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Abstract: 

4th generation district heating and cooling networks (shortly THERNETs) are often coined as a crucial 
technology to enable the transition towards low-carbon smart energy systems. Most importantly, they open 
perspectives for integration of low-grade residual heat from industry, renewable energy sources (such as 
geothermal heat and cold and solar thermal collectors), more efficient energy conversion units (such as 
collective heat pumps), while thermal energy storage (TES) systems increase system flexibility.  
In order to optimize design and control of such complex systems, a toolbox modesto (Multi-objective district 
energy systems toolbox for optimization) is under development. However, the representation of seasonal heat 
and cold storage systems on an annual basis requires large computational power. In an attempt to decrease 
computational cost, a technique with representative time slices (inspired by and combining aspects from 
optimization studies of electrical energy systems, unit commitment problems, thermal systems with short term 
energy storage and smaller scale industrial thermal systems with longer term energy storage) is developed 
and tested. The aim of this study is to investigate the applicability of such representative time periods to 
optimize seasonal TES systems in THERNETs. To this end a full year optimization is compared to one with 
representative time periods for a realistic case study that uses demand profiles from the city of Genk (Belgium) 
and energy system parameters from Marstal (Denmark).  
This comparative study shows that modelling with representative periods is sufficient to mimic the behaviour 
of a full year optimization. However, when curtailment of solar heat injection occurs, not all representations 
yield the same results. It was found that for the studied case, a selection of 12 representative weeks performs 
best, while all reduced optimizations result in a substantial reduction (speed-up of on average x4.8 to x7.7) of 
the calculation time.  
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1. Introduction 
In the transition to a sustainable and mainly renewable-based energy system, interest in energy storage 

in general, but more specifically thermal energy storage is increasing. The unpredictability and 

seasonal misalignment of different respective renewable energy sources and energy demand require 

the integration of energy storage systems to ensure security of supply. For optimal design of systems 

with seasonal thermal energy storage (STES) systems, it is necessary to use a representation of at 

least a full year period in order to take seasonal phenomena into account. Furthermore, sufficiently 

accurate models with a minimum time resolution are needed for meaningful results. modesto [1] is 

a linear optimization tool for the optimization of district energy systems, both from a design and a 

control perspective. 

The combination of both a long time duration and a high time resolution leads to increasingly long 

calculation times. Because design optimization requires many optimizations to explore the design 

parameter space, a speed-up of computation is required.  
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Using representative days or time slices to represent a full year has already been established in 

electrical energy system modelling. Nahmmacher et al. [2] present an overview of how representative 

time periods are selected to account for demand fluctuations. However, they argue that these methods 

are not yet sufficiently able to account for variability at the production side, i.e. with the introduction 

of uncontrollable renewable energy sources. Their method is based on hierarchical clustering to select 

the most accurate representation of a full year. 

Poncelet et al. [3] introduced a novel method to select representative time slices, namely an 

optimization based selection of representative periods. The objective of the optimization is to 

minimize deviation between duration curves1 of the full year input profiles and their representation 

by means of representative time periods, where the number, number of repetitions and starting point 

of those representative time periods can be varied. In a basic version, only the duration curve of the 

original input profile is used, but additional duration curves can be introduced to include data 

variability (i.e. “ramping rates”) or correlations between multiple input datasets. This method is 

compared against a number of other methods (random selection, hierarchic clustering and heuristic 

selection) and is shown to perform better when used in a reference optimization problem.   

This methodology of representative time slices was used in combined design and control optimization 

of thermal systems by Patteeuw and Helsen [4]. They used the approach proposed by Poncelet to 

select six representative weeks, which is a compromise to limit the calculation time of the mixed 

integer linear programming (MILP) optimization problem. In this case, the full design optimization 

would be infeasible due to the size of the problem, so there is no information on how good the 

approximation is. However, it is shown that the duration curves of the representative input profiles 

approximate those of the original data accurately. The focus of Patteeuw and Helsen [4] is on 

residential systems with hot water buffers, whose thermal capacity only allows for daily or weekly 

storage. Hence, the representative weeks can be modelled with periodic boundary constraints on the 

state of the heat-storing elements. The study described in the current paper, however, considers 

seasonal energy storage effects and as a consequence these periodic boundary conditions cannot be 

applied.  

Another example of thermal system optimization with representative time slices is the work of 

Timmerman et al. [5]. While they used a different method of representative time slice selection than 

Poncelet et al. (namely, the method of Welsch et al. [6]), they did incorporate electrical and thermal 

energy storage systems that act on a seasonal time-scale. They present an innovative method to 

account for the energy loss from these energy storage systems by using so-called discount factors. 

This paper only describes a simplified case to illustrate the effect of the use of representative time 

slices with an arbitrary time period selection. The results are not compared to a case with an equivalent 

full year optimization. 

The current work combines the novel approaches of all of the above; Poncelet’s time-slice selection 

method, Patteeuw’s combination of control and design optimization and Timmerman’s method to 

scale up to seasonal energy storage. The aim is to check whether the results of the time-slice 

optimization problem are actually representative for the full-year optimization of thermal energy 

storage systems in low-temperature district heating systems, as such a comparison appears to be 

absent in literature.  

2. Methodology 
This section guides the reader through methods used to select a number of representative periods, 

explains the reference case in which the full optimization and representative periods optimization are 

                                                 
1 The duration curve of a time-varying profile shows the time duration during which a certain value of that profile is 

exceeded. The duration curve can be obtained by sorting the values of the time profile in a descending order. The best 

known duration curve is the yearly load duration curve (based on heat demand or electricity load), but any time-varying 

profile can be turned into a duration curve.  
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compared with its components and input data sources. Finally, the technique to connect state of charge 

of the storage tank between two representative time periods is explained. 

2.1. Representative time period selection 

The selection of representative time periods follows the approach of Poncelet et al. [3]: an 

optimization problem minimizes the deviation between the relevant duration curves of a full year and 

the ‘upscaled representative time periods’ duration curves (shortly called representative duration 

curves). In order to cast this problem into a MILP, the original duration curves are divided into 10 

bins. Then, the optimizer selects a specified number of periods, all of which can be repeated for a 

certain number of times. The selection2 and repetition3 parameters are the optimization variables. 

Based on the number of repetitions and selection, a representative duration curve is constructed. The 

start and end time of each of the bins of the representative duration curve is compared to that of the 

original year and the deviation is minimized. The reader is referred to Poncelet et al. [3]  for full 

details about the method. The objective function is the sum of the absolute errors of the end time of 

each of the bins for all of the duration curves considered. These errors can be weighted to put more 

or less emphasis on each of the curves. 

In the current work, the representative periods need to be recombined into a year with a constant time 

step, as opposed to the method presented by Timmerman et al. [5]. Therefore, the scaling factor was 

restricted to an integer value (the period needs to be repeated a discrete number of times) and should 

be at least 1 for every selected period. If for instance representative weeks are selected, all scaling 

factors should add up to 52, leading to a year with 364 days instead of the usual 365 days, which 

means a scaling factor needs to be introduced (see Section 2.4) to compare the annual energy use.  

A challenge in using any selection procedure based on duration curves is that chronology is lost; for 

seasonal energy storage systems, this chronology is essential. As an example, the selection algorithm 

could choose two consecutive weeks from a winter period, a single week from the first mid-season 

and a single week from summer; when they are scaled up and left in their original order, this will lead 

to a year starting with a long winter period, followed by a mid-season period and ending in a summer 

period. Comparing this to a normal year’s seasonality, this representation is unacceptable.  

In this paper, we propose a new method to recombine the selected time periods to a full year with a 

logical seasonality by first dividing the year into a number of seasons. In the presented results (see 

Fig. 3 in Section 3.1), four seasons are chosen, namely winter, spring mid-season, summer and 

autumn mid-season, based on the heat demand of the neighbourhood. The optimizer must select at 

least one representative period per season, and when the full year is reconstructed, the weeks are kept 

in original order.  

In addition to the duration curves of the heat demand, solar heat generation and ambient temperature, 

also the correlation between the heat demand and the solar heat generation profiles is added. This 

profile is turned into an additional duration curve that makes sure that the general correlation between 

solar radiation and heat demand is respected, as described by Poncelet et al. [3]. 

2.2. Reference case, full year optimization and parameter sweep 

For the sake of straightforward analysis, a very simple reference case is chosen, in which a single 

neighbourhood (inspired by a real neighbourhood in the city of Genk (Belgium)) is connected to an 

array of solar thermal collectors, a STES unit and a backup heating plant (see Fig. 1).  Currently, all 

system components are connected to a single node and no heating network is considered, but this can 

                                                 
2 Selection: optimization variable that indicates if a certain time period is selected (1) or not (0). A time period can start 

on every day of the year, and overlapping selections are not allowed.  
3 Repetition: for each selected period, this optimization variable indicates how often this time period should be repeated 

in the reconstruction of the full year time profile. When all repetitions of all selected time periods are combined, the 

combined duration should be that of the maximum integer number of such time periods that go in one year. 
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easily be extended. In order to have realistic values for a reference case, the energy system design 

parameters were chosen to emulate the solar district heating system of Marstal in Denmark [7], [8]. 

This reference system is optimized for a full year with a 1 h time step. The optimization problem 

calculates optimal control signals (heat flows to and from the storage tank and heat supplied by the 

backup boiler) for a full year, with the objective of minimal backup energy input. This can be related 

to the case where we want to minimize the use of fossil fuels and maximize the utilization of the solar 

thermal collectors. The state of the storage system is subject to a periodic boundary condition, i.e. the 

initial state on the 1st of January and the final state on the 31st of December are equal. All equations 

are linear and no integer optimization variables are considered in the reference case. 

The reference system has a water storage volume of 100 000 m3, 60 000 m2 of solar thermal collectors 

and a backup heat generation plant with a nominal power of 3.85 MW, parameters which are inspired 

by the solar district heating system of Marstal (Denmark). The system is operated with a fixed supply 

temperature of 80°C and a return temperature of 40°C. As described before, the heat demand profile 

of the residential buildings is based on one of the selected neighbourhoods of Genk (Belgium), of 

which the annual heat demand amounts to 22.5 GWh, which is selected to reflect the heat load of 

Marstal.  

 
Fig. 1. Schematic representation of reference case. 

2.3. Component models and input data 

The models used in the reference case are all part of the modesto [1] Python package. This package 

relies on Pyomo [9] to compile optimization problems and currently uses optimization solver Gurobi 

[10], although Pyomo is compatible with a multitude of solvers. This section shortly describes these 

models and their assumptions, as well as the origin of the input data where relevant. 

2.3.1. Energy storage system 

The energy storage system is modelled according to Vandewalle and D’haeseleer [11], i.e. as a 

perfectly stratified tank with fixed high and low temperatures (  and ). The tank walls are 

thermally insulated, using insulation with constant thickness and thermal conductivity. Heat losses 

are calculated as pure conductive heat losses from the hot and cold tank volumes  to the surroundings. 

Following the derivation of Vandewalle and D’haeseleer, the heat balance of the storage tank is 

written as: 

 

where  is the stored energy in the tank at time step ,  is the heat flow charged into 

the tank and  is the state-independent heat loss from the tank during the same time step. 

 is a multiplication factor such that  is the proportion of the stored energy lost during one 

time step. This factor accounts for the state-dependent heat losses. Beware of the fact that although 

the subscript fix is used, the state-independent heat losses do depend on the ambient temperature, 

whereas the state-dependent losses do not. The ambient temperatures are taken from a typical 

representative meteorological year in Uccle, Belgium (see IDEAS Modelica Library [12]). 
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No heat losses are associated to charging or discharging processes. The charging and discharging 

power are not constrained, although this is possible. 

2.3.2. Solar thermal collectors 

The solar thermal collector output is modelled using the ASHRAE93 test standard component from 

the Buildings Modelica Library (Wetter et al. [13]). In the model, typical meteorological data 

(including solar radiation) from Uccle, Belgium is used. A south-oriented collector with an area of 

1 m2 and inclined 40° with respect to the horizontal plane is taken as a reference. The solar profile 

was calculated for an input temperature of 40°C. The mass flow rate in the model has a constant 

value, but the pump is switched on or off depending on whether or not the incoming radiation is 

higher than the critical solar radiation. 

In the optimization model, the heat generation profile derived in the previous paragraph is used as an 

input. As is the case for the storage model, fixed high and low temperatures are used. It is assumed 

that by varying the mass flow rate, a fixed temperature difference can be achieved with the same heat 

generation profile as the model described above. This approach was used because directly simulating 

a solar panel with a sophisticated (PID) control of the outlet temperature proved to increase the 

complexity significantly, without changing the annual heat production with more than 10% annually.  

Normally, the optimizer will choose to use as much solar energy as possible because of its objective 

function. However, the optimizer has the option to curtail part of the solar thermal power when it 

cannot store it efficiently, usually due to insufficient storage capacity.  

2.3.3. Heat demand from buildings 

For the heat demand of the buildings, a number of neighbourhoods of interest have been selected in 

the city of Genk in Belgium. De Jaeger et al. [14] constructed building models based on geometrical 

data of all residential buildings in Genk. For simplicity, not all buildings have been simulated 

individually in this study. Instead, for every neighborhood three typical buildings are defined, as 

shown in Fig. 2: a detached, a semi-detached and a terraced building. Each of the three buildings is 

representative for all buildings of that type in the neighbourhood by averaging the dimensions and 

characteristics of the actual buildings, including wall and window surface, building materials, and 

insulation. The heat demand of the typical buildings is multiplied by the number of buildings of this 

type in the area. 

 
Fig. 2. Workflow for simulation of building heat demand. 
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The occupancy of the neighbourhoods is determined using the StROBe toolbox developed by 

Baetens and Saelens [15]. This toolbox uses statistical data for occupancy in residential buildings in 

Belgium and the Netherlands and samples electricity use, domestic hot water tapping and indoor 

temperature set-point profiles as realizations of these statistics. The input profile for each typical 

building is the average of n such profiles, where n stands for the number of buildings of that type as 

long as it does not surpass 50 (for memory considerations). 

As described by the author [16], the resulting heat demand profiles were filtered (moving average) in 

order to correspond better to the demand variability expected from a district of this size. The average 

variability for district heating systems of various sizes was studied by Gadd and Werner [17].  

2.3.4. Backup heat generation 

The backup heater was simply modelled as an ideal heat source with the same fixed high and low 

temperatures as in all components before. The maximum heat output is limited to the nominal power 

level. Ramping rates could be limited as well, but this was omitted for the sake of simplicity. 

2.4. STES optimization with representative weeks 

To include STES into an optimization problem with representative time periods, the change in stored 

energy must be extrapolated from the single period that is optimized to all repetitions of that period.  

However, energy storage goes hand in hand with some storage losses (see Section 2.3.1). These losses 

depend on:  

• The current state of the storage tank, 

• The temperature of the tank’s surroundings and 

• The design of the tank, i.e. insulation material and thickness, aspect ratio. 

The losses need to be taken into account for the repetitions as well, hence it is not possible to just 

repeat the change in energy of the calculated period during all repetitions of that period. A higher 

energy content means higher losses and vice versa.  

In order to achieve the coupling of subsequent representative time periods, Timmerman et al. [5] 

introduced a discount factor, an exact representation of energy losses under varying energy injections 

or extractions from the tank. This method is comparable to condensing systems with a linear state-

space description, such that only the initial and final state variable remain. 

In the current study, the time slices are equal in length and the number of time slice levels is limited 

to a single representative period with hourly time steps, whereas Timmerman uses more time slice 

levels (seasons, weeks, weekdays and weekend days, daily time brackets) and allows time slices of 

different lengths. However, implementing the problem as such led to very high compilation and 

solving times. Hence, a different approach was chosen: instead of only writing the state equations for 

the first repetition and extrapolating the change in stored energy, the state equations were 

implemented also during the other repetitions, while repeating the energy in- or output to the STES 

unit. This leads to a similar state transition equation as (1): 

 

 

where  and  respectively are the initial and final time step of each repetition  of one of the 

representative periods. As (2) indicates, for each repetition the same sequence of heat interactions 

and state-independent losses is used. As such it is possible to benefit from the facts that all 

intermediate state variables are known and can easily be constrained to the extreme states of the 

storage tank, and that the heat losses are exact for the given inputs.   

The optimization problem with representative periods (further called ‘reduced optimization’) has a 

number of additional constraints compared to the reference case: the storage state must be continuous 
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between two adjacent representative periods (see (3)). The energy content of the storage tank must 

be constrained between full and no charge. To this end, only the first and last repetition of every time 

slice need to be considered: since the (dis)charging time profile is the same during all of the 

repetitions, the minimum and maximum energy content for each of those time steps can only occur 

during the first and last repetition, as shown by Timmerman et al. [18]. 

The comparison takes into account that the representative year has a different number of days than a 

full year due to the integer number of repetitions of the representative time periods.  

3. Results 
The results are divided in two parts: Section 3.1 shows a summary of the reference case for the full 

year optimization as described in Section 2.1. Section 3.2 checks how well the optimization with 

representative periods represents the actual solution, thereby looking into some design parameter 

variations.  

3.1. Example representative time period selection 

Fig. 3 shows the results of a representative time profile for a selection of 12 weeks, compared to the 

original duration curves and time profiles. We see a very good approximation of the duration curves, 

while for the recombined year data, the overall trend is followed. The right graph in Fig. 3 shows that 

the recombined profile is slightly shifted in time. This is a result of the fact that the selection optimizer 

can cyclically “wrap around” the year while selecting, and the first week that is selected is mapped 

to the first week of the year. Since the optimization problem has a periodic boundary condition, this 

is not a problem.  

 
Fig. 3. Duration curves of unit area solar collector output, correlation between solar collector and heat demand profiles, ambient 

temperature and heat demand of the original profiles and representative time periods (left) and recombined time profiles compared to 

the original time series (right). These results are for a selection of 12 representative weeks. The dotted vertical lines in the right figure 

separate the seasons from which the start days of the representative time periods must be chosen. The first and last time brackets form 

one season together.  

Reference case optimization 

Fig. 4 shows the annual heat flow profiles (top plot) in the reference case (described in Section 2.1), 

together with the evolution of the state of charge (SoC) of the STES unit (bottom plot). In the SoC 

diagram, it is clear that the initial and final state are equal. It is interesting to observe that during 

spring, most of the heat demand is provided by the backup heating plant, while the storage tank is left 

nearly empty. In summer, the backup plant is switched off and the solar collectors provide most of 

the heat demand, while at the same time charging the storage tank. In early autumn, the solar energy 
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stored in the storage tank is used, but around October the backup heater is switched on at maximum 

power. The surplus heat is stored in the STES and used to bridge the demand peaks of the cold season. 

A similar pattern is seen in the reduced problem results. The shape of the SoC trajectory is comparable 

to that of the full year optimization, albeit shifted in time. This time shift has no importance because 

of the periodic boundary conditions. Again, we can discern a spring period during which the backup 

plant supplies most of the heat demand, a summer period during which the backup is not used and 

surplus solar energy is stored for later use, and a winter period during which the backup plant is 

continuously at nominal power and where the storage is generally in discharge mode. The maximum 

SoC for both optimization problems is similar. 

 

Fig. 4. Reference results with heat flows and state of charge of STES. Left: full optimization. Right: reduced optimization based on 12 

representative weeks. 

In this case, a total of 17.14 GWh of backup energy is used in one year. 6.51 GWh of solar energy is 

injected into the node, of which 1.12 GWh is lost due to heat losses of the storage tank. Combined 

they correspond to the 22.53 GWh annual heat demand of the neighbourhood. For this configuration, 

no solar energy is curtailed. In comparison, in the reduced model 17.19 GWh of backup energy is 

used, 6.58 GWh of solar energy and 1.12 GWh of energy is lost during storage. 

3.2. Parameter sweep 

In this section it is checked how well the optimization with representative periods represents the actual 

solution. Besides the reference design, some variations in the volume of the storage tank (V), the 

solar collector area (A) and the backup nominal power (P) are considered.4 The aim of this 

variation is twofold: the first is to check whether the variation in the total required annual backup 

energy is comparable for the full optimization and the reduced problem; the second is to check 

whether designs that are infeasible in the full optimization are also infeasible in the reduced problem. 

A total of 80 parameter combinations (4 x 4 x 5) is calculated. In addition, several scenarios for the 

selection of representative weeks are considered: between 6 and 12 three-day-periods and weeks are 

selected according to the optimization problem described in Section 2.1. 

Fig. 5 shows an overview of the parameter variation study for the reduced optimization with 12 

representative weeks. The four subplots show results for different values of the solar collector area 

A, the coloured markers indicate the storage volume V, and different points with the same marker 

and colour have different nominal backup power P.5 On each of the x-axes, the full year total backup 

annual energy use (AEU) is shown, whereas the y-axes show the total backup AEU for the 

representative weeks optimization.  

                                                 
4 V  {50000, 75000, 100000, 125000} m3, A  {20000, 40000, 60000, 80000} m2, P  {3.6e6, 3.85e6, 4.1e6, 4.35e6, 

4.6e6} W, reference case parameters in bold 
5 For the same A and V, the backup energy needed decreases with increasing P: the lower the nominal power, the more 

the system must rely on the storage tank to bridge high demand peaks, and the more heat is lost from the tank. 
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Fig. 5. Parameter sweep of 12 representative weeks optimization compared to full year optimization. The blue band shows a ±2.5% 

accuracy band around the line of equal annual energy use (AEU) for both optimization problems. 

In addition, the  bisector is highlighted in all subplots: in an ideal case, all results would lie on 

this line, indicating a perfect representation in the reduced problem. Clearly, this is not always the 

case, however most solutions fall within a ±2.5 % error margin as indicated by the blue shaded area. 

Be aware that the four subplots do not show the same range or scale on their axes; this is to better 

interpret results that lie close to one another. The yearly energy need clearly decreases with an 

increasing solar collector area A. The fact that most results in Fig. 5 lie more or less on a straight line 

with the same slope as the bisector is positive: this means that when we compare two designs in either 

the full year optimization or the reduced optimization, they will have the same order from the 

viewpoint of the energy objective. 

Digging deeper into the results, we see clear groups based on the value of the storage volume. The 

different results within each group vary in nominal backup power, but this seems to be only a minor 

variation. This seems logical, since for the same values of V and A, the backup energy required will 

be largely the same. As such, the nominal power only determines whether the optimization problem 

is feasible or not. Furthermore, when results seem to “jump out” of the trend of most results, this is 

due to a misrepresentation of the curtailment in the solar collector. 

Fig. 6 shows results of the analysis with 8 representative three-day periods. These results are similar 

to the ones in Fig. 5, although the deviation is sometimes larger, sometimes smaller than for the 

weekly time periods. However, the cases with 60 000 and 80 000 m2 solar collector area display an 

inversion of the results, i.e. the order of the results in terms of backup energy needed is not always 

the same for the full optimization and the reduced problem. This can prove problematic, since in an 

evolutionary algorithm, this means that the reduced problem could lead to a different optimum than 

the full optimization.  

Fig. 7 shows the results for 6 representative three-day periods. Here the relative deviation from the 

bisector is much higher. Deviations in both positive and negative sense are possible, and the cause of 

this problem is to be sought in an erroneous representation of the combination of heat demand and 

solar collector production profiles during summer.  
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Fig. 6. Parameter sweep of 8 representative three-day periods optimization compared to full year optimization. The blue band shows 

a ±2.5% accuracy band around the line of equal yearly energy use for both optimization problems.   

 
Fig. 7. Parameter sweep of 6 representative three-day periods optimization compared to full year optimization. The blue band shows 

a ±2.5% accuracy band around the line of equal yearly energy use for both optimization problems.   

3.3. Calculation time reduction 

Fig. 8 shows a comparison of the calculation time for the full optimization and for the various numbers 

of representative time periods used. Each boxplot summarizes the results for 80 runs, corresponding 

to the parameter sweep described in the previous section. The calculation time is measured between 

the start of the compilation of the model equations and the end of the solution process. These results 

were compared on a Dell Latitude E7470 device with an Intel® Core™ i7-6600U 2.60 GHz with 2 

cores (4 logical processors); the device has 16 GB RAM and runs Windows 10 as operating system. 

On average, the compilation and solution is sped-up by a factor of between 4.8 and 6.1 for 

representative weeks and between 5.7 and 7.7 for the three-day representative periods.  
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Fig. 8. Calculation time statistics for different numbers of representative weeks and full optimization (left) and for representative 

three-day periods (right). 

4. Discussion 
Although the results of the reduced optimization accurately represent the value of the optimal 

objective for the full year optimization in most cases presented in Section 3.2, the curtailment of the 

solar collectors’ output in cases with high solar collector area and limited storage volume causes 

differences in the annual backup energy needed. It seems that for the majority of the year, the accuracy 

of the time profiles based on representative time periods is sufficient, but during the summer, errors 

due to a misalignment of the low heat demand and high solar collector output can accumulate quickly, 

leading to a much higher or lower curtailment than in the full year optimization. 

A possible solution would be to change the way summer weeks are selected in the representative time 

period optimization. Potential strategies include simply selecting more summer weeks, applying 

additional requirements for the correlation between solar output and heat demand, or using longer 

representative time periods during summer. In the worst case, a full optimization will still be needed 

for the summer months, but given the results in Section 3.3, this will still be faster than the actual full 

year optimization. One way to implement this would be to first run a heavily reduced optimization to 

explore the year, select the period where the backup plant is completely shut down and run the full 

optimization only for this part of the year, while using representative time periods for the rest.  

Another aspect to consider is whether or not these problematic optimization results are fully relevant. 

Obviously, from an energy point of view they are; but in a later stage, where investment and running 

cost are considered as well, cases where a lot of solar curtailment occurs will probably not be optimal, 

since either the storage tank is too small or the solar collector area too large, leading to cost 

inefficiencies. Still, since there are also cases where the reduced optimization shows less curtailment 

than in the full optimization, this is not (yet) an argument to completely disregard the issues with 

curtailment, and further investigation is needed. 

An additional issue that has been found is that currently, more than half of the calculation time is 

needed for compilation. Since the problem structure is similar during the parameter sweep, additional 

speed-up would be obtained if this similarity could be employed. 

5. Conclusions and further work 
A reference case of a thermal system with a neighbourhood representing a specific heat demand 

profile, a solar thermal collector array, a seasonal storage tank and a backup heating plant, in which 

the heat flows are optimized with respect to minimum annual energy use of the backup plant has been 

presented. The novelty is the combination of an optimization-based selection procedure for 

representative time-slices with a control optimization of a seasonal thermal energy storage system, 

and the comparison of the obtained results with those of the full year optimization. 

This study has shown that there is potential for using reduced optimization formulations with 

representative time periods to approximate the objective function of the full year optimization with a 
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high degree of accuracy. A substantial calculation time reduction is possible, of course depending on 

the number of selected representative time slices, but for the cases studied here exceeding a speed-up 

factor of 4.8 to 7.7. The charging and discharging behaviour of the reduced problem are similar to 

that of the full year optimization in most cases. 

However, difficulties to represent curtailment of solar thermal collector power in cases with a higher 

ratio of solar collector area compared to storage volume were identified for a limited number of cases. 

Further study is needed to see how else these problems can be solved. More future steps to be taken 

are to use this strategy in combined control and design optimization of a larger scale energy system, 

to add investment and running cost to the optimization and to test this strategy with a mixed integer 

linear programming (MILP) optimization problem.  
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