
Effect of spectral resolution on neural entrainment of the speech envelope
Jonas Vanthornhout1 Lien Decruy1 Tom Francart1
1KU Leuven - University of Leuven, Department of Neurosciences, ExpORL

1. Introduction

Neural entrainment of the speech envelope

Speech envelope is a primary cue for speech understanding (Shannon et al., 1995)
Cortical activity tracks the envelope of running speech (Peelle and Davis, 2012)
Reconstruction of speech envelope from cortical activity is possible (Ding and Simon, 2011)
Reconstruction quality correlates with behaviourally measured speech understanding (Vanthornhout
et al., 2017)

Research question

Can speech understanding alone influence envelope entrainment?
In previous experiments noise was added to the speech stimuli
⇒ SNR(speech) ↓ ⇒ SNR(envelope) ↓ ⇒ envelope entrainment ↓
⇒ Is neural entrainment a measure of stimulus acoustics or speech understanding?
⇒ Reduce speech understanding without distorting the envelope
⇒ Use vocoded & chimaera speech (Ding et al., 2014; Kong et al., 2015; Obleser and Weisz, 2011)

2. Methods
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Permute a given percentage of TFS samples. If no permutation takes place (100% correct TFS)
the original speech is obtained, if full permutation takes place (0% correct TFS) a noise vocoder
is obtained.

Experiments

Vocoder: 7 young normal hearing subjects, aged 22-26 years
Chimeara: 9 different young normal hearing subjects, aged 22-27 years

I speech understanding: word scores
I EEG: BioSemi system with 64
electrodes

I binaural stimulation at 62 dBA
I speech in silence and with 3 dB SNR

I stationary speech weighted-noise
(SWN)

I 2 s Flemish Matrix sentences:
20 sentences/condition

I 15 minutes Flemish story to train
linear decoder
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Figure: Behaviourally and objectively measured speech understanding using envelope entrainment

Signal processing

decoder = (RRT )−1(RST )
R time-lagged neural data
S stimulus envelope of story

time lags 0-75 ms

decoder minimises MSE between actual and reconstructed envelope
ŝ(t) = ∑

n
∑
τ

decoder(n,τ)R(t + τ,n)

ŝ reconstructed envelope
t time ranging from 0 to T
n recording electrodes ranging from 1 to N
τ post-stimulus samples used to reconstruct the envelope: integration window

envelope entrainment = correlation
(
s(t), ŝ(t)

)
s actual envelope

3. Results & Discussion
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I speech understanding ↑ when numbers channels ↑
I speech in noise more difficult than speech in quiet
I vocoded speech in noise: largest range of speech
understanding scores

Comparing 2 channel vocoder with 8 channel vocoder
I entrainment increases as spectral resolution increases
I not significantly (p = 0.33 & p = 0.94)
⇒ envelope entrainment ↑ when speech understanding ↑?
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Noise
I speech understanding ↑ when TFS is less distorted
I speech in noise more difficult than speech in quiet

Comparing 0% TFS with 75% TFS
I entrainment increases as spectral resolution increases
I not significantly (p = 1.00 & p = 0.82)
⇒ envelope entrainment ↑ when speech understanding ↑?
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Figure: Envelope entrainment as a function of the number of vocoder bands.

Author Measure |stimulus| noise band understanding neural response
Ding et al. (2014) entrainment long no delta ↑ ↓
Ding et al. (2014) no theta ↑ ↑
Ding et al. (2014) SSWN delta ↑ ↑(1)
Ding et al. (2014) SSWN theta ↑ ↑
Kong et al. (2015) speaker ∞ ↑ ↑
Obleser and Weisz (2011) power short no theta ↑ ↑
Obleser and Weisz (2011) no alpha ↑ ↓
ExpORL entrainment short no delta ↑ ↑ (p = 0.20)?
ExpORL no theta ↑ ↑ (p = p = 0.76)?
ExpORL no alpha ↑ ↑ (p = p = 0.83)?
ExpORL SSWN delta ↑ ↓ (p = 0.26)? (1)
ExpORL SSWN theta ↑ ↑ (p = 0.29)?
ExpORL SSWN alpha ↑ ↑ (p = 0.26)?
(1) difference can be explained by the stimulus length, related to top-down attention & listening
effort
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(b)
Open question:

entrainment = frequency ∗ (α · speech understanding + β ·envelope coding + γ ·age + δ ·effort + ε ·attention)
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