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Acoustic event classification for monitoring applications is becoming feasible thanks to the
increasing number of connected devices with a built-in microphone. The sound event classes
are defined by annotating training data, which is a laborious process. Attempts have been
made to reduce the workload on annotating the vast amounts of training data, and are referred
to as semi-supervised learning and active learning. In this paper, we propose a non-negative
matrix deconvolution (NMD) based approach, capable of modelling acoustic events from data
labelled on a low-resolution and multi-label level and thereby reducing the annotation work-
load. We further show that the proposed extension of NMD is successfully applied for the
classification of acoustic events, even in noisy conditions and with overlapping events.

0 INTRODUCTION

Acoustic event detection and classification (AED/C)
have recently become key challenges in the field of acous-
tic signal processing and are already widely examined for
numerous different applications [1]. Over the past few
years it has been investigated for surveillance and health-
care related applications [2, 3, 4], tracking and classifying
sound sources of military interest [5], automated wildlife
observations [6] and diagnoses of industrial machinery [7].
The promise and success of all these applications relies on
robust sensing of the environment. Nowadays, collecting
acoustic data has become more accessible than ever before
due to the ever increasing number of connected devices
in our daily lives containing a built-in microphone (e.g.
smartphones, smartwatches, tablets, laptops, televisions,
remote cameras, etc.). As a result, recordings can be made
continuously all day round with minimal effort. However,
the development of acoustic event detection and classi-
fication algorithms itself requires labelled data to learn
the model-specific parameters. Accurate labelling the data
takes at least the duration of the recording and is thus often
the main cost in the process of developing a robust sound
event classifier.

The amount of effort that can be spent on labelling
the data is typically expressed by ’labelling budget’ and
defines the maximum number of labels that can be as-

signed. In situations where the labelling budget is low, or in
cases of very large datasets, there are multiple established
strategies available in the literature to utilise the abundant
amount of unlabelled data with minimal labelling effort.
The two best known strategies are ’semi-supervised learn-
ing’ and ’active learning’.

The majority of the semi-supervised learning (SSL) al-
gorithms are either based on the so-called self-training ap-
proach or on the pre-training methodology. Self-training
permits to automatically annotate unlabelled data by using
a pre-existing model trained on a smaller set of labelled
data. The classified instances together with the predicted
class labels are added to the training data and the model is
retrained. This procedure is then repeated iteratively until
a certain target performance is achieved or until no more
unlabelled data is available. This allows to deal with un-
labelled data and is already examined for various acous-
tic pattern recognition tasks such as speaker identification
[8] and musical instrument recognition [9]. Pre-training
SSL approaches on the other hand are often used for train-
ing deep neural nets (DNN). This methodology starts with
learning the feature space from unlabelled data followed
by a tuning phase on a smaller set of labelled instances as
discussed in [10].

Active learning (AL) approaches on the other hand asks
for labelling input on data selected by the algorithm from
the set of unlabelled data. The annotated labels are then

1



used to train an initial classifier and the remaining unla-
belled samples are classified using the learned classifier. A
batch of samples with the lowest classification certainties
are presented by the active learning algorithm to the user
for verification and are used to update the learned classi-
fier. This procedure is repeated until a stopping criterion
is met. Certainty-based sampling has already been widely
studied in the field of acoustic pattern recognition [11, 12].
A slightly different approach of active learning is when the
classified instances are directly observed by the user and
corrected if necessary. This strategy does not require a cer-
tainty based metric for sampling and is recently success-
fully applied for acoustic pattern recognition tasks such
as recognising speech commands from dysarthric speech
[13].

All the above-mentioned techniques rely on a classifier
either for sampling or prediction of the unlabelled data. We
aim at learning the model-specific parameters from both
the labelled and unlabelled instances directly by utilising
the internal structure of the data. An already widely exam-
ined technique for structure discovery in the field of acous-
tic signal processing are the so-called ’non-negative ma-
trix factorisation’ (NMF) based approaches and their ex-
tensions. The main objective of NMF is to decompose an
all positive data matrix into a product of two (or more) non-
negative lower dimensional submatrices called factors. As
a result of the restriction to positive values only, the fac-
tors tend to model the data matrix as a linear combination
of additive components and thereby revealing the under-
lying latent structure. In this research, we will focus on
using a convolutive variant of NMF, called ’non-negative
matrix deconvolution’ (NMD), and is capable of identify-
ing components with a temporal structure as well [14]. Al-
though both NMF and NMD tend to a parts-based repre-
sentation of the data, there is no absolute guarantee for this
behaviour. In this work we present an extension to NMD
where the parts-based solutions are promoted by incorpo-
rating the available class labels in the learning procedure of
NMD. Label information must only be available at a low-
resolution, i.e. an indication of which events have occurred
in an annotation segment, without identifying beginnings
nor endings of the individual events. This also leads to a
multi-label approach in training and classification: a sound
segment can contain multiple (different) events which may
or may not overlap with each other in time. Lastly, we will
assume that not all occurring events in an annotation seg-
ment are annotated as occurring. In other words, we as-
sume annotations are incomplete and available at a low
temporal resolution, which significantly reduces the anno-
tation cost.

Convolutional neural networks (CNN) are currently the
most popular method for sound event classification [15,
16, 17]. However, CNN typically require massive amounts
of data to estimate their parameters in good order using a
discriminative objective. Furthermore, their feature repre-
sentations are often hard to interpret. NMD in its original
form is a generative data modelling approach that uses op-
timisation to learn interpretable and consistent data struc-
tures potentially using a smaller amount of data compared

to CNN. The proposed low-resolution multi-label NMD al-
ternative balances between a generative and discriminative
learning objective for even enhanced interpretability. Note
that both NMD and CNN can complement each other. The
convolutive event model learned by NMD might replace a
convolutional layer in CNN. Thereby feeding a deep neu-
ral network structure with dictionary element activations as
input.

The remainder of this paper is organised as followed:
in Section 1 convolutive event modelling is thoroughly ex-
plained together with the adopted changes to include the
low-resolution multi-labelling information into the learn-
ing procedure. The experimental specific details are given
in Section 2 while the experiments together with the ob-
tained classification results are discussed in Section 3. Fi-
nally, the concluding remarks of this research are given in
Section 4.

1 CONVOLUTIVE EVENT MODELLING

1.1 Introduction to non-negative matrix
deconvolution

Non-negative matrix deconvolution, also known as con-
volutive non-negative matrix factorisation (CNMF) or con-
volutive sparse coding (CSC), is an extension of non-
negative matrix factorisation and is capable of identifying
components with a temporal structure [14, 18]. The main
objective of NMD is to decompose an all-positive data
matrix Y ∈ RB×F

≥0 , i.e. a B-dimensional magnitude spec-
trogram of length F in case of acoustic processing, into
the convolution between a set of temporal basis matri-
ces At ∈ RB×L

≥0 , with t ∈ [1,T ], and an activation matrix
X ∈ RL×F

≥0 , and is formulated by

Y ≈ ΨΨΨ =
T

∑
t=1

At

(t−1)−→
X . (1)

The operator
t−→
(·) denotes a matrix shift of t entries to the

right. Columns that are shifted out at the right are dis-
carded, while zeros are shifted in from the left. Conversely,

the operation
t←−
(·) shifts columns to the left, with zero fill-

ing on the right and removal of the shifted out columns on
the left. It is now clear how to read equation (1) and it can
be noticed that NMD turns into regular NMF for the spe-
cial case T = 1. The complete set of basis data is described
by combining all temporal basis matrices At into a global
three-way tensor A ∈ RB×L×T . Each l-th slice of A, de-
noted further as A(l), then contains the temporal basis data
of the lth-component over time t and can be interpreted as
one of the additive time-frequency dictionary elements de-
scribing the underlying structure in Y. In other words, the
reconstructed data ΨΨΨ is obtained by summing the L convo-
lutions obtained between A(l) and the l-th row in X. Hence,
each row in X can thus be seen as an activation vector for
the corresponding time-frequency dictionary element A(l).

The objective of the decomposition is to estimate A and
X such that the error between Y and ΨΨΨ is minimised. Dif-



ferent error measures are proposed in the literature [19] but
we have chosen to use the generalised Kullback-Leibler di-
vergence (beta divergence for β = 1) which is given by

DKL(Y‖ΨΨΨ) = ∑
(b, f )∈(B,F)

(Yb f log
Yb f

ΨΨΨb f
− Yb f + ΨΨΨb f ).

(2)
Although NMF and NMD favour a sparse and parts-based
representation of the observation data Y there is no guar-
antee for this behaviour [20]. Therefore, an additional
weighted L1-norm penalty is typically applied to the activa-
tions to control the sparseness. Hence, the total cost func-
tion is expressed as

min
A,X

(
DKL(Y||ΨΨΨ) + λ‖X‖1

)
, (3)

with λ‖X‖1 denoting the weighted sparsity penalty term.
Increasing λ will tend to sparser solutions. It is worth to
note that this approach of sparsity penalisation is not scale-
invariant and can thus be trivially minimised by scaling A
up and X down without altering DKL(Y||ΨΨΨ). A solution
to overcome this scaling misbehaviour is by minimising
(3) under the constraint that A(l), ∀l ∈ L, is normalised to
unit L2-norm as proposed in [21, 22]. The corresponding
iterative multiplicative updates are

X← X⊗

T
∑

t=1
At
′
(t−1)←−−( Y

ΨΨΨ

)
T
∑

t=1
At
′
(t−1)←−
1u + λ

, (4)

for the activations and

At ← At ⊗
( Y

ΨΨΨ

)(t−1)−→
X

′

+ Nt

1u

(t−1)−→
X

′

+ Dt

,∀t ∈ [1,T ], (5)

for the temporal basis data with

Nt = Ãt ⊗
(

1v

[
Ãt ⊗

(
1u

(t−1)−→
X

′)])
, (6)

and

Dt = Ãt ⊗
(

1v

[
Ãt ⊗

[(Y
ΨΨΨ

)(t−1)−→
X

′]])
, (7)

where Ã =

[
A(1)
‖A(1)‖2

,
A(2)
‖A(2)‖2

, . . . ,
A(L)
‖A(L)‖2

]
denotes the slice-

wise normalisation of A over time t. 1u and 1v are both all-
one matrices of dimensions B× F and B× B respectively.

1.2 Event modelling using low-resolution
multi-label NMD

In this work, we introduce an extended version of
NMD, called low-resolution multi-label non-negative ma-
trix deconvolution (LRM-NMD) where both the obser-
vation data and the available labelling information are
used during training. The labelling information is included
into the learning procedure by partitioning the observation
data Y[o] into so-called annotation segments, i.e. Y[o] =

[Y[o]
1 ,Y[o]

2 , . . . ,Y[o]
J ], all containing a sequence of multi-

ple (different) and potentially overlapping sound events.
The sound events in the segments are labelled on a low-
resolution multi-label level by assigning a label vector
y[s]j ∈ {0,1}

C to each Y[o]
j indicating the sound classes, or

possibly a subset of the sound classes, that take place in
the corresponding segment. The time duration of the an-
notation segments may vary, i.e. they don’t have to be of
equal length, and defines the resolution of the labelling.
More specifically, longer annotation segments corresponds
to a lower resolution compared to shorter annotation seg-
ments. Formally, the low-resolution multi-label vectors are
defined by

y[s]
(c, j) =

{
1 if seg. j contains data from sound class c,
0 otherwise,

(8)
where y[s]

(c, j) denotes the cth-element in y[s]j . The main objec-
tive of LRM-NMD is still to decompose the observations
Y[o]

j ,∀ j ∈ J, by using (1) but with respect to

y[s]j ≈ ψψψ
[s]
j = A[s]X j1 j, (9)

with 1 j an all-one column vector of length Fj and A[s] func-
tioning as a labelling matrix for the temporal basis data A[o]

and is defined by

A[s]
(c,l) =

{
1 if A[o]

(l) belongs to sound class c,

0 otherwise.
(10)

This additional factorisation favours decompositions such
that there is a resemblance with the labelling information
as well. More specifically, LRM-NMD encourages that the
events in annotation segment Y[o]

j , labelled by y[s]j , are de-
composed with their subset of temporal basis data given
the labelling matrix A[s] and thereby further improving the
parts-based representation in A[o]. A graphical example of
LRM-NMD is given in Figure 1 where events of three dif-
ferent sound classes in Y[o] are decomposed into three tem-
poral basis matrices, each four frames long, and their acti-
vations.

The cost function of LRM-NMD is expressed by

min
A[o],A[s],X

[
J

∑
j=1

(
DKL(Y

[o]
j ‖ΨΨΨ

[o]
j ) + λ‖X j‖1+

ηDKL(y
[s]
j ‖ψψψ

[s]
j )
)]

,

(11)

with η as a semantic balancing parameter between the ob-
servation data and the labelling information. Larger values
of η yield more focus on the labelling information but with
risk of overfitting. Conversely, LRM-NMD reduces to con-
ventional NMD when η = 0. Like for NMD, iterative up-
date formulas for X j, ∀ j ∈ J, A[o] and A[s] can be derived
to minimise (11) by following the same procedure as pro-
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Fig. 1. A graphical example of LRM-NMD where events of three different sound classes (C = 3) in Y[o] are decomposed into a set
of temporal basis matrices (L = 3) each four frames long (T = 4) and their activations. The operators ∗∗∗ and ××× denote the convolutive
factorisation according to (1) and a standard matrix multiplication respectively. The upper part visualises the convolutive modelling of
events w.r.t. the low-resolution multi-label vectors given in the lower part. The learned temporal basis data A[o] can be interpreted as a
set of dictionary elements describing the underlying structure in the observation data Y[o] while A[s] acts as a labelling matrix of A[o]

indicating to which sound class each learned dictionary element corresponds.

posed in [18]. The corresponding updates are

X j ← X j ⊗

(
T
∑

t=1
A[o]

t
′

(t−1)←−−( Y[o]
j

ΨΨΨ
[o]
j

))
+ η

(
A[s]′( y[s]j

ψψψ
[s]
j

)
1′j

)
(

T
∑

t=1
A[o]

t
′
(t−1)←−
1u j + λ

)
+ η

(
A[s]′(1w)1′j

) ,

(12)

A[o]
t ← A[o]

t ⊗

J
∑
j=1

(( Y[o]
j

ΨΨΨ
[o]
j

)(t−1)−→
X j

′

+ Nt j

)
J
∑
j=1

(
1u j

(t−1)−→
X j

′

+ Dt j

) ,∀t ∈ [1,T ],

(13)

and

A[s] ← A[s] ⊗

J
∑
j=1

(( y[s]j

ψψψ
[s]
j

)(
X j1 j

)′)
J
∑
j=1

(
1w
(
X j1 j

)′) , (14)

with 1w an all-one column vector of length C. Furthermore,
it is worth noting that the additional term DKL(y

[s]
j ‖ψψψ

[s]
j ) in

the cost function of LRM-NMD does not change the update
of A[o] but that we only have rewritten the numerator and
denominator into a sum over the annotation segments. The
corresponding Nt j and Dt j are computed from Y[o]

j , ΨΨΨ
[o]
j

and X j using (6) and (7) respectively. The complete train-
ing procedure of LRM-NMD is given in Algorithm 1.

1.3 Finding activations from the basis data
Once a representative set of basis data is learned from

the training data, the task of LRM-NMD becomes decom-
posing unseen observation data Y[o] such that the estimated
activations X minimise (3) under the fixed learned basis
data A[o]. Like in training, the activations are obtained by
applying iterative updates to X but with keeping A[o] fixed.
It is worth mentioning that the updates are done by using
(4), instead of (12), since the class labels are hidden and
cannot be used.

The obtained activations are well suited for the purpose
of structure discovery in Y[o] due to the parts-based rep-
resentation of A[o]. Generally, the degree of activation in
X indicates where events in Y[o] occur while the labelling
matrix A[s] reveals the sound classes of the detected events.
The complete procedure of activation estimation is given
in Algorithm 2.

2 EXPERIMENTAL SPECIFIC DETAILS

2.1 From raw data to features
In this work the LRM-NMD method is evaluated in a

context of monitoring persons at home based on acoustics.
For this purpose the publicly available NAR-dataset was
selected. This dataset contains a set of real-life isolated do-
mestic audio events, collected with a humanoid robot Nao,
and is recorded especially for acoustic classification bench-
marking in domestic environments [23, 24].

In total 42 different sound classes were recorded and can
be categorised into ’kitchen related events’, ’office related
events’, ’non-verbal events’ and ’verbal events’. The verbal
events are not used in this research since we are not inter-
ested in detecting and classifying speech commands such



Algorithm 1 LRM-NMD training procedure

1: Inputs: Y[o]
j , y[s]j , λ and η with j ∈ [1,J]

2: Initialise: A[o], A[s] and X j

3: Normalise: A[o]
(l) ← A[o]

(l)/‖A
[o]
(l)‖2, ∀l ∈ L

4: repeat
5: for j = 1 : J do

6: ΨΨΨ
[o]
j =

T
∑

t=1
A[o]

t

(t−1)−→
X j

7: X j ← X j ⊗

(
T
∑

t=1
A[o]

t
′

(t−1)←−−−( Y[o]
j

ΨΨΨ
[o]
j

))
+η

(
A[s] ′
( y[s]j

ψψψ
[s]
j

)
1′j

)
(

T
∑

t=1
A[o]

t
′(t−1)←−

1u j +λ

)
+η

(
A[s] ′(1w)1′j

)
8: ΨΨΨ

[o]
j =

T
∑

t=1
A[o]

t

(t−1)−→
X j

9: end for

10: A[o]
t ← A[o]

t ⊗

J
∑

j=1

(( Y[o]
j

ΨΨΨ
[o]
j

)(t−1)−→
X j

′

+Nt j

)
J
∑

j=1

(
1u j

(t−1)−→
X j

′

+Dt j

) ,∀t ∈ [1,T ]

11: A[o]
(l) ← A[o]

(l)/‖A
[o]
(l)‖2, ∀l ∈ L

12: for j = 1 : J do

13: ΨΨΨ
[o]
j =

T
∑

t=1
A[o]

t

(t−1)−→
X j

14: ψψψ
[s]
j = A[s]X j1 j

15: end for

16: A[s] ← A[s] ⊗

J
∑

j=1

(( y[s]j

ψψψ
[s]
j

)(
X j1 j

)′)
J
∑

j=1

(
1w

(
X j1 j

)′)
17: for j = 1 : J do
18: ψψψ

[s]
j = A[s]X j1 j

19: end for
20: until convergence or when max. iterations is reached
21: return A[o], A[s] and X j,∀ j ∈ J

Algorithm 2 LRM-NMD evaluation procedure

1: Inputs: Y[o], A[o], A[s] and λ

2: Initialise: X
3: repeat

4: ΨΨΨ
[o] =

T
∑

t=1
A[o]

t

(t−1)−→
X

5: X← X⊗
T
∑

t=1
A[o]

t
′

(t−1)←−−−(
Y[o]

ΨΨΨ[o]

)
T
∑

t=1
A[o]

t
′(t−1)←−

1u +λ

6: ΨΨΨ
[o] =

T
∑

t=1
A[o]

t

(t−1)−→
X

7: until convergence or when max. iterations is reached
8: return X

as ’left’, ’right’, ’start’, ’stop’, etc. Therefore, the dataset
is reduced to 20 sound classes each containing 20 or 21
recordings of an isolated event. A detailed overview of
the used data together with the average duration per sound
class is given in Table 1.

In addition, to examine the influence of background
noise we have artificially mixed the clean events with natu-
ral environmental sounds as well, i.e. recordings of ’rain’,
’hail’ and ’blowing wind’, which are a realistic type of
background noise in case of home monitoring. The exam-
ined SNR levels are ’clean’, 20, 10, 5, 3 and 0 dB.

A good choice of non-negative and approximately ad-
ditive acoustic features are the so-called MEL-magnitude
spectrograms [25]. The MEL-magnitude spectrograms
spanning 40 bands are computed using a Hamming win-
dow with a frame length of 25 ms and a frame shift of 10
ms as proposed in [26]. The used filter bank is constructed
such that the begin frequency of the first MEL-filter and
the end frequency of the last MEL-filter correspond to the
frequency range of the microphone, i.e. 300 Hz and 18
kHz. Furthermore, all events are L2-normalised over the
duration of the recording to prevent the higher energetic
events from dominating those with lower energy during
training.

The features for the training and test sets are obtained
by randomly sampling events from each sound class in the
NAR-dataset with a ratio of 60% training data and 40%
test data. This implies that each class is represented with
twelve training examples and eight or nine test examples
resulting into class balanced training and test sets. In total
four independent folds are generated to examine the statis-
tical relevance of the results as well.

2.2 Basis initialisation
Like NMF, Algorithm 1 can only be proven to find a

local optimum of its cost function, and not a global one,
and is therefore sensitive as well to the initialisation of its
factors [18, 19]. Careful initialisation of A[o], A[s] and X
can improve the speed and accuracy of the factorisation,
as it can produce faster convergence to an improved local
minimum. Although random initialisation with small pos-
itive numbers is by far the most commonly used method
in the literature, we have chosen an exemplar-based ini-
tialisation which has been found to be effective as well
in the case of acoustic event modelling [25, 27]. Hence,
the temporal basis data A[o] is initialised with one example
per sound class randomly sampled from the training data
and the labelling matrix A[s] is initialised according to (10).
The silence frames before and after the events are trimmed
and the shorter events are padded with small positive ran-
dom values (between 0 and 10−4) such that they are all of
equal length. One exception is ’running tapwater’, where
the length is limited to the maximum length of the other
chosen events, i.e. 40 frames in this work, due to stationar-
ity in its feature frames. The overall dimensions of A[o] are
thus B = 40, L = 20 and T = 40. The activations X on the
other hand are initialised uniformly with the value 1/L.



Table 1. Overview NAR-dataset

Cat. Sound class # Events Avg. duration in (s)

K
itc

he
n

Alarm microwave 21 0.52 ± 0.06

Alarm refrigerator 21 0.55 ± 0.03

Closing microwave 21 0.37 ± 0.07

Opening microwave 21 0.28 ± 0.05

Drawer 21 1.04 ± 0.11

Taking cutlery 21 0.35 ± 0.06

Toaster 21 0.45 ± 0.10

Running tapwater 21 1.78 ± 0.43

N
on

-v
er

ba
l Coughing 21 0.84 ± 0.09

Fingersnap 20 0.23 ± 0.06

Handclap 20 0.36 ± 0.08

Tongue click 20 0.18 ± 0.06

O
ffi

ce

Doorknock 20 0.32 ± 0.06

Locking/unlocking door 20 0.29 ± 0.08

Opening door 20 0.29 ± 0.12

Closing door 20 0.44 ± 0.05

Moving chair 21 0.97 ± 0.10

Tearing paper 20 0.46 ± 0.08

Opening zipper 1 20 0.34 ± 0.04

Opening zipper 2 20 0.40 ± 0.06

Note: The verbal events of the NAR-dataset are not listed in this table.
See [24] for a complete overview.

2.3 Background modelling
The implementation of a background noise model is

done on a straightforward manner by adding isolated noise
examples to the basis data A[o], without linking them to
a specific sound class given the labelling matrix A[s], and
keeping them fixed during training. Here, only one exam-
ple for each type of noise is added to A[o] resulting into four
additional dictionary elements representing the noise data,
i.e. ’Nao fan noise’, ’rain’, ’hail’ and ’blowing wind’ re-
spectively. As a result of the background modelling, the to-
tal number of temporal basis vectors is increased to L = 24.
In addition, the sparsity penalty weights corresponding to
the background noise basis data are set to zero and the
noise activations are restricted to be constant over peri-
ods of one second to mimic the stationarity and slow time-
varying properties of the background noise. This form of
parameter tying can be expressed in the optimisation prob-
lem (11) and is tantamount to overwriting the rows in the
numerator and denominator of (12) corresponding to the
noise activations with their mean value computed from
non-overlapping one second windows.

2.4 Event classification
The classification task is implemented by feeding fea-

tures of isolated non-overlapping events to the LRM-NMD

evaluation procedure given by algorithm (2). The obtained
activations are summed over time and the predicted class
label Ĉ is defined by the temporal basis matrix A(l) with the
highest accumulated activation in which the background
noise related activations are disregarded. The used metric
to evaluate the classification performance is classification
accuracy which defines the percentage of correctly classi-
fied events.

3 EXPERIMENTS AND RESULTS

3.1 Experimental setup
The experiments in this work will mainly focus on in-

vestigating the relation between the number of labelled
data w.r.t. the classification performance of LRM-NMD.
This relation is examined in two different operating modes,
i.e. ’single-label learning’ and ’low-resolution multi-label
learning’, and are discussed in more detail in section 3.3
and section 3.4 respectively. The main difference between
both operating modes is that in single-label learning each
Y[o]

j , ∀ j ∈ J, is an isolated sound event, while in low-

resolution multi-label learning all Y[o]
j , ∀ j ∈ J, are seg-

ments spanning multiple sound events. The latter operat-
ing mode is of more interest in case of a real-life setting,
e.g. home-monitoring, since it reduces the workload on la-
belling the training data significantly. The noise robustness
of both operating modes will be examined and in case of
low-resolution multi-label learning we will examine the in-
fluence of overlapping events in the annotating segments as
well. Furthermore, the behaviour of the semantic balancing
parameter (η) and the sparsity penalty (λ ) is also investi-
gated in detail.

3.2 Baselines
This section briefly discusses the used baselines, to-

gether with their implementation specific details, which
have been used to benchmark LRM-NMD. The used base-
lines are chosen w.r.t. the methods described in [23, 24]
and are:

1) A Gaussian mixture model (GMM) is a weighted
sum of M-multivariate Gaussian distributions mod-
elling the feature space Y[o] such that the a-posteriori
probability is maximised [28, 29]. During classifica-
tion, the objective is to find the class model θθθ c with
the highest a-posteriori probability given the features
Y[o]

te of an unlabelled test event using

Ĉ = argmax
∀c∈C

p(θθθ c|Y[o]
te ) = argmax

∀c∈C
p(Y[o]

te |θθθ c), (15)

where the second equation is because of Bayes’
rule with the assumption of equal class priors, i.e.
p(θθθ c) = 1/C, and the class independency of p(Y[o]

te ).
As opposed to NMD, GMMs are typically used

in combination with MEL-frequency cepstral co-
efficients (MFCCs) due to their ability to repre-
sent the amplitude spectrogram in a compact and



decorrelated form [29]. The MFCCs are computed
from the MEL-features by applying a discrete co-
sine transform (DCT) on the log-transformed MEL-
magnitudes. Here, 13th order MFCCs are computed,
without the deltas (rate of change) and delta-deltas
(acceleration), and are normalised such that the com-
plete training set has zero mean and unit standard de-
viation in each cepstral dimension. The number of
mixture components are tuned on a separate devel-
opment set obtained by further partitioning the test
data into two equal sized subsets, alternately serv-
ing for development and test respectively. The global
classification accuracy of the fold is computed by av-
eraging the sub results. Furthermore, all GMMs are
modelled with diagonal covariance matrices due to
the limited amount of training data.

2) Support vector machine (SVM) is a binary clas-
sifier formally characterised by a separating hyper-
plane. The operation of the SVM algorithm is based
on estimating the hyperplane such that the margin
between the two classes is maximised. This method
of construction yields that the decision function is
typically specified by the points closest to the hy-
perplane, referred to as the support vectors. An un-
labelled test vector y[o]te is classified by means of its
position to the separating hyperplane using

Ĉ = sign
( J

∑
j=1

α jy jK(y[o]j ,y[o]te ) + ω

)
, (16)

where [α1,α2, . . . ,αJ ] and ω are the SVM model
parameters, y[o]j , ∀ j ∈ J, are the training vectors
with class label y j ∈ {−1,+1}, and K(y,y∗) =
φ(y)′φ(y∗) is the Kernel-function which can be seen
as a function that describes the similarity between
two feature vectors [30]. The used kernel in this work
is the well-known radial basis function (RBF) and is
defined by K(y,y∗) = exp(−‖y− y∗‖2

2/2σ2) with
σ as hyper-parameter defining the kernel bandwidth.

Several solutions are presented in the literature
to expand this binary classification problem into a
multiclass classification problem. Here, 1− vs− 1
is used as coding scheme, resulting into the esti-
mation of (1/2)C(C − 1) SVMs discriminating one
class from another. The overall classification result
is computed by a majority vote over the sub results
[31].

In contrast to GMM, SVM typically uses the nor-
malised mean and standard deviation of each MFCC
dimension as acoustic features instead of using them
individually. The latter is done to reduce the compu-
tational complexity of SVM since it is linearly de-
pendent on the number of training examples. This
implies that each Y[o]

j , ∀ j ∈ J is transformed into a

single feature vector y[o]j containing the mean and
standard deviation of each MFCC dimension. The
SVM hyper-parameters, i.e. kernel bandwidth and
regularisation parameter, are tuned as with GMM by

a grid search such that the classification accuracy on
the development set is maximised.

3) Exemplar NMD (E-NMD) constructs the temporal
basis data matrix A[o] directly from the J labelled ex-
amples in the training data Y[o] instead of learning
them as with LRM-NMD. Hence, the training pro-
cedure can be omitted but with as main disadvan-
tage that the complexity of the evaluation procedure
in E-NMD is linear with the number of exemplars
(L = J).

In this work, an unlabelled event is classified by
summing the obtained activation vectors of the ex-
emplars corresponding to the same class and the class
label Ĉ is defined by the group of exemplars with the
highest accumulated activation.

4) Supervised NMD (S-NMD) estimates one dictio-
nary element (L = 1) for each class from the isolated
class data. This implies that the learning procedure
must be run C times. Subsequently, all learned basis
matrices are combined into a global temporal basis
data matrix A[o] representing all classes (L = C) .

Furthermore, it is worth to note that the evaluation
and classification procedure of S-NMD is exactly the
same as with LRM-NMD.

3.3 Single-label learning mode
Single-label learning mode learns the temporal basis

data matrix A[o] from the isolated training events in Y[o]
j ,

∀ j ∈ J, and the relation between the amount of training
data, semantic balancing parameter and sparsity penalty
w.r.t. the classification performance will be examined. This
experiment is in fact a fully supervised setting and is
performed to compare LRM-NMD with other supervised
learning algorithms such as GMM, SVM and S-NMD.
Therefore, the number of training events per sound class,
further denoted by ntr, is artificially increased in the se-
quence of ntr ∈ {1,2,3,4,5,10,all} and the examined se-
mantic balancing parameter values and sparsity penali-
sation weights are η ∈ {0,0.1,1,10,100,200,500,1000}
and λ ∈ {0,5,10} respectively.

All classification results are listed in Table 2 in Ap-
pendix A.1 and indicate that the additional weighted spar-
sity penalty on the activations improves the classification
performance of LRM-NMD. However, too much penalty
tends to lower classification scores as a result of a sub-
optimal factorisation due to the sparseness in X. In this
work, the best scores are obtained when λ = 5, which are
also shown in Figure 2, and indicate that both the amount
of training data and the semantic balancing parameter have
a significant impact on the classification performance of
LRM-NMD.

First of all, including the labelling information y[s]j , ∀ j ∈
J, into the learning procedure of LRM-NMD, by setting
η > 0, boosts the classification performance for all choices
of ntr as a result of the improved parts-based representa-
tion in A[o]. The highest classification accuracies for most
ntr settings are achieved for η = 100, which are situated
between 81% and 94%, and remains more or less constant
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Fig. 2. Influence of the semantic balancing parameter (η) on the
classification performance of LRM-NMD in single-label learning
mode for different number of training events per sound class (ntr)
when λ = 5.

in the range of η ∈ [10,200]. This implies that the choice
of η is not critical in this operating mode. However, larger
values of η yield decreasing classification scores as a result
of overfitting due to too much emphasis on correct factori-
sation of the labelling information instead of the acoustic
event data. Secondly, increasing the number of training ex-
amples per sound class boosts the classification scores as
well because of an improved generalisation of the learned
temporal basis data A[o]. However, it should be noticed
this improvement is only realised when the labelling in-
formation is used during training, by setting the seman-
tic balancing parameter sufficiently large, i.e. η ≥ 1. For
smaller values of η , increasing the amount of training data
yields more complex factorisations due to increased intra-
class variabilities with as a result that some sound classes
are modelled by two or more dictionary elements while
other sound classes are not represented as all. This hap-
pens because the number of dictionary elements usable for
modelling the acoustic event data in the basis data matrix is
equal to the number of sound classes since A[o] is initialised
with one example per sound class.

The aspect of the improved parts-based representation
in A[o] is visualised in Figure 3 where the initialised tem-
poral basis data of ’drawer’ and ’toaster’ are shown with
the learned temporal basis data for a semantic balancing
parameter of η = 0 and η = 100 when all training data is
used and a sparsity penalty of λ = 5. By comparing the
initialised data, i.e. first row, with the learned temporal ba-
sis data for η = 0 and η = 100, i.e. second and third row
respectively, it can be clearly seen that the semantic bal-
ancing parameter affects the parts-based representation of
A[o] since η = 0 only models the spectro-temporal regions
with the highest energy while the setting η = 100 tends to
model complete events.

By comparing the classification scores of LRM-NMD
when η = 100 and λ = 5 with the baseline results in func-

Drawer

I
n
it
ia
li
s
e
d

η
=

0
η
=

1
0
0

Toaster

Fig. 3. A graphical representation of the temporal basis data for
the sound classes ’drawer’ and ’toaster’ for λ = 5 and ntr = all.
The top row are the initialised basis data matrices while the next
two rows are the obtained dictionary elements after learning when
the semantic balancing parameter is set to η = 0 and η = 100
respectively. As one can see, including the labelling information,
by setting η > 0, tends to model complete events and thereby
improving the parts-based representation of A[o].

tion of the amount of training data, which are shown in
Figure 4, it can be clearly seen that LRM-NMD outper-
forms the baselines, with exception of S-NMD, when the
available number of training events per sound class is rather
limited, i.e. ntr = 5 or less. However, the main advantage
of LRM-NMD over S-NMD is that it can be used in a
low-resolution multi-label learning mode, i.e. larger seg-
ments are labelled by a single multi-label vector indicating
sound classes of the events, or possibly a subset of events,
that take place during that period, and thereby reducing the
workload on labelling the training data significantly. The
sparsity penalty for S-NMD and E-NMD is set to λ = 5
as well. The highest classification scores when all training
data is used are obtained by GMM followed by SVM, S-
NMD and LRM-NMD respectively. Furthermore, learning
the temporal basis data A[o] from the training data is pre-
ferred over an exemplar based approach since the E-NMD
results are always exceeded by both LRM-NMD and S-
NMD for all ntr settings.

The robustness to environmental background noise of
LRM-NMD when η = 100 and λ = 5 is shown in Figure
5. These results clearly indicate that LRM-NMD can deal
with noise levels down to 10 dB SNR without any signifi-
cant loss in classification performance. Lower SNRs yield
decreasing classification scores, however the absolute re-
duction in classification performance from 10 dB to 0 dB
strongly depends on the amount of training data, i.e. less
than 10% in case of ntr = {10,all} and somewhere around
20% to 25% in case of ntr = {1,2}. The parameter set-
tings of ntr = {3,4,5} achieve still promising classifica-
tion scores for a SNR of 0 dB and are situated in the range
of 75% and 80% respectively.

3.4 Low-resolution multi-label learning mode
Low-resolution multi-label learning mode learns the

temporal basis data A[o] from segments spanning several
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Fig. 4. Classification scores of LRM-NMD in single-label learn-
ing mode for η = 100 and λ = 5 together with the obtained base-
line results in function of different number of training examples
per sound class (ntr).
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Fig. 5. Background noise robustness of LRM-NMD in single-
label learning mode when η = 100 and λ = 5 in function the
signal to noise ratio (SNR) for different number of training exam-
ples per sound class (ntr).

events instead of the isolated events data as with single
label learning. Hence, each Y[o]

j , ∀ j ∈ J, is a annotating

segment labelled by y[s]j indicating the sound classes, or a
subset of sound classes, of the events that take place. This
approach of annotating the data reduces the labelling work-
load significantly since we do not need to segment the data
on the event level by indicating the onset and offset times.
In this work, each annotating segment is made up of five
events by randomly combining events from the training set.
The events in the annotation segments are separated by T
frames containing small positive random values (between
0 and 10−4) to mimic short periods of silence between two
successive events. In total 48 annotating segments are cre-

ated per fold since each fold is represented by 240 iso-
lated training examples which are allowed to be used once.
The minimum and maximum time duration of the anno-
tation segments varies in the range of 1.86 and 6.41 sec-
onds respectively. In this experiment, the influence of the
semantic balancing parameter (η) together with the num-
ber of labelled events per segment, further denoted by nlbl ,
will be examined. For instance, nlbl = 1 yield only one la-
belled event out of five events in each segment. Further-
more, the events in the annotating segments are sampled in
such way that they all have a different sound class com-
bination and that the amount of labelled data per sound
class is balanced for all choices of nlbl ∈ [1,5]. In addi-
tion, the influence of overlapping events in the annotating
segments on the classification performance of LRM-NMD
will be investigated as well and in the range of noverlap ∈
{0%,25%,50%,75%,100%}. Important to note is that the
events in the segments are sorted with increasing duration
and that noverlap is defined as the percentage of overlap-
ping frames between two successive events computed on
basis of the shortest one. Special cases are noverlap = 100%
where all five events in each segment have the same onset
time and noverlap = 0% where the events are still separated
with T frames containing small positive random values.

All classification results on the clean and non-
overlapping data are listed in Table 3 in Appendix A.2.1
and the best classification scores are again when the spar-
sity penalty is set to λ = 5. The corresponding results are
shown in Figure 6 and indicate that the optimal choice
of semantic balancing parameter in this learning mode
depends on the number of labelled events per annotating
segment since increasing η tends to earlier classification
performance breakoffs for lower nlbl settings. The latter is
a result of the penalty induced by the semantic balancing
parameter η on modelling the non-labelled event data in
the annotating segments Y[o]

j , using their temporal basis

matrices in A[o], which leads to an increased divergence
between y[s]j and ψψψ

[s]
j . In this work, a good choice of se-

mantic balancing parameter is η = 5 as it achieves high
classification scores for all nlbl settings, i.e. around 74%
for nlbl = 1 and 90% for nlbl = 5, and will thus be used
during the next experiments.

By comparing the classification scores of LRM-NMD
for η = 5 and λ = 5 with the results obtained by GMM,
SVM and S-NMD in function of nlbl , which are shown in
Figure 7, it can be clearly seen that LRM-NMD is capable
of dealing with low-resolution multi-label training data. It
is worth to note that the sparsity penalty for S-NMD is also
set to λ = 5 and that E-NMD is not evaluated in this learn-
ing mode since the isolated exemplars are not available.
Furthermore, the sound class model parameters of GMM,
SVM and S-NMD are estimated from the annotating seg-
ments containing at least one labelled example of the cor-
responding sound class. This implies that the training data
contains acoustic information of other sound classes as
well and thereby resulting into less accurate model parame-
ter estimation which explains the decreasing classification
accuracies. In addition, it can be seen that GMM is also
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Fig. 6. Influence of the semantic balancing parameter (η) on
the classification performance of LRM-NMD in low-resolution
multi-label learning mode in function of different number of la-
belled events per annotating segment (nlbl) when λ = 5.

able to deal with low-resolution multi-label training data,
as a result of the ability to model different regions in the
feature space and thereby distinguishing the different event
classes, but that the classification performance is strongly
related to the number of labelled examples.

Number of labeled examples per segment (nlbl)
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Fig. 7. Classification scores of LRM-NMD in low-resolution
multi-label learning mode for η = 5 and λ = 5 together with the
obtained baseline results in function of different number of la-
belled events per annotating segment (nlbl).

Figure 8 are the classification results of LRM-NMD
in noisy conditions and indicate that, as with single-label
learning, LRM-NMD in low-resolution multi-label learn-
ing mode can deal with noise levels up to 10 dB without
any significant loss in classification performance. Lower-
ing the SNR further decreases classification scores. The
absolute reduction in classification performance from 10
dB to 0 dB is situated somewhere between 30% and 35%

for all nlbl settings. This implies that the number of la-
belled events per segment has a limited influence on the
noise robustness of LRM-NMD since the amount of train-
ing data remains the same for all nlbl settings in this operat-
ing mode. Furthermore, it can be observed that the highest
drop in classification performance is when the SNR is low-
ered from 3 dB till 0 dB and that an SNR of 3 dB achieves
still classification scores in the range of 70% to 85% as
long as nlbl ≥ 2.
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Fig. 8. Background noise robustness of LRM-NMD in low-
resolution multi-label learning mode when η = 5 and λ = 5 in
function of the signal to noise ratio (SNR) for different number
of labelled events per annotating segment (nlbl).

The influence of overlapping events in the annotating
segments on the classification performance of LRM-NMD
is shown in Figure 9 where the obtained classification re-
sults on the clean data are visualised in function of noverlap.
As expected, increasing noverlap yields decreasing classi-
fication scores, however the drop in classification perfor-
mance from noverlap = 0% to noverlap = 50% is rather lim-
ited for all nlbl settings and is situated around 5%. Increas-
ing the amount of overlap further results in higher decreas-
ing classification scores. The classification results on the
noisy data in function of noverlap are all listed in Table 4 in
Appendix A.2.2 and indicate the same trends as with the
clean data.

4 CONCLUSION

This paper focusses on modelling sound events from
acoustic data labelled on a low-resolution and multi-label
level using non-negative matrix deconvolution. The low-
resolution multi-labelling information simply indicates the
sound classes of the events that take place over a longer pe-
riod of time in the acoustic data without identifying begin-
ning nor endings of the individual events. This approach of
labelling the data requires less annotation work compared
to protocols where the data must be labelled on an event
level. In order to cope with this type of labelling, we have
adopted the existing NMD algorithm into a low-resolution
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Fig. 9. Classification scores of LRM-NMD in low-resolution
multi-label learning mode for η = 5 and λ = 5 in function of the
amount of overlap within the training events (noverlap) on clean
data for different number of labelled events per annotating seg-
ment (nlbl).

multi-label variant named LRM-NMD by incorporating the
low-resolution multi-labelling information into the learn-
ing procedure of NMD.

Firstly, we have examined LRM-NMD in a single-label
learning context, i.e. all events are labelled individually,
to benchmark our proposed algorithm with other already
widely examined sound event classifiers such as GMM,
SVM, S-NMD and E-NMD [23, 24, 32, 33]. The obtained
classification results show that LRM-NMD, together with
S-NMD, outperforms GMM, SVM and E-NMD in situa-
tions when the amount of training examples per sound class
is rather limited, i.e. ntr < 5, and are situated in the range
of 81% and 92% when ntr = 1 and ntr = 4 respectively.
However, the main advantage of LRM-NMD over S-NMD
is that it can be used in a low-resolution multi-label setting
which is of more interest in case of real-life settings. In ad-
dition, LRM-NMD is also able to deal directly with over-
lapping event data without any further modifications to the
algorithm due to its additive property, which is an interest-
ing property in real-life settings as well, while this is not the
case for GMM and SVM. It is also shown that learning the
dictionary elements from the acoustic data is preferred over
an exemplar based approach since E-NMD is always out-
performed by both LRM-NMD and S-NMD. Furthermore,
the robustness of LRM-NMD to stationary environmen-
tal background noise has been shown till SNRs of 10 dB
without any significant loss in classification performance.
Lowering the SNRs further starts decreasing classification
scores, but the absolute reduction in classification perfor-
mance is strongly related to the number of training exam-
ples per sound class.

Secondly, we have shown that LRM-NMD is capable of
modelling sound events directly from acoustic data labelled
on a low-resolution and multi-label level. In this work, the
annotation segments are all constructed out of five events

and the relation between the number of labelled events
per segment (nlbl) w.r.t. the classification performance of
LRM-NMD is examined. The corresponding classification
accuracies are situated in the range of 75% and 90% when
nlbl = 1 and nlbl = 5 respectively and outperform the base-
lines. Although GMM is able to achieve a classification ac-
curacy slightly below LRM-NMD when all events in the
annotation segments are labelled, it rapidly decreases to
an accuracy of less than 40% when nlbl = 1 and thereby
making it less usable compared to LRM-NMD. The ro-
bustness to background noise has been shown again with
SNRs of down to 10 dB without any significant decrease in
classification performance. We have also shown that LRM-
NMD can deal with overlapping events in the annotating
segments as well, i.e. a drop in absolute classification per-
formance of somewhere around 5% when noverlap = 50%.
Further increasing noverlap yields larger declines in clas-
sification scores as a result of a higher complexity in the
acoustic observation data.

Further research will mainly focus on evaluating LRM-
NMD on a real-life dataset recorded over a longer period of
time for the purpose of monitoring elderly at home. There-
fore, the relation between individual sound events and ac-
tivities of daily living (ADL) must be investigated. A pos-
sible solution is by using the distributions of the sound
classes occurring in each activity. For instance, the sound
of running tap water together with the sound of a tooth
brush is more likely related to the activity brushing teeth
than for example cooking. Other interesting research top-
ics that might further improve the performance of LRM-
NMD are automatic relevance determination to select the
correct number of dictionary elements in the learned basis
data matrix A[o] [34] and incremental or adaptive learning
strategies for fine tuning A[o] to current situation of the el-
derly being monitored [35].

5 ACKNOWLEDGMENT

This work was performed in the context of follow-
ing projects: VLAIO doctoral scholarship (contract
121565) and Sound INterfacing through the Swarm -
SINS (VLAIO-SBO contract 130006).

6 REFERENCES

[1] D. Wang and G. J. Brown, Computational auditory
scene analysis: principles, algorithms, and applications.
Wiley-IEEE Press, October 2006.

[2] A. Temko, R. Malkin, C. Zieger, D. Macho, and
C. Nadeu, “Acoustic event detection and classification in
smart-room environments: Evaluation of chil project sys-
tems,” Cough, vol. 65, no. 48, p. 5, 2006.

[3] G. Roma, J. Janer, S. Kersten, M. Schirosa, P. Her-
rera, and X. Serra, “Ecological acoustics perspective
for content-based retrieval of environmental sounds,”
EURASIP Journal on Audio, Speech, and Music Process-
ing, vol. 2010, no. 1, p. 960863, 2010.

[4] J. Schroeder, S. Wabnik, P. W. J. van Hengel, and
S. Goetze, Ambient Assisted Living, vol. 4, ch. Detection



and Classification of Acoustic Events for In-Home Care,
pp. 181–195. Berlin, Heidelberg: Springer, January 2011.

[5] B. G. Ferguson and K. W. Lo, “Acoustic cueing for
surveillance and security applications,” in Society of Photo-
Optical Instrumentation Engineers (SPIE) Conference Se-
ries, vol. 6201, pp. 62011K–62011K–7, May 2006.

[6] S. H. Gage, W. Joo, E. Kasten, and S. Biswas,
“Acoustic observations in agricultural landscapess,” in The
Ecology of Agricultural Landscapes: Long-Term Research
on the Path to Sustainability (S. K. Hamilton, J. E. Doll,
and G. P. Robertso, eds.), pp. 360–377, Oxford University
Press, New York, USA, 2015.

[7] J. Schroeder, M. Brandes, D. Hollosi, J. Wellmann,
M. Wittorf, O. Jung, V. Grtzmacher, and S. Goetze, “For-
eign object detection in tires by acoustic event detection,”
in Deutsche Jahrestagung fr Akustik (DAGA), vol. 41,
(Nrnberg), pp. 1266–1269, March 2015.

[8] P. J. Moreno and S. Agarwal, “An experimental
study of em-based algorithms for semi-supervised learn-
ing in audio classification,” in International Conference on
Machine Learning (ICML) Workshop on the Continuum
from Labeled to Unlabeled data, August 2003.

[9] A. Diment, T. Heittola, and T. Virtanen, “Semi-
supervised learning for musical instrument recognition,” in
21st European Signal Processing Conference (EUSIPCO
2013), pp. 1–5, September 2013.

[10] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol,
P. Vincent, and S. Bengio, “Why does unsupervised pre-
training help deep learning?,” Journal of Machine Learn-
ing Research, vol. 11, pp. 625–660, March 2010.

[11] D. Hakkani Tur, G. Riccardi, and A. Gorin, “Ac-
tive learning for automatic speech recognition,” in IEEE
International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), vol. 4, pp. 3904–3907, May 2002.

[12] G. Riccardi and D. Hakkani Tur, “Active learn-
ing: Theory and applications to automatic speech recogni-
tion,” IEEE Transactions on Speech and Audio Processing,
vol. 13, pp. 504–511, July 2005.

[13] J. F. Gemmeke, B. Ons, N. Tessema,
H. Van hamme, J. van de Loo, G. De Pauw, W. Daelemans,
J. Huyghe, J. Derboven, L. Vuegen, B. Van Den Broeck,
P. Karsmakers, and B. Vanrumste, “Self-taught assistive
vocal interfaces: an overview of the ALADIN project,”
in INTERSPEECH 2013, 14th Annual Conference of the
International Speech Communication Association, Lyon,
France, August 25-29, 2013, pp. 2039–2043, 2013.

[14] P. Smaragdis, “Non-negative matrix factor decon-
volution; extraction of multiple sound sources from mono-
phonic inputs,” in International Conference on Indepen-
dent Component Analysis and Signal Separation, pp. 494–
499, Springer, 2004.

[15] S. Adavanne and T. Virtanen, “Sound event de-
tection using weakly labeled dataset with stacked convo-
lutional and recurrent neural network,” in Proceedings of
the Detection and Classification of Acoustic Scenes and
Events 2017 Workshop (DCASE2017), pp. 12–16, Novem-
ber 2017.

[16] D. Lee, S. Lee, Y. Han, and K. Lee, “Ensemble
of convolutional neural networks for weakly-supervised

sound event detection using multiple scale input,” in Pro-
ceedings of the Detection and Classification of Acoustic
Scenes and Events 2017 Workshop (DCASE2017), pp. 74–
79, November 2017.

[17] E. Cakir and T. Virtanen, “Convolutional recurrent
neural networks for rare sound event detection,” in Pro-
ceedings of the Detection and Classification of Acoustic
Scenes and Events 2017 Workshop (DCASE2017), pp. 27–
31, November 2017.

[18] D. D. Lee and H. S. Seung, “Learning the parts
of objects by non-negative matrix factorization,” Nature,
vol. 401, pp. 788–791, 1999.

[19] D. D. Lee and H. S. Seung, “Algorithms for non-
negative matrix factorization,” in Advances in Neural In-
formation Processing Systems (NIPS) (T. K. Leen, T. G.
Dietterich, and V. Tresp, eds.), vol. 4, pp. 556–562, MIT
Press, 2000.

[20] P. O. Hoyer, “Non-negative sparse coding,” in Pro-
ceedings of the 12th IEEE Workshop on Neural Networks
for Signal Processing, pp. 557–565, 2002.

[21] J. Le Roux, F. J. Weninger, and J. R. Hershey,
“Sparse nmf - half-baked or well done?,” Tech. Rep.
TR2015-023, Mitsubishi Electric Research Laboratories
(MERL), Cambridge, MA, USA, March 2015.

[22] P. D. O’Grady and B. A. Pearlmutter, “Discover-
ing convolutive speech phones using sparseness and non-
negativity constraints,” in Proceedings of the Seventh Inter-
national Conference on Independent Component Analysis,
pp. 520–527, 2007.

[23] M. Janvier, X. Alameda-Pineda, L. Girin, and
R. Horaud, “Sound-event recognition with a companion
humanoid,” in Humanoids 2012 - IEEE International Con-
ference on Humanoid Robotics, (Osaka, Japan), pp. 104–
111, IEEE, November 2012.

[24] M. Janvier, X. Alameda-Pineda, L. Girin, and
R. Horaud, “Sound representation and classification bench-
mark for domestic robots,” in 2014 IEEE International
Conference on Robotics and Automation (ICRA 2014),
(Hong-Kong, China), pp. 104–111, IEEE, May 2014.

[25] J. F. Gemmeke, L. Vuegen, P. Karsmakers, B. Van-
rumste, and H. Van hamme, “An exemplar-based NMF ap-
proach to audio event detection,” in 2013 IEEE Workshop
on Applications of Signal Processing to Audio and Acous-
tics, pp. 1–4, October 2013.

[26] B. Gold, N. Morgan, and D. Ellis, Speech and
Audio Signal Processing: Processing and Perception of
Speech and Music. New York, NY, USA: John Wiley &
Sons, Inc., 2nd ed., 1999.

[27] A. N. Langville, C. D. Meyer, and R. Albright, “Ini-
tializations for the nonnegative matrix factorization,” 2006.

[28] A. P. Dempster, N. M. Laird, and D. B. Rubin,
“Maximum likelihood from incomplete data via the em al-
gorithm,” Journal of the Royal Statistical Society. Series B
(Methodological), vol. 39, no. 1, pp. 1–38, 1977.

[29] D. A. Reynolds and R. C. Rose, “Robust text-
independent speaker identification using gaussian mixture
speaker models,” IEEE Transactions on Speech and Audio
Processing, vol. 3, pp. 72–83, January 1995.



[30] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A
training algorithm for optimal margin classifiers,” in Pro-
ceedings of the 5th Annual ACM Workshop on Computa-
tional Learning Theory, COLT ’92, pp. 144–152, ACM
Press, 1992.

[31] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for
support vector machines,” ACM Transactions on Intelligent
Systems and Technology, vol. 2, pp. 1–27, April 2011.

[32] D. Stowell, D. Giannoulis, E. Benetos, M. La-
grange, and M. D. Plumbley, “Detection and classification
of acoustic scenes and events,” IEEE Transactions on Mul-
timedia, vol. 17, pp. 1733–1746, October 2015.

[33] T. Virtanen, A. Mesaros, T. Heittola, M. Plumb-
ley, P. Foster, E. Benetos, and M. Lagrange, Proceedings
of the Detection and Classification of Acoustic Scenes and
Events 2016 Workshop (DCASE2016). Tampere University
of Technology. Department of Signal Processing, 2016.

[34] V. Renkens and H. Van hamme, “Automatic rele-
vance determination for nonnegative dictionary learning in
the gamma-poisson model,” Signal Processing, vol. 132,
pp. 121–133, 2017.

[35] J. Driesen and H. Van hamme, “Modelling vo-
cabulary acquisition, adaptation and generalization in in-
fants using adaptive bayesian plsa,” Neurocomput., vol. 74,
pp. 1874–1882, May 2011.



APPENDIX
A.1 Single-label learning mode classification results

Table 2. Classification scores of LRM-NMD in single-label learning mode on the clean data in function of
the number of training examples per sound class (ntr), semantic balancing parameter (η) and sparsity

penalisation (λ ).

λ η
Number of training examples per sound class (ntr)

1 2 3 4 5 10 All

0

0 49.1± 2.4% 45.5± 1.6% 41.4± 5.1% 39.4± 3.2% 37.3± 3.4% 37.3± 2.5% 35.6± 2.0%
0.1 50.8± 3.4% 48.6± 3.2% 47.0± 3.2% 43.9± 4.3% 42.2± 4.3% 40.9± 3.3% 40.2± 2.8%
1 57.0± 4.9% 59.7± 3.6% 60.0± 4.7% 59.2± 5.3% 59.7± 6.6% 63.9± 3.1% 63.9± 0.8%
10 57.8± 5.6% 61.3± 2.4% 63.1± 3.3% 63.8± 7.0% 65.8± 7.4% 72.7± 2.4% 71.7± 2.5%

100 58.8± 5.5% 62.3± 2.9% 64.4± 2.8% 63.8± 4.4% 65.3± 4.6% 72.0± 1.6% 72.3± 1.7%
200 58.4± 6.5% 63.4± 3.2% 63.9± 3.9% 63.4± 3.6% 65.5± 6.1% 72.5± 2.0% 72.2± 1.9%
500 58.4± 7.4% 63.4± 3.5% 64.8± 4.8% 64.7± 4.5% 66.1± 4.2% 71.7± 1.9% 73.1± 1.5%
1000 59.7± 8.3% 64.5± 2.5% 65.8± 3.9% 65.5± 3.2% 66.9± 3.3% 72.2± 1.7% 72.7± 1.5%

5

0 73.8± 6.2% 73.8± 3.1% 73.3± 3.7% 69.2± 4.9% 65.8± 5.7% 63.8± 2.1% 61.9± 2.2%
0.1 74.7± 6.9% 78.6± 5.9% 76.9± 1.8% 73.8± 3.8% 73.0± 4.6% 71.1± 3.1% 70.8± 2.4%
1 75.2± 6.4% 85.2± 4.2% 83.4± 5.5% 80.5± 5.1% 85.2± 3.8% 89.8± 2.0% 90.6± 2.2%
10 77.3± 6.9% 85.9± 4.2% 88.3± 1.7% 89.4± 2.2% 90.5± 3.3% 93.8± 0.9% 93.4± 0.6%

100 81.1± 4.2% 87.8± 3.4% 89.5± 3.5% 91.1± 2.2% 91.3± 2.2% 94.2± 1.1% 93.9± 1.2%
200 80.2± 3.1% 88.4± 1.9% 88.4± 3.6% 89.7± 2.3% 90.8± 2.4% 93.3± 2.1% 93.6± 1.6%
500 78.1± 3.6% 85.6± 2.7% 85.5± 4.0% 85.6± 2.6% 84.7± 4.5% 92.2± 3.6% 92.0± 2.7%

1000 74.1± 4.8% 81.7± 2.8% 80.6± 3.3% 82.2± 3.6% 83.4± 5.2% 88.8± 4.5% 89.5± 3.6%

10

0 71.4± 5.3% 69.5± 3.2% 67.7± 3.8% 63.9± 6.1% 61.1± 4.8% 58.9± 4.3% 55.5± 2.1%
0.1 72.5± 6.7% 74.4± 5.1% 70.3± 2.9% 67.5± 5.2% 67.3± 5.6% 64.5± 5.5% 63.8± 5.5%
1 75.9± 7.3% 83.9± 3.5% 83.8± 3.1% 83.1± 2.2% 81.6± 4.5% 87.8± 2.8% 88.3± 3.1%
10 75.9± 6.9% 85.6± 4.4% 88.4± 2.5% 87.8± 2.8% 88.1± 3.2% 92.8± 1.9% 93.6± 1.4%

100 77.7± 4.5% 85.0± 3.5% 85.5± 3.9% 84.2± 1.4% 84.5± 2.2% 90.6± 0.7% 90.0± 1.4%
200 73.0± 5.3% 84.1± 3.2% 83.3± 3.9% 82.0± 2.2% 84.8± 1.8% 89.7± 1.1% 89.4± 1.4%
500 69.8± 6.4% 78.0± 2.8% 75.6± 3.9% 73.9± 2.4% 76.9± 4.0% 86.4± 3.4% 86.6± 1.9%
1000 66.1± 5.3% 72.0± 3.2% 68.8± 2.8% 67.7± 2.7% 69.7± 6.1% 80.5± 3.2% 80.6± 3.2%

Note: The best classification scores for each ntr setting are underlined.



A.2 Low-resolution multi-label learning mode classification results
A.2.1 Non-overlapping events in the annotating segments

Table 3. Classification scores of LRM-NMD in low-resolution multi-label
learning mode on the clean data in function of the number of labelled events
per annotating segment (nlbl), semantic balancing parameter (η) and sparsity

penalisation (λ ).

λ η
Number of labelled events per annotating segment (nlbl)
1 2 3 4 5

0

0 34.8± 3.3% 34.8± 3.3% 34.8± 3.3% 34.8± 3.3% 34.8± 3.3%
1 37.7± 2.7% 42.3± 3.1% 46.3± 2.7% 49.4± 4.5% 51.4± 4.1%
2 41.1± 1.5% 47.5± 2.3% 53.6± 2.8% 55.0± 3.7% 59.5± 2.7%
3 42.3± 1.5% 48.4± 1.1% 56.1± 3.5% 59.2± 2.6% 64.7± 3.3%
4 42.8± 2.3% 50.3± 2.1% 57.8± 4.3% 61.3± 2.1% 66.7± 3.3%
5 42.7± 2.1% 53.1± 3.1% 58.9± 3.1% 62.7± 2.8% 69.7± 3.4%
10 45.2± 1.9% 51.7± 6.7% 59.4± 2.0% 65.5± 1.9% 75.2± 3.7%
15 45.2± 4.9% 47.8± 9.0% 59.5± 4.4% 68.0± 2.0% 77.3± 3.9%
20 41.7± 3.3% 44.1± 9.5% 59.2± 7.5% 69.7± 2.8% 78.0± 4.8%
25 38.0± 4.9% 44.1± 8.1% 58.6± 7.3% 70.0± 3.3% 78.3± 4.6%
30 37.2± 6.1% 44.1± 8.4% 58.4± 7.6% 69.2± 3.1% 78.3± 5.1%

5

0 60.0± 3.7% 60.0± 3.7% 60.0± 3.7% 60.0± 3.7% 60.0± 3.7%
1 66.3± 3.6% 70.6± 4.2% 75.3± 4.9% 81.3± 5.1% 84.7± 3.7%
2 70.3± 3.4% 76.9± 7.0% 82.3± 3.6% 87.2± 3.1% 89.5± 3.1%
3 72.8± 4.2% 80.3± 5.4% 85.6± 2.1% 88.6± 2.1% 90.2± 2.9%
4 73.4± 3.7% 81.6± 4.4% 86.3± 1.5% 89.5± 1.7% 90.0± 3.7%
5 73.9± 5.3% 82.3± 5.6% 86.7± 2.1% 89.1± 1.2% 90.2± 3.9%
10 73.1± 6.0% 80.6± 1.8% 83.9± 2.5% 87.5± 1.6% 90.6± 3.8%
15 68.4± 4.9% 75.3± 3.9% 83.3± 1.4% 87.3± 1.1% 90.6± 3.4%
20 59.7± 4.9% 73.4± 5.4% 82.7± 3.5% 88.1± 1.4% 90.6± 2.9%
25 57.2± 3.7% 70.3± 7.8% 81.3± 3.1% 86.4± 3.1% 90.8± 2.7%
30 55.8± 5.1% 65.8± 9.6% 79.1± 4.0% 85.2± 4.8% 90.8± 2.7%

10

0 56.1± 2.2% 56.1± 2.2% 56.1± 2.2% 56.1± 2.2% 56.1± 2.2%
1 60.3± 3.0% 63.6± 1.3% 68.3± 3.1% 72.5± 5.7% 75.8± 3.9%
2 63.1± 4.3% 69.2± 4.3% 74.5± 3.9% 81.6± 2.1% 85.3± 5.4%
3 63.6± 4.6% 72.2± 4.9% 79.4± 3.1% 85.8± 2.9% 86.4± 4.6%
4 63.4± 4.0% 73.3± 4.0% 81.3± 3.8% 86.3± 2.0% 87.2± 5.1%
5 64.2± 4.3% 75.5± 4.6% 80.5± 3.1% 86.9± 0.9% 87.5± 4.8%
10 65.2± 4.3% 77.2± 3.3% 80.5± 3.5% 86.7± 1.3% 88.1± 4.4%
15 61.3± 6.6% 72.7± 5.8% 80.8± 2.9% 86.6± 1.3% 88.4± 4.3%
20 53.0± 7.2% 72.0± 4.2% 78.1± 2.7% 83.4± 4.3% 88.4± 4.3%
25 46.4± 8.3% 68.4± 4.3% 76.3± 5.5% 82.7± 4.0% 88.4± 4.3%
30 42.3± 10.3% 63.4± 2.8% 74.4± 5.7% 82.4± 4.2% 88.4± 4.3%

Note: The best classification scores for each nlbl setting are underlined.



A.2.2 Overlapping events in the annotating segments

Table 4. Classification scores of LRM-NMD in low-resolution multi-label learning mode for η = 5
and λ = 5 in function of the number of labelled events per annotating segment (nlbl), signal to noise

ratio (SNR) and degree of overlap in the annotating segments (noverlap).

noverlap (in %) SNR (in dB) Number of labelled events per annotating segment (nlbl)
1 2 3 4 5

0

Clean 73.9± 5.3% 82.3± 5.6% 86.7± 2.1% 89.1± 1.2% 90.2± 3.9%
20 73.6± 5.1% 82.3± 5.3% 86.6± 2.1% 88.6± 1.1% 90.2± 3.4%
10 73.8± 2.6% 82.0± 4.9% 86.4± 1.9% 87.7± 0.9% 89.5± 3.3%
5 71.9± 3.6% 78.0± 4.4% 81.3± 3.6% 85.9± 1.1% 88.1± 3.3%
3 60.8± 2.4% 69.7± 3.9% 73.9± 4.4% 80.2± 2.2% 84.4± 3.1%
0 40.3± 7.0% 44.2± 5.0% 51.7± 4.7% 58.6± 3.1% 61.9± 3.7%

25

Clean 69.8± 5.0% 78.8± 4.1% 82.7± 3.7% 87.8± 1.5% 88.6± 3.4%
20 69.7± 6.1% 78.8± 3.9% 82.5± 3.8% 88.1± 1.1% 88.4± 3.4%
10 70.3± 4.7% 78.6± 4.9% 82.8± 3.7% 85.8± 2.4% 88.3± 4.7%
5 67.7± 3.7% 78.0± 3.6% 79.8± 2.3% 83.3± 3.0% 86.1± 4.6%
3 58.4± 3.3% 67.2± 2.9% 69.7± 1.7% 77.7± 2.3% 81.7± 4.3%
0 38.1± 8.0% 41.1± 5.6% 46.1± 3.0% 52.7± 7.3% 57.5± 1.4%

50

Clean 68.9± 4.3% 75.3± 6.7% 80.0± 3.5% 85.0± 3.7% 88.1± 4.9%
20 69.4± 4.4% 75.3± 6.4% 80.0± 3.7% 85.6± 3.3% 88.1± 5.3%
10 68.3± 3.7% 75.3± 6.2% 80.6± 3.9% 85.3± 3.9% 87.0± 4.9%
5 62.7± 4.1% 71.4± 5.3% 76.4± 5.1% 82.5± 4.2% 85.0± 3.9%
3 51.9± 4.0% 60.6± 4.4% 65.3± 3.1% 72.8± 3.2% 77.8± 3.8%
0 30.0± 5.7% 36.3± 4.7% 41.3± 5.0% 46.6± 6.2% 52.2± 3.1%

75

Clean 54.2± 1.3% 58.3± 5.7% 67.0± 4.8% 74.7± 5.2% 79.2± 6.1%
20 53.8± 0.9% 58.6± 6.8% 66.9± 4.1% 75.6± 6.3% 79.1± 5.4%
10 52.3± 2.4% 57.3± 7.4% 65.8± 4.5% 76.1± 7.3% 78.8± 4.2%
5 47.3± 5.7% 55.5± 3.1% 59.7± 1.1% 69.1± 4.1% 75.8± 3.2%
3 39.5± 3.7% 45.8± 3.1% 51.9± 0.5% 64.2± 5.5% 68.6± 2.5%
0 30.6± 2.7% 34.7± 5.0% 40.8± 4.4% 43.9± 0.3% 45.6± 1.4%

100

Clean 44.2± 5.7% 56.4± 1.2% 65.3± 5.8% 73.4± 4.7% 79.8± 4.0%
20 42.8± 7.8% 55.5± 2.4% 65.0± 5.5% 73.0± 3.9% 78.8± 4.7%
10 40.5± 5.6% 52.2± 3.7% 64.4± 4.8% 73.6± 2.6% 77.3± 3.5%
5 36.6± 9.8% 48.4± 8.8% 60.9± 8.7% 63.9± 5.6% 72.0± 3.6%
3 34.2± 7.6% 43.8± 8.3% 54.2± 11.2% 55.6± 3.4% 62.5± 1.4%
0 26.7± 5.1% 34.4± 4.4% 37.7± 1.1% 40.5± 1.1% 42.8± 2.6%
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