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ABSTRACT
Adult T-cell leukemia (ATL) is an aggressive, chemotherapy-resistant CD4CCD25C leukemia caused by
HTLV-1 infection, which usually develops in a minority of patients several decades after infection. IFN C
AZT combination therapy has shown clinical benefit in ATL, although its mechanism of action remains
unclear. We have previously shown that an IFN-responsive FAS promoter polymorphism in a STAT1
binding site (rs1800682) is associated to ATL susceptibility and survival. Recently, CD4 T stem cell memory
(TSCM) Fas

hi cells have been identified as the hierarchical cellular apex of ATL, but a possible link between
FAS, apoptosis, proliferation and IFN response in ATL has not been studied.

In this study, we found significant ex vivo antiproliferative, antiviral and immunomodulatory effects of
IFN-a treatment in short-term culture of primary mononuclear cells from ATL patients (n D 25). Bayesian
Network analysis allowed us to integrate ex vivo IFN-a response with clinical, genetic and immunological
data from ATL patients, thereby revealing a central role for FAS -670 polymorphism and apoptosis in the
coordinated mechanism of action of IFN-a. FAS genotype-dependence of IFN-induced apoptosis was
experimentally validated in an independent cohort of healthy controls (n D 20). The same FAS -670
polymorphism also determined CD4 TSCM levels in a genome-wide twin study (p D 7 £ 10¡11, n D 460),
confirming a genetic link between apoptosis and TSCM levels. Transcriptomic analysis and cell type
deconvolution confirmed the FAS genotype/TSCM link and IFN-a-induced downregulation of CD4 TSCM-
specific genes in ATL patient cells.

In conclusion, ex vivo IFN-a treatment exerts a pleiotropic effect on primary ATL cells, with a genetic
IFN/STAT1/Fas axis determining apoptosis vs. proliferation and underscoring the CD4 TSCM model of ATL
leukemogenesis.
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Introduction

Adult T-cell leukemia (ATL) is characterized by circulating
CD4CCD25C T-cells1 and is etiologically linked to infection
with Human T-cell Leukemia Virus 1 (HTLV-1), the first iso-
lated human pathogenic retrovirus.2 The estimated lifetime
risk is about 5% in infected individuals,3 with a long incubation
period after HTLV-1 infection, therefore infection early in life
is fundamental in the development of ATL.4 ATL is classified
according to clinical and laboratory criteria as smoldering,
chronic, lymphoma, or acute subtypes.5 The median survival
time for acute and lymphoma (aggressive) subtypes is less than
one year, whereas patients with chronic and smoldering

(indolent) subtypes survive longer.6 In addition, an atypical
aggressive, primary cutaneous tumoral form (PCT) of ATL
with a shorter survival has been described.7 The exceptional
oncogenicity of HTLV-1, as compared to other viruses or
infectious agents,8 or even to its closest relative HTLV-2,9, is
most likely due to its ability to deregulate several host cell sig-
naling pathways. In sharp contrast to HIV, plasma viral load
for HTLV-1 is mostly undetectable and proviral replication is
driven by spontaneous lymphoproliferation (reviewed in3),
which implies that ATL might be explained mainly by host fac-
tors such as immune response and host genetics.

Regarding host immune response, interleukin 2 (IL-2) pro-
motes proliferation of IL-2 receptor-positive (IL-2RC/CD25C) T-
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cells. Membrane-bound CD25 is present on all activated T-cells as
well as malignant T-cells infected by HTLV-1. Serum levels of IL-
2R/CD25 positively correlate with circulating ATL cells
(CD4CCD25C) and disease severity.10 In addition, systemic IL-6
levels correlate with aggressive clinical forms and short survival.11

Regarding host genetics, FAS (TNFRSF6/Apo-1/CD95)
and TP53 polymorphisms have been associated to ATL dis-
ease progression.12,13 In addition, FAS mutations have been
demonstrated in ATL14,15 as well as in other leukemias.16 The
FAS -670 A/G polymorphism is situated in a STAT1 binding
site, for which the A allele has a higher binding affinity.17,18

We have previously shown that the A allele corresponds to
increased IFN-induced Fas mRNA, and is significantly over-
represented in ATL patients, as compared to healthy controls
or HTLV-1-infected asymptomatic individuals.12 In addition,
ATL patients with the AA genotype were significantly more
likely to develop aggressive (acute/lymphoma) clinical
forms.12 Interestingly, a specific subset of Fashi cells has
recently been implicated in ATL leukemogenesis, as CD4 T
stem cell memory (TSCM) cells were identified as its hierarchi-
cal cellular apex.19

A combination of interferon-a (IFN-a) and zidovudine
(AZT) has been found effective in pioneer ATL trials, and was
confirmed by meta-analysis for non-lymphoma subtypes.20-22

In spite of this clinical benefit of IFN-a C AZT combination
therapy in ATL, its mechanisms of action remain elusive. IFN-
a has anti-proliferative, pro-apoptotic, antiviral and immuno-
modulatory activity in many human cells, but limited in vitro,
ex vivo or in vivo data are available in ATL.23 HTLV-1 infected
and/or ATL-derived cell lines are refractory to IFN-a-induced
cell death in the absence or presence of AZT23–25 and to IFN-b
in vitro.26 However, we have recently demonstrated a superior
antiproliferative and pro-apoptotic activity of IFN-b vs. IFN-a
in primary ATL patient cells.27 Moreover, a wealth of studies
has demonstrated both pro- and anti-apoptotic activity of IFN-
a/b in vitro and in vivo,28–33 resulting in an “IFN apoptotic par-
adox” on the effect of type I IFN (IFN-a/b) on programmed
cell death. On the other hand, the clinical benefit of type I IFN
has been convincingly demonstrated in several other leukemias,
such as hairy-cell leukemia, chronic myeloid leukemia as well
as myeloproliferative neoplasms, including essential thrombo-
cytosis, polycythemia vera, and myelofibrosis.34–36

We therefore engaged in a systematic study of IFN-a
response and its possible link to Fas levels, apoptosis, prolif-
eration, viral protein expression and immune activation in
ATL.

Methods

Patient recruitment

This study was approved by the Ethics Review Board of
HUPES, according to the Declaration of Helsinki principles.
All study participants signed informed consent. In this pro-
spective study, consecutive patients were recruited between
2001 and 2005 at “Hospital Universit�ario Professor Edgar
Santos” (HUPES, Salvador-Bahia), according to previously
described inclusion and exclusion criteria.7 Samples were
obtained from 25 patients with clinically definite ATL

(Shimoyama criteria5), with serology, inverted PCR and/or
flow cytometry as described.12,37,38 All ATL patients were
HTLV-1 seropositive and HIV/HTLV-2 seronegative. Stan-
dardized patient treatment was in agreement to a published
international consensus.6 Smoldering ATL forms were left
untreated but under “watchful waiting”, until possible dis-
ease progression, whereas acute/chronic leukemic patients
received IFN-aCAZT combination therapy and lymphoma
patients received chemotherapy. Samples were obtained
before treatment and at least five-year follow-up was avail-
able for each patient. Clinical, demographic and flow
cytometry data of ATL patients are summarized in Table I.
Twenty healthy controls from the same endemic area (sero-
negative for HTLV-1/HTLV-2/HIV) were recruited in
parallel.

Ex vivo IFN-a stimulation

PBMCs from patients and healthy controls were purified from
heparinized venous blood by Ficoll-Hypaque gradient
(Sigma-Aldrich). Cells were plated in 24-well tissue culture
plates (Costar, Corning Incorporated) at 4 £ 106 cells/ml in
RPMI1640 medium with 2mM L-glutamine, gentamycin
(50 mg/ml) and 10% heat-inactivated fetal calf serum (Gibco)
and incubated at 37�C, 5% CO2, for 48h in the presence or
absence of IFN-a2A (1,000 U/ml, Blausiegel Ltda., SP-Brazil).
Cells were immediately processed for bioassays (apoptosis, pro-
liferation), flow cytometry or RNA extraction.

Flow cytometry

PBMC from Brazilian patients and controls were resuspended
at 200,000 cells/50 ml (1% BSA C 0.1% NaN3 in PBS) and incu-
bated for 30 min on ice with antibodies (CD3/CD4/CD25/
CD95) and corresponding isotype controls (BD Biosciences).
Samples were acquired using FACSort (BD Biosciences) and
analyzed using CellQuest software. CD4 TSCM phenotyping
(CD3CCD4CCD8¡CD45RACCD57¡CD95CCD27CCD127
CCD28C) and quantification was performed in the UK
Twin cohort,39,40 using the gating strategy outlined in Figure 1.

FAS genotyping of Brazilian ATL patients and healthy
controls

Genotyping for FAS -670 polymorphism by PCR-restriction
fragment length polymorphism was performed as described.12

Patient genotype distribution (Table I) is in agreement with
our previous findings,12 with the AA genotype being overrepre-
sented in ATL patients (37%), as compared to healthy controls
(10% AA, 30% GA, 60% GG, n D 20).

Combined GWAS and mass flow cytometry study of UK
Twin cohort

This study was approved by the NIAID (NIH) IRB and Lon-
don-Westminster NHS Research Ethics Committee; all partici-
pants provided informed consent. The discovery stage
comprised 497 female participants from the UK Adult Twin
Register, TwinsUK, with full genotyping data on 460 subjects.

e1426423-2 R. KHOURI ET AL.



The TwinsUK cohort is described in detail in.39 GWAS and
immunophenotyping are described in detail in.40

Microarray analysis

Total RNA from PBMCs was extracted according to manu-
facturer’s protocol (RNeasy kit QIAgen, Venlo, Netherlands)
from ATL patients (n D 8, with and without IFN-a treat-
ment). Whole genome microarray was performed at the
VIB Nucleomics Facility (Leuven, Belgium), using the
Human Gene 1.0 ST Array with the WT PLUS reagent kit

(Affymetrix, Santa Clara, CA) according to manufacturer’s
instructions. Data were analyzed as previously described27

and available at the National Center for Biotechnology
Information Gene Expression Omnibus under accession
number GSE85487. Expression data from GSE23321 was
used to recapitulate the differentiation gradient demon-
strated for CD8 TN, TSCM, TCM and TEM cell populations41

through Principal Component Analysis, using the published
278 TSCM-specific genes determined by Gattinoni et al.41

Measurement of cytokine production

Cytokine levels in 48h culture supernatants (kept frozen at
¡80�C immediately after harvesting) were measured using
Cytometric Bead Array Human Th1/Th2 Cytokine (BD Bio-
sciences), following the manufacturer’s instructions.

Quantification of HTLV-1 p19 expression

Viral p19 protein levels24,33 in culture supernatants were mea-
sured using the HTLV-I/II p19 antigen ELISA (ZeptoMetrix),
following the manufacturer’s instructions.

Proliferation assays

PBMCs from ATL patients proliferate spontaneously upon cul-
turing, while in healthy controls, proliferation was induced by

Figure 1. Gating strategy for Tscm cells. CD4 TSCM phenotyping and quantification in the UK Twin cohort39 was performed by consecutive gating on CD3CCD4CCD8¡,
na€ıve (CD45RAC) and CD57¡CD95CCD27CCD127CCD28C lymphocytes.

Table 1. Clinical, demographic and molecular features of ATL patients.

Features Proportion of ATL patients

Clinical forms:
Smoldering 48% (12/25)
Chronic 8% (2/25)
Acute 28% (7/25)
Lymphoma 8% (2/25)
PCT 8% (2/25)

FAS -670 genotype
GG 37% (7/19)
GA 26% (5/19)
AA 37% (7/19)

Gender (Proportion of female) 56% (14/25)
Age at diagnosis (Years) 48 (IQR D 39-61.5) (N D 25)
CD4C(%) 63.88%(IQR D 41.54-83.97) (N D 21)
CD4CCD25C(%) 9.48%(IQRD 2.18-24.01) (N D 20)
Fashi(%) 65.80%(IQR D 34.58-83.59) (N D 22)

ONCOIMMUNOLOGY e1426423-3



anti-CD3 antibody stimulation. Ex vivo IFN- a stimulation
(120h) was as above, except for plating in 96-well U-bottom
plates (200 ml/well at 1 £ 106 cells/ml). Lymphoproliferation
was quantified by [3H]-thymidine incorporation after a 12–16h
pulse (1mCi/well), using gas phase scintillation (Direct Beta
Counter Matrix9600, PerkinElmer Life Sciences). Results are
expressed as the mean counts per minute in triplicate cultures.

Apoptosis assays

Apoptosis was measured by microscopic quantification of
nuclear fragmentation in at least 100 cells (duplicate
Hoechst33432 or hematoxylin/eosin staining), as well as flow
cytometry (annexin V staining), as above.

Bayesian network learning

A Bayesian network (BN) is a probabilistic graphical model that
describes statistical conditional dependencies between multiple
variables. Although originally developed for large pharmacoge-
netic data sets, Bayesian network learning can discover robust
interactions between variables in small datasets.42,43 Dependen-
cies are visualized in a directed acyclic graph and form the
qualitative component of the BN. In this graph, each node cor-
responds to an attribute, and a direct arc between nodes

represents a direct influence. Mathematically, a Bayesian net-
work provides a refractoring of the Joint Probability Distribu-
tion (JPD) of the data, using Bayes’ rules. As a BN simplifies
the JPD, it provides an effective model that summarizes statisti-
cal properties of the data. In this way, the best Bayesian net-
work is searched that explains a maximum of the observed
associations in the data using a minimum number of direct
influences. Bayesian network learning was performed using B-
course software adapted by Deforche et al.44 Herein, we learned
Bayesian networks from observation of continuous attributes
discretized as quartiles (age, proportion of CD4C,
CD4CCD25C, and FasC cells). Gender was discretized as Male/
Female, clinical forms as smoldering, chronic, acute and lym-
phoma/PCT. FAS -670 genotypes were discretized as GG/GA/
AA. All IFN-a responses (proliferation/apoptosis/p19/IL-2/IL-
6/FasL, Fig. 2) were discretized as positive, negative or neutral.
The confidence interval of neutral effect (1§0.19) was deter-
mined based on 80% power to detect a difference between posi-
tive and negative effect for the variable available for the lowest
number of patients (i.e. 12 patients for apoptosis). In this non-
linear model, the arcs (dependency) were scored based on the
stability of the conditional dependency, assessed with a non-
parametric bootstrap (100x replicates).45 All arcs with boot-
strap over 60% were considered and depicted in the consensus
network.

Figure 2. Pleiotropic ex vivo effect of IFN-a in PBMC of ATL patients. PBMC from ATL patients were treated ex vivo with IFN-a (1000 U/ml) and assessed for (A) prolifera-
tion (3H-thymidine incorporation), (B) apoptosis (% of annexin VC cells), (C) virus expression (p19 pg/ml) and (D, E, F) immunomodulation (IL-2, IL-6 and FasL expression,
respectively), as described in Methods. A scatter dot plot of within-patient paired observations connected by lines of control non-treated and ex vivo IFN-a-treated PBMC
(Wilcoxon matched pairs test, �p < 0.05, ��p < 0.01), and their IFN-a response (IFN-a treated/control value) are indicated in each graph. No IFN-a response is indicated
by a dotted line.

e1426423-4 R. KHOURI ET AL.



Statistical analysis

Parametric and non-parametric tests were used according to
Kolmogorov-Smirnov test for normality: Pearson/Spearman
correlation, t-test/Mann-Whitney/Wilcoxon tests, all two-tailed
(GraphPad Prism 5.0 software), differences were considered
significant at p<0.05. To maximize data mining output, out-
liers (Tukey’s test) were included for all univariate and multi-
variate analyses (Fig. 2–6) and were excluded only for post-hoc
testing of the models (Supplementary Fig. S1-S2).

Results

Ex vivo antiproliferative, pro-apoptotic, antiviral
and immunomodulatory effect of IFN-a in PBMC
of ATL patients

Freshly isolated primary cells (PBMC) of ATL patients were
treated ex vivo with or without IFN-a for 48h and possible pro-
apoptotic, anti-proliferative, antiviral and/or immunomodula-
tory activity was quantified (Fig. 2). To take into account strong
inter-patient variation, data were normalized and expressed as
IFN-a response (IFN-a value/control value). IFN-a signifi-
cantly decreased ex vivo lymphoproliferation by a median of
41% (p D 0.027) (Fig. 2A). In contrast, the pro-apoptotic effect
of IFN-a (median 43% increase) did not reach statistical signifi-
cance (p D 0.11), but a large inter-patient variability was
observed (Fig. 2B). As an antiviral readout,24,33 IFN-a signifi-
cantly decreased viral p19 protein levels in cell culture superna-
tants (median 60% decrease, p D 0.0015) (Fig. 2C). The
immunomodulatory effect of IFN-a was examined by measur-
ing Th1/Th2 cytokines in supernatants. No significant

differences were observed for TNF-a, IFN-g, IL-2, IL-4 and IL-
10 production (p > 0.05 for all, data not shown). However, a
median 74% decrease in IL-2 production was observed after
IFN-a treatment in all 3 IL-2 producing patients (Fig. 2D). Fur-
thermore, IFN-a treatment significantly reduced IL-6 levels
(median 99% decrease, p D 0.0039) (Fig. 2E). Fas ligand (FasL)
levels were not significantly increased after IFN-a treatment
(median 24% increase, p D 0.055) (Fig. 2F). To investigate pos-
sible interdependencies between the different biological meas-
ures, correlation between all six measures of IFN-a response
was assessed. In these pairwise comparisons, we found that
IFN-a-induced apoptotic and FasL response were positively
correlated (r D 0.75, p D 0.013). Similarly, IFN-a-induced anti-
proliferative and antiviral activities were also positively corre-
lated (r D 0.77, p D 0.003) (Supplementary Fig. S1A-B).
Together, these results argue for a pleiotropic effect of IFN-a in
primary ATL cells. Therefore, we decided to model the interde-
pendencies between molecular, cellular and clinical data using
a data mining approach.

IFN-a response is dependent on clinical and molecular
variables: A Bayesian Network approach

Clinical, cellular and molecular attributes were included and dis-
cretized as detailed in Methods. Among all 13 attributes, Bayes-
ian network learning discovered several robust interactions: 6
arcs had a bootstrap support over 60% (Fig. 3). The most con-
nected variable was IFN-a-triggered apoptosis, directly linked to
FAS -670 genotype, aggressive ATL, and IFN-a-triggered IL-2
reduction. This confirmed that IFN-a triggered apoptosis does
play a role in the overall mechanism of action of IFN- a, but
that it is heavily dependent on other variables, explaining why it
was not significant in univariate analysis (Fig. 2B). This Bayesian
network suggests that IFN-a-triggered apoptosis is strongly
dependent on FAS -670 genotype and especially so in aggressive
clinical forms of ATL (blue lines in Fig. 3), confirming our ear-
lier findings.12 In addition, IFN-a-triggered IL-6 reduction
depends on the proportion of FasC cells, while IFN-a-induced
FasL levels depend on the proportion of CD4CCD25C (compris-
ing ATL) cells, consistent with the reported importance of IL-6
and Fas in ATL pathogenesis.11-15

Pro-apoptotic effect of IFN-a is FAS -670 genotype-
dependent in both ATL patients and healthy controls

To confirm the dependencies seen in the BN, we examined
IFN-a response in function of FAS -670 genotype. Indeed, the
presence of the FAS -670 A allele was highly associated with
IFN-a-inducible apoptosis (p D 0.0069) (Fig. 4A) but not anti-
proliferative or antiviral IFN-a effect (data not shown). No sig-
nificant difference in IFN-a response was observed between
homozygous AA and heterozygous GA individuals, indicating
that one functional allele A is sufficient to determine the pro-
apoptotic phenotype.

Due to its unusually high penetrance (80% of phenotypic
difference explained by genotype), FAS -670 genotype-depen-
dent apoptosis upon IFN-a stimulation was tested in an addi-
tional cohort of twenty healthy donors from the same endemic
area. Lymphocytes from healthy donors were mostly Faslo

Figure 3. IFN-a response is dependent on clinical and molecular variables: A
Bayesian Network approach. Annotated Bayesian Network including the following
13 clinical, molecular and cellular attributes: Clinical forms, Age, Gender, FAS -670
genotype, CD4C %, CD4CCD25C %, Fashi % (see Table 1) and all six IFN-a response
measures (proliferation, apoptosis, p19, IL-2, IL-6 and FasL, see Fig. 2). Variables
that are strongly interdependent are shown by arcs, solid arcs when the associa-
tion is positive, dashed arcs when negative. The stability of the dependency was
assessed with a non-parametric bootstrap (100x replicates). All arcs with bootstrap
over 60% are depicted in the network. Apoptosis triggered by IFN-a is strongly
dependent on the presence of the FAS -670 A allele, linked to aggressive clinical
forms of ATL (blue circles and arcs), and inversely linked to IFN-a induced reduc-
tion of IL-2 levels. Likewise, with regard to reduction of IL-6, IFN-a response is
more pronounced when there are fewer FasC cells and when ATL is less aggres-
sive; while IFN-a induced FasL induction is more pronounced when there are fewer
CD4CCD25C cells (comprising ATL cells).

ONCOIMMUNOLOGY e1426423-5



(16.8§2.0% FasC, n D 20). Therefore, Fas-expressing cells were
gated separately for apoptosis quantification by annexinV
staining. A strikingly similar genotype-phenotype effect was
observed in healthy donors (Fig. 4B), where IFN-a again
selectively induced ex vivo apoptosis in AA and GA donors
(p D 0.023, n D 8), but not in GG donors (p D 0.23, n D 12),
confirming high penetrance (90%) of the phenotype.

As shown in Figure 2, there is no significant IFN-a-induced
increase in FasL levels in ATL, and in Figure 3C it is shown
that this remains so, independent of FAS -670 genotype. In

healthy donors, FasL levels can be induced by IFN-a, again
independent of FAS -670 genotype (Fig. 4D). Of note, com-
pared to healthy controls, FasL levels in ATL patients are con-
stitutively high, at levels that seem not to be further inducible.
Taken together, these data suggest a pivotal role of the Fas
receptor, rather than its ligand in IFN-a-induced apoptosis in
both ATL patients and in healthy donors.

FAS -670 genotype determines TCR-triggered proliferation
in PBMC of healthy donors

To investigate the possible effect of FAS -670 genotype on lym-
phoproliferation, PBMC from genotyped healthy donors were
treated with anti-CD3 antibody to induce TCR-triggered poly-
clonal proliferation. Since this is also known to result in activa-
tion-induced, Fas-mediated cell death,46–48 we expected a
decrease in proliferation for the “pro-apoptotic” GA/AA geno-
types. However, the presence of FAS -670 GA/AA genotypes
resulted in significantly higher anti-CD3-stimulated prolifera-
tion (p D 0.049), as compared to GG homozygotes (Fig. 5), sug-
gesting Fas-mediated proliferation may be independent of Fas-
mediated apoptosis. Interestingly, a 3.4 fold increase in sponta-
neous lymphoproliferation was also observed in ATL patients
with a functional FAS -670 A allele, although not statistically
significant (p D 0.11) (Fig. 5).

CD4CCD25C levels correlate positively with IFN-a induced
apoptosis

In order to appreciate whether a different T-cell population
might be proliferating vs. undergoing apoptosis, CD4C and

Figure 4. FAS -670 genotype-dependent effects of IFN-a induced ex vivo apoptosis in PBMCs from ATL patients and healthy donors. PBMCs from ATL patients and healthy
donors were treated ex vivo with IFN-a (1000U/ml) (see methods). Apoptosis (A and B, % annexinVC cells) and FasL levels in supernatants (C and D) were stratified
according to FAS -670 genotype (GG vs. GACAA). (A) IFN-a-induced apoptosis (IFN-a value/control value) in PBMCs of ATL patients depends on FAS -670 genotype
(unpaired t test, ��p D 0.0069). (B) IFN-a- induced apoptosis in PBMCs of healthy donors depends on FAS -670 genotype (Wilcoxon signed rank test, �p D 0.023). (C) IFN-
a does not increase FasL levels in supernatants of PBMCs of ATL patients, independent of FAS -670 genotype. (D) IFN-a significantly increases FasL levels in supernatants
of PBMCs of healthy donors (Wilcoxon signed rank test, ���p D 0.0005, ��p D 0.0078) but IFN-a response (IFN-a value/control value) does not differ according to FAS
-670 genotype.

Figure 5. FAS -670 genotype-dependent proliferation in PBMC from healthy
donors and ATL patients. Spontaneous proliferation of PBMCs from healthy donors
and ATL patients and anti-CD3 induced proliferation for healthy donors were strati-
fied according to FAS -670 genotype (GG vs. GA C AA) (Mann-Whitney test,
�p < 0.05).
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CD4CCD25C levels were correlated with IFN-a-proliferative/
apoptotic response in both healthy donors and ATL patients. A
significant positive correlation between CD4CCD25C levels was
found for IFN-a-induced apoptosis, but not proliferation,
in both healthy donors (p D 0.044) and ATL patients
(p D 0.0037) (Suppl. Fig. 2). Since we showed above that FAS
genotype is significantly associated to ex vivo IFN-a-induced
apoptosis and TCR-triggered proliferation, this suggests a dif-
ferential effect on different T-cell types, which alerted us to the
possible involvement of the recently described Fashi memory
stem cell subset in our ex vivo ATL model.

FAS -670 genotype determines systemic CD4 TSCM levels in
a large twin study

A recent report has identified CD4 TSCM cells as the hierar-
chical apex of ATL.19 Due to the prospective design of our
ATL cohort, patient cells were no longer available to test a
possible association between FAS -670 genotype and CD4
TSCM. To investigate this possible association in healthy

donors, a large cohort would be required to achieve suffi-
cient statistical power. Therefore, we tested this hypothesis
in the unique twin cohort recently analyzed by simulta-
neous GWAS and mass cytometry.40 As shown in
Figure 6A, FAS -670 genotype was significantly associated
with circulating CD4 TSCM levels (p D 7 £ 10¡11, n D
460). Individuals with the functional (i.e. IFN-responsive)
AA genotype exhibited a two-fold increase in circulating
CD4 TSCM levels, as compared to the non-functional GG.
However, FAS -670 genotype was not associated to levels of
either activated (CD4CCD25C cells, Fig. 6B) or total CD4
cells (Fig. 6C), highlighting its cell-type specificity.

Transcriptomic analysis and cell type deconvolution
confirms IFN/FAS/TSCM link

Since the TSCM cellular phenotype was unknown at the time of
patient recruitment for this study, our flow cytometry analysis
was limited to broader, overlapping phenotypes (CD4/CD8/
CD25/CD95). However, using archived RNA samples from a
subset of 8 ATL patients with paired IFN-a-treated samples,
we were able to perform transcriptome profiling by microarray
and cell type deconvolution using CIBERSORT.49 Thus, using
validated cell type-specific gene sets, the relative size of total
CD8 cells and CD4 subsets (na€ıve, memory resting, memory
activated and Treg) was predicted in silico and correlated to
patient survival, apoptosis and proliferation. As shown in
Fig. 7A, unsupervised hierarchical clustering revealed the
strong link between FAS genotype, IFN-induced apoptosis,
CD4 na€ıve cells and CD4 resting memory cells. This is in agree-
ment with Gattinoni et al., with TSCM displaying an intermedi-
ate transcriptome profile between na€ıve and central memory
T cells.41 Therefore, we used 278 TSCM-specific genes identified
by Gattinoni et al.41 (Suppl. Table I) to perform principal com-
ponent analysis of purified naive T cells, memory stem T cells,
central memory T cells and effector memory T cells (n D 3
each, from41). and primary cells of three distinct ATL patients
from this study cohort with GG, GA or AA genotypes (one
each). As shown in Fig. 7B, the first principal component
clearly recapitulates the described differentiation gradient of
TN!TSCM!TCM!TEM. Clustering (k-means) allowed to dis-
tinguish all four memory subsets, and to discriminate between
functional (AA, GA) and non-functional (GG) FAS genotypes
in ATL patients. Strikingly, only AA and GA patient samples
clustered with TSCM cells, whereas the GG patient sample did
not, replicating the intricate link between FAS -670 genotype
and TSCM phenotype we identified in the large twin cohort
(Fig. 6A). Clustering results were robust to the inclusion of our
patient samples (predominantly CD4 subpopulations, by flow
cytometry and CIBERSORT) with the published data used to
define TSCM-specific genes in CD8 subpopulations (Supple-
mentary Figure 3). suggesting the “stemness” of CD4 and CD8
cells might be conserved at the transcriptional level. To test the
hypothesis of IFN-induced apoptosis of TSCM cells, we quanti-
fied the effect of IFN-a upon overall vs. TSCM-specific gene
expression in the ATL transcriptome. When analyzing all
patients together, irrespective of genotypes, IFN-a signficantly
decreased transcript levels of four out of six Naive/TSCM signa-
ture genes41 (data not shown), including transcription

Figure 6. FAS -670 genotype determines systemic CD4 TSCM levels in a large twin
study. (A) FAS -670 genotype is significantly associated with circulating CD4 TSCM
levels (p D 7 £ 10¡11, n D 460). Individuals with the functional (i.e. IFN-respon-
sive) AA genotype exhibited a two-fold increase in circulating CD4 TSCM levels
(5% of total PBMC), as compared to the non-functional GG genotype (2.5% of
total PBMC). However, FAS -670 genotype was not associated to either activated
CD4 C CD25 C cells (B), or total CD4 cells (C). Twin study and GWAS statistics
using GenABEL software package as described.39,40
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regulators LEF1 (p D 0.005, n D 8), CERS6 (p D 0.036, n D 8)
and TAF4B (p D 0.004, n D 8), whereas no significant effect
was observed for T-cell effector or memory signature genes
(e.g. Eomes, T-bet, PRDM1, data not shown). Furthermore, we
were able to confirm the antiviral, anti-inflammatory and anti-
proliferative effects of IFN-a (Fig. 2) at the transcriptional level
(Fig. 7C), as evidenced by pronounced upregulation of antire-
troviral effectors (BST2/TRIM5) and downregulation of cyto-
kines (IL2/IL6) and proliferation markers Ki67 and CD71
(encoded byMKI67/TFRC genes), in agreement with our previ-
ous results.27 When considering FAS genotype, we found IFN-
induced downregulation of TSCM-specific genes was dependent
on the number of functional A alleles (0-1-2 for GG-GA-AA
genotypes, ANOVA with post-test for linear trend, p D 0.001).
As shown in Fig. 7D, IFN-a caused the strongest downregula-
tion of TSCM genes in AA genotype (>GA, p D 0.014; >GG,
p D 0.0011), argueing in favour of Fas-dependent TSCM cell
death. Of note, we also confirmed our previous observation12

of a significant negative correlation between the number of
functional FAS -670 A alleles and survival (r D -0.72, p D
0.030, n D 8), indicating this small subset is representative of
the larger cohort.

Proposed model for a coordinated mechanism
of action of IFN-a in ATL

Endogenous IFN-a has been shown to be produced by plas-
macytoid dendritic cells (pDC) upon stimulation with free
virions,50 which can be assumed to occur in vivo during
ATL pathogenesis and/or disease progression.51 Further-
more, exogenous IFN-a treatment exerts pleiotropic effects
as demonstrated in this study. A simplified model (Fig. 8)
illustrates how endogenous or exogenous IFN-a might exert
its coordinated effects in vivo. Our data strongly suggest
that IFN-a-induced apoptosis, intrinsically linked to the
presence of the FAS -670 A allele, is driving the antiviral
and antiproliferative activity of IFN-a. The FAS -670 A
allele is also linked to increased CD4 TSCM cells (Fig. 6A),
resulting in an ATL leukemic phenotype characterized as
CD4CCD25CCD3lo and Fashi.(52,53 and this study) In addi-
tion, IFN-a results in a decrease of both IL-2 (growth factor
for CD4CCD25C cells) and IL-6, high levels of which have
been previously associated with decreased ATL survival.11

Furthermore, a direct activity of IFN-a on CD4CCD25C

cells can be assumed (Suppl. Fig. 2), which might be

Figure 7. Transcriptomic analysis and cell type deconvolution confirms IFN/FAS/TSCM link in ATL primary cells. (A) Transcriptome profiling by microarray and cell type
deconvolution (CIBERSORT) was used to quantify total CD8 cells and CD4 subsets (na€ıve, memory resting, memory activated and Treg). Data were correlated to patient sur-
vival, apoptosis and proliferation, followed by unsupervised hierarchical clustering. (B) For Principal Component (PC) analysis, we used microarray signal intensity data of
278 selected TSCM genes of purified naive (TN cells) (nD 3), stem cell memory (TSCM cells) (nD 3), central memory (TCM cells) (nD 3) and effector memory T cells (TEM cells)
(n D 3) from the Gattinoni study,41 and primary cells of three distinct ATL patients with FAS -670 GG, GA or AA genotypes (one each) from this study cohort. Clusters were
defined by k-means algorithm. (C) Confirmation of antiviral, anti-inflammatory and antiproliferative effect of IFN-a in ATL patients (n D 8) at the transcriptional level, by
upregulation of antiretroviral effector molecules (BST2/TRIM5) and downregulation of cytokines (IL2/IL6) and proliferation markers (MKI67/TFRC). (D) Among 278 TSCM-spe-
cific genes (Suppl. Table I), downregulation by IFN-a treatment was calculated as log fold-change (with a cut-off at -0.5) in ATL patients with selected genotypes (AA-GA-
GG, one each). TSCM-specific genes were most strongly downregulated in AA genotype, vs both GA and GG genotypes (Kruskall-Wallis with FDR correction, p D 0.014 and
p D 0.0011, respectively). �p < 0.05, ��p < 0.01
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independent of FAS genotype (Fig. 6B). Apoptosis of
CD4CCD25C cells, the main reservoir of infected cells,54

likely results in decreased viral protein levels, as well as
decreased CD4CCD25C proliferation. Due to the high sig-
nificance of the FAS/CD4 TSCM connection, beyond the
genome-wide association threshold (Fig. 6A), it is tempting
to speculate that the model proposed here would be appli-
cable and of clinical relevance in other leukemias, as well as
other viral pathologies treated with IFN-a.

Discussion

Conflicting data exist on the cellular and molecular mecha-
nisms of action of type I IFN (IFN-a and IFN-b) in several
major human diseases23-36 including ATL. This HTLV-1-
associated adult T-cell leukemia responds at varying degrees
to IFN-a C AZT combination therapy.20-22 In this study,
we show that ex vivo IFN-a treatment exerts a pleiotropic
and strongly heterogeneous response in ATL primary cells.
IFN-a significantly decreased proliferation, viral protein lev-
els and IL-6 levels for a majority of patients, while it
induced apoptosis and reduced IL-2 levels for a subset of
patients (Fig 2). These results are in contrast with our
results in another HTLV-1-associated disease (HTLV-1-
associated myelopathy/Tropical spastic paraparesis), where
we found no significant effect of ex vivo IFN-a upon prolif-
eration, cell death or IL-6 production.25 In addition, a
recently published systems biology approach revealed an
IFN-inducible gene signature in HAM/TSP patients, surpris-
ingly paralleled by limited antiviral activity.55 Therefore, we
set out to model the interdependencies between ex vivo
molecular and cellular IFN-a-response and the in vivo clini-
cal and immunological data in ATL. In this study, we reveal

a high-penetrance, IFN-dependent, pro-apoptotic phenotype
for the functional A allele of the FAS -670 A/G polymor-
phism in both ATL patients and healthy controls. Strikingly,
the association of this A allele with IFN-induced apoptosis
underscores the recently established “CD4 TSCM apex”
model for ATL,19 since we also found a strong link between
the A allele and higher in vivo circulating CD4 TSCM levels
in a large twin study (Fig. 6A).

Since ATL is a relatively rare disease, even in highly
endemic areas such as Salvador-Bahia, Brasil,56 only 25
patients with clinically definite ATL could be recruited dur-
ing a five-year period, followed by a five-year clinical fol-
low-up, which precluded confirmation of our data in a
second cohort of ATL patients. However, we were able to
confirm the IFN-dependent link between CD4 TSCM cells,
Fas genotype and apoptosis in a subset of ATL patients by
transciptomic analysis (Fig. 7A-D). In addition, the depen-
dence of the IFN-a pro-apoptotic effect on the presence of
the FAS -670 A allele was validated in healthy donors from
the same endemic area. The remarkably high penetrance
(80% in ATL, 90% in normal donors) of the FAS polymor-
phism suggests a decisive effect of the receptor in Fas/FasL
signaling, at least upon IFN-a stimulation. Although FasL
polymorphisms have also been significantly associated with
an in vitro pro-apoptotic phenotype in cervical cancer,57

three lines of evidence support our receptor-mediated
hypothesis for the genotype-phenotype association of IFN-
induced apoptosis in this study. First, FASL -844 polymor-
phism was not associated to in vitro apoptosis in both ATL
patients and healthy controls (Silva-Santos et al., unpub-
lished). Second, IFN-a strongly increased FasL levels in 9
out of 13 ATL patients (Fig. 2F) and in all healthy controls
tested (Fig. 4D, p < 0.001), resulting in excess ligand and
hence indicating receptor signaling as the limiting step.
Third, a recent GWAS twin study linking 80.000 immune
phenotypes to SNPs identified polymorphisms in FAS, but
not FASL, as significantly associated with circulating T-cell
subset levels.40 Following up on this study, we show that
the FAS -670 polymorphism is significantly associated to
circulating CD4 TSCM, but not CD4CCD25C or total CD4
levels (Fig. 6A-B-C).

Surprisingly, functional GA/AA genotypes displayed higher
ex vivo proliferation upon TCR stimulation (Fig. 3D), which
somehow contrasts with the pro-apoptotic genotype/pheno-
type, but is consistent with a proliferative TSCM phenotype in
vitro.41 Non-apoptotic Fas signaling has indeed been demon-
strated to stimulate cellular proliferation in primary CD4
cells,58 but also phenotypic differentiation of na€ıve CD8 T cells
into memory subsets, through an Akt-driven mechanism.59

Similar to these observations, we have recently identified a Fashi

lymphoproliferative phenotype in another HTLV-1-associated
pathology, the neuroinflammatory disease HAM/TSP60.
Likewise, it has been shown that most ATL cells display a Fashi

phenotype,61 whereas most T-cell leukemias display decreased
Fas expression and/or mutations in Fas/FasL pro-apoptotic sig-
naling.15 Increased Fas expression might induce survival of
(pre-)leukemic cells, through increased proliferation of
CD4CFasC T-cell clones upon antigenic stimulation and even-
tually escape apoptosis,62 through increased c-FLIP or similar

Figure 8. Proposed model for coordinated mechanism of action of IFN-a in ATL.
Endogenous (from plasmacytoid dendritic cells – pDC) or exogenous IFN-a (ex vivo
or in vivo treatment) elicits pro-apoptotic, antiproliferative, antiviral and immuno-
modulatory effects on CD4CCD25C cells, the major HTLV-1-infected reservoir, as
well as on leukemic CD4CCD25CCD3loFasC cells. Red arrows indicate the link to
FAS -670 polymorphism and TSCM cells (this study,12,19).

ONCOIMMUNOLOGY e1426423-9



pathways.63,64 In fact, Fas was previously identified as a proto-
oncogene, capable of inducing tumorogenesis in a different
type of cancer.65

Our results indicate that this Fas-mediated dichotomy of
apoptosis vs. proliferation, previously described in vitro in
CD4C cells,58 might be implicated in ATL pathogenesis, by tip-
ping the balance between leukemic CD4CCD25CCD3lo(Fashi)
and anti-leukemic CD8C cells (Fig. 3 and Fig. 7A). Conversely,
high levels of leukemic and/or Treg cells with a CD4CCD25C

phenotype were positively correlated with IFN-a-induced apo-
ptosis (Suppl. Fig. 2). Elimination of both cell types will most
probably result in clinical benefit in ATL patients either directly
or indirectly, since Tregs have been shown to inhibit the ex vivo
CTL response in ATL patients,66 and negatively correlate to
patient survival in our analysis (Fig. 7A). Taken together, the
functionality of the FAS -670 polymorphism resolves the IFN-
a apoptotic paradox and reveals this polymorphism as a candi-
date pharmacogenetic marker for several other IFN-a-treated
leukemias and cancers.67 Thus, our model does not contradict
the previous findings of absent cytotoxic or antiproliferative
activity of IFNs23,26 but highlights the role of FAS genotype in
determining cell fate: proliferation vs. apoptosis.58–65,67

Moreover, patient-derived individual T-cell clones represent
only a small percentage of the whole T-cell population, whereas
the majority has been eliminated, either through “death by
neglect”, activation-induced cell death or direct CD8C T-cell-
mediated killing.46-48,61-68 Therefore, our ex vivo results are not in
contrast, but complimentary to previous in vitro results in patient-
derived T-cell clones.26,64,68 In addition, the use of total PBMCs
also allowed us to measure and integrate the impact of other cellu-
lar subtypes, such as DCs,50,51 monocytes69 and NK cells,70 among
others, upon apoptosis, proliferation and antiviral response. It is
well described that pDC are the main source of IFN-a production
in vivo.52 Therefore, we believe our ex vivo model, in spite of its
limitations, reflects the in vivo situation in ATL patients.

In conclusion, we show that a functional FAS polymorphism
resolves the current “IFN apoptotic paradox”, by determining ex
vivo apoptosis in both ATL patients and healthy controls with
high penetrance. The same polymorphism also determines lym-
phoproliferation and CD4 TSCM levels in healthy controls. In
line with the CD4 TSCM ATL origin, our data help explain both
in vivo IFNCAZT responsiveness and chemotherapy resistance
in ATL patients. FAS -670 polymorphism thus represents a
promising pharmacogenetic marker in the clinical follow-up of
several major human diseases currently or previously treated by
type I IFN, such as other leukemias, melanoma, HCV infection
and multiple sclerosis.
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