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Beknopte samenvatting

Hoogtechnologische softwareoplossingen zullen een belangrijk deel uitmaken
van toekomstige elektriciteitsnetten. Software maakt efficiënte communicatie en
beheer van verschillende energieproductie- of consumptietoestellen mogelijk en
zal tegelijkertijd instrumenteel zijn in het analyseren van de complexe scenario‘s
die zich voordoen wanneer verschillende partijen, met elk hun eigen doelen, met
elkaar interageren om een veilig en stabiel elektriciteitsnet te realiseren.

Met de stijgende integratie van hernieuwbare energiebronnen in elektri-
citeitsnetten wordt het almaar meer uitdagend om de stabiliteit van de
netten te vrijwaren. De huidige energie-infrastructuur is immers niet altijd
ontworpen met decentrale energieproductie in het achterhoofd. De variërende
productie van hernieuwbare energiebronnen maakt het daarbij nog moeilijker
om energieproductie- en consumptie in balans te houden. Flexibiliteit aan de
productie en consumptiekant van deze balans is daarom nodig om de Europese
20-20-20 doelstellingen omtrent klimaat en energie te behalen zonder de veiligheid
van het elektriciteitsnet in gebaar te brengen.

Vraagsturingsprogramma’s proberen partijen in te schakelen die flexibel kunnen
zijn in hun energieconsumptie voor doeleindes zoals het behouden van de elektri-
sche netstabiliteit wanneer er rekening gehouden moet worden met hernieuwbare
energiebronnen. Het succesvol implementeren van zulke programma’s vereist
dat energieproducenten, -consumenten en systeembeheerders goed omgaan met
strategische keuzesituaties omtrent de verscheidene aspecten van vraagsturing.
Literatuur focust zich vaak op de technische aspecten van consumptieflexibiliteit
terwijl eigenlijk de combinatie van technische en economische aspecten de
doeltreffendheid van vraagsturingsprogramma’s bepalen. Deze verhandeling
spitst zich toe op verschillende technieken uit computerwetenschappen om
strategische keuzesituaties te onderzoeken in verschillende aspecten van het
gebruik van vraagsturing om problemen aan te pakken die te wijten zijn aan de
integratie van hernieuwbare energiebronnen in de huidige elektriciteitsnetten.
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iv BEKNOPTE SAMENVATTING

In deze verhandeling wordt de keuze tussen verschillende financiële com-
pensatiestructuren voor partijen die flexibiliteit aanbieden computationeel
geanalyseerd met behulp van evolutionaire speltheorie om zo inzicht te krijgen
in hoe financiële compensatie deze partijen motiveert om deel te nemen
aan vraagsturingsprogramma’s. Computationele analyse met heuristische
resultatenmatrices, opgebouwd door microsimulatie, toont aan dat gebruikers
van flexibiliteit een hoger marktaandeel kunnen krijgen aan partijen die
flexibiliteit aanbieden, door te kiezen voor een systeem van reservatiebetalingen
in plaats van activatiebetalingen.

Naast financiële compensatie moeten gebruikers van flexibiliteit ook beslissen
welke aanbieders van flexibiliteit het meest geschikt zijn om op een bepaald
moment de flexibiliteit ervan in te zetten. Hiertoe worden algoritmes
geïmplementeerd uit de literatuur over multi-agentsystemen en mechanisme-
ontwerp voor het coördineren van en het onderhandelen tussen gebruikers en
aanbieders van consumptieflexibiliteit.

Om balanceringsproblemen in elektriciteitsnetten effectief op te lossen, moet er
aanzienlijk geïnvesteerd worden in technologische oplossingen voor het beheren
en activeren van consumptieflexibiliteit. In welke mate deze investeringen
kosteneffectief zijn, wordt bepaald door de kosten en baten van de oplossingen
in kwestie. Een analyse van investeringskosten wordt voorgesteld en geëvalueerd
voor een gecombineerde oplossing voor overtollige windproductie die gebruik
maakt van verschillende actieve netwerkbeheertechnieken waaronder dynamische
kabellimieten, vraagsturing en batterij-opslag.

Naast de investeringsbeslissingen waar gebruikers van flexibiliteit voor staan,
moeten ook aanbieders van flexibiliteit beslissen welke partijen ze van hun
flexibiliteit zullen voorzien. Als laatste contributie wordt de deelname in
verschillende ondernemingsplannen gesimuleerd en geanalyseerd met behulp
van evolutionaire speltheorie. In deze analyse wordt de evolutie van deze keuze
tussen deze ondernemingsplannen geanalyseerd afhankelijk van hoe gebruikers
van flexibiliteit de aangeboden flexibiliteit gebruiken en compenseren.

Het toepassen van technieken uit de literatuur rond evolutionaire speltheorie
op strategische keuzesituaties heeft aangetoond dat evolutionaire speltheorie
waardevolle inzichten kan geven in de complexe interacties die zich voordoen
wanneer verscheidene partijen samen interageren in het energiedomein.



Abstract

High tech software solutions will form a fundamental part of the future electricity
grid. Software enables real time efficient communication and control of various
devices for producing and consuming electrical energy and will be instrumental
in analyzing the complex scenarios that arise when multiple parties with varying
goals interact to create a safe and stable delivery system for electricity.

With the increasing adoption of renewable energy sources (RES), maintaining
grid stability becomes increasingly challenging because legacy power infras-
tructure was often not designed with decentralized generation in mind. The
varying nature of RES also further complicates maintaining a balance between
electricity production and consumption. Flexibility is needed in both production
and consumption in order to achieve the European union’s 20-20-20 climate
and energy targets while maintaining a safely balanced electricity grid.

Demand-side management (DSM) programs attempt to harness consumption
flexibility for goals that include maintaining grid stability when dealing with
RES. Successfully implementing these programs requires producers, consumers
and system operators to deal with strategic choice situations concerning various
aspects of DSM. Literature often focuses on singular technical aspects of
consumption flexibility while the combination of various technical and economic
aspects determine the actual long term efficacy of DSM programs. This
dissertation focuses on computational analysis techniques for studying strategic
choice situations in various aspects of using DSM to address problems related
to the integration of RES into contemporary electricity grids.

In this dissertation the choice in compensation payment structures for flexibility
providers are analyzed using evolutionary game theory (EGT) with replicator
dynamics to gain insight into how financial compensation influences DSM
participation willingness. Computational analysis with heuristic payoff matrices
determined through microsimulation shows that users of flexibility can gain
a higher market share of flexibility providers by favoring reservation payment
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structures.

Besides financial compensation, users of flexibility must decide which provider is
best suited at any given time to activate their flexibility. To this end, algorithms
for the coordination of the use of consumption flexibility and the negotiation
between users and providers of this flexibility are implemented from multi-agent
and mechanism design literature. Both cooperative contract net protocol (CNP)
and competitive qualitative Vickrey auction (QVA) mechanisms are compared
and evaluated in terms of allocation efficiency.

To solve grid balancing problems effectively, sizable investments in technological
solutions for managing and activating consumption flexibility are necessary.
Whether these investments are cost effective depends on the costs and benefits
associated with these technology investments. An investment cost model is
proposed and evaluated for an optimized end to end solution for excess wind
power production using various active network management (ANM) techniques
including dynamic line rating (DLR), DSM and battery storage.

In addition to investment decisions faced by users of flexibility, flexibility
providers also must decide on which flexibility program to take part in. As a
last contribution, participation in different competing business cases is simulated
and computationally analyzed using EGT. The choice dynamics of flexibility
providers choosing business partners, are evaluated in terms of how flexibility
users employ and compensate for the consumption flexibility offered by flexibility
providers. This evaluation also includes a sensitivity analysis on the influence
that contractual activation constraints have on the efficiency of the DSM
program in use.

Applying techniques from EGT literature to analyze strategic choice scenarios
has shown that EGT can offer valuable insights into the complex interactions
that occur between the multitude of parties in the energy domain.
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Nomenclature

Cfdlr Fixed cost of the dynamic line rating solution.

Cmdlr Maintenance cost of the dynamic line rating solution.

Cfdsm Fixed cost of the demand side management solution.

Cmdsm Maintenance cost of the demand side management solution.

Crdsm Marginal cost of the demand side management solution.

Cfnet Cost of network reinforcement.

Cfsto Fixed cost of the storage solution.

Cmsto Maintenance cost of the storage solution.

Emax
s The total amount of excess energy handled by storage. Capacity of the

battery in the storage solution.

NPV Net Present Value.
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s The peak of the excess power handled by storage. Peak power rate that

can be handled by storage.

ix





Contents

Abstract v

List of Abbreviations viii

Nomenclature ix

Contents xi

List of Figures xvii

List of Tables xxiii

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Production/consumption balancing . . . . . . . . . . . . . 3

1.1.2 Demand side management (DSM) . . . . . . . . . . . . . . 6

1.1.3 Smart grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Why evolutionary game theory (EGT)? . . . . . . . . . . . 10

1.3.2 Why mechanism design (MD)? . . . . . . . . . . . . . . . . 11

xi



xii CONTENTS

1.4 Summary of contributions and outline . . . . . . . . . . . . . . . . 11

1.4.1 Analysis of compensation pricing structures for consump-
tion flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.2 Analysis of coordination mechanisms for employing
consumption flexibility . . . . . . . . . . . . . . . . . . . . . 12

1.4.3 Analysis of investment costs for deploying and maintaining
infrastructure for using consumption flexibility . . . . . . 13

1.4.4 Analysis of strategic choice between different business
cases from a flexibility provider point of view . . . . . . . 13

1.4.5 Analysis of contractual flexibility activation constraints
in different flexibility use cases . . . . . . . . . . . . . . . . 14

2 Darwin in Smart Power Grids - Evolutionary Game Theory for
Analyzing Self-Organization in Demand-Side Aggregation 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Aggregator business cases . . . . . . . . . . . . . . . . . . . 21

2.2.2 Payment structures . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Concrete problem case . . . . . . . . . . . . . . . . . . . . . 23

2.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Scenario setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Aggregators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Flexibility providers . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.3 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Evaluation and discussion . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 Indifference case analysis . . . . . . . . . . . . . . . . . . . . 31

2.5.2 Influence of budget division parameter . . . . . . . . . . . 34

2.5.3 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . 36



CONTENTS xiii

2.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . 38

3 Coordinating Wind Turbines and Flexible Consumers with Cooper-
ative and Competitive Agents 41

3.1 Introduction and problem . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Remedying congestion . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Offline allocation . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2 Online allocation . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Evaluation and discussion . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Combining DSM and Storage to Alleviate Current Congestion in
Distribution Grids 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Problem context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Active network management . . . . . . . . . . . . . . . . . . 54

4.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Investment costs . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.2 ANM allocation . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.3 Regulatory constraints . . . . . . . . . . . . . . . . . . . . . 60

4.4 Simulation results and discussion . . . . . . . . . . . . . . . . . . . 61

4.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.2 2% curtailment allowed . . . . . . . . . . . . . . . . . . . . . 61

4.4.3 No curtailment allowed . . . . . . . . . . . . . . . . . . . . . 63

4.4.4 Grid investment . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



xiv CONTENTS

5 Who Gets My Flex? An Evolutionary Game Theory Analysis of
Flexibility Market Dynamics 67

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Business cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.1 Portfolio imbalance reduction . . . . . . . . . . . . . . . . . 74

5.2.2 Distribution grid congestion avoidance . . . . . . . . . . . 75

5.2.3 Relation between business cases . . . . . . . . . . . . . . . 76

5.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Simulation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.1 Flexibility providers . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.2 Flexibility users . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.3 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5.1 Antwerp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5.2 Zeebrugge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5.3 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Analysis of Activation Constraints and their Effect on Demand-Side
Flexibility Allocations 93

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Model and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 Analysis approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4 Simulation results and discussion . . . . . . . . . . . . . . . . . . . 99

6.4.1 Distribution grid congestion . . . . . . . . . . . . . . . . . . 99

6.4.2 Portfolio balancing . . . . . . . . . . . . . . . . . . . . . . . 104

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



CONTENTS xv

7 Conclusion 109

7.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . 110

7.1.1 Evolutionary game theory analysis framework for analyz-
ing strategic choice . . . . . . . . . . . . . . . . . . . . . . . 110

7.1.2 On-line and off-line coordination mechanisms for employ-
ing consumption flexibility . . . . . . . . . . . . . . . . . . . 111

7.1.3 Investment cost model for an integrated ANM solution
to address distribution grid congestion . . . . . . . . . . . 111

7.1.4 Computational analysis of flexibility provider strategic
choice between multiple business cases . . . . . . . . . . . 112

7.1.5 Sensitivity analysis of allocation efficiency under different
flexibility activation constraints . . . . . . . . . . . . . . . . 113

7.2 Lessons learned and future work . . . . . . . . . . . . . . . . . . . . 114

7.3 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A GridFlex simulation framework 121

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.2.1 Distributed execution . . . . . . . . . . . . . . . . . . . . . . 122

A.2.2 Multi-solver support . . . . . . . . . . . . . . . . . . . . . . 122

A.2.3 Game theoretic modeling abstractions . . . . . . . . . . . . 122

A.2.4 Extensive test base . . . . . . . . . . . . . . . . . . . . . . . 123

A.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.3.1 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.3.2 Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.3.3 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.3.4 Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.3.5 Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.3.6 Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



xvi CONTENTS

Bibliography 127

Curriculum Vitae 143

List of publications 145



List of Figures

1.1 The increasing share of renewables in gross energy consumption
of Belgium toward the target of 13% by 2020. . . . . . . . . . . . 3

1.2 In conventional electricity grids (top), electricity is transported
(gray) from generation to consumption via the high voltage
transmission grid (red), before being distributed via medium
voltage distribution grids (green) to low voltage distribution
grids (blue). In smart grids (bottom), electricity can flow in
both ways through the network (gray), requiring information
and communication technology (ICT) based control centers to
maintain operational safety. . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Simplified representation of the problem domain where multiple
aggregators are responsible for compensating imbalances caused
by less predictable, renewable energy sources. . . . . . . . . . . . . 20

2.2 For each 15 minute time step, the amount of imbalance in the
portfolio is determined and together with the imbalance price
at that time, the upper bound of the aggregator’s budget is set.
This budget is weighted between reservation and activation fees
according to a parameter ri. . . . . . . . . . . . . . . . . . . . . . 28

2.3 A UML sequence diagram describing the interaction protocol
between an aggregator and two flexibility providers participating
in the DSM program in a case where provider A supplies the
best match to compensate for the imbalance. . . . . . . . . . . . . 30

xvii



xviii LIST OF FIGURES

2.4 This phase plot shows the replicator dynamics for the game
played by two clients. Any initial population proportion choosing
the first aggregator would move to the stable equilibrium of 50%
of clients choosing that aggregator. . . . . . . . . . . . . . . . . . 31

2.5 Plot showing the solution plane for r-parameters. Using more
of the available budget for reservation payments improves your
population share in equilibrium. . . . . . . . . . . . . . . . . . . . . 33

2.6 Shows the influence of the amount of simulated clients on the
solution planes. Only r1 = 0 and r1 = 0 solutions are plotted for
N = 1 to N = 4. Similar to previous plots, solutions for other
r1 parameters are parallel and equidistant between the plotted
solutions. The results for N > 5 have been omitted to avoid
decreasing the readability. The trend of the results also holds for
N = 5,6 and 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7 Shows the translation of the solution plane of the results towards
the aggregator with more imbalance to correct and therefore with
a higher budget to distribute among the providers. . . . . . . . . 36

3.1 Example scenario for upstream current congestion. Left: Energy
flows from wind turbine to factories downstream and all excess
production flows upstream towards the transmission system
operator (TSO) transformer for grid injection. Right: Factories
downstream are inactive and all energy flows upstream towards
the TSO transformer causing upstream current congestion. . . . 44

3.2 A UML sequence diagram showing the communication flow for
both the cooperative and competitive mechanisms. All agents
(agent n) submit bids (ua1 from agent 1, etc.) to the distribution
system operator (DSO) . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Results for up to 200 participating agents show higher allocative
efficiency of the cooperative (blue/higher) setting when compared
to the competitive (red/lower) solution. . . . . . . . . . . . . . . . 50

4.1 Example scenario for upstream current congestion. Left: Energy
flows from wind turbine to factories downstream and all excess
production flows upstream toward the TSO transformer for grid
injection. Right: Factories downstream are inactive and all energy
flows upstream toward the TSO transformer causing upstream
current congestion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



LIST OF FIGURES xix

4.2 A 125 hours sample of the two congestion profiles after DLR
shows that P2 is never congested for longer than 1 hour and has
considerable lower peak congestion. . . . . . . . . . . . . . . . . . . 61

4.3 90%CI for ANM investment cost for Antwerp, given 2% allowed
curtailment shows limited positive influence of DSM on total costs. 62

4.4 90%CI for ANM investment cost for Zeebrugge, given 2% allowed
curtailment shows negative influence of DSM on total costs. . . . 62

4.5 90%CI for ANM investment cost for Antwerp, with any
curtailment prohibited, shows positive influence of DSM on
total costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 90%CI for ANM investment cost for Zeebrugge, with any
curtailment prohibited, shows negative influence of DSM on
total costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Multi-actor business model for the use of upward flexibility. . . . 73

5.2 This phase plot example shows the replicator dynamics for a
game played by N providers. Any initial population proportion
choosing to do business with the balance responsible party (BRP)
would move to the stable equilibrium of 32% of clients choosing
the BRP in stead of the DSO. . . . . . . . . . . . . . . . . . . . . 84

5.3 These results show that uncertainty decreases as the number of
participating flexibility providers increases for a fixed DSO price
point using the Antwerp data set. . . . . . . . . . . . . . . . . . . . 85

5.4 95% confidence intervals of allocative efficiency show that
lower forecast error volumes cause lower efficiency in flexibility
activations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 Phase plot results for multiple DSO compensation price points
show the competitive price ranges for the Antwerp location at
base imbalance levels. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6 Phase plot results for multiple DSO compensation price points
show the competitive price ranges for the Antwerp location at
high imbalance levels. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.7 Phase plot results for multiple DSO compensation price points
show the competitive price ranges for the Antwerp location at
low imbalance levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



xx LIST OF FIGURES

5.8 Phase plot results for multiple DSO compensation price points
show the competitive price ranges for the Zeebrugge location at
base imbalance levels. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.9 Phase plot results for multiple DSO compensation price points
show the competitive price ranges for the Zeebrugge location at
high imbalance levels. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.10 Phase plot results for multiple DSO compensation price points
show the competitive price ranges for the Zeebrugge location at
low imbalance levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1 A random sample of congested energy volumes spanning 24
consecutive hours shows the distinct DLR shaped congestion. . . 97

6.2 A gradual decrease of allocative efficiency is shown as the
activation duration parameter increases. A small preference
for low inter-activation times is noticeable. . . . . . . . . . . . . . 100

6.3 A gradual decrease of allocative efficiency is shown as the
activation duration parameter increases. A preference for low
inter-activation times is more pronounced with higher activation
events to schedule. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4 A general benefit for odd activation durations over even durations
is noticeable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5 The preference of lower inter-activation times is less pronounced
in the Zeebrugge data set. These results show similar benefits
for odd activation durations as the results in Fig.6.4 . . . . . . . . 101

6.6 Scheduling 70 allocation events causes the allocative efficiency to
decrease when using high duration activations, when compared
to lower numbers of allocations to schedule. . . . . . . . . . . . . . 103

6.7 When the total flexibility offered is assumed constant over varying
activation constraints then a clear preference for minimally
constrained flex is noticeable. . . . . . . . . . . . . . . . . . . . . . 104

6.8 When the total flexibility offered is assumed constant over varying
activation constraints then a clear preference for minimally
constrained flex is noticeable. A local maximum can also be
found with activation durations of 5-6 hours. . . . . . . . . . . . . 104



LIST OF FIGURES xxi

6.9 This 24 hour sample of the normally and Cauchy distributed
forecast errors shows a difference in peak error levels and the
frequency of the occurring peaks. . . . . . . . . . . . . . . . . . . . 105

6.10 Relative resolved portfolio imbalance for the Antwerp data shows
that the inter activation time parameter has no influence on the
efficiency of flexibility activation. . . . . . . . . . . . . . . . . . . . 106

6.11 The results using the Cauchy distributed forecast error shows no
difference in trend when compared to normal distributions. . . . 106

A.1 The component diagram describes the modular design of the
GridFlex simulator. Reuse and extensions of the software are
promoted through a minimally coupled architecture. . . . . . . . 124





List of Tables

3.1 Optimal sample results . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Fixed costs for ANM techniques include DLR installation cost,
DSM cost for on site installation of DSM equipment and costs
for buying energy storage batteries. . . . . . . . . . . . . . . . . . . 56

4.2 Marginal costs for DSM includes reservation costs for reserving
flexible load capacity and is paid upfront. . . . . . . . . . . . . . . 56

4.3 Marginal costs include upkeep and maintenance cost for on site
equipment and maintenance cost for Storage. No maintenance
cost for DLR is assumed. . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Best case minimal cable length needed for positive ANM business
case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xxiii





Chapter 1

Introduction

Software and high-tech solutions from the domain of computer science (CS)
form a crucial part of the transformation that conventional electricity grids
are undergoing in becoming ‘smart’ grids. This transformation is in part
driven by the ambition to lessen the dependency on fossil fuel resources in
favor of more sustainable renewable energy sources (RES). The European
Commission’s 20-20-20 objectives state that 13% of the gross total energy
consumption in Belgium alone should come from RES such as wind and solar
in 2020. Maintaining a safe and stable electricity grid becomes increasingly
challenging as more energy is produced by RES. Legacy infrastructure was not
originally designed with decentralized generation in mind and the variable nature
of RES further complicates maintaining a production-consumption balance
in real time. Flexibility in consumption and production alike is therefore a
necessity to achieve the 20-20-20 climate goals and especially the more ambitious
2050 climate goals, without compromising the stability of the electricity grid.
The successful employment of this flexibility in future electricity grids with
high levels of RES penetration cannot be accomplished without technological
support. Software for simulating new technologies, for coordinating power
producers and consumers and for computing key performance indicators are
but a few examples of CS applications in smart grids.

In this dissertation the role of power consumption flexibility in smart grids
is analyzed from a CS perspective. Various aspects of employing power
consumption flexibility are analyzed in the context of integrating RES into
existing electricity grids. Common to all of these aspects is the notion of
strategic decision making scenarios that have an impact on how effectively
consumption flexibility can be used. CS literature offers tools and frameworks
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for analyzing such strategic decision making scenarios. Specifically, tools from
game theory (GT) literature are used for analyzing strategic choice situations
in the following aspects of using consumption flexibility.

The financial compensation offered to providers of consumption flexibility will
determine the willingness of these providers to make consumption flexibility
available for use. To gain insight into how financial compensation influences
participation willingness, the choice between different financial compensation
payment structures are computationally analyzed in [1]. Besides financial
compensation mechanisms, users of flexibility must decide which provider is
best suited at any given time to activate their flexibility. To this end, algorithms
for the coordination of consumption flexibility and the negotiation between
users and providers of this flexibility are discussed in [2]. To solve grid balancing
problems effectively, sizable investments in technological solutions for managing
and activating consumption flexibility are necessary. Whether these investments
are cost effective depends on the costs and benefits associated with these
technology investments. An investment cost model is proposed and evaluated
for an optimized end to end solution for excess wind power production using
both consumption flexibility and battery storage in [3]. In addition to investment
decisions faced by users of flexibility, flexibility providers also must decide on
which flexibility program to take part in. In [4], participation in different
competing business cases is simulated and evaluated in terms of how flexibility
users employ and compensate for consumption flexibility offered by flexibility
providers. For these business cases, the influence of the contractual flexibility
activation constraints are also analyzed.

The remainder of this chapter discusses the context (section 1.1), the scope
(section 1.2) , the objectives (section 1.3) and the concrete contributions (section
1.4), in more detail.

1.1 Context

The effort to reduce the carbon footprint of electrical power generation has
resulted in an increasing share of electrical energy produced by RES. Data from
the European commission shown in Fig. 1.1 shows that the share of renewables in
the gross energy consumption in Belgium rose from 3.6% in 2008 to 7.9% in 2015.
The goal for Belgium, set by the European commission is to achieve 13% by
2020. This increase in RES adoption forces a reevaluation of how conventional
power systems are designed. In conventional power grids, electrical power or
electricity is produced by generation companys (GenCos). The transmission
system operator (TSO) is in charge of maintaining the transmission grid that
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Figure 1.1: The increasing share of renewables in gross energy consumption of
Belgium toward the target of 13% by 2020.

is used for transporting electricity over long distances using high voltage power
lines. Distribution system operators (DSOs) in turn, use low to medium voltage
grids for the last mile transport of electricity to industrial and residential
consumers. Traditionally electricity flows unidirectionally and in a hierarchical
fashion. Integrating RES requires injection of power at all levels in this hierarchy.
Residential solar panels can, for example, produce energy for consumption miles
away and wind turbines can be integrated into local distribution infrastructure
to directly supply industrial consumers or to augment conventional generation
for residential consumers. Figure 1.2 illustrates the conceptual differences in
electricity transfer between conventional and future electricity grids and how
information and communication technology (ICT) infrastructure will form an
integral part of their operation.

1.1.1 Production/consumption balancing

One important aspect of electrical power systems in general is that a balance
between the energy produced and the energy consumed should at all times be
maintained. For example, power lines in perfectly balanced grids in Europe
offer an alternating current (AC) that oscillates 50 times per second or at a
frequency of 50Hz. When production and consumption are not in balance, this
grid frequency can become greater or less than 50Hz causing, among other
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Flex

Figure 1.2: In conventional electricity grids (top), electricity is transported
(gray) from generation to consumption via the high voltage transmission grid
(red), before being distributed via medium voltage distribution grids (green)
to low voltage distribution grids (blue). In smart grids (bottom), electricity
can flow in both ways through the network (gray), requiring ICT based control
centers to maintain operational safety.

things, electrical motors and clocks to run faster or slower than what they were
designed for. Larger imbalances can even cause brownouts or black outs.

Maintaining this balance is an ongoing process involving multiple stakeholders
from system operators to GenCos and consumers all interacting to ensure the
safe operation of electricity grids. Effectively coordinating different stakeholders
towards a common goal can be challenging in its own right. Grid balancing
is becoming even more challenging as increasing shares of RES are integrated
into the electricity grid. Compared to conventional generation, RES such as
wind and solar are know to be more variable in their power production because
wind speeds can vary during the day and solar power is dependent on daylight.
The following stakeholders are all involved in grid balancing.
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Transmission system operators

TSOs (e.g. Elia in Belgium) are responsible for operating and maintaining the
transmission grid and for making sure the electricity grid in general remains
balanced. The TSO indirectly monitors the production/consumption balance
of the different grid access points for its control perimeter. When imbalances
are observes, the TSO activates production or consumption reserves to restore
balance and mediates financial settlements between the parties that were
respectively causing and resolving the imbalances.

Balance responsible parties

For each grid access point, whether it is used by a consumer, producer or a
combination of the two, a responsible party is assigned. Balance responsible
parties (BRPs), or access responsible parties (ARPs) in Belgium, are companies
that manage a portfolio of grid access points beside performing their main
business activities. Some companies consume or produce so much electricity
that they are considered as singular BRPs themselves. Each BRP monitors
the balance of the access points in their portfolio and provides the TSO with
this information.

Distribution system operators

DSOs (e.g. Eandis, Infrax in Flanders) are responsible for operating and
maintaining the distribution system and for ensuring consumers, whether
residential or industrial, have a stable connection to the electricity grid. With
the integration of RES at the distribution level, the DSO has to take care that
local imbalances do not cause damage to the physical cable infrastructure (e.g.
when excess power production causes cables to overheat).

Renewable energy sources

RES are a crucial part of the effort to reduce carbon based electricity generation.
Because of their variable production characteristics and less predictable nature,
RES are prone to cause imbalances which have to be dealt with. While support
schemes for promoting the integration of RES are in effect, curtailing RES
production is not always an option, making RES a significant driver of grid
imbalance.
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Flexible consumers

Maintaining the production/consumption balance requires flexibility on the
production and on the consumption side. Consumers capable and willing to
modify their power consumption on demand are valuable resources towards this
end. Some form of compensation, often financial in nature, is often required to
motivate consumers to allow the use of their consumption flexibility.

The distinction can be made between industrial and residential scale consumers.
Consumption flexibility can be found on both the industrial [5] and the
residential [6] level but the particular implementation often differs.

Industrial scale consumers can often provide consumption flexibility from
the processes they operate. Cold storage or waste processing facilities can
leverage inherent buffers in their processes to regulate their power consumption.
Residential consumers often find consumption flexibility in shifting loads from
household appliances or from regulating heating appliances (e.g. electric heating
or heat pumps).

Aggregators

Aggregators (e.g. REstore) have a business case in mediating between providers
and users of flexibility. They abstract away the technical responsibilities from
the providers while streamlining the financial responsibilities of the flexibility
users. Relatively small amounts of consumption flexibility can also be bundled
and offered as a whole towards stakeholders that require larger amounts of
consumption flexibility. In doing so, aggregators act as virtual steerable power
plants in the energy landscape.

1.1.2 Demand side management (DSM)

With larger shares of energy production coming from wind turbines, sudden
changes in wind speed can affect the power generated and consequently influence
the production side of the balancing equation. Similarly, clouds and other
weather patterns can influence the output of solar production installations.
Dealing with this increasing production variability in the context of grid
balancing requires flexibility both in energy production and consumption.
Demand-side management (DSM) is the umbrella term used to describe
techniques and mechanisms for employing consumption flexibility to modify
the demand side of the balancing equation and it has already shown potential
in enabling wind power integration [7]. The long term goals of DSM often
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include reducing the carbon footprint from generation and improving the overall
security and efficiency of power systems.

DSM programs can be classified according to either the goals of the program or
by how program participants are motivated to provide consumption flexibility.
For example, DSM programs can be used to improve power system reliability by
using consumption flexibility to maintain grid balance and thus avoid outages [8].
Another example is that demand-side flexibility can be used to curb the effect
large consumers and producers can have on the market prices of electricity [9].

Motivating consumers to modify their consumption on demand requires some
form of financial compensation. A distinction can be made between direct
incentive programs where fees are paid directly by the party making use of
the consumption flexibility to the flexibility provider. These fees are often
contractually specified and can be paid as a flat rate or on a per use basis [10].
Another way of incentivizing consumers to modify their consumption is by
modifying the prices consumers have to pay for electricity. Popular examples of
pricing based DSM are the use of peak/off-peak or day/night tariff distinctions
for residential customers [11].

1.1.3 Smart grids

Effecting real time coordination between generation and consumption of
electricity on a sub-second scale is not trivial. Moving forward toward
future implementations of safe and efficient electricity grids supporting
both increasingly varying production and consumption requires significant
technological support. The conceptual term used for describing the future
electricity grid that depends largely on digital ICT is the smart grid. Smart
grids are defined by the computing and communication technology that
allows more efficient transmission of electricity, increased integration of RES,
reduced operation and management costs and improved operational safety and
security [12].

The field of CS is fundamental to the development of these smart grid
technologies by advancing the state of the art of both hard- and software and in
particular their applications to the monitoring, managing and automation
of critical power system services in real time. The CS research domain
has contributed to the technical know-how and development of smart grid
technologies in multiple ways including, but not limited to:

• algorithms for coordinating energy dispatch between generation and
consumption [13][14]
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• algorithms for optimizing flexible load schedules [15]

• software architecture for energy management systems [16]

• security and privacy of smart grid information systems [17][18]

• data analysis techniques for smart grid monitoring systems [19][1]

• simulation tools for prototyping future technologies [20][21]

The work presented in this dissertation fits the research on multi-agent system
(MAS) and the interaction of self-interested and autonomous agents. Different
stakeholders that each have their own goals and responsibilities, have to interact
in the power systems domain to guarantee a safe delivery of electrical power to
myriad consumers. By their very nature, power systems are a prime application
domain for MAS research.

1.2 Scope

This dissertation focuses on analyzing various aspects of employing consumption
flexibility to address problems caused by integrating RES into existing electricity
grids. The research questions addressed in this dissertation are partially inspired
through collaboration with industry through the icon projects SWiFT [22] and
MonIEFlex [23]. By participating in these projects, more accurate problem
modeling was made possible by means of industry validation and problem-
specific data. Consequentially, the following scoping decisions have been made
concerning this dissertation.

This work focuses on balancing problems caused by the integration of wind
turbines into existing distribution grids. High resolution wind power production
data, available through industry collaboration, has been used to analyze
imbalance problems while taking into account location and seasonal variety of
wind production. Similar high resolution data concerning other RES (e.g. solar)
can be used for similar analyses that can lead to interesting results. Other RES
are considered out of scope for this work.

This work focuses on the use of industrial consumption flexibility to address
grid balancing problems. As a solution to imbalances, industrial DSM has the
technical potential in terms of locality and scale to deal with the grid balancing
problems discussed in this work. Other sources of consumption flexibility such
as residential or electric vehicle (EV) charging based flexibility could also be
valuable to such imbalance problems, but the complexity involved would warrant
a study in its own right. Besides industrial consumption flexibility, other forms
of flexibility are considered out of scope for this work.
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1.3 Objectives

As part of the effort to reduce the dependency on fossil fuel resources, wind
farms are being deployed all across Europe [24]. This effort is part of the ongoing
process of effecting the change from conventional power grids to a safer, more
efficient and greener ‘smart’ grid. Transitioning to the future smart grid requires
different stakeholders to interact and collaborate to face the challenges that
are presented when integrating wind production resources into contemporary
electricity grids. Challenges such as legacy power infrastructure that is not
designed with local injection in mind but also the growing dependency on
technological support to maintain a safe production-consumption balance on
both a local and a system-wide scale, are but a few examples. Stakeholders in
the power domain need to be mindful of the opportunities and the consequences
of dealing with these challenges. As part of the research performed in the context
of the icon-SWiFT project, industrial consumption flexibility was proposed
to support the integration of wind turbines into existing electricity grids [22].
Industrial consumers capable of increasing or decreasing their energy demand at
will, are presented with new business opportunities in providing such flexibility
for financial compensation. Besides industrial consumers, system operators
and also generation companies all face strategic choice situations in figuring
out how to navigate the uncharted technological and legislative waters that
RES and DSM create. Flexibility providers and users must all make well-
informed decisions with long-term effects in doing business with each other.
Flexibility providers, for example, must decide which business cases are most
beneficial. In turn, the users of flexibility must decide on whether DSM or
infrastructure reinforcement is a more cost-effective long term solution for grid
stability problems.

To harness industrial power consumption flexibility successfully, insight into the
different aspects of consumption flexibility is required. Not only the technical
solutions, but also the business-economical aspects of deploying DSM are
important to consider because these aspects together determine the overall
effectiveness of specific DSM programs.

In this dissertation the following aspects of employing consumption flexibility
are computationally analyzed:

• The influence that different financial compensation mechanisms such as
activation and reservation pricing have on flexibility provider willingness.

• The coordination of flexible consumption between flexibility providers and
users in both cooperative and competitive settings
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• The efficient scheduling of consumption flexibility allocations for various
business cases including distribution grid congestion avoidance and
portfolio balancing under various activation constraints.

• The strategic choice flexibility providers face in choosing the business
party to provide their flexibility to.

Common to all these consumption flexibility aspects is the notion of strategic
choice. Evaluating the long term effects of strategic decisions can aid the decision
makers involved. The analysis of strategic choice situations is one of the key
applications of game theory (GT). Game theory (GT) is a multidisciplinary
field of study that has seen theory and applications in economics, mathematics
and CS [25][26]. In this dissertation, computational analysis techniques based
on game theoretic abstractions and solution concepts are employed to analyze
strategic decision making in the context of harnessing consumption flexibility.
Concretely evolutionary game theory (EGT) and mechanism design (MD) are
used for analyzing how choices change over time and how the rules governing
interactions affect such choices respectively. Detailed technical and business
models are implemented in an open simulation framework developed for the
purpose of this research alone. Source code and results are made available on-
line to aid reproducibility and extensibility of this research [21]. Transparency
into the methods and data used is a key aspect of fostering better understanding
of the research and improving the reuse potential whether for future work or
for future validation of current work [27].

1.3.1 Why evolutionary game theory (EGT)?

In this dissertation, complex interactions between different stakeholders in
the energy domain are analyzed from a strategic choice perspective. For
modeling and analyzing complex systems, generally two more or less opposing
paradigms can be adopted. Mathematical modeling and analysis techniques
focus on complex systems on an aggregate level. Observable behavior of
system components is modeled using mathematical equations and formulas
which can then be analyzed using a wide range of tested and proven tools for
system analysis. The downside of such modeling techniques is often the higher
abstraction level based on aggregated behavior and data. Agent-based modeling
and analysis, on the other hand, focuses on fine grained, low level models of
action and interaction between agents. Simulating these models enables the
analysis of emergent behavior that arises from low level interactions. Analyzing
emergent behavior in this sense often requires tailored techniques for observing
and analyzing specific aspects of simulation results.
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Our approach in using evolutionary game theory (EGT) to analyze strategic
interactions in complex systems, combines the benefits of agent-based modeling
with formal mathematics based game theoretic analysis techniques. The various
stakeholders involved in DSM are explicitly modeled as agents pursuing their
own goals, in the simulation framework GridFlex together with the protocols
governing agent interactions. Through simulation, the strategic choice dynamics
are analyzed using well-founded techniques from EGT literature. EGT adds
the notion of a population of agents in which each agent can change its choice
of action over time, based on the expected rewards from making certain choices.
By adding this notion, EGT builds on classical game theory (GT) by weakening
the assumption of perfect rationality among agents.

1.3.2 Why mechanism design (MD)?

Where classical GT focuses on analyzing the outcomes of agents choosing
specific actions, mechanism design (MD) or inverse GT focuses on the game
rules necessary to guide agents towards certain desirable outcomes. The
rules governing the interaction between different agents are not always fixed.
MD offers useful tools for decisions makers to analyze the effects of different
interaction protocols that are not available in classical GT literature. For
example, parties that are in a position to dictate how interaction with other
parties occurs, can benefit from choosing interaction protocols that best lead to
their own desired outcomes.

1.4 Summary of contributions and outline

This section provides a summary of the contributions of this dissertation.
The contributions are presented as content chapters containing self contained
scientific articles. Each content chapter (Chapter 2 to 6) contains a full paper
verbatim, save for minor editorial changes. Chapters 2 to 4 are published
conference papers. Chapter 5 contains a published journal paper and chapter 6
is currently accepted for presentation at a conference. This dissertation is
concluded in chapter 7.



12 INTRODUCTION

1.4.1 Analysis of compensation pricing structures for con-
sumption flexibility

A common aspect of DSM is that flexibility providers are financially
compensated or motivated for their efforts in modifying their consumption
on demand. Chapter 2 provides an analysis of different payment strategies for
delivered consumption flexibility. Concretely, flexibility providers face a binary
choice in doing business with flexibility aggregators implementing activation
(per use) or reservation (flat rate) payment strategies. Aggregators employ the
offered flexibility to minimize a common imbalance signal. This strategic choice
is modeled using replicator dynamics and analyzed using EGT.

The contribution in chapter 2 is the description of a EGT analysis framework
for modeling and analyzing strategic choice dynamics for varying numbers of
participating agents. When this approach is applied to financial compensation
strategies, empirical evidence shows that in general, rational providers prefer
reservation payments over activation payments.

The implementation of the open source GridFlex simulation framework further
discussed as a technical contribution in appendix A GridFlex forms the basis
for all simulations performed for all content in this dissertation.

This paper on which chapter 2 is based, was awarded the Best Paper Award
at the conference for self-organizing and self-adaptive systems in Boston, USA
(2015).

1.4.2 Analysis of coordination mechanisms for employing
consumption flexibility

Smart-Grids are known for their complex dynamical environment where different
self-interested parties interact and negotiate toward their respective goals.
Negotiating the activation of flexible consumption resources with multiple
providers and users of flexibility requires coordination mechanisms. Chapter 3
provides an analysis on the efficiency of flexibility activations using different
coordination mechanisms. The distinction is made between off- and on-
line flexibility activation method to distinguish between best-case investment
scenarios and real-time effectiveness of DSM programs. For the on-line case,
both competitive and cooperative coordination mechanisms are evaluated. These
mechanisms are based on the qualitative Vickrey auction (QVA) and the contract
net protocol (CNP) respectively, both state-of-the-art in MD literature.

As a first contribution presented in chapter 3, empirical evidence shows
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that cooperative flexibility scheduling mechanisms are more efficient than
competitive mechanisms in distribution grid congestion cases with small numbers
of participating agents. Systems operators operating such mechanisms are
therefore better off retaining the full rights on deciding which flexibility to
activate at which times.

As a second contribution we argue that DSM alone is not sufficient for resolving
all congestion in these cases, even in off-line activation scheduling scenarios.
Besides DSM, other active network management (ANM) techniques should be
employed to ensure all congested energy can be dealt with.

Besides these major contributions, chapter 3 also defines the allocative efficiency
metric that is used for evaluation sections of the following chapters.

1.4.3 Analysis of investment costs for deploying and maintain-
ing infrastructure for using consumption flexibility

Chapter 3 described the need for other ANM techniques besides DSM as
a comprehensive solution to deal with distribution grid congestion. Battery
storage is proposed in chapter 4 as a fallback solution to offer the necessary
power flexibility to deal with congestion that is not resolved through DSM.
To evaluate the cost efficiency of this combined approach, an investment and
operation cost model is proposed based on optimal storage dimensioning in
combination with DSM as a first choice mechanism.

The contributions presented in chapter 4 are twofold. As a first contribution,
the parametrized investment and operation cost model is described for an
integrated solution to distribution grid congestion using dynamic line rating
(DLR), DSM and energy storage. A second contribution is the evaluation of two
cases using real world data from two different locations and industry validated
cost projections. The evaluation is performed in terms of cost effectiveness for
the DSO as a main stakeholder. The cost-effectiveness of this approach is also
compared to grid reinforcement. Results based on current data suggest that
grid reinforcement is a more cost-effective solution to deal with distribution
grid congestion.

1.4.4 Analysis of strategic choice between different business
cases from a flexibility provider point of view

Increasing the amount of energy produced by RES can present challenges
in different ways. Similarly, power consumption flexibility can be harnessed
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toward different goals. Chapters 3 and 4 have provided one example of wind
power integration challenges in a distribution grid congestion problem case.
In addition to distribution grid congestion, chapter 5 improves on the grid
balancing case described in chapter 2 by modeling wind power production
forecast induced imbalances faced by BRPs that have wind power production
resources in their portfolios. Chapter 5 focuses on how both problem cases
differ in their need for consumption flexibility and what this difference might
mean for flexibility providers from an economic point of view. The strategic
choice faced by flexibility providers in choosing to do business with a DSO
facing grid congestion on the one hand and a BRP on the other is analyzed in
terms of expected compensation payments. Analysis tools from EGT proposed
in chapter 2 are employed to study the choice dynamics in different scenarios.

The main contributions in chapter 5 are twofold. The first contribution is the
formulation and modeling of two business cases for employing consumption
flexibility in function of value exchanges between relevant parties active in
European power systems. The second contribution is the analysis of market
share dynamics of two competing companies requiring consumption flexibility
for different business cases. These market share dynamics reflect the results of
the strategic choice faced by flexibility providers.

1.4.5 Analysis of contractual flexibility activation constraints
in different flexibility use cases

This dissertation shows that consumption flexibility can be employed to deal
with wind power production excesses in different forms. Realizing the employ of
consumption flexibility to address these excesses requires formalized agreements
in the form of contracts between providers and users of flexibility. These
contracts often specify constraints on when and how much flexibility can be
called upon for the duration of the contract. Chapters 3 to 5 have indicated
that the activation constraints used can influence the effectiveness of flexible
power scheduling. Chapter 6 presents a sensitivity study on the effect of
flexibility activation constraint parameters when flexibility is used do deal with
different problem cases related to wind power production excesses. This study
is performed for the problem cases discussed in chapter 5.

The two main contributions of chapter 6 are the following. A first contribution
is the results indicating that the allowed inter-activation time dimension of
flexibility activation constraints is only influential for distribution grid congestion
cases and not for portfolio balancing cases. A second contribution is that
there exists a clear relation between the DLR mechanism used to determine
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congested energy volumes and the activation duration parameter dimension of
the activation constraints employed.





Chapter 2

Darwin in Smart Power Grids
- Evolutionary Game Theory
for Analyzing
Self-Organization in
Demand-Side Aggregation

Common to all DSM programs is that flexibility providers receive financial
compensation for providing consumption flexibility. How providers are
financially compensated can determine their willingness to deliver this
consumption flexibility. This chapter presents the analysis of two pricing
strategies employed by competing users of flexibility and contains the paper:

Kristof Coninx and Tom Holvoet. 2015. Darwin in Smart Power
Grids - Evolutionary Game Theory for Analyzing Self-Organization
in Demand-Side Aggregation. In 2015 IEEE 9th International
Conference on Self-Adaptive and Self-Organizing Systems, 101–110.
DOI:10.1109/SASO.2015.18

The definitions, analysis and supporting software are the result of discussions
between both authors. Kristof Coninx did all the programming and the writing.
Tom Holvoet gave feedback on the writing. This paper was awarded the Best
Paper award at SASO 2015.
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Abstract

Maintaining a balance between power consumption and production is paramount
for the safe and efficient usage of our power infrastructure. With the increased
adoption of less predictable producers such as windmills and photovoltaics,
maintaining this balance has become even more challenging. Demand-side
aggregators are relatively new actors in smart power systems, offering balancing
services. Aggregators maintain a portfolio of flexible consumers (e.g. production
plants, electric vehicles or shiftable household appliances) that they can use for
such balancing purposes. Typically, these balancing actions involve some form
of financial compensation.

Together these actors form a complex, interacting, self-organizing system, where
an individual’s behavior fluctuates as a result of maximizing their own objectives.
In this chapter, we analyze the influence of competing aggregator’s pricing
strategies on the flexibility providers by using evolutionary game theory (EGT)
with replicator dynamics. Applying this analysis approach to concrete multi-
aggregator scenarios allows for predictions on stable system states under varying
conditions. Concrete results show that pricing strategies favoring reservation
payments over activation payments increases the aggregator’s market share size
and its associated balancing potential in stable equilibrium.

2.1 Introduction

Power systems are known to be complex dynamical systems and are a good
example of a domain where a multitude of different parties, each having their
own goals, interact and self-organize to maintain a stable system of electricity
production, transmission, distribution and finally consumption. In such systems,
maintaining a balance between consumption and production is paramount to
the safe and efficient use of existing infrastructure. Maintaining this balance has
become even more of a challenge with the advent of decentralized production
elements like wind turbines and solar panels.

Demand-side management (DSM) techniques describe the ability to influence
or control the demand side of the balance equation to compensate for sudden
changes in production because of less predictable production instances. To
this effect, demand-side flexibility has become a highly valued commodity in
current-day smart grid contexts. This flexibility can be found in industrial sites
capable of finetuning their processes in order to consume less or more power
when asked to [28] but also shiftable household appliances [29] and electric
vehicles can offer flexibility that can be used to help balance the grid [30].
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Together with the emergence of techniques for identifying this form of flexibility,
the opportunity for capitalizing on this demand-side flexibility has led to the
emergence of demand-side aggregators.

Demand-side aggregation can employ a variety of different DSM techniques for
aggregating and using demand-side flexibility [31] but one thing all different
aggregation business cases have in common is that participating clients need to
be compensated for providing power consumption flexibility [9] and that this
compensation has a direct effect on the willingness of a flexibility provider to
participate in a DSM program. In turn, the availability of flexibility has a direct
effect on the performance of an aggregation technique because a larger amount
of flexibility per definition allows for more ways to correct imbalances. Most
often, these compensations are of a financial nature and in cases where more
aggregators are competing for the business of flexibility providers, the effects of
an aggregator’s payment strategies towards their clients can become an even
bigger influence on a provider’s willingness to do business. The influence of
these payment strategies are the focus of this paper because current literature
mainly focuses on designing and evaluating aggregation techniques in general
without taking into account that competing aggregators and pricing strategies
can have a profound influence on aggregator performance in a self-organizing
setting.

The complexity of the resulting dynamics at play in self-organizing balancing
systems is considerable. Analyzing these dynamics requires the use of tools that
are able to capture this complexity. In this chapter we show how evolutionary
game theory (EGT) can prove useful in this regard. EGT [32] is a field of study
originating in the biology discipline but with a great track record across other
disciplines as well (e.g. economics, computer science). EGT provides tools for
modeling the concept of strategic choice in a population of self-interested agents.
EGT extends classical game theory [33] by modeling Darwinian selection into
the choice making process of these agents. In this chapter, EGT is applied
to the field of power systems to analyze the influence of aggregator pricing
strategies on the dynamics between multiple flexibility providers and multiple
competing aggregators and the effects of these dynamics on power systems in
terms of balancing consumption and production. The remainder of this chapter
is structured as follows. First the problem description will be presented and
illustrated in section 2.2 while the approach used in this chapter to address this
problem is described in 2.3. The concrete scenario description of the performed
experiments is described in section 2.4 and the results of these experiments are
discussed in section 2.5. Finally, related work in the fields of EGT and smart
grids is discussed in section 2.6 and the conclusion of this chapter and some
future research directions are provided in section 2.7.
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Figure 2.1: Simplified representation of the problem domain where multiple
aggregators are responsible for compensating imbalances caused by less
predictable, renewable energy sources.

2.2 Problem description

The electricity grid can be divided into two main components. The transmission
grid is responsible for transporting electricity from large power plants to the
distribution grid, while the distribution grid in turn distributes the electricity
to end users (i.e. households, factories, traffic lights, ...). The transmission
grid is governed by the transmission system operator (TSO) and one of its
responsibilities entails making sure the total electricity produced and injected
into the net equals the total amount consumed. To this effect, the TSO employs
a mechanism where every transmission grid access point is managed by a balance
responsible party (BRP). In Belgium, these responsible parties are called access
responsible party (ARP). Electricity producers, major consumers or electricity
suppliers can all be BRPs [34]. The main responsibility for BRPs is to balance
their respective portfolios of consumers and producers. BRPs can meet this
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responsibility by buying or selling electricity on the day-ahead electricity market
or through longterm bilateral contracts. When buying or selling electricity on
the day-ahead market, this electricity needs to be delivered one day later. This
implies the need for consumption and production forecasts to guide the decision
of how much electricity to buy or sell. At the same time, BRPs are required
to provide the TSO with nominations for the electricity bought and/or sold.
These nominations represent the consumption and production forecasts of the
BRPs. The nominations are needed so that the TSO can make the necessary
adjustments to keep the production-consumption balance within the grid. The
TSO continuously monitors actual production and consumption values and
compares it with the reported values in the nominations from the BRPs. If
the production does not cover the consumption, extra production reserves are
deployed and if the consumption does not cover the production, consumption
reserves are deployed. The costs that the TSO suffers for employing consumption
reserves and the revenues for employing production reserves are settled with
the BRPs causing the imbalance. These settlements are generally less profitable
for a BRP than buying or selling electricity on the day-ahead market and the
revenues that are lost, are therefore called the imbalance cost (also known as
opportunity costs in economics). This mechanism is used continuously in time
steps of 15 minutes.

When considering electricity suppliers being a BRP, the supplier needs to
provide electricity for a whole portfolio of customers. With a time horizon of
one day, consumption forecasts can be off, which leads to imbalance costs. The
integration of distributed generation instances into a customer portfolio can
further increase the difficulty to accurately forecast production-consumption
balances. Demand-side flexibility providers and aggregators can help compensate
these forecast error related imbalances.

2.2.1 Aggregator business cases

This section describes some examples of how independent aggregators can
formulate a business case around aggregating and providing flexibility to other
parties. Flexibility aggregators can be differentiated between further in terms
of the techniques used to aggregate, the goal of their techniques (determined by
the party they are offering their services to), and the payment structures used.
The examples given describe business cases from the point of view of third
party companies. However, keep in mind that the services that independent
aggregators provide can also be taken up as a responsibility by the party
aggregators provide services to, themselves. That is why in the remainder of
this paper, we will use the term aggregator to describe a party that has taken
up the responsibility of aggregation.
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Ancillary services for the TSO

TSOs have the responsibility to employ reserves (either production or
consumption side) to correct imbalances in real time. These reserves can
be contractual or based on a flexibility market [35]. Aggregators have a business
case in providing these reserves by aggregating flexibility providers who would
otherwise be incapable of meeting contractual obligations with the TSO, or
would not be willing to deal with the required administration.

Distribution grid optimization for the DSO

Distribution system operators (DSOs) have the responsibility of making
sure electricity is distributed from the distribution grid to local consumers.
They are among other things responsible for managing and maintaining the
infrastructure between the transmission grid and the consumers. Maintaining
this infrastructure incurs a maintenance and investment cost when existing
infrastructure needs to be upgraded to cope with increasing peak infrastructure
loads. These load increases can be caused by increased consumption from
electric vehicles (EVs) or by increased production by local distributed generation
instances. Aggregators can provide DSOs with the needed flexibility to optimize
their local power flows and to shave peak loads [36]. In this business case, the
geographical location of the flexibility providers is also of significant importance
however because infrastructure peak congestion points depend heavily on the
local distribution grid topology. The aggregator business case in this example
is more client dependent and the benefit for the flexibility providers is mostly
based on a reduction in administration overhead when compared to the case
where the DSO would contract suitable flexibility providers directly to offer
flexibility when needed.

Portfolio balancing for BRPs

A final example business case is where an aggregator provides aggregated
flexibility towards a BRP. BRPs are interested in minimizing the imbalance
cost from forecast error. Aggregators can use provided flexibility to minimize the
real time imbalance to more accurately match the forecasted portfolio balance
and the volumes bought or sold on the day-ahead market [37].
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2.2.2 Payment structures

An important aspect of DSM programs is the incentive mechanism used.
When DSM programs form the core of self-organizing systems, the incentive
mechanism used is the driving force behind the self-organization. These incentive
mechanisms are necessary because flexibility providers capable of providing
flexibility often do so with a certain amount of inconvenience for which they
need to be compensated. These compensations are often of a financial nature.
In literature, two aspect of DSM payment structures are discerned, namely
reservation pricing and activation pricing.

Reservation pricing

Reservation pricing describes a payment method where flexibility providers are
compensated for offering flexibility without any condition on how or when the
flexibility is used. The aggregator compensates the providers relative to the
amount of flexibility the provider makes available to the aggregator. Often these
reservation prices correspond to a fixed amount that is paid for the duration
of a contract for a contractually defined volume of flexibility that has to be
available when asked. In this work, we assume reservation fees are determined
and paid for each time slot separately.

Activation pricing

Activation pricing describes a payment method where flexibility providers are
compensated for actual curtailment or increases in energy consumption. The
aggregator compensates the providers relative to the amount of power that is
increased or decreased multiplied by the duration of the event.

2.2.3 Concrete problem case

This paper focuses on a concrete case of imbalance correction through the use
of aggregators by focusing on the business case of providing services to BRPs.
This case describes two different electricity utility companies selling electricity
to a portfolio of clients. Both utility providers serve as BRPs from the TSO’s
point of view. The utility providers have contracted distributed generation
instances in the form of wind turbines to lower the amount of electricity that
has to be bought on the day-ahead market. This means that both these utility
companies potentially suffer from forecast error related imbalances because of
these less predictable generation units.
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To offset these imbalances in real time, the utility companies employ the
aggregator business case described in section 2.2.1. From this point forward,
the utility companies will be referred to as aggregators. These aggregators now
have a business case in using the budget otherwise spent paying the imbalance
costs, to contract flexibility providers. This budget is divided into 2 distinct
portions: a reservation budget and an activation budget. These portions are to
be used for respectively reservation and activation fees towards the flexibility
providers.

In this case we assume a liberalized market structure where selecting between
and signing up with different utility providers or aggregators is relatively easy.
Flexibility providers in this case are modeled as industrial processing plants with
the ability to offer flexibility by increasing or decreasing the power consumption
of machines on site. For example, at a frozen goods food processing facility,
certain cold [38] stores may be deactivated for a limited period of time while
the current temperatures are well below the allowed maximum temperature.
These cold stores consume less energy for this time period but afterwards might
need to compensate to get the temperature back down to well below allowed
maximum levels. Similarly, these cold stores might be used to consume more
energy by lowering the current temperature even further than necessary but
allowing for a period of decreased energy consumption afterwards.

2.3 Approach

Where classical game theory (GT) [33] provides tools for static analysis of
games focusing purely on the payoffs for individual actions, evolutionary game
theory focuses on the payoffs for actions in combination with the amount of
agents playing the actions [39]. So while classical GT offers ways for eliciting
the possible Nash equilibria [40], evolutionary game theory can offer insight into
which Nash equilibria are more likely to occur in practice. EGT can mainly
be categorized into two approaches. There is the static approach proposed by
Maynard Smith where the solution concept of an evolutionary stable strategy
(ESS) is introduced for populations wherein all agents play the same mixed
strategy [41]. ESS extends the Nash equilibrium solution concept from classical
GT with a notion of robustness to a small invading subpopulation of agents
playing a different strategy. The second approach describes modeling biological
evolution or in this case the agent’s rational choice more explicitly using a
system of differential equations. This system regards agents in a population as
playing only pure strategies while population states are described by vectors
akin to mixed strategies. In this approach the solution concept of evolutionary
stable states is used. Evolutionary stable states can be formally equivalent to
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evolutionary stable strategies [42] in some cases including the cases described
in this work where the comparison between the two approaches is made. Using
explicit dynamical system modeling allows using the wide range of tools for
analyzing dynamical systems [43]. We mainly follow the second approach for
analyzing the population evolution in this work by modeling the dynamics of a
population of agents in a self-organizing system and by analyzing the properties
of equilibrium states in these population dynamics. Some interpretations for
the resulting dynamics are also given from the viewpoint of the first approach
where appropriate.

As input for defining these dynamical systems, we follow the approach taken
in [44] and treat heuristic strategies as primitive actions for a game theoretic
analysis, meaning that an action in this game formulation represents choosing an
algorithm implementation or in this case choosing an aggregator using a specific
payment strategy. For the entities involved in this self-organizing systems case,
empirical expected values are estimated using simulation and the resulting
heuristic payoff table will be used as a starting point for the analysis. Similar to
the approach described in [45], agent’s choices are assumed to be independent
of their types which allows for a compact representation of the payoff table. In
a game of n players and k heuristic strategies to choose from, this payoff table
will contain entries of the form

p = (p1, ..., pk) (2.1)

with pi representing the number of players bound to action i. The function f
maps a vector p ∈ P onto a vector q ∈ Q of the form

q = (q1, ..., qk) (2.2)

representing the expected payoff for agents bound to action i. This expected
payoff is an average over all players playing this strategy. The total number of
entries in this payoff table is given by s in (2.3).

s =
(n + k − 1)!
n!(k − 1)!

(2.3)

This corresponds to one entry per possible population state, taking into account
agent symmetry. In a setting with two agents choosing between two options,
there are three population states and therefore entries in the payoff table.
Assigning parameters a, b, c and d to the possible payoffs produces the set
Q = {(a,0), (b, c), (0, d)} from applying f to set P = {(2,0), (1,1), (0,2)} For
brevity, the payoff matrix can be written as

A = (
a b
c d

) (2.4)
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Applied to the case of power system self-organization described in section 2.2.3
where flexibility providers choose an aggregator to do business with, selection
dynamics are used to model the rational choice between two aggregators in
repeated pairwise interaction where the providers compare their choice of
aggregator and the gained revenues with other providers. These providers base
their choice on their fitness. In this context, fitness is described by an agent’s
financial costs and especially the rewards arising from doing business with the
chosen aggregator. The selection dynamics used in this work are the replicator
dynamics [46] because stable states in these dynamics are closely linked to
Maynard Smith’s definition of evolutionary stable strategies and because the
replicator dynamics have been well covered in literature [47].

The replicator dynamics are a set of ordinary differential equations describing
the population dynamics in terms of the fitness of agents choosing the strategy
compared to the overall average fitness of the whole population. The replicator
dynamics equations describe how a population share of providers following a
specific aggregator will increase or decrease in size as the payoffs for those agents
are better or worse than the average payoff of the whole population. Consider
a mixed strategy profile x for the population as a population state where each
component xi represents the population share choosing aggregator i instead of
one agent’s randomization over the choice of aggregators with ∑ki=0 xi = 1. The
general replicator equations are then given in (2.5) following the notation used
in [32].

ẋi = xi[u(ei, x) − u(x,x)] (2.5)

with u(ei, x) representing the average expected payoff of an agent choosing
aggregator i when the population is in state x and u(x,x) representing the
overall average expected payoff for an agent from a population in state x. In
this formula ei is the base vector in Rk and it represents the pure strategy of
choosing aggregator i in a system where strategies are encoded as vectors from
the unit simplex.

We can also represent the dynamics from (2.5) in terms of the 2 × 2 payoff
matrix from (2.4) as

ẋ1 = x1[(Ax)1 − x
TAx)] (2.6)

with ẋ2 = −ẋ1 because we assume a constant population size. In this notation
(Ax)1 represents the first element of the vector that results from multiplying A
with the population state vector x.

From (2.6) we generalize the replicator dynamics for N agents and 2 actions
in terms of the heuristic payoff table entries represented by the function f by
defining u(ei, x) in (2.7) and u(x,x) in (2.8).
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u(e1, x) =
N−1
∑
i=0

(
N − 1
i

)xN−i−1
1 xi2f(N − i, i)1 (2.7)

u(x,x) =
2
∑
i=1
xNi f(N −N(i − 1),N(i − 1))i+

N−1
∑
j=1

xN−j
1 xj2

S

∑
k=1

(
N − 1
j − k − 1

)f(N − j, j)k

(2.8)

with N specifying the number of agents and S the number of actions to choose
from (in this case 2). The definition for u(ei, x) is similar to work in [48] which
defines the payoff to individual players playing a strategy r = (r1, r2) against a
set of opponents, each of which is playing p = (p1, p2). In this case, however,
expected payoffs are drawn from a heuristic payoff table provided by simulations
and represented by the function f . The definition for u(x,x) is given by using
the same intuition that led to the definition of u(ei, x).

Finally, we analyze the critical points of these equations in terms of stability
and draw conclusions about the probability of a certain stable state in the
population occurring given the initial population.

2.4 Scenario setup

2.4.1 Aggregators

The concrete scenario consists of two competing aggregators attempting to
balance their portfolio of clients in 15 minute time periods. For each period,
the inputs for the aggregator consist of a value for the current imbalance in
its portfolio drawn from a function Ii(t) and a value for the imbalance price
in that time period, drawn from a function C(t). These two values determine
the budget cap (Ci,b) for an aggregator. This cap is the maximum amount
of money available to dispense towards flexibility providers to compensate for
the imbalance. The budget is further divided between a budget for reservation
payments (Ci,r) and a budget for activation payments (Ci,a) according to a
ratio ri such that Ci,r = riCi,b and Ci,a = (1 − r)Ci,b. This budget division is
also depicted graphically in Figure 2.2.
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Figure 2.2: For each 15 minute time step, the amount of imbalance in the
portfolio is determined and together with the imbalance price at that time, the
upper bound of the aggregator’s budget is set. This budget is weighted between
reservation and activation fees according to a parameter ri.

2.4.2 Flexibility providers

Flexibility providers are conceptually modeled as production factories working
with production lines consisting of workstations and buffers. These production
factories are able to offer power consumption flexibility by shutting down or
starting up parallel workstations and relying on existing buffers between stations
to continue production. The rebound effect often described in literature [31]
as the increased consumption following a period of curtailment because a total
decrease of consumed energy would impact the business output. As stated in
[31] DSM is a mechanism for changing consumption patterns not for decreasing
total consumption. However, the current model for the production factories
does not take the rebound effect into account.

The available flexibility a provider can offer is represented by flexibility profiles
of the form (id, δP, δT, δTc) where δP represents the amount of power the
provider can curtail or consume additionally, δT the duration this profile will
remain active when activated and δTc the recovery time representing the time
after an activation that a provider is unavailable for providing flexibility. The
providers are assumed to immediately activate the profile when the contracted
aggregator signals an activation event.

2.4.3 Protocol

Aggregators query flexibility providers for their flexibility profiles and
subsequently determine the best combination of profiles and providers to
correct the current imbalance. Concretely, the combination of flexibility profiles
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(denoted by the set F ) is chosen that minimizes ∣Ii(t) −∑f∈F δP (f)∣ under the
assumption that for each client only one flexibility profile can be active. The full
protocol modeled in this case is described in Figure 2.3. This protocol models
three distinct phases: appropriation, nomination and remuneration, which occur
for every time period continuously.

In the appropriation phase, the discrepancy between the current portfolio
balance and the balance forecast provided to the TSO in d − 1 is determined.
All the flexibility profiles available from the contracted flexibility providers are
gathered by using the flexibility provider APIs and the opportunity cost from
not paying imbalance costs is determined and set as the budget for this period.

In the nomination phase, the flexibility profiles that compensate for the current
imbalance are determined, activated and nominated with the TSO.

In the remuneration phase, the appropriate funds are used to pay reservation
and activation fees to the providers.

2.4.4 Experiments

Flexibility providers are modeled with parameters for base load and flexibility
provided by deterministic random generators drawing from normal distributions.
Each provider can offer flexible power on par with the imbalance signal ranges
of the aggregators but they offer this flexibility in discreet steps. Aggregators
have two distinct input signals, one representing the current portfolio imbalance
and one representing the imbalance price for the current time slot.

For a first experiment, the same imbalance (Ii(t) ) and pricing (Ci(t)) signals
are used for both aggregators while for a second experiment, distinct signals
are used for each aggregator with the first aggregator having a larger total
imbalance over time than the second aggregator (∫ ∣I1(t)∣dt >> ∫ ∣I2(t)∣dt). The
combination of the ri parameters for the aggregators span a two dimensional
parameter space. This parameter space is sampled with a sampling resolution
of 10 ∗ 10 possible combinations of ri values for the two aggregators. These
experiments are performed with N flexibility providers with N ranging from 2
to 7.

Performing similar experiments with more agents can be problematic because of
the combinatorial explosion from filling in all combinations in the payoff matrix
for all parameter combinations using micro-simulations. Work in [49] can offer
interesting techniques for sampling such solutions spaces and allowing for a
higher number of participating providers with a computational cost similar to
that of the current approach.
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Figure 2.3: A UML sequence diagram describing the interaction protocol
between an aggregator and two flexibility providers participating in the DSM
program in a case where provider A supplies the best match to compensate for
the imbalance.

All cases discussed in this paper are simulated using the simulation framework
GridFlex [21]. GridFlex is a simulation framework capable of simulating
smart grid scenarios with different flexibility providers models, input signals and
different aggregator implementations while providing abstractions for performing
game-theoretic analyzes. Simulation experiments are performed multiple times
(n = 500) with different seeds for the random generators.
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Figure 2.4: This phase plot shows the replicator dynamics for the game played
by two clients. Any initial population proportion choosing the first aggregator
would move to the stable equilibrium of 50% of clients choosing that aggregator.

2.5 Evaluation and discussion

Considering DSM programs as self-organizing balancing systems, the incentive
mechanism used to compensate flexibility providers has a big influence on
shaping the dynamics of these systems. This section uses EGT to analyze the
dynamics as a result of the simulation experiments described in subsection 2.4.4.

Concretely, we analyze the influence of the budget division parameter ri on
the population dynamics of flexibility providers in a self-organizing balancing
mechanism. A first analysis case will discuss two flexibility providers
participating in an environment with two aggregators having both equal division
parameters r1 = r2 = 0.5. Intuitively, with equal division parameters and equal
imbalance and pricing signals, it is trivial that a client should feel indifferent
between choosing one aggregator over the other. We will first validate this
assumption with a game theoretic analysis and then follow the same approach
to analyze cases where the r parameters differ.

2.5.1 Indifference case analysis

Simulation results provide a normalized payoff matrix A similar to (2.4). Payoff
table A can be normalized further to

A′
= (

s1 0
0 s2

) (2.9)

by subtracting c from the first column and b from the second column without
loss of generality because the set of Nash equilibrium (NE) and the set of ESS
are invariant under local payoff shifts in symmetric games when s1, s2 ≠ 0 with
s1 and s2 being the resulting matrix entries [32]. The numerical results from
simulations are given in (2.10).

A = (
2310 3849
3820 2304 ) → A′

= (
−1510 0

0 −1545 ) (2.10)

Based on the signs of s1 and s2, Weibull [32] categorizes 3 different cases,
corresponding respectively to variants of the Prisoner’s Dilemma [50] if s1∗s2 < 0,
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the coordination game [51] if s1, s2 > 0, and the hawk-dove game [41] if s1, s2 < 0.
The simulation results for this case results in a payoff matrix that corresponds to
a class of games that contains the hawk-dove game. In the hawk-dove game there
are 3 Nash equilibria, one symmetric mixed strategy equilibrium (x̂, x̂) and two
asymmetric strict equilibria {(e1, e2), (e2, e1)}. We are only interested in the
symmetric equilibrium because only symmetric equilibria can be evolutionary
stable states in single population models (which are modeled here). In this case,
the symmetric equilibrium is defined as x = (λ, 1 − λ) with λ = −1545

−1510−1545 = 0.51
supporting the assumption made earlier that clients are (more or less) indifferent
between the two aggregators. This symmetric equilibrium corresponds to an
evolutionary stable state because for every other strategy y = (y1, y2), the
expected payoff of a client playing strategy y against x is always equal and the
expected payoff of a client playing strategy y against itself will always be less
than the expected payoff for a client playing y against a client playing x. This
is indicated by (2.11) and (2.12).

∀y = (y1, y2) ∶ y1 + y2 = 1 ∶

u(x, y) = −1510λy1 − 1545(1 − λ)y2

=
−1510∗(−1545)
−1510−1545 = 763.6 (2.11)

∀y ≠ x ∶
u(y, y) = −1510y2

1 − 1545y2
2 < 763,6 = u(x, y) (2.12)

This verifies the assumption of indifference from the point of view of single
agents playing mixed strategies. These results can also be interpreted from the
viewpoint of evolutionary stable population states as discussed in section 2.3.
When considering populations of clients participating in this self-organizing
system, the optimal division between two equal aggregators with each their own
imbalance to correct would be an approximately equal division between the two
aggregators. In the case of two participating clients, a 50-50 population division
would mean that each aggregator only has one client and that the available
budget can be used to compensate one client fully. None of the clients would be
better off doing business with the other aggregator as then the budget of one
aggregator would have to be used to compensate two clients. The interpretation
of client indifference from an individual agent point of view and optimal rewards
in the population model can both be explained by using the same mathematical
formalisms, but for further analyzes, we adopt the population model point of
view.

Replicator dynamics are used to explicitly model population dynamics. The
replicator dynamics, derived from applying (2.5) to A in (2.10), also supports
the same conclusions from previous paragraphs. The resulting dynamics shown
in (2.13) are illustrated by a one dimensional phase plot in figure 2.4. Phase
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Figure 2.5: Plot showing the solution plane for r-parameters. Using more of
the available budget for reservation payments improves your population share
in equilibrium.

plots show the fixed points in the dynamics and whether these fixed points
are attractors or repulsors. Clients are limited to a binary choice between
aggregators so the dynamics can be displayed in one dimension by only showing
the proportion of clients choosing the first aggregator while the complement of
that proportion signifies the proportion choosing the second aggregator. Figure
2.4 shows one attracting fixed point at 0.5 indicating that all initial population
distributions move towards a 50-50 distribution.

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ẋ1 = x1[(2310x1 + 3849x2)

−(2310x2
1 + 7669x1x2 + 2304x2

2)]

ẋ2 = −ẋ1

(2.13)

⇔

⎧⎪⎪
⎨
⎪⎪⎩

ẋ1 = (−1510x1 − 1545x2)x1x2

ẋ2 = −ẋ1
(2.14)
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2.5.2 Influence of budget division parameter

Equal imbalance profiles

The previously explained case illustrated how evolutionary stable states can
be found. In this subsection, we study the influence of the budget division
parameter ri on the evolutionary stable states of the population dynamics.
Restricting the amount of free variables in the experiment setup and only
varying the ri parameters in 10% increments allows for sampling the solution
plane. The results in Figure 2.5 show the population share of providers choosing
the first aggregator in function of the ri parameters chosen by both aggregators.
From the point of view of an aggregator, increasing the ri-parameter to increase
the portion of the budget that is allocated to reservation fees, increases the client
population share that chooses the aggregator in stable equilibrium. These results
are gathered from simulations performed by two providers, but simulations
using 3,4 or 5 providers show the same trend of results, yet less convincingly.
The total amount of imbalance and therefore the total budget that is available
for each aggregator has to be divided among more providers, which lowers the
power of persuasion a certain payment structure can exert on the population.

Figure 2.6 shows how the equilibrium planes show a gentler incline when
simulations are performed with more agents meaning that the same conclusion
about changing the ri-parameter can be drawn but that the effect of changing
this parameter for an aggregator becomes less pronounced under equal imbalance
profiles as the number of participating clients increases. More generally stated,
when the ratio of total imbalance in the system to flexibility providers is low (e.g.
when the available flexibility outweighs the needed flexibility), these effects are
less pronounced. We call this ratio the Needed-to-Available flex ratio (NtAf).

If the assumption is made that from an aggregator’s point of view that a larger
client base allows for a more efficient way of performing portfolio balancing, then
increasing the portion of the budget that is allocated to reservation payments
can improve the balancing efficiency. This increase in efficiency can be negligible
when the number of flexibility providers that want to participate outweighs the
needed flexibility to perform portfolio balancing.

Different imbalance profiles

In this case we discuss whether the same results hold when the overall amount
of imbalance differs between 2 aggregators. The results in Figure 2.7 show
that when the first aggregator has an overall imbalance that is significantly
larger than the imbalance of the second aggregator (∫ ∣I1(t)∣dt >> ∫ ∣I2(t)∣dt),
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Figure 2.6: Shows the influence of the amount of simulated clients on the
solution planes. Only r1 = 0 and r1 = 0 solutions are plotted for N = 1 to N = 4.
Similar to previous plots, solutions for other r1 parameters are parallel and
equidistant between the plotted solutions. The results for N > 5 have been
omitted to avoid decreasing the readability. The trend of the results also holds
for N = 5,6 and 7.

the solution plane undergoes a translation to match the fact that the budget
available to the first aggregator is also significantly larger. The aggregator with
a larger budget to divide amongst its clients, can provide a larger number of
clients with at least as much expected payment than the other aggregator would
be able to. In this case, increasing the portion of the budget that is allocated to
reservation payments (ri) still has a positive effect on the expected payments of
the providers. This increases the population share in stable equilibrium when
reservation payments are being favored by an aggregator.

Other conclusions concerning the influence of the ri parameters still apply to this
case. In situations with a large number of flexibility providers, the population
division in equilibrium is mainly determined by the differences in budgets
and less so by the choice of ri parameters. With large numbers of flexibility
providers, the available budgets need to be divided amongst an aggregator’s
clients. The expected payments from a provider’s point of view decreases
when more providers are doing business with the same aggregator. When
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Figure 2.7: Shows the translation of the solution plane of the results towards
the aggregator with more imbalance to correct and therefore with a higher
budget to distribute among the providers.

the number of competitors increases, choosing another aggregator with less
clients increases the expected payment values more than a change in aggregator
payment structure would.

2.5.3 Lessons learned

We summarize the lessons learned from evaluating these results for cases where
multiple aggregators compete for the business of flexibility providers. We
assume that the flexibility providers are profit maximizing, the aggregator
budget volume is determined by the opportunity costs from imbalance prices
and that flexibility providers have the means for gaining information about
the payoffs of fellow providers. The lessons learned from the point of view of
individual aggregators are the following.

• As an incentive mechanism, reservation payments are more likely to
increase market share than activation payments.

• A larger portfolio imbalance results in a larger market share in equilibrium.
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• In systems with lower Needed-to-Available flexibility ratios, the likelihood
of increased market share through using reservation payments, is less
pronounced.

These lessons learned are subject to the assumptions made in this work and the
simulation model used to produce the results. Real world scenarios concerning
flexibility providers and aggregator dynamics are in all likelihood more complex
than modeled in this case. It is therefore important that these assumptions
and models are also improved upon in future work to verify if these results
continue to hold in real world scenarios. However, our experiences does show
the potential of using EGT to analyze the dynamics of such scenarios and to
draw conclusions about the influence of specific scenario parameters.

2.6 Related work

Applications of EGT have gained momentum in other research fields. For
example, in the field of economics research, Walsh et al. offer an analysis
of strategic interaction between price bots in different market settings [44].
Phelps et al. compare two double-auction market designs using evolutionary
game theory [45]. But applications are not limited to the economics domain.
Sandholm offers an extensive overview of applications in social sciences besides
applications in economics [52]. To the best of our knowledge, the application of
EGT in the context of smart grids has been limited. This work attempts to
address that.

The smart grids domain by now is a well established field for coordination and
self-organization research ranging from DSM [31] to coordinated charging of
electric vehicles [53][14]. A popular approach towards smart grid coordination
in literature is the application of optimization algorithms in coordination
protocols [54]. Designing coordination protocols starts from the assumption
of willing participants that can be governed easily. When dealing with self-
interested agents that are outside the scope of control from the perspective of
the protocol designer, a framework capable of modeling strategic interaction
is required. GT [33] and more specifically inverse game theory, otherwise
known as mechanism design (MD) [55], allows for taking into account multiple
individual goals for designing incentive compatible coordination mechanisms
while accounting for strategic agents [26]. One example of such mechanisms
is proposed in [56] where the authors propose a mechanism for scheduling
uncertain demand given uncertain supply while dealing with strategic agents.

This work focuses on scenarios with multiple aggregators where strategic choice
between aggregators influences self-organization. The smart grid literature
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considering similar scenarios is also rather limited. To the best of our knowledge,
only the work in [57] describes a similar scenario with self-interested agents
and multiple aggregators. The authors discuss a scenario where these agents
are hierarchically structured under different aggregators but differs from this
work because the agents are not modeled to choose strategically between
different aggregators. Instead of using GT, the authors formulate a multilevel
optimization problem and provide solution characteristics for different scenarios.
An examples of related work concerning single aggregator scenarios can be
found in [35] where self-organized coalitions of agents are used for trading active
power and ancillary services.

This work proposes the Replicator Dynamics for modeling selection between
aggregators in population dynamics [46]. The replicator dynamics is in itself a
special case of a class of dynamical systems that has been analyzed in terms
of limit behavior and stability in general [58]. This makes the replicator
dynamics attractive as a way of modeling selection dynamics. When it comes to
deterministic selection dynamics, other examples and studies of using differential
equations for modeling evolutionary dynamics are also available. Hoffbauer
and Sigmund [59] and Sandholm [60] have provided excellent surveys on this
topic. Besides these selection dynamics, the evolution aspect in EGT does
not necessarily have to be biologically inspired. Other selection dynamics that
are used for modeling evolutionary dynamics are based on learning [61] and
imitation [62]. However, not all of these selection dynamics bare the strong link
to Maynard Smith’s definition of evolutionary stable states and classical game
theoretic notions of the NE [40] that the replicator dynamics do.

2.7 Conclusion and future work

The smart grid domain is host to situations of complex interplay between various
parties. These parties self-organize by adapting to their own objectives. These
objectives often, if not always involve maximizing financial revenue.

One of the most important aspects in safely operating the current power
infrastructure is that the balance between power consumption and production
always needs to be maintained. Demand-side flexibility aggregators can offer
balancing services to this effect by using flexibility providing parties. Convincing
these flexibility providers to do business with them instead of with a competing
aggregator involves choosing the appropriate payment structures to incentivize
these providers. As a result, aggregators and flexibility providers interact and
form a complex self-organizing system. In this work, the dynamics of this
system is analyzed using evolutionary game theory.
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Concretely, a case of BRP portfolio balancing is analyzed to gauge the influence
of overall budget divisions between reservation and activation payments on a
population of flexibility providers. In this case, flexibility providers are capable
of making a choice between multiple aggregators acting as BRP, based on their
compensation for services offered. EGT is an ideal tool for analyzing such
self-* systems because it allows for capturing notions like rational strategic
behavior and best response strategies while using these notions to reason about
populations of interacting agents. In this case, analyzing such scenarios using
EGT provides insight into how population distributions might change under the
influence of certain changing scenario parameters like the payment structures
used by aggregators. Simulation results show that preferring the allocation of a
budget to reservation payments for one BRP can increase its client population
share in stable equilibrium but that this effect is dampened when the amount
of flexibility offered greatly outweighs the flexibility needed.

In this work, among others, the assumption is made that a larger client
population share increases the portfolio balancing efficiency by having more
flexibility to balance with. In future work this assumption will be verified by
improving on the scenario setup such that the effect of budget division on
global system imbalance can also be analyzed. The input signals that represent
imbalance volumes and imbalance costs for BRPs will also be studied more
exhaustively in future work. In this work we have already seen that the overall
size of an aggregator’s imbalance influences its budget and by extension the
power of persuasion it can exert on the population of flexibility providers. It
is likely that the imbalance volumes and shapes therefore also influences the
population dynamics.

In this work, the opportunity cost from not having to pay imbalance costs is
used as a budget for using DSM to compensate for imbalances. In future work,
business cases where only a selective part of these opportunity costs are used
for DSM compensation fees are considered. In these cases, BRP profit margins
influence the budget caps and could therefore influence the population dynamics
similar to how the budget division between reservation and activation payments
can be an influencing factor on these dynamics.

Finally, even though more complex models of interaction dynamics are needed
to bride the gap between results from simulation models and expected behavior
in the real world, EGT remains useful in capturing this complexity during
analysis.
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Chapter 3

Coordinating Wind Turbines
and Flexible Consumers with
Cooperative and Competitive
Agents

In chapter 2 the strategic choice between financial compensation structures
was computationally analyzed. Besides compensation structures, flexibility
users must also decide on which flexibility providers to activate when dealing
with imbalances. How and when these decisions are made, influences how
efficiently consumption flexibility can be used to address imbalances. This
chapter presents and evaluates various coordination mechanisms for employing
consumption flexibility and contains the full workshop paper that corresponds
to the following published extended abstract:

Kristof Coninx and Tom Holvoet. 2016. Coordinating Wind
Turbines and Flexible Consumers with Cooperative and Competitive
Agents. In Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
1407–1408.

The definitions, analysis and supporting software are the result of discussions
between both authors. Kristof Coninx did all the programming and the writing.
Tom Holvoet gave feedback on the writing.
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Abstract

Integrating wind farms into existing distribution grids is challenging because
of potential congestion caused by imbalance between wind turbine energy
production and consumers’ energy offtake. Demand-side management (DSM)
techniques address this imbalances by dynamically increasing the consumers’
offtake, thereby allowing unrestrained power generation by wind farms. In
practice, distribution grids are constrained by power line capacity, a fact often
ignored by existing literature. Present chapter describes a novel and realistic
application of DSM to a constrained distribution grid where multiple self-
interested agents can provide flexibility to the distribution system operator
(DSO). DSM is evaluated online, where agents’ flexibility is allocated in real time
using limited local forecasts, and offline, where a central agent has complete
foresight to compute a theoretical upper bound and enables the DSO to
evaluate its infrastructure investments. In online simulations a cooperative
mechanism is compared to a competitive strategy proof auction mechanism.
The results indicate that the competitive mechanism has a lower allocative
efficiency compared to the cooperative mechanism. This online result questions
the trend of increased usage of markets in industry while the offline experiment
shows that the current activation constraints of the DSO prevents the system
from reaching global allocation optima.

3.1 Introduction and problem

Meeting the 20-20-20 objectives put forward by the European Commission to
increase the share of renewable energy production in Belgium to 13% of the
gross final energy consumption by 2020, requires the installation of large wind
farms both on- and offshore [63]. Integrating these wind farms into existing
distribution infrastructure is challenging because of potential congestion caused
by imbalance between wind turbine energy production and consumers’ energy
offtake [64].

One technical constraint that needs to be considered is guaranteeing that
existing cables can cope with the increased wind energy injection into the grid.
Adding energy production elements to existing grids can cause power rates
to increase past the rates that would ensure safe cable operation. Upgrading
existing cable infrastructure to cope with increased power rates would lead
to a costly replacement of existing cables. Experience in industrial projects
shows that this is an actual problem distribution system operators (DSOs) are
facing when incorporating wind turbines into existing distribution infrastructure.
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Considering that these excessive power rates only occur occasionally, alternative
remedies are investigated.

Literature describes active network management (ANM) techniques for dealing
with these forms of increased power production related current congestion in a
more cost effective manner [65]. ANM techniques describe a class of techniques
for actively performing steering actions in the management of a distribution
network to minimize or alleviate congestion problems from excessive wind power
production.

Smart grids are known for their complex dynamical environments where different
self-interested parties interact to trade energy and to maintain the stability of
power grids [1]. Multi-agent systems (MASs) can provide solutions and analysis
frameworks for these systems [66]. Most work situated in the intersection of
smart grids and MAS deals with smart devices or smart agents representing the
interest or preferences of prosumers in a multi-agent context where the agents
can negotiate in some form an outcome that is beneficial to them [30] [31].

The work described in this chapter focuses on applying MAS techniques to
solve a concrete and current real world problem. Demand-side management
(DSM) is used as the ANM technique of choice to resolve the problem of
upstream current congestion. The distinction is made between two phases
and we propose algorithms for both phases. The first phase deals with an
ahead of time planning phase where grid investment or reinforcement has to
be outweighed against demand-side management. A second phase considers a
real time situation for online allocation of ANM resources based on local wind
production forecasts. For online power flexibility allocation, two mechanisms,
a cooperative contract-net based mechanisms and a competitive qualitative
Vickrey auction (QVA) are implemented and compared in terms of allocative
efficiency.

3.2 Remedying congestion

This work defines a flexibility model that closely resembles the real world
products available. We focus on tertiary reserve under a dynamic profile
(R3DP) as the closest matching product that is relevant to this work because of
its focus on DSO-connected grid users to offer strategic reserve. Primary and
secondary reserves are not of use in this case because these reserves are meant for
transmission scale balancing. The problem discussed here is distribution local.
Furthermore, primary reserve is used for frequency control and secondary reserve
specifies injection by production reserves. The flexibility product description
that is used in this work is therefore proposed for DSO-connected grid users
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Figure 3.1: Example scenario for upstream current congestion. Left: Energy
flows from wind turbine to factories downstream and all excess production flows
upstream towards the TSO transformer for grid injection. Right: Factories
downstream are inactive and all energy flows upstream towards the TSO
transformer causing upstream current congestion.

that offer consumption increase flexibility according to the following constraints,
which are similar to the R3DP activation constraints specified by Elia, the
Belgian TSO:

• A maximum of 40 activations/year is allowed.

• All activations last max. 2 hours.

• The time between 2 consecutive activations should be at least 12 hours.

3.2.1 Offline allocation

Primarily, an offline optimal solution can provide an upper bound on the
maximum allocative efficiency that is attainable for given wind profiles and
flexibility in the system, constrained by activation constraints such as described
in the previous section. Optimally solving the allocation problem is done
in mixed-integer programming (MIP) model 1 by maximizing the remedied
congestion over time s(t) which in turn maximizes the allocation efficiency of
flexibility activations.

This problem formulation is shown in Model 1. The decision variable x(t, j)
represents the time periods t, each flexibility provider j is activating its flexibility,
defined by p(j). The main input for this model is the congestion profile
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c(t). Constraint (3.1) maps the remedied congestion variable s(t) to the
boolean variable x(t, j) where δT represents the number of settlements per
hour. Together, constraint (3.1) and (3.2) model the remedied congestion
as being the minimum of both the available congestion to remedy and the
activated flexibility. Constraints (3.3), (3.4) and (3.5) model the duration da
of each activation while constraint (3.6) models the inter-activation time di
between two consecutive events. Finally, constraints (3.7), (3.8) enforce the
maximum number of activations ma per provider. This model is the result of
a process in which constraints are defined in a mathematical model which are
then transformed into linear equations that can be used in a MIP model.

s(t) −∑
j

x(t, j) ∗
p(j)

δT
≤ 0 (3.1)

s(t) − c(t) ≤ 0 (3.2)

x(0 + k, j) − x(1 + k, j) ≤ 0 (3.3)

da −
da−1
∑
k=0

x(t + k, j) + (1 − x(t + da, j)) ≥ 1 (3.4)

(1 − da) − η− ∗ x(t, j) + γ

−γ ∗ x(t + 1, j) +
da−1
∑
m=0

x(t −m,j) ≥ 0
(3.5)

da+di
−1
∑
k=0

x(t + k, j) − da ≤ 0 (3.6)

NI

∑
t=0
x(t, j) −ma ∗ da ≤ 0 (3.7)

NI

∑
t=0
x(t, j) −ma ∗ da ≥ 0 (3.8)
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Model 1

maximize
t

∑ s(t)

subject to (3.1), ∀t ∈ T,∀j ∈ J

(3.2), ∀t ∈ T

(3.3), 0 ≤ k ≤ da − 1,∀j ∈ J

(3.4), 0 ≤ t ≤ NT − da,∀j ∈ J

(3.5), da ≤ t ≤ NT − 1,∀j ∈ J, γ = η− − ε

(3.6), 0 ≤ t ≤ NT − da − di + 1,∀j ∈ J

(3.7), ∀j ∈ J

(3.8), ∀j ∈ J

3.2.2 Online allocation

For solving the real-time allocation problem we study two different approaches
to the flexibility allocation problem. A cooperative setting relating to current
practice in industry is modeled. DSM participation is currently often regulated
by contracts and these contracts are enforced with significant fines and complete
exclusion from DSM programs. A strategy proof, qualitative Vickrey auction
(QVA) is implemented as a counterpart to the cooperative setting to follow
state-of-art proof of concept cases where flexibility market mechanisms are
modeled to allow all parties to act as market participants.

Both approaches are evaluated in terms of allocative efficiency which is defined
as the amount of excess energy that is actually reduced by DSM activations.
Any activation that leads to more energy reduced than the amount that was
causing congestion is considered inefficient. Both mechanisms are implemented
to follow a similar message protocol, shown in Figure 3.2. Every time period
of 15 minutes, the center agent (DSO) evaluates whether forecasts show that
congestion will occur and if so, will send out a call for proposals to all agents.
Agents then respond with a bid depending on their capabilities at that time
and the winning bid is sent an activation signal.
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Figure 3.2: A UML sequence diagram showing the communication flow for both
the cooperative and competitive mechanisms. All agents (agent n) submit bids
(ua1 from agent 1, etc.) to the DSO

Cooperative mechanism

In the cooperative mechanism, the winner is determined by a social choice
function F(Rn) which favors the closest bid of the form x = (xp, xs, xe) that
could resolve most of the congestion among all the bids, with xp representing
the capacity for increasing consumption in kW, xs and xe marking the start
and end times of the activation in units of time t. This function is defined
in (3.9) where C(t) is the function representing the congestion over time and
ε(x) represents the allocative efficiency for that bid.

F(Rn) = arg max
y∈Rn

(ε(y)) (3.9)
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ε(x) = ∫
xend

xstart

min(C(t), xp)dt (3.10)

Ties are broken in favor of the bid offering the lowest amount of power (xp) to
increase consumption with. Without this tie-breaking rule any agent offering a
contract with x̂p ≥ maxt∣xs<t<xe

C(t) has equal chance of being determined the
winner and subsequently getting the allocation.

Competitive mechanism

In the competitive mechanism, contract auctions are implemented. Contract
auctions are an application of qualitative Vickrey auctions (QVAs) [67], which
are known to be the only mechanisms that are individually rational, dominant
strategy proof and capable of selecting stable, Pareto efficient outcomes given
the assumption of weakly transferable utility [68]. The assumption of weakly
transferable utility does not hold because the center has single (positively)
peaked preferences which introduces a local maximum. Inspired by the work
in [68], a fixed and publicly announced tie breaking rule is used to guarantee
strategy proofness in the absence of weakly transferable utility. In this case,
however, Pareto efficient outcomes cannot be guaranteed.

The application of the QVA contract auction to this congestion case leads to the
following mechanism formulation in similar fashion to the formulations in [68].

(1) Initially, the utility function of the DSO agent is announced by way of
communicating the required power to remedy the congestion in this round
alongside a fixed tie breaking order over the outcomes.

(2) Each DSM agent in turn provides an offer to the DSO agent by way of a
sealed bid containing the tuple x = (xp, xs, xe) similar to the definition in
section 3.2.2.

(3) The agent that provided the highest bid is declared the winner with ties
broken according to the fixed tie breaking order in step (1). The agents
are informed of the outcomes and the winner is informed of the minimum
allowed bid that would have made him the winner.

(4) Lastly, the winning agent can activate the smallest amount of power that
would have still made him the winner were he to have provided that value
in his bid in step (2).
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#agents 1 2 3 4 5
Optimal 0.9896 0.9815 0.9863 0.9620 0.9574

Table 3.1: Optimal sample results

3.3 Evaluation and discussion

The optimal full knowledge allocation approach can deliver very efficient
allocations in general. The main drawback is that optimally allocating agent
power flexibility over a one year time horizon in 15 minute increments, leads
to very high resource requirements, in both CPU time and memory for the
branch-and-bound technique used for solving MIP problems.

The first result is that attaining 100% total efficiency is not possible in the
simplest case with 1 participating agent using the optimal allocation algorithm.
The results of the optimal allocation experiment are shown in Table 3.1 for up
to 5 agents. Further study into the flexibility required to solve these specific
current congestion problems is needed because currently available flexibility
products can not be used to attain 100% efficient allocations in the best case
scenario.

The second result in Figure 3.3 shows that the cooperative approach manages to
attain a higher allocative efficiency than the competitive approach. These results
also indicate that the difference in mean efficiency between both approaches
decreases significantly as the number of participating agents increases making
the difference between the two approaches negligible in terms of result when
many agents participate. Assuming that more than 10 agents would be located
in such a way that they can all be used to resolve congestion is, however,
unreasonable because all agents need to be connected to the same feeder, as
is illustrated in Figure 3.3. This is an interesting result because the use of
more market oriented mechanism like the QVA has useful properties such
as strategy proofness and the selection of stable outcomes. As more agents
participate, these benefits will outweigh the difference in allocative efficiency.
These results also indicate that from the point of view of the DSO it is beneficial
to maintain full control over the social choice rule used in the mechanism while
enforcing cooperation when the number of participating agents is low. This
occurs often in problems similar to the one discussed in this work because of the
location requirement where agents need to be physically connected to the grid at
locations that allow congestion to be resolved by their actions. This results also
indicate that in similar problems where this location requirement is not in place
and the number of participating agents can be significantly higher, that the
benefits from a competitive mechanism might outweigh that of a cooperative
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Figure 3.3: Results for up to 200 participating agents show higher allocative
efficiency of the cooperative (blue/higher) setting when compared to the
competitive (red/lower) solution.

mechanism. Transmission grid scale congestion problems might offer examples
where these locality requirements are less strict,

3.4 Conclusion

This work presents initial findings in a study to apply cooperative and
competitive MAS techniques to the problem of upstream current congestion.
Further results analyzing different metrics such as the actually resolved
congestion and different wind profiles are underway.

Further work is necessary to specify the exact flexibility product requirements
that are necessary for dealing with these current congestion problems. In future
work we will also analyze investment costs and compare these costs to other
ANM techniques such as storage.



Chapter 4

Combining DSM and Storage
to Alleviate Current
Congestion in Distribution
Grids

Chapter 3 showed that consumption flexibility alone is often not enough to
address local imbalances. Combining different ANM techniques such as DSM
and energy storage, can provide a technically feasible but possibly costly solution.
This chapter presents an evaluated investment and operational cost model for
an optimized combination of ANM techniques and contains the paper:

Kristof Coninx, Mohammad Moradzadeh, and Tom Holvoet.
2016. Combining DSM and storage to alleviate current con-
gestion in distribution grids. In 2016 IEEE PES Innovative
Smart Grid Technologies Conference Europe (ISGT-Europe), 1–6.
DOI:10.1109/ISGTEurope.2016.7856202

The definitions, analysis and supporting software are the result of discussions
between all authors. Kristof Coninx led the discussions and did most of the
programming and the writing. Mohammad Moradzadeh contributed the source
code for the prototype storage dimensioning algorithm and early versions of
the energy storage section in the article and Tom Holvoet gave feedback on the
writing.
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Abstract

Storing energy is one possible active network management (ANM) technique
for reducing wind turbine induced distribution grid congestion. However, in
most cases investment costs for installing storage solutions far outweigh the cost
for infrastructure upgrades. Our research shows that combining demand-side
management (DSM) and storage techniques can prove effective in reducing the
total investment costs in certain cases while increasing these costs in other cases.
In this work we qualify when DSM can prove beneficial to the total investment
cost of deploying ANM techniques and we quantify the amount of cost decrease
DSM can offer. We present cost models for storage and DSM and describe
ANM resource allocation techniques while considering real world regulatory
constraints.

4.1 Introduction

In efforts to meet the European Commission’s 20-20-20 objectives of increasing
the renewable energy production share in Belgium to 13% of the gross final
energy consumption by 2020, requires the installation of large wind farms
both on- and offshore[2]. Integrating wind turbines into existing distribution
grids can be troublesome when the existing cable infrastructure is not rated
to cope with increased current flows caused by added production elements [69].
Distribution grid congestion in this form can be harmful to the correct operation
of these grids and repairing damages caused by overheating power cables can be
costly. Measures to prevent damage exist in the form of curtailing wind turbine
production or upgrading existing infrastructure with more heat resistant cables.
Both of these options are costly because curtailment can mean that wind farm
owners might have to be compensated for the loss of income from their wind
turbines. Upgrading existing infrastructure is also a costly endeavor.

In this chapter we consider a combination of different active network management
(ANM) techniques as alternative measures to address distribution grid
congestion from increased wind turbine integration. These ANM techniques
are evaluated in projected investment costs over a 20 year business case and
compared to the cost of upgrading existing infrastructure.

This chapter is structured as follows. First, the problem context is described
in section 4.2 while the approach to addressing these problems by proposing
cost models and ANM allocation mechanisms are discussed in section 4.3.
Simulation results are discussed in section 4.4. Conclusions and future work are
described in section 4.5.
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Figure 4.1: Example scenario for upstream current congestion. Left: Energy
flows from wind turbine to factories downstream and all excess production flows
upstream toward the TSO transformer for grid injection. Right: Factories
downstream are inactive and all energy flows upstream toward the TSO
transformer causing upstream current congestion.

4.2 Problem context

A common problem with existing distribution infrastructure is related to the
static ampacity ratings of installed cables in a distribution grid [2]. When new
renewable energy generators are added to this infrastructure, the increase in
electric current in some parts of the cable network can cause temperatures inside
these cables to reach unsafe levels. The power rates of these generators are then
often limited or curtailed as a measure to ensure safe cable operation. Figure
4.1 shows a scenario where excessive wind power production rates combined
with low energy offtake from energy consumers can lead to upstream current
congestion. Considering that these excessive power rates only occur occasionally,
alternative remedies are investigated.

Literature describes ANM techniques for dealing with these forms of increased
power production related current congestion as alternatives to infrastructure
upgrades. While economic evaluation of different ANM techniques is not
novel [65], we focus in this work on the combination of multiple ANM techniques
and their associated installation and operation costs.
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4.2.1 Active network management

ANM techniques describe a class of techniques for actively performing steering
actions in the management of a distribution network to minimize or alleviate
congestion problems from excessive wind power production. In this work several
techniques are considered: dynamic line rating (DLR), energy storage and
demand-side management (DSM).

Dynamic line rating

DLR consists of temporarily increasing the static current limit on the cables
based on the actual cable temperature. Because temperature increases from
increased electrical current through a cable follow a hysteresis effect, the cables
are actually capable of dealing with increased current for a short while before
dangerous temperatures are reached. DLR makes use of these effects to allow
short peak power rates without wind power curtailment by changing the static
current limit to a dynamic current limit [70]. This dynamic limit is dependent
on external factors such as the make, model and type of cable, the surrounding
environment and the load profiles of production and consumption elements on
that cable. The main cost of such a solution is in installing temperature sensors
on existing cables which makes this technique an ideal complement to any other
ANM technique used [71]. Concrete test cases implementing DLR in Belgium,
have been positive [72].

Energy Storage

Energy storage elements installed at key location can deal with excess energy
by taking in a portion of the produced excess energy before it causes congestion
problems down the line. Existing work in the domain of storage allocation
describes the possibility of achieving up to 13% savings on consumer electricity
bills by installing residential storage devices [66]. At the moment, installing
consumer/industrial batteries for energy storage, remains expensive however.
Considering industry projects experiences in this field, recompensating green
energy certificates by curtailing wind energy is generally less expensive than
implementing a storage solution. Work in literature focusing on economic
viability of battery storage solutions to increase the penetration of renewable
energy sources in general are not in all cases positive [73].
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Demand side management

DSM is employed to increasing energy offtake from the grid at key moments.
In general, DSM is an umbrella term of techniques for influencing or controlling
the demand side of the balance equation between energy production and
consumption [9]. Different to most work in literature, this case requires power
flexibility providers capable of increasing their energy consumption to offtake
excess energy from the grid in stead of curtailing their energy consumption on
demand.

Drawbacks of using DSM in this context is that the physical location on the grid
of the flexibility provider is important [2]. Flexibility providers located upstream
of the wind turbines and behind the congestion points cannot alleviate the
congestion. This limits the scale of the DSM allocation problem because a large
number of available flexibility providers would not be a realistic assumption.
Assuming that for a specific problem, flexibility providers can be found in
adequate locations, we focus on solving congestion by using DSM.

4.3 Approach

In this work two profiles of wind turbine production over a period of one year, in
15 minute increments are considered. These wind production profiles cover two
distinct locations in Belgium. The wind profiles are boosted by 30% in terms of
produced power to simulate locally added generation capacity. Excess energy
in these profiles is defined as the amount of energy that surpasses the static
ampacity limits of existing cables. XLPE240 cables rated at 300A are taken
as reference cables deployed in a 15kV distribution grid with wind turbines
providing 3.2MW at 100% nominal power rates.

To remedy distribution grid current congestion, DLR is used first. The resulting
profile of excess energy is then used as input for DSM and Storage allocation
mechanisms, in that order. DSM is assumed to be employed first because
DSM activation constraints make it a less flexible ANM technique than storage.
Lastly, storage solutions are dimensioned and used for remedying all remaining
excess energy that is not taken care of by DLR or DSM. All ANM allocation
mechanisms are offline algorithms that employ full historic knowledge of the
wind profiles. Offline allocation can provide a lower bound on the associated
investment costs as online allocation is generally less efficient and can require
more ANM resources to achieve the same effects [2].
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4.3.1 Investment costs

Cost models are proposed for a 20 year investment business case and evaluated
against infrastructure reinforcement costs. These models define the yearly
costs for the employed ANM techniques by discerning fixed costs (Table 4.1),
marginal costs (Table 4.2) and maintenance costs (Table 4.3) with all monetary
values in euro (e) where Ndsm represents the number of flexibility providers and
(Emax

s , Pmax
s ) represents the storage dimensions. The parameter values chosen

in this work have been evaluated by a Belgian distribution system operator
(DSO) as reasonable. Final costs are calculated as the NPV over a 20 year
business case.

Table 4.1: Fixed costs for ANM techniques include DLR installation cost, DSM
cost for on site installation of DSM equipment and costs for buying energy
storage batteries.

Technique Symbol Value
DLR Cfdlr e1000
DSM Cfdsm e15000 ×Ndsm
Storage Cfsto e150 ×Emax

s +e150 × Pmax
s

Grid reinforcement Cfnet 104/meter cable

Table 4.2: Marginal costs for DSM includes reservation costs for reserving
flexible load capacity and is paid upfront.

Technique Aspect Symbol Value
DSM reservation cost Crdsm e30/MW

Table 4.3: Marginal costs include upkeep and maintenance cost for on site
equipment and maintenance cost for Storage. No maintenance cost for DLR is
assumed.

Technique Symbol Value
DSM Cmdsm 10%×e15000 ×Ndsm
Storage Cmsto e2 × Pmax

s

DLR Cmdlr e0

Besides many technical benefits, ANM is also capable of generating revenue. In
this work, curtailment reduction (R2) is also considered as a positive revenue
stream because revenue is generated for DSOs by not having to compensate
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wind turbine owners for green certificates lost because of curtailment. For
energy storage, a negative revenue stream (or cost) of compensating wind
turbine owners for energy lost during charging/discharging (R1) is also included
in the cost model.

4.3.2 ANM allocation

Dynamic line rating

DLR is applied to the base wind production profile using an activation
mechanism that allows four quarter hours of increased current, followed by
four quarter hours of limited current flow. Without other ANM techniques,
all excess production output is curtailed to maintain this limit. It is the DLR
mechanism that shapes the excess energy profile for other ANM techniques.

Demand side management

DSM allocation of a set of flexibility providers is performed using Algorithm
1. Algorithm 1 finds the largest volumes excess energy that is feasible given
the activation constraints and allocates DSM resources until no more feasible
allocations are possible. The activation constraints in this work are similar to
the constraints described in [2], which are the following:

• A maximum of 40 activations/year is allowed.
• All activations last max. 2 hours.
• The time between 2 consecutive activations should be at least 12 hours.

These constraints are similar to the constraints of the R3DP flexibility product,
the Belgian TSO offers for grid connected users. Our definition differs in that
we assume flexibility providers to be able to increase their consumption in stead
of limiting it. For this work, we draw realizations of power rates for simulations
from a gamma distribution Γ(a, r) with a = 1.37012, r = 677.926. This Γ
distribution passes the classical goodness-of-fit tests for a confidential industry
data set of R3DP clients in Belgium. These tests include the Komolgorov-
Smirnov [74] and the Anderson-Darling [75] goodness-of-fit tests.

In Algorithm 1, the findMaxFeasibleActivation procedure maximizes the
volume of excess energy present in the input profile congestion(T ) by grouping
d contiguous time periods with d the activation duration. For each allocation,
the activation period d and the inter-activation time ia after the activation time
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are marked in a binary data structure unavailable(T, J). This data structure
represents the availability of all flexibility providers (J) for all time steps
(T ). The function findMaxFeasibleActivation returns the start index of the
activation period containing the highest volume of excess energy or a negative
number indicating that no feasible allocations are possible.

Algorithm 1 DSM allocation algorithm
1: procedure GreedyCongestionReduction
2: done← false
3: while ¬done do
4: activationStart = findMaxFeasibleActivation()
5: if activationStart < 0 then
6: done← true
7: else
8: reduceCongestion(activationStart)
9: markActivation(activationStart)

10: end if
11: end while
12: end procedure

findMaxFeasibleActivation():

maximize
ts∈T

tsm
∑
t=ts

congestion(t)

subject to 0 = ∏
j∈J

1 −
tcm

∏
t=ts

1 − unavailable(t, j)

tsm =min(ts,max(T ))

tcm =min(ts + d,max(T ))

Energy storage

To solve the excess energy that remains after the allocation of DSM, storage
dimensioning will have to be performed. This section describes a generic discrete-
time model for energy storage and a storage dimensioning optimization problem
formulation similar to [76] but diverges from [76] in the specific implementation
of this model for the congestion cases and cost models used in this work to
evaluate the influence of DSM on total investment costs. First, the following
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generic discrete-time model for energy storage is used for storage capacity
allocation.

Es(k + 1) = Es(k) +Eex(k) (4.1)

Eex(k) = ηPs(k).∆T (4.2)

where

η =

⎧⎪⎪
⎨
⎪⎪⎩

ηc, if Ps(k) ≥ 0 (charging)
1
ηd
, otherwise (discharging)

(4.3)

subject to

0 ≤ Es(k) ≤ Emax
s (4.4)

∣Ps(k)∣ ≤ P
max
s (4.5)

where k denotes the present time instant tk = k.∆T , Es(k) the level of stored
energy at present time k (internal state of the storage), Eex(k) the energy
exchange with the storage at time k, Ps(k) the grid-side power exchange with
the storage at time k (charging from the grid (+ sign) and discharging to the
grid (- sign)), ηc and ηd charging resp. discharging efficiencies. Note that we
assume that ηc = ηd (round-trip efficiency ηrt is defined as the product of the
efficiency of charge and discharge ηrt = ηc.ηd). ∆T = tk+1 − tk is the duration of
each interval (time difference between two subsequent time instants e.g. k + 1
and k). Note that depending on the type of the storage technology, different
operational constraints on maximum power exchange as well as on maximum
energy capacity itself may apply. Emax

s denotes the maximum energy capacity
of the storage, and Pmax

s is the maximum rate of charge/discharge. We assume
in this work that the (absolute value of) maximum rate of charge Pmax−c

s and
maximum rate of discharge Pmax−d

s are equal. Thus,

∣Pmax−c
s ∣ = Pmax

s = ∣Pmax−d
s ∣. (4.6)

Using this storage allocation mechanism, it is relatively straightforward to
calculate cost metrics R1, the amount of revenue lost from not being able to sell
energy lost during charging and discharging of the batteries and R2 the amount
of revenue lost for compensating lost green certificates. Similarly, calculating
operational metrics such as Ec, the volume of excess energy remaining or
curtailed, is relatively straightforward. The following optimization procedure is
used to dimension the storage in order to minimize the associated investment
costs while resolving the remaining congestion.
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We will size the storage based on the following maximization problem:

maximize
(Pmax

s ,Emax
s )

NPV(Pmax
s ,Emax

s )

= −(Cfsto +C
m
sto .

N

∑
n=1

1
(1 + r)n

)

+R1 .
N

∑
n=1

1
(1 + r)n

+R2 .
NGC

∑
n=1

1
(1 + r)n

subject to Ec

Eproduced
< Eallowedc

In this formulation Eallowedc represents the maximum allowed percentage of
curtailment or remaining congestion according to the regulatory framework.
This percentage is relative to the total amount of energy produced by the
generators (Eproduced) over the study horizon.

Other parameters for setting up the business case are defined as follows.
Green certificate compensation (Rgc) is rated at 68.80 e/MWh, lost energy is
compensated at 50 e/MWh, the business case duration (N) is 20 years while
green certificates are compensated for 15 years. All cost are calculated in terms
of NPV at a discount rate r(%) of 3.5291.

4.3.3 Regulatory constraints

Because of the novelty of integrating green energy into the grid, the regulatory
framework wherein DSO, TSO and other parties have to operate can change
in the future. These frameworks provide guidelines and constraints for how
much curtailment is allowed and how generation side entities are compensated
for curtailment. In this work, different regulatory frameworks are considered
because the question of whether curtailment should be avoided at all cost is still
under debate [77]. These frameworks influence the cost model and allocation
requirements in the experiments. Concretely, the distinction is made between a
scenario where no curtailment is allowed and all renewable energy should be
injected into the grid and a scenario where 2% of the gross produced energy per
generator is allowed to be curtailed. In the latter case, lost green certificates
must be compensated to the wind turbine owner.
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4.4 Simulation results and discussion

In this section we discuss simulation results from applying the ANM techniques
to two different wind profiles P1 and P2. We consider both a regulatory scenario
where curtailment is allowed, but constrained to maximally 2% of the gross
output and a scenario where no curtailment is allowed and where storage must
cover all of the remaining congestion from DSM.

4.4.1 Setup

Two wind profiles are used as input for this work. Both profiles are gathered
from locations in Belgium. P1 represents a one year wind production profile in
the Antwerp harbor and P2 represents a one year wind production profile in
Zeebrugge. Figure 4.2 shows that P2 has significantly lower peak congestion
volumes than P1 and contrary to P1, P2 induces no congestion events that
last for more than 1 hour after the application of the same DLR activation
mechanism.
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Figure 4.2: A 125 hours sample of the two congestion profiles after DLR shows
that P2 is never congested for longer than 1 hour and has considerable lower
peak congestion.

4.4.2 2% curtailment allowed

For the regulatory scenario where 2% curtailment is allowed, the difference
between the two locations represented by P1 and P2 is clearly noticeable. Shown
in Figure 4.3, there is a distinct benefit in using DSM in combination with
Storage solutions in terms of total costs. This total cost benefit reaches an
optimum for around 6-8 agents indicating that the benefit is not linear in terms
of participating flexibility providers. Because the problem of distribution grid
current congestion is a very local problem and the location of the flexibility
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Figure 4.3: 90%CI for ANM investment cost for Antwerp, given 2% allowed
curtailment shows limited positive influence of DSM on total costs.
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Figure 4.4: 90%CI for ANM investment cost for Zeebrugge, given 2% allowed
curtailment shows negative influence of DSM on total costs.

provider is a crucial factor in its ability to help reduce congestion, it is not
unreasonable to assume that it will be hard to find large numbers of suitable
flexibility providers to participate.

For the Zeebrugge case P2, DSM is ineffective in reducing total investment costs.
This is shown in Figure 4.4. The cost for storage in case P2 is also considerably
lower because the total congestion remaining after the application of DSM is in
all cases much closer to the allowed 2% curtailment boundary.
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Figure 4.5: 90%CI for ANM investment cost for Antwerp, with any curtailment
prohibited, shows positive influence of DSM on total costs.

4.4.3 No curtailment allowed

Considering the regulatory scenario where no curtailment is allowed at all, the
overall installation cost are obviously higher because, in the end, up to 2% more
excess energy needs to be reduced by DSM and storage. Figure 4.5 shows a
total cost reduction benefit from using DSM to lower the storage dimensioning
requirements for the P1 case where for the P2 case, we see a similar ineffectiveness
of DSM to reduce the total cost as in the previous regulatory framework. The
main reason DSM is so ineffective in the P2 case shown in Figure 4.6 is that
each congestion event lasts for maximally 1 hour, while the DSM activation
constraints are specified to activate for hours after which the activated provider
is unavailable for 12 hours. This results in each activation having at least a
50% efficiency penalty for the same cost to the DSO with more excess energy
that needs to be handled by storage.

4.4.4 Grid investment

In all of the discussed cases, the total investment cost for the proposed
ANM mechanisms to reduce distribution grid current congestion is significant.
Projecting the one time infrastructure reinforcement cost for the lifetime of the
business case and comparing these costs with the best case total investment
cost for the four different cases discussed in this section, allows for computing
the lower bound on the length of cable needed before ANM techniques pose a
viable alternative. Table 4.4 shows the minimal cable length needed to achieve
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Figure 4.6: 90%CI for ANM investment cost for Zeebrugge, with any
curtailment prohibited, shows negative influence of DSM on total costs.

a positive business case for the different cases discussed under the pricing model
described in section 4.3.1.

Table 4.4: Best case minimal cable length needed for positive ANM business
case.

Antwerp P1 Zeebrugge P2
2%curt. allowed ∼ 53km ∼ 3km
No curt. allowed ∼ 200km ∼ 20km

4.5 Conclusion

In this work, different active network management techniques, such as DLR,
DSM and energy storage are combined to address the problem of distribution
grid congestion from wind turbine integration. ANM resource allocation
mechanisms and cost models are proposed for a 20-year business case and
evaluated using real world wind production profiles from a Belgian DSO covering
two different locations in Belgium where the alternative to ANM is wind
turbine curtailment. The distinction is made between two different regulatory
frameworks of which one allows up to 2% of curtailment and the other allows
no curtailment at all.
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Simulation results indicate that the influence that the DSM activation
constraints employed have on the cost effectiveness of DSM in combination
with storage, is not negligible. DSM activation constraints can impact the
efficiency of DSM in reducing congestion, leaving more excess energy to be
handled by storage. This in turn leads to higher required storage dimensions
and associated costs. Matching DSM activation constraints to the specific
profile of excess energy is therefore warranted when using DSM to augment
other ANM techniques in reducing distribution grid congestion.

Simulation results also show that generally higher peak congestion combined
with longer congestion event durations can lead to better cost effectiveness for
DSM when the remaining congestion needs to be solved by storage, for which
the costs increase linearly in both peak power rates and energy volumes storage
should cope with.

Finally, although there are cases where DSM can provide a reduction in total
ANM investment cost, in most cases, grid reinforcement seems to be a more
cost effective solution to address distribution grid congestion.

Future work includes investigating the precise influence of the DSM activation
constraints on DSM allocation efficiency and cost effectiveness of DSM. Also,
quantifying the sub-optimality of the allocation algorithms to provide a hard
lower bound on the resource requirements for operational ANM mechanisms
will be included in future work.
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Chapter 5

Who Gets My Flex? An
Evolutionary Game Theory
Analysis of Flexibility Market
Dynamics

Chapters 2 and 3 have discussed multiple use cases for consumption flexibility
illustrating that consumption flexibility can be employed towards various
goals and in various ways. Until flexibility markets facilitate the trading
of consumption flexibility among different parties, the nature of bilateral
agreements force flexibility providers to choose between which flexibility users
to do business with. This chapter presents an analysis of the strategic choice
flexibility providers face in choosing a partner to do business with and contains
the paper:

Kristof Coninx, Geert Deconinck, and Tom Holvoet. 2018. Who
Gets My Flex? An Evolutionary Game Theory Analysis of Flexibility
Market Dynamics. Appl. Energy 218, (May 2018), 104–113.
DOI:10.1016/j.apenergy.2018.02.098

The definitions, analysis and supporting software are the result of discussions
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on the writing.
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Abstract

Maintaining a real time balance between energy consumption and production is
challenging when faced with increasing penetration of renewable energy sources
(RES) because of the increased variability in generation output. Demand-side
management (DSM) techniques address this issue by steering consumers’ energy
offtake, thereby enabling further penetration of RES. This chapter addresses
the problem of overproduction from distribution grid connected wind generation.
We present and analyze two business cases in the Belgian-European energy
landscape for using upward consumption flexibility to deal with excessive wind
power injection. We focus on the perspective of the flexibility providers and
the strategic choice they face in choosing the business partner that maximizes
their expected financial compensation. Evolutionary game theory is used to
model this strategic choice and to provide a framework for quantifying realistic
financial compensation bounds based on real world market and wind production
data for multiple locations in Belgium. Results show that in a competitive
market setting compensation payments for flexible power consumption are higher
when dealing with higher wind forecast error levels. These results validate the
economic benefits of having accurate wind production forecasts.

5.1 Introduction

The ability to monitor and manage power delivery in real time has been defined
as one of the key components that distinguishes smart grids from conventional
power grids [78]. This component is crucial in supporting the adoption of
more secure, sustainable and innovative practices in energy consumption and
production. To this effect, the European Commission has put forth the 20-20-20
objectives [79] causing a gradual increase of installed renewable energy sources
(RES) capacity in Europe [80]. This increase in RES penetration has also lead
to an increase in energy production variability because of the less predictable
nature of renewables such as wind and solar.

Energy production variability combined with a growing energy demand, partially
caused by the increased adoption of electric vehicles (EVs) and plug-in hybrids,
has made it more challenging for system operators to maintain the consumption-
production balance. Maintaining this balance is paramount to the safe and
stable operation of power systems in general. In order to achieve this, flexibility
is a necessity both on the consumption and on the production side.

Although wind production resources have successfully participated in ancillary
service programs [81], these resources are still often subject to various incentive
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and support mechanisms that impede their entry into ancillary service markets.
In the Belgium energy domain, wind energy production is supported by green
certificates and priority dispatch. Energy produced under priority dispatch
should at all times be prioritized over other energy sources when satisfying
customer energy demands. For ancillary services from wind production to remain
economically viable, the loss of green certificates should also be compensated
when production curtailment is called for. With decreasing support for new
conventional power production facilities in favor of renewables, the flexibility
needed to curb system imbalances needs to come from the consumption side
until regulatory frameworks properly incentivize the use of RES in the ancillary
service markets. The authors of [82] further describe the relationship between
support schemes and system balancing with increasing wind production in more
detail and from a market perspective. Policy recommendations are made to
address challenges and issues stemming from certain support schemes used. This
work focuses on the use of consumption flexibility to address similar issues but
while retaining these support schemes. To the best of the authors’ knowledge,
addressing technical issues arising from renewable support schemes has gained
limited attention in literature.

Upward Consumption Flexibility

The use of consumption flexibility to modify the energy demand can be
categorized as demand-side management (DSM). For DSM, a distinction can be
made between upward and downward flexibility. In literature these two aspects
of DSM are often considered together in the form of load shifting. Load shifting
can be accomplished either through direct consumption shifting [83], by using
energy storage solutions [84] or through both simultaneously in the form of the
scheduling and charging of EVs and plug-in hybrids [30]. In literature the two
aspects are also considered separately. Making the distinction between upward
and downward flexibility products can lower the entry barrier for flexibility
providers by allowing them to only provide upward or downward flexibility.

A large body of DSM research is focused on the use of downward flexibility,
or the ability to decrease one’s consumption to satisfy a shortage of energy
(negative system imbalance) [9]. Examples of negative imbalance occurrences
can be found in winter times when heating requirements are generally higher
and solar production might under-perform because of the limited amount of
daylight hours.

On the other hand, the potential for production surpluses has been identified as
one of the major challenges faced in the effort to increase RES penetration [85].
This work focuses on using upward consumption flexibility or the ability to
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increase one’s power consumption to satisfy production surpluses (positive
system imbalances). Upward consumption flexibility has been proposed as a
valuable resource for facilitating wind production integration in contemporary
power grids as demonstrated in [86]. Positive system imbalances can, for example,
occur when unexpected peak production from renewables meets RES under
priority dispatch and conventional generation in must-run conditions [87]. Some
conventional generation units cannot be curtailed because they provide frequency
regulation services needed to maintain grid stability while other generation
units can be very uneconomic to scale down (e.g. nuclear generation). This
phenomenon has also been labeled as the incompressibility of power systems [88].
Clear market signals for the need of upward consumption flexibility during
periods with incompressible positive system imbalances have been observed for
Belgian and other European energy markets in the form of negative prices [89].
Negative prices can occur in the day-ahead, intra-day and balancing markets
under different conditions but all supporting the need for upward consumption
flexibility.

DSM literature often assumes the availability of flexibility providers. Such
an assumption is not unreasonable. The potential for upward consumption
flexibility in energy intensive industries has been described in the context of
increasing RES penetration in Germany by Paulus and Borggrefe [5]. Processes
capable of load shifting are demonstrated to be valuable by providing upward
flexibility. Similarly Lund et al. offer a comprehensive survey of DSM flexibility
potential in the context of variable RES. This survey includes load shifting
potential and upward flexibility in industry [90]. Upward flexibility is in
literature often defined as one aspect of load shifting. In terms of residential
flexibility, D’Hulst et al. illustrate the asymmetry of estimated available
flexibility in favor of upward flexibility [6]. In this work, similar assumptions
are made on the availability of consumption flexibility and more specifically,
upward consumption flexibility. Where literature often focuses on employing
consumption flexibility towards singular goals [91], this work contrastingly
considers competing interests in contracting flexibility providers for different
business cases.

Beside the use case of providing upward flexibility as an ancillary service to
the transmission system operator (TSO), two business cases for employing
this upward flexibility cost effectively are identified and presented. The first
business case benefits a balance responsible party (BRP) suffering imbalances
from wind forecast errors because of the wind production in their portfolios.
These imbalances usually incur imbalance costs that can be partially avoided by
harnessing consumption flexibility to offset these imbalances. Literature shows
that balancing of up to 1.5 MW of overproduction from wind generation can be
achieved using demand-side flexibility [92]. The second business case benefits a
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distribution system operator (DSO) aiming to avoid distribution grid congestion
from increased wind injection in medium voltage grids. Integrating new
wind production elements into existing distribution grids can cause congestion
problems that are usually mitigated by curtailing wind production. In such
cases, DSOs have to compensate the wind generation owners for their loss of
income. Employing consumption flexibility can, in some of these cases, avoid
curtailing wind generation [3].

To render these business cases positive for all parties involved, some form of
financial compensation must be offered to the flexibility providers participating
in these demand-response programs. From the point of view of the flexibility
provider, it is beneficial to choose the most lucrative business partner to offer
their flexibility. Depending on the business case, this flexibility might be
activated differently and therefore, financial remuneration can also vary between
business cases. Another factor influencing the amount of financial reward that
can be reaped from these programs is the amount of other flexibility providers
participating in the same program. Maximizing the expected reward gained by
making choices while these rewards depend on the choices of other parties, is
one of the application domains of game theory. The concrete focus of this work
is analyzing the strategic choice that flexibility providers face in deciding which
business partner to offer their flexibility by using tools from evolutionary game
theory (EGT).

Evolutionary Game Theory

In general, game theory provides tools and solution concepts for analyzing
strategic choice situations in terms of expected payoffs or rewards [26].
Concretely, game theory provides a mathematical framework for explicitly
modeling strategic behavior and interaction and analyzing resulting decisions,
making it ideally suited for evaluating different business cases from an economic
optimization point of view. Classical game theory has been well used to
model and analyze DSM mechanisms in literature. Direct negotiation between
consumers to achieve consumption peak shaving is analyzed in [93] while load
shifting is encouraged by a mechanism between consumers and utilities in [94].

In this work specifically, we use evolutionary game theory to model and analyze
how this strategic choice of multiple flexibility providers might change over
time given different parameters such as activation fees and the location of
wind energy resources. Tools from EGT literature can provide insight into
how robust the market shares of two different business cases competing for
a common resource, in this case the flexibility providers, are to changes in
economical and environmental parameters [95]. In general, EGT expands the



72 WHO GETS MY FLEX? AN EVOLUTIONARY GAME THEORY ANALYSIS OF FLEXIBILITY
MARKET DYNAMICS

notion of static games based on rational choice from classical game theory (GT)
literature to settings where populations of agents myopically improve their
decisions based on observed rewards [1]. Complete rationality is therefore not a
strict requirement when modeling evolutionary games, making EGT a useful
tool for both modeling and analyzing strategic choice situations in multiple
domains. Though not as prevalent as classical GT, applications of EGT can
be found in literature of various domains.

In the field of economics Agastya studies a refinement of the evolutionary stable
state solution concept from EGT in the context of k-double auctions [96]. EGT
is also used for analysis in the field of sociology where Kuran et al. focus on
cultural integration [97] and computer science where Altman et al. focus on
transport protocol in computer networks [98]. Even in the physics domain EGT
is used to study the thermodynamic limit of interacting particles [99]. The use
of EGT in smart grids literature, however, has been limited. To the best of
our knowledge, examples of the use of EGT in smart grids research are limited
to [100] where the benefits of participating in DSM for consumption peak
shaving are analyzed, [1] where consumption flexibility remuneration strategies
are compared and [66] where the adoption rate of micro-storage devices is
predicted using EGT. This work attempts to further close the gap between
applications of EGT and the energy domain literature.

Contributions and Outline

Our contributions in this work are threefold.

• We formulate two business cases for employing upward consumption
flexibility to address issues arising from wind turbine integration under
renewable energy support schemes. These business cases offer a novel
perspective on the use of consumption flexibility under support schemes
and are situated in the current-day European power systems context.
The value streams relevant to these business cases are elicited in section
section 5.2.

• We describe an approach for performing strategic choice analysis between
two competing alternatives using EGT (section 5.3) to demonstrate the
applicability of EGT in energy literature.

• We present an analysis of market share dynamics with two competing
actors having their own business case in employing upward consumption
flexibility to alleviate problems caused by wind generation and renewable
energy support schemes (section 5.5). This analysis is performed using
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real world market and wind production data through simulation using the
model described in section 5.4.

Finally, the conclusion and future research directions are presented in section 5.6.

5.2 Business cases

Figure 5.1: Multi-actor business model for the use of upward flexibility.

Multiple actors are involved in the smart grid domain, each with their own
business cases. In this section we present a selection of business cases for
actors involved in grid balancing and their main activities in the Belgian power
systems context, relevant to this work. Although this study focuses on the
Belgian energy landscape, the concepts presented here can be generalized to
different European settings, especially when considering the current efforts in
European energy market harmonization [101]. The e3value notation [102] is
used to concisely represent the business case model in Figure 5.1. This notation
allows for a graphical representation of the value streams and exchanges between
different actors. The exchanged values can be both of a financial nature e.g.
money or of a material nature, e.g. goods such as electricity. For example,
in the model shown in Fig. 5.1 the electricity requirement of industrial and
residential consumers alike is satisfied by a electricity retailer that also serves as
a BRP for customers in its portfolio. Electricity is delivered to the consumers
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at a certain price which includes transmission, distribution and other fees. The
retailer satisfies customer electricity needs through the market operator or by
using the wind energy providers in their portfolio.

Our model differs from the model in [103] by assuming that the connection of
industrial consumers to the distribution grid is a direct contract or transaction
between the DSO and the industrial consumers in stead of an agreement
brokered by the retailer as is the case with residential consumers. Another
difference from [103] is in the assumption that wind energy producers cannot
financially be held responsible for BRP imbalances caused by forecast errors.

The first of the two main business cases discussed in this work is the case of a
BRP looking to avoid costly imbalance payments by using upward consumption
flexibility to compensate wind forecast induced imbalances in their portfolio. The
second case describes a DSO that avoids wind turbine curtailment compensation
by using those same flexible energy consumers.

5.2.1 Portfolio imbalance reduction

The TSO is responsible for the real time balancing of production and
consumption. In the current balancing mechanism every grid access point
is managed by a BRP. In Belgium these BRPs are called Access Responsible
Parties (ARP) but we will keep to the BRP nomenclature for the remainder of
this work.

The balancing mechanism works in part by having BRPs nominate their
projected production and consumption to the TSO. These projections are based
on the amount of energy sold and bought on the day-ahead market, through
bilateral trading or production from their own RES. Nominations should be
submitted before the gate closure time the day before the delivery day.

With increasing penetration of RES such as wind energy producers, generating
accurate production-consumption balance forecasts has become increasingly
challenging [104]. Realtime imbalances, i.e. unpredicted imbalances occurring
after the nomination but before delivery, are usually settled using the intra-day
or the balance market where prices can be high, or through the TSO’s ancillary
services, for which imbalance fees must be paid to the TSO. These imbalance
fees or penalties can also be quite costly compared to regular energy tariffs. It is
possible that the imbalance of a BRP portfolio is of opposite sign as the global
system imbalance. In such cases the portfolio imbalance is seen as beneficial to
the grid as a whole and the BRP can be compensated accordingly.

As an alternative to paying the imbalance fees to the TSO, this business case
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employs flexible industrial consumers to provide demand response services with
relatively short term activation. These services are only used in situations
where the portfolio imbalance is aggravating the global system imbalance. In
this particular implementation, we only focus on flexible consumers providing
upward flexibility (i.e. the ability to increase consumption on demand). Upward
flexibility is only useful for correcting positive portfolio imbalances. In theory,
the business case could easily be extended to use both upward and downward
flexibility to reduce imbalances. We limit ourselves to upward flexibility, however,
because this allows for a more fair comparison between the grid congestion
avoidance business case in section 5.2.2.

5.2.2 Distribution grid congestion avoidance

The main business case of DSOs is in maintaining and operating a distribution
grid that transports electrical energy from the transmission grid to the end user.
Ensuring the infrastructure remains stable and capable of handling increasing
volumes of electricity is a costly endeavor. This effort has become even more
challenging with the increasing demand from EVs and increased production by
local distributed generation instances [1].

A specific problem with integrating wind turbines into existing distribution
grids is that some parts of the distribution cable network can overheat because
of excess currents from peak wind power injection [2]. Current practices by
DSOs involves curtailing wind energy producers when peak injection tends to
overload grid segments. Wind energy providers lose green certificate bonuses
during these curtailment events and have to be compensated by the DSO for
both the lost green certificates and the lost income from renewable generation.
As an alternative to production curtailment, this work presents an alternative
for the DSO in using distribution connected industrial consumers.

If connected at key locations in the distribution grid topology to consume
energy excesses during peak injection events, industrial consumers with upwards
consumption flexibility can be used to avoid production curtailment. In practice,
flexibility providers will divert the flow of excess energy away from congestion
points by increasing their own consumption. These flexible consumers will be
financially compensated for the activation of their flexibility by making use
of budget resources otherwise spent on grid reinforcement and/or curtailment
compensation.
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5.2.3 Relation between business cases

The business cases described in this work are assumed to be mutually exclusive
from the point of view of the flexibility provider. The reason for this exclusivity
pertains to the formal contracts that represent the bilateral agreements between
flexibility users and providers. These contracts specify activation constraints for
how and when consumption flexibility is available for use. Activation constraints
benefit the flexibility user or contractor by guaranteeing the availability of
consumption flexibility when required within the bounds specified in the contract.
The benefits for the flexibility provider in formalizing activation constraints
is that providers are protected from disruptive use of consumption flexibility
by setting bounds on when this flexibility can be called upon. Contracts
guaranteeing availability of a service from one party while simultaneously
setting bounds on this availability often requires exclusivity clauses.

5.3 Approach

In this chapter we follow the modeling and analysis approach described in
chapter 2 where we use evolutionary game theory (EGT) to model a population
of agents facing a choice between two alternative actions. Agents in this
terminology are flexibility providers willing to provide consumption increase
flexibility on demand expecting financial compensation. A concrete action
translates to choosing a party to do business with. This party requires
consumption flexibility and is willing to pay for it. The percentage of agents
choosing to do business with a flexibility user represents the market share within
the population of agents and provides insights into the business case viability
of that particular flexibility user. A common problem with game theory (GT)
and its use in applied research is that relying too heavily on game theoretic
modeling abstractions can negatively impact the relation to the real world
concepts being modeled. In other words, the real world applicability of the
research can be damaged by models made to fit the game theoretic framework
more than the real world abstractions. To avoid this issue, EGT tools are in
this work mainly used for analysis purposes. Agent payoffs for participating
in DSM business cases are heuristically determined through micro-simulation.
To acquire concrete market share data, extensive simulations are performed for
different population configurations to fill a payoff matrix. This payoff matrix
contains entries mapping a vector representing the number of agents choosing
each action to a vector with expected payoffs for each agent.

In classic GT, strong assumptions are made concerning the rational behavior
of all players. EGT requires less strict rationality assumptions. The only
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assumption is that players myopically improve their choice based on some
imitation scheme [60]. We employ selection dynamics [58] to gain insight into
how the market shares evolve over time when agents interact and compare
payoffs with each other. Selection dynamics are used to model rational choice
between two different business cases for employing flexibility in repeated pairwise
interaction where the providers compare the gained revenues from their choice
of business parter and change their choice accordingly. As concrete selection
dynamics, we use the replicator dynamics to model market share over time as a
system of ordinary differential equations (ODEs). This allows the use of classic
well known techniques for analyzing dynamical systems [43].

The general replicator equations for N agents and two actions to choose from
are then given in (5.1) following the notation used in [32].

⎧⎪⎪
⎨
⎪⎪⎩

ẋ1 = x1[u(e1, x) − u(x,x)]

ẋ2 = −ẋ1
(5.1)

with u(e1, x) representing the average expected payoff of an agent choosing
action 1 when the population is in state x and u(x,x) representing the overall
average expected payoff for an agent from a population in state x. u(e1, x) and
u(x,x) are given by (5.2) and (5.3) in function of the payoff matrix that can
be accessed by function f(i)k where f(i) returns an expected payoff vector for
a population state where i agents choose the first action and N − i agents the
second action.

u(e1, x) =
N−1
∑
i=0

(
N − 1
i

)xN−i−1
1 xi2f(N − i)1 (5.2)

u(x,x) =
2
∑
i=1
xNi f(N −N(i − 1))i+

N−1
∑
j=1

xN−j
1 xj2

S

∑
k=1

(
N − 1
j − k − 1

)f(N − j)k

(5.3)

Finally, we analyze the critical points of these equations in terms of stability
and draw conclusions about the probability of a certain stable state in the
population occurring given the initial population. We take into account the
worst case and best case bounds based on the 95% confidence intervals of the
simulated payoff results.
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5.4 Simulation model

The concrete scenario in this work involves a group of flexibility providers
having to choose between a BRP employing the portfolio balancing business
case discussed in section 5.2.1 and a DSO employing the congestion avoidance
business case discussed in section 5.2.2. The flexibility providers sign up for one
year contracts with either flexibility user, discretized in 15 min. time windows.

5.4.1 Flexibility providers

Flexibility providers or agents in this model, represent small to medium size
industrial consumers. The model used in this work makes several assumptions
concerning the agents that represent the flexibility providers. Agents are for
example capable of increasing their energy consumption on demand. Examples
of upward flexibility providers are companies with processes containing thermal
buffers or companies with on site energy storage solutions. The agents can be
asked to activate their flexibility, which corresponds to increasing their energy
consumption, within 15 min. after activation. Flexibility provider agents are
also assumed to be physically connected to the congested feeder of a 15 kV
distribution grid in such a way that increasing the consumption of the provider
would mitigate the congestion. Additionally, the agents are part of a BRP
portfolio.

Flexibility providers are realized with flexible power rates drawn from a gamma
distribution Γ(a, r) with a = 1.37012, r = 677.926 fitted to a confidential industry
data set of clients of the R3DP flexibility product offered by the Belgian TSO.
This Γ distribution passes the classical goodness-of-fit tests for the industry
data set. These tests include the Komolgorov-Smirnov [74] and the Anderson-
Darling [75] goodness-of-fit tests. The offered flexibility is then, in turn, subject
to activation constraints similar to the constraints of R3DP to mimic strategic
reserve constraints found in industry today. As such, the number of activations is
limited to 40 times in a single year, each activation is restricted in duration to two
hours and an activation cannot occur within 12h after a previous activation [2].

Finally, flexibility providers can myopically compare financial compensation
results with other flexibility providers facing the same choice between doing
business with either the DSO or BRP. Business is conceptually modeled by
short term bilateral agreements between the provider and user of flexibility.
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5.4.2 Flexibility users

The two main parties requiring consumption flexibility considered in this work
are the DSO and the BRP, with their relevant business cases discussed in
section 5.2.

Input data

Both flexibility users in this scenario share a common data source as a business
case driver. Wind energy resources are a cause of BRP portfolio imbalances
when wind production forecasts differ from actual production values. These
resources can also cause distribution grid congestion when existing infrastructure
cannot cope with excessive production.

Industry datasets containing wind power production profiles are used as input
data for the flexibility users. They represent distribution grid connected wind
turbines that are also part of a BRP’s production portfolio. These datasets
contain profiles for different locations in Belgium with their own wind conditions
and span 12 month periods in 15 min. increments. Other data sources containing
publicly available market price data and system imbalance data are also used.
Three major assumptions are made in this model. First, flexibility activation is
assumed to not influence market prices. This is called the price taker assumption
in literature [105]. Secondly, perfect foresight of the input data is assumed to
allow business case comparisons at allocation efficiency upper bounds. Both
assumptions are common in demand-side flexibility literature [106]. Finally,
modeling the rebound effect is reserved for future work.

For the BRP business case, the wind production profiles are transformed to
imbalance data by applying power forecast error data from literature to the
production profile data. ERCOT error data from [19] is used to generate
forecast error induced imbalance data. In this work, forecast errors are assumed
to be normally distributed and this assumption has gained valid critique in
literature. For example, [107] proposes the beta distributions as a better fit
while Hodge et al. propose Cauchy-Lorenz distributions [108]. In future work
we will analyze the difference that the choice in error distribution has on the
results. Finally, not all imbalances incur imbalance penalties. In some situations
a local portfolio imbalance can help compensate a global system imbalance. In
such cases, consumption flexibility should not be used to reduce a portfolio
imbalance. To account for these situations, industry data sets containing net
regulated volume information per quarter hour are used. The imbalance is not
considered when the total net regulated volume is of opposite sign than the
current portfolio imbalance.
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For the DSO, excess energy is identified as energy that should be curtailed
according to the dynamic line rating (DLR) mechanisms used. DLR is an active
network management (ANM) technique that differs from using static cable
ampacity limits by allowing excess currents for a limited time because of the
temperature hysteresis effect inside the cables [3]. The DLR mechanisms used,
shapes the congestion profile by marking which energy volumes are excessive
and require production curtailment or consumption increase to avoid dangerous
cable temperature levels. The specifics of the DLR mechanism used are outside
the scope of this article and merely provide a means to define excessive energy
volumes as a static ampacity limit would have.

Flexibility allocation

To ensure a fair comparison between the two business cases, both users
competing with each other for market share are provided with the same wind
based input data and employ the same flexibility allocation mechanisms. The
OptaPlanner [109] optimization library is used to optimize the off-line scheduling
of flexibility to imbalance or congestion volumes depending on the business
case. OptaPlanner is well known as a constraint satisfaction solver and planning
engine and combines optimization heuristics and meta-heuristics with efficient
score calculation and constraint modeling. The flexibility activation allocation
problem is formally defined as the tuple:

⟨T ,C,P,R,D,I,N⟩ ∶= activation scheduling problem

where
T ∶= number of “time periods”, T > 0
C ∶= function mapping time

periods to excess
energy volumes, C ∶ {1, ...,T } ↦ R

P ∶= set of flexibility providers, ∣P∣ > 0
R ∶= function mapping providers

to flexible power rates, R ∶ P ↦ R
D ∶= activation duration D > 0
I ∶= minimum time between

two consecutive activations I > 0
N ∶= amount of allowed flexibility

activations N > 0

This problem defines excess energy volumes for T 15 min. time periods and a
set of flexibility providers along with the contractually determined activation
constraints described in section 5.4.1.
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For solving the activation scheduling problem, the set of flexibility activations
A ⊆ {1, ...,T } × P is constructed along with the helper functions M ∶ A ↦

{1, ...,T } which yields the start time for activations and B ∶ A ↦ P which
yields the flexibility provider that is being activated for each tuple (ti, pi) ∈ A.
These helper functions are defined merely for the sake of convenience. For
each flexibility provider p ∈ P, A contains N activation events ai ∈ A for
which B(ai) = p. This is enforced by maintaining constraints (5.4) and (5.5)
on A where S represents all subsets of A for which the condition holds that
all activation events in the subset map to the same flexibility provider under
mapping function B. Alternatively, S can be more elegantly defined as the
quotient space S ∶= A/R_B when the equivalence relation, induced by function
B is denoted by R_B.

∀S
∗
∈ S ∶ ∣S

∗
∣ = N (5.4)

∣A∣ = N × ∣P∣ (5.5)

S ∶= {A
∗
⊆ A∣(∀ai, aj ∈ A

∗
)[B(ai) = B(aj)]} (5.6)

The optimization of the flexibility activation allocation problem is achieved by
determining the start times (ti) of the individual activations that maximize the
objective function. The objective function given in (5.8) maximizes the excess
energy volumes resolved by activating flexible consumption where the function
G ∶ {1, ...,T } ↦ R denoted in (5.7) defines the amount of flexibility activated
during any given time period. 1

G(t) ∶= ∑
ai∈A
R(B(ai))[M(ai) ≤ t <M(ai) + D]) (5.7)

max ∶ ∑
t∈{1,...,T }

min(C(t),G(t)) (5.8)

To ensure that an activation schedule adheres to the activation constraints
agreed upon by flexibility providers and users, the following hard constraints
are enforced:

1The definition given in (5.7) employs the conditional summation notation used in [110].
In this notation the condition that must resolve to true before the value of a variable is
allowed to be taken into account for summation, is put in square brackets behind the variable
in question.
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∀ai, aj ∈ A ∶ B(ai) = B(aj) Ô⇒ (5.9)

∣M(ai) −M(aj)∣ ≥ D + I (5.10)

∀ai ∈ A ∶ M(ai) + D ≤ T (5.11)

Constraint (5.10) enforces that no two activations of a single provider may occur
within the inter-activation time period determined by the contract between
provider and user. Constraint (5.11) enforces that activations start within the
time frame bounds.

We use a state of the art heuristic search algorithm for solving the allocation
problem [111][112]. The optimization algorithm consists of two phases. In
a first phase, the first fit decreasing (FFD) construction heuristic from bin
packing literature [113] provides a planning solution that satisfies the activation
constraints for all participating flexibility providers. The construction heuristic
allocates first the activation events that are most difficult to plan, only
considering activation events already allocated before. Difficulty is determined
by the flexible power rate of the flexibility provider and the activation constraints
the flexibility user must adhere to. The second phase is a local search phase
using Tabu Search [114] to further increase the planning solution by maximizing
the congestion or imbalance resolved by the flexibility providers. The local
search phase is bound in time in a hardware independent way to ensure fair
comparison between different simulation runs. It must be noted that the
flexibility activations are allocated to the complete imbalance or congestion
profiles. Complete foresight is assumed and results in this work provide upper
bounds on the efficiency of the allocations attainable within the time bounds
set. The objective function and constraints are modeled in OptaPlanner using
the Drools rule engine [115].

Remuneration

In terms of financial compensation all flexibility providers are remunerated on
a pro rata activation basis. This means that for every activation of flexibility,
which all last for 2h, the activated energy volume is compensated in proportion
to the available budget for the time periods during which the activation occurs.
The size of the budget available to flexibility users, varies per business case.

For the BRP, public datasets of imbalance prices per quarter hour are used to
seed the budget caps. Whenever an imbalance fee should be paid, a portion
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of that fee is used to compensate a flexibility provider for their activation in
proportion to the imbalance fee that has been avoided by that activation.

For the DSO, activations are compensated at a fixed price/kWh rate as part of a
sensitivity analysis to determine which price rates can maintain positive business
cases. It should be noted that a price point exceeding the green certificate
compensation value in case of wind turbine curtailment is unfavorable.

5.4.3 Deployment

Simulations are deterministic and repeatedly (R = 400) performed with different
random seeds using the open source GridFlex simulation framework [21]. This
simulation framework has been developed in house and uses JPPF [116] to
deploy simulation experiments on a computing cluster consisting of up to 95
quad core desktop computers.

5.5 Results

This section presents the analysis results of the market share dynamics of
flexibility users competing for the business of flexibility providers. The financial
compensation offered by flexibility users is the main component influencing these
dynamics over time. The systems representing these market share dynamics are
defined by the heuristic payoff values described in section 5.3. These dynamical
systems and their critical points can be visualized by phase plots as shown in
the example in Fig. 5.2. Phase plots for games where two distinct actions are
possible are used to represent the critical points of the dynamics. Depending
on the specific payoff results, these critical points can either form the boundary
between two basins of attraction. In this case critical points are called repulsors
and are denoted by λR. Critical points can also be the center of a basin of
attraction in which case they are called attractors, denoted by λA. In the latter
case, the critical point is an evolutionary stable strategy (ESS) of the game
when using replicator dynamics [32].

Results in this work all present unique ESSs even though the number of critical
points in a system of replicator dynamics can maximally equal the number
of flexibility providers participating. These results correspond to a market
that converges to a stable market share equilibrium over time, as illustrated in
Fig. 5.2. In stable equilibrium, flexibility providers will not rationally want to
change the partner they are in business with because it would mean an expected
loss of income.
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0.320 1
x1 ∶

Figure 5.2: This phase plot example shows the replicator dynamics for a game
played by N providers. Any initial population proportion choosing to do
business with the BRP would move to the stable equilibrium of 32% of clients
choosing the BRP in stead of the DSO.

Results are shown for varying compensation values offered by the DSO with
both 95% confidence lower and upper bounds for these values to indicate the
effective financial range the DSO needs to operate in to remain competitive.
These bounds are based on the 95% confidence intervals of the payoff samples
generated by simulation. These results are shown for sites at two different
locations, one for wind production profiles from the Antwerp harbor and one for
profiles from the coastal city of Zeebrugge in Belgium. While relatively close in
geographic distance, different patterns of power production can be observed for
these locations, possibly caused by different micro-climates at these locations.
Both sites are therefore analyzed and compared to qualify the effect of locational
differences on the market dynamics.

The number of participating flexibility providers has been denoted as N .
Low values for N can provide too small a sample for inferring stable market
equilibrium points. The delta between a stable market share equilibrium and
the closest actually attainable population distribution can be as high as 25%
(e.g. in games with only 2 agents). In such cases simulation results for varying
flexibility provider parameters show higher variability than results obtained
from simulation with more participating flexibility providers. For a fixed price
point, results shown in Fig. 5.3 illustrate this decrease in variability as the
number of participating agents increases. These simulation results are obtained
with equal sample sizes for every number of participating agents. While too
few participating providers leads to unfavorably high variability, assuming
that many flexibility providers are located at key points of distribution grid
infrastructure to reduce current congest is also unreasonable. Simulation results
are therefore shown for N = 8. Fig. 5.3 shows that equilibrium results and
confidence somewhat stabilize from 8 flexibility providers and more.

Because of lacking forecast error data for the specific locations used in this
study, multiple forecast error data profiles are used as part of a sensitivity study.
We distinguish between three levels of power forecast error with the baseline
corresponding to a normal distribution X ∼ N(0.0117,0.1187), modeled after
the day-ahead forecast error data for the ERCOT system described in [19]. To
analyze the effects of forecast error data variation we also consider distributions
Y ∼ 2 ∗X and Z ∼ X

2 .
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Figure 5.3: These results show that uncertainty decreases as the number of
participating flexibility providers increases for a fixed DSO price point using
the Antwerp data set.

5.5.1 Antwerp

The results for the Antwerp harbor location, shown in Fig. 5.5, shows the
stable market share equilibrium for different DSO compensation price points.
BRP imbalance data is generated based on power forecast error distribution
X. Fig. 5.6 and Fig. 5.7 show simulation results for respectively higher and
lower power forecast error distributions Y and Z. These results indicate that
the price points for DSOs to remain competitive are higher when competing
BRP portfolios contain higher imbalance volumes. Higher imbalance volumes
in BRP portfolios intuitively allow for more opportunities to use consumption
flexibility than portfolios with lower imbalance volumes. This leads to a larger
compensation budget that can be used by BRPs to pay providers for their
flexibility. This in turn drives up the compensation prices for competing DSOs
wanting to remain competitive.

As BRP portfolio imbalance volumes increase, the competitive margins for
DSOs also become larger. This is primarily caused by the increase in BRP
payoff results that follows the increased opportunity costs from larger imbalance
volumes that the BRP has to correct. Compensation budgets are determined
by the imbalance penalties that would be incurred if no consumption flexibility
is used. Another factor driving up compensation prices for competing DSO
that want to remain competitive is the direct effect that power forecast error
distribution variability has on the percentage of useful allocation of consumption
flexibility to the imbalance data. The allocative efficiency metric E can be
defined by the ratio of resolved excess energy to activated flexibility. This
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metric, described in (5.12), is used to show the difference in allocative efficiency
when using the power forecast error distributions X,Y and Z. These result in
Fig. 5.4 show less efficient allocations with lower imbalance volumes. Besides a
lower mean allocative efficiency results from using the Z distribution, also a
lower variability in allocative efficiency can be noted.

E ∶= ∑
t∈{1,...,T }

min(C(t),G(t))

G(t)
(5.12)

The amount of compensation to be expected from doing business with the BRP
decreases as the imbalance volumes that are effectively resolved by consumption
flexibility decreases.

Forecast error distribution
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Figure 5.4: 95% confidence intervals of allocative efficiency show that lower
forecast error volumes cause lower efficiency in flexibility activations.

5.5.2 Zeebrugge

The results for the Zeebrugge location in Belgium are based on the same relative
power forecast error data discussed in section 5.5.1 but with different power
production profiles because of the difference in location. Fig. 5.8 shows the
stable market share equilibrium for different DSO compensation price points
with forecast error data distributed according to X. Fig. 5.9 and Fig. 5.10
show simulation results for respectively higher and lower power forecast error
distributions Y and Z.

The trends in the results for this location show significant similarities to the
results of the Antwerp location discussed in section 5.5.1 in that higher forecast
error induced imbalances at BRP side lead to higher competitive price ranges.
Similar to the Antwerp case lower imbalance volumes again lead to decreased
efficiency in allocation for BRPs, which in turn leads to lower competitive price
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Figure 5.5: Phase plot results for multiple DSO compensation price points show
the competitive price ranges for the Antwerp location at base imbalance levels.
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Figure 5.6: Phase plot results for multiple DSO compensation price points show
the competitive price ranges for the Antwerp location at high imbalance levels.

ranges in equilibrium. It is interesting to note, however, that the competitive
price ranges observed in the results between these two different locations do
quantitatively differ under similar BRP forecast error data profiles. This
difference is more pronounced with higher forecast error volume profiles and
become negligible as lower forecast error volumes are used.

5.5.3 Lessons learned

Summarizing the lessons learned from analyzing simulation results where a
DSO and a BRP compete for consumption flexibility provided by small to
medium sized industrial consumers we note that:

• Higher BRP power forecast inaccuracies lead to higher imbalance volumes,
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Figure 5.7: Phase plot results for multiple DSO compensation price points show
the competitive price ranges for the Antwerp location at low imbalance levels.
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Figure 5.8: Phase plot results for multiple DSO compensation price points
show the competitive price ranges for the Zeebrugge location at base imbalance
levels.

which in turn lead to higher possible compensation budgets. In these
cases, DSOs are forced to increase their financial compensation margins
to remain competitive.

• Different locations have different power production characteristics which
in turn lead to different base BRP portfolio imbalance levels. Quantitative
conclusions drawn from this study are therefore location specific.

• The location specific differences in equilibrium results are less pronounced
with lower forecast error levels.
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Figure 5.9: Phase plot results for multiple DSO compensation price points
show the competitive price ranges for the Zeebrugge location at high imbalance
levels.
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Figure 5.10: Phase plot results for multiple DSO compensation price points
show the competitive price ranges for the Zeebrugge location at low imbalance
levels.

5.6 Conclusion

Maintaining the balance between production and consumption becomes
increasingly challenging with the adoption of more RES in efforts to create more
sustainable future power grids. Both consumption flexibility and the technical
know-how to employ this flexibility will be required in order to maintain this
balance in real time. Using DSM techniques effectively towards this goal in
light of increasing integration challenges, is one of the key features that defines
smart grids.

In this work, different business cases are presented for using upward consumption
flexibility to deal with issues related to the integration of wind turbines into
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existing distribution grids. We focus on the strategic choice faced by flexibility
providers in choosing which business partner to do business with in order to
maximize financial rewards for offering consumption flexibility.

In our model, several assumptions are made. The wind turbines that serve as
the primary input data source are assumed to be connected to 15 kV distribution
feeders and part of a BRP portfolio. Another assumption is that flexibility
providers are located on the same distribution feeder as the wind turbines
and that these flexibility providers are able to provide upward consumption
flexibility on demand. More specifically, they are physically connected at a
location that allows the reduction of current congestion. We also assume that
all participating flexibility providers have a means of pairwise comparing payoffs
with other providers. Lastly, the allocation of flexibility to imbalance or current
congestion profiles is done with perfect foresight to provide upper bounds on
the effectiveness of DSM. In reality, real time planning of flexibility activations
will result in less efficient allocations and less possible value for money for the
flexibility users.

Results from extensive simulations show that higher BRP forecast inaccuracies
lead to higher compensation budgets needed by DSOs to remain competitive.
These results stress the importance of having accurate wind power production
forecasts when faced with increased penetration of variable RES. Results also
show that depending on the location where wind production data is gathered,
DSO margins for remaining competitive will differ. The framework for analyzing
business partner choice dynamics of flexibility providers can be used by DSOs to
estimate their market position and to help inform future investments decisions
regarding the optimal use of RES. Other power system involved parties can also
benefit from this framework. Flexibility providers can make informed decisions
on who to provide flexibility to and flexibility aggregators can employ these tools
to help schedule flexible consumption to different parties requiring flexibility.

Future work includes analyzing the effects that different BRP forecast error
distributions and different activation constraints can have on the payoff dynamics.
Validating these results while weakening the assumption of perfect foresight
is also important future work. Incorporating real time resource allocation
techniques might shed a different light on the market dynamics at play between
two competing parties that can use consumption flexibility. Furthermore, the
model presented in this work assumes two mutually exclusive business cases
for flexibility providers. In future work this assumption can be weakened
by assuming the availability of flexibility providers that do not require the
guarantees that activation constraints provide. EGT can offer insights such
situations as well.

Finally, even though future work is needed to validate actual commercial
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viability of the business cases presented here, these results provide a base line
quantification of the market dynamics of real world smart grid entities with
real world industry data. This work also presents how EGT can be used as a
methodology for evaluating such market dynamics in complex domains such as
smart grids and to eventually further assist the cause of creating sustainable
energy systems.
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Chapter 6

Analysis of Activation
Constraints and their Effect
on Demand-Side Flexibility
Allocations

Bilateral agreements on harnessing consumption flexibility often constrain the
availability of consumption flexibility to both guarantee this availability and
to protect the providers. Chapters 4 and 5 have indicated that the specific
constraints used for scheduling flexibility can influence how efficiently flexibility
providers can be used to address various imbalance problems. This chapter
presents a sensitivity analysis on flexibility activation constraints and their
effects on DSM efficiency and contains the paper currently in submission to
PES ISGT Europe 2018 titled:

Analysis of Activation Constraints and their Effect on Demand-Side
Flexibility Allocations

The definitions, analysis and supporting software are the result of discussions
between all authors, led by Kristof Coninx. Kristof Coninx did all of the
programming and the writing. Tom Holvoet and Geert Deconinck gave feedback
on the writing.
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Abstract

Demand-side management (DSM) programs in literature and industry alike
often enforce constraints on the activation of flexible power provided by
customers. Constraining consumption flexibility used in DSM can lower the
entry barrier for flexibility providers but the specific constraints used can also
have an impact on the efficacy of employing such flexibility. While different
problems requiring their own form of consumption flexibility are described
in literature, systematic analyses of the impact of activation constraints on
such DSM programs are limited. This chapter addresses this by analyzing the
effects that different activation constraints for power flexibility used in industry
have on different problem cases involving renewable production resources. This
sensitivity study of activation constraints is performed using real world electricity
production and imbalance data for different locations in Belgium. Our work
shows that depending on the use case, some constraint dimensions influence
the efficiency attained in best case flexibility scheduling while other constraint
dimensions do not have any influence in certain other cases. These results are
compared against constraint parameters used in flexibility products by system
operators today and provide insights into possible improvements of constraint
parameters in different use cases.

6.1 Introduction

With the increasing adoption of renewable energy production resources,
maintaining a production/consumption balance in the current day electric power
grid requires flexibility on both the production and consumption side. demand-
side management (DSM) describes techniques for controlling the demand side
of the equation to achieve and maintain this balance.

DSM programs can be implemented with different goals in mind. For example,
DSM is often considered for flattening peak consumption demand [117][118].
Improving power system reliability by employing flexible consumption to match
intermittent production from renewable energy sources (RES), is also a valid use
case of DSM [119]. Other examples exist in both literature [5] and industry [120]
of consumption flexibility being harnessed towards a more stable and safe
operation of power systems.

Through DSM, consumption flexibility can be employed in different ways to
achieve these goals. One category of DSM techniques is called demand response
(DR). In DR, utilities and system operators indirectly influence the energy
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demand of consumers. This is achieved by offering financial incentives (e.g.
tariff reductions) for changes in consumption patterns [121].

Another form of DSM employed in industry is achieved through bilateral
agreements between industrial consumers and utilities or system operators [122].
For industrial consumers, bilateral agreements allow consumers to negotiate the
form and the availability of their flexibility [123]. Utilities, system operators
and other parties that can make use of consumption side flexibility can, in
turn, offer standardized flexibility products. Clearly delineated and constrained
product offers can lower the entry barrier to potential customers. An integral
part of these product are the activation constraints specifying when, how often
and for how long flexible power consumption can be used by a contractor. With
different ways of employing this constrained flexibility, the specific constraints
can have different effects on the global effectiveness of employed flexibility on a
case by case basis. Insights into these effects can greatly benefit stakeholders
employing consumption flexibility such as distribution system operators (DSOs),
transmission system operators (TSOs) and utilities in general.

The presence of systematic evaluations of flexibility activation constraints
for industry purposes is limited. This work attempts to remedy that by
empirically evaluating the most commonly used flexibility activation constraint
dimensions for two different problem cases with real data. A portfolio balancing
problem case is compared to a distribution grid congestion case. The portfolio
balancing case concerns a balance responsible party (BRP) that balances
its portfolio of production and consumption. The production part of this
portfolio includes wind production resources. Wind production forecast errors
can lead to real time portfolio imbalances that can be offset by consumption
flexibility [122][1]. The distribution grid congestion cases concern DSOs that
face grid congestion from wind production during periods with high wind
and low consumption. Consumption flexibility can offset overproduction to
avoid damaging the infrastructure during congestion events [3]. Both cases
have different flexibility needs but can make use of the same consumption
flexibility offered by industrial consumers. The effects of flexibility activation
constraint parameters and their influence on the effectiveness of scheduling
flexible consumption to reduce excess energy are analyzed for both cases.

Following this introduction, a description of the input data and modeling is
given in section 6.2. The analysis approach is described in section 6.3. Analysis
results are described in section 6.4. Finally, the contributions are summarized
and described in context of future work in section 6.5.
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6.2 Model and data

Small to medium sized companies willing to increase their consumption on
demand are modeled to provide consumption flexibility. The amount of flexibility
provided at any given time is determined by their flexible power rate. Flexibility
providers are realized with flexible power rates drawn from a gamma distribution
Γ fitted to a confidential industry data set of clients of the tertiary reserve under a
dynamic profile (R3DP). This Γ distribution Γ(a, r) with a = 1.37012, r = 677.926
passes the classical goodness-of-fit such as the Komolgorov-Smirnov [74] and
the Anderson-Darling [75] tests for a confidential industry data set of R3DP
clients in Belgium. R3DP is a flexibility product offered by the Belgian TSO
to distribution grid connected industrial consumers [124].

All flexibility activations are subject to activation constraints. The activation
constraint dimensions modeled in this work are inspired by the constraints
specified by the R3DP product. These constraints specify an activation
duration of two hours with a minimum of twelve hours of inactivity between two
consecutive events and a maximum of 40 activations per year. The flexibility
modeled in this work will have the same constraint dimensions but with varying
parameters as part of a sensitivity analysis. This sensitivity analysis of flexibility
activation constraints is performed for different problem cases and real world
data from two different locations.

The portfolio balancing case describes the employment of flexible industrial
consumers as an alternative to paying imbalance fees to the TSO. When balance
responsible parties have portfolios which include sizable amounts of RES, real
time balancing becomes more difficult because of the variable nature of these
RES. Power production forecasts are an important aspect of minimizing these
balances in real time. The imbalances assumed here are caused by wind power
production forecast errors between the nomination date of expected production-
consumption balance and the actual balance at time of delivery. Imbalance
data is generated from proprietary power production time series and forecast
error data from literature. These data sets span 12 month periods in 15 min.
time periods.

In literature multiple models for wind production forecast error have been
proposed based on different underlying distributions. Both the normal
distribution and the Cauchy-Lorentz distribution among others have been
used to model production forecast errors [125]. In this work we model normally
distributed errors with the ERCOT data distribution parameters described
in [19]. This imbalance data is compared to imbalance data based on Cauchy
distributed production error data artificially created to bear the same total
yearly production error volume as the normally distributed data from literature.
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Figure 6.1: A random sample of congested energy volumes spanning 24
consecutive hours shows the distinct DLR shaped congestion.

The distribution grid congestion case describes distribution congestion caused
by excessive wind power injection. In such cases the cable infrastructure
is not rated to cope with excessive currents flowing through the cables at
times. The distinction is made between static line rating and dynamic line
rating (DLR). Both line rating schemes define which injected power is actually
deemed excessive. DLR shows great potential in reducing grid congestion by
temporarily allowing excess currents followed by stricter ampacity limits in
favor of a universal static ampacity limit [126]. Another useful side effect of
using DLR is the window of opportunity it allows in which other flexible power
resources can be employed and ramped up to take over when long periods of
increased injection are causing problems. Different DLR algorithms produce
different congested energy profiles however. In this work two different DLR
algorithms are discussed. A first algorithm allows two quarters of an hour of
excessive currents up to 30% more than the static ampacity limit, followed
by enforcing a 12.8% more strict ampacity limit for two quarters hours. A
second algorithm allows four quarters of an hour of similar excesses, followed
by the same more strict ampacity limit for four quarter hours. Both profiles
are discussed in terms of varying activation constraints. Both these cases are
discussed for multiple wind power production profiles that differ in the location
of the respective wind farms. Concretely, production sites in Zeebrugge and in
Antwerp have both provided data for this study detailing a yearly output of
43 GWh and 36 GWh respectively.

Samples of the distribution grid congestion and the portfolio imbalance data
are shown in Fig. 6.1. This sample shows the distinct form of the DLR shaped
grid congestion and the sparser portfolio imbalances.
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6.3 Analysis approach

The sensitivity analysis focuses on the effects of flexibility activation constraint
parameters and their influence on the effectiveness of scheduling flexible
consumption to reduce excess energy. Power consumption flexibility is offered
by flexibility providers in the form of a fixed number of flexibility activations
(c) that are scheduled off line, on fully available historical data. The time series
data spans 12 months of excessive energy volumes in 15 min. time periods
t ∈ {1, ...,35040}. Off line allocation of flexibility provides a view on the upper
bound of allocation effectiveness compared to the on line allocation algorithms
that correspond to the day to day decision making faced by flexibility users
when dealing with uncertain production.

The optimal-within-bounds activation schedule is produced using a heuristic
local-search algorithm that schedules activations to optimize the actually
resolved energy excesses given the following activation constraints:

• An activation event spans a period of 4∗d time periods with d representing
the activation duration in hours.

• An activation can not start within 4 ∗ (i + d) time periods following the
start of another activation with i representing the inter-activation time in
hours.

• The total number of c activations must be respected.

The heuristic optimization library OptaPlanner [109] is used in the open source
simulation framework GridFlex [21]. The first fit decreasing (FFD) construction
heuristic from bin packing literature is used to produce an initial allocation
schedule [113]. Tabu Search is used as a local search algorithm to further
improve the initial allocation schedule [127]. All experiments execute a fixed
number of search steps to maintain a fair comparison with varying simulation
hardware performance.

Allocation schedules for the different scenarios and combinations of activation
constraint parameters are evaluated using the allocative efficiency metric. This
metric represents the actual volumes of excess energy that are reduced with
the flexibility allocations compared to the total theoretically available flexibility
offered by the providers over a 12 month period.

For all analysis scenarios, the relative allocative efficiency metric E is defined
by equation (6.1) where C(t) represents the congested energy volume function
for each 15 min. time period t and F (t) represents the total activated energy
volume in the same time periods (C,F ∶ {1, ...,35040} ↦ R+). This metric E
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is plotted in function of the flexibility activation duration and the minimum
inter-activation time parameters.

E ∶= ∑
t∈{1,...,35040}

min(C(t), F (t))

F (t)
(6.1)

6.4 Simulation results and discussion

This section presents simulation results for the flexibility activation constraint
sensitivity analysis. This analysis is performed for the distribution grid
congestion case and the portfolio balancing case.

6.4.1 Distribution grid congestion

When dealing with distribution grid congestion, volumes of excess energy are
defined by the electrical current that exceeds the allowed current ratings of cable
infrastructure. DLR makes use of the hysteresis effect of current-temperature
curves when defining excess energy. We distinguish between the two different
line rating algorithms described in section 6.2. The first scenario features
a DLR algorithm that allows two quarter hours of excessive current ratings
before employing a more strict current rating. A second scenario features an
alternative DLR algorithm that allows four quarter hours of excessive current
ratings before employing the same strict rating.

Influence of dynamic line rating parameters

Results in Fig. 6.2 shows the relative allocative efficiency metric for the first
scenario using the Antwerp data set. These results show a gradual decrease
in relative efficiency as the activation duration increases. A small preference
for smaller inter-activation times is also noticeable. This effect becomes more
noticeable when more activation events need to be scheduled, which is shown in
Fig 6.3.

For the second scenario, results shown in Fig. 6.4 show a similar decrease
in efficiency with increasing activation durations in general. One important
difference in these results is the markable increase in efficiency relative to the
observed results from the first scenario when using activation durations of odd
hours.
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Relative resolved distribution grid congestion - 
10 activations/year, Antwerp data, DLR=2Q, N=10
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Figure 6.2: A gradual decrease of allocative efficiency is shown as the activation
duration parameter increases. A small preference for low inter-activation times
is noticeable.

Mean relative resolved distribution grid congestion - 
70 activations/year, Antwerp data, DLR=2Q, N=10
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Figure 6.3: A gradual decrease of allocative efficiency is shown as the activation
duration parameter increases. A preference for low inter-activation times is
more pronounced with higher activation events to schedule.

Results for the second scenario using the Zeebrugge data set are shown in
Fig. 6.5. Comparing these results with the Antwerp data set shows that the
inter-activation time parameter bears no effect on the allocative efficiency metric
by itself in this case. A general decrease of allocative efficiency as the activation
duration increases is noticeable however. Similar to the second scenario of
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Mean relative resolved distribution grid congestion - 
10 activations/year, Antwerp data, DLR=4Q, N=10
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Figure 6.4: A general benefit for odd activation durations over even durations
is noticeable.

Relative resolved distribution grid congestion - 
10 activations/year, Zeebrugge data, DLR=4Q, N=10
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Figure 6.5: The preference of lower inter-activation times is less pronounced in
the Zeebrugge data set. These results show similar benefits for odd activation
durations as the results in Fig.6.4

the Antwerp dataset, odd hours of activation durations yield greater or equal
allocation efficiency than using smaller but even hours of activation durations.

Intuitively, allocating activation events with even hour durations to congestion
which oscillates hourly between high and low values results in the best case
in allocations that have at least 50% of the time spanning the low values.
Activation events with odd hour can both start and end on the high values,



102 ANALYSIS OF ACTIVATION CONSTRAINTS AND THEIR EFFECT ON DEMAND-SIDE
FLEXIBILITY ALLOCATIONS

thereby possibly yielding higher efficiencies. This is supported analytically by
first examining a stylized congestion function that produces a similar congestion
profile as DLR algorithms that allow k quarter hours of high cable ratings
followed by k quarter hours of lower ratings. Function (6.2) represents such a
binary step function.

C∗
(x) = 1 − ⌊

x

k
⌋ mod 2 (6.2)

The relative amount of congestion r that can be resolved by an activation of d
hours is given in (6.3).

r =
1
d
∫

4d

0
C∗

(x)dx (6.3)

For k = 2, equation (6.3) yields a constant r = 2 for all values of d ∈ N+. For
k = 4, equation (6.3) yields a case distinction between even and odd values of
d. This case distinction resulting from evaluating (6.3) is given in (6.4) and
shows a similar limit behavior as for k = 2 but with possible higher fractions of
resolved congestion for smaller odd values of d. This concurs with the results
shown in Fig. 6.4 and Fig. 6.5.

r =

⎧⎪⎪
⎨
⎪⎪⎩

2, d
2 ∈ N+

4⌈ d
2 ⌉
d
, d

2 ∉ N+ (6.4)

Influence of offered flexibility volumes

The least constrained activations to schedule are those activations that last
only an hour and can be activated again with only an hour of down time
between two consecutive activations. In all scenarios shown, those conditions
offer the highest allocative efficiency. When varying the number of activations
that have to be scheduled at once, these conditions remain dominant in their
effectiveness. Even when increasing the number of activations that have to be
scheduled eightfold, the relative allocative efficiency metric attains higher than
90% efficiency in these conditions. When looking at activation durations that
last longer, the allocation efficiency decreases when the number of allocations
to schedule increases. This is apparent when comparing Fig. 6.2 with Fig. 6.3
for the Antwerp data set. But also comparing Fig. 6.5 with Fig. 6.6 shows a
similar trend.

When keeping to a fixed number of allocations and varying the activation
durations within a scenario, the total amount of flexibility offered by a flexibility
provider varies also. To avoid presenting a skewed view of optimal constraints
for providers willing to provide a set amount of flexibility, Fig. 6.7 and Fig. 6.8
show results in terms of allocative efficiency for which the number of allocation
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Mean relative resolved distribution grid congestion - 
70 activations/year, Zeebrugge data, DLR=4Q, N=10
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Figure 6.6: Scheduling 70 allocation events causes the allocative efficiency to
decrease when using high duration activations, when compared to lower numbers
of allocations to schedule.

events to schedule is scaled in function of the activation duration as to keep
total amount of flexibility offered by providers constant.

Results for the Antwerp data shown in Fig. 6.7 show unsurprisingly a preference
for highly flexible activations with short activation durations and short inter-
activation times. It is also noticeable that short activation durations need
to be paired with short inter-activation times to produce relatively effective
allocations. Increasing the activation duration consecutively allows for higher
inter-activation times as well without losing significant efficiency in flexibility
allocations.

For the Zeebrugge data shown in Fig. 6.8 a general disinterest in the inter-
activation time is observed for all activation durations except durations ranging
from two to four hours. Furthermore, short activation durations of one hour
are preferred to produce optimally efficient allocations. If one hour activation
durations are not feasibly, however, a local optimum can be found for activation
durations ranging from five to six hours.

It can also be noted that in all simulation results, the parameters used by the
R3DP product (40 activations of two hours per year with an inter-activation
time of 12 hours), can be improved upon to provide more efficient activation
schedules.
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Mean relative resolved distribution grid congestion - 
equal total activation energy, Antwerp data, DLR=4Q, N=20 
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Figure 6.7: When the total flexibility offered is assumed constant over varying
activation constraints then a clear preference for minimally constrained flex is
noticeable.

Mean relative resolved distribution grid congestion - 
equal total activation energy, Zeebrugge data, DLR=4Q, N=20 
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Figure 6.8: When the total flexibility offered is assumed constant over varying
activation constraints then a clear preference for minimally constrained flex is
noticeable. A local maximum can also be found with activation durations of
5-6 hours.

6.4.2 Portfolio balancing

The difference between normally distributed forecast errors and Cauchy
distributed errors is that, in the latter case, higher error peaks can be observed,
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Figure 6.9: This 24 hour sample of the normally and Cauchy distributed forecast
errors shows a difference in peak error levels and the frequency of the occurring
peaks.

but at a lower frequency than the normally distributed error peaks. Figure 6.9
shows a sample period for each distribution.

Simulation results from allocating flexibility under different activation con-
straints are shown in Fig. 6.10 for the normally distributed forecast errors
and in Fig. 6.11 for the Cauchy distributed errors using the Antwerp power
production data. Literature has indicated that the use of different forecast error
distributions can yield different results. No such discernible differences in trends
were observed in these results. Results using the normal distribution show an
overall small (< 5%) increase in allocative efficiency over the Cauchy distributed
errors. Results from the Zeebrugge production data set show trends similar to
the Antwerp data.

Compared to the problem cases discussed in section 6.4.1, in portfolio balancing
cases, the inter-activation time parameter of the activation constraints has no
influence on the allocative efficiency of these activations. Forecast errors are less
subject to seasonal variations than the distribution grid congestion case because
of the different origin of the error. This limited seasonality in the problem data
means that for a limited amount of activations to schedule, the probability of
finding volumes of excessive energy for an activation that does not conflict with
other activations is high enough for the inter-activation time parameter not to
matter.



106 ANALYSIS OF ACTIVATION CONSTRAINTS AND THEIR EFFECT ON DEMAND-SIDE
FLEXIBILITY ALLOCATIONS

Mean relative resolved portfolio imbalance - 20 activations/year, 
Antwerp data, Error distribution = Normal, N=10
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Figure 6.10: Relative resolved portfolio imbalance for the Antwerp data shows
that the inter activation time parameter has no influence on the efficiency of
flexibility activation.

Mean Relative resolved portfolio imbalance - 20 activations/year, 
Antwerp data, Error distribution = Cauchy, N=10
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Figure 6.11: The results using the Cauchy distributed forecast error shows no
difference in trend when compared to normal distributions.

6.5 Conclusion

Maintaining a real time production/consumption balance is challenging in light
of increased adoption of renewable energy sources. Bilateral contracts between
utilities and flexible consumers can regulate the use of consumption flexibility to
maintain this balance in real time. In this work we perform a sensitivity analysis
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of flexibility activation constraint parameters when used to schedule flexibility
activations in two problem cases for two locations in Belgium. This analysis
is performed for the off line scheduling of consumption flexibility activations
based on real world data spanning 12 consecutive months.

Simulation results show that constraining the required down time that follows an
activation of consumption flexibility can only influence the efficiency of flexibility
scheduling in distribution grid congestion cases and not in portfolio balancing
cases. Results also show that whether a normal or a Cauchy distribution is used
to model forecast errors has no effect on the efficiency of flexibility scheduling.
Finally, results also indicate that when DLR is used to shape congestion in
distribution grid congestion cases, there is a clear relation between the DLR
algorithm and the activation duration parameters used. Results presented in
this work can offer insights into how the design of flexibility products offered
by system operators and other parties requiring flexibility can be improved
upon in terms of activation constraints. For distribution grid congestion cases
specifically, more efficient flexibility activations are possible when activation
duration and inter-activation times can be lowered, compared to R3DP.

Future work into the use of other DLR algorithms in the sensitivity study
can prove useful in providing a better understanding of the effects of DLR on
flexibility activation constraints. Expanding this sensitivity analysis to on line
allocation mechanisms as well to gain understanding of optimal constraints to use
when dealing with uncertain future production excesses is another opportunity
for future work.
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Chapter 7

Conclusion

Software is increasingly crucial in the transformation from electrical grids
to smart grids. An integral part of implementing smart grid technologies is
developing and maintaining software for monitoring and managing consumption
data, whether for smart meters or for industrial energy management systems.
Similarly, software to simulate future technologies or demand-side management
software for scheduling flexible loads will be fundamental to building and
operating smart grids.

Electricity grids are evolving to more high tech and dynamic grids where
electricity no longer flows from generation to consumption in a hierarchical and
unidirectional fashion. New renewable energy sources (RES) are connected at all
conceptual levels of the electricity grid. Wind farms are, for example, connected
to the transmission grid, individual turbines can provide locally produced energy
for industrial consumers and solar panels are being deployed on a residential
scale. Together with the digitalization of energy management systems, RES
offer new business opportunities in the energy landscape. Business cases for
managing and selling consumption flexibility are implemented by aggregators
and system operators invest in active network management (ANM) techniques
to minimize costly grid imbalances. All stakeholders operating in the power
systems domain face strategic choice situations that require informed decision
making processes in capitalizing on these opportunities. Software capable of
supporting these business opportunities and providing information for informed
decision making, will be instrumental in producing positive end results. The
field of computer science (CS) is ideally positioned to providing the necessary
software, algorithms and analysis tools.

In this dissertation various aspects of employing consumption flexibility are

109



110 CONCLUSION

analyzed in the context of increased adoption of RES such as wind. This
analysis is performed from a strategic choice perspective using evolutionary
game theory (EGT). EGT is an ideal tool for modeling and analyzing strategic
choice dynamics over time.

The remainder of this chapter summarizes the contributions of the previous
chapters in more detail (section 7.1). This dissertation is concluded with
a discussion of the lessens learned and interesting directions of future work
(section 7.2).

7.1 Summary of contributions

This section summarizes the contributions of each of the content chapters in
chronological order.

7.1.1 Evolutionary game theory analysis framework for ana-
lyzing strategic choice

A common aspect of demand-side management (DSM) is that flexibility
providers are financially compensated for providing power consumption flexibility
on demand. Chapter 2 provides an analysis of different payment strategies for
offered consumption flexibility. Concretely, flexibility providers face a binary
choice in doing business with flexibility aggregators implementing activation
(per use) or reservation (flat rate) payment strategies. balance responsible
parties (BRPs) employ the offered flexibility to minimize a common imbalance
signal.

The first contribution in this dissertation is the description of the approach
for analyzing strategic choice dynamics using replicator dynamics with varying
numbers of participating agents. The analysis approach is based on heuristic
payoff matrices determined through microsimulation.

The application of this approach in chapter 2 yields empirical evidence indicating
that BRPs can gain larger flexibility provider client population shares when
employing reservation payment over activation payments when assuming that
flexibility providers determine their choice in BRP based on expected financial
rewards. This effect is shown to be less outspoken when the amount of flexibility
offered largely outweighs the flexibility needed for balancing.

Parallel with the contributions in chapter 2, the development of the open source
simulation framework GridFlex is considered as a technical contribution. This
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framework has been in continuous development over the course of this research
project and is the basis for work in all following chapters. A more thorough
description of GridFlex is found in Appendix A.

7.1.2 On-line and off-line coordination mechanisms for em-
ploying consumption flexibility

Negotiating the activation of flexible consumption resources with multiple
providers and users of flexibility requires coordination mechanisms. The second
contribution spans the content of chapter 3 in formulating on- and off-line
flexibility allocation algorithms. For on-line flexibility allocations, the distinction
is made between a cooperative algorithm, based on the contract net protocol
(CNP) and a competitive algorithm, based on the strategy proof qualitative
Vickrey auction (QVA). A less computationally tractable off-line optimal mixed-
integer programming (MIP) formulation is also presented to provide efficiency
upper bounds for scenarios with few participating agents.

Chapter 3 provides an analysis of flexibility activation efficiency using
different coordination mechanisms for using consumption flexibility to address
distribution grid congestion. Empirical results show that cooperative activation
mechanisms can yield more efficient allocations than competitive mechanisms
for scenarios where the number of participating agents is limited. For system
operators, retaining full control over the decision of which providers to activate
when encountering congestion events, is shown to be better in terms of allocation
efficiency compared to employing a more market oriented mechanism. The
problem context does not often allow large numbers of participating agents.
Such scenarios would minimize the efficiency penalty for using a competitive
mechanism in which case the positive features of QVAs might be preferred.

7.1.3 Investment cost model for an integrated ANM solution
to address distribution grid congestion

Chapter 3 proposed the need for other ANM techniques besides DSM as a
comprehensive solution to deal with distribution grid congestion. A third
contribution described in chapter 4 concerns the presentation of a operation
and investment cost model for employing an integrated ANM solution using
dynamic line rating (DLR), DSM and storage solutions to address distribution
grid congestion. DLR is used as a first line solution to provide a buffer for
activating DSM resources and to define the energy volumes that need to be
addressed by the other ANM techniques. Energy storage solutions are used
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as a last line solution to address remaining excesses that are not handled by
DSM. The storage solution is dimensioned appropriately to resolve energy
excesses while minimizing costs. The investment cost model contains initial
investment, maintenance and operation costs for the integrated approach. The
specific model parameter choices were validated by a Belgian distribution system
operator (DSO).

Investment case cost projections for two different locations show that depending
on the regulatory framework in place, DSM can significantly reduce the total
investment cost for 20 year business cases. Because storage solutions are sized
in two dimensions: peak power rate (kW) and energy volume (kWh), congestion
events with larger peaks and durations can reduce the dimensions of the storage
solution required as a fallback solution. In such situations the use of DSM can
reduce the total cost associated with an integrated ANM solution. Comparing
the total investment costs to grid reinforcement cost projections has also shown
that with current storage prices, grid reinforcement is still often the more cost
effective solution to dealing with grid reinforcement.

The investment cost analysis is based on activation constraints used in an
existing Belgian strategic reserve program. The empirical results indicate that
the DSM activation constraint that are used, have non negligible effects on the
efficiency of DSM. This phenomenon has been further investigated in chapter 6.

7.1.4 Computational analysis of flexibility provider strategic
choice between multiple business cases

Power consumption flexibility can be harnessed toward different goals. Financial
compensation of flexibility providers participating in DSM programs can also
vary depending on the specific implementation of the such programs. In chapter 5
flexibility providers face a strategic choice situation in deciding whether to
participate in a DSM program where consumption flexibility is used to address
distribution grid congestion, as described in chapters 3 and 4 or to address a
BRP portfolio imbalance. This latter case improves on the grid balancing case
described in chapter 2 by modeling wind power production forecast induced
imbalances faced by BRPs that have wind power production resources in their
portfolios.

The fourth contribution in this dissertation is the formulation of two business
cases for using consumption flexibility and the description of the value streams
that make up these business cases. The first business case pertains to DSOs
that want to avoid distribution grid congestion by using flexible consumption.
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The second business case refers to BRPs that want to avoid imbalance penalties
by employing consumption flexibility to balance their portfolio.

The fifth contribution is the approach for defining a base line quantification of
flexibility market dynamics in environments where flexibility providers must
choose between parties competing for consumption flexibility. This approach
can be used for deriving competitive price ranges for flexibility compensation
payments, when used with the appropriate data.

Strategic choice analysis of situations where flexibility providers must choose
between two different business cases show that quantitative results of competitive
price ranges for DSOs dealing with competition from BRPs are location specific.
Although concrete quantification of these price ranges are location specific,
empirical evidence is presented in chapter 5 indicating that higher wind forecast
inaccuracies in BRP portfolios lead to higher compensation payment upper
bounds, which in turn drive up price ranges that other parties must adhere to
if they want to remain competitive.

7.1.5 Sensitivity analysis of allocation efficiency under differ-
ent flexibility activation constraints

Realizing the successful use of consumption flexibility to address various wind
production excess related problems, requires formalized agreements in the form
of contracts between providers and users of flexibility. These contracts often
specify constraints on when and how much flexibility can be called upon for the
duration of the contract. Chapters 3 to 5 have indicated that the activation
constraints used can influence the effectiveness of flexible power scheduling. The
last contribution is described in chapter 6 and concerns a sensitivity analysis on
the effect of flexibility activation constraint parameters when flexibility is used
do deal with different problem cases related to wind power production excesses.
Based on this analysis, possible improvements on existing flexibility products
are proposed for when they are used in different use cases.

Concerning the use of flexibility to address distribution grid congestion, both
empirical and analytical results indicate a relationship between the parameters
of the DLR algorithm used to shape the congestion and the activation duration
parameter of the activation constraints.

Concerning the use of flexibility to address portfolio imbalances induced by
wind forecast errors, literature has often disputed the use of some specific
distributions in favor of others. Based on empirical data described in chapter 6,
no discernible differences in allocation efficiency have been observed when



114 CONCLUSION

comparing two popular distributions for modeling wind forecast errors (Cauchy
and normal).

7.2 Lessons learned and future work

The domain of power systems is complex. The various stakeholders that each
have their own goals and concerns must interact to ensure a safe and responsible
delivery of electrical energy. Coordinating the interaction of these stakeholders
to certain outcomes fairly and efficiently, will create challenges as the electricity
grid as a whole becomes ‘smarter’. This section presents some of the lessons
learned over the course of this research project and discusses possible future
research directions.

Smart grid development presents technical, economical and
political challenges

Consumption flexibility will be an important part of maintaining the equilibrium
between consumption and generation, especially in light of RES. Experience
in industry projects has shown that the challenges involved in employing
consumption flexibility to address imbalance problems are not strictly technical.

Both economic and political arguments feature heavily in discussions on future
implementations of electrical power delivery systems. System operators are
charged with maintaining safe and stable electricity grids, but still have to
account any strategic investment decisions against their bottom line and
shareholders. Similarly, renewable and nuclear energy sources are hot topics on
political platforms. The regulatory frameworks in place for governing curtailment
and green certificate compensations have already been shown to influence to
what degree the use of consumption flexibility is economically viable for system
operators. So while DSM can offer technical benefits, its implementation in
future electricity grids is still subject to economical and political decision making,
which makes its future not completely clear. With careful guidance, however,
the smart grid can transform contemporary electricity grids into more cost
effective and sustainable power systems.
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Allocation mechanisms can benefit from forecasting and
optimization

RES are characterized by their production variability and less predictable nature.
The importance of forecasting techniques for dealing with this variability became
clean in chapter 5 where wind production forecast errors caused costly portfolio
imbalances. Also in the general sense, having limited foresight in dealing with
problems related to RES is challenging. Deciding in real time which flexibility
resources to activate is but one example where the foresight horizon is an
important factor. Penalties in consumption flexibility allocation efficiency are
to be expected in real time scenarios when compared to scenarios using full
historic knowledge as described in chapter 3 but also other ANM techniques
such as storage are subject to these penalties. Our experience with research
in this dissertation and the icon-SWiFT project has shown the benefits that
can be gained from developing and utilizing machine learning and forecasting
techniques in dealing with RES in real time and further research in this area is
warranted.

The work in this dissertation is in most cases focused on off-line best case analysis
using full historic knowledge. Besides the comparison of on-line flexibility
allocation mechanisms discussed in chapter 3, future work can benefit from
an even stronger focus on on-line allocation mechanisms and the analysis of
strategic choice situations in the context of on-line operational results. State-of-
the-art forecasting techniques will play an important role in studying on-line
mechanisms and should be further incorporated into future work in this field.

The allocations mechanisms used, although state-of-the-art, can also be further
improved. In this dissertation, the use of common flexibility allocation
mechanisms allows for a fair comparison across business cases, but further
case-specific improvements and optimizations could improve the efficiency of
the mechanisms even further.

EGT applications can have weaker dependencies on complete
rationality than game theory (GT) applications

When first discovering GT, applications can be seen everywhere from bartering
for produce in local markets to playing sports. The use of GT in academic
literature is similarly plenty. Also in the energy domain, game theory offers
popular tools for modeling and analysis purposes. Though often alluring because
of the elegant models that can be created at high abstraction levels, care should
be taken with the assumptions that are made when using GT for modeling
purposes. The heavy reliance on the assumption of complete rationality of the
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players, while fundamental to the theory, is not often realized by real world
players. This can limit the real world application value of game theoretic
modeling. Experience taught us that one of the most challenging aspect of
pursuing game theoretic research is effectively applying game theoretic modeling
to real world problems.

Two approaches for dealing with assumption of complete rationality are often
encountered. The first approach considers the use of software agents that
embody the goals and motivations of their proprietors. These software agents
are then assumed to be programmed to act perfectly rational in all situations.
The danger here being that perfectly designed and programmed software is a
rarity and that even the most subtle of bugs could technically lead to irrational
behavior for certain agents. The second approach is the one taken in this work
and it concern the use of EGT. EGT builds on classical GT but offers tools that
have a much weaker assumption on rationality. In EGT, and specifically with
replicator dynamics in play, choosing which action to take, is determined not
based on knowing agent payoffs and decisions but on observation and imitation
behavior. Agents are only assumed to change decisions when observing other
agents that are gaining more from making similar decisions. This approach also
puts less focus on the modeling aspect of GT, thereby allowing a more pure
focus on the analysis aspect. When considering GT for real world practical
purposes, EGT should not be overlooked. In our experience, EGT is not a
silver bullet but it can produce valuable insights. It is not always suitable to
the problem at hand but when suitable, its smaller dependence on complete
rationality increases its usefulness to analyzing real world problems. In this
regard, EGT is in our opinion still undervalued.

Besides replicator dynamics, which has been used in this dissertation to model
choice dynamics, other dynamics exist in literature (e.g. based on learning
behavior). Future research directions include exploring how other choice
dynamics might be applicable to problems concerning strategic choice and
how these dynamics might influence analysis results.

The strategic choice analysis results in this dissertation particularly, concern
exclusive binary strategic choice situations. Although the rationale for assuming
exclusivity has been explained in chapter 5, weakening this assumption can
open up avenues of future work in analyzing strategic choice situations where
flexibility providers face a more diverse set of alternatives. Improving the EGT
analysis framework to support such analyses will increase the applicability of
this work to also include more general market oriented settings.
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Accurate data is crucial to effective problem solving

One of the fundamental goals of CS as a research field is problem solving.
Effectively solving problems first requires the problem to be well defined and for
information to be available on the problem. In this dissertation the necessity
for accurate problem data and information has become clear. In our experience,
even the most promising of analysis fall short in usefulness when data is lacking.

Even though a strong reliance on realistic data from industry is present
throughout the work in this dissertation, there is always room for improvement.
Problem input data for different locations in Belgium or Europe might shed more
light on commonalities and differences of location-specific results. The energy
landscape is also constantly changing, making results based on more recent data
a welcome addition to the state-of-the art insights into the use of consumption
flexibility. Besides problem data, more specific cost data is necessary for industry
stakeholders wishing to use the proposed analysis techniques to drive business
decisions concerning consumption flexibility exploitation. In general, finding
and using data to more accurately model and analyze problems is challenging
but it is a challenge that should not be ignored for it can lead to valuable
contributions.

Many companies in the energy domain are fostering an attitude of transparency
by making data available to the public. Further efforts by public companies
in making data concerning production, consumption, etc. available, can aid in
improving general understanding, enable more detailed research projects and
improve informed decision making for different stakeholders active in the energy
landscape.

Combining active network management techniques can enable
valuable collaborative research efforts

Different ANM techniques exist in literature and practice for improving grid
stability and for dealing with RES. Each of these ANM techniques has its
own strengths and weaknesses, making it hard for one specific ANM technique
to suffice in solving particular problems. In this dissertation the main ANM
technique of interest is DSM. In chapter 3 empirical evidence showed that DSM
alone was not sufficient for solving grid congestion problem. This opens up
opportunities for collaborative research where experts in specific techniques
can work together toward integrated solutions that can more adequately deal
with such problems. In our experience, such collaborative contributions can be
highly worthwhile to pursue. In chapter 4, our DSM approach was combined
with energy storage expertise from EELab-UGent and DLR expertise from a
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Belgian DSO. Future research directions include the inclusion of different DLR
and storage models in integrated ANM solutions for RES related problems. For
example, the use of different DLR parameters was shown to have an effect on
the allocation efficiency of specific constrained flexibility products in chapter 6.
To gain a better understanding in how to tailor these flexibility product for
specific use cases, further analysis into the relation between parameters of
different ANM techniques can be useful.

7.3 Reflection

The energy domain is a complex beast. Different stakeholders, each with their
own goals and concerns, interact in various market settings and mechanisms
to realize a stable electricity delivery system. As a society, transforming
conventional power grids into more sustainable and smart versions will be a
daunting but necessary task in mitigating the effects of man made climate
change. The challenges in generating clean co2 neutral electricity from RES are
numerous and not only technical in nature. Political and economical challenges
must be overcome in efforts to integrate larger shares of RES into the grid.

Our contribution in addressing these challenges are only a small part of what is
required. As far as RES go, we only focus on wind energy and the grid imbalance
problems it can cause. We only focus on industrial consumption flexibility as a
means for dealing with grid imbalances and we only focus on two different wind
production locations for analyzing specific imbalance problem cases. The grid
imbalance problems are analyzed from a strategic choice perspective using EGT
and mechanism design (MD). Other RES and the integration problems that
they can cause, other sources of consumption flexibility and other techniques
for analyzing strategic choice scenarios are left for future work. These research
avenues, although valuable, are considered out of scope for this work.

The research questions and therefore the scoping of this work is partially inspired
through collaboration with industry. Industrial validation has therefore been a
part of the research process pertaining to this dissertation but future validation
remains necessary. Many choices in scenarios, interactions and data were driven
from the current grid setting at that particular time to promote the extrapolation
of practical rules of thumb. With the ever changing energy landscape, whether
the results of this work and the usefulness of the analysis techniques holds
for the future, will have be shown. Further validation of present work, both
academically and industrial in nature, will be useful in determining the validity
of our approaches when e.g. regulatory frameworks change or grid technologies
evolve. Even though the scope of this work is limited in the face of myriad
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challenges in integrating RES, the concrete results presented in this dissertation
are interesting and they provide a stable foundation for future work.





Appendix A

GridFlex simulation
framework

A.1 Introduction

Over the years, multiple simulation frameworks have been developed for
supporting multi-agent systems and smart grids research [128]. Choosing the
appropriate modeling simulation tools is an important aspect of bootstrapping
this research project. Even when limiting the choice to free open source software
for research purposes, simulation software is always designed with specific
purposes in mind. Simulation software is often designed with clear abstractions
and extension points that other developers can use to implement their own
scenarios. However, solving large scale optimization problems with varying
parameters is computationally heavy. The time and effort required to adapt
simulation frameworks to offer features for dealing with this complexity was
deemed to be better spent developing GridFlex. As such, GridFlex offers
features tailored to the specific requirements of the research in this dissertation.

The remainder of this appendix will discuss the objectives, features and high
level architecture of the GridFlex simulator [21].
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A.2 Features

In this section some of the most valuable features that the GridFlex simulator
offers, are explained in more detail.

A.2.1 Distributed execution

To draw useful conclusions based on experimental data, the statistical confidence
of the observed results needs to be sufficiently high. One way of increasing
the statistical confidence is to increase the independent repetitions of the
experiments. GridFlex supports both single and multi-threaded experiment
executions through the Java ExecutorService framework for local experiments.
Besides local execution, GridFlex also supports distributed remote execution
through the open source grid computing solution JPPF [116]. Switching between
local and remote execution can be done seamlessly by providing the appropriate
run-time arguments and experiment modeling and processing is agnostic of
the execution framework to facilitate easy switching between local and remote
execution.

A.2.2 Multi-solver support

Optimization solver technology was a fundamental part of various experiments
described in this dissertation. The problem of allocating consumption flexibility
to imbalance problems was modeled both mathematically as a mixed-integer
programming (MIP) to support commercial solvers such as Gurobi and CPLEX
and in a domain based fashion to which constraints apply, to support the open
source heuristic optimization framework: OptaPlanner [109].

Switching between solver implementations can be done seamlessly by providing
the appropriate run-time arguments. This allows easy comparison between
optimal and heuristically optimized approaches and allows users to choose the
appropriate solvers for problem cases with varying computational complexity
and resource requirements.

A.2.3 Game theoretic modeling abstractions

GridFlex is primarily developed for game theoretic modeling and analysis. This
simulator supports the modeling of multi-player games with multiple actions
where heuristic payoff tables are populated at run time. GridFlex provides tools
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for performing evolutionary game theoretic analyses on the generated payoff
tables. The game theoretic abstractions are generic and completely agnostic of
the specifics of how payoff data is generated, thereby leaving it up to the users
to define the specific game rules and participators.

A.2.4 Extensive test base

GridFlex is developed using a largely test-driven approach to ensure correct
operation of the implemented concepts. Because of the simulator produces
results intended for scientific purposes, a well developed test base is crucial.
Tests for this simulator include unit, scenario, integration and regression tests.
The software was developed using a continuous integration approach with code
quality analysis to allow problems to be discovered and fixed early in the
development process.

A.3 Architecture

GridFlex is a modular simulation framework where each module is self-contained
in terms of the functionality it offers to other modules. The dependencies and
major functionality offered by the modules is shown in the component diagram
in Figure A.1. The following modules make up the GridFlex simulator:

A.3.1 Core

The core module offers multiple core functionalities for the software. Discrete-
time simulation abstractions are offered for other modules to use. Participation
in these simulations can be done by registering as a SimulationComponent to an
instance of Simulator. Besides simulation abstractions, this core module offers
access to general utilities for mathematical operations and transformations,
development utilities for streamlining realizations of particular design patterns
in this software and some general IO functionality.

A.3.2 Domain

The domain module offers implementations of various concepts related to the
problem domain of smart power grids and the use of consumption flexibility.
In this module, a distinction is made between representations of operational
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Figure A.1: The component diagram describes the modular design of the
GridFlex simulator. Reuse and extensions of the software are promoted through
a minimally coupled architecture.

application logic software elements and power system specific problem data
representations.

A.3.3 Persistence

The persistence module offers persistent storage functionality to other
modules. In this simulator, persistence functionality is mainly used for storing
computationally expensive experiment results.

A.3.4 Solving

The solving module provides optimization problem representations of the
flexibility allocation problem studied in this dissertation. This module offers
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MIP solvers using Gurobi and CPLEX and also offers heuristic optimization
solvers using OptaPlanner. For computationally intensive experiments the
solver module can make use of persistence module to perform memoization.
Results calculated for expensive experiments can be stored so that in future
experiment runs, the stored result can be used in stead of executing the expensive
experiments again.

A.3.5 Games

The games module offers abstractions for modeling multi-player games. This
module is problem independent and can be used to guide to populating a
heuristic payoff matrix by traversing the result space spanned by players and
their actions. The resulting payoff data can be used to calculate player choice
dynamics using the evolutionary game theory (EGT) analysis functionality
provided by this module.

A.3.6 Project

The project module is the main module that combines the functionality provided
by the other modules to realize the simulation experiments that produced the
results discussed in this dissertation. This module coordinates the basic IO
and manages the run-time configuration of the experiments and guides their
execution whether local or remote. Concrete experiments are modeled separately
for each separate research question while using the functionality provided by
the other modules.
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