
CPD UPDATING USING LOW-RANK WEIGHTS

Michiel Vandecappelle?†, Martijn Boussé?, Nico Vervliet?, and Lieven De Lathauwer?†

?Department of Electrical Engineering (ESAT), KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
†Group Science, Engineering and Technology, KU Leuven Kulak, E. Sabbelaan 53, 8500 Kortrijk, Belgium

Email: {Michiel.Vandecappelle, Martijn.Bousse, Nico.Vervliet, Lieven.DeLathauwer}@kuleuven.be

ABSTRACT

Tensor updating methods enable tensor decompositions to adapt
quickly when new data is added to the tensor. At present, updating
methods for the canonical polyadic decomposition (CPD) give every
tensor entry the same weight. In practice, however, data quality
or relative importance might differ between tensor entries, which
warrants the use of more general weighting schemes. In this pa-
per, an NLS updating method is developed for the CPD that uses
a weighted least squares (WLS) approach with a low-rank weight
tensor. This weight tensor itself can also be updated to allow dy-
namic weighting schemes. By exploiting the CPD structure of both
the data and weight tensors, the algorithm obtains better accuracy
than the unweighted updating methods, while being more time- and
memory efficient than batch WLS methods.

Index Terms— tensors, updating, weighted least squares.

1. INTRODUCTION

The popularity of tensor methods has been rising steadily in the
past years and they have been applied in a wide variety of fields
such as machine learning and signal processing [1, 2]. Tensors are
higher-order extensions of vectors (first-order) and matrices (second-
order). Tensor decompositions allow the compact storage of large
tensors, enabling both compression and analysis of big, higher-order
datasets. Apart from the classical alternating least squares (ALS)
algorithms, several algebraic and all-at-once optimization-based al-
gorithms for the computation of tensor decompositions have been
developed: See, for example, [3–9] and references therein.

Signals are often perturbed by noise. If prior information about
the noise is available, this information can be leveraged in the com-
putation of tensor decompositions such as the canonical polyadic
decomposition (CPD) to improve the quality of the model. Different
tensor entries can be weighted differently in the least squares (LS)
cost function. The weights may take into account the quality of the
data of the corresponding tensor entries. As an example, consider
an array of sensors with varying signal-to-noise ratios (SNR). In this
case, it makes sense to weight entries according to the quality of
the sensor they originate from, giving more weight to data from the
better sensors. Although weighted LS (WLS) algorithms exist that

Funding: Michiel Vandecappelle is supported by an SB Grant from the Re-
search Foundation – Flanders (FWO). Research furthermore supported by: (1)
Flemish Government: FWO: projects: G.0830.14N, G.0881.14N; (2) EU: The re-
search leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP7/2007-
2013) / ERC Advanced Grant: BIOTENSORS (no 339804). This paper reflects
only the authors’ views and the Union is not liable for any use that may be made
of the contained information; (3) KU Leuven Internal Funds C16/15/059.

admit general weight tensors [10, 11], it can be beneficial to use a
low-rank weight tensor. First, low-rank structure can be exploited to
make the decomposition less demanding, both in storage and com-
putation, compared to using a full weight tensor [12]. Also, approxi-
mating the weight tensor is usually good enough, as a high accuracy
of the weights is generally unnecessary or even unobtainable. Note
that the standard CPD methods can be seen as WLS methods with a
specific rank-1 weight tensor (consisting of only ones).

In practice, if new data is added to a tensor at regular time-
intervals, its storage can quickly become problematic. In contrast,
the CPD of this tensor needs only a fraction of the memory that
the full tensor requires, while the important features of the data are
maintained. Efficient updating methods for the CPD have been de-
veloped [13–15], but by combining CPD updating with a low-rank
WLS method into a weighted CPD updating method, we can get the
best of two worlds. Returning to the sensor array example, it would
be useful to leverage the prior information about the sensors in the
CPD updating process by incorporating a low-rank weight tensor.
Even stronger, one can use information about the current state of the
sensors to update the low-rank weight tensor itself, e.g., some types
of sensors might have warm-up times or they may become influenced
by external conditions that affect their performance. Therefore, we
develop a weighted nonlinear LS (NLS) CPD updating algorithm
that exploits the low-rank structure of both the weight and data ten-
sors, as described in [16,17]. This makes the algorithm computation-
and memory-efficient, properties that are primordial if the method is
to be applied in an updating context. We use Tensorlab [18], a tool-
box for tensor computations in MATLAB, for the implementation.

We fix notation, basic definitions and useful identities in the re-
mainder of this section. Our method is derived in Section 2. We
illustrate the algorithm on a practical example in Section 3.

1.1. Notation, definitions and identities

Scalars, vectors, matrices and tensors are denoted by lowercase (a),
bold lowercase (a), bold uppercase letters (A), and letters in calli-
graphic script (T), respectively. The kth frontal slice T::k of a tensor
is a matrix obtained by fixing the third index of the tensor. A mode-
n unfolding of a tensor T is a matrix T(n) with the mode-n vectors
as its columns following the ordering in [19]. The vectorization op-
erator is denoted by vec(·) and [aT; bT] refers to row-wise concate-
nation. Kronecker, Hadamard, column- and row-wise Khatri–Rao
products of matrices are written as ⊗, ∗, �, and �T, respectively.
The Moore–Penrose pseudoinverse of a matrix A is denoted by A†.
A tensor has rank 1 if it is the outer product of three non-zero vec-
tors. The tensor rank is the minimal number of rank-1 tensors needed
to write the tensor as their linear combination. The derivations will
focus on the case of third-order real tensors. The CPD of a tensor

decomposes a rank-R tensor T ∈ RI×J×K as a linear combination
of R rank-1 terms: T =

∑R
r=1 ar ⊗ br ⊗ cr = JA,B,CKR , with

A = [a1 . . .aR] ∈ RI×R, and similarly for B and C. The mode-3
unfolding is given by T(3) = C(B�A)T. Useful identities are:

JA,B,CK ∗ JD,E,FK =
q
A�T D,B�T E,C�T F

y
, (1)

〈JA,B,CK , JD,E,FK〉 = 1T[(DTA) ∗ (ETB) ∗ (FTC)]1. (2)

2. NLS CPD UPDATING USING LOW-RANK WEIGHTS

Assume that one has computed the rank-R CPD
q
X,Y,Z

y
R

of a
third-order tensor T ∈ RI×J×K using a WLS approach with low-
rank weight tensor W =

q
N,P,Q

y
L

. Then, let frontal slices M

and V be added to both T and W in the third mode, as shown in
Figure 1, obtaining the tensors T and W , respectively. First, we
want to update the CPD of the weight tensor to JN,P,QKL, where
a new row q is appended to Q to include its new slice: Q = [Q ; q].
This can be done using the CPD updating method described in [13].
Next, we would like to use this updated weight tensor to update the
CPD of T to a CPD JA,B,CKR∗ of T using a WLS approach with
weight tensorW , where R∗ can be different from R.

The algorithm builds upon a dogleg trust-region Gauss-Newton
(GN) algorithm, but the expressions are valid for more general NLS
and quasi-Newton (QN) algorithms. The GN algorithm solves the
following minimization problem:

min
sk

1

2
‖vec(Fk) + Jksk‖2F such that ‖sk‖ ≤ ∆k,

where Fk = W ∗ (JA,B,CK− T) is the residual, and sk, Jk and
∆k are the step, Jacobian and trust radius in iteration k, respectively.
To increase efficiency, preconditioned conjugate gradient (PCG) it-
erations are used to solve the linear system JT

kJksk = −∇fk for the
step sk, where ∇ is the gradient operator. Efficient expressions for
the objective function, gradient and Gramian-vector products can be
derived for the GN algorithm with PCG by exploiting the CPD struc-
ture ofW and T . We use a similar approach as that in [13] to obtain
these expressions. They remain valid when the rank of the new CPD
differs from that of the old CPD, so that the algorithm enables rank-
changes between updates. The use of a block-Jacobi preconditioner
and an initialization strategy are also discussed. The section ends
with an analysis of the complexity of the algorithm. The full algo-
rithm is given in Algorithm 1.

Algorithm 1: WLS CPD updating

Input : CPD
q
X,Y,Z

y
R

of old tensor T , new slice M,
CPD

q
N,P,Q

y
L

of old weighting tensorW , new
weighting slice V, number of GN iterations itGN,
number of CG iterations itCG, new rank R∗.

Output: CPD JA,B,CKR∗ of T , CPD ofW .
1 Compute CPD ofW using (unweighted) CPD updating.
2 Initialize A,B,C using (3).
3 Solve the NLS-problem

minA,B,C

∥∥W ∗ (JA,B,CKR∗ − T
)∥∥2

F
with itGN GN

iterations and itCG preconditioned CG iterations per GN
iteration, using the efficient evaluations in Section 2.

4 Return the updated factor matrices A, B and C.

W ∗ T ≈ N
P

Q

∗ A B

C

Fig. 1. WLS updating using low-rank weights enables efficient CPD
updates by exploiting the low-rank structure of both the weight and
data tensor. Left: the weight (W) and the data (T) tensor are ex-
tended with an extra slice (red and green, respectively) in the third
mode. Right: first, the CPD of the weight tensor is updated by
adding a new vector (red) to the factor matrix in the third mode
and modifying the existing factor matrices (pink) to obtain the CPD
JN,P,QK. This updated low-rank weight tensor is then used to
compute the updated CPD model JA,B,CK of the data in a similar
way, this time using a WLS approach (dark and light green).

2.1. Objective function

The WLS objective function for the computation of the CPD
JA,B,CK of the updated low-rank tensor T using the updated
weight tensorW is as follows:

min
A,B,C

f = min
A,B,C

1

2
‖W ∗ (JA,B,CK− T)‖2F .

By splitting C as [C ; c], with c the last row of C, and similarly for
the factor matrix Q ofW , f can be expanded as

f =
1

2

∥∥qN,P,Q
y
∗
(q

A,B,C
y
− T

)∥∥2
F

+
1

2

∥∥qN,P,q
y
∗ (JA,B, cK−M)

∥∥2
F
.

To limit memory usage, the tensor T is never stored during the up-
dating process. Its CPD approximation

q
X,Y,Z

y
is used instead.

Thus, using (1), the objective function becomes

f ≈ 1

2

∥∥∥rA′,B′,C
′
z
−

q
X′,Y′,Z′

y∥∥∥2
F

+
1

2

∥∥qA′,B′, c′
y
−

q
N,P,q

y
∗M

∥∥2
F
,

where A′ = N�T A, B′ = P�T B, C
′

= Q�T C, c′ = q�T c
etc. We can expand f to obtain

f ≈ 1

2

∥∥qA′,B′,C′
y∥∥2

F
−
〈r

A′,B′,C
′
z
,
q
X′,Y′,Z′

y〉
+

1

2

∥∥qX′,Y′,Z′
y∥∥2

F
−
〈q

A′,B′, c′
y
,M′〉+

1

2

∥∥M′∥∥2
F
.

Here, we used that 1
2

∥∥∥rA′,B′,C
′
z∥∥∥2

F
+ 1

2
‖JA′,B′, c′K‖2F =

1
2
‖JA′,B′,C′K‖2F and defined the weighted new slice M′ asq
N,P,q

y
∗M. The CPD structure of f can be exploited to obtain

expressions that admit efficient computations. We use (2) to sim-
plify the first two terms to: 1T[(A′

T
A′) ∗ (B′

T
B′) ∗ (C′

T
C′)]1

and 1T[(X′
T
X′) ∗ (Y′

T
Y′) ∗ (Z′

T
Z′)]1, and the third term to

1T[(X′
T
A′) ∗ (Y′

T
B′) ∗ (Z′

T
C
′
)]1. The last two terms are simply

inner products of matrices.

2.2. Gradient

The gradient ∇f =
[
vec
(

∂f
∂A

)
; vec

(
∂f
∂B

)
; vec

(
∂f
∂C

)]
, which we

denote by [gA; gB ; gC] has the following terms:

gA =
(
MA

)T
vec
[
A′[(B′

T
B′) ∗ (C′

T
C′)]−

X′[(Y′
T
B′) ∗ (Z′

T
C)]−M′B′diag(c′)

]
,

gB =
(
MB

)T
vec
[
B′[(A′

T
A′) ∗ (C′

T
C′)]−

Y′[(X′
T
A′) ∗ (Z′

T
C
′
)]−M′TA′diag(c′)

]
,

gC =
(
MC

)T
vec
[
C′[(A′

T
A′) ∗ (B′

T
B′)]+[

−Z′[(X′TA′)∗(Y′TB′)]
−vec(M′)T(B′�A′)

]]
.

where MA = [IR⊗diag(n1); ... ; IR⊗diag(nL)], with In the (n× n)-
identity matrix. The matrices MB and MC are defined analogously
using P and Q. As before, we split T ′ into its old part T ′ =W ∗T
and its new slice M′ and replace T ′ by its CPD

q
X′,Y′,Z′

y
. By

exploiting the CPD structure in this way, we obtain sub-gradients
which can be computed efficiently.

2.3. Gramian-vector product and preconditioner

In every CG-iteration, we need to efficiently compute a Gramian-
vector product JTJα. As the Gramian does not depend on T , we can
use similar expressions as those in [12] for the Gramian-vector prod-
ucts and preconditioner. We apply a block-Jacobi preconditioner
[20] consisting of the diagonal blocks PA, PB and PC , where

PA =
(
MA

)† (
[(B′

T
B′) ∗ (C′

T
C′)]−1 ⊗ II

)(
MA

)†T
,

and PB and PC are defined analogously. The inverses of the small
(RL×RL)-matrices are inexpensive. We can exploit the structure
of the problem to avoid the computation and storage of the pseudo-
inverses. To evaluate PAvec(Γ1), where Γ1 has the same dimen-
sions as A, we normalize the rows of N to obtain N̂ and then com-
pute (N̂�T Γ1)[(B′

T
B′) ∗ (C′

T
C′)]−1. Next, we tensorize this

expression into an (I × R × L)-tensor F̂ and perform element-
wise multiplications of N̂ with every lateral slice of F̂ . Finally,
we compute the mode-3 sum of this tensor to obtain PAvec(Γ1).
The products PBvec(Γ2), and PCvec(Γ3) can be computed analo-
gously, where the Γ1 and Γ2 have the same dimensions as B and C,
respectively.

2.4. Initialization and windowing

Assuming the model does not change too abruptly, the previous CPDq
X,Y,Z

y
can be used to initialize the algorithm, after extending Z

with a new row cT
new: thus A = X, B = Y and C = [Z ; cT

new]. The
vector cnew can be obtained from the LS solution of the system

min
c

1

2

∥∥∥V ∗ (rA,B, cT
z
−M

)∥∥∥2
F
,

where A and B are fixed. We can rewrite this as

min
c

1

2

∥∥∥(B′ �A′)(c⊗ qT)− vec(M′)
∥∥∥2
F
.

Table 1: Per-iteration complexity of the WLS CPD updating algo-
rithm for an (I × I × I)-tensor.

Calls/itGN Complexity

Weighting of factor matrices 1 O(3RLI)

Objective function 1+itTrust Reg. O(2(RL)2I + I2)

Gradient 1 O(6(RL)2I + 3RLI2)

Gramian-vector product itCG O(3(RL)2I + 3(RL)3)

From the LS solution and the chain rule, we obtain after simplifica-
tion:

c = unvec
(

vec(M′)TQ̂Ŵ−1
)T (

qT/‖q‖2
)
, (3)

where Q̂ = (B′�A′), Ŵ = Q̂TQ̂ =
(

(A′
T
A′) ∗ (B′

T
B′)
)

, and

unvec(·) reorders the (RL× 1)-matrix into an (R×L)-matrix. The
pseudoinverse of a vector is cheap to compute and the Khatri-Rao
structure of Q̂ can be exploited when computing vec(M′)TQ̂ [21].

To make the method perform in non-stationary environments,
past slices can gradually be forgotten using a sliding window. This
can be handled by simply removing the first row of Z before the next
updating step. An exponential window can be applied by multiplying
the rows of Q with the appropriate scaling terms.

2.5. Complexity analysis

The per-iteration complexity of the algorithm is listed in Table 1 for
a tensor T ∈ RI×J×K , with I = J = K. The expressions are sim-
ilar to those in [13], but in our case, the factor matrices have RL
columns instead of R, the gradients require an extra multiplication
and the evaluations of the preconditioned matrix-vector products re-
quire 3(RL)2 max (I, J,K) + 3(RL)3 flops. The weight tensor is
updated using the NLS CPD updating method from [13], so the com-
putation cost is dominated by that of the WLS updating step.

The method requires the storage of the new data and weight-
ing slices (O(IJ)), factor matrices, gradients and Gramian-vector
products (allO(RL(I + J +K))). Keeping the MA-type matrices
in memory is not required. In contrast, only storing the full tensor
would already require O(IJK) memory.

3. DIRECTION OF ARRIVAL ESTIMATION (DOA)

Direction-of-arrival (DOA) estimation problems arise frequently in
the field of array processing [22]. It has been demonstrated that in-
corporating prior knowledge about the sensor accuracies by use of
a low-rank weight tensor can improve the performance of DOA-
methods [12]. We show that our proposed method can achieve a
higher accuracy than standard LS updating when sensor conditions
are non-constant, e.g., a sensor breaks down unexpectedly or the
environment temperature changes, while being more efficient than
batch WLS. The experiment considers the case of line-of-sight sig-
nals that impinge upon a uniform rectangular array (URA). The CPD
can be applied for DOA-retrieval in this case [23–26].

Our URA has M ×M sensors, each acquiring K samples from
R different moving sources in the far field. The omnidirectional sen-
sors are evenly spaced with inter-sensor spacing ∆. The azimuths
Z ∈ CM×R and elevations L ∈ CM×R of the R sources at each
time step lead to an observed tensor T ∈ CM×M×K , perturbed
by noise, for which the kth frontal slice admits a low rank approx-
imation T ≈

r
A(k),E(k), s(k)

z
. The matrix A(k) ∈ CM×R has

entries a(k)mr = exp((m− 1)2π/λ sin(zrkπ/180)∆i) and E(k) ∈

−90

100

Azim.

LS

−10

100

Elev.

−90

100

Azim.

Breakdown WLS

20 40 60 80 100
−10

100

Time (samples)

Elev.

Fig. 2. A low-rank weight tensor can improve DOA estimation by
giving lower importance to values obtained by broken sensors. Three
sources are tracked during 80 samples and their DOAs (full line) and
estimated DOAs (marks) are displayed. Tracking clearly fails after
the sensor breakdown at t = 40 samples for the LS updating method
(top two figures), while the WLS updating method (bottom two fig-
ures) continues to obtain good estimates despite the breakdown.

Table 2: The median absolute errors of the azimuths and elevations
are much smaller if a low-rank weight tensor is applied.

LS WLS

Azimuth 10.788 1.228 16.436 0.652 0.340 0.976
Elevation 3.898 2.311 3.548 0.297 0.270 0.250

Table 3: The updated WLS-method requires less CPU-time (s) than
its batch counterpart.

Tensor dimensions WLS Updating Batch WLS

400× 400× 400 10.5 14.6
500× 500× 500 20.6 29.1
600× 600× 600 34.7 49.1
700× 700× 700 55.3 110
800× 800× 800 81.9 574

CM×R has entries e(k)mr = exp((m− 1)2π/λ sin(lrkπ/180)∆i),
with i the imaginary unit. The vector s(k) ∈ C1×R contains the
sources and λ is the wavelength. With a rank-R CPD of a few frontal
slices of T , the positions of the sources can be recovered.

We choose a URA with M2 = 400 sensors and determine the
DOA of R = 3 sources with oscillating trajectories. K = 100
samples are collected and in each time step, the CPD of the observed
tensor is updated to incorporate the new data. We assume that the
sensors obtain samples with an SNR of 20 dB. We further assume
that sensors 26 to 185 break down after 40 samples, which results in
their sample SNR dropping to −14 dB. We choose a weight tensor
W , where all wijk are set to 1, except for the entries where 26 ≤

10(i− 1) + j ≤ 185 & k > 40. These are set to 0.02 to reflect the
relative difference in SNR between the sensors after the breakdown.
These weights were obtained by a heuristic approach, but optimal
weights can be obtained from the Fisher information. Note thatW
has rank 3, but the parts before and after the breakdown are rank-1
and rank-2, respectively, so we start with a rank-1W and update it
to a rank-3 (at slice 40) and finally a rank-2 (at slice 46) CPD.

We compare LS updating methods for the weighted and non-
weighted case. The updating methods start from a rank-3 CPD of the
first 20 slices of T and update the CPD after every new sample slice
is added to the tensor, using a sliding window of 6 slices, to estimate
the mean DOAs during the last 6 time steps. The updating meth-
ods are limited to itGN = itCG = 5. The memory requirements of the
updating methods are much smaller than those of their batch coun-
terparts, as only one slice has to be stored alongside the old CPD.
In Table 2, we report the median across 100 trials of the median ab-
solute estimation errors during the updating process. It is clear that
the accuracy of the DOA estimation improves by applying the low-
rank weight tensorW to the problem, as the WLS updating method
outperforms the LS updating method significantly. In Figure 2, one
trial of the experiment is shown. One can again see that it is ben-
eficial to apply a low-rank weight tensor to the CPD computation.
Unlike the LS updating method, which fails after sensor breakdown,
the estimates of the WLS updating method remain good.

For the relatively small third-order tensors from the DOA ex-
periment, time gains are rather limited. In Table 3, we report timing
results for large-scale tensors. The listed timings (in seconds) are for
a one-slice update in the third mode of a rank-5 CPD, weighted with
a rank-2 weight tensor. All methods are limited to itGN = itCG = 5.
The CPDs are computed with an Intel Core i7-6820HQ CPU at
2.70GHz and 16GB of RAM using MATLAB R2016b and Tensor-
lab 3.0. It can be seen that the updating method outperforms its batch
counterpart for sufficiently large tensors, with memory requirements
that are negligible compared to those of the batch method.

4. CONCLUSION AND FURTHER WORK

A new updating method for CPD updating with low-rank weights is
proposed. We exploit the CPD structure of both the weight and data
tensor to efficiently compute a new CPD when new slices are added
to the data tensor. Expressions are derived for the objective function,
gradients and gradient-vector products of the NLS algorithm, along
with an analysis of their complexity. We show that WLS CPD up-
dating with low-rank weights outperforms the standard LS algorithm
for DOA-estimation. Its accuracy is close to that of the batch WLS
method, while memory requirements are much smaller.

The low-rank weight tensor can be updated while new samples
are added to the tensor. Aside from using prior information, as we
did in the DOA example, one could also modify the weight tensor
in a data-driven way. This could, for instance, be done by either
increasing or decreasing the weight of tensor entries that are badly
explained by the model. Further, as the updating algorithm can han-
dle rank changes, automatic rank-detection would be very useful to
adapt the rank of the CPD of both the weight tensor and the data ten-
sor to new data during the updating process. In this article, we focus
on the case of third-order tensors, but extensions to higher-order ten-
sors are possible. For these tensors, the efficiency gains in memory
and computation time become even more significant.

5. REFERENCES

[1] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E.
Papalexakis, and C. Faloutsos, “Tensor decomposition for sig-
nal processing and machine learning,” IEEE Transactions on
Signal Processing, vol. 65, no. 13, pp. 3551–3582, 2017.

[2] A. Cichocki, C. Mandic, A.H. Phan, C. Caiafa, G. Zhou,
Q. Zhao, and L. De Lathauwer, “Tensor decompositions
for signal processing applications. From two-way to multiway
component analysis,” IEEE Signal Processing Magazine, vol.
32, pp. 145–163, 2015.

[3] A. H. Phan and A. Cichocki, “PARAFAC algorithms for large-
scale problems,” Neurocomputing, vol. 74, no. 11, pp. 1970–
1984, 2011.

[4] L. Sorber, M. Van Barel, and L. De Lathauwer, “Optimization-
based algorithms for tensor decompositions: Canonical
polyadic decomposition, decomposition in rank-(Lr, Lr, 1)
terms, and a new generalization,” SIAM Journal on Optimiza-
tion, vol. 23, no. 2, pp. 695–720, 2013.

[5] I. Domanov and L. De Lathauwer, “Canonical polyadic de-
composition of third-order tensors: Reduction to generalized
eigenvalue decomposition,” SIAM Journal on Matrix Analysis
and Applications, vol. 35, no. 2, pp. 636–660, 2014.

[6] N. Vervliet, O. Debals, L. Sorber, and L. De Lathauwer,
“Breaking the curse of dimensionality using decompositions of
incomplete tensors: Tensor-based scientific computing in big
data analysis,” IEEE Signal Processing Magazine, vol. 31, no.
5, pp. 71–79, 2014.

[7] N. Vervliet and L. De Lathauwer, “A randomized block sam-
pling approach to canonical polyadic decomposition of large-
scale tensors,” IEEE Journal of Selected Topics in Signal Pro-
cessing, vol. 10, no. 2, pp. 284–295, 2016.

[8] E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Par-
Cube: Sparse parallelizable tensor decompositions,” Machine
Learning and Knowledge Discovery in Databases, pp. 521–
536, 2012.

[9] L. Sorber, M. Van Barel, and L. De Lathauwer, “Structured
data fusion,” IEEE Journal of Selected Topics in Signal Pro-
cessing, vol. 9, no. 4, pp. 586–600, 2015.

[10] P. Paatero, “A weighted non-negative least squares algorithm
for three-way PARAFAC factor analysis,” Chemometrics and
Intelligent Laboratory Systems, vol. 38, no. 2, pp. 223–242,
1997.

[11] G. Hollander, P. Dreesen, M. Ishteva, and J. Schoukens,
“Approximate decoupling of multivariate polynomials using
weighted tensor decomposition,” Numerical Linear Algebra
with Applications, p. e2135, 2017.

[12] M. Boussé and L. De Lathauwer, “Nonlinear least squares al-
gorithm for canonical polyadic decomposition using low-rank
weights,” in IEEE 7th International Workshop on Computa-
tional Advances in Multi-Sensor Adaptive Processing (CAM-
SAP17), December 2017, pp. 39–43.

[13] M. Vandecappelle, N. Vervliet, and L. De Lathauwer, “Nonlin-
ear least squares updating of the canonical polyadic decompo-
sition,” in Proceedings of the 2017 25th European Signal Pro-
cessing Conference (EUSIPCO2017), August 2017, pp. 693–
697.

[14] D. Nion and N. D. Sidiropoulos, “Adaptive algorithms to
track the parafac decomposition of a third-order tensor,” IEEE
Transactions on Signal Processing, vol. 57, no. 6, pp. 2299–
2310, 2009.

[15] J. Sun, D. Tao, S. Papadimitriou, P. S. Yu, and C. Faloutsos,
“Incremental tensor analysis: Theory and applications,” ACM
Transactions on Knowledge Discovery from Data, vol. 2, no.
3, pp. 11:1–11:37, October 2008.

[16] N. Vervliet, O. Debals, and L. De Lathauwer, “Tensorlab
3.0 — numerical optimization strategies for large-scale con-
strained and coupled matrix/tensor factorization,” in Confer-
ence Record of the 50th Asilomar Conference on Signals, Sys-
tems and Computers (ASILOMAR 2016), November 2016.

[17] N. Vervliet, O. Debals, and L. De Lathauwer, “Exploiting ef-
ficient representations in tensor decompositions,” Technical
Report 16-174, ESAT-STADIUS, KU Leuven, Belgium, 2016.

[18] N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De
Lathauwer, “Tensorlab 3.0,” Available online, March 2016.
URL: http://www.tensorlab.net.

[19] T. G. Kolda and B. W. Bader, “Tensor decompositions and
applications,” SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.

[20] M. Benzi, “Preconditioning techniques for large linear sys-
tems: a survey,” Journal of Computational Physics, vol. 182,
no. 2, pp. 418–477, 2002.

[21] N. Vannieuwenhoven, K. Meerbergen, and R. Vandebril,
“Computing the gradient in optimization algorithms for the
CP decomposition in constant memory through tensor block-
ing,” SIAM Journal on Scientific Computing, vol. 37, no. 3, pp.
C415–C438, 2015.

[22] H. Krim and M. Viberg, “Two decades of array signal process-
ing research: the parametric approach,” IEEE signal process-
ing magazine, vol. 13, no. 4, pp. 67–94, 1996.

[23] N. D. Sidiropoulos, R. Bro, and G. B. Giannakis, “Parallel
factor analysis in sensor array processing,” IEEE Transactions
on Signal Processing, vol. 48, no. 8, pp. 2377–2388, 2000.

[24] M. Li, Z. Li, and A. V. Vasilakos, “A survey on topology
control in wireless sensor networks: Taxonomy, comparative
study, and open issues,” Proceedings of the IEEE, vol. 101, no.
12, pp. 2538–2557, 2013.

[25] R. Roy and T. Kailath, “ESPRIT-estimation of signal param-
eters via rotational invariance techniques,” IEEE Transactions
on Acoustics, Speech, and Signal Processing, vol. 37, no. 7, pp.
984–995, 1989.

[26] N. D. Sidiropoulos, “Generalizing Carathéodory’s uniqueness
of harmonic parameterization to N dimensions,” IEEE Trans-
actions on Information Theory, vol. 47, no. 4, pp. 1687–1690,
2001.

