
Contents lists available at ScienceDirect

Mechatronics

journal homepage: www.elsevier.com/locate/mechatronics

Linear Control Toolbox - supporting B-splines in LPV control☆,☆☆

Maarten Verbandt⁎, Laurens Jacobs, Dora Turk, Taranjitsingh Singh, Jan Swevers,
Goele Pipeleers
MECO Research Team, Department of Mechanical Engineering, KU Leuven; DMMS lab, Flanders Make, Leuven, Belgium

A R T I C L E I N F O

Keywords:
Linear Control Toolbox
Matlab
LPV
B-spline
Modeling
Identification
Control

A B S T R A C T

This paper presents the Linear Control Toolbox, a freely available Matlab-based software package primarily
focused on optimal feedback controller design for LTI and LPV systems. Its main goal is to make more involved
controller design methodologies accessible to the broader public by providing tailored synthesis and analysis
tools. The paper gives an overview of the different modules within the toolbox, the underlying data structures
and the supported functionalities and algorithms. Moreover two case studies are elaborated. The autopilot of a
missile serves as a comparison of the Linear Control Toolbox with its competitors and an overhead crane setup
was used to demonstrate the use and experimentally validate the presented toolbox.

1. Introduction

Since the early days of control theH∞/H2 framework has received a
lot of attention. It reformulates the LTI controller design as an opti-
mization problem where the objectives and constraints are based on
H∞ and/orH2 norms of closed-loop transfer functions. As a result, one
is guaranteed to obtain the optimal stabilizing controller given a par-
ticular set of constraints. Also robustness requirements fit naturally in
this framework. All these aspects combined make the H∞/H2 frame-
work very appealing.

An additional advantage of the H∞/H2 framework is that it natu-
rally extends to Linear Parameter Varying control. The LPV paradigm
holds the middle ground between the restricted class of LTI systems on
the one hand and the general class of nonlinear systems on the other:
while being able to capture particular nonlinear phenomena, LPV
control is supported by a similar wealth of analysis and design tools as
LTI control. Moreover, LPV control has been widely validated in aca-
demia, supporting its practical value [1]. However, the absence of fa-
cilitating software tools seems to be the impeding factor to get LPV
control adopted by industry. For LPV H∞/H2 control, the need for
dedicated software is even more emergent than for LTI. In comparison
to the LTI case, optimization based LPV control faces the additional
challenge of satisfying the constraints over the entire parameter do-
main. Various methods have been designed to handle this problem, but

still a substantial effort is needed to transform the controller design into
a tractable optimization problem. Some steps in the direction of user-
friendly software have been made though. Matlab’s Robust Control
Toolbox supports LPV controller design in a very general fashion that is
mainly based on the work of Apkarian and co-workers [2,3]. So-called
tunableSurface objects capture a general parameter dependency
and are used to parameterize and design an LPV controller. In case the
parameter dependency is affine, the user can resort to the more con-
venient hinfgs. LPVtools, as described by Hjartarson et al. [4], is
another Matlab-based package which is intended to ease the manip-
ulation with, analysis of and design for both gridded and parameterized
LPV systems. Within LPVtools a polynomial parameter dependency is
employed.

This paper focuses on a new Linear Control Toolbox,1 which is an
extension to Verbandt [5]. The motivation is twofold. The main driver
is to support recent developments in LPV controller design, based on B-
splines as described by Hilhorst et al. [6]. This method allows para-
meter dependencies to be described by B-splines which are more flex-
ible than the traditionally employed polynomials. Since B-splines en-
compass polynomials, traditional analysis and design methods can still
be interfaced with this new toolbox. Second existing tools are primarily
focused on control, tailored to a specific LPV design problem. This
forces the user to switch toolboxes to for instance identify an LPV
system or to design an LTI controller. On the contrary, the Linear

https://doi.org/10.1016/j.mechatronics.2018.04.007
Received 23 November 2017; Received in revised form 13 April 2018; Accepted 25 April 2018

☆ This work benefits from KU Leuven-BOF PFV/10/002 Centre of Excellence: Optimization in Engineering (OPTEC); the Belgian Programme on Interuniversity Attraction Poles,
initiated by the Belgian Federal Science Policy Office (DYSCO); Flanders Make project ROCSIS: Robust and Optimal Control of Systems of Interacting Subsystems; and project G091514N
of the Research Foundation-Flanders (FWO-Flanders). Flanders Make is the Flemish strategic research center for the manufactoring industry.

☆☆ This paper was recommended for publication by Associate Editor Dr Oomen Tom.
⁎ Corresponding author.
E-mail address: maarten.verbandt@kuleuven.be (M. Verbandt).

1 The Linear Control Toolbox can be found at https://github.com/meco-group/lc_toolbox.

Mechatronics 52 (2018) 78–89

0957-4158/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09574158
https://www.elsevier.com/locate/mechatronics
https://doi.org/10.1016/j.mechatronics.2018.04.007
https://doi.org/10.1016/j.mechatronics.2018.04.007
mailto:maarten.verbandt@kuleuven.be
https://github.com/meco-group/lc_toolbox
https://doi.org/10.1016/j.mechatronics.2018.04.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechatronics.2018.04.007&domain=pdf

Control Toolbox supports the control engineer throughout the different
steps involved in controller design both in an LTI and an LPV setting. It
provides the functionality to identify a system, facilitates general ma-
nipulations with systems, enables the user to declare a control config-
uration and a list of specifications, automatically solves the optimal
controller design problem and provides frequency and time domain
validation tools.

The remainder of the paper is structured as follows. The first part
focuses on the internal system modeling module, which handles general
system manipulations. Next, the identification module is touched upon,
followed by a detailed explanation of the controller design module. In
addition, two case studies are provided. The first is concerned with the
design of a missile’s autopilot and compares the Linear Control Toolbox
to LPVtools and the Robust Control Toolbox. The second example
considers an overhead crane with varying cable length for which an
LPV controller is designed and experimentally validated. The paper
ends with some concluding remarks.

2. System modeling module

At the core of the presented toolbox resides a general system
modeling module. This module adopts a new design paradigm which
makes a clear distinction between systems and models. A system re-
flects a physical entity, e.g. a pump, an electrical circuit or a chemical
process. All of these have inputs and outputs which are intrinsically
related. This relationship is never truly known but one or more models
of the same system might be available. Therefore a system can be re-
garded as a collection of models which all refer to the same physical
entity. The advantage of this approach is that different models can be
consulted when most relevant. For instance, the controller design might
be based on a simplified linear model whereas a time-domain simula-
tion of a high-fidelity nonlinear model is preferable for a validation.
Using a custom modeling module also gives the opportunity to in-
troduce new model classes such as a general nonlinear model, a gridded
(LPV) model or a parameter dependent state-space model.

The following paragraphs shed a brighter light on the toolbox’s
understanding of systems and signals, models and parameters, and their
mutual relation.

2.1. Systems and signals

Within the Linear Control Toolbox, systems and signals serve the
purpose of describing a configuration, i.e. how different components
interact with each other. Systems are created via the function call

> G = IOSystem(ni,no)
where ni and no denote the number of inputs and outputs. Inputs

and outputs are internally stored as a Signal and can be accessed via:
> G.in, G.out
The user is also encouraged to use signal aliases which make the

code easier to read:
> u = G.in, y = G.out
Moreover, new signals can be constructed either via the Signal()

call or as a linear combination of other signals, for example:

> r = Signal(n)
> e = r - y

where the optional argument n indicates the dimension of the signal.
Signals serve the purpose of connecting systems together. A connection
is established by simply equating the signals with the = = operator and
creating a new system from the subsystems and the connection list:

> c1 = (K.in == e)
> c2 = (K.out == u)
> P = IOSystem(G,K,[c1;c2])

In this case, the new system P is constructed from G and K, arranged
in a standard error feedback configuration. A schematic representation
is found in Fig. 1.

2.2. The scheduling parameter

Models provide a relation between the inputs and outputs of a
system. This relation can be either time independent or depending on a
parameter. To this end, the SchedulingParameter is introduced:

> p = SchedulingParameter(name,range,rate)
This object has three attributes: a name, a range indicating the

bounds of parameter values and a range for the rate of variation,
keeping track of the minimum and maximum change of the parameter
value over time. Special cases include fixed parameter values (rate of
variation [0, 0]) and unbounded rate of variation, −∞ ∞[,]. Under the
hood, a SchedulingParameter is a B-spline based identity function.
Therefore the SchedulingParameter supports all operations that
yield piecewise polynomial functions i.e. the addition and multi-
plication. This allows the user to easily declare complex parameter
dependencies, for example the A-matrix of a state-space model:

> A = [p 2, 1;p 3 - 2*p, 0]

2.3. Design models

Because the controller design is based on linear parametric models,
the most important model class is the general LFTmod. It incorporates a
pair of Linear Fractional Transforms applied to an underlying standard
state-space model, as depicted in Fig. 2. Note that the matrices involved

Fig. 1. Schematic of the plant constructed throughout Section 2. Systems K and
G are connected to form system P with input r and outputs e, u, and y. Two
models for G are available and added to the system while K remains empty.

Fig. 2. Graphical representation of the LFTmod in the Linear Control Toolbox.
Two LFTs are included to describe a more general class of models. The dy-
namics are closed by E s

1 so that improper models are allowed.

M. Verbandt et al. Mechatronics 52 (2018) 78–89

79

need not be constant, allowing linear parameter varying (LPV) models.
The resulting state and output dynamics are given by:

= − = −− −F N I M N F N I M N() , ()u u u l l l11
1

44
1

A corresponding constructor is provided as:
> mlft = LFTmod(M,Nu,Nl,E,p,Ts)
where M is a 4-by-4 cell-array and Nu, Nl and E are matrices of

corresponding sizes. It is readily seen that providing empty feedback
matrices Nu and Nl reduces the LFTmod to a standard descriptor state-
space model. The latter is made directly available via the call:

> mdss = DSSmod(A,B,C,D,E,p,Ts)
where A, B, C, D and E are standard state-space matrices, Ts denotes

the sample time in seconds and p is the scheduling parameter which is
only required if one or more state-space matrices depend on p. In case E
happens to be the unit matrix, the DSSmod further reduces to a standard
state-space model which is constructed straightaway as:

> mss = SSmod(A,B,C,D,p,Ts)
Although the implementation relying heavily on the LFTmod might

look over-complicated, there are two advantages in doing so. First, more
complex operations such as closing a loop become very simple on models
in the LFT form [7]. Second, the LFTmod is able to represent the complex
model structures which arise naturally from an LPV controller design [8].

2.4. Validation models

For validation purposes, the toolbox provides more dedicated model
classes such as nonlinear models or nonparametric models like a sam-
pled frequency response.

To capture arbitrary nonlinear dynamics, e.g. to perform a time
domain validation, the ODEmod is introduced. This model incorporates
a general ordinary differential equation (ODE) which is driven by u and
p, i.e. the input to the system and the parameter value. The state x is
updated via Eq. (1). Note that x might be empty, e.g. for a saturation
block. Eq. (2) returns the output, y, of the model.

=E x u p x f x u p(, ,) ˙ (, ,) (1)

=y g x u p(, ,) (2)

An ODEmod is constructed by:
> mode = ODEmod(f,g,E,p)
where f, g and E are function handles with two or three inputs,

depending on whether a scheduling parameter is involved. In case these
function handles do depend on a scheduling parameter, the latter is also
required as an input argument of the model.

The presented toolbox also offers the possibility to work with non-
parametric FRFs. The FRDmod class is built on top of Matlab’s frd class,
transferring all original functionality:

> mfrd = FRDmod(resp,freq)
The Gridmod represents a gridded implementation of an LPV

model. Take for instance a series of local identification experiments
which each yield an FRDmod linked to a particular parameter value.
These are readily combined in a Gridmod via the function call:

> mgrd = Gridmod({frd1,frd2,frd3},... [pval1,p-
val2,pval3])

The main advantage is that all operations performed on the
Gridmod are carried out on all underlying elements at once, e.g.
computing an element-wise norm or plotting a series of Bode diagrams.

2.5. Adding models to systems

Once one or more models have been created, they should be linked
to the corresponding system. To do so, the function add is used:

> G.add(mss,mode,mfrd)
Thereafter, G.content() is no longer empty. Though standard

plotting functionality like bode or step is supported for individual
models, calling these functions on systems is more powerful. This shows
all responses on a single graph, facilitating the comparison between
different (closed-loop) models.

3. System identification

The system identification module provides the necessary function-
ality to convert measured time or frequency domain data into para-
metric models. It interfaces the Matlab implementations [9] of the
frequency domain system identification methods in detail elaborated in
[10].

Although the focus currently lies on LTI identification, LPV identi-
fication is planned to be incorporated in the near future. In particular
the combined global and local LPV system identification approach [11],
as well as the reweighted ℓ2, 1-norm regularization approach [12] will
be supported. In the meantime, LPV models are identified via the State-
space Model Interpolation of Local Estimates (SMILE) [13], a technique
that interpolates LTI models with a user-specified set of basis functions
of the scheduling parameter. B-spline basis functions are used here in
order to comply with the B-spline based LPV controller design within
the toolbox.

3.1. Excitation signals and measurement data

The first step of the system identification procedure is the genera-
tion of excitation signals. At present, the toolbox only supports the
generation of multisine signals [10]. The command

> u = Multisine(‘label’, ‘experiment1’, ‘fs’, 100,
‘fwindow’, [0.01 2], ‘freqres’, 0.01)

creates a multisine, sampled at 100 Hz, exciting a linearly spaced
frequency grid in the interval [0.01, 2] Hz, with a frequency resolution
of 0.01 Hz. This choice automatically determines the period of the
multisine, in this case 100 s. The multisine u is a so-called TimeSignal
object that contains all information that is characteristic for this specific
signal. Additional name-value pairs allow the user to specify more
options, e.g. the phase distribution of the signal, its amplitude spec-
trum, etc. TimeSignal objects feature useful methods; the user can for
example plot the signal spectrum by

> plotSpectrum(u, ‘dft’)

The actual signal content (one period of the multisine in this case) is
obtained by

> [s,t] = signal(u)

Once the excitation has been applied, the experimental data is im-
ported in the toolbox. This is done by wrapping the measurements into
TDMeasurementData objects. In case of a system with two inputs and
two outputs, a TDMeasurementData object is constructed as follows:

> meas1 = TDMeasurementData(‘label’, ‘meas1’,

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎡

⎣
⎢

→
→

⎤

⎦
⎥ = ⎡

⎣
⎢

⎛
⎝

⎞
⎠

+ ⎛
⎝

⎞
⎠

+ ⎛
⎝

⎞
⎠

+ ⎛
⎝

⎞
⎠

⎤

⎦
⎥

⎡
⎣⎢

→
→

⎤
⎦⎥

Ex
y

M M
M M

M
M F M F M M M

M F M M M
M F M M x

u

˙
() () ()l u u l

22 23

32 33

24

34
41 12 13

21

31
12 13

24

34
42 43

M. Verbandt et al. Mechatronics 52 (2018) 78–89

80

‘excitation’, [u1 u2], ‘data’, [x1 x2 y1 y2], ‘data-
labels’, {‘x1’, ‘x2’, ‘y1’, ‘y2’}, ‘periodic’, true)

where u1 and u2 are objects of the aforementioned class TimeSignal
representing the first and the second input. Similar to TimeSignal, the
toolbox supports several relevant operations on TDMeasurementData
objects. For example, to avoid the effect of transients in the FRF esti-
mation (Section 3.2), one may decide to keep the last 7 periods of the
measurements:

> meas1 = clip(meas1, ‘lastnper’, 7)

Complementary to TDMeasurementData, the
FDMeasurementData class handles nonparametric frequency re-
sponse function (FRF) measurements. FRF measurements can either be
loaded directly into Matlab or can be calculated based on time domain
data from a TDMeasurementData object. The latter is discussed in the
following paragraph.

3.2. Nonparametric frequency response function estimation

The toolbox supports two methods to estimate the system’s FRF
based on multiple measurements obtained with different random mul-
tisine realizations: the robust detection algorithm for nonlinearities [10,
Section 4.3.1] (Robust_NL_Anal [9]) intended for SISO systems and
the robust local polynomial method [10, Section 7.2.2] (RobustLo-
calPolyAnal [9]) for MIMO systems. These methods combine mea-
surements from different random multisine excitations to average out
both the effects of nonlinear distortions and measurement noise. They
yield an FRF estimate, also referred to as the best linear approximation,
the sample total variance (contributions of measurement noise and
nonlinear distortions) and the sample noise variance.

The nonparametric FRF estimate based on e.g. four different mea-
surements is obtained by calling the routine nonpar_ident with the
arguments as shown below:

> IOlabels.input = {‘x1’, ‘x2’};
> IOlabels.output = {‘y1’, ‘y2’};
> FRF = nonpar_ident(meas1, meas2, meas3, meas4,

IOlabels, ‘RobustLocalPolyAnal’);

where ‘x1’, ‘x2’, ‘y1’ and ‘y2’ refer to the datalabels provided to
the TDMeasurementData objects. The result, FRF, is a
FDMeasurementData object.

3.3. Parametric LTI model identification

The nonparametric FRF of the system is further used to estimate a
parametric model. For the time being, the toolbox comes with the
routine MIMO_ML, a maximum likelihood identification algorithm [10],
MIMO_NLS, a nonlinear least-squares fitting algorithm allowing an ar-
bitrary frequency weighting weight, and also interfaces Matlab’s
routine tfest. These methods estimate common denominator transfer
function models. The function param_ident parses the data for each
of these routines and is called as shown below:

> settings = struct(‘denh’, 2, ‘denl’, 0, ‘numh’, 2,
‘numl’, 0, ‘W’, weight, ‘Ts’, 0.01)

> model = param_ident(‘data’, FRF, ‘method’,
‘MIMO_NLS’, “settings’, settings)

where denh (numh) and denl (numl) in settings represent the
highest and lowest degree of the denominator (numerator) of the un-
derlying transfer functions, respectively. numh and numl are no× ni
matrices, with no and ni the number of system outputs and inputs, re-
spectively.

3.4. LTI state-space model interpolation

To obtain an LPV model the aforementioned procedure is repeated
for different fixed values of the scheduling parameter yielding a set of
parametric LTI models. Subsequently, an LPV state-space model is ob-
tained in two steps. First, the identified LTI models are packed in a
Gridmod:

> mgrd = Gridmod(models,schGrid)

where models is a cell array of local LTI models and schGrid is the
set of corresponding values of the scheduling parameter.

Second, an LPV state-space model is obtained from the gridded
model through an interpolation carried out by the SMILE technique
[13] and a user defined basis:

> basis = BSplineBasis(range,degree,knots)
> mlpv_interp = SSmod(mgrd,basis,schParam)

4. Controller design

Since one of the goals of the presented toolbox is to facilitate the
design of optimal controllers, another key module is the controller
design module. The H∞/H2 design paradigm is introduced first, fol-
lowed by the formulation and the solution of a standard control pro-
blem using the toolbox.

4.1. The H∞/H2 paradigm

The idea behind the H∞/H2 paradigm [14] is to formulate the
controller design procedure as an optimization problem. Objectives and
constraints are imposed directly on the closed-loop transfer functions
by means of H∞ and/or H2 norms. By doing so, one is guaranteed to
obtain the optimal stabilizing controller given a particular set of con-
straints. Moreover, it is well known that standard objectives and con-
straints such as bandwidth, robustness or noise suppression can be
expressed readily within this framework.

Eq. (3)displays the standardH∞/H2 optimization problem.Ci andCj
denote the closed-loop transfer functions of interest in the objective
respectively the constraints. Frequency dependent weights [15]W ,i V ,i
Wj and Vj are usually added to balance the importance of different
frequencies. pi and pj indicate which system norm is used for each
channel and can either be 2 of∞. αi allows a trade-off between multiple
objectives.

WCV

W C V

∑

⩽

αminimize

subject to 1
K i

i i i i p

j j j p

i

j (3)

Most solvers reformulate optimization problem (3) in terms of linear
matrix inequalities (LMIs) [16]. By choosing a single Lyapunov matrix
which applies to all of the considered channels, it is possible to render
the design problem convex. This yields an efficient solution strategy
which naturally extends to the design of LPV controllers. In that case,
the LMIs become parameter dependent and have to be relaxed to obtain
a tractable formulation. Traditionally Pólya’s method [17] or Sum-of-
Squares [18] are employed, but more recently it has been shown that B-
spline relaxations outperform these methods in many cases [6]. It is
shown that the parameter dependent LMIs are guaranteed to hold over
the whole parameter domain by putting constraints on the coefficients
Fi, of the basis functions B ,i as described by Eq. (4).

B∑= ≺ ∀ ∈ ⇐ ≺
=

F p p F p P F() () 0, 0
i

N

i i i
1 (4)

Moreover, B-splines are capable of describing non-hyperrectangular
parameter domains. The aforementioned reasons encouraged the use of

M. Verbandt et al. Mechatronics 52 (2018) 78–89

81

B-splines to capture parameter dependencies and to solve the LPV op-
timal controller design problem.

4.2. Channels, norms and weights

Though optimization problem (3) might still be comprehensible to a
control practitioner, the actual implementation is not. Two main diffi-
culties arise. First, the control engineer has to choose a solver im-
plementation which fits the problem at hand. This task is not obvious as
it depends on several criteria, for instance: Does the problem involve
hard constraints? Is the problem formulated withH∞ norms only? Is the
problem single- or multi-objective? The second hurdle is providing the
right arguments to the routine. Not only do these arguments vary from
routine to routine, but also the construction of the usually required
augmented plant itself might cause problems.

In order to simplify the problem formulation, the Linear Control
Toolbox offers the Channel and Norm classes. A Channel is an ab-
stract representation of a transfer function with input in and output
out and is constructed as:

> C = Channel(in,out,name)
Multidimensional in and out are allowed, yielding a MIMO

channel.
The second ingredient is the so-called weighting function. Although

weighting functions can in principle be any transfer function, they often
boil down to standard filters. Therefore, the presented toolbox offers
the Weight class which implements these standards. Moreover, in the
SISO case, the inverse of the weights can be regarded as upper bounds
to the closed-loop transfer functions. Therefore Weight employs an
inverse definition allowing the user to interpret the specified transfer
functions as constraints for the optimization rather than frequency
dependent weights for the closed-loop transfer functions. The simplest
possible weight is a constant, constraining the peak of a transfer func-
tion:

> W = Weight.DC(value)
Since control engineers typically prefer a logarithmic scale, value

is by default interpreted in [dB]. In case value is to be interpreted as is,
the argument ‘linear’ should be supplied. Due to the inverse defi-
nition, the actual magnitude of W will be -value [dB].

> W = Weight.LF(fco,ord,lfgain)
puts emphasis on lower frequencies and is therefore suited to shape

a sensitivity transfer function. At low frequencies, its magnitude ap-
proaches -lfgain [dB]. ord poles are inserted so that the cross-over
frequency becomes fco. Again, natural parameters are employed to
shape the weight. Its counterpart Weight.HF also exists, amplifying
high frequencies which is for instance applicable to ensure noise sup-
pression.

In combination with a weighting function, the Channel yields a
Norm object. The latter is then used to formulate the optimization
problem in a natural way (cfr. Eq. (3)). A Norm is readily constructed
via:

> N = Norm(W,C,p)
where W and C are the weight and channel respectively. In this case

the output of C is weighted by W. To have weighted inputs which is
especially relevant in a MIMO setting, the arguments W and C are
swapped. The third argument p specifies which norm is being employed
and can take two values: 2 or inf. In case p is omitted, the default inf
is employed. In that case, the shorthand notation

> N = W*C
is also available.

4.3. Obtaining a solution

Once the control loop and design objectives have been formulated,
they are dispatched to the appropriate solver. This is done by calling the
solve function on the constructed closed-loop system. A schematic
representation of the controller design is shown in Fig. 3.

> S = Channel(e,r,‘S’), T = Channel(y,r,‘T’)
2. obj = W1*S
> constr = [W2*S<=1,W3*T<=1]
> [P,k1,info] = P.solve(obj,constr,K,opts)

obj and constr are the objective and constraints which are readily
constructed from the appropriate Norms. The argument K reflects the
optimization variable. In case the optimization succeeds, the solution,
k1 is automatically added to the optimization variable, K. Along with
the actual solution, solve produces a report on the internal optimi-
zation process, info. This allows the user to assess the quality of the
solution. The easiest way (only for SISO controllers) is to call:

> bodemag(info)
showing the closed-loop frequency responses along with the con-

straints. For MIMO designs, sigma is provided, which plots the
weighted closed-loop singular values.

Since controller design is mostly an iterative process, the Linear
Control Toolbox supports multiple designs in a straightforward manner.
Here too the system-model approach proves itself useful. Subsequent
solve calls with different objectives and constraints will come up with
different control models, which are all added to the controller system K.
Therefore, the closed-loop system P will carry multiple models which
are readily compared.

Another more elaborate case would be the design of multiple de-
centralized controllers. Contrary to Matlab’s hinfstruct, the Linear
Control Toolbox does not support a single-step design procedure for this
case. However, the intuitive design procedure of sequential loop-clo-
sure is easily carried out. First, the inner controller is designed:

> [CL,∼ , info1] = CL.solve(obj_in, constr_in, K_in)
Once K_in

has an implementation, the inner control loop is fully known.
Thereafter, the outer loop can be shaped, which is done in a very similar
way:

> [CL,∼ , info2] = CL.solve(obj_out, constr_out,
K_out)

This yields a control law for K_out which is the second part of the
decentralized controller. This shows that sequentially calling solve,
each time indicating another system in the decentralized control
structure, gradually constructs the overall controller.

5. Example 1: a comparative case study

This section investigates the advantages and drawbacks of the
Linear Control Toolbox compared to Matlab’s Robust Control Toolbox
[19] and LPVtools [4]. The comparison is based on a case study de-
scribed in [20] which concerns the control of a missile. The details on

Fig. 3. Schematic of the controller design. Channels S and T are constructed
first. Together with the appropriate weights, they yield several norm objects
which form the objective and constraints for the optimization procedure. The
resulting controller k1 is automatically added to the optimized system, K.

M. Verbandt et al. Mechatronics 52 (2018) 78–89

82

the model and the design objectives are followed by a discussion on the
problem formulation in each of the toolboxes. Finally an assessment of
the underlying methodologies for the controller synthesis is done, based
on the quality of the solution as well as the speed at which it is ob-
tained.

5.1. Model and design objectives

The controlled system is chosen to be the missile model described in
[20] which is described by Eq. (5). The system consists of one control
input, δm, which represents the fin deflection. The measured outputs are
the normalized vertical acceleration, αzv, and the missile’s pitch rate, q.
Moreover, the missile’s dynamics change under influence of two aero-
dynamical coefficients, Zα∈ [0.5 4] and Mα∈ [0 105], which are the
scheduling parameters for the LPV controller design.

⎡
⎣⎢

⎤
⎦⎥

=⎡
⎣⎢

−
−

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

+ ⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

=⎡
⎣⎢

− ⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

α
q

Z
M

α
q δ

α
q

α
q

˙
˙

1
0

0
1

1 0
0 1

α

α
m

zv

(5)

The control configuration is depicted in Fig. 4. The normalized
vertical acceleration’s tracking error e is fed back together with the
missile’s pitch rate q. Based on these measurements, the control law
computes the fin deflection. The goal is to achieve accurate tracking for
the normalized vertical acceleration while taking into account robust-
ness requirements. Therefore the design objective, given by (6), consists
of two parts. Adequate reference tracking is ensured by taking

→ = −S r e α r: zv into account. The second term in the objective en-
courages robustness since the latter is guaranteed if ‖W2KS‖≤ 1.

∞

W S
W KSminimize 1

2 (6)

with

=
+

= +
+ + +

W
s

W s s
s e s e s e

2.01
0.201

9.678 0.029
1.203 4 1.136 7 1.066 10

1

2
3 2

3 2 (7)

5.2. Constructing an LPV model

The first step in the controller design is to enter the missile’s LPV
model in the different toolboxes (see code Example 1). LPVtools and the
Linear Control Toolbox employ a very similar approach when it comes
to declaring an LPV model. Each of the toolboxes provides a parameter
object: LPVtools comes with tvreal and pgrid whereas the Linear
Control Toolbox offers SchedulingParameter. This approach makes
it very intuitive to declare for instance a parameter varying state-space
matrix. Consequently, the resulting code resembles the model descrip-
tion in (5) which is helpful to the user. Matlab’s Robust Control Toolbox
employs a very different strategy inspired by the polytopic nature of the
supported models. The vertices of the polytope are defined as a series of
LTI models which combined with a description of the parameter

domain result in a polytopic system. This approach requires more care
as the order of vertices has to correspond to the list of LTI models. Also,
the resulting code shows less resemblance to the model description (5)
which might be perceived by the user as more challenging.

5.3. Declaring the control configuration

To proclaim the control configuration depicted in Fig. 4, each of the
discussed toolboxes provides its own signal-based method. The Linear
Control Toolbox uses a syntax as discussed in Section 2.1 and distin-
guishes itself from the other toolboxes by using explicit Signal objects
and IOSystem objects which carry input and output signals. LPVtools
uses sysic as a connection front-end which is a string-based approach.
The Robust Control Toolbox offers similar functionality through
sconnect, also parsing a series of strings to construct the inter-
connected system. Code Example 2 shows the construction of the con-
trol configuration within the different toolboxes.

Although a comparison of these different implementations depends
heavily on the user’s preferences, it is tried to make it as objective as
possible. The first criterion is the readability of the produced code. In
that respect the Linear Control Toolbox and LPVtools would surpass the
Robust Control Toolbox since the former rely on additional variables to
declare the plant. The ability to supply convenient names for the signals
also adds to the readability of the code. This feature is present in both
the Robust Control Toolbox and the Linear Control Toolbox which in
that regard outperform LPVtools. Moreover, the Linear Control Toolbox
and the Robust Control Toolbox also include the controller in the for-
mulation of the control configuration which feels more natural than
constructing an open loop to which the controller still needs to be
connected, as is the case with LPVtools. On the other hand, LPVtools
and the Robust Control Toolbox impose a more structured declaration
than the Linear Control Toolbox which helps preventing unconnected
models or unresolved connections.

When it comes to expressing the control objectives, it is usually
required to extend the control configuration with appropriate weights
to obtain the augmented plant. Therefore, these weights are already
included in the control configuration Paug when using LPVtools or the
Robust Control Toolbox. Contrary to its alternatives, the Linear Control
Toolbox provides a higher level of abstraction to formulate the opti-
mization problem as described by Section 4.2. Based on this optimi-
zation problem, the augmented plant is constructed behind the scenes.
This allows the user to declare simply the actual control configuration
rather than the augmented plant which is merely a mathematical con-
struct.

Generally speaking, the Linear Control Toolbox is very much or-
iented to the user’s comfort, mainly improving the readability of the
code. The Robust Control Toolbox sits at the other end of the spectrum,
usually resulting in compact code intended for expert users. LPVtools
holds the middle ground providing tools to simplify the controller de-
sign to some extent.

5.4. Solving the control problem

The missile control problem is now passed to the solvers in the
different toolboxes in order to compare the quality of the solution as
well as the speed at which it is obtained. However, when passing the
problem to LPVtools, an error is thrown related to a rank deficient D21
matrix in the augmented plant. Following the instructions provided by
Megretski [21], a regularization input was added to the control con-
figuration leading to a successful solution. The Linear Control Toolbox’s
solver was invoked with the var_deg = 0 resulting in a constant
Lyapunov matrix. LPVtools’ lpvsyn was executed with the ‘Min-
Gamma’ flag to avoid a relaxation of the optimal value which would
lead to an unfair comparison. Because LPVtools offers two parameter
representations, tvreal and pgrid, both solutions are presented.

The results are gathered in Table 1. In terms of optimality, the

Fig. 4. Control configuration for the vertical acceleration control of a missile.
The control output δm is based on the tracking error e and the missile’s pitch
rate q as an additional measurement. (adapted from [20]).

M. Verbandt et al. Mechatronics 52 (2018) 78–89

83

Linear Control Toolbox and the Robust Control Toolbox show com-
parable performance whereas LPVtools lags behind with both solution
strategies. This is also clearly visible from Fig. 5, particularly from the

sensitivity: the green and yellow curves show a lower bandwidth than
the red and blue curves, which implies that LPVtools reaches a lower
degree of optimality. This also shows in the step response subject to a
spiral parameter trajectory (8) depicted in Fig. 6. The two controllers
designed with LPVtools are slower than the other two responses.

⎧
⎨⎩

= + −
= + −

Z t t t
M t t t

() 2.25 1.70 exp(4)cos(100)
() 50 49 exp(4)sin(100) (8)

The opposite holds when comparing the solver times. Here LPVtools as
well as the Robust Control Toolbox outperform the Linear Control
Toolbox. Moreover the Linear Control Toolbox’s solver is an order of

Code example 1. Comparison of the Linear Control Toolbox, LPVtools and the Robust Control Toolbox when constructing the missile’s LPV model.

Code example 2. Comparison of the Linear Control Toolbox, LPVtools and the Robust Control Toolbox when constructing the control configuration.

Table 1
Comparison of the optimality and solver time of the Robust Control Toolbox,
LPVtools and the Linear Control Toolbox.

RCtoolbox LPVtools LPVtools LCtoolbox
-tvreal -pgrid

‖ · ‖∞ 0.2054 0.2778 0.6490 0.2021
t [s] 0.73 0.18 1.8612 17.23 (0.96)

M. Verbandt et al. Mechatronics 52 (2018) 78–89

84

magnitude slower than its competitors. However the time it takes to
solve the underlying SDP is only 0.96 s which is more in line with
LPVtools and the Robust Control Toolbox. The 16 s overhead is caused
by the controller synthesis tools being based on the ‘OptiSpline’ toolbox
[22]. This toolbox eases the manipulation of splines at the expense of an
extra cost to export the underlying SPD. A direct implementation of the
LMIs would put the B-spline based method amongst its competitors.

Although this case study would suggest there are only minor dif-
ferences between the different toolboxes regarding the quality of the
solution, it should be noted that the case study was chosen so that all
toolboxes were able to solve the same problem. Both LPVtools and the
Linear Control Toolbox are capable of solving a broader variety of
problems than the Robust Control Toolbox. They can handle poly-
nomial and B-spline parameterized models respectively and deal with
constrained parameter variations explicitly.

6. Example 2: experimental validation on an overhead crane

This section demonstrates the use of the Linear Control Toolbox
when designing an LPV controller for an overhead crane system. The
first part covers the physical modeling of the system resulting in a
nonlinear model. This model is well suited for validation but not for
controller design. This is why a second model is derived, based on a
series of identification experiments. These result in local LTI models
which are interpolated to obtain an LPV model. Based on the latter, a

parameter varying controller is designed and validated both in simu-
lation and experimentally.

6.1. Modeling

A schematic of the considered mechatronic system is depicted in
Fig. 7. The base of the system consists of a velocity controlled trolley
with time constant τ and reference u. The encoder on the trolley’s track
provides a measurement of x0. The trolley is equipped with a hoisting
mechanism which allows the system to vary the cable length L, which is
also being measured. Moreover, L is constrained between 0.3 m and
0.8 m with a maximum rate of variation of 10 cm/s. Another sensor on
the hoisting mechanism measures the load angle θ. These measure-
ments are combined to obtain a measurement for the output of interest,
x. Eq. (9) shows the governing dynamics, adapted from Debrouwere
et al. [23]. The model parameter τ is approximately 0.01 s and the
damping coefficient c is set to 0 m/s.

⎧

⎨
⎪

⎩⎪

=− −
= − − −
= +

−

− −

x τ x u
θ L τ x u θ g θ cθ
x x L θ

¨ (˙)
¨ ((˙)cos sin ˙)

sin

0
1

0
1 1

0

0 (9)

Code example 3describes the declaration of the crane. First a SISO
system, crane, is constructed. Next, the scheduling parameter L is
introduced followed by a declaration of the nonlinear equations of
motion. As a last step, the nonlinear model nl is added to the system
crane.

6.2. Identification of an LPV model

Because the previously derived nonlinear model is not suited for
controller design, an identification experiment is set up to derive sev-
eral LTI models for a set of fixed cable lengths. Code example 4 de-
scribes how the toolbox creates an excitation signal and how it is ex-
ported to drive the actual setup. First the experimental settings are
defined: the sample frequency fs, the number of samples of the peri-
odic excitation signal N, the frequency resolution df and the range of
excited frequencies frange (all frequencies specified in [Hz]). Based
on these settings, an excitation signal is generated. A full random phase
multisine with amplitude 0.05 m/s is opted for. This signal is then
written to a text file using Matlab’s dlmwrite, which in turn is fed to
the overhead crane. Once an experiment has been carried out, the data
is imported in the Linear Control Toolbox. TDMeasurementData is
provided as the standard time domain data container and is constructed
as described by Code example 5. First, the control value u and the
measured output y are read from the data file ‘exp_50.nc’, created
during the experiment. Next they are packed together with the origin-
ally constructed excitation signal in the TDMeasurementData object.
Moreover, the signals are labeled ‘input’ and ‘loadpos’ and the data is

Fig. 5. Comparison of the closed-loop transfer functions within the three con-
troller design toolboxes. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 6. Step response of the missile’s autopilot on a spiral parameter trajectory
(8).

Fig. 7. Schematic of the considered overhead crane. The cart is driven by the
velocity reference u. x0, θ and L are measured.

M. Verbandt et al. Mechatronics 52 (2018) 78–89

85

marked as being periodic. In order to estimate the LTI models for dif-
ferent cable lengths, a two-step approach is used. This is described by
Code example 6. In the first step, the measured data is fed to non-
par_ident which estimates a nonparametric FRF. The input and
output label indicate which measurements are to be used and ‘Ro-
bust_NL_anal’ indicates the employed method. Note that clip is
used to only retain the last three periods of the measured response
thereby suppressing the influence of the transient on the resulting fre-
quency response. The nonparametric estimates for various cable lengths
are shown on Fig. 8. It is observed that the identification results degrade
towards higher frequencies. However, from a control point of view, it is
mainly the resonance frequency that needs a decent estimate which
justifies continuing with these models. The second step involves the
estimation of a parametric model. To this end, param_ident is in-
voked on npmod_50 using the method‘MIMO_NLS’.

The previously described sequence of creating an excitation signal,
loading the measured data and estimating a model is repeated for cable
lengths from 0.3 m to 0.8 m in steps of 0.05 m. The different LTI models
are combined in one Gridmod, as it serves naturally as a sampled
version of an underlying LPV model. Given a B-spline basis and a

scheduling parameter, the gridded model is readily transformed into an
LPV state-space model through interpolation. This LPV model is then
added to the system crane. This is described in Code example 7. Fig. 8
shows the bode diagrams of the different models involved: the fixed-
length FRFs, the fixed-length LTI models and the varying length LPV
model.

6.3. Controller design

Designing a controller involves two steps: proclaiming the control
configuration and stating the design specifications. The presented
toolbox facilitates both by offering a suitable syntax.

First the configuration, depicted in Fig. 9, is built. The corre-
sponding code is found in Code example 8. Since the system crane, has
already been declared, the only system still needed is the controller, K.
After introducing the reference signal r, aliases are provided for the
measured output of the crane, y, the control signal, u and the error
signal, e, which improves the readability. Finally, the set of connections
is passed on to a new system together with the subsystems involved,
resulting in the desired configuration. Note that at this point, the
closed-loop transfer functions are not accessible because the controller
K does not yet contain any models.

Second, the list of specifications is provided, as shown in
Code example 9. Two requirements are imposed: the controller’s high
frequency roll-off should be -20 dB per decade and the bandwidth
should be at least 0.15 Hz. The transfer functions of interest are →r e
and →r u, also referred to as the sensitivity (S) and the input sensitivity
(U). Roll-off is guaranteed by constraining the weighted input sensi-
tivity. The weight is designed so that high frequencies become domi-
nant in the H∞ criterion, effectively suppressing them. By choosing a
first order weight, the requirement of high frequency controller roll-off
is met. Similarly, the sensitivity’s low frequencies are amplified by Ws in
order to obtain better tracking behavior. The cross-over frequency of Ws
is chosen 0.15 Hz to satisfy the design requirement. The remaining

Code example 3. Declaration of the crane system and construction of the nonlinear model.

Code example 4. Code necessary to generate and export a multisine excitation
signal for the overhead crane setup.

Code example 5. Code necessary to generate and export a multisine excitation signal for the overhead crane setup.

M. Verbandt et al. Mechatronics 52 (2018) 78–89

86

freedom is used to maximize the damping of the closed loop, i.e. pe-
nalizing Ms*S. By calling solve on the closed loop P, along with the
design specifications, the optimal controller is computed and auto-
matically added to system K.

6.4. Validation

The Linear Control Toolbox also offers some validation tools, al-
lowing the user to critically assess the design.

Because the controller design was based on anH∞ criterion, one can
check how the closed-loop transfer functions relate to the imposed
constraints. By simply calling bodemag(sol,S,U,T), the closed-loop
transfer functions are shown along the with weights, as depicted in
Fig. 10. It is clearly visible that all constraints are met: the closed-loop

Code example 6. Estimation of a fixed-length LTI models for the overhead crane.

Code example 7. Interpolation of local LTI models to obtain an LPV model.

Fig. 8. Bode diagram of the different models involved in the identification
process. In blue the estimated nonparametric FRF for fixed cable lengths, in
green the corresponding LTI models and in red the evaluation of the inter-
polated LPV model at the corresponding cable lengths. The B-spline’s four de-
grees of freedom are used to optimally interpolate the 11 local LTI models. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 9. Schematic of the control configuration of the overhead crane.

Code example 8. Declaration of the control configuration in the Linear Control
Toolbox.

Code example 9. Stating the design specifications and computing the optimal
controller.

M. Verbandt et al. Mechatronics 52 (2018) 78–89

87

transfer functions (solid lines) have a smaller magnitude than their
respective weights (dashed lines).

After a quick frequency domain assessment, time domain simula-
tions may yield additional insight in the behavior of the controller.
Although standard commands such as step or impulse are available,
the most powerful command is sim. This function carries out a time
domain simulation for a system, provided a time dependent input and
parameter value. Because a system may contain several models, re-
sponses are readily compared. Fig. 11 shows the simulation result when
the cart moves 0.3 m while the load is lowered from 0.4 m to 0.7 m at
maximum velocity and executes the opposite manoeuvre after a few
seconds (Code example 10). In this case, two simulations are shown:
one for the LPV model and one for the nonlinear model. As expected,
only small differences occur between the two responses. This observa-
tion indicates that the interpolated LPV model describes the nonlinear
dynamics sufficiently accurate. Second, the tracking behavior looks
adequate and the resonance frequency is sufficiently dampened, even
for a varying cable length. To experimentally validate the designed B-
spline LPV controller, it is exported to a C++ implementation with
Eigen [24] as a linear algebra back-end and a custom implementation of
De Boor’s algorithm [25] to evaluate the B-splines. Since the controller
was designed in continuous time, a backward Euler scheme is employed
to update the control law at a rate of 100 Hz. Fig. 11 shows the mea-
sured load position as well as the control signal along the simulations. It
is readily seen that the experimental results match the simulations very
well both qualitatively and quantitatively.

7. Conclusion

This paper has highlighted the main features of the novel Linear
Control Toolbox. Three complementary modules, i.e. the system mod-
eling module, identification module and controller design module, as
well as the different validation tools assist the practicing control

engineer along the journey towards a high performance model-based
H∞/H2 controller. The most important data structures have been pre-
sented and important design choices were justified. Based on a two-
parameter missile control case study, the Linear Control Toolbox was
compared to its competitors: LPVtools and Matlab’s Robust Control
Toolbox. It was shown that the Linear Control Toolbox stands out when
it comes to the variety of problems it is able to solve as well as for-
mulating the control problem in a readable manner. An overhead crane
setup served as a second case study to validate the Linear Control
Toolbox both in simulation and experimentally. Moreover, develop-
ments are still ongoing and include the use of uncertain models to de-
sign robust controllers, the implementation of direct LPV identification
methods and the optimal selection of sensors and actuators.

References

[1] Hoffmann C, Werner H. A survey of linear parameter-varying control applications
validated by experiments or high-fidelity simulations. IEEE Trans Control Syst
Technol 2015;23(2):416–33.

[2] Apkarian P, Dao MN, Noll D. Parametric robust structured control design. Autom
Control IEEE Trans 2015;60(7):1857–69.

[3] Apkarian P, Gahinet P, Becker G. Self-scheduled H∞ control of linear parameter-
varying systems. 1. American Automatic Control Council; 1994. p. 856–60.

[4] Hjartarson A, Seiler P, Packard A. Lpvtools: a toolbox for modeling, analysis, and
synthesis of parameter varying control systems. IFAC-Papers OnLine
2015;48(26):139–45.

[5] Verbandt M. An LTI control toolbox - simplifying optimal feedback controller de-
sign. Conference proceedings European control conference (2016). 2016.

[6] Hilhorst G, Lambrechts E, Pipeleers G. Control of linear parameter-varying systems
using B-Splines. 55th IEEE conference on decision and control, Las Vegas, USA,
December. 2016. p. 12–4.

[7] Doyle J, Packard A, Zhou K. Review of LFTs, LMIs, and mu. IEEE Publishing; 1991.
p. 1227–32. ISBN 0-7803-0450-0

[8] Apkarian P, Adams RJ. Advanced gain-scheduling techniques for uncertain systems.
IEEE Trans Control Syst Technol 1998;6(1):21–32.

[9] Pintelon R., Schoukens J. http://wiley.mpstechnologies.com/wiley/BOBContent/
downloadBobProjectFile.do?bpfId=1029&bpfFileType=.zip&bpfFileName=
FreqDomBox.zip; 2012a. Accessed October 20, 2017.

[10] Pintelon R, Schoukens J. System identification: a frequency domain approach.
Second Edition Wiley; 2012. ISBN 9781118287392

[11] Turk D, Pipeleers G, Swevers J. A combined global and local identification approach
for LPV systems. IFAC PapersOnLine 2015;48(28):184–9.

[12] Turk D, Gillis J, Pipeleers G, Swevers J. Identification of linear parameter-varying
systems: a reweighted L2,1-norm regularization approach. Mech Syst Signal Process
2018;100:729–42.

[13] Caigny JD, Camino JF, Swevers J. Interpolation-based modeling of MIMO LPV
systems. IEEE Trans Control Syst Tech 2011;19(1):46–63. http://dx.doi.org/10.
1109/TCST.2010.2078509.

[14] Apkarian P, Noll D. The H∞ control problem is solved. AerospaceLab J 2017(13).
[15] Kwakernaak H. Robust control and H∞ optimization – tutorial paper. Automatica

1993;29(2):255–73.

Code example 10. Validation of the LPV controller design in time domain.

Fig. 10. Frequency domain validation of the LPV controller design for the
overhead crane example. The closed-loop frequency responses are solid, the
constraints are dashed.

Fig. 11. Response of the closed loop when hoisting the load from 0.4 m to 0.7 m
and moving the load 0.3 m simultaneously for a time span of 3 s. After 10 s, the
motion is repeated in the opposite direction so that the load returns to its initial
position.

M. Verbandt et al. Mechatronics 52 (2018) 78–89

88

http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0001
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0001
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0001
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0002
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0002
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0003
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0003
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0004
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0004
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0004
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0005
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0005
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0006
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0006
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0006
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0007
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0007
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0008
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0008
http://wiley.mpstechnologies.com/wiley/BOBContent/downloadBobProjectFile.do?bpfId=1029%26bpfFileType=.zip%26bpfFileName=FreqDomBox.zip
http://wiley.mpstechnologies.com/wiley/BOBContent/downloadBobProjectFile.do?bpfId=1029%26bpfFileType=.zip%26bpfFileName=FreqDomBox.zip
http://wiley.mpstechnologies.com/wiley/BOBContent/downloadBobProjectFile.do?bpfId=1029%26bpfFileType=.zip%26bpfFileName=FreqDomBox.zip
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0009
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0009
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0010
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0010
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0011
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0011
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0011
http://dx.doi.org/10.1109/TCST.2010.2078509
http://dx.doi.org/10.1109/TCST.2010.2078509
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0013
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0014
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0014

[16] Gahinet P, Apkarian P. A linear matrix inequality approach to H∞ control. Int J
Robust Nonlinear Control 1994;4:421–48.

[17] Pólya G. Über positive darstellung von polynomen. Vierteljschr Naturforsch Ges
Zürich 1928;73:141–5.

[18] Marshall M. Positive polynomials and sum of squares. Mathematical surveys and
monographs. American Mathematical Society; 2008.

[19] Mathworks. Robust control toolbox. https://nl.mathworks.com/products/robust.
html, Accessed: 2018-03-05.

[20] Gahinet P., Nemirovski A., Laub A.J., Chilali M. LMI control toolbox; chap. 7. 1995,
p. 10–14.

[21] Megretski A. Dynamic systems and control. Lecture notes (Fall 2006) Well
Posedness of LTI Feedback Design; 2006. p. 9–10. Chap. 21

[22] Lambrechts E., Gillis J. Optispline. https://github.com/meco-group/optispline;
2018.

[23] Debrouwere F, Vukov M, Quirynen R, Diehl M, Swevers J. Experimental validation
of combined nonlinear optimal control and estimation of an overhead crane.
Proceedings of the 19th IFAC world congress. 2014. p. 9617–22.

[24] Guennebaud G., Jacob B., et al. Eigen v3. http://eigen.tuxfamily.org; 2010.
[25] De Boor C. A practical guide to splines. 27. Applied Mathematical Sciences; 2001.

revised edition

M. Verbandt et al. Mechatronics 52 (2018) 78–89

89

http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0015
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0015
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0016
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0016
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0017
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0017
https://nl.mathworks.com/products/robust.html
https://nl.mathworks.com/products/robust.html
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0018
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0018
https://github.com/meco-group/optispline
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0019
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0019
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0019
http://eigen.tuxfamily.org
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0020
http://refhub.elsevier.com/S0957-4158(18)30066-7/sbref0020

	Linear Control Toolbox - supporting B-splines in LPV control
	Introduction
	System modeling module
	Systems and signals
	The scheduling parameter
	Design models
	Validation models
	Adding models to systems

	System identification
	Excitation signals and measurement data
	Nonparametric frequency response function estimation
	Parametric LTI model identification
	LTI state-space model interpolation

	Controller design
	The H∞/H2 paradigm
	Channels, norms and weights
	Obtaining a solution

	Example 1: a comparative case study
	Model and design objectives
	Constructing an LPV model
	Declaring the control configuration
	Solving the control problem

	Example 2: experimental validation on an overhead crane
	Modeling
	Identification of an LPV model
	Controller design
	Validation

	Conclusion
	References

