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By adding minute concentrations of a high molecular weight polymer, liquid jets or

bridges collapsing under the action of surface tension develop a characteristic shape of

uniform threads connecting spherical fluid drops. In this paper, high-precision measure-

ments of this beads-on-string structure are combined with a theoretical analysis of the

limiting case of large polymer relaxation times and high polymer extensibilities, for which

the evolution can be divided into two distinct regimes. For times smaller than the polymer

relaxation time, over which the beads-on-string structure develops, we give a simplified

local description, which still contains the full complexity of the problem. At times much

larger than the relaxation time, we show that the solution consists of exponentially thin-
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ning threads connecting almost spherical drops. Both experiment and theoretical analysis

of a one-dimensional model equation reveal a self-similar structure of the corner where a

thread is attached to the neighbouring drops.

1. Introduction

Understanding the behaviour of polymeric free-surface flows is of enormous importance

for a wide variety of applications in the chemical processing, food and consumer products

industries. Operations such as ink jet printing, spraying of fertilisers, paint-levelling,

misting, bottle-filling and roll coating are all controlled by interactions between the non-

Newtonian stresses in the bulk and capillary stresses at the deformable free-surface. Long-

chained macromolecules are also ubiquitous in biological fluids, and very significantly

affect the corresponding free-surface dynamics. If one places a small drop of saliva between

two fingers and pulls them apart, the resulting liquid bridge does not collapse, but an

extremely fine thread remains for several seconds. The lifetime of this bridge is intimately

connected with the molecular weight and conformation of the proteins (mucins) and

hormones in the saliva. Measurement of filament lifetimes in biofluids such as mucus or

saliva can be used as a fertility indicator (Kopito & Kosasky (1979)).

A number of recent studies have promulgated the idea of using the capillarity-induced

thinning of a liquid filament as a rheometric device for quantifying the properties of

complex fluids in predominantly extensional flows (Bazilevsky et al. (1990), Stelter et al.

(2000), Tripathi et al. (2000)). A typical configuration is shown in figure 1. A cylindrical

liquid bridge of the fluid to be tested is initially formed between two coaxial cylindrical

plates. In the present experiment, the test fluid is an ideal elastic fluid consisting of a

dilute solution of monodisperse high molecular weight polystyrene dissolved in a viscous
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solvent. Details of the rheological characterisation of the test fluid are provided in Ap-

pendix A. A step uniaxial strain is imposed on the bridge to extend it beyond the static

(Plateau) stability limit. The liquid filament subsequently undergoes a capillary-thinning

process toward a final breakup event. The no-slip boundary condition at the endplates

retards the radial flow near the end plates and thus imposes a well-defined initial axial

perturbation or ‘neck’ on the liquid column which controls the location of the subsequent

necking process. The time evolution in the local filament radius is monitored optically

using either a laser micrometer or high-speed video-imaging.

To convert such measurements of filament evolution into an extensional viscosity it

is necessary to understand the balance of forces acting on the fluid filament. The slen-

derness of the fluid thread induced by the step strain means that a one-dimensional

approximation to the equations can be useful in the analysis. Entov & Hinch (1997) pro-

vide a detailed discussion of the evolution of a perfectly cylindrical thread of viscoelastic

fluid undergoing capillary-driven thinning and breakup. Their analysis shows that there

can be a lengthy intermediate regime in which inertial, viscous and gravitational forces

are all negligible and elastic and capillary forces balance each. Capillary pressure drives

the thinning process whilst fluid viscoelasticity resists the necking of the fluid thread. To

prevent the molecules from relaxing the radius must continuously decrease in time at a

rate that is directly related to the characteristic relaxation rate of the polymer solution.

In this regime the local extension rate in the neck is constant and the radius of the fila-

ment decreases exponentially in time. Measurement of this rate of thinning thus enables

a direct determination of the characteristic relaxation time of the viscoelastic fluid. Such

observations have been found to be in quantitative agreement with data obtained in ex-

tensional rheometers (Anna & McKinley (2001)). The extensional flow in the thread also

results in a net tensile force in the filament which has, to date, been neglected. In the
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Figure 1. Experimental images of a collapsing liquid bridge of polymer solution in a viscous

solvent (plate radius R0 = 3 mm, distance 13.8 mm). This state was obtained by rapidly

stretching the liquid bridge from an initial gap of 3mm width, which was completely filled with

fluid. The surface tension is γ = 37 mN/m, the density ρ = 1026 kg/m3. The solvent and

polymeric contributions to the viscosity are ηs = 65.2 Pas and ηp = 9.8 Pas, respectively, the

polymer timescale is λ = 8.1 s. Relative to the capillary timescale τ =
√

ρR3

0
/γ this results in

a Deborah number of De = 296.

present work we determine this elastic tension in a self-consistent manner, by matching

the cylindrical profile of the thinning thread to the hemispherical end caps. This reveals

a new self-similar solution in the corner region formed by the thread and the end-caps,

whose characteristic length scale is proportional to the thread radius.

A local elasto-capillary balance has also been observed in other experimental con-

figurations including breakup of forced polymeric jets (Christanti & Walker (2002))
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Figure 2. High speed video-image of a jet of dilute (0.01 wt%) aqueous polyacryamide solution

(surface tension γ = 62 mN/m) undergoing capillary thinning. The sharp-edged jet orifice is at

the left of the image (radius R0 = 0.30 mm) and the free jet velocity is 30 cm/s. The polymeric

contribution to the viscosity is ηp = 0.0119 Pas, and the polymer timescale is found to be

λ = 0.012 s. This corresponds to a Deborah number of De = 18.2.

and gravity-driven drop formation in viscoelastic polymer solutions (Amarouchene et

al. (2001), Cooper-White et al. (2002)). On close examination of a thinning viscoelas-

tic jet, a string of tiny droplets can often be distinguished. This ‘beads on a string’

phenomenon was first described in Goldin et al. (1969), and has been reproduced in nu-

merical simulations by Bousfield et al. (1986). A representative image of this viscoelastic

jet break-up process is shown in figure 2. The jet consists of a series of cylindrical liga-

ments connecting spherical beads. As the jet is convected from left to right, fluid is forced

by capillarity from the thinning ligaments into the spherical droplets. Most analytical

studies of this structure have been performed using simplifying assumptions about the

slenderness of the liquid jet, see Yarin (1993) for a review. However, despite a considerable

number of studies (see e.g. Goren & Gottlieb (1982), Entov & Yarin (1984), Bousfield

et al. (1986), Forest & Wang (1990), Shipman et al. (1991), Larson (1992), Renardy

(1994), Renardy (1995), Chang at al. (1999)) a full analytical description of the beads-

on-string phenomenon is still open, even in the context of one-dimensional models.

In this paper we seek a self-similar solution that encompasses the elasto-capillary bal-

ance documented in experimental observations in liquid bridges, pinching drops and

thinning jets. We follow the spirit of some of the earlier work by employing two simplify-

ing assumptions: first, we will consider the simplest canonical model for a dilute polymer
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solution, the so-called Oldroyd-B model (e.g. Bird et al. (1987)), which can be derived

from kinetic theory by treating a dilute solution of polymer chains as a suspension of

non-interacting Hookean dumbbells. The simplifications resulting from such a description

mean that that the polymer solution exhibits a single relaxation time λ, and that the

chains are infinitely stretchable. The one-dimensional analysis of Entov & Hinch (1997)

considered the more general case of a relaxation modulus G(t) comprising of a discrete

spectrum of relaxation times (corresponding to a non-interacting suspension of dumb-

bells with different spring constants). As we note in Appendix A, incorporating their

analysis with the Zimm relaxation spectrum measured for dilute solutions results in a

rate of stretching in the liquid thread that is rapidly dominated by the dumbbells with

the longest time constant. All of the other modes relax and do not contribute to the

dominant balance, so the approximation of a single relaxation time is not considered to

be too limiting. Furthermore, a number of recent experimental studies (e.g. Spiegelberg

et al. (1996), Amarouchene et al. (2001), Anna & McKinley (2001)) have utilised model

dilute polymer solutions which are indeed very well described by a single time scale over

a wide range of extensions.

The additional assumption of infinite extensibility is bound to break down, even for

very long polymers, as the ends of the chain diverge exponentially in an extensional

flow. In fact, it has been shown by Renardy (1994) for the model to be treated in this

paper (and neglecting inertia) that a thread can never break up in finite time. Entov

& Hinch (1997) consider the Finitely Extensible Nonlinear Elastic Dumbbell (or FENE)

model and show that for highly extensible molecules (as characterised by large values of

the FENE extensibility parameter b > 103) there is a long intermediate elastic regime

(which may extend for times of 10 − 20 λ) in which neither the initial response of the

solvent nor the finite length of the molecules is important and the chains indeed extend
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effectively as infinitely extensible dumbbells with a single characteristic relaxation time.

This has also been verified experimentally using a homologous series of polystyrene test

fluids with solutes of increasing molecular weight (Anna & McKinley (2001)). In the

present study, we therefore do not consider the final stages of breakup where the finite

length of the polymers begins to affect the necking process. This final asymptotic regime

has been considered for the FENE model by Entov & Hinch (1997), and more recently

for the Giesekus model by Fontelos & Li (2004). In each case the extensional viscosity of

the fluid is bounded and the filament radius ultimately decreases linearly in time. The

initial onset of this regime can also be observed in the very last stages of the experimental

measurements when the thread radius has reduced to O(1− 10 µm); however we do not

include this data in our comparison between theory and experimental observation.

The second simplifying assumption is that we are treating the flow inside the fluid

thread as effectively one-dimensional (e.g. Forest & Wang (1990)). This is consistent

as long as the shape of the liquid column remains slender, i.e. the characteristic radial

variations are small compared to the variation in the axial direction. This assumption is

problematic near the ends of the fluid drops in the beads-on-string structure. Following

Eggers & Dupont (1994), we hope to at least partially deal with this problem by keeping

the full expression for the mean curvature in the Laplace pressure, which drives the

breakup. This makes spherical drops exact static solutions of the equations, and ensures

that at least the surface tension terms are correctly accounted for.

We are left with a model that treats the liquid column as a set of one-dimensional

continuum equations for the fluid flow coupled with equations describing the state of

stress of the polymer chains in solution. A typical experimental situation would be that

of a jet ejected from a nozzle, or a liquid bridge held between two circular end-plates. In

all of the following, we will choose the initial bridge or jet radius R0 as a unit of length,
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and the corresponding capillary time τ =
(

ρR3
0/γ

)1/2
as the unit of time, where γ is the

surface tension and ρ the density of the fluid. If R0 ≈ 1mm, τ is about 4 ms for a water-

based solvent. Note that for a high viscosity fluid (also treated in this paper) other time

scales such as the viscous scale τη = ηR0/γ arising from a balance of surface tension and

viscosity, might be more appropriate. However, to avoid confusion we will consistently

use the inertial-capillary time scale. There still remain three independent dimensionless

parameters in the problem. The time scale λ of the polymer is conventionally called

a Deborah number, De, when made dimensionless with the characteristic time scale

of the system. In the present study we thus have De = λ/τ . Note that the Deborah

number is ‘intrinsic’ to the fluid thread because it is defined entirely in terms of material

and geometric parameters. It does not contain the rate of stretching in the fluid, since

the flow is not forced but is free to select its own rate of stretching, which may be

spatially and/or temporally inhomogeneous. The other two dimensionless parameters

represent the relative contributions of viscous stresses from the solvent and the polymer.

There are a number of possible representations for these parameters. The total dynamical

viscosity for a dilute polymer solution characterised by the Oldroyd-B model is given by

η0 = ηs+ηp and the relative importance of viscous effects can thus be characterised by the

Ohnesorge number Oh = η0/
√

ργR0 (von Ohnesorge (1936)) and the solvent viscosity

ratio S = ηs/η0. An alternative representation which we use below is to separate the

relative dimensionless contributions of the kinematic viscosity νs = OhS of the solvent,

and the polymeric contribution to the viscosity νp = Oh(1 − S). All these material

constants have been made dimensionless using R0, γ and τ as the characteristic scales.

It is very difficult to describe the complexity contained in this three-dimensional pa-

rameter space in full generality, so in the following we will restrict ourselves to the case

of large De � 1, implying that the non-Newtonian polymer contribution is significant
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at all times. Physically this means that De is much larger than the initial time scale

of the liquid bridge’s evolution, which is set by the linear stability of the fluid thread.

At low viscosities, Oh = νs + νp < 1, this time scale is O(1) by virtue of the chosen

time scale for non-dimensionalization. By contrast, for fluids with large viscosities it is

set by τη = τ/Oh, and we thus require De/Oh � 1. Note that with the present scaling,

1/Oh2 is the ratio of the external length scale R0 and the intrinsic scale of the fluid,

`ν = η2/(γρ).

In the early elastic time regime, t � 1 � De, there is no significant decay of polymer

stretching. The fluid thus responds as a neo-Hookean elastic material. This allows the

effect of the polymers to be written as a local contribution to the pressure, given in

terms of the interface shape (i.e. the local accumulated strain) alone. The parameter

determining the magnitude of this contribution is the dimensionless elastic modulus

of the material G = νp/De, which is (up to universal constants) proportional to the

polymer concentration. Depending on the viscosity, the dynamics of the bridge can be

quite complex. In particular, for low viscosities, capillary waves can travel along threads

and rebound off drops (Li & Fontelos (2003)). Threads are also shown to support elastic

waves.

For De � t � 1, as polymers become sufficiently stretched to counter surface tension

forces, the simplified, local system of equations converges to a stationary solution, main-

tained by the stress in the polymers with no possibility of relaxation. This stationary

solution, originally found by Entov & Yarin (1984), already exhibits the beads-on-string

structure, but with a thread of radius hthread = (G/2)1/3 to be computed in section 3.2.

The transition of the initial evolution to the “quasi-static” region thus occurs approxi-

mately when this radius is reached. The term “quasi-static” refers to the fact that the
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solution can only be regarded as stationary on time scales much smaller than the polymer

relaxation time.

Indeed, to proceed beyond this stage one has to take the viscoelastic relaxation of the

polymer chains into account. The structure of the solution is that of cylindrical filaments

which thin at an exponential rate exp(−t/3De) as a result of the local balance between

elasticity and capillarity. The filaments connect an arbitrary distribution of droplets,

which approach a static, spherical shape. A similarity solution describes the crossover

between the cylindrical thread and the neighbouring droplet. Toward the thread, the

solution asymptotes toward a constant thickness, in the direction of the drop it matches

onto the spherical shape of the drop.

Our paper is organised as follows: In the next section we develop and motivate the

lubrication equations to be used for the remainder of this paper. A numerical simulation

illustrates the regimes to be analysed below. The third section is devoted to the study of

the neo-Hookean regime, where polymer relaxation can be neglected. The resulting local

description of the polymer stresses is tested numerically and then used to compute the

asymptotic thread radius. The fourth section deals with the long time regime at finite

De for which exponential thinning of threads is observed. After giving a qualitative

description of the shape and flow inside the thread, we introduce a similarity description

valid in the corner where a cylindrical thread meets a spherical drop. If De is large

enough to make only elastic and surface contributions relevant, we can compute all but

one of the free parameters of the solution. This last parameter, the thread radius, can

be estimated by matching to the early-time regime. The numerical results are compared

with experimental observations using a dilute solution of monodisperse polystyrene which

is well-described by the Oldroyd-B constitutive model. Measurements of the evolution

in the mid-filament radius and the evolution of the spatial profile of the filament are
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well-described by the theory. In the final section we discuss work that remains to be

done within the framework of the present model, as well as perspectives for inclusion of

other effects that lie beyond it.

2. Model and simulation

2.1. One-dimensional equations

In this paper we confine ourselves to the study of a simplified version of the Oldroyd-B

model for polymeric liquids, assuming that the radius h(z, t) of the liquid column varies

slowly. Thus the variation of hydrodynamic variables inside the column is also small, and

we can confine ourselves to the leading order approximation in an expansion in the radius.

For example, v(z, t) below is the axial velocity at the centre of the jet. A derivation of

the relevant equations has been given in Forest & Wang (1990), so we just give the final

result and briefly discuss its physical significance:

∂h2

∂t
+

∂

∂z

(

vh2
)

= 0 (2.1)

∂v

∂t
+ v

∂v

∂z
= −∂κ
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+ 3νs

1
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(
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∂

∂z

(

h2(σzz − σrr)
)

(2.2)

κ =
1
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z)

1

2
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(1 + h2
z)

3

2

(2.3)

∂σzz

∂t
+ v

σzz

∂z
= 2

∂v

∂z
σzz + 2

νp

De

∂v

∂z
− σzz

De
(2.4)

∂σrr

∂t
+ v

σrr

∂z
= −∂v

∂z
σrr −

νp

De

∂v

∂z
− σrr

De
(2.5)

Equation (2.1) expresses volume conservation, (2.2) is the momentum balance equation

in the one-dimensional approximation. The first term on the right of (2.2) is the gradient

of the Laplace pressure, given in (2.3), which is the main driving force. The rational

behind keeping the full curvature term (2.3) in the leading-order lubrication equations

has been discussed in detail in Eggers (1997). Its inclusion guarantees that static spherical
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drops are a solution of the equations, so the drops seen in figure 2 can be described in

the framework of our lubrication equations.

The second term on the right of (2.2) is the Newtonian contribution to the viscosity,

multiplied by the dimensionless viscosity νs of the solvent. Finally the last term is the

polymeric contribution; σzz and σrr are the diagonal terms of the extra stress tensor,

with evolution equations given by equations (2.4) and (2.5). The other components of

the polymeric stress tensor do not enter at leading order. It is convenient to write all

terms on the right-hand-side of (2.2) in the same form, by rewriting the gradient of the

mean curvature κ as (Entov & Yarin (1984))

∂κ

∂z
= − 1

h2

∂

∂z

(

h2K{h}
)

, (2.6)

where we have defined

K =
1

h(1 + h2
z)

1

2

+
hzz

(1 + h2
z)

3

2

. (2.7)

Notice that K is almost the same expression as κ, but with the sign in front of the second

term reversed. Using (2.6), equation (2.2) can finally be rewritten such that the inertial

terms on the left are balanced by gradients of the tensile force T in the thread:

∂v

∂t
+ v

∂v

∂z
=

1

πh2

∂T

∂t
=

1

h2

∂

∂z

[

h2

(

K + 3νs
∂v

∂z
+ σzz − σrr

)]

. (2.8)

The sign of the surface tension contributions to the total tensile force T can be un-

derstood by noting that the tension is comprised of ‘bulk’ stresses exerted over the

cross-sectional area of the fluid thread, πh2[−p + 2νs∂v/∂z + σzz ], and a line force ex-

erted around the perimeter, 2πh(1 + h2
z)

−1/2. The stress boundary condition on the free

surface gives

−p − νs
∂v

∂z
+ σrr = − 1

h(1 + h2
z)

1/2
+

hzz

(1 + h2
z)

3/2
. (2.9)

where the continuity equation has been used to eliminate the radial velocity gradient in
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favor of the axial velocity gradient ∂v/∂z. Combining these expressions gives the result

in (2.8).

For very viscous fluids the inertial terms on the left of (2.8) are negligible, and the

terms in parentheses equal a (generally time-dependent) constant. Alternately, if velocity

gradients ∂v/∂z are small so that the convected derivative terms in (2.4) and (2.5) can

be neglected, then these equations describe an additional Newtonian contribution νp to

the total steady-state shear viscosity ν = νs + νp. The presence of polymers also results

in fluid viscoelasticity which is represented by the relaxation terms σij/De on the right

of (2.4) and (2.5). Finally a crucial term for the physics of the following is the first term

on the right of (2.4) and (2.5), which describes the interaction of the polymer with the

flow. In an extensional flow ∂v/∂z is positive, so the stress in the axial direction grows

as the dumbbells modelling the polymeric contribution to the stress are stretched, while

it decays in the radial direction.

2.2. Beads on a string

We are now in a position to study the behaviour of the model for various initial condi-

tions and to compare to experiment. First, we simulate the evolution of a long, initially

unstretched cylinder of fluid. For our simulations we have used a numerical code anal-

ogous to the one developed earlier by Eggers & Dupont (1994) and Eggers (1997) for

Newtonian flows. It is fully implicit and uses adaptive regridding of the numerical mesh

to resolve fully the fine structure of the flow. This is crucial to be able to describe some

of the last stages of thread formation to be investigated in detail in section 4. We found

that the demands on the solution of the implicit equations are much greater than in the

Newtonian case, owing to a larger range of time scales in the flow. In general, several

iterations of a Newton scheme were necessary for convergence, and significant restrictions

had to be put on the time step. To further test for possible problems inherent in our nu-
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merical scheme, another explicit code was also developed independently. In addition, all

fields were represented in a uniform grid, as opposed to the staggered grid of the implicit

code. One stability condition for an explicit method is that the time steps ∆t must be

less than the the viscous diffusion time h2/ν. The explicit method performed quite well

except for the highest viscosities, where the time step imposed by the stability condition

became prohibitively small.

Figures 3 and 4 give an idea of the typical behaviour of a liquid filament in the absence

of gravity, described by (2.1-2.5). The parameters were chosen to be identical to those of

figure 2 in Chang at al. (1999); that is in the present scaling, νs = 0.79, νp = 2.37, and

De = 94.9, and the amplitude of the initial sinusoidal perturbation is 0.05. The results

are quite insensitive to the choice of this amplitude, except that for smaller disturbance

amplitudes (as in figure 1 of Li & Fontelos (2003)), the disturbance takes longer to grow

to an appreciable size. The left and right hand parts of the picture were produced with

the explicit and implicit codes, respectively. Even a blow-up of the corner region at the

latest time, where the radius of the filament has fallen below 10−2, does not reveal a

significant difference between the results of the two simulations. The same quality of

agreement is born out by a comparison of the minimum radius, figure 4.

In figure 4 the minimum radius is initially seen to decrease quite rapidly. Most of this

initial motion is described quite well by linear theory (see Chang at al. (1999)). At around

t = 30 (corresponding to the formation of a filament in the second panel of figure 3),

the motion crosses over to a slow exponential decay of the thread radius. This crossover

occurs when the elastic stresses which build up in the deforming liquid bridge become

dominant and a local elasto-capillary balance is established. The slope drawn into figure

4 corresponds to the theoretical prediction of section 4. During the exponential thinning,
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Figure 3. A typical series of profiles with periodic boundary conditions and period L = 4π. The

dimensionless parameters are νs = 0.79, νp = 2.37, and De = 94.9. A sinusoidal perturbation

of amplitude 0.05 was added in order to make the filament collapse. After the rapid formation

of the beads-on-string structure, one observes the slow thinning of the thread. The relative

dimensionless times of each profile are (a) 0.0, (b) 31.6, (c) 158.1, (d) 316.2, (e) 632.5 and (f)

948.7. The left-hand-side of the graph (full lines) was produced using the explicit code, the

right-hand-side using the implicit code with staggered grid.
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Figure 4. The minimum radius corresponding to the profiles shown in figure 3, obtained

from the explicit code. One clearly observes a rapid initial motion, which persists until the

polymers are appreciably stretched, followed by an exponential thinning at a (dimension-

less) rate of 1/(3De). Most of the initial motion is well described by linear theory, giving

hmin = 1 − A exp(ωt), where A = 0.05 and ω = 0.109. The crosses are the result of our

implicit code, which produced the right-hand-side of figure 3.

fluid is expelled from the thread into the surrounding beads, which become increasingly

spherical.

Structures very similar to figure 3 are shown in the experiment of figure 2 and have

also been observed by Goldin et al. (1969), Bazilevskii et al. (1981), and Christanti

& Walker (2001) for the decay of a liquid jet of polymer solution ejected from a nozzle.

Good agreement between a numerical simulation of a one-dimensional model very similar

to ours and the experiments of Bazilevskii et al. (1981) has been reported by Yarin
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(1993), p.85. However, it is very difficult in practise to produce liquid cylinders without

stretching the polymers, since there is considerable shear inside the capillary tube and

the nozzle. On the other hand, the shear flow inside the capillary is very difficult to

model in the framework of the present one-dimensional description. Furthermore, each

bead and ligament shown in figure 2 corresponds to a ‘snapshot’ at a different elapsed

convective time ∆t̃ = Lperiod/vjet. Therefore, to compare quantitatively to experiments,

we prefer to use a setup that allows for a more quantitative description of the stretching

history of the fluid column.

2.3. Liquid bridge

We now turn to the capillary thinning and breakup of a liquid bridge that has been sub-

ject to a very rapid initial stretching. During this extensional step strain process (which

typically lasts 0.05 sec) hardly any polymer relaxation takes place and, provided that the

initial aspect ratio is not too small, the exact temporal profile in which the the plates are

pulled apart is not very important. In fact, the initial stretching is well described by a

simple model neglecting any spatial structure (Anna & McKinley (2001)). However, the

simulation within the one-dimensional model is somewhat subtle, owing to a difficulty

in imposing the boundary conditions at the end-plates. Namely, the no-slip boundary

condition enforces a vanishing tangential velocity at the end-plate, and consequently

∂v/∂z = 0, while this is not true in the one-dimensional model. Since the stretch rate

∂v/∂z is in fact large over most of the bridge, this creates a thin boundary layer of fully

three-dimensional flow near the end-plates. Failure to correctly implement this boundary

layer leads to a detachment of the interface from the ends within the lubrication model.

Following Stokes et al. (2000), we have avoided this problem by introducing a supplemen-

tary viscosity which strongly increases near the ends. This position-dependent viscosity
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Figure 5. A comparison between experimental profiles (left), obtained from digitising the im-

ages of figure 1 and corresponding simulations (right), including the initial stretching and grav-

ity (acting downward). The time difference between two consecutive images is 10 sec. The

reduced variables corresponding to the experimental parameters are νs = 193.2, νp = 29.04, and

De = 296. Note that there are more profiles from simulation to reach approximately the same

thread radius, corresponding to a slight overestimation of the experimental time scale.

has been constructed by matching to a three-dimensional squeeze flow near a solid wall.

The effective “freezing” of the fluid prevents any lateral slip along the bounding wall.

When the initial aspect ratio of the liquid bridge is small Λ0 = L0/R0 << 1 there is an

additional consequence of the no-slip boundary condition. Numerical simulations show

that there is an additional stretching of material elements near the free surface associated

with the strong radial inflow and this can introduce a radial variation in the elastic stress
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Figure 6. The logarithm of the normalised minimum radius corresponding to the experimen-

tal (circles) and theoretical (dotted line) profiles of figure 5. The thick line is the theoretical

prediction for the slope −1/(3De).

near the centerplane of the filament (Harlen (1996)). This additional elastic stress can be

incorporated into a slender filament theory if desired; for example by assuming a specific

power law form for the radial variation in the axial polymeric stress (Kolte & Szabo

(1999)). However, numerical simulations (Yao & McKinley (1998)) show that this effect

is negligible for liquid bridges with O(1) aspect ratios as used in the present work and

we do not consider this effect further.

Figures 5 and 6 allow for a direct comparison between simulation and experiment.

The first digitised profile is taken just after cessation of stretching, after that a profile

is shown every 10 sec. Theory and experiment show good agreement in all the basic

features of the flow, such as the sagging under gravity and the formation of the thread.

Two subtle differences can be seen: first, the timescale of the simulation is off by about

20%, so 9 experimental profiles are shown but only 7 theoretical ones, at which point

about the same minimum thread radius is reached. This discrepancy, also seen in figure
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6, is quite acceptable considering that no adjustable parameters were introduced. Most of

the difference stems from the early-time development when two-dimensional effects may

be significant (Harlen (1996), Yao & McKinley (1998)), whereas the asymptotic slope of

both simulation and experiment agrees well with the theoretical prediction.

The behaviour of hmin at early times is markedly different from that of a free jet, as

discussed in detail in Anna & McKinley (2001). The rapid early decrease of hmin seen

in figure 4 is absent, since stresses are already large owing to the initial stretching of

the liquid bridge. On the contrary, some of this initial stress has to relax before further

thinning can start, as seen in the plateau for the earliest times. Evidently there are

some subtle features of the experimental relaxation processes which are not modelled

correctly by our single-mode Oldroyd-B model. The initial stretch is also responsible for

the absence of drops (“beads”) in the middle of the thread that formed on the free jet, cf.

figure 3. The reason is that the initial stretch is uniform, and this uniformity is conserved

by the exponential stretching regime.

The second difference between the experimental and theoretical profiles of figure 5 is

that at the same minimum thread radius the corner between the thread and drops at the

end is sharper. We will return to this when we discuss the structure of the corner region

in detail in section 4.2.

3. Early time asymptotics

3.1. Local description

In this section we exploit the fact (Entov & Yarin (1984), Fontelos (2003)) that for early

times t � De the non-Newtonian contribution to the stress behaves like that of a neo-

Hookean elastic solid, and can be expressed directly through the profile shape h(z). The
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elastic modulus of the material is related to the model parameters by

G = νp/De. (3.1)

With the present scaling this is the same as the elastocapillary number introduced in

Anna & McKinley (2001), which can also be written G = Oh(1 − S)/De.

Using Lagrangian coordinates, Fontelos (2003) shows that the polymeric stress appear-

ing in (2.8) can be written as

h2 (σzz − σrr) = G
(

1/h2 − h4
)

+ O(t/De), (3.2)

where we used that throughout this paper R0 = 1. The exact form of the correction

terms can be found in (Fontelos (2003)). Thus in the neo-Hookean limit the equation for

the velocity is

∂v

∂t
+ v

∂v

∂z
=

1

h2

∂

∂z

(

h2K + 3νsh
2 ∂v

∂z
+ G

(

1/h2 − h4
)

)

, (3.3)

where K is defined in (2.6).

As a numerical test of the quality of the local approximation, we performed two simu-

lations similar to that of figure 3, but for two different Deborah numbers. figure 7 shows

the evolution of the interface profile at different times for De = 94.9, νp = 2.37 (left

column), and De = 9490, νp = 237 (right column). The full lines are the solution of

equations (2.1-2.5), while the dashed ones were obtained by replacing (2.2) by (3.3). For

the simulation corresponding to moderate Deborah number, the time t of the second

panel is of same order as the relaxation time De, so the solution of the full equations and

the one of the local approximation begin to differ starting from the third panel. On the

other hand, for the case of large Deborah number, t � De, throughout the simulation

the agreement of the two solutions is excellent.

Throughout the process of filament formation, we find almost perfect agreement with

the local model provided De � t. Thus the local approximation is an extremely use-
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Figure 7. Comparison of interface profiles with period L = 20 and νs = 0.79 between the

full equations (full) and the local approximation (dashed lines): left column De = 94.9 and

νp = 2.37, and right column De = 9490 and νp = 237. The relative times for each profile are

(a) 31.6, (b) 79.1, (c) 158.1, (d) 316.2 and (e) 474.3. Evidently, for t � De the agreement is

excellent (right column).

ful tool to investigate the early-time dynamics t < De and the formation of the basic

beads-on-string structure. We will therefore study the stationary filament solutions of the

local model in the following subsection. After the filament has formed, the neo-Hookean

elastic response of the local model leads to a stationary profile, while the effects of fluid



The beads-on-string structure of viscoelastic threads 23

viscoelasticity captured by the full equations leads to the filament continuing to thin

exponentially in time.

At low viscosities, Oh < 1, the initial evolution can be considerably more complicated,

but is still fully described by the local equations if De is sufficiently large. This is due to

inertial effects also being important; so as the thread is formed, fluid may rebound from

the drops, and an additional ‘secondary’ drop forms in the middle of the filament. This is

also seen in experimental observations of jet breakup (Christanti & Walker (2001)) and

drop pinch-off (Cooper-White et al. (2002)).

3.2. Static solutions

In the neo-Hookean limit considered here, De → ∞, the elastic stresses never relax, so at

long times surface tension is balanced by permanent elastic stresses to form a stationary

solution. Integrating (3.3) while dropping inertial terms, one finds

h2K + G
(

1/h2 − h4
)

= T, (3.4)

where T is the unknown tension in the string. Apart from the appropriate boundary

conditions on h, (3.4) has to be solved with the constraint of volume conservation

π

∫ L

0

h2 = V, (3.5)

which only serves to set the size of the fluid drops.

In particular, (3.4) allows for solutions with constant h

hthread + G/h2
thread = T, (3.6)

where we have assumed a constant initial radius R0 = 1, and dropped the contribution

from the radial stress, since hthread is expected to be small. The solutions of equation

(3.6) correspond to the thin cylindrical thread of constant radius shown schematically in

figure 8. Indeed, from the balance (3.6) one concludes that both T and hthread scale like
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Figure 8. A schematic of a thread connected to a drop. The origin z = 0 is placed at the end

of the spherical drop.

G1/3, which is small for large De. The thread has to be matched to an almost circular

drop, as first done by Entov & Yarin (1984), and illustrated in figure 8.

In the drop region the radius h is of order one and in (3.4) one can neglect the tension

T and the terms multiplied by G in the limit we are interested in. Thus one is left with

the contribution from surface tension alone, and the solution is a spherical drop (region

(c) of figure 8),

h(z) = R
√

1 − (1 + z/R)2. (3.7)

Here R is the radius of the drop. Since in the asymptotic limit there is very little fluid

inside the thread, R is set by the volume constraint (3.5).

To determine hthread, one needs the value of the constant T , which requires matching

the thread (region (a)) to the drop (region (c)). One can avoid considering the connecting

region (b) by computing a first integral of (3.4), multiplying the equation by h′/h3 and

using

(

1

h(1 + h2
z)

1/2

)
′

= − hz

h2(1 + h2
z)

1/2
− hzhzz

h(1 + h2
z)

3/2
. (3.8)
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This gives

1

h(1 + h2
z)

1/2
+

G

4h4
+

Gh2

2
=

T

2h2
+

1

R
, (3.9)

where the constant of integration 1/R is essentially half the Laplace pressure inside the

spherical drop (remembering that the coefficient of surface tension has been normalized

to one). Indeed, evaluating (3.9) on top of the drop, where hz is zero, one finds R ≈ R,

since T goes to zero in the limit of vanishing G. In the thread hz vanishes as well, giving

1/hthread + G/(4h4
thread) = T/(2h2

thread) + 1/R, (3.10)

again dropping radial contributions which are very small in the thread. In deriving (3.10)

we have also assumed that (3.4) is valid everywhere including the drop, the cylindrical

thread and the corner region. If additional terms beyond the one-dimensional approxi-

mation are important in the corner region this will affect the value of R.

Remembering our previous estimate hthread ∝ T ∝ G1/3, the constant 1/R is subdom-

inant in (3.10), and thus combining (3.10) with (3.6), we find

hthread =

(

G

2

)1/3

. (3.11)

For the parameters of figure 7 (right column), we find hthread = 0.232 from (3.11), to

be compared with the observed value of hmin = 0.253. The quality of the approximation

quickly improves as the scale separation between thread thickness and drop size becomes

even more complete.

4. Late time asymptotics

4.1. Thread thinning

The formation of threads described in the previous section is a result of the interplay of

surface tension and elastic forces. On times longer than De however the string tension

gradually relaxes, and the thread thins at an exponential rate β. This rate is easily
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determined from a balance of surface tension and elastic forces in (2.2), assuming a

spatially constant profile (e.g. Bazilevskii et al. (1981), Renardy (1995), Entov & Hinch

(1997))

h(z, t) = h0 exp(−βt). (4.1)

From volume conservation (2.1) one finds that the extension rate ∂v/∂z = 2β in the

thread is constant. The exponential growth of the axial stress σzz is described by (2.4),

and assuming a spatially constant σzz one immediately finds σzz(z, t) = σ0 exp[(4β −

1/De)t]. The radial stress σrr decreases exponentially and does not figure in the balance.

Remembering that capillary pressure is balanced with σzz in (2.2) and rewriting the

pressure gradient according to (2.6) one finds

h + h2σzz = T (t), (4.2)

for the tension T (t) in the string, performing one spatial integration. For the balance

(4.2) to be consistent σzz must grow like 1/h, and thus β = 1/(3De), implying that the

tension itself decays like

T = a1 exp[−t/(3De)], (4.3)

and

σzz(z, t) = σ0 exp(t/De). (4.4)

The fact that β = 1/(3De) means that the thinning rate of the thread given by (4.1) is

directly related to the time scale of the polymer, providing for a convenient experimental

probe. Furthermore the tensile force T in the thinning thread is not identically zero as

assumed in earlier work (Entov & Hinch (1997)) but in fact decays as the same rate as

the radius.

To obtain a clearer physical picture, we plot in figure 9 the thread radius, normalised
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Figure 9. Profiles of the radius, the velocity, and the axial stress, normalised by their val-

ues in the thread, in the regime of exponential thinning. The parameters are De = 3164 and

νs = νp = 95.6. The extension rate inside the thread is 2/(3De).

by the exponential factor ` = exp[−t/3De], the velocity in the thread, and `σzz for a

number of different times during the thinning. As predicted, h(z) and σ(z) are very nearly

constant over the thread, and they collapse nicely as anticipated by the above scaling

laws. Furthermore, the extension rate ∂zv has the constant positive value 2β inside the
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thread, expressing the fact that fluid is expelled from it. In response, the stress σzz grows

to large positive values, so both contributions on the left-hand side of (4.2) are always

positive. This means that the tension T (which below we will compute explicitly in the

limit of large De) has to be kept in (4.2) for a consistent balance. For large De this makes

the stress twice as large as determined in earlier work (e.g. Bazilevskii et al. (1981), Entov

& Hinch (1997), Anna & McKinley (2001)), where the tension was not considered.

Since the total length L of the thread is a constant quantity, the maximum value of

the velocity

vmax ≈ L

3De
(4.5)

behaves like the inverse of the Deborah number, and is thus small in the limit that is the

chief focus of this paper. A number of experiments (e.g. Bazilevskii et al. (1997), Stelter

et al. (2000), Anna & McKinley (2001)) have confirmed the prediction (4.1). In particular

in Anna & McKinley (2001) the relaxation time was determined independently, and the

thinning rate was found to conform with the prediction β = 1/(3De). At both ends of

the thread, the velocity and the stress fall to zero very sharply, and the profile merges

onto a static drop with radius R. Next we will focus on this transition region, whose scale

is set by ` = exp(−t/3De).

4.2. The corner region

According to the scalings found in the previous subsection, which implies the existence

of a small length scale ` = exp(−t/3De), it is natural to look for solutions of (2.1-2.2) of

the form

h(z, t) = `h(z, t)

v(z, t) = v(z, t) (4.6)
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σzz(z, t) = `−1σzz(z, t),

where z = `−1(z − z0). The origin z0 must asymptotically lie in the similarity region.

A convenient choice is the position of the extremum of the velocity in the limit ` → 0.

Since σrr is exponentially small inside the thread, it can be left out of our analysis. Thus

the equations for h, v, and σzz are

2`h ḣ − 2`

3De

(

h
2 − zh h

′
)

+
[

vh
2
]

′

= 0

h
2

(

`2v̇ +
`2z

3De
v′ + `v v′

)

=
[

h
2
K{h} + h

2
(3νsv

′ + σzz)
]

′

(4.7)

`σ̇zz +
`

3De
(σzz + z σ′

zz) + v3

[

σzz

v2

]

′

=
`

De
(2νpv

′ − σzz),

where the prime refers to differentiation with respect to the similarity variable z and

the overdot indicates differentiation with respect to time. Towards the thread our scaling

ensures that h, v, and σzz tend toward the constants h0, v0, and σ0, respectively, as

z → ∞. (Without loss of generality, we assume that the thread is to the right of the

transition region.) The length scale ` becomes exponentially small for t → ∞ and for any

finite z, terms proportional to ` or `2 may be dropped. Looking for time-independent

solutions of (4.7) and integrating once, we find

vh
2

= v0h
2
0

h
2
K{h} + h

2
(3νsv

′ + σzz) = h0 + h2
0σ0 (4.8)

σzz/v2 = σ0/v2
0 .

Eliminating v and σzz , we end up with

h
2
K{h} + h

2
(−a2h

′

/h
3

+ a3/h
4
) = a1, (4.9)

where a1 = h0 + h2
0σ0,a2 = 6νsv0h

2
0, and a3 = σ0h

4
0. In our analysis of (4.9), we are
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going to confine ourselves to the limit of very large De, for which typical velocities are

small, according to (4.5). Thus the contribution −a2h
′

/h in (4.9), which comes from the

viscous stress, can be neglected. Dropping this term makes (4.9) equivalent to (3.6), so

our previous asymptotic analysis can be applied to calculate the minimum thread radius.

Just as in section 3, the dominant balance inside the drop is 0 = K{h} = K{h}, which

is the equation for a static drop described by (3.7). Thus (4.9) is valid not only in the

self-similar region described by (4.6), but all the way into the drop. Using the results of

section 3, we find

σ0 = 2/h0, a1 = 3h0. (4.10)

These expressions can be combined with (4.4) to evaluate the exponential growth in the

extensional stress, once the amplitude h0 of the thread radius is determined. The thread

radius (and thus h0) is readily measurable by optical means; thus giving experimental

access to the growth in the polymeric stress, which is difficult to obtain by other means.

Below we also provide an estimate of h0 by matching 4.1 to the initial thinning of the

jet. Renardy (1995) also computes the constant a1, but without resolving the self-similar

corner region, as we do. He does not include the full curvature in his description, and

is thus unable to describe the drop. Instead, the transition to the drop is described as a

shock, and the estimate for a1 becomes 3/2h0, half of the value we find.

In the limit of small thread radius the first integral of (4.9), analogous to (3.9), is

h
′

= −
[

4(h/h0)
2

(3 − (h0/h)2)2
− 1

]1/2

. (4.11)

As in the previous section we are assuming here that our slender filament equations apply

uniformly in the bead, the cylindrical filament and the matching region.

Integrating (4.11) with initial radius h = h0 (plus an arbitrarily small perturbation)

one finds the universal profile shape of h(z). In figure 10 we show the corner region of the
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Figure 10. A comparison of our similarity theory for large De (dashed line) with rescaled profiles

from a numerical simulation with parameters as in figure 9, at log10(hmin) = −1.5,−2,−2.5,

and −3. The dashed line was obtained from integrating (4.11), with h0 = 0.1275.

numerically computed profiles presented in the top panel of figure 9, rescaled according

to (4.6) (solid lines). Using the value of h0 = 0.1275 read off from figure 9, the dashed

line is obtained by integrating (4.11). As t grows, the rescaled profiles converge nicely to

the theoretical prediction.

Finally, we compare our theoretical results to experiments. To that end, high resolu-

tion images of experimental profiles were taken by focusing a video microscope on the

corner region. Figure 11 shows a sequence of digitized images of the upper corner, which

becomes increasingly sharp as the thread thins. To test our similarity theory, the profiles

corresponding to the latest stages of pinching were rescaled using the minimum thread

radius for both axes. As shown in figure 12, the experimental profiles converge nicely

onto a master curve, in very much the same way as the computed profiles of figure 10 do.

However, the experimental profiles turn out to be sharper than theory predicts, a fact

we attribute to the failure of the one-dimensional equations underlying our theory. This

point is discussed in more detail below.
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Figure 11. An experimental closeup of the upper corner of the liquid bridge. Shown is the

same experiment as figure 1, but under a microscope. The time interval between two consecutive

profiles is 2 sec.

The constant h0 is the only remaining adjustable parameter for the description of the

corner region. In the case of the free jet, cf. section 2.2, it can in fact also be estimated

in the limit that the relaxation time De of the polymer is much larger than the time tfil

needed to form the primary filament. Namely, equating the thread thickness (3.11) given

by the local theory of section 3 with hmin = h0 exp(−tfil/3De) one finds

h0 = exp(tfil/(3De))

(

G

2

)1/3

.

Thus in the limit that De is much larger than tfil one simply has

hmin(t) =

(

G

2

)1/3

exp(−t/3De), (4.12)
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Figure 12. The last 9 experimental profiles (corresponding to figure 11), taken in time

intervals of 0.5 sec, with both axes rescaled by the minimum thread radius.

which is smaller by a factor of 2−1/3 than the result given in Bazilevskii et al. (1997) and

Entov & Hinch (1997), which do not take into account the tension in the string. Fitting

a straight line to the exponential thinning regime of figure 4, we obtain h0 = 0.247, in

excellent agreement with the theoretical prediction of (4.12), h0 = (G/2)1/3 = 0.232.

5. Discussion

By confining ourselves to the simplest possible model for a dilute polymer solution,we

have reached in the present paper at a rather complete description of the formation and

subsequent development of the beads-on-string structure. Some details, of course, remain

to be elaborated.

At low viscosities or high surface tension, Oh � 1 � De, Li & Fontelos (2003) show

that a complex succession of beads may be generated owing to inertial effects. Namely,
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originating from the drop, a capillary-elastic wave propagates along the neck to form a

thin thread of uniform thickness. At places where the wavefronts meet, smaller satellite

drops form. After a sequence of drops has formed, these drops are subject to possible

merging, or draining processes.

A superficially similar, yet physically quite distinct phenomenon has been described

in Chang at al. (1999) and named ‘recoil’. By this the authors refer to the instability

of exponentially thinning threads of constant thickness, originating from the drop. As

a result, a secondary, thinner thread forms on the primary one. We never found any

indication of secondary filament formation after an exponentially thinning thread was

formed, either in simulation or in experiments with highly viscous polymer solutions. We

also repeated the simulations of Chang at al. (1999) for the same parameter values, using

both our explicit and implicit codes. In our simulations, the primary thread continued

to thin, without any indication of secondary thread formation. It would be interesting in

the future to investigate the possibility of instabilities being generated by noise of finite

amplitude.

As indicated above, the velocity in the corner region is proportional to 1/De, thus

in the limit of large De, viscous effects drop out and only capillary and elastic forces

remain. In the presence of viscous forces, equation (4.9) can be applied for any finite

value of the similarity variable z. However, we have not yet succeeded in matching the

solution described by (4.9) with the stationary drop in the general case. The reason is

that whilst in the similarity region close to the corner (between the thread and the drop)

everything can be described by the thread profile h alone, this is no longer possible in

the transition region toward the stationary drop. Instead, the coupled system involving

the drop shape, the velocity field, and the stress has to be treated. Indeed, even in the
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limit of large De where matching can be achieved using h alone, analytical computation

of v and σzz is far from trivial.

A result of the present similarity description is that for very long times the drop devel-

ops into a perfect sphere, while the thread radius shrinks to zero. This means the profile

at the point where the thread meets the drop develops into a right angle. Unfortunately,

the fact that the slope of the profile becomes increasingly large in the corner means that

the lubrication equations, used throughout this paper, are no longer valid. However, a

preliminary investigation suggests that in fact the full three-dimensional, axisymmetric

Oldroyd B equation leads to the same self-similar scaling as the lubrication model (Eggers

et al. (2005)). The resulting similarity equations are, however, much more complicated,

and require numerical methods to solve. We are currently developing a boundary inte-

gral method to treat the similarity equations, whose solution we hope to compare to

experiment (Eggers et al. (2005)).

Finally, there are myriad effects associated with departures from the Oldroyd-B model,

some of which have already been incorporated into the description of thread thinning.

For example, the effect of the finite extensibility of a real polymer chain will change

the dynamics, since it bounds the maximum elastic stress that can be exerted by the

polymer chain (Entov & Hinch (1997)). This is modelled theoretically by the presence of

nonlinear terms in the constitutive equation for the polymeric stresses, which limit their

growth. Thus, whereas the exponential thinning described in this paper would formally

lead to breakup only in infinite time, a real polymer thread does in fact break. Experi-

mental observations of the departure from the exponential law are found for example in

Bazilevskii et al. (1997) and Anna & McKinley (2001). The theory in Bazilevskii et al.

(1997) differs from the conventional one in that it credits the degradation of polymers for

the departure from the exponential law.
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A number of different nonlinear constitutive equations which bound the maximum

polymeric stress have been proposed, and Renardy (Renardy (2001), Renardy (2002)) has

considered the asymptotics of a number of different models. A key feature of these analy-

ses is that the thread is predicted to break in finite time when the maximum elastic stress,

arising from affine deformation can no longer balance the capillary pressure γ/h̃min. For

dilute polymer solutions in particular, the nonlinear form of the force-extension curve

close to full extension is well-established both experimentally and theoretically (Li et al.

(2000), Shaqfeh et al. (2003)). Analysis of extensional flow of finitely extensible nonlin-

ear elastic (FENE) dumbbells results in a maximum (dimensionless) polymeric stress of

order σzz,max ≈ (2De)Gbv′ where b = 3NK is the finite extensibility parameter, which is

proportional to the number of Kuhn steps or links (NK) in the polymer chain. In the elas-

tocapillary necking regime we obtain (2De)v′ = 2/3 (cf. figure 9); a naive balance thus

suggests that we require Gb > 2/3 for elastic effects to be able to grow sufficiently large

to balance capillary stresses. A rigorous balance is substantially more complex (Entov &

Hinch (1997)) and requires a consideration of the initial polymeric stress in the filament

and the additional strain accumulated by the fluid in the transient process of the poly-

meric stress growing to the saturation value σzz,max. Numerical calculations show that

the time to breakup depends on the specific functional form of the chosen constitutive

model (Harlen (1996), Yao & McKinley (1998), Fontelos & Li (2004)).

Other, more elaborate versions of the FENE model have also been developed (Lhuillier

(2001), Ghosh et al. (2002)) which attempt to capture additional features of the internal

dynamics of the rapid stretching process for long flexible chains. As the concentration

of dissolved polymer chains is increased, entanglement effects also dramatically mod-

ify the extensional rheology of the viscoelastic fluid. However, recent experiments have

shown that an exponential period of capillary-induced thinning, followed by finite time
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breakup still occurs (Bhattacharjee et al. (2003)). A significant benefit of the present

experimental configuration and accompanying analytical description is precisely that the

characteristics of the final breakup process sensitively depend on the nonlinear descrip-

tion of the test fluid that is used. Thus analysis of the capillary-thinning and breakup of

polymer solutions provides for a promising testing ground to better understand some of

the important nonlinear features of viscoelastic constitutive equations at large strains.
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Appendix A. Rheological characterisation of viscoelastic test fluids

The viscoelastic solution used for the capillary break-up experiments in figures 1, 6, and

11 consists of a dilute solution (c = 0.050 wt%; c/c∗ = 0.44) of a polystyrene standard

(molar mass Mw = 2.0 × 106g/mol, Mw/Mn = 1.03, Pressure Chemical) dissolved in

oligomeric styrene (Piccolastic A5 Resin, Hercules). This is an example of the class of

fluids identified as “Boger fluids”. The polymer was dissolved directly in the oligomeric

resin, and the fluid was gently rolled for 2 months to ensure a homogeneous mixture.

The shear and extensional rheology of this ideal elastic fluid was also studied in detail

in Anna et al. (2001), in which it was identified by the acronym “SM1”. It should be

noted that the zero shear rate viscosity and longest relaxation time have increased since

the fluid was originally characterised four years ago. This is common in such fluids due
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to the slow and irreversible polymerisation of the oligomeric solvent by residual catalyst

and/or UV light.

The low viscosity polymer solution in figure 2 was prepared by dissolving 0.01 wt%

linear polyacrylamide (Praestol 2540, Stockhausen) with a reported molar mass Mw =

14.0 × 106g/mol in deionised water. Using the reported degree of hydrolysis for this

polyacrylamide grade (40%) with a repeat unit mass of 71.4 g/mol and a coil expansion

coefficient of C∞ = 12.9 we compute the critical overlap concentration for this fluid

to be approximately c∗ = 0.0134 wt%. The test fluid is thus in the dilute regime with

c/c∗ = 0.75. The fluid was shaken gently for 1 week to ensure a homogeneous mixture.

The rheology of both fluids in both steady and dynamic shear flows was characterised

using a TA Instruments AR1000N cone-and-plate rheometer. The longest relaxation time

λ and solvent and polymer contributions to the viscosity (ηs and ηp = η0 − ηs) were

obtained by fitting the linear viscoelastic moduli G′(ω) and G′′(ω) to the predictions of

the Rouse-Zimm model for dilute solutions:

G′ =
cNAkBT

Mw

Nm
∑

i=1

(λiω)2

1 + (λiω)2
(A 1)

G′′ = ηsω +
cNAkBT

Mw

Nm
∑

i=1

λiω

1 + (λiω)2
. (A 2)

The spectrum of relaxation times, λi are related to the longest (Zimm) relaxation time

(denoted in the manuscript by λ) by a recursion relationship of the form

λi = λ/i2+σ̃ for i = 2, . . . , Nm (A 3)

where σ̃ is a measure of the hydrodynamic interaction between the segments of the poly-

mer chain and the surrounding solvent. This parameter is related to the hydrodynamic

interaction parameter h∗ of the Zimm model by a correlation originally published by

Thurston (Bird et al. (1987)). Varying the hydrodynamic interaction parameter in the
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range 0 ≤ h∗ ≤ 0.25 allows better agreement between the experimental and fitted curves

at intermediate angular frequencies ω; for further details see Anna et al. (2001). The zero

shear rate viscosity is obtained from eq. (A 2) by taking the limit of G′′/ω as ω → 0, and

the polymer contribution to the viscosity is given by

ηp =
cNAkBT

Mw

Nm
∑

i=1

λi (A 4)

The number of modes, Nm can be varied depending on the resolution of the viscoelastic

spectrum of the polymer solution that is desired. The Hookean dumbbell corresponds to

Nm = 1.

Detailed experiments on polystyrene solutions (Amelar et al. (1991)) shows that the

molecular mass associated with a single spring is 5, 000− 10, 000 g/mol; suggesting that

for the polystyrene used in the present study Nm ≈ 200. In practise, given the rapid

decay of the higher relaxation modes given by eq. (A 3) and the range of frequencies over

which the linear viscoelastic moduli can be obtained, we find 9 ≤ Nm ≤ 15 is sufficient.

Using equations (A 1 - A 4) we determined the model values reported in the captions of

figures 1 and 2.

If we now consider the effect of a discrete spectrum on capillary thinning experiments,

we find that the local rate of stretching in the cylindrical thread arising from the elas-

tocapillary balance is sufficiently weak (in dimensional form ε̇ = 2/(3λ)), that all higher

modal contributions to the stress (of the form of eqs. 2.3, 2.4) decay away rapidly. They

do not contribute significantly to the total elastic stress because the convective derivative

terms that signify stretching for the higher modes are of the form (2De)v′/i2+σ̃, which

all decay rapidly for i > 1

The capillary break-up experiments were carried out using a CaBER-1 extensional

rheometer (Cambridge Polymer Group). The images presented in figures 1 and 11 were

recorded with a CCD-videocamera (Pulnix TM1) and a digital video recorder. For the
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digitised close-up in figure 11, the camera was equipped with a long-working distance

microscope extension (K2, Infinity Optical). All experiments were conducted at T =

25◦C.
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