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1 Introduction

Aristotelian diagrams visualize the logical relations among a finite set of elements
from some logical, lexical or conceptual system. The oldest and most widely
known example is undoubtedly the so-called ‘square of opposition’ (Parsons, 2012).
These diagrams have a well-documented history in philosophical logic, and in re-
cent years, they have come to serve “as a kind of lingua franca” (Jacquette, 2012,
p. 81) that facilitates communication, research and teaching in a wide variety of
disciplines that deal with logical reasoning in all its facets, including philosophy,
cognitive science, law and computer science (Demey and Smessaert, 2018a).

Logical geometry studies Aristotelian diagrams as objects of independent in-
terest. This research programme investigates the visual/diagrammatic properties
of these diagrams (Demey and Smessaert, 2014a, 2016b, 2017b, 2018b), but also
studies various aspects of their logical behavior (Demey, 2015, 2018; Pizzi, 2016;
Demey and Smessaert, 2018a; Smessaert and Demey, 2014, 2017). From this latter
perspective, it is clear that Aristotelian diagrams are directly related to a number
of metalogical and metalinguistic issues.1 Some of these issues have already been
explored by authors such as Löbner (1987), Béziau (2012, 2013), Seuren (2014)
and Diaconescu (2015). Furthermore, Demey (2017a) discusses their practical rel-
evance in the context of teaching metalogic to certain groups of students. A sys-
tematic and comprehensive overview of work on metalogical Aristotelian diagrams
is provided by Demey and Smessaert (2016a).

The present paper has two interrelated aims. On the one hand, I will provide
a fully general and mathematically precise account of the Aristotelian relations,
which takes into account their metalogical aspects, and explains how a single type
of relations can hold between object-logical as well as between metalogical enti-
ties. On the other hand, I will argue for the theoretical fruitfulness of this general
approach to the Aristotelian relations, by showing how it enables a unified prag-
matic account of certain linguistic phenomena, regardless of whether they occur

1In this paper, I will draw a clear distinction between meta-logic and meta-language. A notion
or question will be characterized as metalogical when we are primarily concerned with its abstract
mathematical properties, regardless of how it is expressed in any specific language. By contrast, a
metalogical notion will be specifically characterized as metalinguistic when we want to emphasize
the specific details of how (if at all) this notion is expressed in natural language (e.g. by means of a
single word). Roughly speaking, metalogical questions will mainly be addressed in Section 2 of this
paper, while metalinguistic issues will mainly be addressed in Section 3.
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at the object- or metalinguistic level. The paper thus fits within the larger project
of constructing a bridge between logical geometry and metalogical and -linguistic
considerations. As will become clear throughout the paper, this bridge accommo-
dates two-way traffic between both domains: metalogical considerations are cru-
cial for obtaining a complete account of the Aristotelian relations, and vice versa,
Aristotelian diagrams can shed new light on certain metalinguistic expressions

The paper is organized as follows. Section 2 provides an in-depth analysis of
the Aristotelian relations, focusing on their metalogical nature and showing how
a single kind of relations can hold between object-logical as well as metalogical
entities. Next, Section 3 describes some linguistic data regarding words such as
some and contrary, and argues that highly similar Aristotelian diagrams and lin-
guistic explanations are available for both the object-linguistic data on some and
the metalinguistic data on contrary. Finally, Section 4 wraps things up, and offers
some concluding thoughts on the heuristic importance of Aristotelian diagrams.

2 A Metalogical Perspective on the Aristotelian Relations

In this section I will argue that the Aristotelian relations are themselves funda-
mentally metalogical in nature, and explain how it is possible for a single type of
relations to hold between metalogical as well as object-logical entities. The exact
way in which the Aristotelian relations are defined turns out to be highly relevant in
addressing these issues. In Subsections 2.1–2.3, I will therefore introduce a series
of increasingly more abstract definitions, and discuss which metalogical considera-
tions are taken into account in each of them. Finally, in Subsection 2.4, I will make
some broader philosophical remarks regarding its unificatory power, and draw a
connection with the cumulative hierarchy in set theory.

2.1 The Aristotelian Relations from an Informal Perspective

The oldest definition of the Aristotelian relations dates back to Aristotle himself,
and has been used throughout the history of philophical logic (Ackrill, 1961; Par-
sons, 2012). In contemporary work on Aristotelian diagrams, too, it is still the most
widely used definition (Béziau and Jacquette, 2012; Béziau and Basti, 2017). The
formulation is entirely informal, and looks as follows:

Definition 1. Two statements ϕ and ψ are said to be
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contradictory iff ϕ and ψ cannot be true together and
ϕ and ψ cannot be false together,

contrary iff ϕ and ψ cannot be true together and
ϕ and ψ can be false together,

subcontrary iff ϕ and ψ can be true together and
ϕ and ψ cannot be false together,

in subalternation iff ϕ entails ψ and
ψ does not entail ϕ.

This definition is clearly modal in nature. Consider, for example, the definition
of the contradiction relation: for two statements to be contradictory to each other,
it is not merely required that they are actually not true together, but rather that
they cannot be true together. The modal verb can(not) is also explicitly present in
the definition of (sub)contrariety, while the modal nature of subalternation is clear
from the fact that entailment should itself be understood in modal terms: that ϕ
entails ψ means that ψ cannot be false while ϕ is true (i.e. ϕ and the negation of
ψ cannot be true together). Because of this modal aspect, the Aristotelian relation
holding between two statements (if any at all) is not uniquely determined by those
statements’ actual truth values. For example, if the first statement is actually false
and the second one actually true, they might turn out to be contradictory, contrary,
subcontrary, in subalternation, or in no Aristotelian relation at all.2

Definition 1 involves the notions of truth and falsity — either explicitly, or
implicitly via the notion of entailment (cf. supra). Since truth and falsity can ex-
clusively be ascribed to statements,3 it follows that the Aristotelian relations are
restricted to statements. For example, it is meaningless to say that a set X is true,
and a fortiori thus also to say that two sets X and Y can be true together, which
would be required if we wished to say that X and Y are subcontrary to each other.

Most importantly, because of its informal nature, Definition 1 can apply both
to object- and to metalogical statements. To illustrate this, consider once again the
definition of contradiction, and note the ambiguity of the word true appearing in
it: this word can stand for ‘truth in a model’ (in case two object-logical statements
are said to be contradictory), or for ‘absolute, informal truth’ (in case two metalog-
ical statements are said to be contradictory). Obviously, similar remarks apply to
(sub)contrariety and subalternation (the latter being defined in terms of entailment,
which itself also involves the notion of truth).

A problem with Definition 1 is that it makes the Aristotelian relations entirely
insensitive to the ‘background logic’. Which Aristotelian relation holds between

2The humanist Lorenzo Valla’s criticisms of the scholastic definitions of the Aristotelian relations
seem to be, at least partially, based on a misunderstanding of this modal aspect. For example, Valla
argued that two propositions that are actually false cannot be said to be contrary to each other (Nauta,
2009; Copenhaver and Nauta, 2012).

3I do not mean to enter here into the philosophical debate whether truth and falsity should be
ascribed to sentences, propositions, utterances, etc. (Glanzberg, 2013). I only wish to make the more
fundamental point that, at the very least, truth and falsity should not be ascribed to predicates, sets,
relations, etc., on pain of an avalanche of category mistakes.
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two (object-logical) formulas partially depends on the logical system that is being
assumed. The well-known issue of existential import can be seen as an illustration
of this problem: in classical syllogistics, there is a subalternation from ∀x(Sx →
Px) to ∃x(Sx∧Px), but in contemporary predicate logic, these formulas stand in
no Aristotelian relation at all (Demey and Smessaert, 2018a, Section 4).

2.2 The Aristotelian Relations from a Logical Perspective

In order to deal with the issue of logic-sensitivity, a new and more precise way of
defining the Aristotelian relations has been proposed (Smessaert, 2012; Smessaert
and Demey, 2014, 2015):

Definition 2. Let S be a logical system, which is assumed to have Boolean op-
erators and a model-theoretic semantics |=. Two formulas ϕ,ψ ∈ LS are said to
be

S-contradictory iff S |= ¬(ϕ ∧ ψ) and S |= ϕ ∨ ψ,
S-contrary iff S |= ¬(ϕ ∧ ψ) and S 6|= ϕ ∨ ψ,
S-subcontrary iff S 6|= ¬(ϕ ∧ ψ) and S |= ϕ ∨ ψ,
in S-subalternation iff S |= ϕ→ ψ and S 6|= ψ → ϕ.

This definition stays very close to the original, more informal Definition 1 in
several key aspects. For example, the condition thatϕ andψ cannot be true together
is formalized as S |= ¬(ϕ ∧ ψ), which means that for all S-models M it holds that
M |= ¬(ϕ ∧ ψ), or equivalently: S has no model M in which ϕ and ψ are both
true (i.e. M |= ϕ and M |= ψ). Similarly, the condition that ϕ and ψ can be false
together is formalized as S 6|= ϕ ∨ ψ, which means that there exists an S-model M
such that M 6|= ϕ∨ψ, or equivalently: S has a model M in which ϕ and ψ are both
false (i.e. M 6|= ϕ and M 6|= ψ). The modal aspects of Definition 1 thus resurface
here as the (non-)existence of models of the logical system S. This clearly shows
how the Aristotelian relations are metalogical in nature: their definition involves
quantifying over the entire class of models of S.4,5

Since it explicitly refers to the logical system S, Definition 2 is capable of
dealing with the logic-sensitivity of the Aristotelian relations. For example, we
can now say that two formulas are S1-contrary, but S2-contradictory, for distinct
logical systems S1 and S2 that share the same object language. In terms of models,
this means that (i) neither S1 nor S2 has any models in which both formulas are
true, (ii) S1 has at least one model in which both formulas are false, but (iii) all

4These modal/metalogical aspects are ignored by Price, who writes that “ϕ and ψ are contraries if
they cannot be true together, and it follows from the truth tables that this is just to say that ¬(ϕ ∧ ψ)
is true” (1990, p. 226, notational conventions changed to those of the present paper). Again: the
idea that ϕ and ψ cannot be true together does not correspond to ¬(ϕ ∧ ψ) being true, but rather to
¬(ϕ ∧ ψ) being a tautology (in the logical system under consideration). (Also recall Footnote 2.)

5Note that it follows directly from Definition 2 that the Aristotelian relations only hold up to
logical equivalence, i.e. for all formulas ϕ,ψ, ϕ′, ψ′ ∈ LS and Aristotelian relations RS, it holds
that if ϕ ≡S ϕ

′ and ψ ≡S ψ
′, then RS(ϕ,ψ) iff RS(ϕ

′, ψ′).
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such models fail to qualify as models of S2 (since the latter logical system has no
models in which both formulas are false).

Just like the previous definition, Definition 2 is based on the notion of truth,
and thus only applies to statements (it still does not make sense to speak of two sets
being contrary to each other, for example). However, in contrast to Definition 1, the
notion of truth is now explicitly understood as ‘truth in a model (of S)’, and hence,
Definition 2 only applies to object-logical formulas. For example, conditions such
as S |= ¬(ϕ∧ψ) and S 6|= ψ → ϕ are only meaningful for formulas ϕ and ψ from
the object language LS of the logical system S.

2.3 The Aristotelian Relations from a Boolean Perspective

A key insight of Definition 2 is that the Aristotelian relations are fully determined
by the Boolean structure of the logical system S. This suggests a third and final
way of defining these relations, which abstracts away from the concrete details of
S, and only focuses on its Boolean structure:

Definition 3. Let B = 〈B,∧B,∨B,¬B,>B,⊥B〉 be a Boolean algebra. Two ele-
ments x, y ∈ B are said to be

B-contradictory iff x ∧B y = ⊥B and x ∨B y = >B,
B-contrary iff x ∧B y = ⊥B and x ∨B y 6= >B,
B-subcontrary iff x ∧B y 6= ⊥B and x ∨B y = >B,
in B-subalternation iff x ∧B y = x and x ∧B y 6= y.

Unlike the first two definitions, this third characterization is no longer explicitly
modal or metalogical in nature. Rather, it should be seen as an abstract ‘template’:
concrete definitions of the Aristotelian relations for specific contexts (which may or
may not be metalogical in nature) can be obtained from it by plugging in concrete
Boolean algebras for B. I will now discuss some of the most important (families
of) concrete instances of Definition 3.

The most prototypical cases arise when B is taken to be (a subalgebra of) the
powerset ℘(X) of some set X (Givant and Halmos, 2009). In such a Boolean
algebra, two sets A,B ⊆ X are said to be contrary iff A∩B = ∅ and A∪B 6= X
— in other words, iff A and B are disjoint but not exhaustive. For example, if we
takeX to be a set of possible worlds, then ℘(X) consists of sets of possible worlds,
i.e. propositions. In this case, the contrariety of two propositions A and B means
that there is no possible world in which both propositions are true (A ∩ B = ∅),
while there is at least one possible world in which both propositions are false (A∪
B 6= X). By contrast, if we take X to be a set of individuals, then ℘(X) consists
of sets of individuals, i.e. properties or (interpretations of) predicates. In this case,
the contrariety of two properties A and B means that there is no individual that has
both properties (A ∩ B = ∅), while there is at least one individual that lacks both
properties (A ∪B 6= X).
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This shows that unlike the first two definitions, Definition 3 is not restricted to
statements, but also applies to properties, relations, arbitrary sets, etc.6 Further-
more, the Aristotelian relations holding between statements, between properties,
between sets, etc. are all analogous to each other, because all of them are special
instances of one and the same template. This analogy was already noted by Keynes,
who wrote: “These seven possible relations between propositions (taken in pairs)
will be found to be precisely analogous to the seven possible relations between
classes (taken in pairs)” (Keynes, 1906, p. 119, my emphases).7

Definition 3 also subsumes Definition 2 as a special case. After all, if S is a
logical system as specified in Definition 2 (i.e. having Boolean connectives), then
its Lindenbaum-Tarski algebra B(S) := LS/≡S = {[ϕ]S | ϕ ∈ LS} (where
[ϕ]S := {ψ ∈ LS | ϕ ≡S ψ}) constitutes a Boolean algebra. Since the Aristotelian
relations hold up to logical equivalence (recall Footnote 5), one can easily show
that the Aristotelian relations for the logical system S (as defined in Definition 2)
correspond exactly to the Aristotelian relations for the Boolean algebra B(S) (as
defined in Definition 3). For example, for formulas ϕ,ψ ∈ LS we have that

ϕ and ψ are S-contrary iff S |= ¬(ϕ ∧ ψ) and S 6|= ϕ ∨ ψ
iff [ϕ ∧ ψ]S = ⊥ and [ϕ ∨ ψ]S 6= >
iff [ϕ]S ∧ [ψ]S = ⊥ and [ϕ]S ∨ [ψ]S 6= >
iff [ϕ]S and [ψ]S are B(S)-contrary.

In this way, Definition 3 is still able to deal with the logic-sensitivity of the
Aristotelian relations. For example, recall that based on Definition 2, it is possi-
ble to have distinct logical systems S1 and S2 with the same object language L,
and formulas ϕ,ψ ∈ L, such that ϕ and ψ are S1-contrary, but S2-contradictory.
Since S1 and S2 are distinct logical systems, they yield distinct equivalence re-
lations ≡S1 and ≡S2 , and hence will have distinct Lindenbaum-Tarski algebras
B(S1) = L/≡S1 and B(S2) = L/≡S2 . Consequently, based on Definition 3 it
is possible that [ϕ]S1 and [ψ]S1 are B(S1)-contrary, whereas [ϕ]S2 and [ψ]S2 are
B(S2)-contradictory.

The first two (families of) instances of Definition 3 arise from taking B to
be the powerset ℘(X) of some set X , or the Lindenbaum-Tarski algebra B(S)
of some logical system S. We can also combine both strategies, and take B to
be ℘(B(S)), i.e. the powerset of the Lindenbaum-Tarski algebra of some logical
system S. In this way, Definition 3 is able to accommodate Aristotelian relations
between metalogical properties and statements. Consider, for example, the sets

6This definition also accommodates contemporary applications of the Aristotelian relations in
artificial intelligence. For example, given a binary relationR ⊆ X×Y and a set S ⊆ Y , Ciucci et al.
(2016, p. 355) define R(S) := {x ∈ X | ∃s ∈ S : xRs}, R(S) := {x ∈ X | ∃s ∈ Y \S : xRs},
and various other subsets of X . They then go on to analyze the Aristotelian relations between these
sets; for example, under certain conditions, R(S) and R(S) are subcontrary to each other, because
R(S) ∩R(S) 6= ∅ and R(S) ∪R(S) = X (2016, p. 356). This can be seen as yet another instance
of Definition 3, by taking B to be ℘(X).

7Keynes talks about seven relations, because in addition to the four usual Aristotelian relations,
he is considering three others. However, this difference is further irrelevant for our current purposes.
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A := {[ϕ]S | S |= ϕ} = {>} and B := {[ϕ]S | S |= ¬ϕ} = {⊥}. If the
logical system S is consistent, there exist no (equivalence classes of) formulas that
are simultaneously S-tautologies and S-contradictions (A ∩B = ∅), while there is
at least one (equivalence class of) formula(s) that is neither an S-tautology nor an
S-contradiction (A∪B 6= ℘(B(S))). This means exactly that the metalogical prop-
erties of being an S-tautology and being an S-contradiction are ℘(B(S))-contrary
to each other.

Instances of Definition 3 at different ‘levels’ can also interact with each other.
We have already shown that Definition 2 is a special case of Definition 3, by taking
B to be B(S). However, it will also be interesting to take B to be ℘(B(S)×B(S)), so
that elements of B are subsets of B(S)×B(S), i.e. binary relations over B(S). Con-
sider, for example, the relations A := {([ϕ]S, [ψ]S) | [ϕ]S and [ψ]S are B(S)-contrary}
and B := {([ϕ]S, [ψ]S) | [ϕ]S and [ψ]S are B(S)-subcontrary}. There exist no
pairs of equivalence classes of formulas that are simultaneously B(S)-contrary
and B(S)-subcontrary to each other (A ∩ B = ∅), while there is at least one
pair of equivalence classes of formulas that are neither B(S)-contrary nor B(S)-
subcontrary to each other (A ∪ B 6= ℘(B(S))). This means exactly that the
Aristotelian relations of B(S)-contrariety and B(S)-subcontrariety — which are
themselves already metalogical in nature; cf. supra — are, ‘at a higher level’,
℘(B(S)×B(S))-contrary to each other. Interestingly, a similar idea can already be
found in the Summulae Logicales of the 13th-century philosopher Petrus Hispanus:
after he has given the definitions (which he calls ‘laws’) of contrariety and subcon-
trariety, Hispanus writes that “the law of subcontraries is itself contrary to the law
of contraries” (my translation; original Latin text: “lex subcontrariarum contrario
modo se habet legi contrariarum”; Copenhaver et al. 2014, p. 112).8

2.4 Philosophical Discussion

In the previous subsections, I have discussed three, increasingly more abstract ways
of defining the Aristotelian relations, and compared their various advantages and
disadvantages. The results of this comparative analysis are summarized in the
following table:

8However, it can be argued that Hispanus actually did not mean to suggest that contrariety and
subcontrariety are contrary to each other, but rather that they are each other’s internal negation.
See Demey and Smessaert (2017a, 2018c) for the distinction between the two types of relations, and
Copenhaver et al. (2014, p. 113, Footnote 16) and Demey and Smessaert (2016a, p. 275, Footnote 43)
for further discussion about this subtle interpretation issue.
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Definition 1 Definition 2 Definition 3
(informal) (relative to S) (relative to B)

not explicit
modal nature yes yes (but Def. 2 as

special case)
logic-sensitivity no yes yes

metalogical relata yes no yes
statements,

scope statements statements predicates,
sets,

...

With this overview in place, I will now finish this section by making some broader
methodological and philosophical points.

First of all, based on the discussion and the table above, it should be clear that
Definition 3 achieves the best balance between the specificity of the Aristotelian re-
lations on the one hand, and the broad diversity of potential relata on the other. For
example, it enables us to deal with Aristotelian relations holding between proposi-
tions (sets of possible worlds), properties (sets of individuals), sets induced by a bi-
nary relation (cf. Footnote 6), object-logical formulas, metalogical properties, etc.,
and it explains both the commonalities and the differences between these differ-
ent types of relations (all of which arise by plugging in different concrete Boolean
algebras for the abstract B).

This unificatory power is not only important from a historical perspective (as is
illustrated by the quotations by Hispanus and Keynes given above), but it also sheds
new light on the widespread use of the Aristotelian relations (and the diagrams vi-
sualizing them) today. For example, Dubois et al. (2015, p. 2933) make use of a
certain Aristotelian diagram to “exhibit fruitful parallelisms between different for-
malisms” in artificial intelligence, and Demey and Smessaert (2018a, p. 35) argue
that Aristotelian diagrams constitute a language that enables us to “explore unex-
pected connections between prima facie unrelated areas of logic”, comparing their
role with that of category theory in the field of mathematics (Landry, 1999). In or-
der to fulfill this heuristic role, it is absolutely crucial that Aristotelian diagrams be
very broadly applicable, while maintaining the specific characteristics of the rela-
tions that they visualize. Definition 3 shows exactly how the Aristotelian relations
achieve this balance between specificity and broad applicability.

By focusing on the abstract notion of a Boolean algebra, Definition 3 also pro-
vides the mathematical background for the technique of bitstring semantics, which
plays a central role in logical geometry, and is based on representations of finite
Boolean algebras (Demey and Smessaert, 2018a; Smessaert and Demey, 2017).
Furthermore, Definition 3 naturally opens up the way for alternative, more gen-
eral versions of the Aristotelian relations. Several authors have recently proposed
to study Aristotelian relations in the context of non-classical logics, which yield
Lindenbaum-Tarski algebras that are not Boolean algebras; for example, Mélès
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(2012) considers the case of intuitionistic logic, whereas Ciucci et al. (2016) con-
sider various many-valued logics. Based on Definition 3, it is to be expected that
the natural mathematical settings to study such generalizations will be those of
Heyting algebras and MV-algebras, respectively.

The final observation concerns the importance of the powerset operation with
respect to object- and metalogical applications of the Aristotelian relations.9 We
have seen that Aristotelian relations between object-logical formulas (of some log-
ical system S) can be obtained from Definition 3 by plugging in the Lindenbaum-
Tarski algebra B(S). Furthermore, we have also seen that Aristotelian relations
between metalogical properties (with respect to the same system S) are obtained
by plugging in ℘(B(S)). By applying the powerset operation (to the Lindenbaum-
Tarski algebra B(S)),10 we have thus jumped from the object- to the metalogical
level. Of course, we can keep on repeating this process, thereby climbing higher
and higher in the hierarchy of metalanguages (for S).

The powerset operation plays an analogous role in axiomatic set theory, where
it is used (in the successor ordinal case of a transfinite induction) to define the
cumulative hierarchy of sets (Devlin 1993, p. 38; Jech 2003, p. 64):11

V0 = ∅
Vα+1 = ℘(Vα)
Vα =

⋃
β<α Vβ (if α is a limit ordinal)

We thus have a hierarchy of logical languages on the one hand, and a hierarchy
of sets on the other, with the powerset operation playing a crucial role in moving
from one level to the next in both of these hierarchies. This fundamental analogy
between the semantics of metalanguages and set theory is also noted by Priest
(2006). After discussing “the metalinguistic ascent [:] the constructions inherent
in our semantic concepts force us, given any semantically open theory, to ascend to
a stronger metalanguage to express certain facts about it” (2006, p. 38), and noting
that “given any well founded totality, constructions inherent in our set theoretic
concepts, and in particular the powerset operation, force us into a similar ascent,
this time, in effect, up the cumulative hierarchy” (2006, p. 38), Priest draws the
following conclusion:

these two ascents, despite different appearances, are closely related.
For, since Tarski, we know what set theoretic machinery we need to

9I would like to thank the audience of the workshop in Louvain-la-Neuve for some very useful
discussion about this point.

10Note that I am here not concerned with applying the powerset operation to some set X of pos-
sible worlds or of individuals. The main difference is that, for the Lindenbaum-Tarski algebra B(S),
both B(S) itself and ℘(B(S)) are Boolean algebras (and can thus both be plugged into Definition 3),
whereas for a set X of possible worlds/individuals, ℘(X) is a Boolean algebra, but X itself is not.

11It is standardly assumed that the cumulative hierarchy follows from a certain philosophical per-
spective on what sets are, viz. the iterative conception of set (Boolos, 1971; Incurvati, 2012). How-
ever, Forster (2008) argues that the iterative conception of set is actually broader than (i.e. compatible
with other sorts of sets than just those in) the cumulative hierarchy. Since this discussion is irrelevant
for our current purposes, I will not go into it any further.
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define appropriate semantic notions for a theory T : second order T ,
that is, the theory whose intended interpretation is the powerset of T .
Hence, in a sense, there is only one construction [viz. the powerset
operation, LD] which pushes us ever on to bigger and better things
(if we wish to remain consistent), which may manifest either a set
theoretic or a semantic aspect (2006, p. 38)

In light of this discussion, then, it should be clear that the distinction between
plugging in B(S) versus ℘(B(S)) into Definition 3 is “just our old friend, the lan-
guage/metalanguage distinction set theoretically writ” (2006, p. 38).

3 The Pragmatics of Metalanguage

I have just discussed a theoretical perspective on the metalogical aspects of Aris-
totelian diagrams and relations. In this section, I will show how this theoretical per-
spective sheds new light on certain linguistic issues (e.g. implicatures, homophony,
lexicalization, etc.) that crop up in the metalinguistic terminology we use to de-
scribe the Aristotelian relations. For example, Horn (2004, p. 11) characterizes the
contrariety relation as follows: “Contraries [are formulas that] cannot be simulta-
neously true (though they may be simultaeously false)”. The linguistic phenomena
to be addressed in this section are related to the ambiguity that Horn creates by
putting the second condition between brackets: is this condition an essential part
of the definition of contrariety, or can it also be left out?12

In Subsection 3.1 I will present some basic natural language phenomena, de-
scribe the (neo-)Gricean pragmatic theory concerning these phenomena, and em-
phasize the important role of Aristotelian diagrams in this theory. Next, in Sub-
section 3.2 I will show that these linguistic phenomena also occur in the technical
jargon of a logical metalanguage, and argue that the same pragmatic theory and the
same type of Aristotelian diagrams also apply to such a metalanguage.

3.1 Aristotelian Diagrams in Pragmatics

The natural language quantifier some is famously ambiguous between a unilateral
and a bilateral reading. On the unilateral interpretation, some means at least one,
which is formalized in standard first-order logic as the existential quantifier (∃).
On this reading, some is compatible with all, i.e. the truth of some As are B does
not entail that all As are B is false. However, in many everyday contexts, people
often seem to prefer the bilateral interpretation of some, taking this word to mean
at least one but not all. Obviously, on its bilateral reading, some is effectively
incompatible with all. Nevertheless, it is unclear how strong this incompatibility

12Horn’s definition is informal, and thus most in line with our Definition 1. However, the same
ambiguity (and thus the same types of linguistic issues) also arise for the more formal Definitions 2
and 3. In particular, in Subsection 3.2 I will mainly work with the Aristotelian relations as character-
ized in Definition 2.
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Figure 1: (a) Square of opposition and (b) JSB hexagon for the natural language
quantifiers.

actually is. For example, the some in sentence (1) below is strongly incompatible
with all: this sentence clearly seems to imply that not all students passed the test.
By contrast, the some in (2) does seem to be compatible with all: if, as a matter of
fact, all students get infected, then (2) still applies, and the school should still be
closed.

Some students passed the test. (1)

If some of our students get infected, we’ll close the school. (2)

Finally, it is well-known among linguists that, whereas not some is lexicalized as
no (i.e. it is not the case that some As are B ≡ no As are B), the expression not all
is not ‘primitively’ (i.e. by means of a single word) lexicalized at all in English.
Furthermore, this observation seems to generalize to all natural languages spo-
ken across the world throughout history. For example, it already applied to Latin
(which has nullus for non aliquis, but no single word for non omnis), as was first
observed by Thomas Aquinas in his commentary on Aristotle’s De Interpretatione
(Oesterle, 1962; Horn, 1989).

In order to explain this cluster of observations, linguists and philosophers often
make use of Aristotelian diagrams. The four quantifiers discussed above give rise
to a square of opposition, as shown in Figure 1(a). Note that the word some appears
in this square with its unilateral reading, as is indicated by the 1-subscript. For
ease of notation, the square only displays the quantifier expressions themselves,
but these can easily be expanded into full sentences (e.g. all As are B, some As are
B, etc.). Since the elements of this square are entirely informal, natural language
sentences, the Aristotelian relations between these sentences are defined according
to the informal Definition 1 from Section 2.

The subalternation on the left side of this square of opposition says that all im-
plies some, but not vice versa.13 In terms of information contents, this means that

13It is well-known that the implication from all As are B to some As are B rests on the assumption
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all is strictly more informative than some (informally: all As are B is true in strictly
fewer possible worlds than some As are B).14 Based on Grice’s (1967 / 1989) prin-
ciple of cooperation, and in particular the maxim of quantity that he derives from
it, it follows that if someone says some, this generates an implicature of the form
not all. After all, if the speaker meant all, then she should have explicitly said so,
in order to make her utterance as informative as possible (following the maxim of
quantity). Given that the speaker chose to use the less informative some, we are
pragmatically entitled to conclude not all. This is a pragmatic implicature, rather
than a deductive inference, and can thus be cancelled without yielding a logical
contradiction. All of this can be summarized by saying that 〈all, some1〉 consti-
tutes a Horn scale (Horn, 1989, 2004). More generally, if we have a Horn scale
〈A1, A2, . . . , An〉, with each element Ai strictly more informative than Ai+1 (for
1 ≤ i < n), and someone utters Ai, then this generates the scalar implicature that
¬Aj (for each 1 ≤ j < i). From a pragmatic perspective, the left side of the square
of opposition in Figure 1(a) thus constitutes a Horn scale (van der Auwera, 1996).
Similar remarks were already made by Doyle (1951, p. 382), in his comparison of
the square of opposition with other Aristotelian diagrams for the natural language
quantifiers.

If we consider the conjunction of the unilateral some1 with its scalar impli-
cature not all, we find exactly some1 but not all, i.e. the bilateral interpretation
some2. In other words, based on the theory of scalar implicatures, we find that
the bilateral interpretation of some incorporates the implicature of its unilateral
interpretation, i.e. the former is the pragmatic strengthening of the latter (Trau-
gott, 1988). This explains the homophony and co-lexicalization of both meanings
(Cruse 1986, p. 256; Seuren and Jaspers 2014, p. 608). The unilateral and bilateral
interpretations of some agree that at least one is (part of) the semantic content of
some, but they disagree on the linguistic status of the not all meaning aspect: the
bilateral reading (some2) also includes it in the semantic content of some, whereas
the unilateral reading (some1) derives it as a pragmatic implicature:

at least one not all
unilateral interpretation semantic content pragmatic implicature
bilateral interpretation semantic content semantic content

The bilateral some2 is often added to the square of opposition, together with its
negation, all or no (in order to maintain closure under negation). The Aristotelian
diagram that is obtained in this way is a so-called Jacoby-Sesmat-Blanché (JSB)
hexagon, as shown in Figure 1(b).15 From a logical perspective, this hexagon is the

of existential import, i.e. the assumption that there actually exists at least one A. However, in most
everyday contexts, this assumption is fairly unproblematic, and it is further irrelevant for our current
purposes in this paper.

14This illustrates the inverse correlation between degree of information and range of application,
as studied in the philosophy of information (Smessaert and Demey, 2014).

15The JSB hexagon is named after Jacoby (1950), Sesmat (1951) and Blanché (1966). See Jaspers
and Seuren (2016) for more historical background.
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Boolean closure of the square of opposition in Figure 1(a), i.e. it contains precisely
the contingent Boolean combinations of elements from the square.

The pragmatic theory outlined above can also be used to explain the non-
lexicalization of not all, i.e. the so-called O-corner of the square of opposition
(Horn, 1989, 2012). However, in light of the extension of this square into a JSB
hexagon (in order to incorporate some2), it is theoretically desirable to be able
to explain the non-lexicalization of all or no (i.e. the so-called U-corner of the
hexagon) as well (Jaspers, 2012). Seuren and Jaspers (2014) propose a theory that
simultaneously explains the non-lexicalization of not all as well as all or no. Their
theory is based on a recursive partitioning process of logical space. Based on
various types of linguistic evidence, Seuren and Jaspers argue that the most prim-
itive distinction in the realm of quantification is the binary distinction between the
negative quantifier no and the positive quantifier some1. Next, within the positive
‘subuniverse’ corresponding to some1, there is a further binary distinction between
all and some2.16 This recursive partitioning process ultimately yields a tripartition
of logical space, as shown in Figure 2(a).17 The key prediction is now that a mean-
ing is primitively lexicalized iff it occurs at any stage of this partitioning process.
This accounts for the lexicalization of no, some1, all and some2. These four expres-
sions jointly constitute the lexicalized ‘kite’ diagram shown in Figure 2(b), which
can be seen as a subdiagram of the JSB hexagon shown in Figure 1(b) (Seuren and
Jaspers, 2014, p. 621ff.). By contrast, meanings that can only be obtained by com-
bining an element from the positive subuniverse with the negative element no are
not lexicalized. In particular, the O-corner (not all≡ some2 ∨ no) and the U-corner
(all ∨ no) are not lexicalized.

In this subsection I have focused exclusively on the lexical field of quantifier
expressions. However, the theoretical framework outlined above also applies to
various other lexical fields in natural language, such as the connectives (and, or,
neither . . . nor), the alethic modalities (necessary, possible, impossible), the deon-
tic modalities (obligatory, permitted, forbidden), and even to less ‘logic-oriented’
domains, such as those describing living things (human, animal, plant) and sex-
ual orientations (lesbian, gay, straight). In the latter domains, the account can be
used to explain the ambiguity of words such as animal (as either including or ex-
cluding humans) and gay (as either comprising all homosexuality, or only male

16 In Seuren and Jaspers’s informal approach, logical space can be seen as a class of possible
worlds, each of which makes every given sentence either true or false. The first binary distinction
of the partitioning process then corresponds to the distinction between the possible worlds that make
no As are B true and those that make some1 As are B true. The second binary distinction takes place
within the subclass of possible worlds that make some1 As are B true, and distinguishes between the
possible worlds that make all As are B true and those that make some2 As are B true.

17The end result being a tripartition is entirely natural, since it is well-known in logical geometry
that the Boolean closure of a square of opposition corresponds precisely to a tripartition of some
underlying class (Demey and Smessaert, 2018a). Although all examples given in Seuren and Jaspers
(2014) are based on tripartitions, this is not a hard limitation of their theory. For example, Roelandt
(2016) has extended the theory to partitioning processes that yield more fine-grained partitions of
logical space, and used them to analyze lexical fields such as the measure adjectives.
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Figure 2: (a) Recursive partitioning process and (b) kite diagram for the lexicalized
natural language quantifiers.

homosexuality; i.e. as either including or excluding lesbianism), and to explain
the absence of (primitive) lexicalizations of meanings such as human or plant and
lesbian or straight. Further examples and more detailed discussion (including the
corresponding Aristotelian diagrams) can be found in Seuren and Jaspers (2014,
p. 626ff.).

3.2 Pragmatics in Aristotelian Diagrams

I now turn to the metalinguistic terminology that is used for the Aristotelian rela-
tions.18 In particular, I will focus on (the term for) the relation of contrariety, but
similar remarks apply to subcontrariety and subalternation. Furthermore, I will
only discuss the formal characterization of the Aristotelian relations as given in
Definition 2, but again, similar remarks could be made about the characterizations
provided by Definitions 1 and 3 (also recall Footnote 12).

Throughout the history of philosophical logic, the Aristotelian relation of con-
trariety has been defined in two clearly different, yet interrelated ways, yielding a
strong and a weak notion of contrariety. In more linguistic terms: the word con-
trary is ambiguous between a strong and a weak interpretation. The strong inter-
pretation was traditionally the most popular one (especially in medieval logic), and
has recently been used by authors such as Smessaert (2009) and Parsons (2012).
The weak interpretation has mainly been used from the 20th century onwards, by
authors such as Bochenski (1959), McCall (1967) and Seuren (2010). The strong
definition of contrariety, which was already introduced in Section 2, consists of a
|=- and a 6|=-condition; the weak definition keeps the former condition, but discards
the latter.

18We have seen in Section 2 that the Aristotelian relations are metalogical in nature. Consequently,
the specific terminology used to describe these relations is itself metalinguistic in nature. (Also recall
Footnote 1.)
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Definition 4. Let S be a logical system as in Definition 2. Two formulas ϕ,ψ ∈ LS
are said to be

strongly S-contrary iff S |= ¬(ϕ ∧ ψ) and S 6|= ϕ ∨ ψ,
weakly S-contrary iff S |= ¬(ϕ ∧ ψ).

From Definitions 2 and 4, it follows immediately that the weak notion of contra-
riety is compatible with contradiction, i.e. two formulas being weakly S-contrary
to each other does not entail that these formulas cannot be S-contradictory to each
other. By contrast, the strong notion of contrariety is incompatible with contra-
diction: if two formulas are strongly S-contrary to each other, then they cannot be
S-contradictory.

Furthermore, it is well-known that the negation of weak contrariety can alter-
natively be expressed in terms of compatibility: saying that ϕ and ψ are not weakly
contrary to each other is equivalent to saying that ϕ and ψ are compatible with each
other (formally: S 6|= ¬(ϕ ∧ ψ); informally: ϕ and ψ can be true together).19 By
contrast, the negation of contradiction is not lexicalized at all in our metalinguistic
jargon: there does not seem to be a single term which expresses that ϕ and ψ are
not contradictory to each other, nor a single term which expresses that ϕ and ψ are
not strongly contrary to each other.20

In recent years, the distinction between strong and weak contrariety has it-
self become the topic of several logical investigations. For example, Humberstone
(2011) links the differences between these two notions to the differences between
‘traditionalist’ and ‘modernist’ approaches to logic. Furthermore, Béziau (2012)
and Demey and Smessaert (2014b, 2016a) show that the strong and weak notions of
(sub)contrariety give rise to new, metalogical decorations for various Aristotelian
diagrams. Two typical examples include the metalogical square of opposition and
JSB hexagon that are shown in Figure 3. Note that the term contrary appears in
the square with its weak interpretation, as is indicated by the w-subscript; in the
JSB hexagon it also appears with its strong interpretation, as is indicated by the
s-subscript.

Before we continue, it is important to emphasize that the Aristotelian diagrams
shown in Figure 3 are fully in line with the theoretical perspective on the Aris-
totelian relations that was described in Section 2. Consider, for example, the rela-
tions of S-contradiction and strong S-contrariety, which appear in resp. the upper
left vertex and the lower vertex of the JSB hexagon in Figure 3(b). For ease of no-
tation, we will abbreviate these relations as CD and Cs, respectively. In line with
Definition 2, these are binary relations over LS, but since they are defined up to

19Weak compatibility is thus seen as the negation of contrariety. Vice versa, one can also view
weak contrariety as the negation of compatibility, i.e. two formulas are weakly contrary to each other
iff they are not compatible with each other. From this perspective, contrariety (on its weak reading)
is thus synonymous to incompatibility.

20Smessaert and Demey (2014) define the relation of non-contradiction, but that notion is strictly
stronger than the negation of contradiction. In particular, ϕ and ψ not being contradictory means that
not[S |= ¬(ϕ ∧ ψ) and S |= ϕ ∨ ψ], i.e. S 6|= ¬(ϕ ∧ ψ) or S 6|= ϕ ∨ ψ, whereas ϕ and ψ being
non-contradictory is defined as S 6|= ¬(ϕ ∧ ψ) and S 6|= ϕ ∨ ψ.
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Figure 3: (a) Square of opposition and (b) JSB hexagon for strong/weak contrariety
and related notions.

logical equivalence, we can also view them as binary relations over B(S) — recall
from Section 2 that B(S) = LS/≡S is the Lindenbaum-Tarski algebra of S —
i.e. we have CD,Cs ⊆ B(S)×B(S), and thus also CD,Cs ∈ ℘(B(S)×B(S)). It is
easy to show that (i) CD∩Cs = ∅ and (ii) CD∪Cs 6= B(S)×B(S),21 which means
exactly (by Definition 3) that CD and Cs are contrary to each other in the Boolean
algebra ℘(B(S) × B(S)). It is precisely this ℘(B(S) × B(S))-contrariety that is
represented by the edge that connects the vertices for contradictory and contrarys
in the JSB hexagon.

The diagrams in Figure 3 thus represent Aristotelian relations from two dis-
tinct logical levels. On the one hand, there are the Aristotelian relations (and their
complements) for the logical system S — or equivalently, for the Boolean algebra
B(S) —, which appear on the vertices of the diagrams. On the other hand, there are
the Aristotelian relations for the Boolean algebra ℘(B(S) × B(S)), which appear
on the edges of the diagrams. At the level of B(S), we are interested in both the
strong and the weak notion of contrariety, and in their logico-linguistic interplay;
cf. the vertices for contrarys and contraryw in the diagrams. However, at the level
of ℘(B(S)× B(S)), we exclusively use the strong notion of contrariety, as defined
in Definition 3.22

Now that the metalogical status of the Aristotelian diagrams in Figure 3 has
been clarified, I turn to their logico-linguistic significance. After all, upon visual
inspection of Figures 1 and 3, it should immediately be obvious that there are clear
similarities between the Aristotelian diagrams for the unilateral/bilateral interpre-
tations of some and those for the weak/strong interpretations of contrary. This

21For (ii), take any formulas ϕ,ψ ∈ LS that are S-compatible with each other; it then follows
easily that ([ϕ]S, [ψ]S) /∈ CD and ([ϕ]S, [ψ]S) /∈ Cs.

22Of course, in choosing for the strong interpretations of the Aristotelian relations in arbitrary
Boolean algebras (i.e. in Definition 3), I am aligning myself with what Humberstone (2011) would
call the ‘traditionalist’ approach to logic. However, one could also opt for the weak interpretations
of the Aristotelian relations in Definition 3. Nothing of importance in the remainder of my argument
hinges on this choice.
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strongly suggests that similar linguistic principles are at work in both lexical fields,
and in particular, that the pragmatic account described in Subsection 3.1 is also
applicable here.

The subalternation on the left side of the square of opposition in Figure 3(a)
can once again be cast in terms of information levels — with contradiction being
strictly more informative than weak contrariety (Smessaert and Demey, 2014) —,
and thus once again constitutes a Horn scale: 〈contradictory,weakly contrary〉. If
someone says that the formulas ϕ and ψ are weakly contrary to each other, this
generates the scalar implicature that ϕ and ψ are not contradictory to each other.
After all, if the speaker meant that ϕ and ψ are effectively contradictory, then she
should have explicitly said so, in order to make her utterance as informative as
possible (following the maxim of quantity). Given that the speaker chose to use
the less informative notion of weak contrariety, we are pragmatically entitled to
conclude not contradictory.

If we take the conjunction of weak contraryw with its scalar implicature not
contradictory, we obtain exactly the strong interpretation contrarys. After all, by
means of straightforward Boolean reasoning, we find that

ϕ and ψ are weakly S-contrary and not S-contradictory

iff S |= ¬(ϕ ∧ ψ) and not[S |= ¬(ϕ ∧ ψ) and S |= ϕ ∨ ψ]
iff S |= ¬(ϕ ∧ ψ) and [S 6|= ¬(ϕ ∧ ψ) or S 6|= ϕ ∨ ψ]
iff S |= ¬(ϕ ∧ ψ) and S 6|= ϕ ∨ ψ
iff ϕ and ψ are strongly S-contrary.

In other words, based on the theory of scalar implicatures, we find that the strong
interpretation of contrary is exactly the pragmatic strengthening of its weak in-
terpretation (Traugott, 1988). Just like in the case of the bi- and unilateral in-
terpretations of some, this explains the homophony and co-lexicalization of both
meanings (Cruse 1986, p. 256; Seuren and Jaspers 2014, p. 608). The strong and
weak interpretations agree that the |=-condition is (part of) the semantic content of
contrary, but they disagree on the linguistic status of the 6|=-condition: the strong
reading (contrarys) also includes it in the semantic content, whereas the weak read-
ing (contraryw) derives it as a pragmatic implicature:

S |= ¬(ϕ ∧ ψ) S 6|= ϕ ∨ ψ
weak interpretation semantic content pragmatic implicature
strong interpretation semantic content semantic content

Adding the strong contrarys (and its negation) to the square of opposition in
Figure 3(a) leads to the JSB hexagon in Figure 3(b), which is the Boolean closure
of the square. The O-corner (not contradictory) and the U-corner (not contrarys)
of this hexagon are not primitively lexicalized in our metalogical jargon, which can
once again be explained by the recursive partitioning theory of Seuren and Jaspers
(2014).
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Figure 4: (a) Recursive partitioning process and (b) kite diagram for the lexicalized
relations of contradiction, strong/weak contrariety and compatibility.

We begin by positing that the most primitive distinction in the metalogical
realm of binary relations over B(S) is the binary distinction between the relations of
weak contrariety (contraryw) and compatibility. Next, within the ‘subuniverse’ cor-
responding to contraryw, there is a further binary distinction between contradictory
and contrarys. This recursive partitioning process ultimately yields a tripartition of
metalogical space, as shown in Figure 4(a). The key prediction is now, once again,
that a meaning is primitively lexicalized iff its occurs at any stage of this partition-
ing process. This accounts for the lexicalization of compatible, contraryw, con-
tradictory and contrarys. These four expressions jointly constitute the lexicalized
kite diagram shown in Figure 4(b), which can be seen as a subdiagram of the JSB
hexagon shown in Figure 3(b) (Seuren and Jaspers, 2014, p. 621ff.). By contrast,
meanings that can only be obtained by combining elements from inside and outside
of the subuniverse are not lexicalized; in particular, the O-corner (not contradic-
tory≡ contrarys ∨ compatible) and the U-corner (not contrarys ≡ contradictory ∨
compatible) are not lexicalized.

To conclude, I will address a potential worry regarding the analogy between
Seuren and Jaspers’s (2014) account of some (as described in Subsection 3.1) and
the account of contrary presented here. In Seuren and Jaspers’s recursive partition-
ing process for some, the two outcomes of the initial distinction are clearly marked
as positive (some1) and negative (no). Furthermore, Seuren and Jaspers explicitly
state that it is (the subuniverse corresponding to) the positive element that needs to
be further partitioned. By contrast, in the recursive partitioning process for con-
trary, it does not seem to make much sense to label contraryw as positive and
compatible as negative (recall Footnote 19). However, this discrepancy is not a
major issue, since the positive/negative polarity is not as central within Seuren and
Jaspers’s account as one might be tempted to think. For example, they themselves
also offer several examples where the initial binary distinction does not yield a
clearly positive and a clearly negative element (2014, p. 626), and argue that in
such cases, (the subuniverses corresponding to) both elements can be further parti-
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tioned, leading to “two distinct but complementary kites” (2014, p. 627).

4 Conclusion

In this paper I have discussed metalogic and metalanguage from the perspective of
logical geometry, i.e. insofar as they pertain to Aristotelian relations and diagrams.
In Section 2, I have argued that the Aristotelian relations are themselves metalog-
ical in nature, by providing a sequence of increasingly more abstract definitions.
The final of these definitions, which is formulated in terms of Boolean algebras,
strikes the right balance between the specificity of the Aristotelian relations and the
diversity of their relata; in particular, it clearly shows how a single type of relations
can hold between object-logical as well as between metalogical entities. Further-
more, this definition also suggests a clear analogy between the Tarski hierarchy of
metalanguages and the cumulative hierarchy of sets, and the role of the powerset
operation in both hierarchies. Next, in Section 3, I have shown that, since the Aris-
totelian relations and diagrams apply to meta- as well as to object-logical entities,
these relations and diagrams can also be used to analyze the logico-linguistic be-
havior of both types of entities. In particular, I have described some issues related
to the natural language quantifier some (e.g. homophony, lexicalization, implica-
tures), and emphasized the important role of Aristotelian diagrams in Horn’s and
Seuren and Jaspers’s linguistic theorizing about these issues. I then noted that the
same issues occur with metalinguistic terms such as contrary, and argued that they
can be explained using similar Aristotelian diagrams and linguistic theories.

In recent years, several authors have highlighted the important heuristic role
that Aristotelian diagrams can play, by enabling us to draw parallels between
prima facie unrelated logical systems and knowledge representation formalisms
(Yao, 2013; Dubois et al., 2015; Demey and Smessaert, 2018a; Demey, 2017b).
So far, this claim has only been illustrated by means of examples that are entirely
at the object-logical level, such as (the connection between) Russell’s theory of
definite descriptions and public announcement logic (Demey, 2017b). However,
in this paper I have argued that Aristotelian diagrams can also fruitfully be used
to study parallels that cut across the object-/meta-level divide, such as the striking
connection between the object-linguistic ambiguity of some and the metalinguistic
ambiguity of contrary. Examples such as these show that the applicability of Aris-
totelian diagrams is significantly broader than might initially be thought, and thus
provide further support for their heuristic importance in contemporary research.
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Jean-Yves Béziau and Dale Jacquette, editors. Around and Beyond the Square of
Opposition. Springer, 2012.
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Béziau, editor, Encyclopedia of Logic. College Publications, 2017a.

Lorenz Demey and Hans Smessaert. Logical and geometrical distance in polyhe-
dral Aristotelian diagrams in knowledge representation. Symmetry, 9(10)(204),
2017b.

Lorenz Demey and Hans Smessaert. Combinatorial bitstring semantics for arbi-
trary logical fragments. Journal of Philosophical Logic, 47:325–363, 2018a.

Lorenz Demey and Hans Smessaert. Geometric and cognitive differences between
Aristotelian diagrams for the Boolean algebra B4. Annals of Mathematics and
Artificial Intelligence, 2018b.

Lorenz Demey and Hans Smessaert. Aristotelian and duality relations beyond the
square of opposition. In Peter Chapman, Gem Stapleton, Amirouche Moktefi,
Sarah Perez-Kriz, and Francesco Bellucci, editors, Diagrammatic Representa-
tion and Inference, LNCS 10871. Springer, 2018c.

Keith Devlin. The Joy of Sets. Springer, 1993.
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Béziau and Dale Jacquette, editors, Around and Beyond the Square of Opposi-
tion, pages 73–92. Springer, 2012.

Dany Jaspers. Logic and colour. Logica Universalis, 6:227–248, 2012.

Dany Jaspers and Pieter Seuren. The square of opposition in Catholic hands: A
chapter in the history of 20th-century logic. Logique et Analyse, 59(233):1–35,
2016.

Thomas Jech. Set Theory (Third Millenium Edition, revised and expanded).
Springer, 2003.

22



John Neville Keynes. Studies and Exercises in Formal Logic (Fourth Edition).
MacMillan, 1906.

Elaine Landry. Category theory: The language of mathematics. Philosophy of
Science, 66:S14–S27, 1999.
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