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Abstract

We propose a numerical linear algebra based method to find the multiplication operators of
the quotient ring C[x]/I associated to a zero-dimensional ideal I generated by n C-polynomials
in n variables. We assume that the polynomials are generic in the sense that the number
of solutions in Cn equals the Bézout number. The main contribution of this paper is an
automated choice of basis for C[x]/I, which is crucial for the feasibility of normal form methods
in finite precision arithmetic. This choice is based on numerical linear algebra techniques and
it depends on the given generators of I.

1 Introduction

Consider the following problem. Given n polynomials f1, . . . , fn ∈ k[x1, . . . , xn] with k an alge-
braically closed field, find all the points x ∈ kn where they all vanish: f1(x) = . . . = fn(x) = 0.
Here, we will work over the complex numbers k = C. The ring of all polynomials in the n
variables x1, . . . , xn with coefficients in C is denoted by C[x1, . . . , xn]. For short, we will denote
x = (x1, . . . , xn) and an element f ∈ C[x] can be written as

f =
∑
α∈Zn

≥0

cαx
α

where we used the short notation xα = xα1
1 · · ·xαn

n . The support S(f) of f is defined as

S(f) = {α ∈ Zn≥0 : cα 6= 0}.

A set of n polynomials {f1, . . . , fn} ⊂ C[x] defines a square ideal

I = 〈f1, . . . , fn〉 = {g1f1 + . . .+ gnfn : g1, . . . , gn ∈ C[x]} ⊂ C[x].

The affine variety associated to I is

V(I) = {x ∈ Cn : f(x) = 0,∀f ∈ I} = {x ∈ Cn : f1(x) = . . . = fn(x) = 0}.

In this paper, we assume that the variety V(I) consists of finitely many points {z1, . . . , zN} ⊂ Cn.
Such a variety is called 0-dimensional.
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A well known result in algebraic geometry states that the quotient ring k[x1, . . . , xn]/I with
I ⊂ k[x1, . . . , xn] a 0-dimensional ideal and k an algebraically closed field is isomorphic as a
k-algebra to a finite dimensional k-vectorspace V with multiplication defined by a pairwise com-
muting set of n square matrices over k. This set of matrices corresponds to a set of generators of
k[x1, . . . , xn]/I and the size of each matrix is equal to the number of points in V(I) ⊂ kn, counting
multiplicities. Once the (generating) multiplication matrices are known in some basis, we can
answer several questions about the variety V(I). For example, we can retrieve the solutions of the
system by computing their eigenstructure and we can evaluate any polynomial on V(I). Our goal
is to compute the multiplication matrices in a numerically stable way for square ideals satisfying
some genericity assumptions.

There are many approaches to the problem of solving systems of polynomial equations. The
different methods are often subdivided in homotopy methods, subdivision methods and algebraic
methods. Homotopy continuation uses Newton iteration to track solution paths, starting from
a simple initial system and gradually transforming it into the target system. These ideas have
led to highly successful solvers [1, 24]. However, performing some numerical experiments one ob-
serves that for large systems some solutions might be lost along the way. The continuation gives
up on certain paths when, for example, they seem to be diverging to infinity or they enter an
ill-conditioned region. Normal form algorithms belong to the category of algebraic methods. The
earliest versions of these algorithms use Groebner bases [6, 7] and doing so they make an implicit
choice of basis for C[x]/I. It turns out that these methods are numerically unstable and infeasible
for large systems of equations (high degree, many variables). More recent algorithms are based on
border bases [19, 23, 20]. Essentially, they fix a basis O for C[x]/I and construct the multiplication
matrices of the coordinate functions by calculating the normal forms of x1 · O, . . . , xn · O with
respect to O. Border bases are a generalization of Groebner bases and they can be used to enhance
the numerical stability of normal form algorithms. However, there are no algorithms that make a
choice of O based on the conditioning of the normal form computation problem. This is mentioned
as an open problem in [20]. In this paper we present such an algorithm for generic systems that
makes an automatic choice of O, which does not necessarily correspond to a Groebner basis, nor to
a border basis. What is meant by ‘generic systems’ is explained in Section 2. The goal is to cover
the generic, dense case to illustrate the effectiveness of the idea. The connection with resultant
algorithms for dense systems is established. This suggests that the techniques can be generalized
to sparse systems of equations. Such a generalization will follow from the sparse variant of the
Macaulay resultant algorithm, see for instance [12].

In the following section we discuss our genericity assumptions and some properties of the
systems that satisfy them. Section 3 briefly reviews the multiplication maps in C[x]/I and their
properties. We give a short motivation in Section 4 by discussing some aspects of Macaulay’s
resultant construction and border bases algorithms that are generalized in our approach. In Section
5 we introduce a construction that we call Macaulay matrices. Section 6 presents the algorithm
and some connections with border bases and Macaulay resultants. In the final section we present
some numerical experiments.

2 Generic total degree systems

We say that a polynomial f ∈ C[x]\{0} is of degree d if

max
α∈S(f)

|α| = d,
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where |α| = α1 + . . .+ αn. We denote deg(f) = d. Accordingly, we say that a square polynomial
system in n variables given by {f1, . . . , fn} is of degree (d1, . . . , dn) if deg(fi) = di, i = 1, . . . , n. A
polynomial f ∈ C[x]\{0} is called homogeneous of degree d if |α| = d,∀α ∈ S(f).
Consider the projective n-space

Pn = (Cn+1\{0})/ ∼,

where (a0, . . . , an) ∼ (b0, . . . , bn) iff ai = λbi, i = 0, . . . , n, λ ∈ C\{0}. We can interpret Pn as
the union of n + 1 copies of Cn, each of them given by putting one of the coordinates equal to
1. We will also think of Pn as the union of Cn corresponding to x0 = 1 and the set {x0 = 0},
called the hyperplane at infinity. For more on projective space, see [6]. Note that the equation
f = 0 with f ∈ C[x0, . . . , xn] is well defined over Pn if and only if f is homogeneous. Starting
from a polynomial f ∈ C[x] in n variables of degree d, we can obtain a homogeneous polynomial
fh ∈ C[x0, . . . , xn], called the homogenization of f as

fh = xd0f

(
x1
x0
, . . . ,

xn
x0

)
.

The following theorem was proved by Étienne Bézout for the intersection of algebraic plane curves
in P2. The generalization is often referred to as Bézout’s theorem.

Theorem 1 (Bézout). A system of n homogeneous equations of degree (d1, . . . , dn) in n + 1
variables with a finite number of solutions in Pn has exactly d1 · · · dn solutions in Pn, counting
multiplicities.

Proof. The theorem is a corollary of Theorem 7.7 in [16].

It is not difficult to show that for almost all systems with degree (d1, . . . , dn), all d1 · · · dn solu-
tions lie in the overlapping part of the affine charts of Pn [7]. Hence, if the n homogeneous equations
in n + 1 variables of Theorem 1 are the homogenizations of n affine equations f1 = . . . = fn = 0
in n variables, all of the d1 · · · dn solutions correspond to points in Cn ⊂ Pn.

The kind of systems that we consider in this paper are the ones that satisfy the assumption of
Bézout’s theorem. Namely, we assume that the homogenized equations fh1 = . . . = fhn = 0 have
a finite number of solutions in Pn. We denote I = 〈fh1 , . . . , fhn 〉 and V(I) = {x ∈ Pn : fh1 (x) =
. . . = fhn (x) = 0}. Furthermore, we assume that none of the solutions lie on the hyperplane
at infinity. Note that this last assumption is not really restrictive: a random linear change of
projective coordinates will move all of the solutions away from the hyperplane {x0 = 0} with
probability 1.

3 Multiplication in C[x]/I
In this section we briefly review the C-algebra structure of the quotient ring C[x]/I and the
properties of multiplication in this ring. For an extensive treatment one can consult [6, 7, 23, 11].
Consider the following equivalence relation on C[x]:

f ∼ g ⇔ f − g ∈ I.

Now, every polynomial f ∈ C[x] defines a residue class [f ] = f + I with respect to ∼. We call
the polynomial f a representative of the residue class [f ]. The set of all such residue classes is the
quotient ring C[x]/I. Note that [0] = I. One can check that the scalar multiplication and addition
operations

α[f ] = [αf ], [f ] + [g] = [f + g] (1)
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with α ∈ C and f, g ∈ C[x] are well defined. This implies that C[x]/I is a vector space. Moreover,
to show that C[x]/I is a C-algebra, it can be checked that multiplication

[f ] · [g] = [fg]

is well defined. The following theorem allows us to describe these operations on C[x]/I using linear
algebra.

Theorem 2. For a zero-dimensional ideal I, the dimension of C[x]/I as a vector space is equal
to the number of points in V(I) ⊂ Cn, counting multiplicities.

Proof. For the proof of this theorem we refer to [7].

We now consider the map mf : C[x]/I → C[x]/I given by

mf ([g]) = [f ] · [g] = [fg],∀g ∈ C[x].

This map is linear, so once we choose a basisO for C[x]/I, it can be represented by anN×N matrix,
where N is the number of solutions (counting multiplicities). Under our genericity assumptions,
N is the Bézout number: N =

∏n
i=1 di. Once we have fixed a basis of C[x]/I, we will no longer

make a distinction between the map mf and its matrix representation. The matrix representing
multiplication by f is called a multiplication matrix of f . Its eigenstructure has the following
remarkable properties.

Theorem 3. Let I be a zero-dimensional ideal in C[x] and let mf be the multiplication matrix of
f ∈ C[x] with respect to a given basis O = {[b1], . . . , [bN ]} of C[x]/I. Then

det(mf − λI) = (−1)N
∏

z∈V(I)

(λ− f(z))µ(z)

where N = dimC[x]/I, I is the identity matrix of size N × N and µ(z) is the multiplicity of the
root z. Also, the row vector [

b1(z) · · · bN (z)
]

lies in the left eigenspace of the eigenvalue f(z) for each z ∈ V(I)1.

Proof. For the proof, we refer the reader to [7, Chapter 4].

Theorem 3 implies that if we want to compute the coordinates of the solutions z1, . . . , zN , we
can construct the multiplication matrices mx1

, . . . ,mxN
corresponding to the coordinate functions

and compute their eigenvalues. Another possibility is to use the eigenvectors [23, 7]. Note that,
according to Theorem 3, the left eigenvectors do not depend on the choice of f . In fact, neither
do the right ones. By their definition, it is not difficult to see that the multiplication maps must
commute. They form a family of commuting matrices, so they must share common eigenspaces
[23]. We note here that when the set of eigenvectors spans CN (that is, when all solutions are
simple), the matrices mx1

, . . . ,mxn
are simultaneously diagonalizable. We will give an example of

the construction of the multiplication matrices of the coordinate functions in Section 6. To work
out this example, we will need the notion of a normal form.

Definition 1 (Normal form). Let O = {[b1], . . . , [bN ]} be a basis for C[x]/I. Given any polynomial
g ∈ C[x], let

[g] = a1[b1] + . . .+ aN [bN ] = [a1b1 + . . .+ aNbN ], ai ∈ C

be the unique representation of [g] in the basis O. We say that a1b1 + . . . + aNbN is the normal
form of g w.r.t. O. We denote gO = a1b1 + . . .+ aNbN .

1Note that in general #V(I) ≤ N where equality only holds if all solutions are simple.
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Note that for any g ∈ C[x], if the basis elements [bi] are given by monomials: [bi] = [xαi ], we

have that S(gO) ⊂ {α1, . . . , αN}. In general S(gO) ⊂
⋃N
i=1 S(bi). The results in this section show

that normal form algorithms for generic systems can be divided into two major parts.

1. Compute the multiplication operators mxi
, i = 1, . . . , n.

2. Perform a simultaneous diagonalization of the mxi
to find the solutions or find the solutions

via the eigenvectors of the mxi
.

In this paper, we focus on making improvements in the first step. The proposed algorithm will
choose a basis O for C[x]/I such that the multiplication operators can be computed, heuristically,
as accurately as possible.

4 Motivation

The normal form method presented in this paper is closely related to border basis algorithms
and to multipolynomial Macaulay resultants. We briefly review some of their properties that are
exploited or generalized in our algorithm. For more details on border bases we refer to [19, 11],
and for multipolynomial resultants to [7].

4.1 Macaulay resultant matrices

Consider the system of homogenized equations fh1 = . . . = fhn = 0 coming from I = 〈f1, . . . , fn〉.
As discussed in Section 2, the expected number of solutions in Pn is finite and equal to Bézout’s
number. If we add a generic homogeneous equation fh0 = 0 to the system, then generically
the system has no solutions. The resultant Res(fh0 , . . . , f

h
n ) is a homogeneous polynomial in the

coefficients of the fhi that vanishes if and only if the system fh0 = . . . = fhn = 0 has a solution in
Pn. A resultant matrix M0 is a matrix such that det(M0) is a nonzero multiple of the resultant
polynomial. Several constructions of resultant matrices have been introduced [11, 7, 5]. The one
that is related in the most direct way to the algorithm presented in this paper is a generalization
of the Sylvester matrix of two univariate polynomials to the multivariate case, also called the
multipolynomial Macaulay resultant matrix [7]. The rows in this matrix correspond to monomial
multiples of the input equations, whereas its columns correspond to monomials, such that the
coefficient of the polynomial corresponding to the j-th row coupled to the i-th monomial is the
(j, i) entry of the matrix. We denote this matrix by M0. Let fh0 be a generic linear form and let
M0 be the Macaulay resultant matrix associated to fh0 , f

h
1 , . . . , f

h
n . We view it as a block matrix

M0 =

[
M00 M01

M10 M11

]
,

such that the first block row [M00 M01] contains the multiples of fh0 by the set of monomials

OM = {xα1
1 xα2

2 · · ·xαn
n : 0 ≤ αi ≤ di − 1, 1 ≤ i ≤ n} (2)

and the second block row contains the monomial multiples of the other fhi . Furthermore, we

assume that the columns are ordered in such a way that the first block column

[
M00

M10

]
corresponds

to the monomials in OM . In [7, Chapter 3] it is shown that, with our genericity assumptions,
we have that the Schur complement mf0 = M00 − M10M

−1
11 M01 represents multiplication by

f0 = fh0 (1, x1, . . . , xn) in C[x]/I in the basis OM . Macaulay [18] showed that generically, M11 is
invertible and hence it is possible to compute this Schur complement. One could, for instance,
use fh0 = xi to find mxi

in this way and find the solutions of I by using the results in Section 3.
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This leads to a well known eigenvalue-eigenvector method for solving generic dense systems, based
on resultants. However, when computations are performed in finite precision, the accuracy of the
resulting matrix mf0 depends on the condition number of the inversion of M11. That is, the ‘more
invertible’ M11 is, the more accurate the operator mf0 can be obtained from this matrix, hence the
more accurate we can compute its eigenstructure to find the points defined by I. The algorithm
proposed in this paper somehow chooses the partitioning of M0 in an adaptive way, such that M11

is well conditioned and the Schur complement still gives the multiplication map.

4.2 Border bases

Groebner bases and Buchberger’s algorithm to compute them provide an algorithmic, algebraic
way to compute the solutions of a system of polynomial equations [6, 4, 13]. They can be used to
compute normal forms in a basis for C[x]/I induced by a monomial order. A major drawback is that
for large problems, Groebner bases are not feasible in finite precision, since the computations are
unstable. Border bases have been developed as a generalization of Groebner bases to represent the
quotient algebra C[x]/I [21, 22, 19]. With respect to Groebner bases, they enhance the numerical
stability due to a more flexible choice of monomial bases for C[x]/I and they are also more robust
(the border basis remains a basis for small perturbations of the coefficients) [20]. A border basis
O has the property that it is connected to 1. This means that 1 ∈ span(O) and and, for any
g ∈ span(O) there are g1, . . . , gn ∈ span(O) such that

g =

n∑
i=1

xigi.

The border basis criterion for normal form algorithms is given by the following theorem [19].

Theorem 4. Let B = span(O) ⊂ C[x] be such that O is connected to 1. Let N : B∪(
⋃n
i=1 xi ·B)→

B be a C-linear map such that it is the identity restricted to B. Let I = 〈kerN〉 be the ideal
generated by the kernel of N . Defining Mi : B → B : b 7→ N(xib), the following properties are
equivalent:

1. Mi ◦Mj = Mj ◦Mi,

2. C[x] = B ⊕ I.

From C[x] = C[x]/I ⊕ I it follows that when the Mi from Theorem 4 commute, B ' C[x]/I
as C-algebras and Mi represents multiplication with xi modulo I since I = 〈ker(N)〉. Therefore,
a basis O must not be induced by a monomial order. It is sufficient that O is connected to 1 and
there is a map N with the right properties: its kernel generates I and the maps Mi are pairwise
commuting. Note that the basis OM from (2) is connected to 1. We will show in Section 7 that
this basis can still show bad numerical behaviour. In this paper we propose an algorithmic choice
of basis that does not necessarily have the connected to 1 property. In border basis algorithms,
the basis O is fixed beforehand. This has the advantage that the algorithm can be adapted to
this specific basis to reduce the computational cost. However, the choice of basis can influence
the accuracy dramatically, as we will show in Section 7. As specified in the following sections, the
algorithm presented in this paper starts from a set of candidate monomials (which we will denote
later by S(M)<t) from which we will select the monomials in O. This set is quite large, and to
choose the basis O the algorithm uses numerical linear algebra techniques on a matrix called the
Macaulay matrix, very similar to Macaulay’s resultant construction.
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5 Macaulay matrices

A Macaulay matrix associated to the set of polynomials {f1, . . . , fn} ⊂ C[x] is a matrix over C
in which each column corresponds to a monomial xα, α ∈ Zn≥0. Furthermore, such a Macaulay
matrix has n block rows, each of which corresponds to one of the polynomials in the set. The j-th
row of the i-th block row is the vector representation of a polynomial xβijfi ∈ I, βij ∈ Zn≥0 in the
basis {xα} of monomials corresponding to the columns. For example, denote R = C[x] and for an
ideal J ⊂ R, we denote by J≤t the elements in J of degree ≤ t. Let di = deg(fi). For t ≥ maxi di,
consider the linear map

n⊕
i=1

R≤t−di −→ I≤t,

(a1, . . . , an) −→ a1f1 + · · ·+ anfn.

The transpose of the matrix representation of this map with respect to the standard monomial
basis of R≤t is a Macaulay matrix. We will call such a Macaulay matrix a dense Macaulay matrix.
We clarify this by means of an example.

Example 1. Let I = 〈f1, f2〉 ⊂ C[x1, x2] be generated by f1 = a+bx1+cx2 and f2 = d+ex1+fx2+
gx21 + hx1x2 + jx22 with a, . . . , j ∈ C. It is clear that I≤2 is a subset of R≤2 = C[x1, x2]≤2 which is
spanned as a C-vector space by 1, x1, x2, x

2
1, x1x2, x

2
2. Using this basis to represent elements of I≤2

and R≤1 ⊕R≤0 = span(1, x1, x2)⊕ span(1) we get the transpose of the matrix

M =


1 x1 x2 x2

1 x1x2 x2
2

f1 a b c
x1f1 a b c
x2f1 a b c
f2 d e f g h j


for the matrix representation of

R≤1 ⊕R≤0 −→ I≤2,

(a1, a2) −→ a1f1 + a2f2.

The matrix M is clearly a Macaulay matrix.

By the support of M , we mean the set of exponent vectors

S(M) = {α ∈ Zn≥0 : xα corresponds to a column of M}.

To describe the row content of M , we define the sets

Σi(M) = {βij ∈ Zn≥0 : xβijfi corresponds to a row of the i-th block row of M}.

The set Σi is also called the set of shifts of fi. Note that, given the polynomials fi, M is defined
up to row and column permutations by S(M) and Σi(M), 1 ≤ i ≤ n and in order to be feasible,
these sets must satisfy

S(xβijfi) ⊂ S(M),∀βij ∈ Σi(M), 1 ≤ i ≤ n.

Example 2. In the previous example, we have S(M) = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)},
Σ1(M) = {(0, 0), (1, 0), (0, 1)}, Σ2(M) = {(0, 0)}.

A Macaulay matrix of this type has a natural homogeneous interpretation. We show this by
continuing the previous example.

7



Example 3. Homogenizing the equations we get fh1 = ax0 + bx1 + cx2 and fh2 = dx20 + ex0x1 +
fx0x2 + gx21 + hx1x2 + jx22, where the superscript h indicates the homogenization and it should
not be confused with the coefficient h ∈ C of the monomial x1x2 in f2. We denote I = 〈fh1 , fh2 〉 ⊂
C[x0, x1, x2]. Now, one can verify that M is also the Macaulay matrix of {fh1 , fh2 } with

Sh(M) = {(2, 0, 0), (1, 1, 0), (1, 0, 1), (0, 2, 0), (0, 1, 1), (0, 0, 2)} ⊂ Z3,

Σh1 (M) = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, Σh2 (M) = {(0, 0, 0)}. It is clear how this can be generalized
to any dense Macaulay matrix: if the associated map has image in I≤t, homogenize the exponent
vectors in S(M) to degree t in Zn+1

≥0 and the exponent vectors in Σi(M) to degree t − di. The

associated linear map is given as follows. Denoting Rh = C[x0, x1, . . . , xn] and the degree t part of
a graded Rh-module A by At (the grading is induced by the standard grading on Rh), M represents
the map

n⊕
i=1

Rht−di −→ It,

(a1, . . . , an) −→ a1f
h
1 + · · ·+ anf

h
n .

This map is surjective.

Macaulay matrices are used to give determinantal formulations of resultants [7] and to solve
systems of polynomial equations [7, 9, 3]. They form a natural first step in reformulating the root
finding problem as a linear algebra problem. The following theorem is straightforward [9].

Theorem 5. Let S(M) = {α1, . . . , αl} be the support of a Macaulay matrix M of {f1, . . . , fn},
where αi corresponds to the i-th column of M . Let I = 〈f1, . . . , fn〉. The point z ∈ Cn satisfies
z ∈ V(I) if and only if the vector

v(z) = (xα1(z), . . . , xαl(z))>

satisfies Mv(z) = 0.

It is clear that Theorem 5 generalizes to the projective interpretation of M .

Theorem 6. Let Sh(M) = {αh1 , . . . , αhl } be the support of a (homogeneously interpreted) Macaulay
matrix M of {fh1 , . . . , fhn}, where αhi corresponds to the i-th column of M . Denote I = 〈fh1 , . . . , fhn 〉.
The point zh ∈ Pn satisfies zh ∈ V(I) if and only if the point

v(zh) = (xα
h
1 (zh), . . . , xα

h
l (zh))>,

viewed as a point in Pl−1, satisfies Mv(zh) = 0 (note that here x = (x0, x1, . . . , xn) is short for an
n+ 1-tuple). This condition is well defined, since v(λzh) = λtv(zh), λ ∈ C\{0} and t = |αhi |.

Theorem 6 implies that every point zh ∈ V(I) ⊂ Pn generates a direction v(zh) in the nullspace
of M . We will now present a way to construct the dense Macaulay matrix such that its null space is
spanned by these directions. In the Macaulay matrix M with support S(M) = {α ∈ Zn≥0 : |α| ≤ t},
the number of columns is

#S(M) =

(
t+ n
n

)
.

Consider the shifts
Σi(M) = {β ∈ Zn≥0 : |β| ≤ t− di}.

It is clear that the resulting matrix M is the dense Macaulay matrix of degree t.
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Theorem 7. Under our genericity assumptions, for M constructed as above with t ≥
∑n
i=1 di−n,

we have dim null(M) = N . Equivalently, for these values of t: #S(M)−N = rank(M).

Proof. This result was known by Macaulay [18]. The degree t =
∑n
i=1 di − n is called the degree

of regularity in [3, 9].

In fact, we have by construction that for the Macaulay matrix of degree t, dim null(M) is the
codimension of It in Rht , which is the dimension of (Rh/I)t as a C-vector space. This is the Hilbert
function of I evaluated at t [7, 10]. Since I defines points in Pn by assumption, the Hilbert function
becomes constant for large t and Theorem 7 implies that this happens at t =

∑n
i=1 di − n. In the

algorithm, we will also rely on the following theorem.

Theorem 8. For t ≥
∑n
i=1 di − (n− 1) we have that(

t− 1 + n
n

)
≥ N,

with N =
∏n
i=1 di.

Proof. The number

(
t− 1 + n

n

)
is the number of monomials of degree at most t−1 =

∑n
i=1 di−n.

The number N =
∏n
i=1 di is the number of monomials in the set {α ∈ Zn≥0 : αi ≤ di − 1, i =

1, . . . , n}. The highest degree monomial in this set has degree
∑n
i=1 di − n.

It will become clear later that the properties of M given in Theorem 7 and Theorem 8 are
exactly the properties we need in our algorithm. We also want M to be as small as possible to
reduce memory use and computational effort. We therefore set t =

∑n
i=1 di − (n− 1).

6 Normal form computation using the Macaulay matrix

In this section, we propose a new normal form algorithm for computing the mxi
for a generic dense

system as described in Section 2.

6.1 An example

We introduce the ideas of our algorithm by a simple example. Consider the ideal I = 〈f1, f2〉 ⊂
C[x1, x2] given by f1(x1, x2) = x21 + x22 − 2 = 0, f2(x1, x2) = 3x21 − x22 − 2 = 0. We will use
linear combinations of f1, xf1, yf1, f2, xf2, yf2 to find the normal forms. The variety V(I) =
{(−1,−1), (−1, 1), (1,−1), (1, 1)} is 0-dimensional and the system satisfies the genericity assump-
tions. A possible basis for C[x1, x2]/I is O = {[1], [x1], [x2], [x1x2]}. We construct the dense

Macaulay matrix M of degree t =
∑2
i=1 di − (n − 1) = 3 as presented in Section 5, ordering the

columns such that these monomials correspond to the last four columns:

M =



x3
1 x2

1x2 x1x
2
2 x3

2 x2
1 x2

2 1 x1 x2 x1x2

f1 1 1 −2
x1f1 1 1 −2
x2f1 1 1 −2
f2 3 −1 −2
x1f2 3 −1 −2
x2f2 3 −1 −2

.
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To construct the multiplication maps mx1
and mx2

with respect to O, we need to calculate the
normal forms of x21, x

2
1x2, x

2
2, x1x

2
2 in O. All of these monomials appear in the left block column of

M . Inverting this column block and applying it from the left to M gives

M̃ =



x3
1 x2

1x2 x1x
2
2 x3

2 x2
1 x2

2 1 x1 x2 x1x2

x3
1−x1 1 −1

x2
1x2−x2 1 −1
x1x

2
2−x1 1 −1

x3
2−x2 1 −1
x2
1−1 1 −1
x2
2−1 1 −1

.

Note that the left block was square because of the properties of the dense Macaulay matrix. The
rows of M̃ are linear combinations of the rows of M , so they represent polynomials in I. Hence,
for example, [x21 − 1] = [0] modulo I and the normal form of x21 is 1. Using the information in M̃
we can construct mx1

and mx2
. This gives

mx1 =


[x1]·[1] [x1]·[x1] [x1]·[x2] [x1]·[x1x2]

[1] 0 1 0 0
[x1] 1 0 0 0
[x2] 0 0 0 1

[x1x2] 0 0 1 0

,

mx2
=


[x2]·[1] [x2]·[x1] [x2]·[x2] [x2]·[x1x2]

[1] 0 0 1 0
[x1] 0 0 0 1
[x2] 1 0 0 0

[x1x2] 0 1 0 0

.
Note that the first and the third column of mx1

are trivial and so are the first and the second
column of mx2 . The other columns can be read off M̃ directly. The eigenvalues of mxi coincide
with the i-th coordinates of the points in V(I).

6.2 The monomial basis

When choosing the basis O, we must take into account that O cannot contain monomials of degree
t (3 in the previous example). Otherwise, multiplying with x1 or x2 gives a monomial that is not
in S(M). Secondly, it must be such that the resulting system is solvable. In the generic case, there
is always such a choice. We consider the Macaulay matrix M of degree t =

∑n
i=1 di − (n − 1).

By S(M)t we denote the monomials in S(M) of degree t =
∑n
i=1 di − n + 1 and by S(M)<t the

remaining monomials. We order the columns of the Macaulay matrix in such a way that

M =
[
Mb Mi B

]
where Mb are the columns corresponding to S(M)t, B contains the columns corresponding to
O and Mi corresponds to S(M)<t\O. When the polynomials f1, . . . , fn are generic, the set of
monomials

OM = {xα1
1 xα2

2 · · ·xαn
n : 0 ≤ αi ≤ di − 1, 1 ≤ i ≤ n} ⊂ S(M)≤t (3)

is a basis for C[x]/I [7] (this is exactly the basis used in the Macaulay resultant construction, as
introduced in Section 4). This means that every monomial in S(M)\OM has a unique normal
form in OM . In other words, there is a unique polynomial of the form

gα = xα −
∑
b∈OM

cαbb ∈ I (4)

10



with cαb ∈ C, for each α ∈ S(M)\OM . Also, it follows from Property (iii) in [5, Chapter 1, p.46]
and from our assumptions that for t ≥

∑n
i=1 di − (n− 1), the rows of M span I≤t linearly. Now,

since gα ∈ I≤t and the rows of M span I≤t, every gα is a linear combination of the rows of M .
The number of polynomials gα is r = rank(M), so we can apply a square matrix to the left of M
to transform M into 

1 −cα1b1 · · · −cα1bN

1 −cα2b1 · · · −cα2bN

. . .
...

...
1 −cαrb1 · · · −cαrbN

0 0 · · · 0 0 · · · 0
...

...
0 0 · · · 0 0 · · · 0


. (5)

The block row of zeros is introduced by the syzygies in the rows of M2 [10]. This proves the
following theorem.

Theorem 9. The matrix Mb is of full column rank under our assumptions, and there is at least
one possible choice of O for which

[
Mb Mi

]
is of rank r.

However, there are many more choices for O than the ‘block basis’ from (3). From a numerical
point of view, it turns out this is crucial to find the normal forms with high accuracy. The idea is
simple: we choose O in such a way that

[
Mb Mi

]
is ‘as invertible as possible’, i.e., it has a small

condition number.

6.3 Algorithm

We propose to make the choice of basis O by using a QR factorization with optimal column
pivoting on (part of) the Macaulay matrix. This is a well known numerical linear algebra algorithm
to compute an upper triangularization of a column permuted version of a matrix such that the
diagonal elements are, heuristically, as large as possible (in absolute value). See for instance [14].
This leads to Algorithm 1 for the generic dense case. We briefly go through the different steps of
the algorithm.

• Step 2 is obvious. In step 3, we re-arrange the columns of M such that Mb contains the
columns corresponding to S(M)t and M∗ contains all of the other columns. The order
within the block columns is of no importance. We represented this in Algorithm 1 by a
column permutation matrix Pc. At this point, we do not split M∗ into Mi and B as before.
The actual choice of basis is made in step 6.

• In step 4, we compute a QR factorization of the border block Mb, to make this block column
upper triangular in step 5. The matrix R̂b is the square upper triangular part of Rb, it is a
nonsingular matrix. At this point, the lower block row represents polynomials in I of degree
≤ t− 1.

• Step 6 is essential. We perform a QR factorization with optimal column pivoting to the full
lower right block. That is, we do not compute a QR factorization of M̂∗, but of a column
permuted version M̂∗Pi, where Pi is a column permutation matrix. The column permutation
is such that it heuristically selects the ‘linearly most independent’ columns first. In step 7
we apply the corresponding permutation to the entire matrix M and in step 8 we make the

2This occurs only for n ≥ 3, not in the example given here.
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Algorithm 1 Multiplication maps of a dense system

1: procedure MultMatrices(f1, . . . , fn)
2: M ← dense Macaulay matrix of degree

∑n
i=1 di − (n− 1)

3: M ←
[
Mb M∗

]
= MPc

4: Mb = QbRb

5: M ← Q∗bM =

[
R̂b Z

0 M̂∗

]
6: M̂∗Pi = QiRi

7: M ←M

[
I 0
0 Pi

]
8: M ←

[
I

Q∗i

]
M =

R̂b ZPi
0 R̃i
0 0

 =

R̂b Ẑ1 Ẑ2

0 R̂i Ẑ3

0 0 0


9: M ←

[
R̂b Ẑ1 Ẑ2

0 R̂i Ẑ3

]
10: C ← −

[
R̂b Ẑ1

0 R̂i

]−1 [
Ẑ2

Ẑ3

]
11: for i = 1, . . . , n do
12: Construct mxi

using the normal forms in C.
13: end for
14: return mx1

, . . . ,mxn

15: end procedure

entire matrix upper triangular (R̃i is the upper non-zero block and R̂i is the square upper
triangular part of R̃i). We split the right block column into two block columns such that R̂i
is square. Under our assumptions, R̂i is of full rank. Note that in the result, columns are
still associated to monomials and the rows are polynomials in I. With increasing row index,
the support of these polynomials is contained in a shrinking subset of S(M). Note that in
this step, the syzygies introduce a block row of zeros in M . We drop this block row of zeros
in step 9. Denoting r = rank(M), the remaining matrix M is of size r × (N + r) by the
results of Section 5.

• In step 10, we take out the leftmost r × r upper triangular block and apply its inverse to
the right most r ×N part with opposite sign to find the normal forms of all the monomials
corresponding to the first r columns. Of course, we do not calculate the inverse, but apply
backsubstitution instead. It is the condition number of this inversion that is controlled by
the optimal column pivoting in step 6.

6.4 Connection with resultants and border bases

To show the relation with the Macaulay resultant construction we assume that OM from (3) is
a basis for C[x]/I. Note that the row space of M is equal to the row space of the second block
row of M0, denoted by [M10 M11] in Section 4. It is isomorphic to the subvector space It (the
degree t part) of I. The resultant construction uses monomial multiples of the input equations that
generically generate this subspace. Our construction uses all of the possible monomial multiples,
which leads to more computational effort since we need to perform a row compression (step 8),
but we observe numerically that the computed basis of the row space after this compression (first
two block rows of M in step 8) has larger singular values.

12



Suppose that in steps 6, 7 we choose the basis OM from (3) instead of performing the QR
factorization with pivoting. We can apply an invertible transformation to M in step 9 on the left
such that it becomes equal to [M10 M11] up to column permutation. In fact, by construction,

M11 corresponds to the square, invertible, upper triangular part

[
R̂b Ẑ1

0 R̂i

]
of M , since the basis

monomials correspond to M10 and

[
Ẑ2

Ẑ3

]
. Choosing another basis O yields another matrix M11. As

long as it remains invertible and the multiples O·f0 are supported in S(M), mf0 can be computed
as the Schur complement given in Section 4 by concatenating the shifts of f0 (corresponding to
[M00 M01]) to M in step 9 and rearranging the blocks such that the lower right one is occupied by[
R̂b Ẑ1

0 R̂i

]
. In fact, for any column permutation that gives a full rank

[
R̂b Ẑ1

0 R̂i

]
, we can bring M

into the form (5) and it is clear that

C#S(M) ' Rht = It ⊕ span(Oh)

with Rh = C[x0, x1, . . . , xn] and Oh contains the homogenized monomials in O (they are homoge-
nized to degree t). Also, Rht = It ⊕ (Rh/I)t so

span(O) ' span(Oh) ' span(OM ) ' (R/I)t ' C[x]/I.

These are isomorphisms of C-vector spaces. The first one is given by homogenization and the last
isomorphism follows from the genericity assumptions and the fact that the Hilbert polynomial sta-
bilizes at regularity [10]. The isomorphism span(O) ' span(OM ) is given by an invertible ‘change
of basis’ matrix constructed as follows. The basis transformation OM → O is a matrix with
columns equal to the normal forms of OM in O. Call this matrix T . Then the multiplication maps
mxi

in O give multiplication maps m′xi
in OM , given by m′xi

= T−1mxi
T . This transformation

makes span(O) ' span(OM ) ' C[x]/I isomorphisms of C-algebras.

To show the connection with border bases, we will also work with OM for simplicity. Any other
border basis will do. Suppose we choose the basis OM in steps 6, 7 to compute m′x1

, . . . ,m′xn
in

this basis. Note that this basis is connected to 1. Set B = span(OM ) and consider the C-linear
map

N : B ∪

(
n⋃
i=1

xi ·B

)
−→ B,

b 7−→

{
b b ∈ B
m′b(1) b /∈ B

where m′b = b(m′x1
, . . . ,m′xn

). We show that I = 〈ker(N)〉. Since m′xi
represents multiplication

with xi modulo I, m′b represents multiplication with b modulo I and we have that ker(N) ⊂ I
and hence 〈ker(N)〉 ⊂ I. Let K = (

⋃n
i=1 xi · OM )\OM and let gα be the polynomial (4) for

every xα ∈ K. Note that ker(N) = span(gα, α ∈ K) ⊂ I. Any polynomial f ∈ C[x] can be

written as f =
∑
α∈K cαgα + f

OM
with cα ∈ C[x] using a division algorithm as described in

Chapter 4 of [5]. Since OM is a (border) basis for C[x]/I, f
OM

= 0 when f ∈ I. Therefore
I ⊂ 〈gα, α ∈ K〉 = 〈ker(N)〉 ⊂ I so I = 〈gα, α ∈ K〉 = 〈ker(N)〉. It follows from Theorem 4 that
Mi(b) = N(xib) = m′xi

(b) represents multiplication with xi in the basis OM for C[x]/I and the
m′xi

commute. For any other basis O with transformation matrix T : OM → O, commutativity of
the resulting mxi

follows from the relation mxi
= Tm′xi

T−1.
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Figure 1: Left: zero level lines in R2 of two bivariate polynomials of degree 7 ( ) and 6 ( )
together with the real solutions ( ). Right: The surface f(x1, x2) = −(x21 + x22) + 0.1xy + 15 and
the real eigenvalues of mf .

7 Numerical experiments

In this section, we use Algorithm 1 for some numerical experiments and compare it to Bertini [1, 2]
and PHClab [15].

7.1 Evaluating a polynomial function on V(I)
Theorem 3 implies that we can evaluate a function f ∈ C[x] on V(I) by calculating the eigenvalues
of mf = f(mx1 , . . . ,mxn). Note that this expression for mf is well defined because of the com-
mutativity of the mxi . Algorithm 1 can be used if I satisfies the assumptions made in this paper.
As a test of correctness, we have evaluated the quadric f(x1, x2) = −(x21 + x22) + 0.1xy + 15 on
the variety defined by two bivariate polynomials of degree 7 and 6, shown in Figure 1. For the
computed multiplication matrices, we compute

‖mx1
mx2
−mx2

mx1
‖2

‖mx1
mx2
‖2

= 5.5552 · 10−13.

This shows that the multiplication matrices commute (up to 13 digits of accuracy).

7.2 Solving generic systems

We now use the obtained multiplication maps to compute the solutions V(I) of square systems
of polynomial equations in the following way. We perform a simultaneous diagonalization of the
identity matrix together with the n multiplication maps mxi . For this, we use the method cpd gevd

in Tensorlab [25, 17, 8]. We compare the results (accuracy and computation time) with the
homotopy solvers BertiniLab [2] and PHClab [15]. To obtain the results, we used Matlab and we
generated generic polynomials f in the following way. We fix a Newton polytope P of f and to
every point in P ∩ Zn≥0 we assign a real number drawn from a normal distribution with µ = 0
and σ = 1 (using the randn command in Matlab). These numbers are the coefficients of the
monomials in S(f). To measure the accuracy of the resulting multiplication matrices, we calculate
the condition number of the matrix inverted in step 10 of Algorithm 1. The accuracy of a solution
z of a square system f1 = . . . = fn = 0 is measured by the residual.
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Definition 2. Given a square system of polynomial equations f1 = . . . = fn = 0 with f1, . . . , fn ∈
C[x] and a point z ∈ Cn. The residual r of z is defined as

ri =
|fi(z)|

fi,abs(zabs) + 1
, r =

1

n

n∑
i=1

ri,

where | · | denotes the absolute value, fi,abs is fi where the coefficients cα,i of fi are replaced by
their absolute values and zabs is the point in Cn obtained by taking the absolute values of all the
components of z.

The term +1 in the denominator of the ri makes it clear that we are using a mixed relative
and absolute criterion, to take into account the possibility that fi,abs(zabs) = 0.

We first investigate the influence of the automated choice of basis made in our algorithm. We
compare it to the fixed choice of the block basis given in (3). This is the basis that is used (im-
plicitly) in root finding using u-resultants [7, Chapter 3]. We first check that it is not just the
block basis itself that comes out of our algorithm. We generated two random dense polynomials
f1, f2 ∈ C[x1, x2] of degree d1 = d2 = 10. The support of the associated dense Macaulay matrix
M is all monomials of degree up to d1 + d2 − 1 = 19. The basis O should count 100 elements
(Theorem 1). Figure 2 shows that, indeed, the choice of basis is significantly different. Note also
that the resulting basis does not have the connected to 1 property.
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Figure 2: Left: the block basis O given in (3). Right: the basis O chosen by Algorithm 1. Black
circles indicate the support S(M) of the Macaulay matrix.

We now check the accuracy of the multiplication matrices by computing the condition number
of the coefficient matrix inverted in step 10. For a condition number of order 10l, we expect to
loose l accurate digits w.r.t. the machine precision. Figure 3 shows the results for bivariate systems
of increasing degree3 up to 20. By using the QR decomposition with optimal column pivoting the
condition number is controlled and it gets no larger than ±104. With our machine precision of
order 10−16 (double precision), this means that the forward error on the multiplication matrices is
of order 10−12. For the same set of generic bivariate systems of degree 1 up to 20 we also calculated
the maximal residual of all of the calculated solutions. This is shown in the right part of Figure 3.
One can expect that more accurate multiplication maps lead to more accurate solutions, which is
confirmed by the figure. For degrees higher than 15, the solutions obtained using the block basis no

3By degree d we mean here that both polynomials f1 and f2 are generic of degree d.
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longer made sense. The results are avaraged out over 20 experiments. These results clearly show
that a numerically justified choice of basis is crucial for the feasibility of normal form algorithms
to compute multiplication matrices.

5 10 15 20
101

107

1013

1019

degree

Condition number

5 10 15 20
10−17

10−12

10−7

10−2

degree

residual

Figure 3: Left: condition number for the computation of the multiplication matrices with block
basis ( ) and smart choice of basis ( ) for bivariate systems of increasing degree. Right:
Maximal residual with the block basis ( ) and the QR choice of basis ( ) for the same
systems.

In the following, we only work with the automated choice of basis. Some results for dense
systems with more variables are shown in Figure 4. The figure shows that even for large systems,
all solutions are found with a small residual. For example, in the case n = 3 with degree 21, there
are 9261 solutions in C3, all found with a residual smaller than 10−10. We also note that the
residual would drop to machine precision after one ‘refining’ iteration of Newton’s method.

As for the computation time, the figure shows that the method is very sensitive to the number
of variables (it suffers from the ‘curse of dimensionality’). The asymptotic complexity is O(d3n),
where d is the degree. Intuitively, we find the coordinates of the dn solutions as eigenvalues and
the cost of the algorithm is the number of eigenvalues cubed.

We compare our method to the Matlab interfaces of the homotopy continuation packages Bertini
[2] and PHCpack [15]4. The results are shown in Figure 5. The figure confirms that the complexity
of our method grows drastically with n. For n = 2, however, we are slightly faster for degrees
at least up to 25. In all figures, the residuals of our computed solutions are slightly bigger than
the ones from the homotopy methods. This is because these methods intrinsically make use of
Newton-Raphson refinement. One Newton sweep over our solutions would lead to a residual of
order machine precision as well, because of the quadratic convergence property. An important
remark is that continuation methods do not return all solutions in all cases. The methods might
give up on certain paths along the way if the algorithm decides that the path seems to be diverging
to infinity or if it crosses an ill-conditioned region. For n = 2 and degree 20, PHClab returns 398
solutions (2 solutions are lost) within slightly less than 4 seconds. For n = 2, degree 40, it takes
57 seconds to find 1575 out of the 1600 solutions. Using Bertini with double precision arithmetic
[1], we find all solutions for n = 2, degree 20 within 12 seconds and 1587 out of 1600 solutions for
n = 2, degree 40 within 350 seconds.

4We used default settings for both solvers.
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Figure 4: Maximal residual and computation times for systems of increasing degree with n =
2, . . . , 8.

8 Conclusion and future work

We have presented a first normal form algorithm for zero-dimensional ideals coming from square
polynomial systems that makes an automated, numerically justified choice of monomial basis for
C[x]/I under certain genericity assumptions on I. Our numerical experiments show that this choice
of basis makes it possible to perform the normal form computation in finite precision, while it can
go terribly wrong by manually choosing a basis. Some ideas for future work are:

• Relaxing the genericity assumptions. What if the polynomials f1, . . . , fn are sparse?

• Solutions at infinity lead to linear dependencies in the columns of Mb, but it also causes the
dimension of C[x]/I to drop. This can be incorporated in the algorithm.

• For multiple solutions of a square polynomial system, the canonical polyadic decomposition
does not work. The coupling between the different coordinates can be made by using the left
eigenvectors of the multiplication maps.

• The implementation is done in Matlab and a lot of computation time is spent on the con-
struction of the Macaulay matrix M . We believe that an implementation in Julia, C(++),
Fortran, . . . could be a significant improvement.

• Taking all possible monomial multiples of the input equations to construct M leads to a
number of redundant rows. This number becomes large very quickly when the number of
variables increases. To reduce the computational cost and to enhance the performance for a
larger number of variables, only a selection of the monomial multiples can be used. In doing
so, a trade-off between speed and accuracy should be taken into account.
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Figure 5: Comparison of the results for PHClab ( ), BertiniLab ( ) and our method ( )
for n = 2, 3, 4, 5.
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