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ABSTRACT
Objectives: Neonates are not just little children. They need more finesse in decisions on when to 
treat, which antibiotics to use and how to dose these antibiotics. 
Methods: Representative compounds of three major classes of antibiotics (beta-lactams, 
aminoglycosides, glycopeptides) are discussed in a narrative review to illustrate the recent 
progress in the knowledge on PK and its covariates (how to dose).
Results: This knowledge can subsequently be converted to targeted exposure dosing regimens. 
This is because it is reasonable to postulate that pharmacodynamics (PD) of antibiotics are similar 
in neonates to that in other populations if a similar concentration–time profile and targeted 
exposure are attained. However, this approach has its limitations, since the clinical response 
may be different in neonates because of maturational differences in innate immunity or toxicity. 
These dosing regimens should at least be validated. 
Conclusion: Relevant information on the PK of antibiotics and its covariates have been 
generated, but the next steps are to validate the dosing regimens suggested, and consider more 
sophisticated dosing regimens. This approach should subsequently pave the way to conduct 
comparative studies to assess the efficacy and safety of these commonly used drugs in neonates.

Introduction: setting the scene

In a recent analysis of a prospectively collected adminis-
trative database (2005–2010), it was shown that three of 
the top five most frequently prescribed drugs in neonatal 
intensive care units (NICU) were antibiotics (ampicil-
lin, gentamicin, vancomycin), administered to 68, 67, 
and 9% of admitted neonates, respectively. This top five 
was further completed by caffeine (16%) and surfactant 
(8%) [1]. The extensive use of antibiotics in neonates is 
clearly related to the high incidence of suspected serious 
infections. Ten to 12% of all newborns are screened at 
birth for early-onset sepsis, while only about 3% of these 
cases showed evidence for a serious bacterial infection. 
In retrospect, >95 % of these neonates were exposed 
to antibacterial agents without a clear indication. On 
the other hand, late onset sepsis is much more com-
mon (0.8% of all neonates, 7% of admitted newborns, the 
majority in cases < 32 weeks gestational age). Coagulase 
negative staphylococci are the most common group of 
pathogens (54%) [2]. This overtreatment with antibiotics 
in the early-onset sepsis group can in part be explained 
by population specific outcomes with relevant high 
mortality (10–12%), while late onset sepsis is associated 

with neurocognitive impairment [2]. Furthermore, the 
between unit variability in antibiotic use rate can in 
part be explained by the volume of surgical cases, the 
incidence of necrotizing enterocolitis or documented 
infections, and the level of care [3].

Pathogens to aim for in early-onset sepsis in pre-
term and term neonates are either Gram-negative 
organisms, with Escherichia coli as the most common 
Gram-negative pathogen isolated, with Haemophilus 
influenzae, Citrobacter spp, or Enterobacter spp as less 
common isolates. Gram-positive organisms are Group B 
Streptococcus, with Streptococcus viridans, Listeria mono-
cytogenes and coagulase-negative Staphylococci as less 
common [2]. This explains the choice of antibiotics such 
as penicillin or ampicillin, gentamicin, or vancomycin 
[1]. Moreover, the prevalence of multi-resistant patho-
gens-related infections in neonates has increased and 
dosing regimens applied within a given unit may affect 
this prevalence [2]. When comparing two routinely used 
empiric antibiotic policies (penicillin G + tobramycin 
versus amoxicillin + cefotaxime) for early-onset sepsis, a 
18-fold higher risk for colonization with resistant strains 
was observed in the amoxicillin–cefotaxime regimen [8].
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Clinical care algorithms using an early-onset sep-
sis risk prediction model reduced the proportion of 
newborns undergoing laboratory testing (−66%) and 
receiving empirical antibiotic treatment (−48%) with-
out apparent adverse effects [4]. Intriguingly, the latest 
NICE (National Institute for health and Care Excellence) 
guideline on neonatal early-onset sepsis resulted in 
greater consistency in diagnosis and management, but 
also in more investigations (repeated C-reactive protein 
measurements [CRP], increase in lumbar punctures), 
prolonged length of stay and antibiotic exposure [5]. 
This is likely because clinical evaluation alone is unre-
liable to identify infants in the early stages of neona-
tal infections, while CRP values are time-dependent and 
only increase after 12–24 h [6]. Decision-making guided 
by procalcitonin was superior to standard care to reduce 
the duration of antibiotic administration (52 h instead of 
64 h) in neonates with suspected early-onset sepsis [7]. 
Despite these efforts, the prescription of antibiotics still 
remains very common.

The setting as described in the introduction neces-
sitates the use of more finesse in decisions on when to 
treat, which antibiotics to use, but also how to dose anti-
biotics in neonates. How new data on PK can improve 
dosing regimens of antibiotics (beta-lactam antibiotics, 
aminoglycosides, vancomycin) will be the focus of the 
current narrative review. This will be preceded by an 
introduction on the specific aspects of clinical pharma-
cology in neonates. This is because pharmacokinetics 
(PK) and related maturational and non-maturational 
covariates are the main drivers of population specific 
dosing of antibiotics in neonates [9]. Obviously, the chal-
lenges to assure safe and effective use and evaluation of 
antibiotics in neonates are much broader (when, which, 
and how) and these challenges have been suggested by 
Jacqz-Aigrain et al. These key issues have been summa-
rized and commented in Table 1 [10].

Off label practices and extensive variability in 
dosing

The clinical outcome of neonates can be improved with 
the use of safe and effective dosing regimens appropri-
ately investigated in this population [11]. At present, 
health care professionals involved in neonatal care still 
routinely (> 90%) prescribe unlicensed drugs or use 
drugs in an off label manner in the neonatal intensive 
care setting. This also holds true for antibiotics, and 
results in extensive unexplained and irrational var-
iability in dosing practices as has been highlighted 
recently. Considerable between unit variability in 
antibiotic dosing regimens has been observed in 44 
French neonatal units with 444 different regimens 
for 41 antibiotics, with a mean number of 9 (SD 8), 
but up to 32 different regimens for a given antibiotic 
[12]. Similar, the ARPEC (Antibiotic Resistance and 
Prescribing in European Children) study illustrated 

that – based on inquiries in 84 pediatric hospitals in 
19 European countries – comprehensive antibiotic 
guideline recommendations are generally lacking, 
with e.g. guidelines in 71% of the hospitals with 20 
different antibiotic dosing regimens for neonatal sep-
sis [13]. This variability and lack of ‘compliance’ with 
dosing recommendations for neonates (BNFc, British 
National Formulary for children) has been confirmed 
in a Europe-wide point prevalence study. This is likely 
because these recommendations are not always evi-
dence based [14].

Because the treatment aims at the infectious organism 
as target (considered similar between patient popula-
tions if similar time-concentration and target concen-
tration profiles are reached) and not the host per se, it 
is reasonable to assume similarities in antimicrobial 
pharmacodynamics (PD) between populations (concen-
tration–response relation). Three different main PK-PD 
patterns have been defined for maximum killing of the 
pathogen and these patterns depend on the properties 
of the antibiotic. These patterns are either (1) peak drug 
concentration > threshold (aminoglycosides), (2) area 
under the drug concentration time curve >  threshold 
(vancomycin), or (3) time during which the drug con-
centration remains > threshold (beta-lactam). All these 
thresholds relate to the minimal inhibitory concentra-
tion (MIC) of a given pathogen.

Table 1. Challenges to ensure safe and effective use and evalu-
ation of antibiotics in neonates [10].

Understand neonatal pharmacology: maturational and non-maturational 
factors mainly affect the distribution (body water composition, protein 
binding) and clearance (renal maturation, ibuprofen co-administration, 
renal impairment)

Understand the specific characteristics of neonatal sepsis: Only 3% of the 
suspected infections had evidence for a bacterial infection and >95% 
were in retrospect exposed without need. Late onset sepsis is common, 
with coagulase negative staphylococci as the most common patho-
gens. Overtreatment can be explained by population-specific outcome 
with relevant mortality (10-12%) during early-onset sepsis group and 
morbidity related to late onset sepsis

Understand the PD of antibiotics: as the isolation of the pathogen is infre-
quent, the PK-PD relationship is commonly based on the MIC patterns 
of wild-type pathogens in epidemiologic studies

Get the dose right: Accurate prediction of the similar exposure of antibiot-
ics can be guided by modeling and simulation. Subsequent prospec-
tive validation to proof that these exposure targets are reached is a 
subsequent crucial step

Choose the right empiric treatment and dosage: these decisions should 
be driven by the epidemiology of neonatal infections, and adapted to 
susceptibility patterns

Promote adapted monitoring: using validated analytical techniques based 
on low volume samples, and interpreting results based on valid target 
exposure and Bayesian models could allow TDM to be performed at the 
time of routine blood tests

Promote drug evaluation in neonates: it is accepted that antibiotics with 
proven efficacy in adults and older children do not always need to 
be tested extensively in neonates. This is described as bridging and 
extrapolation, and is summarized in the EMA Pediatric Study Decision 
Tree, and applies to antibiotics

Predict developmental toxicity: randomized controlled trial types of studies 
on antibiotics in neonates are too limited in number and size to draw 
robust conclusions on developmental toxicity. Large epidemiological 
studies and juvenile animal toxicity studies may serve as alternatives

Develop adapted formulations: dosing accuracy relates to the number of 
manipulations needed, fluid overload may be an issue, and excipient 
toxicity should be considered
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These patterns are not different in neonates, but dos-
ing should be further tailored to their PK characteristics 
[15,16]. We refer the readers who are interested on the 
development of PK/PD indices for antibiotics and it 
use in pediatrics to other papers on this topic since our 
intention here is to apply these main PK/PD patterns to 
neonatal dosing regimens [15–17]. If we subsequently 
assume that neonates are likely less immune-competent, 
we can shift target concentrations to further improve 
PD driven targets. To increase the bactericidal efficacy 
of beta-lactams in neonates, the percentage of free con-
centrations of the antibiotic > 4 times the MIC can be 
raised from 50% up to even 100% of the time in neo-
nates [18]. A shift in target concentration is also needed 
when meningitis is documented since the target effect 
compartment includes the central nervous system, and 
dosing should be increased [18]. Using this paradigm, 
differences in PK and safety aspects are the primary or 
at least first focus to improve antibiotic prescription in 
neonates [19].

Clinical pharmacology in neonates: variability 
is the core characteristic

Similar to any other population, clinical pharmacol-
ogy in neonates aims to predict drug-specific (side)- 
effects based on PK and PD. PK (absorption, distribu-
tion, metabolism, and excretion, ADME) describes the 
drug concentration over time (‘what the body does to 
the drug’) at a given compartment, like plasma, sub-
cutaneous tissue, or the cerebrospinal fluid in case of 
meningitis. PD describes the link between drug con-
centrations and (side)-effects over time (‘what the drug 
does to the body’) [20]. All these ADME processes are 
subject to maturational as well as non-maturational 
changes. Maturational changes relate to age (postna-
tal, gestational, or postmenstrual age) or weight (birth 
weight, current weight) while non-maturational covar-
iates relate to disease, environment, treatment inter-
ventions (co-medications, extra-corporeal membrane 
oxygenation, renal replacement therapies), or genetics 
(pharmacogenetics). This means that the final PK profile 
will be driven by maturational changes in physiology, but 
are further affected by co-morbidity [like renal failure, 
perinatal asphyxia, cardiac failure, sepsis, patent ductus 
arteriosus] or treatment modalities. As a consequence, 
neonatal dosing regimens for antibiotics are as hetero-
geneous as the neonates (10-fold variability in weight, 
23–44 weeks age range) admitted to the NICU [21].

For antibiotics, this variability will be driven by dif-
ferences in elimination, mainly by primary renal (glo-
merular filtration, renal tubular processes) route and in 
disposition (body composition, protein binding) [21,22]. 
Pharmacometric modeling and simulation approaches 
permit us to characterize population average, inter- 
subject and intra-subject variability of PK parameters 
(clearance, volume of distribution). It also permits to 

identify and quantify key factors (‘covariates’) that influ-
ence the PK patterns of antibiotics in neonates [21,22].

The glomerular filtration rate (GFR) in neonates is 
mainly based on birth weight and postnatal age with 
a 2–4 fold increase in GFR in the first 4 weeks of life. 
The GFR is 20–45  ml/min/1.73  m2 in the term neo-
nate, with a subsequent progressive increase of 5–10   
ml/min/1.73 m2 for each week. Median GFR values in 
neonates aged 27–31  weeks gestation range from 7.9 
to 30.3 on day 7, 10.7 to 33.1 on day 14, 12.5 to 34.9 
on day 21, and 15.5 to 37.9 ml/min/1.73 m2 on day 28, 
respectively [23]. However, renal elimination also covers 
renal tubular transport activity (absorption, excretion). 
Intriguingly, these processes do not mature simultane-
ously. Besides maturational changes, GFR patterns can 
also be affected by disease characteristics, like perinatal 
asphyxia or respiratory distress or co-medication (ibu-
profen, indomethacin) [22,24].

When we focus on disposition, this relates to differ-
ences in plasma protein binding capacity and changes in 
body composition. The total albumin and plasma protein 
concentration display an age-dependent increase from 
24–27 and 44–46 g/l between 24–28 weeks, to 30–32 and 
50–52 g/l at 36 weeks of age [25]. Competitive binding 
of antibiotics (e.g. cefazolin, ceftriaxone) and bilirubin 
to albumin is a relevant issue. This is also reflected in 
the fact that ceftriaxone is contraindicated for use in 
neonates because of the risk of displacement of uncon-
jugated bilirubin and subsequent neurotoxicity [26]. 
This protein binding capacity does not only influence 
drug distribution, but also drug action and elimina-
tion, since it is the unbound drug that will be distrib-
uted, is available for (renal) elimination and will exert 
a pharmacological effect. To illustrate this, differences 
in plasma protein binding explain the higher clearance 
of micafungin in neonates [27], but maturational dif-
ferences in protein binding of vancomycin or cefazolin 
may also be covariates of clearance [28,29]. Compared 
to term neonates, preterm neonates have an even higher 
relative proportion of body water (80%), which gradu-
ally decreases with gestational and postnatal age to reach 
a plateau (35-40%) at the end of infancy. This is reflected 
in a proportional higher distribution volume (L/kg) for 
hydrophilic drugs to distribute in the extra-cellular body 
water compartment. These differences in both clearance 
and distribution will be of relevance to develop dosing 
regimens for beta-lactams, aminoglycosides, or vanco-
mycin tailored for term and preterm neonates to attain 
these PK/PD indices [30].

Beta-lactam antibiotics

Beta-lactams are bactericidal by binding to penicil-
lin-binding proteins responsible for peptidoglycan 
cross-linking, resulting in subsequent inhibition of bac-
terial wall synthesis. Beta-lactams include penicillins, 
cephalosporins, carbapenems, and monobactams. The 
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[39]. Doripenem PK confirmed this general pattern with 
higher distribution volume and lower clearance in the 
most immature neonates compared to term neonates or 
young infants (time > MIC70-99%) [40].

Aminoglycosides

The bactericidal efficacy of aminoglycosides in Gram-
negative infections, combined with its synergism with 
beta-lactam antibiotics, limited bacterial resistance and 
low costs have resulted in the frequent use of amino-
glycosides as part of antimicrobial pharmacotherapy in 
neonates [41]. The ideal dosing regimen would maxi-
mize the Cmax, because the higher the concentration, the 
more extensive and the faster the degree of bacterial kill-
ing. For aminoglycosides, it is best to have a peak/MIC 
ratio of at least 8-10. [15]. Animal studies and clinical tri-
als in older children and adults documented that a ‘one 
dose per day’ regimen of aminoglycosides is superior to 
a multiple doses per day regimen. In neonates, the cur-
rently available evidence is limited to the fact that these 
target concentrations (gentamicin) are reached more 
often (higher peak, lower trough level) [42]. While the 
pharmacodynamic action and bacterial target is obvi-
ously the same in neonates compared to children and 
adults, relevant differences exist in PK [9,41]. In essence, 
these maturational differences are contradicting, with a 
higher distribution volume (so in need for higher mg/kg 
doses to reach the Peak/MIC ratio) and lower clearance 
(so in need of time intervals even beyond 48 h in the most 
immature neonates to reach sufficiently low trough levels) 
[9,41]. Non-maturational factors are ibuprofen or indo-
methacin co-administration or HIE with hypothermia.

The suggested targets for gentamicin and tobramycin 
are similar (a peak/MIC ratio of at least 8-10). A weight 
driven dosing interval (5  mg/kg, q24–48  h) resulted 
in target gentamicin concentrations for both peak and 
trough levels in the majority of neonates (n = 93/113) 
[43], while Fjalstad et al. reported on the outcome using 
the same approach (dosing interval q24–48 h) but with 
a slightly higher gentamicin dose (6 mg/kg) [44]. Using 
a model-based dosing approach, 4.5–5.5 mg/kg with a 
dosing interval based on birth weight, postnatal age, and 
ibuprofen resulted in improved attainment of target con-
centrations. Similar, but based on a netilmicin population 
PK study, the suggested optimal dosing for netilmicin 
was 5 mg/kg, q36 h, 5 mg/kg, q24 h, 6 mg/kg, q24 h 
and 7  mg/kg, q24  h for neonates  <  28, 28-30, 31-33, 
and  >  33  weeks of postmenstrual age [45]. However, 
none of these dosing regimens underwent prospective 
validation. In contrast, an amikacin dosing regimen 
has been developed and validated, considering current 
weight, postnatal age and ibuprofen use. This regimen 
(15-20  mg/kg, q20–48  h,+10–12  h when ibuprofen is 
co-administered) has been developed based on data 
collected during routine care, and has subsequently 
undergone prospective validation [46]. Using a similar 

fraction of time during which the free antibiotic concen-
tration remains above the minimum inhibitory concen-
tration (MIC) (% fT > MIC) of the relevant pathogens 
[2] is the PK-PD target, and this target can be shifted to 
avoid resistance or to adapt for impaired immuno-com-
petence, as in neonates.

Penicillin G clearance increased with increasing birth 
weight in a cohort of 20 preterm neonates (<32 weeks) in 
early neonatal life (day 1–3), suggesting that 25,000 IU, 
q12 h is adequate (time > MIC of at least 50%) in these 
cases instead of q8 h or q6 h in older (higher birthweight, 
higher postnatal age) newborns [31,32]. Postmenstrual 
age and serum creatinine were covariates of ampicillin 
clearance [33]. A simplified dosing regimen of 50 mg/
kg, q12 h for GA of ≤ 34 weeks and PNA of ≤ 7 days, 
75  mg/kg, q12  h for GA of  ≤  34  weeks and PNA of 
8–28 days, and 50 mg/kg, q8 h for GA of > 34 weeks 
and PNA of ≤ 28 days achieved the surrogate efficacy 
target (time > MIC 100%) in 90% of events [33]. In the 
specific subset of neonates undergoing hypothermia 
because of hypoxic-ischemic encephalopathy (HIE), 
much lower doses (25–50 mg/kg/day, time > MIC of 50 
and 100%, respectively) were suggested because of the 
associated renal impairment [34]. A similar pattern has 
recently been described for amoxicillin [35] Cefazolin 
is frequently administered for surgical prophylaxis and 
treatment of infections in neonates, but PK observations 
are limited and dosing regimens vary [13,14]. A neo-
natal PK model taking into account total and unbound 
cefazolin concentrations with saturable plasma protein 
binding was identified. Weight and postnatal age were 
the most relevant covariates, and a body weight- and 
PNA-adapted dosing regimen that resulted in similar 
exposure across different weight and age groups was pro-
posed (25-50 mg/kg, q8–12 h, time > MIC 60%) [36]. 
Cefotaxime is one of the options to treat Gram-negative 
bacterial sepsis in neonates while dosing regimens vary 
considerably [13,14]. Leroux et al. recently reported on 
a population PK study to subsequently improve the dos-
ing regimen, considering PK-PD, pathogens and safety. 
Covariate analysis showed that weight, gestational and 
postnatal age were relevant on clearance, and resulted in 
a dosing regimen of 50 mg/kg, two to four times a day, 
to improve dosing in older (postnatal age > 1 week and/
or gestational age > 32 weeks, time > MIC75%) neonates 
[37]. Meropenem clearance was also affected by creati-
nine clearance and weight. A Monte Carlo simulation 
was performed in (pre)terms, exploring 20–40 mg/kg 
doses, q8 h–q12 h intervals and different infusion dura-
tions (0.5 or 4 h). The 8 h interval produced robust target 
attainments (time > MIC40%), but when more resist-
ant organisms were to be treated (MIC of 4 to 8 mg/L), 
40 mg/kg dose and prolonged infusion was suggested 
[38]. This prolonged infusion approach (20  mg/kg 
q8 h, 0.5 or 4 h) has recently proven to be more effec-
tive (better survival, faster reduction in inflammation) 
in neonates with culture proven Gram-negative sepsis 
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has subsequently been converted to dosing recommen-
dations, aiming at similar target exposures as used in 
non-neonatal populations.

At best, decisions on dosing regimens should be 
driven by high-quality data with focus on efficacy and 
safety. These data should pave the way to conduct com-
parative studies to assess the efficacy and safety of these 
commonly used drugs in neonates. However, one can 
question the need for randomized controlled efficacy 
trials in neonates when efficacy is already established in 
other populations [17,53]. This concept of extrapolation 
is part of the pediatric study decision tree [17]. This is 
because the intervention has the pathogen as target (con-
sidered similar between patient populations if similar 
time-concentration profiles are reached) and not the 
host per se. A bacteriologic response is expected to be 
similar to that in other populations so that PK-PD stud-
ies can support antibiotic administration in neonates by 
determining the appropriate dose required for targeted 
exposure. This should be supported by PK data in the dif-
ferent neonatal subpopulations and covering the relevant 
maturational and non-maturational factors to proof that 
indeed the target concentration patterns are reached.

However, it is too simple to stop the product develop-
ment and knowledge building at that point. It is reason-
able to at least validate these dosing regimens to confirm 
that indeed the target exposure range is attained. At pres-
ent, the number of such validation studies is still limited 
[18,43]. Opportunistic sampling strategies, either samples 
collected for TDM or scavenged samples may be an effec-
tive strategy, but heterogeneous sampling times may also 
introduce systematic errors and affect PK estimates [54]. 
Second, the target concentration rate may be different 
in neonates (innate immune immaturity, maturational 
toxicity). Using the beta-lactam examples to illustrate this 
uncertainty, the time > MIC applied to develop the dosing 
regimens varies between and 40 and 100 % [31–40].

In addition, the very same PK estimates can be used 
to develop more advanced dosing regimens (loading 
dose, followed by either continuous or prolonged infu-
sion). At present, the shift toward such advanced dos-
ing regimens is limited in neonates. This is in part also 
because of difficulties related to venous access, stability, 
compatibility with other drugs co-administered and 
dosing accuracy [55]. Further improvements in dosing 
strategies should also consider the use of a loading dose. 
This is because of the higher distribution volume that 
may delay attainment of a given minimal concentration, 
despite the lower clearance.

In conclusion, relevant information on the PK of anti-
biotics and its covariates have been generated, but the 
next steps are to validate the dosing regimens suggested 
as well as consider more sophisticated advanced dosing 
regimens based on this PK information. This approach 
should pave the way to conduct comparative studies to 
assess the efficacy and safety of these commonly used 
drugs in neonates.

methodological approach, it was observed that amikacin 
clearance was decreased by 40% in term neonates under-
going cooling for HIE, with the suggestion to increase 
the dosing interval from 24 to 36 h in these cases [47].

Vancomycin

Studies in adults documented that the PK/PD index of 
favorable clinical outcome is an AUC over a 24 h period 
at steady-state divided by the MIC of the suspected path-
ogen (AUC/MIC) of at least 400 in a Staphylococcus 
aureus lower respiratory tract infections model [48]. The 
subsequent translation to vancomycin dosing guidelines 
in neonates is uncertain. This is because PK covariates 
(protein binding, renal tubular transport) are still only 
partially understood. In addition, there are differences in 
pathogens (Staphylococcus epidermidis) and target effect 
compartment (blood) compared to the target in adults. 
Several dosing schedules have been proposed, based on 
age (i.e. postmenstrual and postnatal), body weight or 
serum creatinine. Additional factors like ECMO, indo-
methacin or ibuprofen co-administration have also been 
suggested [49].

The currently recommended  vancomycin  dosing 
only results in a therapeutic target of AUC/MIC >  400 
in a limited number of neonates (25%), and the same 
holds true when target trough samples (30–35%) are 
considered [50,51]. To further illustrate the extent of the 
uncertainty, vancomycin has been dosed below or above 
recommendations with extensive variability in daily 
dosing (−100% up to + 60%) in the earlier mentioned 
European point prevalence study [14]. Vancomycin is 
usually administered intermittently, with a target trough 
concentration of 10–15 μg/mL, but there is preliminary 
experience with continuous administration (after an 
initial loading dose) [51]. The clinical utility and safety 
of a model-based patient-tailored dose of vancomycin 
has been demonstrated in 190 neonates, resulting in a 
vancomycin target attainment (15–25 mg/L) rate of 72% 
instead of the former 41% [51]. This dosing regimen 
was based on a loading dose with a subsequent mainte-
nance dose (determined by birth weight, current weight, 
postnatal age, recent serum creatinine value), using an 
individual patient calculator. The European Medicines 
Agency recently also updated their recommendations. 
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recommendation to use therapeutic drug monitoring 
(TDM) [52].

Discussion: How to create progress
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