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Abstract—The Internet-of-Things (IoT) is growing signifi-
cantly, becoming an integral part of daily life. The services
provided by the IoT are often dynamic and driven by physical
events. When certain events occur, Quality of Service (QoS)
requirements for services can change. For instance, a video
camera may need to transmit higher quality footage over a
network when motion is detected. A flexible network is therefore
required that reacts to events and re-configures itself dynamically
to meet dynamic QoS constraints. In contrast to traditional
networks, Software-Defined Networking (SDN) decouples the
data plane and the control plane, resulting in a programmable
network. Programmable networks enable the development of
SDN applications that can be used to meet the dynamic QoS
needs of present-day IoT applications. In pursuit of this vision,
this paper presents the architecture and implementation of a
framework, built with SDN, to support dynamic QoS for the
IoT. We demonstrate the framework’s ability to adapt to dynamic
QoS requirements and its performance through experiments on
a hybrid network topology.

I. INTRODUCTION

The Internet of Things (IoT) is growing rapidly, both in
industry and academia [1]. It consists of everyday devices
that interact with each other, using wireless networks, and
cooperate with their neighbors to reach common goals.

Applications are built on top of the IoT to enhance the
quality of life in different domains [1]. These applications
require Quality-of-Service (QoS) guarantees from the network
to perform their tasks when events occur. An intrusion detec-
tion system, for example, typically consists of several video
cameras and motion sensors distributed over an area. When
a motion sensor detects irregular movement, the camera in
the same location starts transmitting footage to the interested
stakeholders. If the network cannot assign enough resources
to the video camera when the intruder is detected, the quality
of the footage is compromised. In this paper, we consider
three QoS parameters that are influenced by the network:
transmission delay, bandwidth and packet loss.

In traditional IP networks, QoS support is static. Fixed
network resources are assigned to applications upon deploy-
ment. This is insufficient for dynamic IoT applications, since
their QoS requirements cannot be specified in advance [2].
Therefore, dynamic QoS support requires mechanisms to re-
configure the network to allocate network resources to devices

on demand [3]. A global network topology overview and net-
work programmability are key elements to implement dynamic
QoS support. This is an excellent fit with the characteristics
of Software-Defined Networking (SDN).

In SDN, control logic is centralized and decoupled from
the forwarding devices [4]. External network applications can
re-configure the network dynamically through interfaces that
are provided by the control layer. As a result, core network
functionalities, such as a firewall, can be implemented in
software.

Research has been conducted into frameworks that imple-
ment QoS support on top of SDN [5], [6], [7], [8], [9], [10].
However, the proposed frameworks are designed for services
with static QoS behavior, require technical knowledge and do
not support dynamic QoS requirements.

This paper takes a step towards supporting dynamic QoS
for IoT applications. A novel SDN framework is proposed that
enables application users and developers to specify dynamic
QoS rules for their IoT devices. For that purpose, existing
research in QoS and typical industrial IoT applications are
analyzed to create a classification of default QoS profiles for
IoT devices. The proposed framework uses a default QoS
profile classification to limit the technical knowledge required
by the end-user, enabling treating the IoT as a commodity. To
the best of our knowledge, in SDN, this is the first framework
that addresses QoS requirements for IoT devices and masks
technical details from users by means of default QoS profiles.
An experiment evaluates the framework for a hybrid network
topology. The results illustrate the ability of the framework to
ensure QoS by measuring the bandwidth, latency and packet
loss before and after network re-configuration.

The rest of the paper is organized as follows: Section 2
presents a high level overview of the framework architecture
and the default QoS profile classification. Section 3 explains
the key abstractions, along with the implementation techniques
and technologies. Section 4 presents the evaluation of the
framework. Section 5 describes related work. Section 6 con-
cludes the paper. Section 7 discusses future work.
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Fig. 1. System architecture overview.

II. ARCHITECTURE

The architecture of the proposed framework consists of
four subsystems: non-IP networks, IP networks, control and
management layer. Figure 1 shows the subsystems, along with
the communication channels that connect them, namely the
data and the control flows.

Based on their communication capabilities, IoT devices can
be classified into non-Internet Protocol (non-IP) and Internet
Protocol (IP) devices. The non-IP Network consists of the
non-IP devices and their gateway. These non-IP devices send
data, through the gateway, to client applications that run on
hosts in the IP network. The Gateway component forwards
the data to the Handler, which can mark the packets before
injecting them to the network. This is necessary to make
them distinguishable, since they all share the same source IP
address. The IP Network consists of three components: the
data plane, IP devices and traditional network hosts. Client
applications, such as a weather system, typically run on these
hosts and receive data from the IP and non-IP devices. The
data plane is a collection of OpenFlow-enabled switches [11]
that are managed by the SDN controller in the control layer.

The Control Layer is responsible for managing the data
plane and providing external network applications with an API
to interact with the network. This functionality is implemented
by the SDN controller. The Management layer consists of
the IoT-QoS Application component, which: (1) detects new
devices that join the network, (2) enables users to specify
types to their devices, which determine the assignable QoS
profiles, (3) calculates QoS paths between pairs of devices,
(4) re-configures the network dynamically to ensure QoS and,
(5) allows the specification of dynamic QoS rules, enforcing
specific QoS levels only when events are triggered. The events
that trigger dynamic QoS are linked to a non-IP Device and

TABLE I
DEFAULT QOS PROFILES.

QoS level Bandwidth (Mbps) Latency (ms) Packet Loss (%)

Video
Low 2,8 15 2,5

Medium 4,8 10 2
High 7,2 5 1

Sensor
Low n.a 500 2

Medium n.a 300 1
High n.a 150 0

Actuator
Low n.a 1000 2

Medium n.a 1000 1
High n.a 100 0

Audio
Low 0,064 30 25

Medium 0,248 10 13
High 1.4 3 1

become activated when that device matches the user-specified
criteria.

A. Default QoS Profiles

A default QoS profile classification is proposed for IoT
devices to enable non-technical users to use the framework
without requiring technical knowledge. In particular, IoT de-
vices are classified into four types: sensor, actuator, video and
audio. Table I shows a complete overview of the proposed
classification. Traffic produced by sensors and actuators does
not need high bandwidth guarantees. Instead, QoS for these
two device types focuses on packet loss and latency. In [12],
the authors differentiate between high priority and low priority
sensor network traffic and measure the average delivery delay
in each case. Audio and video devices [13] require bandwidth
guarantees from the network, together with packet loss and
latency. For audio devices, research has been done in [14] for
the requirements in latency: sounds are perceived as separate
when there is a delay greater than 30ms . For packet loss
values, we used VoIP as a reference [15]. For video traffic,
Ongaro et al. [6] propose a formula that maps latency and
packet loss values to Mean Opinion Score (MOS) values, in
order to measure the user-perceived QoS. The required band-
width depends on the camera resolution and stream encoding.
The proposed values assume a video resolution of 1.3MP and
H.264 encoding.

III. IMPLEMENTATION

This section describes the implementation details of the
framework. First, we explain the key abstractions that were
used to implement the framework. After, the tools, technolo-
gies and techniques that were used to implement the proposed
architecture are discussed.

A. Key Abstractions

Figure 2 shows the key abstractions used to model the
domain and implement the framework: QoS Rule, QoS con-
figuration, Event and Device. A QoS Rule represents an event-
driven rule that causes the system to enforce QoS between two
devices in the network. It consists of a source and destination
device, the triggering event and a QoS configuration. An Event
is linked to a device, often a sensor, and becomes activated
when the sensor reading exceeds a threshold. Devices are
IoT devices in the network and are further classified into
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IP and non-IP, based on their communication capabilities.
Finally, a QoS Configuration represents a collection of values
for bandwidth, packet loss and latency. Every QoS Rule is
linked to a QoS configuration, which specifies QoS guarantees
that the framework needs to meet, between the source and
destination Device, when the associated Event is activated.

We illustrate the steps that the user follows in order to create
a dynamic QoS rule, through a GUI front end, to demonstrate
the use of these abstractions. In this example, the goal of
the user is to create the following QoS rule: when the non-
IP motion sensor detects movement, the IP camera traffic,
destined for the video client, should be assigned a high QoS.
This QoS rule can be part of a larger use-case, i.e. an intrusion
detection application, where camera footage quality changes
when an intruder is detected in the protected area. To achieve
this goal, the first step for the user is to create the movement
detection event, by selecting the motion sensor and specifying
a threshold. The next step is to create a QoS rule which links
the traffic between the IP camera and video client to that
event. The final step is to assign a QoS configuration to this
QoS rule, i.e. high QoS for video traffic. More concretely, the
front-end dynamically obtains information about the devices
that are present in the network, including the IP camera and
non-IP motion sensor, and presents them to the user so that
no manual registration is necessary. The user navigates to
the Events tab to create a motion detection event. For that
purpose, the user selects the motion sensor from a drop-down
list and specifies a threshold at which an event is triggered.
The event is then registered in the back-end. The user then
links this event with the QoS rule between the IP camera
and the video client. To do this, the user navigates to the
QoS Rules tab, where he creates a new QoS Rule. The user
selects the IP camera as the source device, the video client as
the destination and the motion-detection event as the trigger.
Finally, the user selects a QoS configuration from a drop-down
list, obtained dynamically from the back-end based on the type
of the source device, in this case high QoS configuration for
video. These configurations consist of predefined values for
bandwidth, packet loss and latency, summarized in Table I.
This requires little knowledge from the user about concrete
QoS parameter values and eases profile selection for the
device. To complete the use-case, the user selects the ”video
high QoS” configuration and the back-end registers the QoS
rule.

B. Tools and Technologies

The goal of this implementation is to build a system that
enables users to create dynamic QoS rules for their IoT
devices, without requiring technical knowledge. This entails
that the system can detect devices within a network, both IP
and non-IP. When events trigger the system, it is responsible
for re-configuring the network on-the-fly to reallocate network
resources between devices, to meet their dynamic QoS con-
straints. Users can interact with the system and specify QoS
rules through a front-end.

Fig. 2. Domain model.

For the non-IP Network, a SAMD21 Cortex-M0+ 32bit
low power ARM MCU chip is used to host the Gateway
component. The chip reads sensor values once per second and
forward them serially, through a USB cable, to the Handler,
implemented on a Raspberry Pi 3. Sensor values are obtained
from two off-the-shelf non-IP devices: an analog temperature
and a motion sensor. These are connected with the GPIO
pins of the MCU. The Handler parses the received sensor
readings, processes them and wraps them in IP packets that are
transmitted over the IP Network. The underlying challenge is
that all data sent by non-IP devices appear to arrive under
the Handler’s IP address in the wired network. It is thus
not possible to differentiate these packets based on source
IP address to enforce QoS on a per-device level. To solve
this issue, the Handler registers non-IP devices in the sensor
network using a REST API interface provided by the IoT-
QoS Application. In turn, the IoT-QoS Application assigns a
unique identifier to each registered non-IP device, stored in a
table. When QoS needs to be enforced for a non-IP device,
the Handler modifies the Type of Service (ToS) IP header
field for the non-IP device, based on the unique identifier,
to distinguish its traffic in the network. Finally, the IoT-QoS
Application installs flow-rules to the SDN switches in the Data
Plane that match packets on the ToS field.

The IP Network is implemented using Mininet 1, a network
emulator tool. The Hosts and IP Devices reside within the
network as virtual machines. The Data Plane consists of
SDN forwarding devices implemented in software using Open
vSwitch (OvS), an open-source tool 2.

The control layer is implemented using Floodlight, an open-
source SDN controller 3. Floodlight has a modular architecture
and provides external applications with a REST API [16] to
configure the network. Additionally, it supports the hybrid
network topology used in this implementation, a combination

1Described at http://mininet.org/overview/
2Described at http://openvswitch.org/
3Described at http://www.projectfloodlight.org/floodlight/
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Fig. 3. Network topology of the framework.

of a virtual and a physical network.
The management layer is implemented as a web service,

using the Java Spring framework . This ensures a lightweight
front-end that is decoupled of the back-end by using REST
API. The IoT-QoS Application uses the REST API of Flood-
light to insert QoS routes in the network when necessary and it
also provides, through REST, the necessary functionalities to
the front-end. The front-end is implemented using HTML and
jQuery, allowing it to run on any device with browser support.
In particular, the front-end can obtain information from the
back-end about the existing events, the registered devices and
the QoS rules between them.

IV. EVALUATION

The proposed framework is evaluated through an experiment
on the topology shown in Figure 3. The virtual network
consists of six interconnected switches and three virtual hosts:
h1, h2 and h3. The Raspberry Pi is connected with one of
the virtual SDN switches, enabling it to transmit the sensor
data to the hosts within the virtual network. Following the
example of the intrusion detection system, an IP camera (h1)
transmits footage to the video client (h2). Additionally, a
temperature sensor sends data to the gateway client. In the
beginning, the quality of the video footage should be low due
to certain links in the network being heavily loaded. When the
motion sensor detects movement, the framework re-configures
the network to ensure high QoS for the video footage, despite
network congestion. The ability of the framework to enforce
QoS is evaluated by measuring: (1) the throughput of the
video footage and (2) latency and packet loss between the
temperature sensor and gateway client before and after the
motion sensor detects movement. The experiment is successful
if the QoS after movement detection improves. Finally, the
performance of the framework is evaluated by measuring the
time necessary to re-configure the network and enforce QoS
once movement is detected.

TABLE II
QOS MEASUREMENTS OVERVIEW.

Prior movement detection After movement detection
Bandwidth (Mbps) 0.5 3.19
Latency (ms) 145.7 12.7
Packet Loss (%) 9 ∼ 0

A. QoS Measurements

Following the intrusion detection system example, the first
communication flow is between the IP camera and the video
client, corresponding to hosts h1 and h2 respectively. For
that purpose, h1 is configured as a multimedia server running
VLC4. Host h2 acts as the video client, also running VLC. By
default, the multimedia traffic follows the solid line in Figure
4. To improve readability, redundant network links are omitted
from the figure. After movement detection, the framework re-
configures the network in order to use the QoS path, shown
in Figure 4. The throughput of the stream has been measured
using Wireshark5 on host h1. Prior to movement detection,
the average throughput is 0.5Mbps. After movement detection,
the network is re-configured and the average throughput is
3.19Mbps, demonstrating the ability of the system to adapt.

The other two communication flows in this topology are
between the non-IP devices and the gateway client h3. The
default and QoS paths used for both flows are indicated
in Figure 5. Packet loss is measured at 9% and latency
at 145.7ms. After the motion sensor detects movement, the
framework re-configures the network to use the QoS paths.
The new value for packet loss is measured at ∼ 0%. The
latency between the temperature sensor and h3 and between
the motion sensor and h3 is equal to 10.7ms and 14.7ms
respectively, or on average 12.7ms. This completes the ex-
periments, illustrating the effectiveness of the framework to
meet the three QoS parameters in the presence of network
congestion. An overview of the measured results can be seen
in Table II.

B. Performance

The performance is measured in the presence of one, two
and three communication flows. For each scenario, ten ex-
periments were conducted in which the re-configuration time
is measured once movement is detected. The re-configuration
time is the sum of the process time and the communication
delay. The former is the time necessary for the framework
to take action after the event is detected. The latter is the
communication delay between the IoT-QoS Application, SDN
Controller and SDN switches. Table III shows the results. In
each case, the total amount of time is less than a second,
illustrating the capability of the system to timely enforce QoS
for the IoT devices.

V. RELATED WORK

Several frameworks have been proposed in research to
support QoS using SDN. While these frameworks do not

4Described at https://www.videolan.org/
5Described at https://www.wireshark.org/
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Fig. 4. Default and QoS paths between h1 and h2.

TABLE III
MEASUREMENTS OF RE-CONFIGURATION TIME.

# QoS Rules Process Time (ms) Total Time (ms)
1 83.2 100.1
2 125.5 143.8
3 184.5 203.5

support dynamic QoS, they aided the design of the proposed
framework. Previous frameworks can be separated into two
categories, based on the technique used to enforce QoS:
resource reservation and dynamic routing. In the former,
network resources are reserved for QoS traffic. In the latter,
QoS paths are evaluated dynamically for the communication
flows, ensuring the specified QoS guarantees.

In [7], the authors have enhanced the SDN Floodlight
controller with modules that enable QoS management. The

Fig. 5. Default and QoS paths between analog sensors and h3.

application is implemented as two Python modules that use the
northbound REST APIs that the Floodlight controller provides:
QoSManager and QoSPath. The idea is to build queues inside
the OpenFlow forwarding devices and use the ”Enqueue”
operation provided by the protocol to assign flows to these
queues. Each queue provides certain QoS guarantees.

Sharma et al. [9] introduce another resource reservation
framework. The authors create a framework, on top of Flood-
light, that brings QoS not only within the same Autonomous
System (AS), but also across multiple autonomous systems.
To achieve this, three default queues are configured on each
of the OVS switch ports. The first queue is for control traffic
from the controller to the switches, the second for high priority
traffic and the third for best effort traffic. Whenever a new
flow is discovered, the controller inserts two flow entries in
the switch. The first flow entry enforces QoS for packets that
belong to this flow by redirecting them to the second queue.
The second flow entry is for when best-effort QoS semantics
need to be applied to this flow. In that case, the ToS field is
disabled and the packets get redirected to the third queue of
the outgoing port.

The third framework, presented in [6], uses dynamic routing
to support QoS. It calculates a shortest path between two
nodes, under constraints and in the presence of multiple flows,
through a mathematical model. The framework is written
as an SDN application, running on top of Floodlight. The
mathematical model is based on the combination of two
optimization problems: Multi-Commodity Flow (MCF) and
Constrained Shortest Path (CSP). The author combines these
two models by using a mathematical model (MCFCSP) that
calculates the shortest path for a particular flow within given
constraints (CSP), while taking into account the presence of
other flows in the network (MCF). Thus, it finds the optimal
set of routes within the network.

These frameworks have been designed for traditional ser-
vices and applications with static QoS requirements. This
means that the QoS needs of the services that they support
need to be known beforehand and do not change for the
duration of the service. The framework proposed in this paper
differs from previous work [5], [6], [7], [8], [10] by enabling
dynamic QoS support in an IoT environment.

VI. CONCLUSION

The Internet of Things is predicted to grow rapidly within
the next five years, impacting daily life. For the intended
working of several IoT applications, the network needs to
provide devices with dynamic QoS guarantees when certain
events occur. SDN is a technology that enables network
programmability, which is key to tackling the dynamicity of
IoT applications. Several frameworks have been proposed in
previous research that enhance QoS in computer networks.
However, these frameworks focus on the static QoS needs
of traditional services, such as multimedia streaming or file
transferring.

This paper contributes to the research by proposing a novel
framework, on top of SDN, that provides dynamic QoS support
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for networks in which IoT devices are present. In the field of
SDN and IoT, this work is a first step towards treating IoT as
a commodity by enabling users to specify QoS guarantees for
their IoT devices by introducing representative default QoS
profiles, based on existing literature.

This framework is evaluated by performing an experiment
on a real-world, hybrid network topology, following the ex-
ample of an intrusion detection system. The values for QoS
parameters are measured for the communication between dif-
ferent devices before and after movement is detected, causing
the system to re-configure the network. By comparing the
new values of the QoS parameters with the old ones, the
effectiveness of the framework is evaluated. Additionally, the
performance of the framework is evaluated by measuring the
re-configuration time in terms of the amount of QoS rules that
are present. The results show that the re-configuration time is
in the order of milliseconds and that the QoS parameters have
significantly improved after movement is detected.

VII. FUTURE WORK

Further research is needed to enable dynamic QoS support
for wireless networks. In this paper, SDN was used to enforce
QoS within a wired, Ethernet network, as a first step towards
providing end-to-end QoS support for the IoT. However,
IoT applications are often deployed over infrastructures that
are not limited to wired networks, but also contain wireless
technologies, such as WiFi and Bluetooth. Ensuring QoS for
the IoT on wireless networks requires a different approach,
since packets are no longer transmitted over fixed, isolated
network links. Wireless SDN is a possible solution, although
it is still at its infancy and there are several challenges that
remain unanswered, such as handoffs and channel isolation
[17].

Finally, the novel framework proposed in this paper limits
itself to supporting QoS for IoT within one network. In real
world applications, packets often need to travel across the
Internet, through different networks that are being managed
by different Internet Service Providers (ISP). It is interesting
to extend the proposed framework into a distributed solution,
consisting of several SDN controllers that would cooperate in
order to guarantee the user-specified QoS across the Internet.
At first sight, the challenge here is two-fold: on the one hand,
SDN is not widely deployed across the Internet and thus a
hybrid solution would be necessary that would work on top
of both SDN networks and non-SDN networks, ensuring a
continuum in the QoS guarantees. On the other hand, addi-
tional overhead is produced due to the inter-communication
between the different SDN controllers that would manage the
Internet as a whole. As with every distributed application,
non-functional qualities such as availability, scalability, per-
formance and fault tolerance need to be taken into account,
together with their trade-offs.
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