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Tensor similarity in two modes
Frederik Van Eeghem, Otto Debals, Lieven De Lathauwer, Fellow, IEEE

Abstract—Multi-way datasets are widespread in signal process-
ing and play an important role in blind signal separation, array
processing and biomedical signal processing, among others. One
key strength of tensors is that their decompositions are unique
under mild conditions, which allows the recovery of features or
source signals. In several applications, such as classification, we
wish to compare factor matrices of the decompositions. Though
this is possible by first computing the tensor decompositions
and subsequently comparing the factors, these decompositions
are often computationally expensive. In this paper, we present a
similarity method that indicates whether the factors in two modes
are essentially equal without explicitly computing them. Essential
equality conditions, which ensure the theoretical validity of our
approach, are provided for various underlying tensor decom-
positions. The developed algorithm provides a computationally
efficient way to compare factors. The method is illustrated in
a context of emitter movement detection and fluorescence data
analysis.

Index Terms—tensor, similarity, classification, canonical
polyadic decomposition, block term decomposition

I. INTRODUCTION

THE increasing digitalization of society and advances in
data acquisition lead to a growing amount of multiway

datasets. These datasets can be naturally stored in tensors,
which are higher-order generalizations of vectors and matri-
ces. Apart from offering natural data structures, higher-order
tensors are useful tools for analysis as well. One favorable
property is that their decompositions are unique under mild
conditions, which contrasts with matrix decompositions that
require additional constraints to attain uniqueness.

Initially driven by applications in psychometrics and chemo-
metrics, tensors have made their entrance in signal processing
and machine learning from the 90s onwards [1], [2]. A
variety of applications in these domains have been tackled
using tensors. In signal processing, tensors have proven to be
extremely useful in blind signal separation problems, where
the underlying sources are estimated from a set of mixtures.
To solve these problems, additional assumptions have to be
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imposed on the sources. Examples include statistical inde-
pendence [3], low-rank conditions [4], and many more [5],
[6], [7]. Another example application in signal processing is
emitter localization [8], [9]. In machine learning, tensors have
been used in recommender systems and topic modeling (see
[2] and references therein), face recognition [10], classification
[11] and for learning latent variable models [12], to name a
few.

Many of these applications rely on computing the factors
of a tensor decomposition. However, in several applications,
such as classification, we are interested in comparing the
factors rather than in their explicit values. Because tensor
decompositions are computationally expensive and can be ill-
conditioned, strategies that are able to compare factors without
explicitly computing them are of interest. In [13], a subspace-
based method is derived that allows one to determine whether
all factors of two tensors are equal without explicitly com-
puting them. For third-order tensors for instance, this method
can determine whether all three factor matrices are equal.
However, in several applications the relevant information is
contained in just two modes of a tensor. For instance, tensors
used in emitter localization contain the location information
in the first two modes and the (continuously changing) source
information in the third mode [8], [4]. Consequently, we
are only interested in the first two modes if we wish to
verify whether the emitter locations have changed. Another
example can be found in chemometrics, where third-order
tensors contain excitation-emission information of chemical
compounds [14], [15], [6]. If the goal is to check whether
sets of mixtures consist of the same compounds, it suffices to
compare the factors in the first two modes, as we will illustrate
in Section VI.

In this paper, we develop a subspace-based method that is
able to compare two third-order tensors in just two modes
without imposing strong constraints on the third mode. More
explicitly, the factor matrices in the first two modes are
compared up to trivial indeterminacies such as column per-
mutation and scaling. Note that this can be interpreted as the
comparison of latent variables without explicitly computing
them. The difference with the method from [13] lies in
specialization. In [13], the underlying decomposition of two
tensors is unknown. Several subspaces of the tensors are then
compared to determine which decomposition they admit and
whether the terms are the same. In certain applications, the
underlying decomposition is known. Our method exploits this
prior knowledge, which allows one to check just one subspace
equality to determine whether the factors in two modes are
equal. We also provide the theoretical foundations that ensure
the subspace comparisons are equivalent to comparing the
factor matrices.

A few related papers can be found in the literature. For
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instance, the results of [13] have been used to develop tensorial
kernels in [16]. Another related paper is [17], where tensor
canonical correlation analysis (TCCA) is presented.

As will be explained in Section III, the similarity method
represents the comparison of two full third-order tensors as one
vector of principal angles. This resulting vector can then easily
be used in classification algorithms such as support vector
machines, neural networks or decision trees. In this sense,
our method can be interpreted as a dimensionality reduction
strategy. This allows us to classify entire tensors based on the
similarity of their underlying decompositions in two modes.

The remainder of this section introduces the notations used
throughout this text. In Section II we introduce the relevant
tensor decompositions with their properties. The core idea of
the method is subsequently introduced in Section III, together
with the algorithm and computational remarks. Sections IV
and V then provide the theoretical details for full and partial
similarity. The results are illustrated by a numerical experiment
and two applications in Section VI.

Notations

Scalars are represented by italic lowercase letters (e.g., x),
column vectors by bold lowercase letters (e.g., x), matrices
by bold uppercase letters (e.g., X) and tensors by calligraphic
letters (e.g., X ). Subscripts are used to denote subsets of
vectors, matrices and tensors. For instance, an represents
the nth entry of the vector a while bn represents the nth
column of the matrix B and tijk represents the entry with
indices (i, j, k) of the tensor T . The Kronecker product of
two matrices A ∈ CI×J and B ∈ CK×L is denoted by
A ⊗ B ∈ CIK×JL. The Khatri–Rao product of partitioned
matrices A = [A1, . . . ,AN ] and B = [B1, . . . ,BN ] is given
by

A�B = [A1 ⊗B1, . . . ,AN ⊗BN ] .

Unless explicitly stated otherwise, all partitionings in this
paper will be column-wise (i.e., A = [a1, . . . ,aN ]). The outer
product is denoted by ◦. The transpose and the conjugate
transpose are denoted by ·T and ·H, respectively. The column
space of a matrix A is denoted by span {A}. Column-wise
vectorization of a matrix is denoted by Vec {A}.

II. TENSOR DECOMPOSITIONS

We briefly review three relevant tensor decompositions:
the canonical polyadic decomposition (CPD), the block term
decomposition (BTD) in multilinear rank-(L,L, 1) terms, and
the BTD in multilinear rank-(L,L, ·) terms.

A. Canonical polyadic decomposition

A rank-1 tensor A ∈ CI1×···×IN of order N is defined
as the outer product of N nonzero vectors u(n) ∈ CIn , i.e.,
A = u(1)◦ · · · ◦u(N). The rank of a tensor T is then defined as
the minimum number of rank-1 terms that yield T in a linear
combination. Such a (minimal) linear combination of rank-
1 terms is called a canonical polyadic decomposition (CPD).

T = + . . .+

Figure 1: Graphical illustration of a CPD.

Mathematically, the CPD of a rank-R tensor T ∈ CI1×···×IN

can be written as

T =

R∑
r=1

λru
(1)
r ◦ · · · ◦ u(N)

r . (1)

The factor vectors u
(n)
r ∈ CIn are often concatenated in factor

matrices U(n) =
[
u

(n)
1 , . . . ,u

(n)
R

]
∈ CIn×R. Following the

notation of [1], (1) can be concisely written as

T =
r
λ; U(1), . . . ,U(N)

z
, (2)

with λ = [λ1, . . . , λR] ∈ CR. A graphical representation of
the CPD is shown in Figure 1.

One of the key strengths of the CPD is its essential
uniqueness under mild conditions. By essential uniqueness,
we mean that the decomposition is unique up to two trivial
indeterminacies. First, the different rank-1 terms can be arbi-
trarily permuted. Second, each vector within a rank-1 term can
be scaled as long as the other vectors of the rank-1 term are
counterscaled. Essential uniqueness conditions for CPDs have
been extensively studied in literature, see e.g. [18], [19], [2].
Various algorithms to compute CPDs have been developed as
well, see e.g. [2], [20] and references therein.

In this paper, we will mainly rely on uniqueness conditions
of third-order tensors of which the third factor matrix has full
column rank. Uniqueness conditions for this case are well-
known and one set of conditions that we will use in this paper
is given in Theorem 1. In this theorem, Ck (A) denotes the kth
compound matrix of an I×R matrix A, which is the

(
I
k

)
×
(
R
k

)
matrix containing the determinants of all k×k submatrices of
A [21]. The determinants are arranged such that the submatrix
index sets are in lexicographic order.

Theorem 1. Consider the polyadic decomposition of X ∈
CI1×I2×I3 as defined in (2). If{

U(3) ∈ CI3×R has full column rank,
C2
(
U(1)

)
� C2

(
U(2)

)
has full column rank,

then the rank of X is R and the CPD of X is essentially unique
[22], [23], [21], [19].

Let us consider the unfolding of a tensor to a matrix. A third
order tensor T = JA,B,CK ∈ CI×J×K can be unfolded in
several ways. We will use TIJ×K to denote the matrix of
which the kth column is the column-wise vectorization of the
kth frontal slice of T . This matrix can be written in terms of
the CPD factors as follows:

TIJ×K = (B�A)CT ∈ CIJ×K .

Similar expressions exist for higher-order tensors and for
unfoldings to other modes [1].
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T = + . . .+

Figure 2: Graphical illustration of a BTD in multilinear rank-
(L,L, 1) terms.

B. Block term decomposition in rank-(L,L, 1) terms
A block term decomposition (BTD) in multilinear rank-

(L,L, 1) terms is a generalization of a CPD that allows low-
rank contributions in the first two modes of each term [24].
Mathematically, the BTD of a third-order tensor T ∈ CI×J×K
in rank-(L,L, 1) terms can be written as

T =

R∑
r=1

(
ArB

T
r

)
◦ cr,

in which Ar ∈ CI×L, Br ∈ CJ×L and cr ∈ CK . Note that
a connection can be made to the PARALIND-decomposition
[25]. A graphical representation of a BTD in rank-(L,L, 1) is
shown in Figure 2. Essential uniqueness conditions for this
decomposition are given in [24], [7], [26]. The terms can
again be arbitrarily permuted, but the scaling indeterminacy is
slightly more complex than before. Within each term, one can
postmultiply Ar by any nonsingular Gr ∈ CL×L as long as
Br is postmultiplied by

(
G−1
r

)T
. Moreover, the factors within

each rank-(L,L, 1) term can be scaled and counterscaled as
long as their product remains the same. Algorithms for this
type of decomposition can be found in [20], [27], [25].

The matrix unfolding TIJ×K is given by

TIJ×K = [(B1 �A1) 1L, . . . , (BR �AR) 1L] ·CT.

C. Block term decomposition in rank-(L,L, ·) terms
Mathematically, the BTD in multilinear rank-(L,L, ·) terms

of a tensor T ∈ CI×J×K is given by

T =

R∑
r=1

Dr ·1 Ar ·2 Br,

in which Dr ∈ CL×L×K (with mode-1 rank equal to L and
mode-2 rank equal to M ) and in which Ar ∈ CI×L and
Br ∈ CJ×L have full column rank. Note that the mode-n
rank of a tensor is defined as the dimension of the vector
space spanned by the mode-n vectors of the tensor. A graphical
representation of this decomposition is given in Figure 3.

Again, essential uniqueness conditions can be found in [24].
The different terms can be arbitrarily permuted and the factor
matrices Ar and Br can be postmultiplied by nonsingular
matrices Xr and Yr respectively, as long as the core tensor
Dr is replaced by Dr ·1 X−1

r ·2 Y−1
r . Algorithms to compute

this type of decomposition can for instance be found in [27],
[28].

III. PROBLEM STATEMENT AND ALGORITHM

A. Problem statement
As explained in the introduction, the comparison of tensors

in the first two modes consists of verifying whether their fac-
tors in these modes are equal up to trivial indeterminacies. The

T = + · · ·+

Figure 3: Graphical illustration of a BTD in multilinear rank-
(L,L, ·) terms.

?
=

?
=

?
=

?
=

T (1) = + . . .+

T (2) = + . . .+

Figure 4: The goal of the paper is to verify whether the factor
matrices of T (1) and T (2) in the first two modes are equal
without explicitly computing the decompositions and using
only linear algebra, illustrated here for the case in which both
tensors admit a CPD.

factors will obviously depend on the type of decomposition the
tensors admit. Let two tensors T (1) and T (2) ∈ CI×J×K both
admit the same type of decomposition, which may be a CPD,
BTD in rank-(L,L, 1) terms or a BTD in rank-(L,L, ·) terms.
In general, we can compactly write the tensor decompositions
as follows:

T (1) =
r
G(1); A,B,C

z
,

T (2) =
r
G(2); D,E,F

z
,

in which the structure of the core tensors G(1) and G(2)

depends on the underlying decomposition [11]. The details
of this compact representation, such as the structure of the
core tensors, can be found in [11], [24] but are not that
important for our purposes. The main goal in this paper
is to compare the matrices A and D, and B and E up
to the trivial indeterminacies associated with the underlying
decompositions. This is represented graphically for the CPD
case in Figure 4. Throughout the rest of this text, we will
denote equality of the factors in two modes up to trivial
indeterminacies by essential equality in two modes. For tensors
that do not admit unique decompositions, essential equality
means that there exists a pair of decompositions of the tensors
that are essentially equal.

B. Algorithm overview

To check essential equality in two modes without explicitly
computing the factors, we turn to subspace comparisons. More
specifically, the remainder of the text will show that under
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certain decomposition-dependent conditions, T (1) and T (2) ∈
CI×J×K are essentially equal in two modes if and only if

span
{

T
(1)
IJ×K

}
= span

{
T

(2)
IJ×K

}
.

This calls for a measure to compare subspaces. One way
to characterize subspace similarity consists of using a set
of principal angles. To draw conclusions from these angles,
further processing is often needed. This can be done by a
variety of popular machine learning algorithms, ranging from
simple thresholding to more advanced support vector machines
and clustering.

The decomposition-dependent conditions for the method
play a fundamental role, as they ensure that the underlying
decompositions are essentially unique. This ensures that the
compared factors are unique and allows the use of subspaces
to compare the underlying factor matrices. Further relaxation
of the conditions to non-unique decompositions is briefly
considered as well in Section IV-A.

A high-level overview of the procedure is given in Al-
gorithm 1. The mathematical and computational details are
provided in the subsequent sections. More specifically, the
full mathematical proofs of the assumptions are given in
Sections IV and V, and the computational details are discussed
in Section III-C. This presentation was chosen to highlight the
simplicity and accessibility of the presented algorithm without
clouding the view with mathematics.

Algorithm 1: High-level overview of the procedure to
check tensor similarity in two modes.

Data: tensors T (1) and T (2) ∈ CI×J×K
Result: Decision whether A

?
= D and B

?
= E

1) Check if all assumptions hold (in the generic case)
2) Unfold T (1) and T (2) to T

(1)
IJ×K and T

(2)
IJ×K

3) Select an appropriate value N for the number of
components

4) Find basis U ∈ CIJ×N for dominant span of T
(1)
IJ×K

5) Find basis V ∈ CIJ×N for dominant span of T
(2)
IJ×K

6) Compute N principal angles between U and V
7) Classify the principal angles

C. Computational remarks

In this section, additional information is provided for the
various steps in Algorithm 1. These remarks should clarify
how the method can be used in practice.

1) Verifying conditions: Theorems 2 to 6 in the following
sections specify which conditions must hold such that Algo-
rithm 1 yields unambiguous results. If the factor matrices are
known, the verification of the assumptions is straightforward.
However, the goal of our similarity method is to avoid com-
puting the factors explicitly. Here, we show that it is still
possible to verify the conditions without explicitly computing
the factors A,B,D and E.

One of the recurring assumptions is a full-column-rank
factor matrix. Take the example of a rank-R CPD of T ∈

CI×J×K , given by T = JA,B,CK. To check whether
C ∈ CK×R has full column rank, one can consider the
unfolded tensor T = (B�A) CT ∈ CIJ×K . By simply
checking whether the rank of T equals R, we know that C
must have full column rank as long as R ≤ K and R ≤ IJ .

Considering the same tensor T defined above, another
recurring condition that has to be checked is whether C2 (A)�
C2 (B) has full column rank. Note that this is a

(
I
2

)(
J
2

)
×
(
R
2

)
matrix. To check whether this matrix has full column rank
without computing A and B, we use a result from [29] which
transforms a CPD-admitting tensor to a matrix Q2 (T ) ∈
C(I

2)(
J
2)×L that can be written as

Q2 (T ) = [C2 (A)� C2 (B)]Q2(C)
T
.

The details concerning the construction of Q2 (T ) can be
found in [29]. The important part for our purposes is that
C2 (A) � C2 (B) is one of the factors of the matrix Q2 (T ).
By checking whether the rank of Q2 (T ) equals

(
R
2

)
, we can

determine whether C2 (A) � C2 (B) has full column rank,
provided that

(
R
2

)
≤
(
I
2

)(
J
2

)
and

(
R
2

)
≤ L.

The previous approach checked the conditions determinis-
tically. Alternatively, one can turn to generic conditions. For
instance, a generic matrix is known to have full column rank if
it has at least as many rows as columns. For the rank-R tensor
T = JA,B,CK ∈ CI×J×K , this means that C generically has
full column rank if R ≤ K. Similarly, in [19] it is stated that
the matrix C2 (A)�C2 (B) has full column rank in the generic
case when it has at least as many rows as columns. Generic
uniqueness conditions for essential uniqueness of a BTD in
rank-(L,L, 1) terms and a BTD in rank-(L,L, ·) terms can be
found in [24], [19].

2) Selecting an appropriate value for the number of com-
ponents: Once the tensors have been reshaped to matrices
T

(1)
IJ×K and T

(2)
IJ×K , the next step is to determine the number

of (dominant) components N . Note that for underlying CPDs
or BTDs in rank-(L,L, 1) terms, N equals the number of
terms R. However, this is not the case for a BTD in R rank-
(L,L, ·) terms, where the number of important components is
given by N = RL2. An appropriate value for N can either
follow directly from prior knowledge of the application or
can be estimated using linear algebra. The latter is done by
checking the number of dominant singular values of TIJ×K .
Apart from some special cases, such as the case where the
number of components N is bigger than IJ or K, this
approach gives a reasonable estimate for N .

If the number of components is incorrectly estimated, the
principal angles will be affected. More specifically, if the
estimated number of components N exceeds the actual number
of components M , there will generally be M zero-valued
principal angles and N −M nonzero principal angles since
the extra information only contains noise. If the estimated
number of components N is lower than the actual number
of components M , the situation is slightly more involved.
Assume without loss of generality that N = M − 1. This
implies that we only get a partial view of the full desired
subspaces. Even if both partial subspaces stem from the same
subspace, there will be nonzero principal angles because the
partial subspaces do not contain exactly the same information.
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For example, if N = 3 and M = 4, there will be two zero-
valued principal angles and 1 nonzero-valued principal angle.
We will illustrate this point numerically in Section VI.

3) Constructing a basis for a dominant subspace: Given a
subspace such as span

{
T

(1)
IJ×K

}
, the goal is to construct an

orthonormal basis for its N -dimensional dominant subspace.
To do this, compute the left singular vectors of T

(1)
IJ×K cor-

responding to the N dominant singular values. The dominant
subspace can also be obtained by updating a previous subspace
using tracking techniques (e.g., [30]). Once the basis vectors
are found, store them as columns in a matrix U ∈ CIJ×N .
Note that apart from the method based on singular value
decompositions given here, there are many ways to find a basis
for a subspace (see e.g., [31]).

4) Principal angles: One way to characterize subspace
similarity consists of using principal angles. When two ma-
trices A,B ∈ CI×N are compared, the principal angles
{θ1, . . . , θN} ∈ [0, π/2] form a set of minimized angles
between both subspaces. Mathematically, the principal angles
can be defined recursively as (e.g., [32]):

θi
def
= min

{
arccos

(
|aTb|
||a|| ||b||

) ∣∣∣∣ a ∈ span {A} , . . .

b ∈ span {B} , a ⊥ aj ,b ⊥ bj ∀j ∈ {1, . . . , i− 1}
}
,

in which aj and bj are the vectors corresponding to θj .
Note that all principal angles are (approximately) zero if
the subspaces are (approximately) equal. The definition also
implies that if span {A} ∩ span {B} is Q-dimensional, there
are exactly Q zero-valued principal angles. Computation of
principal angles can for instance be done using the singular
value decomposition, see the algorithms in [33]. Note that
the principal angles can be used in noisy conditions as well.
The effect of noise on the principal angles will be illustrated
numerically in Section VI. By simply setting a threshold,
similar tensors can still be identified by checking whether
the principal angles are sufficiently small. The appropriate
threshold depends on both the application and the noise level.
Note that more advanced machine learning techniques than
thresholding can be used as well. For instance, the principal
angles can be fed into a neural network, support vector
machine or decision tree to determine whether the factors are
sufficiently similar.

IV. FULL EQUALITY

Full essential equality in two modes entails that we check
whether the full factor matrices in two modes are essentially
equal. Equality conditions are provided for various underlying
decompositions of the tensors. More specifically, theorems are
given for underlying CPDs, BTDs in rank-(L,L, 1) terms and
BTDs in rank-(L,L, ·) terms.

A. CPD

Let two tensors T (1), T (2) ∈ CI×J×K admit a rank-R CPD:

T (1) = JA,B,CK ,

T (2) = JD,E,FK .
(3)

We now wish to assess when A and D ∈ CI×R, and B and
E ∈ CJ×R are equal up to column scaling and permutation.
Mathematically, we want to verify whether there exists an s ∈
{1, . . . , R} for each r ∈ {1, . . . , R} such that

arb
T
r = αsdse

T
s ,

in which αs captures the possible scaling differences. Essential
equality conditions are formulated in the following theorem:

Theorem 2. Let two tensors T (1), T (2) admit a rank-R CPD
as in (3). If

(i) C and F have full column rank,

(ii) C2 (A)� C2 (B) has full column rank, (4a)

then T (1) and T (2) are essentially equal in the first two modes
if and only if span

{
T

(1)
IJ×K

}
= span

{
T

(2)
IJ×K

}
.

Proof. Because both T (1) and T (2) admit a CPD, their un-
foldings can be written as

T
(1)
IJ×K = (B�A) CT,

T
(2)
IJ×K = (E�D) FT,

as explained in Section II-A.
We first show that span

{
T

(1)
IJ×K

}
= span

{
T

(2)
IJ×K

}
is

a necessary condition. Assume T (1) and T (2) are essentially
equal in the first two modes, i.e., that D = AΛ(1)Π and
E = BΛ(2)Π with Λ(1),Λ(2) diagonal scaling matrices and
Π a permutation matrix. The matrix unfoldings of T (1) and
T (2) then become

T
(1)
IJ×K = (B�A) CT,

T
(2)
IJ×K = (B�A) Λ(1)Λ(2)ΠFT.

Because C and F are assumed to have full column rank
and Λ(1),Λ(2),Π are nonsingular, it immediately follows that
span

{
T

(1)
IJ×K

}
= span

{
T

(2)
IJ×K

}
.

Conversely, assume span
{

T
(1)
IJ×K

}
= span

{
T

(2)
IJ×K

}
holds to show that this subspace equality is also sufficient.
Because C and F have full column rank, the subspace equality
can be written as

(B�A)
(
M(1)

)T
= (E�D)

(
M(2)

)T
, (5)

with M(1),M(2) ∈ CR×R nonsingular matrices. Both sides
of (5) represent an unfolded CPD of the same tensor. Conse-
quently, we can write

G =
r
A,B,M(1)

z
=

r
D,E,M(2)

z
∈ CI×J×R. (6)

It follows from Theorem 1 that the CPD in equation (6) is
essentially unique since M(1) is nonsingular and C2 (A) �
C2 (B) has full column rank as assumed in (4a). Consequently,
the factor matrices A and D, and B and E are equal up to
the trivial indeterminacies stated in Section II-A.

Most results in this paper concern the comparison of factor
matrices of tensors with essentially unique decompositions.
Results for the non-unique case can be obtained as well. The
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following theorem shows that uniqueness of the CPDs of T (1)

and T (2) is not required to compare their factors in the first
two modes.

Theorem 3. Let two tensors T (1), T (2) admit a (possibly non-
unique) rank-R CPD as in (3) and let us construct the stacked
tensor T (stack) ∈ CI×J×2K by concatenating T (1) and T (2)

along the third mode. If T (stack) admits a rank-R CPD, then
T (1) and T (2) are essentially equal in the first two modes.

Proof. If T (stack) ∈ CI×J×2K admits a rank-R CPD, it can
be written as

T (stack) =

s
U,V,

[
W(1)

W(2)

]{
,

with U ∈ CI×R, V ∈ CJ×R and W(1),W(2) ∈ CK×R.
Since T (stack) is constructed by concatenating T (1) and T (2)

along the third mode, it immediately follows that

T (1) =
r
U,V,W(1)

z
,

T (2) =
r
U,V,W(2)

z
.

These expressions show that there exist rank-R decomposi-
tions of T (1) and T (2) with essentially equal factor matrices
in the first two modes.

B. BTD in rank-(L,L, 1) terms

Let two tensors T (1), T (2) ∈ CI×J×K admit a BTD in
rank-(L,L, 1) terms:

T (1) =

R∑
r=1

(
ArB

T
r

)
◦ cr, (7)

T (2) =

R∑
r=1

(
DrE

T
r

)
◦ fr, (8)

with Ar,Dr ∈ CI×L and Br,Er ∈ CJ×L.
We now wish to assess when Ar and Dr, and Br and Er

are equal for all values of r up to the trivial indeterminacies
associated with the BTD in rank-(L,L, 1) terms. We again
denote this by essential equality in the first two modes.
Mathematically, we want to verify whether there exists an
s ∈ {1, . . . , R} for each r ∈ {1, . . . , R} such that

ArB
T
r = αsDsE

T
s ,

in which αs captures the possible scaling differences. Equal-
ity conditions for this case are formulated in the following
theorem:

Theorem 4. Consider two tensors T (1), T (2) admitting a BTD
in rank-(L,L, 1) terms as defined in (7) and (8). If following
conditions hold

(i) C and F have full column rank,

(ii) The BTD G =

R∑
r=1

(
ArB

T
r

)
◦m(1)

r from (23)

is essentially unique, (9a)

then T (1) and T (2) are essentially equal in the first two modes
if and only if span

{
T

(1)
IJ×K

}
= span

{
T

(2)
IJ×K

}
.

Proof. The proof is conceptually similar to the proof of
Theorem 2 and is given in Appendix A.

C. BTD in rank-(L,L, ·) terms

Let two tensors T (1), T (2) ∈ KI×J×K admit a BTD in
rank-(L,L, ·) terms:

T (1) =

R∑
r=1

S(1)
r ·1 Ar ·2 Br, (10)

T (2) =

R∑
r=1

S(2)
r ·1 Cr ·2 Dr, (11)

with Ar,Dr ∈ KI×L and Br,Er ∈ KJ×L. These tensors can
be unfolded as

T
(1)
IJ×K = [B1 ⊗A1, . . . ,BR ⊗AR] · S(1),

T
(2)
IJ×K = [D1 ⊗C1, . . . ,DR ⊗CR] · S(2),

with S(1),S(2) ∈ KRL2×K matrices consisting of the ma-
tricized versions of S(1)

r and S(2)
r , respectively. The main

question remains: when are A and C, and B and D equal up to
the trivial indeterminacies of a rank-(L,L, ·) BTD. Conditions
for this essential equality problem in two modes are given in

Theorem 5. Consider two tensors T (1), T (2) admitting a BTD
in rank-(L,L, ·) terms as defined in (10) and (11). If following
conditions hold

(i) S(1) and S(2) have full row rank,

(ii) The BTD G =

R∑
r=1

M(1)
r ·1 Ar ·2 Br from (25)

is essentially unique, (12a)

then T (1) and T (2) are essentially equal in the first two modes
if and only if span

{
T

(1)
IJ×K

}
= span

{
T

(2)
IJ×K

}
.

Proof. The proof is conceptually similar to the proof of
Theorem 2 and is given in Appendix B.

V. PARTIAL EQUALITY: THE CPD CASE

In the previous section, full essential equality in two modes
was considered. Here, we discuss the case in which only a
subset of the terms of two CPDs are essentially equal in two
modes. In terms of the factors, this is the case where a subset
of the factor vectors are essentially equal.

A. Verifying partial similarity

Let two tensors T (1), T (2) ∈ CI×J×K admit a rank-R CPD:

T (1) = JA,B,CK ,

T (2) = JD,E,FK ,
(13)

with A,D ∈ CI×R, B,E ∈ CJ×R and C,F ∈ CK×R. The
following theorem shows that under certain conditions, the
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number of zero-valued principal angles equals the number of
terms of T (1) and T (2) that are essentially equal in two modes.

Theorem 6. Consider two tensors T (1), T (2) ∈ CI×J×K
admitting a rank-R CPD as defined in (13). If

(i) C and F have full column rank R, (14a)
(ii) C2 (B)� C2 (A) has full column rank, (14b)

(iii) C2 (E)� C2 (D) has full column rank, (14c)

(iv) One basis for span
{

T
(1)
IJ×K

}
∩ span

{
T

(2)
IJ×K

}
admits a unique (unfolded) rank-Q CPD, (14d)

then there are Q essentially equal terms in two modes if
and only if Q principal angles between the unfolded tensors
T

(1)
IJ×K and T

(2)
IJ×K are zero, with Q ≤ R.

Proof. Consider the unfolded matrices T
(1)
IJ×K and T

(2)
IJ×K ∈

CIJ×K of the tensors T (1) and T (2), which can be written as

T
(1)
IJ×K = (B�A) CT

T
(2)
IJ×K = (E�D) FT.

Since both C and F are assumed to have full column rank in
(14a), it follows that (B�A) and (E�D) form bases for
the column spaces of T

(1)
IJ×K and T

(2)
IJ×K , respectively.

⇐) Assume there are Q zero-valued principal angles.
This implies that the common subspace span

{
T

(1)
IJ×K

}
∩

span
{

T
(2)
IJ×K

}
is exactly Q-dimensional. Let the columns of

G ∈ CIJ×Q contain a basis for this subspace. We then have

G = (B�A) M(1) = (E�D) M(2), (15)

in which M(1),M(2) ∈ CR×Q have full column rank. Because
we assume in (14d) that G admits an unfolded rank-Q CPD,
we can write

G = (V �U) WT, (16)

with U ∈ CI×Q, V ∈ CJ×Q and W ∈ CQ×Q. Because W
has full rank, we can use (15) and (16) to write

(V �U) = (B�A) N(1) = (E�D) N(2),

with N(1) = M(1)
(
WT

)−1 ∈ CR×Q and N(2) =

M(2)
(
WT

)−1 ∈ CR×Q. The qth column of (V �U) is given
by

vq ⊗ uq =

R∑
r=1

n(1)
rq (br ⊗ ar) =

R∑
r=1

n(2)
rq (er ⊗ dr) .

A column-wise reshape of these equations to I × J matrices
then gives

uq ◦ vq =

R∑
r=1

n(1)
rq (ar ◦ br) =

R∑
r=1

n(2)
rq (dr ◦ er) . (17)

Conditions (14b) and (14c) are sufficient for the CPD unique-
ness of T (1) and T (2) when (14a) holds. If these conditions

are satisfied, then following necessary and sufficient conditions
hold as well [23]:

(i) C and F have full column rank, (18a)
(·) For every w that has at least two nonzero entries

we have
(ii) rank (K (w)) > 1 and (18b)
(iii) rank (L (w)) > 1, (18c)

in which (18a) is the same condition as (14a) and the functions
K (w) and L (w) are defined as K (w) =

∑R
r=1 wr (ar ◦ br)

and L (w) =
∑R
r=1 wr (dr ◦ er). It immediately follows from

conditions (18b) and (18c) that equation (17) can never be
satisfied if the linear combinations are nontrivial, i.e., if there
is more than one term in the linear combination. Consequently,
for each q ∈ {1, . . . , Q} we have

vq ⊗ uq = n(1)
rq (br ⊗ ar) = n(2)

sq (es ⊗ ds) ,

for certain r, s ∈ {1, . . . , R}. We thus have Q columns of
(B�A) and (E�D) that are equal up to scaling, which
implies that there are Q essentially equal terms in the first
two modes.
⇒) Conversely, assume that exactly Q terms are essentially

equal in the first two modes. In this case, the bases can be
written as

B�A = [Beq �Aeq, Bdiff �Adiff] (19)
E�D = [(Beq �Aeq) ΛΠ, Ediff �Ddiff] , (20)

in which the equal parts of the factor matrices are denoted
by Aeq ∈ CI×Q and Beq ∈ CJ×Q. The Q × Q matrices
Λ and Π are used to express possible column scaling and
permutation, respectively. Because the principal angles are
defined as a set of minimized angles between subspaces, it
follows immediately from (19) and (20) that there will be at
least Q zero-valued principal angles between the subspace
of T

(1)
IJ×K and T

(2)
IJ×K . We now prove by contradiction

that there are no more than Q zero-valued principal angles.
Assume there are Q + S zero-valued principal angles, with
S > 0. This implies that the null space of [B�A,E�D]
is (Q + S)-dimensional. Note that this null space equals
span

{
T

(1)
IJ×K

}
∩ span

{
T

(2)
IJ×K

}
. Because assumption (14d)

states that the null space admits an unfolded rank-Q CPD,
this situation cannot occur. We can conclude that under the
assumptions (14a) to (14d) there will be exactly Q zero-valued
principal angles when Q terms are essentially equal in the first
two modes.

Note that in the conditions and proof of Theorem 6, veri-
fying whether a matrix space admits a unique CPD without
explicitly computing the factors can be done using the tech-
niques mentioned in III-C1.

B. Computing the common terms

When two tensors are partially equal in two modes, the
common terms can be extracted without having to compute the
other terms. This approach is especially advantageous when
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there are just a few common terms. The procedure to compute
these common terms is given below.

First, compute the R-dimensional dominant column spaces
of T

(1)
IJ×K and T

(2)
IJ×K and store them in the matrices

T
(1)
dom and T

(2)
dom. These matrices form a basis for (B�A)

and (E�D), respectively. Next, construct the matrix Z =[
T

(1)
dom,T

(2)
dom

]
∈ KIJ×2R. Assuming without loss of generality

that there are U common terms in the first two modes, let the
columns of N ∈ C2R×U form a basis for the null space of Z.
This matrix N can then be partitioned as

N =

[
R
S

]
∈ K2R×U ,

in which R,S ∈ KR×U . Now construct the matrix W as

W = T
(1)
domR = −T

(2)
domS.

This matrix contains a basis for the subspace spanned by the
common columns of (B�A) and (E�D). Consequently, it
holds that

W = (Bcomm �Acomm) MT, (21)

in which M ∈ CU×U is a nonsingular matrix, and Acomm ∈
CI×U and Bcomm ∈ CJ×U denote the common subsets of
A and D, and B and E, respectively. Computation of the
(unfolded) CPD of W in (21) then yields the columns of A
and B of the common terms of T (1) and T (2).

C. Computing the distinct terms

The previous section considered how the common terms
can be extracted from the subspaces without computing the
full decompositions. However, difficulties arise when trying
to extract terms that are distinct. A full treatment of ways
to compute these distinct terms is outside the scope of the
paper, but we briefly mention one approach that improves upon
simply computing both CPDs. Start by extracting the common
terms as described in the previous section. Next, use this result
as partial initialization for the computation of the full CPDs.
This may result in faster convergence for optimization-based
methods.

VI. NUMERICAL EXPERIMENTS AND APPLICATIONS

The developed algorithm will be illustrated using both
synthetic and real-life data. First, the influence of noise on
the principal angles is briefly discussed and the results are
compared with a method that explicitly computes the factors.
Next, the method is applied to emitter movement detection
and fluorescence spectroscopy.

A. Influence of noise

In Section III, we stated that the principal angles can still
be used in noisy conditions. Using numerical simulations, we
show how they are affected when noise is present.

Let two tensors T (1) and T (2) ∈ R10×10×10 admit a rank-4
CPD. The tensors are constructed as

T (1) = JA,B,CK ,

T (2) = JAΓ,BΛ,FK ,

−20 0 20 40 60

0

π/4

π/2

SNR of both tensors (dB)

Principal
angles (rad)

(a) The principal angles are small when the underlying tensors are
essentially equal in two modes and little noise is present.

−20 0 20 40 60

0

π/4

π/2

SNR of both tensors (dB)

Principal
angles (rad)

(b) The principal angles are systematically large when the underlying
tensors are not essentially equal.

Figure 5: Effects on the principal angles of varying noise levels
on tensors that are essentially equal in two modes (a) and
not essentially equal in two modes (b). For visual clarity, the
largest principal value is shown in red.

in which the entries of A,B,C,F ∈ R10×4 are pseudo-
randomly drawn from a standard normal distribution. The
matrices Γ and Λ ∈ R4×4 are diagonal with diagonal entries
also drawn from a standard normal distribution. These tensors
are clearly essentially equal in the first two modes. We
now add Gaussian noise to both tensors such that various
signal-to-noise ratios (SNR) are obtained. At each noise level,
the principal angles are computed following the procedure
outlined in Section III.

Figure 5a shows the mean principal angles between the
unfolded tensors T (1) and T (2) over 1000 experiments at each
noise level. It is clear that the principal angles become smaller
if the noise level decreases. This behavior matches the error on
the factor matrices if the decompositions would be explicitly
computed, as illustrated in Figure 6. For the CPD computation,
the default nonlinear least-squares algorithm of Tensorlab was
used [34].

By contrast, Figure 5b shows the principal angles between
the unfoldings of two randomly generated 10 × 10 × 10
tensors admitting a rank-4 CPD. The figure shows that all
principal angles are large if the underlying tensors are not
essentially equal in two modes, no matter what the noise level
is. Again, this matches the expected behavior of the method
that explicitly decomposes the tensors. Comparing figures 5a
and 5b, we can conclude that the principal angles are able to
distinguish between essentially equal and unequal tensors if
the noise level is not too high.
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error on first factor
error on second factor

SNR of both tensors (dB)
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Figure 6: The relative errors on the first two factor matrices
when the CPDs are explicitly computed show similar behavior
as the principal angles. Note that the errors on both factors
almost coincide.
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Figure 7: The similarity method is orders of magnitude faster
than the method computing the CPDs and is independent of
the noise level.

One of the main merits of our similarity method is its speed.
Figure 7 shows that the similarity method is about two orders
of magnitude faster than the approach that explicitly computes
the factor matrices. Note that the speed of the latter depends on
the noise level because the convergence of the CPD algorithm
is generally slower in the presence of noise. By contrast, the
speed of our similarity method is not affected. Similarly, our
method is unaffected by the condition of the problem.

B. Incorrectly estimated number of components

In Section III-C2, we stated that the principal angles were
affected if the number of components is incorrectly estimated.
Using numerical simulations, we show how they are affected
in a few examples.

Let two tensors T (1) and T (2) ∈ R10×10×10 admit a rank-4
CPD. The tensors are constructed as

T (1) = JA,B,CK ,

T (2) = JAΓ,BΛ,FK ,

in which the entries of A,B,C,F ∈ R10×4 are pseudo-
randomly drawn from a standard normal distribution. The
matrices Γ and Λ ∈ R4×4 are diagonal with diagonal entries
also drawn from a standard normal distribution. These tensors
are clearly essentially equal in the first two modes. We
now add Gaussian noise to both tensors such that various
signal-to-noise ratios (SNR) are obtained. At each noise level,

−20 0 20 40 60

0

π/4

π/2

SNR of both tensors (dB)

Principal
angles (rad)

(a) The estimated number of components is lower (3) than the actual
number of components (4).

−20 0 20 40 60

0

π/4

π/2

SNR of both tensors (dB)

Principal
angles (rad)

(b) The estimated number of components is higher (4) than the actual
number of components (3).

Figure 8: Effects on the principal angles of an incorrectly
estimated number of components, which is either chosen too
low (a) or too high (b) for tensors that are essentially equal
in two modes. For visual clarity, the largest principal value is
shown in red.

the principal angles are computed following the procedure
outlined in Section III, but with the estimated number of
components equal to N = 3.

Figure 8a shows the mean results of 300 experiments at each
noise level, which clearly indicate that one of the principal
angles remains nonzero. This is because the available 3-
dimensional subspaces only contain a part of the actual 4-
dimensional subspace, and those parts are not exactly the
same. In this example, two principal angles are approximately
zero for high SNRs, whereas the one that captures the differ-
ences between the partial subspaces remains large.

Similarly, let two tensors T (1) and T (2) ∈ R10×10×10

admit a rank-3 CPD. The tensors are constructed in exactly
the same way as before, with the exeption that the number
of components is different now. The principal angles are
computed following the procedure outlined in Section III, but
with the estimated number of components equal to N = 4, so
the number of components is overestimated by one. The mean
results of 300 experiments at each noise level are shown in
Figure 8b. As explained in Section III-C2, the fourth principal
angle does not involve subspace information, which is fully
contained in the first three angles. Therefore, the fourth one
only involves noise and is approximately equal to π/2.
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Figure 9: Direction of arrival estimation tries to retrieve the
values αr using solely the information obtained at the antenna
array.

C. Application: Emitter movement detection

One possible application of our similarity measure can be
found in emitter localization. Using an antenna array that
receives data from several emitters, various methods are able to
pinpoint the direction from which each emitter is transmitting,
called the direction of arrival (DOA) [35], [36], [37], [38]. The
direction-of-arrival problem is illustrated in Figure 9. Knowl-
edge of this direction may be useful in military applications
such as passive radar or sonar, or in telecommunications.

In [8], a tensor-based method is presented that captures the
location information in the first two modes of a third-order
tensor. We briefly repeat this method to clarify the relation
between tensor decompositions and direction-of-arrival esti-
mation. Consider a uniform linear array (ULA) of N uniformly
spaced omnidirectional antennas as depicted in Figure 9. If this
array receives signals from R narrowband emitters located in
the far field, the received mixture x(t) ∈ CN at time instance
t is given by

x(t) = Ms(t),

in which s(t) ∈ CR contains the emitter signals and M ∈
CN×R is the mixing matrix with mnr = θn−1

r and θr =
e−2πi∆ sin(αr)λ−1

. ∆ is the known inter-element spacing of
the ULA, λ is the wavelength, and the angle αr to the normal
is the direction of arrival of the rth emitter and lies between
−π/2 and π/2. It is shown in [8] that by rearranging the
received mixture x(t) into a matrix and stacking the obtained
matrices at several time instances t, a tensor is obtained that
admits a CPD. The factors in the first two modes contain the
mixture information and the factor in the third mode contains
the emitter data information. Using the first two factor matrices
the matrix M can be reconstructed, from which the directions
of arrival αr can be extracted. A similar approach for large-
scale applications has been studied in [4].

Continuously monitoring the emitter locations requires the
recomputation of the DOAs at each time step. However, this
approach is computationally expensive and is cumbersome if
emitters remain stationary for long time intervals. Moreover,
this expensive computation also implies higher power usage,
which may be an important issue for (remote) battery-driven
computation units. By using our similarity method, one can
use just a fraction of the computational effort to check whether

any emitter has moved. When this is the case, the DOAs can
be recomputed using existing techniques.

For the experiment, an ULA of 100 antennas was simulated
receiving data from two emitters that move over time. The
transmitted data consist of multi-modulus samples with con-
tinuous phase shift keying and are constructed by randomly
sampling from a uniform distribution over concentric circles
in the complex plane with radii 1, 2 or 3. Gaussian noise
was added to the antenna outputs such that an SNR of 20 dB
was obtained. In Figure 10, results for the simulated direction
of arrival problem are shown. The top figure shows the true
direction angles of the emitters. The middle figure then shows
the estimated direction angles. This estimation is done using
a sliding window of length 10 as follows. First, the method
from [8] is used to estimate the starting angles using the first
10 samples. In doing so, a tensor is constructed by a simple
reshaping operation, which is stored in A. Next, the sliding
window is moved one time instance and a new tensor B is
constructed using the same reshaping procedure as in [8].
However, this tensor is not decomposed, but the similarity
method is used to check whether A and B are essentially
equal in the first two modes. If this is the case, the previously
computed direction angles are retained. If at least one of
the principal angles is different from zero, the new direction
angles are computed by decomposing B and we replace A
by B such that all subsequent tensors are compared to the
one that has been decomposed last. In this experiment, we
consider a principal angle to be different from zero if it is
larger than 0.2 rad to take noise effects into account. The
principal angles computed using this procedure are shown at
the bottom of Figure 10. The vertical lines represent time
instances at which the direction angles have been explicitly
recomputed. The figure shows that this only happens when
one of the emitters has moved, which is exactly the goal of
this approach.

On average, checking the principal angles takes about
3.65 · 10−4 s at each time instance, whereas recomputing the
direction angles takes 0.0649 s, which is a difference of two
orders of magnitude.

D. Application: Fluorescence spectrography

Fluorescence spectroscopy data has been extensively ana-
lyzed in literature, often in an attempt to retrieve the pure
analyte spectra making up the mixture, see [14] and references
therein. The traditional way to do this involves stacking several
excitation-emission matrices E ∈ CK×N , which gives a tensor
admitting a low-rank CPD, see [14], [15] and references
therein. The excitation-emission matrices are obtained by
exciting the mixtures at K different excitation wavelengths
and measuring the spectrum of the emitted light at N different
emission wavelengths.

The real-life dataset1 that we will use consists of two
samples containing different relative concentrations of tyrosine
(Tyr), tryptophane (Trp) and phenylalanine (Phe). Apart from
these mixtures, measured excitation-emission spectra of the
pure analytes are available as well. The excitation and emission

1Available at http://www.models.life.ku.dk/amino acid fluo

http://www.models.life.ku.dk/amino_acid_fluo
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Figure 10: Using essential equality in two modes one can
detect whether any emitter has displaced, which leads to lighter
computational loads when there is no displacement.

wavelengths are 240−300 nm and 250−450 nm respectively,
measured in steps of 1 nm. The obtained excitation-emission
matrices thus have dimensions 201 × 61. A more detailed
description of the data can be found in [14]. Here, we
transform a single excitation-emission matrix to a tensor using
Löwnerization [6]. In this method, a tensor is constructed
from matrix data by transforming the data columns to Löwner
matrices, which are then stacked in a third order tensor. It has
been shown in [6] that the resulting tensor for our dataset can
be approximated using a BTD in rank-(L,L, 1) terms. The
goal is to determine whether two mixtures consist of the same
components without explicitly identifying them.

In a first experiment, we start by tensorizing the two
available mixtures using Löwnerization along the emission
mode. It has been shown in [6] that the resulting tensors
T (1) and T (2) ∈ C101×100×61 admit an approximate BTD in
three rank-(L,L, 1) terms with L = 2. This implies that each
of the analytes contributes one rank-(2, 2, 1) term. Though
we know that the mixtures consist of three components, one
could extract the number of components from the data as
well. Figure 11 shows the first 8 singular values of T

(1)
10100×61

and T
(2)
10100×61, from which it immediately follows that the

matrices can be well-approximated with 3 components. The
principal angles between both matrices are 0.037, 0.064 and
0.328. As expected, these small values indicates that both

1 3 8

0

3000

T(1)

T(2)Singular
values

Figure 11: The first 3 singular values of T
(1)
10100×61 and

T
(2)
10100×61 contain most of the information.

Table I: The principal angles clearly indicate which mixtures
consist of the same components.

Mixtures to compare Principal angles (rad)

Mix1 and Mix2 0.0664 1.3032
Mix1 and Mix3 0.0217 0.0674
Mix2 and Mix3 0.1198 1.2892

mixtures consist of the same components. These values differ
from zero due to measurement noise and the presence of
Rayleigh scatter in the data [14].

For the second experiment, we use the excitation-emission
matrices of the separate analytes to contruct synthetic mixtures
of two analytes as follows:

EE (Mix1) = EE (Trp) + EE (Tyr) ,
EE (Mix2) = 0.4 EE (Tyr) + 0.8 EE (Phe) ,

EE (Mix3) = 0.8 EE (Trp) + 0.4 EE (Tyr) ,

in which we use EE (x) as shorthand to denote the excitation-
emission matrix of x. The excitation-emission matrices of
all three mixtures are then tensorized using Löwnerization
as in the previous experiment. The principal angles resulting
from the comparison of the mixtures are given in Table I.
The table shows small principal angles between the tensors
associated with mixtures 1 and 3, which indeed consist of the
same components. Note that the other comparisons show one
small and one large principal angle, which corresponds to the
mixtures having one component in common. Though we did
not explicitly generalize Theorem 6 to check partial equality
of CPDs to BTDs, we expect similar results for the latter. This
seems to be confirmed by the data in Table I.

VII. CONCLUSIONS

We have introduced a method to compare underlying factors
of tensor decompositions in two modes without explicitly
computing the factors. A step-by-step guide was provided
detailing how to proceed in practice. Theoretical theorems
were given for CPDs, BTDs in rank-(L,L, 1) terms and BTDs
in rank-(L,L, ·) terms. Additionally, the partial similarity
in two modes of CPDs was considered and we provided
a result for non-unique CPDs. The method was illustrated
using artificial data and two applications were tackled. The
experiments have shown that the method is able to efficiently
determine whether the factors in two modes are essentially
equal.
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APPENDIX A
PROOF OF THEOREM 4

Because both T (1) and T (2) admit a BTD in rank-(L,L, 1)
terms, their unfoldings can be written as

T
(1)
IJ×K = [(B1 �A1) 1L, . . . , (BR �AR) 1L] ·CT,

T
(2)
IJ×K = [(E1 �D1) 1L, . . . , (ER �DR) 1L] · FT,

as explained in Section II-B.
We first show that span

{
T

(1)
IJ×K

}
= span

{
T

(2)
IJ×K

}
is

a necessary condition. Assume T (1) and T (2) are essen-
tially equal in the first two modes, i.e., that Dr = ArGr

and Er = Br

(
G−1
r

)T
for each r ∈ {1, . . . , R} with Gr

nonsingular matrices. Also, the different terms may be per-
muted and we assume without loss of generality that any
further scaling is captured in the factors C and F. Be-
cause (Br �Ar) 1L is simply the vectorized matrix product
ArB

T
r = ArGrG

−1
r Br

T = DrE
T
r , it follows that

T
(1)
IJ×K = [(B1 �A1) 1L, . . . , (BR �AR) 1L] CT,

T
(2)
IJ×K = [(B1 �A1) 1L, . . . , (BR �AR) 1L] ΠFT,

in which the Π accounts for the possible column permutation.
Since C and F are assumed to have full column rank and Π
is nonsingular, it immediately follows that span

{
T

(1)
IJ×K

}
=

span
{

T
(2)
IJ×K

}
.

Conversely, assume span
{

T
(1)
IJ×K

}
= span

{
T

(2)
IJ×K

}
holds to show that this subspace equality is also sufficient.
Because C and F have full column rank, the subspace equality
can be written as

[(B1 �A1) 1L, . . . , (BR �AR) 1L]
(
M(1)

)T

= [(E1 �D1) 1L, . . . , (ER �DR) 1L]
(
M(2)

)T
, (22)

with M(1),M(2) ∈ CR×R nonsingular matrices. Both sides
of equation (22) represent an unfolded BTD in rank-(L,L, 1)
terms of the same tensor. Consequently, we can write

G =

R∑
r=1

(
ArB

T
r

)
◦m(1)

r (23)

=

R∑
r=1

(
DrE

T
r

)
◦m(2)

r ∈ CI×J×R.

It follows from (9a) that the BTD in rank-(L,L, 1) terms in
equation (23) is essentially unique. Consequently, the factor
matrices A and D, and B and E are equal up to the trivial
indeterminacies stated in Section II-B.

APPENDIX B
PROOF OF THEOREM 5

We first show that span
{

T
(1)
IJ×K

}
= span

{
T

(2)
IJ×K

}
is a

necessary condition. Assume T (1) and T (2) are essentially
equal in the first two modes, i.e., that Cr = ArGr and
Dr = Br

(
G−1
r

)T
for each r ∈ {1, . . . , R} with Gr ∈ CL×L

nonsingular matrices. Also, the different terms may be per-
muted and we assume without loss of generality that any
further scaling is captured in the factors C and F. Because
S(1) and S(2) have full row rank, bases for the column spaces
of T

(1)
IJ×K and T

(2)
IJ×K are given by

span
{

T
(1)
IJ×K

}
= span {[B1 ⊗A1, . . . ,BR ⊗AR]} ,

span
{

T
(2)
IJ×K

}
= span

{[(
B1

(
G−1

1

)T
)
⊗ (A1G1) , . . . ,(

BR

(
G−1
R

)T
)
⊗ (ARGR)

]}
.

Using the Kronecker product property (UV) ⊗ (WX) =
(U⊗W) (V ⊗X), the second basis becomes

span
{

T
(2)
IJ×K

}
= span {[B1 ⊗A1, . . . ,BR ⊗AR]} ,

from which it immediately follows that span
{

T
(1)
IJ×K

}
=

span
{

T
(2)
IJ×K

}
.

Conversely, assume span
{

T
(1)
IJ×K

}
= span

{
T

(2)
IJ×K

}
holds to show that this condition is sufficient as well. Because
S(1) and S(2) have full row rank, the subspace equality can
be written as

[B1 ⊗A1, . . . ,BR ⊗AR]
(
M(1)

)T

= [D1 ⊗C1, . . . ,DR ⊗CR]
(
M(2)

)T
, (24)

with M(1),M(2) ∈ CRL2×RL2

nonsingular matrices. Both
sides of equation (24) represent an unfolded BTD in rank-
(L,L, ·) terms of the same tensor. Consequently, we can write

G =

R∑
r=1

M(1)
r ·1 Ar ·2 Br, (25)

=

R∑
r=1

M(2)
r ·1 Cr ·2 Dr ∈ CI×J×RL

2

.

Since it was assumed in (12a) that this BTD is essentially
unique, the factor matrices A and D, and B and E are equal
up to the trivial indeterminacies stated in Section II-B.
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