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Energy modeling for the prediction of energy use in buildings, especially under novel energy management1

strategies, is of great importance. In buildings there are several flexible electrical loads which can be2

shifted in time such as thermostatically controllable loads. The main novelty of this paper is to apply3

an aggregation method to effectively characterize the electrical energy demand of air-conditioning (AC)4

systems in residential buildings under flexible operation during demand response and demand shaping5

programs. The method is based on clustering techniques to aggregate a large and diverse building stock of6

residential buildings to a smaller, representative ensemble of buildings. The methodology is tested against7

a detailed simulation model of building stocks in Houston, New York and Los Angeles. Results show good8

agreement between the energy demand predicted by the aggregated model and by the full model during9

normal operation (normalized mean absolute error, NMAE, below 10%), even with a small number of10

clusters (sample size of 1%). During flexible operation, the normalized mean absolute error rises (around11

20%) and a higher number of representative buildings becomes necessary (sample size at least 10%).12

Multiple cases for the input data series were considered, namely by varying the time resolution of the13

input data and the type of input data. These characteristics of the input time series data are shown to14

play a crucial role in the aggregation performance. The aggregated model showed lower NMAE compared15

to the original model when clustering is based on a hybrid signal resolved at 60-minute time intervals,16

which is a combination of the electricity demand profile and AC modulation level.17

∗Corresponding author. Email: lieve.helsen@kuleuven.be

1



Con
fid

en
tia

l dr
af

t

March 1, 2018 Journal of Building Performance Simula-
tion paper

1. Introduction18

The building sector, given its large share in the19

total energy use, plays a central role in energy20

policy. It accounts for about 40% of the total21

energy use both in Europe and in the US (EIA22

2017; EU 2010). Therefore, energy modeling for23

demand forecasts or for assessing the impact24

of energy management strategies in the build-25

ing sector is of high importance. To this aim,26

accurate simulation tools for large scale eval-27

uations of the integrated supply-demand en-28

ergy system are necessary. However, a proper29

trade-off between the fidelity of representation30

and the resultant computational effort has to31

be found. Clustering techniques (Jain, Murty,32

and Flynn 1999), which group similar data ob-33

jects in the same cluster, can be used in order34

to select representative buildings of the overall35

building stock and use them to simplify its rep-36

resentation. This paper presents and evaluates37

such a methodology.38

Several studies in the literature report the39

use of clustering techniques for different appli-40

cations. Nahmmacher et al. (2016), for exam-41

ple, used clustering algorithms to select rep-42

resentative days for long-term power systems43

modeling. In this way, it is possible to select44

a small number of days that adequately re-45

flect the characteristic fluctuations of the re-46

newable energy sources in the generation mix,47

thus reducing the computational effort, while48

maintaining the necessary diversity in tempo-49

ral profiles. Buttitta, Turner, and Finn (2017)50

applied a similar approach to define realistic51

building occupant behavior, representative of52

a large number of households, based on avail-53

able survey data.54

As far as the building sector is concerned,55

often buildings are grouped on the basis of56

their characteristics. Gao and Malkawi (2014)57

showed the advantages of a multi-dimensional58

clustering approach that enables energy bench-59

marking among different types of buildings.60

This was done by taking the most relevant61

characteristics into account to define the build-62

ing energy performance. Jones, Lannon, and63

Williams (2001) developed a method to group64

buildings on the basis of some parameters65

related to their energy performance: heated66

ground floor area, facade, window to wall ra-67

tio, exposed end area and age. Santamouris68

et al. (2007) applied intelligent fuzzy cluster-69

ing techniques to classify school building en-70

ergy data around clusters of similar character-71

istics. Moreover, Gaitani et al. (2010) proposed72

a clustering methodology based on principal73

components analysis to group school buildings74

in Greece and to define the typical building of75

each energy class by considering seven variables76

(heated surface, age of the building, insulation77

of the building, number of classrooms, number78

of students, school’s operating hours per day,79

age of the heating system). The representative80

buildings can then be used to perform analysis81

on the potential energy savings for the specific82

group of school buildings.83

Geyer, Schlüter, and Cisar (2017) considered84

a clustering method based on the sensitivity85

of buildings to retrofit strategies. In this way86

it is possible to effectively perform the retrofit87

of a large building stock by selecting the best88

retrofit measures, not only related to building89

age and type. Other studies, instead, tried to90

directly cluster the building load curves from91

time series data (Jota, Silva, and Jota 2011) to92

provide useful instruments to the energy man-93

ager to predict buildings loads and peak de-94

mand. For instance, Yang et al. (2017) pro-95

posed a clustering method based on k-shape96

algorithm to identify shape patterns in time-97

series data, thus detecting building-energy us-98

age patterns at different levels. The clustering99

result was further utilized to improve the ac-100

curacy of forecasting models.Yamaguchi, Shi-101

moda, and Mizuno (2007) showed a district102

clustering modeling approach, where a district103

instead of a single building was considered as104

reference unit, in order to evaluate energy man-105

agement at the city level. Iacovella et al. (2015)106

presented an algorithm for determining up to107

five representative appliances with artificial pa-108

rameters to represent a larger set of thermo-109

statically controlled loads.110

The state of the art review highlights that111

clustering techniques in buildings can be used112

in different fashions and for different pur-113

poses. In each case, the starting point is114

represented by available data about building115

features or its behavior (e.g. energy perfor-116

mance. . . ), grouped by means of techniques ap-117

propriate for the final knowledge purpose of the118

analysis. In this paper the main goal behind119

clustering of buildings is the representation of120
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their energy flexibility in an efficient and effec-121

tive way. As shown in previous work of the au-122

thors (Patteeuw, Henze, and Helsen 2016), it is123

very important to anticipate the electricity de-124

mand of a building stock during flexible oper-125

ation. The aim of this paper is to demonstrate126

how the representative buildings of the clus-127

ters can be used in aggregated simulation mod-128

els maintaining the necessary accuracy. Given129

the relevance of demand response (DR) pro-130

grams to manage the electric energy demand131

in buildings, there is a growing need for proper132

models to simulate integrated energy systems,133

where both the supply side and the demand134

side and their interaction are represented with135

sufficient detail (Patteeuw et al. 2015). In par-136

ticular, Goy and Finn (2015) highlighted the137

necessity to develop demand response estima-138

tion tools at a large scale considering the build-139

ings characteristics for electrically driven heat-140

ing and cooling systems (i.e. heat pumps and141

chillers).Other approaches, rather than cluster-142

ing, have been used by different authors to rep-143

resent the energy demand in integrated simula-144

tions. E.g. Callaway (2009) uses a hybrid state145

discrete time model to mimic thermostatic con-146

trolled loads (TLC) with a probability distribu-147

tion of the TLCs population, while Hedegaard148

et al. (2012) proposes a thermal building model149

add-on for the software Balmoral applied to the150

building stock of existing individually heated151

one-family houses in Denmark in 2030.152

This paper presents, instead, the application153

of a method called cluster-center-aggregation154

(CCA) in building stock simulation and eval-155

uates its performance. This CCA method is156

based on clustering techniques for energy flexi-157

bility evaluations in building stocks. The aim of158

CCA is to reduce the overall building stock to a159

number of representative buildings able to as-160

sess, with sufficient accuracy, the total building161

electric energy demand dynamics to be used in162

integrated power system representations. The163

clustering algorithm is applied to electric power164

or AC staging data obtained by means of a165

simulation tool, written in Java, that repro-166

duces in detail all the buildings contained in167

a considered building stock. The total electric-168

ity demand profile from such a comprehensive169

simulation tool is then compared with the pre-170

diction of the aggregated demand side model171

that scales up the electricity demand of the172

representative buildings. The objective of this173

comparison is the determination of the proper174

number of representative buildings (i.e., num-175

ber of clusters) in order to balance the oppos-176

ing needs of reduced computational burden and177

loss of accuracy when assessing the demand178

flexibility of a building stock. The electric en-179

ergy demand of buildings consists of deferrable180

loads, among them thermostatically controlled181

loads (e.g. cooling and heating by chillers, heat182

pumps or electric resistance), which can be183

shifted in time providing flexibility to the elec-184

tric grid. The ability to represent and fore-185

see such flexibility plays a crucial role in order186

to assess the demand shaping potential of the187

building stock. The proposed CCA methodol-188

ogy offers a simplified and reliable represen-189

tation of thermostatically controlled electrical190

loads to be used in the evaluation of the eco-191

nomic and societal value of demand flexibility.192

In this piece of work the focus, and main nov-193

elty, lies in capturing the flexibility of the build-194

ing stock by means of an aggregated demand195

side model obtained through clustering tech-196

niques.197

2. Methodology198

This section describes the CCA methodology199

and how its performance has been assessed.200

First, the general CCA methodology is de-201

scribed in Section 2.1) after which the specific202

application in the context of air-conditioning203

electricity demand flexibility is shown (Section204

2.2). This methodology is compared to ran-205

dom sampling as the benchmark in Section 2.3206

by means of the performance metrics intro-207

duced in Section 2.5. Section 2.4 presents the208

case study that is used to test the performance209

of cluster-based sampling in representing the210

building stock flexibility.211

2.1. General Cluster Center212

Aggregation (CCA)213

The goal of the Cluster Center Aggregation214

(CCA) is to draw a number of samples from215

a population and use these samples to repre-216

sent the entire population. Figure 1 illustrates217

the basis steps of this CCA: cluster, center se-218

lection, and scale up. First, a number of fea-219
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Figure 1.: Illustration of the CCA principle on 100 AC electricity demand profiles (top row). The
clustering is performed for 24 time steps (i.e. 24 hours in a day) and hence in 24 dimensions. Since
a 24 dimensional plot is not possible, only two of these time steps are illustrated (bottom row).
In step 1, all profiles are clustered into two clusters. In step 2, the profile closest to the cluster
centroid is selected as representative for that cluster. In step 3, each cluster’s representative profile
is scaled up with the number of profiles within that cluster. Last, it is evaluated how well the
resulting electricity demand profile of these 3 steps (purple dash-dot line) compares to the sum of
all 100 profiles (black line).

tures need to be selected from each member220

of the population in order to group the mem-221

bers of the population in clusters. In the second222

step, the central member of the cluster is picked223

up as a representative member of that cluster.224

In the third step, the features of this selected225

member are scaled up with the number of mem-226

bers in that cluster, in an attempt to imitate227

the features of the entire population. The main228

issue for application of the CCA method is to229

justify whether the second and third steps are230

allowed in a certain context or not. Throughout231

this paper, the context of building flexibility is232

considered.233

2.2. CCA in air-conditioning234

electricity demand flexibility235

context236

The novelty of this paper lies in investigating237

the usefulness of the CCA methodology in the238

context of air-conditioning electricity demand239

flexibility. The population to start from is a240

large number of buildings. In this paper, this241

large number of buildings is modeled as de-242

scribed in Section 2.4 and is referred to as the243

‘full model’ throughout this paper. This model244

consists of thousands of residential buildings245

equipped with central air-conditioning (AC)246

units and smart thermostats1. The aim of this247

paper is to attain an aggregated model which248

consists of representative buildings taken from249

the full model, whose AC electricity demand250

can be rescaled to replicate the full model elec-251

tricity demand. Such an aggregated model can252

then be used e.g. in integrated representations253

of the electric power system to assess the flex-254

ibility potential of the building stock. Fig. 2255

illustrates the CCA procedure in this context.256

In this paper, the features upon which to257

perform the clustering are the measurement258

data of the buildings, taken from the output259

of the ’full model’. In the first step of CCA,260

this output data from the full model, called261

’training data’ throughout the rest of the pa-262

1 In this paper, a smart thermostat is defined as a thermostat

which is connected to the internet in order to communicate
indoor air temperature, set-point and the control signal it
sends to the AC unit. Additionally, it is able to perform

model predictive control in response to a price profile.

4
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Figure 2.: Schematic representation of the use of CCA for demand response purposes in theoretical
studies and in practice.

per, is taken and clustered. The data from the263

full model mimics the data that could be avail-264

able through the use of smart thermostats in265

real applications in practice. In one case, this266

smart thermostat could obtain direct measure-267

ments of the ‘electricity demand’ (ED) profile268

through a communication with the AC unit.269

ED data is reported in W and varies between270

0 and the maximum power of the building. The271

highest instantaneous electricity demand of one272

building is 13500 W in this study.273

If the communication with the AC unit is274

not available, the smart thermostat only has275

information on the control signals sent to the276

AC unit. Since the control signals are typically277

in the form of an on-off signal or staging sig-278

nal, the smart thermostat only has information279

of the modulation of the AC unit. This input280

data is referred to in the remainder of the text281

as ‘AC modulation data’ (ACMD). ACMD can282

only take up the values 0, 1 and 2, e.g. the283

stages of the AC unit.284

In the case where both ED and ACMD data285

are available, a ’hybrid’ data input can be de-286

fined. In this hybrid method, the input data287

is compiled of two sets of data: a period of288

ED and the ACMD of the same period. The289

ACMD data is rescaled2 in order to achieve the290

same order of magnitude as the ED input data.291

Hence, both input data have equal importance292

in the clustering step.293

Furthermore, this data could be fed to the294

clustering algorithm at 5-minute or 60-minute295

resolution. These two resolutions are the typ-296

ical lowest and highest resolutions used for297

HVAC data. Intermediate resolutions are not298

studied in order to limit the number of cases299

in this paper. The 60-minute resolution is ob-300

tained by averaging the 5-minute resolution301

data, which largely filters out the on-off cycling302

of the AC unit.303

The full model output data is summarized in304

a set of vectors: the ED or ACMD profile for305

each building, for a particular period in time306

(one week has been considered in this analysis).307

For the hybrid method, both data profiles of308

the same week are put adjacent to each other,309

so the input data profile is twice as long. A310

clustering algorithm then clusters these build-311

2Based on Fig. 9, the ACMD data in this paper is multiplied
by a factor of 10, while the ED data is expressed in kW . In
this manner, both ED and ACMD input data are of the same

order of magnitude.
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Figure 3.: Dendrogram of hierarchical cluster-
ing on ED data in kW and 60-minute resolution
for the first week of July in Houston (see also
Figure 5).

ings in groups of buildings with similar ED or312

ACMD profiles. This similarity is based on the313

Euclidean distance between the ED or ACMD314

profiles. Hence, in this paper, the clustering315

starts from data in multiple dimensions: the316

number of time steps. This paper employs the317

hierarchical clustering with Ward’s minimum318

variance method (Ward Jr 1963). There are nu-319

merous clustering algorithms which could be320

used in this context and comparing all of them321

is out of the scope of this paper. Hierarchical322

clustering is employed here since it leads to a323

single reproducible result, as opposed e.g. to324

k-means clustering where the random starting325

conditions influence the result. This hierarchi-326

cal clustering is performed by the Matlab script327

clusterdata.m (MathWorks 2017a), using Eu-328

clidean distances and Ward’s method for link-329

age. This linkage between two joined clusters a330

and b is calculated as the increase in d(a, b), the331

total within-cluster sum of the squares of the332

distances between all objects in the cluster and333

the centroid of the cluster (MathWorks 2017b):334

d(a, b) =

√
2nanb
na + nb

‖x̄a − x̄b‖2 (1)

with na the number of elements in cluster a,335

‖‖2 the Euclidian distance and x̄a the centroid336

of cluster a. Fig. 3 shows an example of a result-337

ing dendrogram using this clustering method.338

The only remaining user-defined parameter for339

the clustering is the number of clusters (i.e., the340

number of representative buildings for the ag-341

gregated model) to consider. This can be inter-342

preted in Fig. 3 as ’cutting the cluster tree’ at343

a certain value of Ward’s linkage. The number344

of clusters is varied, and reported in a relative345

metric called sample size:346

sample size (%) =
#clusters · 100

#buildings in full model
(2)

In the second step of CCA, the clusters are347

translated to a set of representative buildings.348

For each cluster, the center is determined as the349

average profile of the ED or ACMD profiles.350

The building whose profile is closest to this351

center is selected as the representative build-352

ing. This paper investigates the suitability of353

this building in representing its cluster, espe-354

cially when different operational strategies are355

applied (e.g. DR programs). Applying this cen-356

tering methodology for all clusters, yields a set357

of representative buildings, which is a sample358

from the total set of buildings.359

In the third step of CCA, the electricity de-360

mand profiles of the representative buildings,361

P rb, are rescaled. For each representative build-362

ing of cluster i, the electricity demand profile363

P rb
i is multiplied by the number of buildings364

in the corresponding cluster, Nb,i. The result-365

ing electricity demand profile of the aggregated366

model, PCCA is hence calculated as:367

PCCA =

Nc∑
i=1

Nb,iP
rb
i (3)

with Nc the number of clusters in this case.368

Eventually such electricity profile of the ag-369

gregated model is used to represent the build-370

ing stock in integrated models for demand re-371

sponse analysis, as illustrated in Fig 2.372

2.3. Random sampling as reference373

In this paper, random sampling is used as a374

benchmark for the aggregation performance.375

In the case of an aggregation with Nc clus-376

ters and hence Nc representative buildings, it377

is best to compare this to a random sampling378

6



Con
fid

en
tia

l dr
af

t

March 1, 2018 Journal of Building Performance Simula-
tion paper

1/hwo

Cwo

Two
Rw

Cwi

Twi
1/hwi 1/hf i

Cf i

Tf i Rf

Cf o

Tf o Rs
Ts

1/hro

Cro

Tro
Rr

Cri

Tro
1/hri 1/hi

Cm

Tm

To
1/hgo Rg 1/hgi Ti

Ci

Figure 4.: The RC network representing the
heat transfer in the reference building model
(Corbin and Henze 2017a). The building is
modeled as one thermal zone at a temperature
Ti. The floor (f), external walls (w) and roof (r)
are represented by two thermal capacities each,
while the glazing (g) has no thermal capacity.
The internal walls and furniture are lumped
within one ‘thermal mass’ capacity (m). Heat
exchange is present in the model with the out-
side air (o) and soil (s).

with also Nc representative buildings. The ag-379

gregation based on random sampling consists380

of two steps. In a first step, Nc random build-381

ings are taken from the population. In a sec-382

ond step, the electricity demand profiles of each383

randomly chosen building P random
i is scaled up384

by an equal factor:385

P aggr,random =

Nc∑
i=1

Np

Nc
· P random

i (4)

with Np the total number of buildings in the386

population. The random sampling is performed387

multiple times (for this study 20 times, see Sec-388

tion 3.3) in order to get an image of the spread389

of the performance of random sampling.390

2.4. Diverse Building Stock Case391

Study392

The performance of the CCA methodology is393

tested on output data of a building stock model394

that simulates the cooling demand of a large395

number of US buildings. This detailed dynamic396

simulation model was developed by Corbin and397

Henze (Corbin and Henze 2017a,b) and val-398

idated with respect to BESTEST-EX (Jud-399

koff et al. 2010) by Corbin (Corbin 2014). The400

model comprises three cases of building stocks401

in different US climate zones: Houston (Texas),402

New York (New York) and Los Angeles (Cali-403

fornia). The Texas case consists of 2146 build-404

ings from which 2098 are equipped with AC.405

For New York this is 1506 (1114 with AC) and406

for Los Angeles this is 1326 (711 with AC). In407

this study, the non-HVAC electricity demand,408

which is also an output from the model, is not409

taken into account. Each of the buildings dif-410

fer in type (mobile, detached or appartment),411

floor area, cooling set point and building in-412

tegrity. This results in different parameters for413

the insulation of the roof, walls, floor and win-414

dows as well as a different infiltration rate and415

thermal mass. For each climate zone separately,416

these values are randomly sampled from the417

Residential Energy Consumption Survey (U.S.418

Energy Information Administration 2009) data419

that was collected and made available by the420

US Energy Information Administration. This421

results in different thermal properties of the422

buildings depending on the climatic zone, as423

illustrated in Table 1.424

Each building is modeled as one thermal425

zone. The heat transfer in the building is mod-426

eled through a network of thermal resistances427

and capacities as illustrated in Fig. 4 for which428

all R and C values are constant. The only ex-429

ceptions to this are the exterior film coeffi-430

cients that depend on the wind speed. The so-431

lar heat gains are based on Liu and Jordan432

(1960) for an isotropic clear sky. The build-433

ings are equipped with a central air condition-434

ing. The main component of the AC is the435

single and dual stage electric direct expansion436

air cooling coil (UIUC and LBNL 2005). This437

cooling coil is complemented with a constant438

volume fan. The building modeling was vali-439

dated with BESTEST-EX (Judkoff, Neymark,440

and Polly 2011). The internal heat gains from441

occupants are based on a relaxed seated per-442

son while the gain from appliances are mod-443

eled based on nominal energy demand, sched-444

ules and sensible heat fraction (Corbin 2014).445

The temperature set points vary among the dif-446

ferent buildings but are constant during the447

day. The AC control of each building is per-448

formed independent of the other buildings, by449

means of a dual mode thermostat with a hys-450

teresis of 0.5K. In addition, each building is451

assumed to have a model predictive controller452
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Table 1.: Home characteristics for each climatic zone selected for study, taken from Corbin and
Henze (2017a)

Percentage of homes
New York Los Angeles Houston

Home type Apartment 16.8 18.5 18.2
Detached 77.4 73.2 73.5
Mobile 5.8 8.4 8.3

Floor area (m2) ≤ 200 67.3 88.2 52.7
> 200 32.7 11.8 47.3

Roof insulation (Km2/W ) ≤ R - 3.3 55.1 38.0 38.2
> R - 3.3 44.9 62.0 61.8

Wall insulation (Km2/W ) ≤ R - 1.9 67.9 51.3 51.5
> R - 3.3 32.1 48.7 48.5

Floor insulation (Km2/W ) ≤ R - 3.3 77.4 63.2 62.3
> R - 3.3 22.6 36.8 37.7

Window type Single pane 24.2 11.8 12.4
Double pane 60.7 64.6 62.4
Triple pane 15.1 23.6 25.2

Infiltration (air changes per hour) ≤ 0.4 44.0 62.5 61.6
> 0.4 56.0 37.5 38.4

Air conditioning Central 74.1 54.3 97.9
None 25.9 45.7 2.1

(MPC) that uses a particle swarm optimization453

(PSO) (Corbin 2014) based on the canonical454

formulation of Eberhart and Kennedy (1995).455

This formulation is enhanced with a taboo list456

for previous candidates and familiar box con-457

straints. The increment is 0.1 and a maximum458

velocity is 0.25. The MPC can alter the upper459

and lower bound for the hysteresis controller460

between certain predefined limits. A fully de-461

tailed description of the reference model can be462

found in Corbin (2014).463

Fig. 5 shows some typical input and out-464

put data of the building stock model for465

Houston. The first two figures show the solar466

heat gains, ambient air temperature and wind467

speed. These weather input conditions are used468

for all buildings in the Houston model. The last469

two figures show the output of the model for470

one building (left axis, blue) and for all build-471

ings with AC (right axis, orange). What can472

be observed first is the strong cycling of the473

AC, both in the indoor temperature and in the474

electricity demand. When considering the 2098475

buildings with AC in Texas, the electricity de-476

mand shows a strong correlation with the solar477

gains and outdoor temperature.478

2.5. Sampling Performance Evaluation479

The interest of this paper lies in the perfor-480

mance assessment of demand flexibility and,481

in particular, how well normal operation data482

suits the aggregation methodology in predict-483

ing flexible building operation in response to484

DR and demand shaping signals. The aggre-485

gated electricity demand profile should match486

the full electricity demand profile as accurately487

as possible, evaluated by the mean absolute er-488

ror (MAE) over h time steps with index j:489

MAE =

∑h
j=1 |P

full
j − PCCA

j |
h

. (5)

The MAE is normalized by the mean value µ490

of the full electricity demand profile in order491

to have a metric comparable for the different492

considered case studies:493

NMAE = MAE/µ =

∑h
j=1 |P

full
j − PCCA

j |

h ·
∑h

j=1 P
full
j

h

.

(6)
To evaluate the behavior in the flexible494

regime, all buildings within one case are sub-495
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Figure 5.: Data for the first week of July
in Houston, Texas. From top to bottom: di-
rect (left) and diffuse (right) solar heat gains;
outside dry bulb temperature (left) and wind
speed (right); HVAC electricity demand of
one building (left) and all buildings combined
(right); indoor air temperature of one building
(left) and all buildings combined (right).

jected to the same price profile, to which they496

all respond individually based upon their dedi-497

cated MPC operation. Two scenarios are stud-498

ied: normal operation and price responsive op-499

eration, denoted as ‘normal’ and ‘price’, respec-500

tively. In this context, the energy flexibility is501

defined as the power consumption deviation of502

a system from its normal operation to a new503

profile aimed at compensating power imbal-504

ances in the grid. The energy flexibility can be505

activated by means of demand response mech-506

anisms, intended to achieve changes in electric507

usage patterns in response to changes in the508

price of electricity.509

Under the normal operation scenario, the510

0 10 20
0

20

40

60

80

100

120

P
ric

e 
($

/M
W

h)

HO

0 10 20

Time (hour)

0

20

40

60

80

100

120
NY

0 10 20
0

20

40

60

80

100

120
LA

Figure 6.: Electricity price profiles for every day
of July for the cases of Houston (HO), New
York (NY) and Los Angeles (LA).

price profile is flat and the temperature bounds511

for comfort are constant. Hence, the objective512

function for the MPC is the minimization of513

the electricity consumption:514

min

H∑
j=1

PHV AC
j (7)

with PHV AC
j the electric power of the HVAC515

system during time step j over a time horizon516

of H time steps. Under price responsive oper-517

ation, the electricity price ej triggers the MPC518

to use the flexibility of the building. The ob-519

jective function becomes520

min

H∑
j=1

ej · PHV AC
j . (8)

The electricity price profiles shown in Fig.521

6 are used for each day of the month. These522

profiles are based on the wholesale market523

prices corresponding to the region in which the524

cities are located. Based on historical wholesale525

market prices, Corbin (2014) determined these526

price profiles for the typical weather file used527

throughout the model. In the scenario of price528

responsive operation, the temperature bounds529

for comfort are relaxed to allow for a stronger530

response to the price profile. Before 8 a.m. and531

after 6 p.m., the lower bound on the indoor532

temperature is lowered by 2K in order to al-533

low for precooling. During absence of the oc-534

cupants, between 8 a.m. and 6 p.m., the upper535

bound of the indoor temperature is increased536

by 3K while the lower bound is decreased by537

5K. Hence, in this period of absence there is538

9
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a significant potential for load shifting. The539

plots ‘normal’ and ‘price’ in Fig. 7 show that540

the combination of the variable price profile541

and the wide band on temperature set-point542

can lead to extreme electricity demand profiles.543

The results for the ’price’ scenario are hence for544

a fairly extreme flexibility scenario.545

3. Results546

In Section 3.1 the results of the application of547

the CCA methodology are illustrated. In par-548

ticular, the impact of the choice of input data549

(i.e. sampling time and type of signal) on the550

performance of CCA is analyzed (Section 3.2).551

Finally, the performance of CCA is compared552

to a random sampling approach in Section 3.3.553

The evaluation of the CCA methodology is554

common in the context of unsupervised ma-555

chine learning. Measurements for a couple of556

days are used as training data for CCA (see557

Fig. 7 (top)). The goodness of fit (NMAE558

in this study) of the resulting representative559

buildings and their factors Nc are tested on this560

training data. But more importantly, the good-561

ness of fit is validated on validation data, which562

is data stemming from the same system but for563

a different time period (see Fig. 7 (bottom)).564

3.1. CCA Methodology Application565

Fig. 7 illustrates the application and perfor-566

mance of the CCA. The aim of the aggrega-567

tion is to predict the electricity demand pro-568

file of the full building stock P full (‘Full’ in569

Fig. 7). The CCA aggregation methodology re-570

constructs the electricity demand profile with571

a limited number of representative buildings572

PCCA. The model is trained in normal opera-573

tion for a summer week in July and then tested574

for the whole month. The results are shown for575

multiple numbers of representative buildings,576

normalized to a sample size expressed in per-577

centage (Eq. 2). As can be seen in Fig. 7, the578

performance of the aggregation on the training579

data is very good, even for a small sample size580

of 1%. Also, in the case of testing with a flat581

electricity price (‘Normal’ case in Fig. 7), the582

aggregated representation performs well. Yet,583

when price responsive MPC is applied in order584

to assess the flexible behavior as explained in585
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Figure 7.: Reconstruction of the electricity de-
mand profile for Houston, Texas. Clustering
based on electricity demand data for a week
in hourly resolution. Aggregation performance
illustrated for the training data of a week. The
performance is also shown for July 19th, for
both normal operation and for responsive price
for both a 1% and 10% sample size of buildings.

Section 2.5 (‘Price’ case in Fig. 7), the MAE586

rises and it is evident that better performance587

is achieved by increasing the sample size. In588

this case, a sample size of 1% gives a MAE in589

predicting the electricity demand of 0.50MW .590

This reduces to 0.23MW for a sample size of591

10%.592

3.2. Choice of Input Data593

This section investigates the importance of the594

choice and pre-processing of the input data595

used for clustering, as introduced in Section596

2.2. The data could either consist of direct597

measurements of electricity demand (ED) or598

in the absence of these, AC modulation data599

(ACMD). This data could be attained in 5 or600

60-minute resolution. For these four input pre-601

processing options, Fig. 8 illustrates the nor-602

malized mean absolute error (NMAE) between603

the estimated and actual feeder electricity de-604

mand for multiple cases (Houston (HO), New605
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York (NY) and Los Angeles (LA)). Moreover,606

both normal operation with a flat price and the607

price responsive profiles are considered. The608

latter is used to assess the performance for flex-609

ible operation.610
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Figure 8.: Normalized mean absolute error
(NMAE) as a function of the sample size, de-
termined for normal operation and operation
under price incentives (Fig. 6) for the month
of July for Houston (HO), New York (NY) and
Los Angeles (LA). Comparison of six cluster-
ing options, based on clustering of profiles in
five minute (5 min) or 60-minute (60 min) res-
olution of electricity demand (ED), AC modu-
lation data (ACMD) or both ED and ACMD
(hybrid).

Regarding the resolution of input data, Fig. 8611

shows that providing the clustering method-612

ology with input data in 60-minute resolu-613

tion generally outperforms 5-minute resolution614

data. The shorter resolution still contains the615

AC cycling artefacts, which appears to ham-616

per the clustering in finding good representa-617

tive buildings.618

Regarding the type of input data, no clear619

preference between using directly electricity de-620

mand data (’ED’ in Fig. 8) or AC modulation621

data (’ACMD’ in Fig. 8) emerges. The former622

performs the best in the scenario of a flat elec-623

tricity price. In this scenario, the available de-624

mand flexibility of the buildings is not utilized625

and all buildings follow their regular cooling626

schedule. Using electricity demand measure-627

ments as input data for the clustering performs628

well in this scenario, leading to a NMAE below629

5%. Clustering focusses strongly on the abso-630

lute value of the input profiles and hence a good631

representation is attained. When the flexibility632

is activated with a price profile, ACMD out-633

performs ED and shows lower errors for most634

cases. What emerges from this analysis is that635

focussing on the modulation of the air condi-636

tioning captures the demand flexibility better.637

Generally speaking, a variable electricity638

price appears to have a significant impact on639

aggregation performance. When there is no640

electricity price incentive (‘Normal’ in Fig. 8),641

the NMAE stays easily below 10% of the mean642

electricity demand. With electricity price in-643

centives (‘Price’ in Fig. 8), the NMAE is higher644

and quickly rises to 20% of the mean electric-645

ity demand. From this, it appears that flexible646

operation is harder to capture for aggregation.647

The use of electricity demand data (‘ED’) de-648

livers better results for normal operation while649

AC modulation data (‘ACMD’) delivers bet-650

ter results for flexible operation. The result-651

ing clusters from both methods with a sample652

size of 1% for Houston (21 samples, 60-minute653

resolution) are illustrated in Fig. 9. Observing654

the cluster arrangement, it can be seen how655

clustering based on ED ignores the AC mod-656

ulation level contained in the ACMD profile657

(Fig. 9a), while clustering based on ACMD ig-658

nores the information contained in the ED pro-659

file (Fig. 9b).660

As introduced in the Section 2.2, the ’hybrid’661

method uses both ED and ACMD data. Fig-662

ure 9c shows how clustering on both data si-663

multaneously leads to fairly different clusters.664

The performance of the hybrid method is as-665

sessed in Fig. 8. The hybrid method based on666

5-minute resolution data shows equally poor667

performance as the other 5-minute data types.668

However, the hybrid method with data at 60-669

minute resolution, clearly outperforms ED and670

ACMD in most cases. For normal operation,671

it gets close or slightly improves upon using672

ED data. For flexible operation, it outperforms673

both ED and ACMD, sometimes by a signifi-674

cant margin.675

The results in Fig. 8 are shown for an en-676

tire month. There appeared to be no clear cor-677
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Figure 9.: Illustration of resulting clusters based on electricity demand as input (Fig. 9a), AC
modulation data as input (Fig. 9b) and a mix of both input data (Fig. 9c) which is coined ‘hybrid’
method. The clusters are illustrated by showing the mean electricity demand over the period on
the x-axis and the mean AC modulation data (called ‘mean AC mod.’) on the y-axis. Buildings in
the same cluster have the same color and are also surrounded by a convex hull for clarity.

relation between the NMAE per day and the678

variance of the price profile for the correspond-679

ing day. In other words, there is no significant680

difference in aggregation performance for days681

with either a strong or a weak price incentive.682

The CCA methodology was repeated with683

input data stemming from multiple price-684

responsive days. The result from this repetition685

are generally in line with using normal opera-686

tion days as input, as shown in Fig. 8. Hence,687

the results from this variation are not shown688

separately.689

Finally, the performance of the CCA690

methodology was also tested for normal opera-691

tion during the month of May. In other words,692

representative buildings which were chosen693

based on data in July were tested for normal694

operation measurements in May. The results695

are very similar to Figure 8 and are hence not696

repeated here. From this, it appears that the697

CCA methodology can also be used to predict698

the full electricity demand profile during peri-699

ods of lower cooling demand.700

3.3. Comparison to Random Sampling701

As described in Section 2.3, the results are com-702

pared to the benchmark of random sampling.703

Fig. 10 compares this random sampling to704

the best performing CCA method, using hy-705

brid data in 60-minute resolution. What can706

be noted first is the excellent performance of707

CCA compared to random sampling in case of708
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Figure 10.: Second evaluation of the normal-
ized mean absolute error (NMAE) normalized
by the mean of the full electricity demand as a
function of the sample size. The full line shows
the results for the aggregation based on the
hybrid case in 60-minute resolution. The box
plots show the results for random sampling, re-
peated 20 times. The red plus signs show the
outliers of the box plot.

a flat price profile. The NMAE of CCA is in709

most cases smaller than 90% of the random710

sampling results. This illustrates how well CCA711

performs in predicting the normal operation of712

a large set of buildings.713

In the scenario of flexible operation (‘Price’714

in Fig. 10), it can be seen that CCA outper-715
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forms random sampling less drastically. Over-716

all, CCA outperforms 60 to 90% of the ran-717

dom sampling results. For Houston, CCA out-718

performs around 60% of the random sampling719

cases. For New York and Los Angeles, CCA is720

even better, outperforming 75 to 90% of the721

random sampling results.722

The advantage of CCA in this context is that723

it directly leads to a single set of representative724

buildings that do a fairly good job at capturing725

the flexibility of the population of buildings.726

This cannot be said from the random sampling,727

which on average shows good performance but728

with a wide spread in performance. For exam-729

ple, taking a sample of 0.5% buildings in the730

New York case with price incentive, could lead731

to a NMAE between 18 and 39% compared to732

the average electricity demand during that day.733

4. Discussion734

As far as the sample size (i.e., number of rep-735

resentative buildings) is concerned, the sample736

size quickly needs to be 10% of the population737

size in this paper in order to obtain good re-738

sults in responsive price profiles, as can be seen739

in Figs. 7 and 8. A sample size of 10% is fairly740

large and represents a complexity reduction of741

only a factor 10. Although it must be noted742

that in this paper, the population sizes of build-743

ings with AC are pretty low: 2098 for Texas,744

1114 for New York and 711 for Los Angeles.745

Given a limited population size, this automati-746

cally leads to a high relative sample size needed747

(Krejcie and Morgan 1970). For example, for a748

confidence level of 95%, a margin of error of 5%749

and a population size of 2098, a classical sample750

size calculation (Krejcie and Morgan 1970) ad-751

vises a sample size of 325 or 15%. If we increase752

the population size to 1,000,000 buildings, this753

sample size calculator advises 384 samples or754

0.00038%. Hence, if the aggregation methodol-755

ogy presented in this paper is used on larger756

population sizes, it can be expected that the757

relative complexity reduction will be larger.758

When the aggregation is based on AC modu-759

lation data, the performance in terms of NMAE760

in flexible operation approaches that of CCA761

with hybrid data (see Fig. 8). This is an in-762

teresting result in the context of smart ther-763

mostats. As many smart thermostats do not764

have ED data available, they can only rely765

upon AC modulation data. In this context,766

they could perform the CCA methodology in767

order to attain a representative set of build-768

ings. In practice, specifically only these build-769

ings could be equipped with smart meters. The770

measurements of these smart meters can then771

be scaled up in order to get a good estimate772

of the full building population’s electricity de-773

mand during flexible operation. However, care774

should be taken that the absence of a smart775

meter in a building is not correlated to certain776

building characteristics, which could create a777

bias in the sampling. Note that in this study, we778

use data stemming from a simulation model. If779

measurement data is used as input for the CCA780

method, this data should be reliable by avoid-781

ing wrong or absent measurements. A check for782

corrupt measurement data is thus needed, af-783

ter which this data should be removed from the784

data set to be used in the CCA method.785

Furthermore, this paper illustrates that ap-786

plying CCA leads to an error and hence an un-787

certainty on a building stock’s electricity de-788

mand profile. Such clustering can be used in789

DR programs (Iacovella et al. 2015). Brun-790

inx et al. (2017) showed that a large uncer-791

tainty on the building stock’s electricity de-792

mand can limit its perceived controllability and793

hence lower the value of DR for a system opera-794

tor. Hence, when combining the representative795

building models with an electricity generation796

model in an integrated modeling framework797

(Patteeuw et al. 2015), an appropriate sample798

size needs to be chosen. A too small sample size799

will lead to large uncertainty on the building800

stock’s electricity demand and make the DR801

scheduling unreliable. A too large sample size802

will lead to impractical calculation times.803

5. Conclusion804

The main novelty of this paper is the appli-805

cation of a cluster-center-aggregation (CCA)806

methodology in representing the flexibility of a807

diverse building stock AC electricity demand.808

Hierarchical clustering is used to group build-809

ings on the basis of their electricity demand810

(ED) or AC modulation data (ACMD) for the811

electrical cooling system. For every cluster, the812

building with the electric energy demand pro-813
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file closest to the average ED or ACMD profile814

of that cluster is selected as a representative815

building.816

The model has been tested on three cases817

composed of buildings stocks in different cities818

and climate zones (Houston, New York or Los819

Angeles) with 2098, 1114 or 711 modeled build-820

ings respectively. The proposed model is in-821

tended for the estimation of demand flexibility822

provided by the electricity for thermostatically823

controllable loads, such as central AC systems824

and heat pumps for cooling and heating. In or-825

der to represent the flexible operation, differ-826

ent price profiles have been considered. Results827

show the crucial role of data pre-processing to828

obtain low NMAE values for estimating the full829

building stock electricity demand profile. An830

appropriate time resolution for input data is831

60-minutes, with the use of ED showing better832

results for normal operation and, conversely,833

ACMD for flexible operation. Combining both834

signals (ED and ACMD) outperforms all the835

other clustering options when a dynamic price836

profile is considered. When electricity demand837

profiles are not available, AC modulation data838

at 60-minute resolution still performs well dur-839

ing flexible operation, which can be useful for840

smart thermostats that do not have electric de-841

mand information at their disposal. Finally, the842

electricity demand profile is harder to estimate843

during flexible operation, since the NMAE is844

higher in all studied cases. For example for hy-845

brid data (a mix between ED and ACMD data)846

in 60-minute resolution, the NMAE is typically847

5% during normal operation for a sample size848

of 1%. In other words, the model size can be849

reduced with a factor 100 with only a NMAE850

of 5%. For flexible operation, the NMAE is typ-851

ically 10% at a sample size of 5 to 10%, hence852

for a model size reduction of 10 to 20.853
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Geyer, Philipp, Arno Schlüter, and Sasha Cisar.930

2017. “Application of clustering for the devel-931

opment of retrofit strategies for large building932

stocks.” Advanced Engineering Informatics 31:933

32 – 47.934

Goy, Solène, and Donal Finn. 2015. “Estimating935

Demand Response Potential in Building Clus-936

ters.” Energy Procedia 78: 3391 – 3396. 6th In-937

ternational Building Physics Conference, IBPC938

2015.939

Hedegaard, Karsten, Brian Vad Mathiesen, Henrik940

Lund, and Per Heiselberg. 2012. “Wind power in-941

tegration using individual heat pumps - Analysis942

of different heat storage options.” Energy 47 (1):943

284–293.944

Iacovella, Sandro, Frederik Ruelens, Pieter Vinger-945

hoets, Bert Claessens, and Geert Deconinck.946

2015. “Cluster control of heterogeneous thermo-947

statically controlled loads using tracer devices.”948

IEEE Transactions on Smart Grid 8 (2): 528–949

536.950

Jain, Anil K, M Narasimha Murty, and Patrick J951

Flynn. 1999. “Data clustering: a review.” ACM952

computing surveys (CSUR) 31 (3): 264–323.953

Jones, P. J., S. Lannon, and J. Williams. 2001.954

“Modeling building energy use at urban scale.”955

In Proceedings of Building Simulation, 175 – 180.956
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