Effect of spectral resolution on neural entrainment of the speech envelope Jonas Vanthornhout¹ Lien Decruy¹ Tom Francart¹

¹KU Leuven - University of Leuven, Department of Neurosciences, ExpORL

1. Introduction

Neural entrainment of the speech envelope

Speech envelope is a primary cue for speech understanding (Shannon et al., 1995) Cortical activity tracks the envelope of running speech (Peelle and Davis, 2012) Reconstruction of speech envelope from cortical activity is possible (Ding and Simon, 2011) Reconstruction quality correlates with behaviourally measured speech understanding (Vanthornhout et al., 2017)

Research question

Can speech understanding alone influence envelope entrainment? In previous experiments noise was added to the speech stimuli \Rightarrow SNR(speech) $\downarrow \Rightarrow$ SNR(envelope) $\downarrow \Rightarrow$ envelope entrainment \downarrow \Rightarrow Is neural entrainment a measure of stimulus acoustics or speech understanding? \Rightarrow Reduce speech understanding without distorting the envelope

 \Rightarrow Use vocoded & chimaera speech (Ding et al., 2014; Kong et al., 2015; Obleser and Weisz, 2011)

3. Results & Discussion

Vocoder

Chimaera

 \blacktriangleright speech understanding \uparrow when numbers channels \uparrow speech in noise more difficult than speech in quiet vocoded speech in noise: largest range of speech understanding scores

KU LEUVEN

Comparing 2 channel vocoder with 8 channel vocoder entrainment increases as spectral resolution increases • not significantly (p = 0.33 & p = 0.94)

 \Rightarrow envelope entrainment \uparrow when speech understanding \uparrow ?

2. Methods

Stimuli

Vocoder Retain envelope while replacing temporal fine structure with noise 2, 4, 6, 8 channels & clean speech

Chimaera 4 channel vocoder but retain a fixed amount of temporal fine structure 0%, 25%, 50%, 75% & 100% TFS

Permute a given percentage of TFS samples. If no permutation takes place (100% correct TFS) the original speech is obtained, if full permutation takes place (0% correct TFS) a noise vocoder is obtained.

Experiments

Vocoder: 7 young normal hearing subjects, aged 22-26 years Chimeara: 9 different young normal hearing subjects, aged 22-27 years

► speech understanding ↑ when TFS is less distorted speech in noise more difficult than speech in quiet Comparing 0% TFS with 75% TFS entrainment increases as spectral resolution increases • not significantly (p = 1.00 & p = 0.82)

 \Rightarrow envelope entrainment \uparrow when speech understanding \uparrow ?

Vocoder in noise

		Author	Measure	stimulus	noise	band	understanding	neural response
	Theta (3-6 Hz)	Ding et al. (2014)	entrainment	long	no	delta	\uparrow	\downarrow
0.25		Ding et al. (2014)			no	theta	\uparrow	\uparrow
		Ding et al. (2014)			SSWN	delta	\uparrow	\uparrow (1)
		Ding et al. (2014)			SSWN	theta	\uparrow	\uparrow
		Kong et al. (2015)			speaker	∞	\uparrow	\uparrow
0.2	_	Obleser and Weisz (2011)	power	short	no	theta	\uparrow	\uparrow
		Obleser and Weisz (2011)			no	alpha	\uparrow	\downarrow
		ExpORL	entrainment	short	no	delta	\uparrow	\uparrow ($p = 0.20$)?
L It		ExpORL			no	theta	\uparrow	\uparrow (<i>p</i> = <i>p</i> = 0.76)?
0.15		ExpORL			no	alpha	\uparrow	(p = p = 0.83)?
		ExpORL			SSWN	delta	\uparrow	\downarrow (<i>p</i> = 0.26)? (1)
all		ExpORL			SSWN	theta	\uparrow	\uparrow (p = 0.29)?
		ExpORL			SSWN	alpha	\uparrow	\uparrow ($p = 0.26$)?
e e		(1) difference can be evola	ined by the st	timulus len	ath rolat	ed to	ton-down attent	ion & listening

Figure: Behaviourally and objectively measured speech understanding using envelope entrainment

 $entrainment = frequency * (\alpha \cdot speech understanding + \beta \cdot envelope coding + \gamma \cdot age + \delta \cdot effort + \varepsilon \cdot attention)$

Signal processing

 $decoder = (RR^T)^{-1}(RS^T)$ R time-lagged neural data time lags 0-75 ms S stimulus envelope of story decoder minimises MSE between actual and reconstructed envelope

 $\hat{s}(t) = \sum_{n} \sum_{\tau} decoder(n, \tau) R(t + \tau, n)$

s reconstructed envelope t time ranging from 0 to T

Acknowledgements
Research funded by a PhD grant of the Research Foundation Flanders (FWO). This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 637424). The authors thank Karlien Smolders and Cleme Roels for helping collecting data.
A Re 20 Ka

n recording electrodes ranging from 1 to N

au post-stimulus samples used to reconstruct the envelope: integration window

envelope entrainment = correlation($s(t), \hat{s}(t)$)

s actual envelope

Research in Otolaryngology, 10(0):105-190, 2015. Jonas Obleser and Nathan Weisz. Suppressed alpha oscillations predict intelligibility of speech and its acoustic details. *Cerebral cortex*, 22(11):2466–2477, 2011. J. E. Peelle and M. H. Davis. Neural Oscillations Carry Speech Rhythm through to Comprehension.

Front Psychol, 2012.

R V Shannon, F G Zeng, V Kamath, J Wygonski, and M Ekelid. Speech recognition with primarily temporal cues. Science, 1995.

Jonas Vanthornhout, Lien Decruy, Jan Wouters, Jonathan Z. Simon, and Tom Francart. Speech intelligibility predicted from neural entrainment of the speech envelope. *Submitted*, 2017.

WK COUE ∎inete A digital version of this poster can be found on https://exporl. med.kuleuven.be/web/index.php/Public:ICAC2017 or by scan-ning the QR code.

