑅𝐴𝐼𝐿,𝑘 = 𝑁𝑖,𝑗

𝑅𝐴𝐼𝐿,𝑘
. Setting Equations 

above equal to zero and rearranging, we find the optimal fares of a journey by train 
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𝑝𝐵
𝑅𝐴𝐼𝐿,𝑘 = ∑ 

𝑛

∑ 

𝑟

𝑁𝑛,𝑟 ⋅ 𝑥𝑛,𝑟
𝑅𝐴𝐼𝐿,𝑘 ⋅ [

∂𝑜𝐵
𝑅𝐴𝐼𝐿,𝑘

∂𝑋𝐵
𝑅𝐴𝐼𝐿,𝑘 ⋅

∂𝑑𝑖𝑠𝑐𝑜𝑚𝑛,𝐵
𝑅𝐴𝐼𝐿,𝑘

∂𝑜𝐵
𝑅𝐴𝐼𝐿,𝑘 ];

𝑝𝐴
𝑅𝐴𝐼𝐿,𝑘 = ∑ 

𝑛

∑ 

𝑟

𝑁𝑛,𝑟 ⋅ 𝑥𝑛,𝑟
𝑅𝐴𝐼𝐿,𝑘 ⋅ [

∂𝑜𝐴
𝑅𝐴𝐼𝐿,𝑘

∂𝑋𝐴
𝑅𝐴𝐼𝐿,𝑘 ⋅

∂𝑑𝑖𝑠𝑐𝑜𝑚𝑛,𝐴
𝑅𝐴𝐼𝐿,𝑘

∂𝑜𝐴
𝑅𝐴𝐼𝐿,𝑘 +

∂𝑜𝐵
𝑅𝐴𝐼𝐿,𝑘

∂𝑋𝐴
𝑅𝐴𝐼𝐿,𝑘 ⋅

∂𝑑𝑖𝑠𝑐𝑜𝑚𝑛,𝐵
𝑅𝐴𝐼𝐿,𝑘

∂𝑜𝐵
𝑅𝐴𝐼𝐿,𝑘 ].

 

This can be simply rewritten as 

𝑝𝑗
𝑅𝐴𝐼𝐿,𝑘 =

∂𝑜𝑗
𝑅𝐴𝐼𝐿,𝑘

∂𝑋𝑗
𝑅𝐴𝐼𝐿,𝑘 𝐷𝐼𝑆𝐶𝑂𝑀

˙

𝑜𝑗
𝑚,𝑘
𝑅𝐴𝐼𝐿,𝑘, ∀𝑘, 𝑗, 

where 𝐷𝐼𝑆𝐶𝑂𝑀
˙

𝑜𝑗
𝑚,𝑘
𝑅𝐴𝐼𝐿,𝑘

 is the variation in aggregated discomfort cost in rail during period 𝑘 due 

to a change in the occupancy rate from 𝑗 to 𝐷 during period 𝑘. 

d. Optimal train supply 

To find the optimal train supply, we derive ℒ with respect to the number of runs operated, 

𝑉𝑅𝐴𝐼𝐿,𝑘 , and to the optimal number of seats per train, 𝑆𝑅𝐴𝐼𝐿. 

∂ℒ

∂𝑉𝑅𝐴𝐼𝐿,𝑘
= −∑ 

𝑖

∑ 

𝑗

𝑁𝑖,𝑗 ⋅ 𝑥𝑖,𝑗
𝑅𝐴𝐼𝐿,𝑘 ⋅ (

∂𝑢𝑛𝑟𝑒𝑙𝑖
𝑅𝐴𝐼𝐿,𝑘

∂𝑉𝑅𝐴𝐼𝐿,𝑘
+
∂𝑜𝐴

𝑅𝐴𝐼𝐿,𝑘

∂𝑉𝑅𝐴𝐼𝐿,𝑘
∂𝑑𝑖𝑠𝑐𝑜𝑚𝑖,𝑗

𝑅𝐴𝐼𝐿,𝑘

∂𝑜𝐴
𝑅𝐴𝐼𝐿,𝑘

+
∂𝑜𝐵

𝑅𝐴𝐼𝐿,𝑘

∂𝑉𝑅𝐴𝐼𝐿,𝑘
∂𝑑𝑖𝑠𝑐𝑜𝑚𝑖,𝑗

𝑅𝐴𝐼𝐿,𝑘

∂𝑜𝐵
𝑅𝐴𝐼𝐿,𝑘 +

∂𝑠𝑐ℎ𝑒𝑑𝑖
𝑅𝐴𝐼𝐿,𝑘

∂𝑉𝑅𝐴𝐼𝐿,𝑘

)

−
∂𝑇𝐶𝑅𝐴𝐼𝐿

∂𝑉𝑅𝐴𝐼𝐿,𝑘
−
∂𝐸𝑋𝑇𝑅𝐴𝐼𝐿,𝑘

∂𝑉𝑅𝐴𝐼𝐿,𝑘
+ 𝜅𝑓𝑢𝑒𝑙 × 𝜐𝑅𝐴𝐼𝐿 × 𝑑𝐴𝐷

𝑟𝑎𝑖𝑙,

 

∂ℒ

∂𝑆𝑅𝐴𝐼𝐿
= −∑ 

𝑖

∑ 

𝑗

𝑁𝑖,𝑗 ⋅∑  

𝑘

𝑥𝑖,𝑗
𝑅𝐴𝐼𝐿,𝑘(

∂𝑜𝐴
𝑅𝐴𝐼𝐿,𝑘

∂𝑆𝑅𝐴𝐼𝐿
∂𝑑𝑖𝑠𝑐𝑜𝑚𝑖,𝑗

𝑅𝐴𝐼𝐿,𝑘

∂𝑜𝐴
𝑅𝐴𝐼𝐿,𝑘 +

∂𝑜𝐵
𝑅𝐴𝐼𝐿,𝑘

∂𝑆𝑅𝐴𝐼𝐿
∂𝑑𝑖𝑠𝑐𝑜𝑚𝑖,𝑗

𝑅𝐴𝐼𝐿,𝑘

∂𝑜𝐵
𝑅𝐴𝐼𝐿,𝑘 )

−
∂𝑇𝐶𝑅𝐴𝐼𝐿

∂𝑆𝑅𝐴𝐼𝐿
.

 

Setting Equations above equal to zero and rearranging, we find 
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𝑇𝐶
˙

𝑉𝑅𝐴𝐼𝐿,𝑘
𝑅𝐴𝐼𝐿 = −𝑈𝑁𝑅𝐸𝐿

˙

𝑉𝑅𝐴𝐼𝐿,𝑘
𝑅𝐴𝐼𝐿,𝑘 −∑ 

𝑗

∂𝑜𝑗
𝑅𝐴𝐼𝐿,𝑘

∂𝑉𝑅𝐴𝐼𝐿,𝑘
𝐷𝐼𝑆𝐶𝑂𝑀

˙

𝑜𝑗
𝑅𝐴𝐼𝐿,𝑘
𝑅𝐴𝐼𝐿,𝑘 − 𝑆𝐶𝐻𝐸𝐷

˙

𝑉𝑅𝐴𝐼𝐿,𝑘
𝑅𝐴𝐼𝐿,𝑘

−𝐸𝑋𝑇
˙

𝑉𝑅𝐴𝐼𝐿,𝑘
𝑅𝐴𝐼𝐿,𝑘 + 𝐹𝑈𝐸𝐿

˙

𝑉𝑅𝐴𝐼𝐿,𝑘
𝑅𝐴𝐼𝐿 , ∀𝑘,

𝑇𝐶
˙

𝑆𝑚
𝑅𝐴𝐼𝐿 = −∑ 

𝑘

∑ 

𝑗

∂𝑜𝑗
𝑅𝐴𝐼𝐿,𝑘

∂𝑆𝑅𝐴𝐼𝐿
𝐷𝐼𝑆𝐶𝑂𝑀

˙

𝑜𝑗
𝑅𝐴𝐼𝐿,𝑘
𝑅𝐴𝐼𝐿,𝑘 .

 

e. Optimal road tolls 

To find the optimal level of travel quantities, we derive ℒ with respect to 𝑥𝑖,𝑗 
𝐶𝐴𝑅,𝑘

 

∂ℒ

∂𝑥𝑖,𝑗
𝐶𝐴𝑅,𝑘 = 𝑁𝑖,𝑗(

∂𝑈𝑖,𝑗

∂𝑥𝑖,𝑗
𝐶𝐴𝑅,𝑘 − 𝑡𝑖𝑚𝑒𝑖,𝑗

𝐶𝐴𝑅 − 𝑐𝑜𝑛𝑔𝑖,𝑗
𝐶𝐴𝑅,𝑘) −∑ 

𝑛

∑ 

𝑟

𝑁𝑛,𝑟 ⋅ 𝑥𝑛,𝑟
𝐶𝐴𝑅,𝑘 ⋅

∂𝑐𝑜𝑛𝑔𝑛,𝑟
𝐶𝐴𝑅,𝑘

∂𝑉𝑗
𝐶𝐴𝑅,𝑘

−
∂𝐸𝑋𝑇𝐶𝐴𝑅,𝑘

∂𝑉𝑗
𝐶𝐴𝑅,𝑘 + (𝜅𝑔𝑎𝑠 × 𝜈𝑚 × 𝑑𝑗𝐷

𝑟𝑜𝑎𝑑 + 𝜏𝑗
𝐶𝐴𝑅,𝑘) − 𝜆𝑖,𝑗𝑀𝑈𝐶𝑗

𝐶𝐴𝑅,𝑘

 

Recall that 𝜆𝑖,𝑗 = 𝑁𝑖,𝑗 from Equation (App. 1), that 𝑀𝑈𝐶𝑗
𝐶𝐴𝑅,𝑘 = 𝜅𝑔𝑎𝑠 + 𝜐𝑚 × 𝑑𝑗𝐷

𝑟𝑜𝑎𝑑 + 𝜏𝑗
𝐶𝑎𝑟,𝑘

, 

and that 
𝜕𝑈𝑖,𝑗

𝜕𝑥𝑖,𝑗
𝐶𝐴𝑅,𝑘 − 𝑁𝑀𝑈𝐶𝑖,𝑗

𝐶𝐴𝑅,𝑘 = 𝑀𝑈𝐶𝑖,𝑗
𝐶𝐴𝑅,𝑘

 from Equation (11)). Setting Equations above 

equal to zero and rearranging, we find the optimal tolls on road 

𝜏𝑗
𝐶𝐴𝑅,𝑘 = 𝐶𝑂𝑁𝐺

˙

𝑉𝑗
𝐶𝐴𝑅,𝑘
𝐶𝐴𝑅,𝑘 + 𝐸𝑋𝑇

˙

𝑉𝑗
𝐶𝐴𝑅,𝑘
𝐶𝐴𝑅,𝑘 − 𝐹𝑈𝐸𝐿

˙

𝑉𝑗
𝐶𝐴𝑅,𝑘

𝐶𝐴𝑅 , ∀𝑘, 𝑗. 
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