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Abstract. Computational humor systems often employ explicit rules
encoding assumptions about what constitutes a funny joke. This paper
explores how a program can teach itself to generate jokes based on a
corpus of rated example jokes. We implement a system called “Gener-
alized Analogy Generator” (Gag) capable of generating jokes using the
“I like my X like I like my Y , Z” template. We use established humor
theory and extend computational humor concepts to allow the system
to learn the structures of the given jokes and estimate how funny people
might find specific instantiations of joke structures. We also implement a
platform for the collection of jokes and their ratings, which are used for
the training data and evaluation of the system. Since Gag uses general-
ized components and learns its own schemas, this program successfully
generalizes the most well-known analogy generator in the computational
humor field.
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1 Introduction

Humor has always played an important part in human communication. Laugh-
ing at one another’s jokes and remarks often shows understanding and empathy.
Humorous communication in human-machine interactions can strengthen the
relationship between humans and virtual assistants. Large companies such as
Google and Apple are already hiring comedy writers to make their virtual assis-
tants funnier for this purpose [1][2]. The responses of their virtual assistants are
thus written beforehand, rather than generated by the program itself.

Computational humor is a field of artificial intelligence linking humor with
computational artifacts. Many advancements have been made over the years in
this field in terms of linguistic theories as well as in computer programs capable of
generating or detecting specific types of humor. These programs are, for example,
capable of creating punning riddles [3][4][5], generating analogies [6], detecting
innuendos and one-liners [7][8] and more [9][10][11][12][13][14][15]. However, there
has been little research on making the generated humor adapt to the user or



adapt over time. Most humor generation research focuses on making jokes based
on fixed rule sets, which allow the efficient creation of millions of jokes or the
discovery of jokes according to the researcher’s assumptions. Such programs
do not learn how humorous certain users might find certain jokes nor do they
improve themselves over time. This paper, together with previous research, shows
significant disagreement between different users among the evaluations of jokes
[16][6][9]. The only humorous systems, to the best of our knowledge, that adapt
the jokes they present to their user, do not generate said jokes themselves. The
use of Eigentaste in the Jester system, for example, merely functions as a humor
recommendation system [16]. An integrated humor generator that is capable of
generating jokes adapted to the user might thus outperform a generator that
does not possess this capability.

This paper explores a joke generation algorithm that learns from a set of
human-rated example jokes. We analyze and extend concepts and results from
existing computational humor research and use them to specify a more generic
and extensible solution. Since our method allows a joke generation algorithm
to adapt its output to user evaluation ratings, it can be used to make virtual
assistants funnier to their users.

We use analogy jokes as the type of humor we focus on in this paper. More
specifically, our algorithm learns how funny certain users might find certain in-
stantiations of analogy jokes using a fixed template, “I like my X like I like
my Y , Z”. It is also capable of measuring the importance of each metric for
measuring the funniness of a joke. This system allows us to examine whether a
computer program can learn the relations between words that establish humor-
ous interpretation when used in a particular template. We argue why certain
metrics work well to estimate the funniness of a joke by using an existing humor
theory. Our analysis of this theory allows us to extend the set of metrics used by
a previous analogy generator. Our method differs from previous approaches in
that rather than having predefined assumptions about metric values in a rigid
model, it learns the optimal combination of the metric values, which allows it to
adapt to user preferences. We call the created computational humor system the
“Generalized Analogy Generator”, or GAG for short.

Since GAG requires a dataset of rated jokes to learn from, we created a
platform called “JokeJudger.com”. Users were asked to submit analogy jokes and
evaluate jokes from other users using a Likert scale. These jokes were then used
to train and evaluate GAG in two separate phases. We queried 203 volunteers
and received 9034 ratings for 524 jokes, 100 of which were generated by our
algorithm. We discuss the implementation, philosophy and lessons learned when
developing JokeJudger.

We implemented several different versions of GAG by changing its joke rat-
ing algorithm. More specifically, we compare the classifier and regression versions
of the Random Forest algorithm by comparing user evaluations of their gener-
ated jokes. Our evaluation phase on JokeJudger leads to several conclusions.
Firstly, we found that using classification outperformed regression in terms of
perceived joke quality. Secondly, compared to the jokes submitted by JokeJudger



volunteers, the jokes created by GAG are perceived as funny half as often. This
performance is equally good as existing research on analogy joke generation.
However, since our method is more generic, it can easily be extended to work
with other types of humor, or even to systems that automatically learn several
types of humor. The extensibility, the performance and the adaptability to user
evaluations make our method more valuable in the context of human-computer
interaction

2 Background

This paper extends several existing computational humor generators by reusing
and generalizing their components. We discuss some necessary concepts in more
detail in this section.

2.1 Templates & Schemas

There are several approaches when it comes to text generation, such as using
templates, grammars, Markov chains using n-grams and more recently recurrent
neural networks trained on characters [17][18]. Templates are probably one of
the most simplistic and naive methods, but they are a powerful tool mostly
employed in macros, user interfaces and chat bots [19]. They are also extensively
used in computational humor projects [3][4][10][20][21][22][5].

A template, in the meaning we intend, can be defined as a text with variables,
also called slots. These slots are filled in later by another data source. In this
work, we call the instantiated values to be filled into the slots of a particular
template “template values”. The slots for these template values tend to have
their own variable name each, so that the data source can easily fill these in. It
also allows data sources to work with different templates.

Schemas are often used as the data source for templates in computational
humor [3][4][10][22][5]. They are used in the first computational joke production
engine, Jape [3]. In this system, schemas are defined as the structure defining
the relationships between slots of the template [3]. They are responsible for
generating the template values, often using a lexicon to find template values
having a certain relationship (e.g. synonymy) with other template values.

2.2 Petrović & Matthews Analogy Generator

Petrović and Matthews created a model for generating analogy jokes using the
“I like my X like I like my Y , Z” template [6]. They state that their program
is the first fully unsupervised humor generation system, as they did not rely on
a hard-coded schema approach, but on relations used in a minimization model.
Their model encodes five relations about the X, Y and Z “I like my X like I like
my Y , Z” jokes. It constrains every template value to be a single word, more
specifically it assumes that X and Y are both nouns and that Z is an adjective.
The system requires X to be defined by the user. The system generates further



values using Google Ngrams by choosing Y and Z such that Z is an adjective
usable for both X and Y . The relational assumptions used in the model are that
the joke is funnier the more often the attribute is used to describe both nouns,
the less common the attribute is, the more ambiguous the attribute is and the
more dissimilar the two nouns are [6]. These assumptions are all shown to be
implementable by a metric mapping the words to numbers between zero and one.
For most of these metrics, they relied on Google Ngrams to find the appropriate
values. The research also uses WordNet to look up the number of senses of a
word [23]. In order to rank how funny a joke is, the program minimizes the
product of these five relations. Unlike our approach, this research thus does not
use machine learning techniques on training data to generate jokes, but rather
to find the optimal choice of metrics for the model.

This system is quite successful, as its generations are considered funny 16%
of the time, while human-produced jokes using the same template are considered
to be funny in 33% of the time [6].

2.3 Ritchie’s Incongruity-Resolution Theory

Over the years, a multitude of theories about humor and laughter have emerged
[24]. One of them is the incongruity-resolution theory, which states that humor
arises from the resolution of a conflict between the assumed interpretation and
the interpretation caused by the punchline. However, most humor theories are
often far from implementable. Ritchie, one of the Jape [3] and Standup [4][25]
researchers, created his own formal theory extending the incongruity-resolution
theory [26]. Earlier incongruity-resolution theories treat ambiguity between two
interpretations as the source of humor. He argues that the problem with this
assumption is the lack of distinction in whether ambiguity causes humor or
confusion [26]. Surprise disambiguation is an element often used in incongruity-
resolution theories, stating that two different interpretations for the set-up of a
joke must exist. The first interpretation is the most obvious one, whereas the
second is the hidden meaning. We can demonstrate this using the following joke:
‘Two fish are in a tank. One turns to the other and says: “Do you know how
to drive one of these things?”’. In the example, the first interpretation is that
the two fish are in an aquarium, while the second interpretation is that they
are in a military vehicle. The audience should only become aware of the second
meaning through the punchline, which forces the second, hidden meaning as the
only remaining possible interpretation [26].

Ritchie proposed several properties to identify the relationships in a more
formal way [26]. The first property is “Obviousness”, that expresses how obvi-
ous the first interpretation is compared to the second interpretation. E.g. since
fish are usually in water, it seems obvious that the interpretation of the word
“tank” is an aquarium. The second property is “Conflict”, which entails that the
punchline conflicts with the first interpretation. Since you can’t drive an aquar-
ium, this conflict prompts the brain to look for other possible interpretations.
The next property he proposes is the “Compatibility” property, expressing that
the punchline is compatible with the second, hidden interpretation. This allows



listeners to stop searching for other interpretations when they find the fitting,
second interpretation, namely that of a military vehicle, as it is compatible with
the set-up and punchline. The “Comparison” property requires that the two
possible interpretations are different. The final property is “Inappropriateness”,
stating that the second interpretation should be inherently odd, inappropriate
or taboo [26]. E.g. two goldfish in a military tank is an inherently odd interpre-
tation. We use this theory to identify metrics for our system.

3 Generalized Analogy Generator

We implemented a system called “Generalized Analogy Generator” (Gag for
short). This system is capable of generating jokes using the “I like my X like I
like my Y , Z” template. It differs from previous computational humor systems in
that rather than building explicit models or schemas, it learns how to instantiate
the template values from rated joke examples.

3.1 System Flow

The flow of the Gag system can be seen in Figure 1. We built a platform called
“JokeJudger” that helps volunteers rate and create “I like my X like I like
my Y , Z” jokes. These jokes are then processed by the “Template Processor”,
which ensures that there is only one word for each template value. These words
and their interrelations are then assigned feature values using metrics, so that
they can be used as training data for the classifier component. This classifier
component learns to recognize how funny a joke is. In the second stage of the
program, a user can submit a seed word. The program then generates candidate
jokes by filling in the template values randomly using n-grams. These candidate
jokes are then assigned values as well, so that the classifier component can classify
them based on their potential funniness. Only the jokes with the highest potential
funniness are then displayed to the user.
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Fig. 1. A schematic overview of the Generalized Analogy Generator GAG.



3.2 JokeJudger

We implemented a data collection web application called JokeJudger1 as the
source of our training data. The web application allows users to create “I like my
X like I like my Y , Z” jokes and rate jokes created by other users. We invested
significant effort into developing this platform. We employ several tactics in order
to make the site as user-friendly an make users revisit the site.

Another possibility to handle the data collection and rating that is often
used in research [6][8] is scraping popular sites equipped with like-based systems
containing jokes, such as Twitter2 and Reddit3. The problem with these like-
based systems are that they do not necessarily always reflect how well the joke
is received. This is due to sites not exposing all jokes equally, as well as having
a significant bias towards a specific audience. Visitors of a specific website as
well as followers of a comedian on Twitter tend to have a correlated taste of
humor. The amount of exposure for a tweet on Twitter is correlated to several
other factors, such as the number of followers of the posting user as well as to the
number of followers of any user retweeting or liking the tweet (both these actions
make the tweet show up in other users’ timelines) and even the hashtags used.
Higher exposure means that the tweet has a larger amount of people that can like
the tweet. The audience size of a tweet is however not freely available except for
the user posting this tweet and is thus hard to factor out. Most other platforms
for humorous content have similar problems, since exposing top-scoring jokes is
to their own advantage, even though this might leave equally good jokes remain
at the bottom.

We acknowledged the need for a platform that presents jokes independently
of the quality perceived by other users as a requirement to create our system. The
most similar platform to our platform is The New Yorker’s platform for voting
captions for their image of the week.4 The captions collected by this platform
have also been studied for computational humor purposes [27][15]. There are
however large differences between their platform and our provided platform.
One such difference is that JokeJudger users are able to get help creating their
joke if necessary, and that they are rewarded with several insightful analyses
about their created jokes later on. JokeJudger also uses a Likert scale of size
five, instead of three, adding more precision. It is also the first time to our
knowledge of that an open platform was created to acquire jokes of a specific
format and of which the source code is released for reuse.5

During the first phase, the training data collection phase, the platform col-
lected 336 jokes and 4828 ratings by 106 users. We calculate the agreement for
a joke as the percentage of people who submitted a rating equal to the mode,
i.e. the most commonly occurring rating, of all ratings for this joke, or the aver-
age of these percentages if there are multiple modes. The average agreement for

1 http://jokejudger.com and https://jokejudger.herokuapp.com
2 https://twitter.com
3 https://reddit.com
4 http://www.newyorker.com/cartoons/vote
5 https://github.com/TWinters/JokeJudger



all the human-created jokes is 41.36%. Alternatively, if we define agreement as
picking one of the modes (instead of averaging the agreement percentages of the
modes), the average agreement about the ratings in the dataset is 48.61%. The
dataset thus exposes the large disagreement between raters about the quality of
a joke. This is one of the typical characteristics of humor, which makes it hard
for programs to identify the quality of a joke.

At the end of the evaluation phase, we collected 524 jokes (100 of which
are generated by Gag), 9034 ratings, 418 markings (“Too offensive” or “I don’t
understand”) coming from 203 users. The agreement on the jokes was of a largely
similar magnitude, being 41.87% for the first definition and 48.52% using the
second definition. The collected datasets have been made available online.6

3.3 Template Processor

The “Template Processor” component is responsible for transforming a joke to
a set of template values by removing the template of the joke. Our algorithm
assumes that there is only one type of joke (namely using the “I like my X like I
like my Y , Z” template), but this component can be extended to allow for other
templates. This could be achieved by using template extraction algorithms from
other computational humor research [22][5]. The metrics used by this system
also assume that there is only one word per template value. However, JokeJudger
users were allowed to use as many words for each template value as they wanted,
as to not limit their creative freedom even more. The template processor is
responsible for handling these multi-word template values.

We propose several solutions for being able to use single-word metrics to
evaluate template values that consist of multiple words. In order to convert this
problem to a smaller problem, we could find out what part of speech is used for
a certain template slot. In our case, we can assume that X and Y tend to be
nouns, while Z tends to be an adjective, as previous research on this type of joke
has made similar assumptions [6]. The given multi-word template value is then
searched for words of this part of speech. If there is only one word of this part
of speech, the problem is solved. If there is no word of this part of speech, we
could look for the next likely part of speech or alternatively just ignore the data
point. If there are multiple candidates of this part of speech, a first solution is
that the metric is used on every possibility, after which the maximum, minimum,
average or other aggregation function is used on these feature values. Another
solution when dealing with multiple values, is to create all combinations of all
candidate words for the template values and replace the original template values
with this set. Jokes such as “I like my coffee like I like my war, gruesome and
cold” are transformed to the two jokes “I like my coffee like I like my war,
gruesome” and “I like my coffee like I like my war, cold”. This is the solution we
picked for our implementation, as it is the most general solution, since it does
not require any knowledge about the metrics. This operation transforms our
collected JokeJudger training data to 528 sets of single-word template values.

6 https://github.com/TWinters/JokeJudger-Data



3.4 Used Metrics

In order to use classification algorithms on the template values, we need a set of
feature values per joke. These feature values can be calculated from the template
values using metrics on one or several of these jokes. These chosen metrics should
make sense for a joke judging algorithm. Ritchie’s incongruity-resolution theory,
as discussed in Section 2.3, identifies five properties necessary for verbal humor
[26]. We made sure to cover all humor theory properties by implementing at
least one metric per property.

The chosen metrics are:

– Word Frequency: We used the 1-gram model of the English One Million
dataset from Google Ngrams7 to calculate the frequency of any word.
These datasets are provided as zipped comma separated value files, making
them hard to search through. In order to query these datasets more easily,
we created a Java program8 to extract these files to a MySQL database for
efficient querying. This metric can be used to estimate the “Obviousness”
property of words.

– Frequency of word combinations (2-grams): The frequency of word
combinations can be estimated using 2-grams. We use Google Ngrams
and our created program to load these n-grams and calculate the frequency
of adjective-noun combinations on all compatible template values. Since we
only require adjective-noun combinations, we combine part of speech (POS)
evidence of WordNet and Stanford Log-Linear POS tagger9 to only store
possible adjective-noun pairs. The frequency of word combinations is corre-
lated with the “Conflict” property, as it indicates how often or how rarely
certain words are usually used with each other, and thus how many interpre-
tations might conflict. It also helps measuring the “Compatibility” property,
as it finds how well words fit the second interpretation.

– Number of meanings metrics: The number of meanings metric is calcu-
lated using the number of definitions provided by WordNet for a particu-
lar word [28]. This metric helps measuring the “Compatibility” property, as
words with more meanings are more likely to be used in different contexts,
and thus usable to find the interpretation implied by the punchline [6].

– Adjective Vector Similarity: The similarity in the list of adjectives used
with a noun can be found by using 2-grams of Google Ngrams, which
can be loaded into the database using our program. In order to calculate the
adjective vector, the metric finds all adjectives and their frequencies that
they are used before these nouns in sentences, by dividing their number of
appearances by the sum of these counts, over all the adjectives used with the
noun. The metric then sums all products of these frequencies of the adjectives
used in both vectors. This is similar to the noun dissimilarity factor used in
Petrović’s Analogy Generator, although they use a different calculation [6].

7 https://storage.googleapis.com/books/ngrams/books/datasetsv2.html
8 https://github.com/TWinters/google-ngrams-to-mysql
9 https://nlp.stanford.edu/software/tagger.shtml



This metric helps measuring the “Comparison” property, as it can discover
how dissimilar certain words are and thus gives a measure how dissimilar
interpretations are.

– Word sexiness: The word sexiness is calculated by comparing the fre-
quency of a word in a corpus of a sexual domain to a normal domain. We
already discussed how to calculate the word frequency in a normal corpus
above. In order to calculate this value, we use a similar, but simplified, ap-
proach as used in the DEViaNT system [7]. This research used the texts
from textfiles.com under the erotica category10 as their sexual corpus. In
order to scrape all these files, we created a Java tool that downloads all doc-
uments of this site from any given category.11 We added both the frequency
in sexual corpora as this frequency divided by the Google N-gram word fre-
quency. This metric is used to measure how present the “Inappropriateness”
property in a joke is. This property is not explicitly accounted for by any
metric used in Petrović’s analogy generator [6].

The chosen metrics are very similar to the metrics chosen in previously exist-
ing analogy generator research, as their metrics have been shown to be successful
[6]. However, key differences are that in our model, the metrics are applied to
every template value or template value combinations that fits the (POS) prereq-
uisite. This not only results in having fifteen features instead of five, but also in
a more general model, as we do not make any assumption about the importance
of certain values for specific template values over others. Another difference is
that our metric set includes the word frequency in a sexual corpus, as there
was not metric explicitly covering the “Inappropriateness” property of Ritchie’s
incongruity-resolution theory [26]. We also implemented the metrics slightly dif-
ferently, as the metrics are used for classification and not for minimization, and
therefore have less strict requirements.

3.5 Template Values Generator

The generation of candidate template values is done using 2-grams. The 2-grams
used in our system are the same Google Ngrams used in the Frequency of word
combinations metric. Since we know that jokes using the “I like my X like I
like my Y , Z” template mostly use nouns for X and Y and adjectives as Z,
we built our template values generator accordingly.12 Note that the information
of the POS of the words of a template could also be found algorithmically, and
assumptions about the POS could be discovered by the algorithm itself when
dealing with other templates. The template values generator finds nouns for X
and Y and an adjective that could be used to the left of both words according to

10 http://textfiles.com/sex/EROTICA
11 https://github.com/TWinters/TextFilesComScraper
12 This is the most obvious kind of content to be selected for this template. In reality

however, we noted that a significant number of volunteers diverge from these word
types when creating this type of joke themselves, for example by naming a relation
to another noun as Z.



the n-grams. If seed words are given, these can be assigned to X if one is given,
or to X and Y if two seed words are given. For example, a user might enter
“coffee” for X, for which the generator will try out several possibilities for Z
(e.g. “strong”) and generate possible Y for Z (e.g. “men”). A similar generator is
also deployed in Petrović’s system [6], making it easier to compare the differences
in the evaluation of our approaches. Using 2-grams as a generator also simplifies
the way the metrics work on the template values, as most of the metrics used
are designed to work on single words, and thus do not need to be processed by
the Template Processor during this phase.

3.6 Classification & Regression

We implemented several different versions for the machine learning component
of Gag. There are two types of approaches we used, being the use of classi-
fication and the use of regression. The difference between these two types is
that regression involves predicting a continuous value and classification identi-
fies group membership to a label. A regression algorithm thus allow us to predict
the average rating a joke might get. Using a classification algorithm on the data
set, the algorithm can predict the most popular Likert-scale rating for a joke,
since this defines five possible classes. Using a classifier thus gives the system
the same five star option a human has. We use WEKA in our implementation
for both options.

Classifying the Mode Rating. When using classification algorithms, we use
the mode rating received for each joke. The distribution of the modes of the
jokes can be seen in the “total” column of Table 1. The most frequent mode is
the two star rating, with 174 instances. The ZeroR algorithm is a classifier that
classifies every given instance to the most frequent class, in this case the two
star rating. This naive algorithm thus already classifies 32.95% of the training
data correctly.

We compared several classification algorithms on their number of correctly
classified instances using 10-fold cross-validation. Random Forest [29] was the
best scoring classifier for this task, classifying 325

528 = 61.55% of the training in-
stances correctly. Since we use a general approach in this system, we do not en-
code assumptions about which metrics are important for which template values.
Our system thus uses a multitude of humor metrics applied to every compati-
ble template value. Using all features together in a single model can result in
overfitting noisy data due to having too many features. It thus makes sense that
Random Forest, which uses multiple subsets of the features, works relatively well
for the Gag system.

A weakness of using classification on the mode rating is that the classification
algorithm does not explicitly know about the ordering of the labels. For example,
it does not know that score 4 and 5 are closer to each other than score 2 and 5.

Comparing the performance of the Random Tree algorithm (61.55%) to the
agreement between users (41.36%, as explained in Section 3.2), shows that the



Table 1. The confusion matrix of the Random Tree classifier on mode ratings of the
training data.

Classified as → 1 star 2 stars 3 stars 4 stars 5 stars total

1 star 30 16 10 1 0 57
2 stars 1 114 46 13 0 174
3 stars 1 40 119 10 0 170
4 stars 1 26 24 57 2 110
5 stars 2 3 6 1 5 17

algorithm picks the most frequent rating more often than the human evaluators
in the training data do.

We can see that the recall is rather low for the five star rating class, as it
is very often misclassified ( 2+3+6+1

2+3+6+1+5 = 70.5% of the time). This might be due
to a lack of jokes with a five star rating or five star jokes being intrinsically
very unpredictable. These misclassifications cause the Gag system to miss a
lot of good jokes. This is something we can live with, as the system generates
potentially millions of candidate jokes. More worrisome is the fact that two star
ratings are often misclassified as four stars.

The precision of a classification algorithm determines the chance that a clas-
sification to a certain class is correct. This is a more important value than recall,
as the system should pick high quality jokes from the randomly generated set
of jokes. This value is especially important for high rating labels such as 4 and
5 stars, since it is more important that jokes rated as such are great jokes than
that we might miss good jokes because they got a lower label. The confusion
matrix (Figure 1) shows us that no joke classified as having a mode of five stars
by the algorithm has a score lower than four. However, the subset of jokes with
a mode rating of five is rather small and thus does not allow for large variety.
We thus use both the four and five star rating to filter the set of generated jokes.
According to the confusion matrix, filtering out four and five star classifications
gives us a precision of 57+2+1+5

1+13+10+57+2+1+5 = 65
89 = 73% jokes that actually have

four or five star mode rating in the training data.

Regression on the Average Rating. Regression algorithms can be used on
the average rating of each joke in the dataset in order to predict the quality of
the joke. We used the RRSE (Root Relative Squared Error) value to compare
several regression algorithms of the WEKA toolkit. The regression version of
the algorithm using the Random Forest algorithm scored the highest as well,
with a RRSE of 84.04% and a RMSE of 43.25%. We assume the reason that the
Random Forest algorithm performs best is the same as the reason it performs
well for classification, being that it creates trees that use subsets of the features
and data.

Another important advantage the Random Forest algorithm brings, is that
it is capable of finding the importance of each attribute by checking its average
impurity decrease in the decision trees. This means that the algorithm is capable



of stating the importance of each metric for each position. A humor theorist can
thus use this system with a Random Forest algorithm to validate and discover
assumptions about a certain collection of rated jokes. We noticed that the at-
tribute importance found for all attributes were in line with previous research on
analogy generators. Most of the metrics used on specific template values which
were most similar to metrics used in Petrović’s model [6] had a relatively high
importance. This is a good sign for our algorithm, since it seems to be able to
learn these earlier found assumptions about this type of joke.

4 Evaluation

We generated 100 jokes using the Gag system. Half of them were generated using
the classification algorithm, the other half using the regression algorithm. We
generated these jokes based on values for X present in the training data, similar
to how Petrović created his evaluation data [6]. Since classifying all possible jokes
with a fixed X generated by 2-grams (roughly ∼10.000.000 jokes) requires a lot
of processing power, we added a random sampler in the generation process. The
generator randomly samples adjectives used with X in a uniformly distributed
way as candidates for Z and then randomly samples candidates for Y , also
uniformly distributed. Since we do not want the output jokes to be similar,
we added the option to Gag to eliminate jokes that are too similar to higher
scoring jokes from its output. We do this by only allowing one template value
to be equal between jokes. This is similar to how Standup filters its jokes,
using the “keywords” attribute in its schemas to calculate its similarity [4]. The
number of jokes having a mode of 5 is significantly smaller than the others,
which limits the variety of the output of jokes with five stars when using the
classification algorithm. To solve this, we used Gag to output generated jokes
with a score with a score of 4 or higher. We then randomly sample a quantity of
jokes proportional to the frequency of X in the training data.

These 100 jokes were then uploaded to JokeJudger, interspersed with human-
created jokes. Since JokeJudger presents jokes with the lowest number of ratings
first, we made sure 67 new human-created jokes were added. This ensured that
the first raters did not only see the jokes generated by Gag. This decreased the
chance that the evaluating users knew that they were rating generated jokes as
well as giving us a more reliable control group of human-created jokes.

During the evaluation phase, 4424 ratings and markings were given to jokes
on JokeJudger. The 50 jokes from the classification algorithm variant received
745 ratings, whereas the 50 regression algorithms jokes received 721 ratings. The
424 human-created jokes on JokeJudger received the remaining 2958 ratings. The
platform was marketed in several ways, including posts on Facebook, Twitter,
Reddit and by a newsletter to members of the JokeJudger platform during the
training data collection phase.
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Fig. 2. The resulting evaluations of the JokeJudger and GAG jokes at the end of the
evaluation phase.

4.1 Comparing Classification with Regression

We can see on Figure 2 that the jokes generated by the classification algorithm
are more positively received than jokes generated using the regression version of
Gag. The regression jokes received 5% more 1 star ratings, as well as 1.5% more
“I don’t understand” markings. The classification jokes receive more ratings than
the regression jokes for every rating category larger than or equal to two stars.
Since three stars mean “Okay”, 24.3% of the classifier jokes were seen as average
jokes or better, compared to 21.36% of the regression jokes.

One possible explanation for the higher quality jokes created by the classi-
fication algorithm is that both four and five star rated jokes were allowed to
be sampled, due to the substantially smaller number of five star rated jokes in
the training data. Five star jokes also had a low precision when using the Ran-
dom Forest algorithm, probably due to the unpredictability of truly good quality
jokes. For regression however, these high-scoring, difficult-to-predict jokes might
affect the continuous scores in a way that is more difficult to account for.

4.2 Comparing Generated Jokes with Human Created Jokes

We can see that human-generated jokes in general receive higher scores than
the jokes generated by Gag. Human-created jokes are considered to be “quite
good” and “great” jokes 27.38% of the time, whereas our classification algorithm
only receives these types of ratings 11.41% of time. One possible reason for the



Table 2. The percentage of ratings higher than or equal to four stars out of five for
each category of Figure 2.

Source 4+ ratings

Gag (Classifier) 11.41%
Gag (Regression) 10.12%
Human (All) 27.38%
Human (JokeJudger) 22.61%
Human (Single words) 21.08%

lower quality of generated jokes is that they all have a similar shape, since they
only use single-word template values. It might be that jokes using only single
words as template values in “I like my X like I like my Y , Z” jokes are generally
perceived as worse jokes. We can see evidence for this claim by looking at the
“Human-created single-word jokes” statistics. These jokes are only perceived as
better than “quite good” 21.08% of the time. This means that the classification
algorithm, with 11.41% jokes with four or more stars, performs more than half
as well as human generated jokes using the same single-word constraint.

Another possibility is that by executing our multi-word aggregation (see Sec-
tion 3.3), we transformed the dataset too much and made the generator learn
from low quality jokes and still perceive them as high quality. For example,
these types of jokes sometimes have several adjectives describing both nouns as
Z, where the last one is often the funniest. An example of this is the joke “I
like my women like I like my art: pretty and silent”. Although both receive the
same ratings in our transformed dataset, the perceived funniness of the “silent”
punchline might not be similar to the the “pretty” punchline.

One thing to note is that computer generated jokes receive more “too offen-
sive” markings. This might be because jokes during the training data phase were
flagged manually to be hidden unless the user disabled the offensiveness filter on
his profile. During the evaluation phase, this page was left untouched for evalu-
ation integrity, meaning that the generated jokes, unlike the old human-created
jokes, were unfiltered.

4.3 Comparison with Existing Analogy Generator

In the evaluation of his analogy generator, Petrović used a Likert scale of size
3: “funny”, “somewhat funny” and “not funny” [6]. The human generated jokes
(collected from Twitter) in his data got 33.1% funny ratings, his model 16.3%
and his baseline, which generated random jokes with his 2-gram generator and
maximizes only adjective vector difference between X and Y , 3.7% funny ratings.

We can map our Likert scale of size 5 to his scale by saying that 1-2 maps
to “not funny”, 3 to “somewhat funny” and 4-5 to “funny”. Using this new
classification, human generated jokes are 27.38% of the time perceived as funny,
while our classification version of the generator is perceived as funny 11.41% of
the time. Both the percentage of the funniness of the human generated jokes
as well as the percentage of our generator is lower. There are several possible



reasons to explain this. A first reason might be that Petrović’s research only used
five different raters. These raters might have been more inclined to rate jokes as
funny than the large, diverse population on JokeJudger. A second reason might
be that the quality of jokes submitted to JokeJudger is lower due to the barrier
being lower. The barrier might be lower because users are able to submit jokes in
an anonymous way. It might also be that jokes found on platforms like Twitter,
are generally more funny due to the higher threshold for posting, as well as better
jokes receiving more exposure, as we discussed in 3.2. We can see evidence for
this claim in the fact that human-created jokes on JokeJudger were perceived as
funny 27.38% of the time, whereas when we filter out our initial dataset collected
on such platforms, the average funniness of human-created jokes on JokeJudger
drops to 22.61%. This means that, using this constraint, the Gag system with
its 11.41% funniness is again more than half the time as funny as human-created
jokes. This is similar to the existing research, where the generated jokes were
also perceived as funny half as often as human-created jokes.

5 Discussion

5.1 Extensions

There are several possible extensions of Gag for future research. We summarize
and discuss several of them in this section.

Template Extraction. In this paper, we assumed that all example jokes were
using the “I like my X like I like my Y , Z” template. We believe that adding a
component that clusters jokes per template would enable this system to work for
several types of jokes. Template clustering and extraction on jokes has already
been successfully executed by other researchers [22][5]. However, working with
multiple templates requires a large dataset of rated jokes that includes similar
jokes. One way of overcoming this issue is allowing templates to have small (syn-
tactical) differences. This could possibly be done by encoding them as grammars
with variables instead of the usual approach of alternating fixed strings and tem-
plate slots. Additionally, templates using similar schemas could also be clustered
together. However, this is more difficult than detecting similar templates, as it
requires to detect similarities between jokes employing different narrative styles.
This would increase the amount of training data per template if done correctly,
as the training data that would be found for each of the similar templates can
then get merged.

In this paper, we used five different types of metrics to measure fifteen differ-
ent relations between the template values of a joke. We believe that increasing
the metric set might be useful when dealing with more types of humor. This
larger set would allow to measure the incongruity-resolution theory properties
in a different way, which might increase the accuracy of the classifier and regres-
sion component. Other computational humor generators and detectors might be
useful sources of new metrics [7][11][6][4][14][8][9].



Multi-word Template Value Generation. The presented system assumes
for simplicity that template values are single words. Both the discussed metrics
and the generated template values have been created for single word template
values. In Section 3.3, we already proposed several methods for dealing with
multi-word template values using single-words metrics. Another solution would
be to introduce more complex metrics, preferably still capable of measuring
all properties proposed in the incongruity-resolution theory [26]. In order to
successfully generate jokes using multiple words as template values, the template
values generator also has to be updated to be capable of proposing such multi-
word template values.

Integration in Human-Machine Interface. It would be interesting to in-
tegrate Gag, or a more generalized version allowing for more templates, in a
human-machine interface. Instead of ratings using a Likert scale, the interface
could try to estimate, using existing sentiment analysis techniques, how well each
joke was received based on the users reaction and use this as training data for
the generation of future jokes. However, such a system would need to distinguish
several types of users based on their joke evaluations. As we noted in Section
3.2, the rates of agreement on the rating of the jokes were rather low. It is thus
reasonable to assume that the evaluation of humor for all types of users is not
predictable using only one general model. To maximize the perceived funniness
for each user, it might be interesting to cluster users based on how they perceived
previous jokes, and train a model for each cluster.

5.2 Conclusion

In this research, we created a computer program that is capable of learning to
generate humor based on human-rated examples. We used humor theory and
extended other computational humor research in order to argue, identify and
evaluate a set of humorous metrics and other components. These findings are
used in the Gag system, which is capable of learning to generate analogy jokes
from rated examples. This system shows how machine learning algorithms, more
specifically classification and regression algorithms, can alleviate humans from
the elaborate task of crafting schemas for humor generation by hand. These
algorithms find correlations between metrics applied onto template values used
in templates that make a joke humorous. We also showed how the system can be
used to help explain in a human-comprehensible way what the most important
metrics for a particular set of jokes are. The code of this program is made
available online.13

We created and published a reusable platform called JokeJudger14 to collect
and rate jokes. We argued why such a platform was necessary for Gag to function
optimally. With this platform, we created a dataset of human-rated “I like my
X like I like my Y , Z” jokes. Such a dataset is useful as it provides ratings

13 https://github.com/TWinters/Goofer
14 https://github.com/TWinters/JokeJudger



that have significantly less exposure bias on their scores than jokes from other
sources.

We evaluated the system by comparing jokes generated using classification
and using regression with each other. We concluded that the version of Gag
using a classification algorithm outperforms the version using a regression algo-
rithm. We also showed that the performance in terms of relative rate of funniness
is comparable to existing research, even though we used a more generic approach.
We also compared the performance of the jokes generated by Gag with jokes
created by our volunteers having similar one-word template value constraints.
This led to the conclusion that the jokes generated by Gag are perceived as
funny half as often as human-created jokes.
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