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Abstract  Contemporary shopping habits are undergoing rapid change, with more 
and more consumers purchasing goods online. The rapid growth of the online retail 
sector provides great opportunities for both wholesalers and transporters in servic-
ing this newly emergent type of customer. With both consumers and corporations 
acutely aware of the environmental impact of business activities, one of the most 
relevant research questions is how to organize the operations of a e-commerce 
delivery business while simultaneously minimizing its environmental impact. The 
present paper addresses the e-commerce delivery problem, a mathematical formula-
tion and fast heuristics which enable the simulation of various e-commerce deliv-
ery scenarios. The effects of the scenarios regarding more environmentally friendly 
e-commerce concerns are tested upon real-world data. In particular, the impact of 
new green(er) technology (such as electric bicycles and cars), aggregated collection 
points, carrier bundling, and changing delivery times is investigated. The obtained 
results are suitable for implementation at an organizational or operational level 
within both e-commerce delivery companies and transporters.
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1  Introduction

There is an ongoing shift from the traditional, physical shopping environment 
towards online shopping. With annual online purchasing growth estimated at 
roughly 10% within Europe, it is not difficult to imagine a near future, where 
online shopping overtakes in-store sales and becomes the new normal. Whole-
salers promise the fast delivery of products to customers; however, the logisti-
cal process itself is organized by road couriers and transporters. While offering 
a high level of comfort to individual customers, e-commerce delivery practices 
represent a considerable source of greenhouse emissions. In addition, urban areas 
are particularly vulnerable to complicating factors such as traffic congestion due 
to their high density of both residential and commercial destinations. The rapid 
growth of online shopping, or e-commerce, correlates with important environ-
mental and societal challenges imposed by governments and environmentally 
conscious consumers, namely: how one may operationally organize e-commerce 
deliveries, such that their environmental impact is minimal, and how to simulta-
neously satisfy customer demands while minimizing transportation costs. Indeed, 
online wholesalers and transporters are eager to discover viable answers to these 
questions.

Many businesses have adopted a consumer direct (CD) model, which permits 
customers to purchase goods online and have them delivered directly to their 
addresses. Duin et  al (2007) provide an auctioning model which assigns orders 
to providers in a cost and punctuality-driven environment. Orders arrive dynami-
cally, requiring flexibility concerning their insertion into routes. Campbell and 
Savelsbergh (2006) detailed various incentive policies, encouraging companies 
to pursue home deliveries. They presented the home delivery problem with time 
slot incentives, where customers select a delivery time slot based upon the associ-
ated monetary benefits being offered by the company. However, the environmen-
tal impact of such policies was not studied.

Bektaş and Laporte (2011) introduced an extension of the vehicle routing 
problem with time windows (VRPTW), the pollution routing problem (PRP), the 
objective of which is to minimize a cost function composed of emission costs, 
fuel costs, and driver costs. The study concluded that the cost of working hours 
dominates the emission cost. Demir et  al (2012) also studied the PRP and pro-
posed an ALNS algorithm with a specialized speed optimization component 
capable of computing optimal speeds on a given path. Çağrl et al. (2014) extended 
the PRP by considering a heterogeneous fleet which only contained internal com-
bustion commercial vehicles (ICCVs). They conducted experiments on instances 
from the literature and discovered that using a heterogeneous fleet without speed 
optimization reduces operational costs by a greater degree than when employing 
a homogeneous fleet with speed optimization.

Employing a homogeneous fleet of electrical vehicles was considered by Sch-
neider et al (2014) during their E-VRPTW study (the addition of ‘E’ signifying 
‘Electrical’). The objective of the E-VRPTW is to minimize the distances trave-
led by electric commercial vehicles (ECVs). Schneider et  al (2014) presented a 
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mixed integer programming (MIP) model and metaheuristics to solve their gener-
ated instances. Goeke and Schneider (2015) studied E-VRPTWMF, an extension 
of E-VRPTW, where two vehicle types were considered as a mixed-fleet (MF): 
ECVs and conventional ICCVs. This study proposed a more realistic energy 
consumption model for ECVs based on individual vehicle mass, speed, and the 
terrain’s gradient. Three different minimization objectives were considered: dis-
tance traveled; the sum of vehicle propulsion and labor cost; and battery replace-
ment cost. All experiments were conducted upon randomly generated instances. 
Desaulniers et al (2016) study the E-VRPTW with time windows, given an unlim-
ited fleet of identical ECVs. They particularly focus on the electric vehicles’ lim-
ited autonomy and investigate variants, where vehicles may recharge once, sev-
eral times, partially or fully during the course of a route.

In recent years, green logistics has received increasing interest due to growing 
environmental concerns by citizens and governments. Roberti and Wen (2016) 
address the electric traveling salesman problem with time windows (ET-SPTW) 
which considers the limited capacity of existing electric vehicle batteries, thereby 
acknowledging the need for intermediate stops at recharging stations. Heuristics 
were developed and tested on generated instances. El-Berishy and Scholz-Reiter 
(2016) considered a homogeneous fleet with a single depot VRP. They proposed a 
two stage stochastic model, where the delivery speed and emissions are uncertain. 
The first stage generates optimum routes; the second stage minimizes emissions by 
regulated vehicles’ speed. Koç and Karaoglan (2016) addressed the green-VRP by 
considering a homogeneous fleet, limited driving range and refueling infrastructure. 
They developed a branch and cut algorithm and tested it upon a benchmark set with 
20 customers. Leggieri and Haouari (2017) solved the green-VRP by integer pro-
gramming and outperform Koç and Karaoglan (2016)’s algorithm. Shao et al (2016) 
focus on avoiding congestion while investigating distribution strategies. Ehmke 
et  al (2016) modeled expected emissions costs as a function of the time at which 
the vehicle begins traveling an arc and its load while traversing some arc. They did 
not factor in waiting times. Huang et  al (2017) considered path selection in time-
dependent vehicle routing problems (TDVRP-PF), where any arc between two cus-
tomer nodes represents multiple paths. A homogeneous fleet of vehicles was consid-
ered to minimize fuel consumption and vehicle depreciation cost. Huang et al (2017) 
modeled the TDVRP-PF both under deterministic and stochastic traffic conditions 
and generated instances based on Beijing’s road network. Muñoz-Villamizar et  al 
(2017) investigated, similar to the present paper, both the delivery cost and envi-
ronmental impact of employing a homogeneous ECV fleet in an urban environment. 
They modeled a multi-depot vehicle routing problem (MDVRP) and experimented 
with real-world data obtained from a transportation network in Bogotá, Colombia.

Several successful approaches within the VRP literature proposed various 
types of population-based evolutionary algorithms to address different variants of 
the problem. Nagata et al (2010) and Koç et al (2015) presented a hybrid genetic 
algorithm for the VRP with time windows. Tasan and Gen (2012) employed a 
genetic algorithm for the VRP with simultaneous pick-up and deliveries. Mean-
while, Vidal et  al (2012) developed an evolutionary algorithm which combines 
population-based evolutionary search and neighborhood-based metaheuristics 
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to address three VRPs: multi-depot, periodic, and the multi-depot periodic with 
capacitated vehicles. Vidal et  al (2013) presented a hybrid genetic search with 
diversity control for a large class of time-constrained vehicle routing problems. 
All referenced studies conducted extensive computational experiments on aca-
demic benchmark instances. The experimental results showed that the proposed 
algorithms achieved high-quality solutions which encourage the usage of popula-
tion-based evolutionary algorithms to address variants of the VRP.

Furthermore, there exist several survey papers within the field which highlight 
various aspects of green logistics and the incorporation of environmental issues 
into combinatorial optimization problems. Such papers most commonly focus on 
the vehicle routing problem (Dekker et al 2012; Demir et al 2014; Lin et al 2014).

Despite the valuable contributions made by the aforementioned studies, find-
ing the most profitable mode of operation while simultaneously limiting green-
house emissions on realistic problem instances remains unexplored. This subject 
may be addressed using three fundamental research questions: (i) how may one 
organize delivery from distribution center to the customer in an ecological man-
ner? (ii) Which operational shifts may reduce emission levels without incurring 
unacceptable costs? (iii) Which concessions related to delivery time windows or 
deviation from the delivery location are acceptable for environmentally conscious 
consumers?

The present paper investigates the e-commerce delivery problem (EDP) from 
an operational perspective. The EDP generalizes the vehicle routing problem, 
wherein orders must be delivered to customers. Its objective is to compose routes 
beginning and ending at the depot and visiting each delivery location while 
simultaneously minimizing operational costs and emissions. In addition to tra-
ditional vehicle routing objectives and constraints, the EDP requires the selec-
tion of vehicle types (electrical or otherwise), the determination of delivery dates, 
and/or the merging of delivery points.

An integer programming formulation which incorporates vehicle-dependent 
transportation costs and greenhouse emissions, driving times and delivery times 
is introduced in Sect. 2. By incorporating such factors, the impact of alternative 
delivery strategies—such as the introduction of a heterogeneous fleet includ-
ing electric vehicles, relaxing delivery time windows, or aggregating delivery 
destinations—may be accurately investigated. New delivery strategies are sub-
sequently presented during Sect.  3 and applied to real-world data provided by 
e-commerce delivery transporters. The availability of real-world data provides a 
unique opportunity to explore the effects of the proposed policies. A set of fast 
heuristics enabling the simulation of various e-commerce delivery scenarios is 
presented in Sect. 4. The performance of the proposed algorithms is analyzed fol-
lowed by extensive simulations which enable the assessment of both the envi-
ronmental and financial impact of such strategies. Experimental results (Sect. 5) 
reveal the interesting and often counter-intuitive effects of adjusting operations. 
The lack of research in mixed-fleet EDP means that these results will likely have 
an immediate impact upon online businesses and will potentially contribute to 
more sustainable e-commerce delivery practices.
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2 � Problem statement

The EDP consists of three major components: depots, vehicles, and parcels. A depot 
is a location from which parcels must be delivered to their associated destinations. 
Each depot has a set of vehicle types P, where each individual vehicle type p is asso-
ciated with the following parameters: (i) number of available vehicles, mp ; (ii) maxi-
mum traveling duration, Tp ; and (iii) energy capacity, Rp , detailing the fuel, battery, 
or energy capacity of the vehicle type.

A parcel has three properties: a delivery window, origin depot, and destination 
location. The delivery window consists of the earliest and latest possible delivery 
dates. The overall problem may be decomposed into a separate sub-problem for each 
depot. Parcels with the same origin depot and destination location may be bundled 
into one multi-drop parcel provided their time windows are identical. Each sub-
problem is thus represented by an ordered list of multi-drop parcels, a depot and a 
mixed vehicle fleet of fixed size which delivers the parcels.

The EDP is often defined as an open vehicle routing problem (Li et  al 2007). 
By contrast, this paper assumes that the transporter owns the vehicles employed for 
delivery—be they bicycles, cars, vans, or trucks. Drivers are required to return their 
vehicle to the depot after concluding their deliveries, a requirement contributing to 
the driver’s total working time.

The EDP is formulated as a mixed integer program ( EDP ) inspired by the 
research of Goeke and Schneider (2015) for E-VRPTWMF, where two vehicles 
types were considered with the possibility of recharging at certain stations. While 
EDP incorporates multiple vehicle types, it ignores both vehicle recharging and 
time windows. The EDP considers a single autonomous trip per vehicle. In addition, 
assuming high-level decision-making, the time windows are as long as the sched-
uling horizon. Consequently, time windows do not impact upon a manager’s deci-
sion. Time windows for e-commerce deliveries are generally 1 week long, while in 
the EDP, the decision horizon is 1 day. Therefore, the EDP formulation does not 
explicitly take time windows into consideration, but rather aggregates all deliveries 
to the same destination into a single multi-drop parcel. Whereas regular single-drop 
deliveries take td time, multi-drop deliveries take tb time for each additional parcel. 
Furthermore, vehicle capacity is considered sufficiently large to ignore capacity 
constraints.

The EDP is defined on a complete directed graph, G = (V ,A) , where vertices 0 
and N + 1 correspond to the depot, while V0,N+1 = {v1,… , vN} represents the set of 
delivery points. The model proposed by Goeke and Schneider (2015) considers two 
vehicle types: ECVs and ICCVs. Given EDPs require the possibility of choosing 
between various vehicle types (electric vehicles, bikes, vans, and trucks), a decision 
variable xp

ij
 indicates whether or not arc ij is traveled by a vehicle of type p. Given 

the generally light weight parcels in e-commerce, the cost of traveling an arc is 
assumed independent of the vehicle’s load.

The proposed model aggregates all parcels requiring delivery to the same address 
during pre-processing into a single delivery. The demand of vertex i, qi , represents the 
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number of parcels requiring delivery to vertex i. Service time at vertex i ∈ V0,N+1 , si , 
may be obtained by Eq. (1), where td and tb represent single- and multi-drop times, 
respectively:

Table 1 summarizes the notation employed throughout the paper.
(1)si = td + (qi − 1) tb.

(2)
∑
j∈V0

∑
p∈P

x
p

ij
= 1 ∀ i ∈ V0,N+1

(3)
∑

j∈VN+1

x
p

ij
−
∑
j∈V0

x
p

ji
= 0 ∀ i ∈ V , p ∈ P

(4)
∑

j∈V0,N+1

x
p

0j
≤ mp ∀ p ∈ P

(5)�i +
∑
p∈P

(si + t
p

ij
) x

p

ij
−M (1 −

∑
p∈P

x
p

ij
) ≤ �j ∀ i ∈ VN+1, j ∈ V0

Table 1   Notation

0,N + 1 Depot vertices
V Set of all vertices
A Set of arcs = {(i, j)|i, j ∈ V , i ≠ j}

V0 Set of vertices excluding 0, V0 = {v1,… , vN+1}

VN+1 Set of vertices excluding N+1, VN+1 = {v0,… , vN}

V0,N+1 Set of delivery vertices, V0,N+1 = {v1,… , vN}

P Set of vehicle types
M A big number
dij Distance between vertices i and j
td Single-drop time
tb Multi-drop time
t
p

ij
Travel time between vertices i and j by vehicle type p ∈ P

mp Number of available vehicles of type p ∈ P

Rp Fuel, battery or energy capacity of vehicle type p ∈ P

Tp Maximum tour duration of vehicle type p ∈ P

g
p

ij
 Fuel, battery or energy consumption of vehicle type p ∈ P between vertices i and j

hp Fuel, battery or energy consumption per time unit while vehicle type p ∈ P is idle
qi Demand of vertex i
si Service time at vertex i (s0, sN+1 = 0)

r
p

i
 Auxiliary variable indicating energy level of vehicle type p at vertex i

�i Auxiliary variable for arrival time at vertex i
x
p

ij
 Binary decision variable indicating if arc (i, j) ∈ A is traveled by vehicle type p
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Constraints (2) ensure that each customer is followed by exactly one other customer 
in the route, except for the depot vertices. Constraints (3) are flow conservation con-
straints guaranteeing an equal number of incoming and outgoing arcs for each ver-
tex. Constraints (4) express an upper limit for the number of employed vehicles of 
each type. Auxiliary variable �i represents the vehicle’s arrival time at vertex i and 
Constraints (5) link the arrival times at vertices i and j. Constraints (6) prevent each 
tour’s total time from exceeding the maximum traveling duration of its vehicle type. 
Each tour’s total time is obtained by summing the arrival time to the last vertex (l), 
�l , the service time of l, sl and the travel time from l to the depot, tp

lN+1
 . Auxiliary 

variable rp
i
 represents the energy level of vehicle type p at vertex i. Constraints (7) 

set the energy level of vehicle type p at vertex j considering the energy level at its 
previous vertex i. Constraints (8) restrict the fuel, battery, or energy level of vehicle 
type p to be between zero and the maximum vehicle capacity at each vertex i. Con-
straints (9) state variables xp

ij
 as binary.

The following key performance indicators (KPIs) are considered during this 
study:

–	 CO2 emissions associated with a parcel’s delivery.
–	 Delivery cost.
–	 Total distance traveled by all vehicles.
–	 Number of vehicles required to satisfy all deliveries.

Operators wish to minimize the linear combination of these KPIs which results in 
the formation of the objective function, denoted as F in Eq. (11). The term fe within 
this equation denotes the total emission cost for parcel delivery, fl the routing cost 
of delivery, fd the total distance traveled by all vehicles, and fv the total number of 
vehicles required to satisfy all deliveries. fl , fd , and fv denote internal KPIs, whereas 
fe is called an external KPI. � , � , � , and � are positive coefficients weighting the 
objectives:

(6)�i + si + t
p

i,N+1
x
p

i,N+1
≤ Tp ∀ p ∈ P, i ∈ V0

(7)r
p

i
− hp.si.x

p

ij
− g

p

ij
.x
p

ij
+ Rp (1 − x

p

ij
) ≥ r

p

j
∀ i ∈ V , j ∈ VN+1, p ∈ P

(8)0 ≤ r
p

i
≤ Rp ∀ i ∈ V0,N+1, p ∈ P

(9)�i ≥ 0 ∀ i ∈ V

(10)x
p

ij
∈ {0, 1} ∀ (i, j) ∈ A, p ∈ P

(11)F = �fe + �fl + �fd + �fv,
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CO2 emissions are derived by summing both a vehicle’s travel and stationary (when 
ran idle) fuel consumption and then multiplying this total by the amount of CO2 per 
fuel unit, cpe (the fuel unit may correspond to liter for diesel/gasoline, kilogram for 
CNG and kWh for electricity). By always considering the average consumption of 
vehicles when they are either traveling or stationary, their actual load at every stage 
of the route may be ignored. gp

ij
 indicates the fuel consumption of vehicle type p 

between vertices i and j, whereas hp denotes vehicle-type p’s fuel consumption per 
time unit, while it is idle at service points:

The delivery cost consists of labor costs and vehicle costs which include vehi-
cle write off, fuel consumption, insurance, and maintenance. Parameters cd and cpv 
denote driver wages per time unit and vehicle costs per kilometer for vehicle type p, 
respectively:

The total distance is the sum of the length of all routes. The distance between verti-
ces i and j is denoted by dij:

The number of vehicles required:

A VRP instance may be considered an instance of the EDP with only one vehicle 
type and hence be solved by any EDP algorithm. Thus, the EDP is at least as hard 
as the VRP which is proven -hard (Lenstra and Kan 1981). Therefore, exact 
approaches to the EDP, based on a commercial integer programming solver, are 
unlikely to be applicable in real-life e-commerce delivery routing due to their size, 
both from a financial and performance perspective.

3 � E‑commerce delivery policies

3.1 � Alternative parcel delivery vehicles

The vast majority of current e-commerce parcels are delivered by diesel vans (Dek-
ker et al 2012). While these vans have a low internal cost—they are cheap to buy, 
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run, and maintain—their external cost is much greater in urban environments. Given 
the inefficiency of diesel engines for short trips and slow start–stop traffic, CO2 and 
NOx emissions are considerable during city tours. Furthermore, van engines are 
often left idle (rather than being shut off) during delivery, exacerbating emission 
levels.

Despite alternative delivery technologies being widely available, the potential 
decrease in external cost is often outweighed by the perceived increase in internal 
cost. Higher purchase prices and minimal difference in CO2 emissions often dis-
courage companies to make the transition from low-cost diesel vans to compressed 
natural gas (CNG) vehicles. Similarly, the high purchase price and smaller capacity 
of electric vans are considered economic deal breakers for companies considering 
the use of environmentally friendly vehicles. In (sub)urban environments, however, 
smaller vehicles are rarely an issue when the depot is located close to (or within) the 
city and only minor changes must be made to the delivery company’s operations.

The impact of switching from diesel to CNG or electric vehicles is analyzed in 
greater detail during Sect. 5.2.1.

3.2 � Collection points

Customers making purchases via e-commerce channels may have their goods deliv-
ered directly to their home, to a chosen collection point, or they may even choose 
to retrieve goods themselves at the company’s physical store. When a customer’s 
order exceeds a certain value, delivery fees are often waived. While it is cheaper for 
both e-commerce stores and carriers to deliver goods to a collection point or have 
them picked-up directly from the store, most online stores select home delivery by 
default—rarely offering any financial motivation for customers to alter their delivery 
method. Including more options or steps to the checkout process of online shop-
ping significantly decreases the conversion rate (item views to sales), which is the 
primary reason for not offering alternative delivery options. An important downside 
associated with home delivery is that most people are away from home during day-
time hours, which is precisely when carriers also work. This results in high delivery 
failure rates, whereby couriers must attempt to deliver parcels two or more times 
before the customer is at home to accept delivery. Not only is this very expensive for 
the carrier, it is also very inconvenient for the customer, since goods are delivered 
far later than anticipated.

It is highly plausible that, given some small financial incentive, many customers 
would choose to have their goods delivered to a collection point rather than at home. 
Customers are consequently able to collect their purchases at the time most conveni-
ent for them while simultaneously being financially rewarded for this decision. From 
the web shop and carrier’s perspectives, this decision is also beneficial, since they 
are able to ship and deliver parcels at a lower cost and no longer run the risk and 
cost of having multiple failed deliveries.

The impact of relocating a portion of all parcels to collection points on both inter-
nal and external costs is discussed in Sect. 5.2.2.
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3.3 � Carrier bundling and regional monopolies

In practice, different carriers often deliver parcels to the same street on the same 
day. Instinctively, one would perhaps consider this situation inefficient and con-
clude that it would be better to offer a monopoly to a single carrier on such streets 
in urban centers.

Rural regions, on the other hand, often have so few parcels to be delivered that 
it becomes very expensive for carriers to deploy or maintain activities in such 
areas. In this situation, regional monopolies could likely increase the density of 
parcels for a single carrier and thereby engender a profit margin as opposed to 
several different carriers generating losses in the region. This higher parcel den-
sity also translates into decreased emissions per parcel, thus decreasing the exter-
nal cost.

The effects of enforcing regional monopolies are investigated within several 
scenarios in Sect. 5.2.3.

3.4 � Delivery times

The vast majority of e-commerce parcels are delivered directly to the custom-
er’s door. While the time spent traveling from the van to the customer’s door is 
rather small, the time spent waiting at the customer’s door after ringing the door 
bell easily increases average parcel delivery times to 3–4 min. This waiting time 
represents a significant proportion of the total delivery cost. Furthermore, many 
e-commerce products are packaged in boxes much larger than the product itself 
with the result being that carriers are mostly storing and delivering empty space 
to customers throughout the country. There are two logical ways of reducing long 
waiting times for carriers:

	 i.	 Transitioning from home delivery to collection points (see Section 3.2), or
	 ii.	 Reducing the amount of empty space in e-commerce parcels, thus enabling 

more parcels to be delivered via mailboxes.

The impact of reducing the time required for delivering parcels is investigated in 
Sect. 5.2.4.

4 � Algorithms for policy simulation

Efficient algorithms are required when solving EDPs in practice. Therefore, 
designing easy-to-implement fast heuristics within a simulation environment is 
essential.

Two constructive algorithms which generate the initial solutions for the EDP 
are presented alongside a ruin and recreate (R&R) local search which is to be 
employed in combination with these constructive algorithms. Given the academic 
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merit of genetic algorithms for VRP problems, one is proposed based on the 
biased random-key genetic algorithm (BRKGA). Descriptions of the solution 
encoding and decoding heuristics, evolutionary process, and fitness function are 
provided.

4.1 � Constructive heuristics

A cheapest insertion (CI) heuristic is applied to generate an initial EDP solution.
The heuristic creates a feasible solution for each depot by iterating over its parcel 

list and assigning each parcel to a delivery route. The cost of inserting each parcel 
at all possible positions in existing routes and of creating a new route is computed. 
The latter cost is obtained by inserting an available vehicle with the lowest possible 
emissions. Subsequently, each parcel is inserted at the lowest cost position in the 
route.

Once all parcels have been included in this schedule, the CI heuristic is complete 
and a feasible solution for the EDP is available.

Figure  1 visualizes the cheapest insertion procedure. The first parcel in the 
depot’s list is assigned to a new route in Fig. 1a. Figure 1b illustrates how the second 
parcel is assigned. The cost of creating a new route for the second parcel alone (Cost 
3) is compared against the cost increase when inserting it at all possible positions 

(a)

(b)

(c)

Fig. 1   CI constructive heuristic example for three parcels and one depot
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in the existing route. Thus, the lowest cost option (b3) is selected. The last parcel’s 
assignment is depicted in Fig. 1c, where, similarly, the cost increase of creating a 
new route (Cost 4) is compared against the best possible insertion in the existing 
route. Note that only two possibilities are represented in the figure. The solution 
constructed in this example thus employs two vehicles and its cost amounts to 7.

The primary advantage of this heuristic is its capability of quickly generating 
solutions for even the largest instances. One noteworthy disadvantage is, however, 
that the algorithm produces solutions located in local optima which may prove very 
difficult to escape from. The combination of the standard diesel vans and electric 
vehicles proved challenging for the heuristic, since electric vehicles are slightly 
cheaper to operate and have much lower emissions than diesel vans, whereas their 
range is very limited. This results in solutions, where the first few parcels are loaded 
into the available electric vehicles, while all those remaining are loaded into diesel 
vans. Such solutions are far from efficient, and therefore, an alternative algorithm is 
proposed.

The second constructive algorithm is the one route per parcel heuristic (1RPP). 
This heuristic creates a solution by simply assigning each parcel to an individual 
delivery route. Figure 2 depicts 1RPP and clearly, although theoretically possible, 
its solutions incur extremely high costs. The advantage of this constructive heuristic, 
however, is that its resulting solution is not biased in any way and thus enables local 
search algorithms to efficiently alter the solution and find good quality solutions 
without prematurely converging to local optima.

4.2 � Ruin and recreate local search

A ruin and recreate local search heuristic (Schrimpf et al 2000; Pisinger and Røopke 
2007) is employed in combination with the aforementioned constructive heuristics. 
The R&R heuristic iteratively increases solution quality by randomly selecting a 
route and removing it from the solution. The removed route’s parcels are re-added 
to the solution via CI, possibly after ordering these parcels in some way (such as 
decreasing distance from the depot) (Christiaens and Vanden Berghe 2016). When a 
new solution is associated with a lower cost than the current best solution, it replaces 
the latter; otherwise, a different route is selected to be ruined.

After a specified number of iterations without any cost reduction, the number of 
routes to ruin is increased. The R&R heuristic ends after a predefined number of 

Fig. 2   One route per parcel constructive heuristic example
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non-improving iterations, either when the number of ruined routes reaches the total 
number of routes in the solution or when a global iteration limit is reached.

4.3 � Genetic algorithm

An evolutionary algorithm, based upon the BRKGA, is proposed to identify the 
number of routes, types of vehicles, and parcel delivery order. BRKGA represents 
a variant of random-key genetic algorithms in which the initial population is com-
posed of random-key vectors, with each vector’s key being a real number sampled 
uniformly from the interval [0, 1). More information concerning the evolutionary 
process of BRKGA is provided by Gonçalves and Resende (2011).

A solution consists of a number of routes, each of which is associated with a 
vehicle type and parcel delivery order. This approach employs an indirect solution 
representation, since direct solutions would be complex to represent and manipulate 
during the evolutionary process. A chromosome encodes a solution as a vector of 
random keys. Each chromosome is composed of n + 1 genes, where n equals the 
number of parcels requiring delivery:

The first gene ( gene0 ) identifies the number of routes per depot, while the remain-
ing genes are parcel genes, each corresponding to a single parcel. Parcel genes are 
employed to assign their associated parcel to a route. Chromosomes are employed 
by the decoder when building a CFO solution. The number of routes required per 
depot is denoted as r and decoded via:

The decoding, or mapping, of each chromosome’s last n genes into r routes 
is achieved by first dividing the [0,  1) interval into r sections where each section 
constitutes a route. Parcel pi is assigned to route rj if the value of genei lies within 
section j. The route index for parcels i = 1,… , n is generated using the following 
expression:

Once the parcels are assigned to the routes, the sequence of parcel deliveries per 
route is obtained by the greedy nearest neighbor (NN) algorithm which selects the 
nearest undelivered parcel as the next delivery parcel. This quickly results in a sub-
optimal route, followed by a local search employing the 2-opt move (Croes 1958). 
Each chromosome’s quality is measured by the fitness function described in Eq. 
(11), which feeds back into the evolutionary process.

Chromosome =

⎛
⎜⎜⎜⎝
gene0
⏟⏟⏟
#routes

, gene1,… , genen
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

Parcels

⎞
⎟⎟⎟⎠
.

(16)r =

⌊
1

gene0

⌋
.

(17)parcel’s route index i = ⌊genei × r⌋.



	 S. Heshmati et al.

1 3

5 � Experiments and discussion

The experimental section is subdivided into three parts. The first compares the pro-
posed algorithms, the second analyzes several existing and alternative real-world 
data policies, and the third highlights the insights gained via experimentation.

All experiments were performed on instances based on real-world data from 
e-commerce delivery carriers which details their activities for between 2 and 6 
months and their regional size which ranges from a single (sub)urban environment 
to an area of over 30,000 km2 . The data contain over one million parcels, specifies 
each parcel’s earliest and latest delivery date, the parcel’s origin depot and finally 
its delivery address. Furthermore, real-world vehicle characteristics (cost per kilom-
eter, fuel consumption, range, and driver wages) for different vehicle types were also 
provided by the e-commerce delivery carriers, thereby enabling a highly accurate 
simulation of the EDP’s KPIs. Due to confidentiality and privacy issues, publish-
ing the data in its original form is prohibited. A selection of real-world data was 
anonymized and posted online1, enabling a transparent comparison of the proposed 
algorithms and also encouraging other researchers to compete with the proposed 
solution methods. All the destinations of parcels and collection points are rand-
omized within a radius of approximately 7 m and depot locations are randomized 
within a radius of approximately 1 km. Vehicle characteristics were also randomized 
via a confidential conversion factor. Three sets of instances were thus generated: 
rural, suburban, and urban.

Real-world data were applied for the alternative policies, since it was deemed 
important to provide results on unaltered data from e-commerce delivery carriers. 
Consequently, only the disclosure of aggregated information is possible for these 
experiments. However, this information certainly suffices for the purpose of the 
experiments. In addition to the aggregated results, instance size and primary vehi-
cle characteristics are also supplied for each simulation, thereby providing further 
insight regarding each scenario.

5.1 � Algorithm analysis

The CI and R&R algorithms were implemented in Java, while the genetic algorithm 
was implemented via the BRKGA library in C++ 11. All experiments were exe-
cuted on an Intel®Xeon®CPU E5-2640 v3 @ 2.6 GHz processor.

CI, BRKGA, CI + R&R and 1RPP + R&R were tested on three sets of instances: 
rural (R), urban (U), and suburban (S) instances. Experiments based on 1RPP with-
out any improvement phase would certainly be uncompetitive and are, therefore, not 
considered. The 16 small instances ranging from 3 to 76 parcels correspond to the 
rural instances. The urban instances, meanwhile, correspond to five medium-sized 
instances ranging from 594 to 886 parcels. Finally, suburban instances are repre-
sented by five large instances ranging from 3743 to 5529 parcels.

1  https​://bench​mark.gent.cs.kuleu​ven.be/hdp/.

https://benchmark.gent.cs.kuleuven.be/hdp/
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Three fleet types are employed for rural instances: diesel (D), CNG (C), and 
mixed (M). Electric vehicles (E) are not employed given that some delivery 
points lie beyond their range. Unlike rural areas, delivery points in suburban and 
urban areas are close to the depot, thus enabling the utilization of electric vehi-
cles in such regions.

Equation (11) is employed as evaluation function in all experiments. For sim-
plicity purposes, � , � , � , and � are set to 1.

Given all algorithms’ stochastic behavior, all reported computational results 
presented in this paper are based on five runs per instance. Figure  3 compares 
the algorithms’ results obtained for rural instances employing diesel, CNG, and 
mixed vehicles, respectively.

The horizontal axes represent the instances and the employed fleet (R0D, for 
example, represents rural instance number 0 addressed with diesel vehicles). 
Emissions, represented on the vertical axis, are the most relevant KPI for this par-
ticular study, while also being demonstrative of the trend among all other KPIs 
and, therefore, constitutes an accurate indicator of solution quality.

Table  2 compares the proposed algorithms in terms of number of best and 
worst solutions attained. The four algorithms yield solutions of identical quality 
for 24 out of the 48 instances. No significant performance difference between the 
four algorithms is noticeable with respect to the rural instances. BRKGA does, 
however, provide the most frequent occurrence of best solutions and least fre-
quent occurrence of worst solutions with respect to this emissions KPI.

Figure  4 illustrates the algorithmic performance on urban instances. As the 
number of parcels is higher for urban than for rural instances, the BRKGA algo-
rithm no longer clearly outperforms the other algorithms and instead competes 
with 1RPP + R&R for the first place.

Figures  5 and 6 detail suburban instance results in terms of emissions and 
computational time, respectively.  Figure  5 shows useful insofar as illustrating 
how the straightforward CI, as expected, exhibits the highest emission levels for 
almost all instances. BRKGA achieves better results, particularly for rural (aca-
demic-sized) instances. Finally, R&R achieves the lowest emission levels for all 
instances. Figure 6, meanwhile, presents computation time on a logarithmic scale, 
clearly illustrating how CI is (by far) the fastest-performing algorithm, with R&R 
taking longer and BRKGA coming in third.

In essence, while BRKGA performs best for academic-sized instances, it 
requires considerable computational time to reach high-quality solutions for real-
world instances. Due to this scaling issue, CI represents the only viable option 
when tackling larger real-world instances containing up to one million parcels. 
Indeed, while CI’s emission levels are the highest among these three algorithms, 
its results are most comparable to those implied by historical data sourced from 
the companies.

Tables 5, 6, and 7 detail the results of the four algorithms—CI, BRKGA, CI + 
R&R, and 1RPP + R&R—with respect to vehicle type (VT), number of parcels 
(#P), distance per parcel (Dis), emissions per parcel (Em), cost (€), number of 
routes (#R), and execution time (seconds).
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(a) Algorithmic performance on rural instances with diesel vehicles.
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(b) Algorithmic performance on rural instances with CNG vehicles.
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(c) Algorithmic performance on rural instances with mixed vehicles.

Fig. 3   Algorithmic performance with respect to the emissions KPI on the rural (R) instances, assuming 
a diesel (D), b CNG (C), and c mixed (M) vehicles
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5.2 � Alternative policies analysis

This section simulates the proposed alternative parcel delivery policies on real-world 
e-commerce delivery data. Due to confidentiality issues, only aggregated results are 
presented. The size of the real-world instances makes CI the most appropriate algo-
rithm for simulating scenarios enabling to investigate the impact of ECO vehicles on 
parcel delivery (Sect. 5.2.1), the impact of a shift from home deliveries to collection 

Table 2   Comparison of algorithm performance with respect to emissions—rural instances

CI BRKGA CI + R&R 1RPP + R&R

Number of best solutions 4 11 9 10
Number of worst solutions 14 3 3 9
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Fig. 4   Algorithmic performance with respect to the emissions KPI on the urban instances
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Fig. 5   Algorithmic performance with respect to the emissions KPI on the suburban instances
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point retrievals (Sect.  5.2.2), and alternative delivery policies (Sect.  5.2.4). The 
instances employed to study the regional carrier monopolies (Sect. 5.2.3) are much 
smaller, which enables the application of the best performing algorithm in terms of 
quality, namely, 1RPP + R&R.

5.2.1 � Impact of ECO vehicles on parcel delivery

Three types of fuel were considered for these experiments: diesel, CNG, and elec-
tricity (E). To enable an interesting comparison between the different fuel types 
and corresponding vehicles, drivers are assumed to have three primary tasks: load 
the van at the depot, deliver the parcels, and debrief at the depot (such as report-
ing undelivered or refused parcels). Vehicle characteristics are defined for each fuel 
type in Table 3 under the assumptions that the maximum working time for a parcel 
delivery driver is 10 h per day and the process of both loading and debriefing takes 
approximately 1 h in total.

1
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Fig. 6   Algorithm performance with respect to computation time

Table 3   Vehicle properties for the ECO-vehicle experiments

aRanges for the Diesel, Diesel S/S, and CNG vehicles are adjusted to reflect the limits imposed by vehi-
cle speed and maximum route time
b Electric vehicles do not produce emissions while driving, but the reported emissions are those corre-
sponding to the production of the required electricity, assuming that the average values reported by the 
EU (European Commission 2011)

Diesel Diesel S/S CNG S/S E-single E-double

Speed 30 km/h 30 km/h 30 km/h 30 km/h 30 km/h
Rangea 300 km 300 km 300 km 140 km 112 km
Max route time 9 h 9 h 9 h 9 h 4 h
Routes per day 1 1 1 1 2
Start/Stop No Yes Yes Yes Yes
CO2 emissionb 3140 g/l 3140 g/l 2532 g/kg 278 g/kWh 278 g/kWh
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Two electric vehicle types are defined: E-single which has a maximum tour dura-
tion of 9 h, allowing for a single route per vehicle per day and an alternative E-dou-
ble vehicle with a maximum tour duration of 4 h, resulting in two routes per vehicle 
per day. E-double vehicles employ quick chargers at the depot capable of charging 
the battery up to 80% in 1  h, thereby enabling the execution of up to two routes 
per day. The quick-charge duration is equivalent to the time required to debrief for 
the first route and load parcels for the second. Both CNG and E-vehicles employ 
start–stop technology, meaning that their engines are switched off and zero emis-
sions temporarily occur, while the driver is outside the vehicle. Start–stop technol-
ogy is optional for diesel vehicles, and therefore, a comparison is made between 
scenarios with and without start–stop technology.

The effect of employing ECO vehicles for parcel delivery is simulated for a large 
(sub)urban area, with the depot located at the edge of the city center. 47,000 par-
cels require delivery over a period of 2 months and the maximum distance between 
depot and parcel destination is 18 km.

All parcels are delivered by a standard diesel van unequipped with start–stop 
technology in the reference scenario and this is compared against scenarios employ-
ing ECO vehicles.

Figure 7 summarizes the results for ECO-vehicle simulations. The chart demon-
strates how applying start–stop technology during parcel delivery results in consid-
erable emission decreases. Applying start–stop technology has no significant influ-
ence on other KPIs. Fuel costs, for example, represent such a small cost share that 
the decrease in fuel consumption results in no significant total cost reduction. When 
switching to CNG vehicles, CO2 emissions decrease even further, while total costs 
remain stable. Furthermore, NOx emissions are practically reduced to zero. Switching 
to CNG vehicles may, therefore, prove ecologically worthwhile for carriers. When 
employing E-double vehicles performing two routes per day with quick-charge tech-
nology, small decreases in the cost KPI are noticeable. There are, however, 25% more 
vehicles required to deliver the parcels, rendering them undesirable from a practi-
cal and investment perspective. When considering the E-single vehicles, however, a 

Fig. 7   Percentual gain (vertical) of employing ECO vehicles on the different KPIs (horizontal)
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completely different result is obtained. The cost KPI is significantly reduced com-
pared to the diesel van scenario and all parcels are delivered using an equal number 
of vehicles. Therefore, employing electric vehicles is both economically and ecologi-
cally worthwhile for carriers operating within urban environments.

5.2.2 � Impact of a shift from home deliveries to collection point retrievals

Data concerning delivery parcels in an urban area over a period of 2 months was 
employed to accurately investigate the effects of transitioning from home deliveries 
to collection point retrievals. Approximately 28,000 parcels were delivered over this 
2 month period with between 60 and 1000 delivered on any single day. Characteris-
tics of the vehicles employed are those of a standard diesel van running at 30 km/h, 
as detailed in Table 3.

An existing network of 24 collection points was utilized with all original delivery 
addresses within 3 km of their collection point for the simulation. By contrast, all parcels 
are delivered to their original destination in the reference scenario. 10–100% of the par-
cels are randomly moved from their original destination to the nearest collection point.

Figure 8 illustrates the decrease in emissions when delivering varying percent-
ages of parcels to collection points. Emission costs decrease by 0.3–78% when uti-
lizing a dense collection point network. Internal KPIs ( fl , fd and fv ) demonstrate a 
similar reduction, as indicated by Fig. 9.

It is noteworthy that the reimbursement of collection point personnel is not 
included in the cost computation and the actual cost decrease will, therefore, be 
somewhat lower.

5.2.3 � Regional carrier monopolies: (sub)urban vs. rural

Two different regions were considered when simulating the effect of regional car-
rier monopolies. Region 1 is a medium-sized city and its surrounding suburban 

Fig. 8   Influence of the percentage of parcels delivered at collection points (horizontal) on emissions 
(vertical)
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environment with 25,000 parcels requiring delivery over a period of 1 month, 
corresponding to a high parcel density. Parcel and depot data from two carriers 
were obtained, while only depot information was obtained from a third carrier 
for this region. The first two carriers have depots at the edge of the considered 
region, whereas the third is centrally located. In the reference scenario, Carriers 1 
and 2 deliver parcels from their respective depots. Characteristics of the vehicles 
employed are those of a standard diesel van running at 30 km/h ((Sub)urban) and 
50 km/h (Rural), as described in Table 4, and the algorithm applied is 1RPP + 
R&R heuristic.

Figure  10 summarizes Region 1’s results when all parcels are delivered by 
either Carrier 1, Carrier 2, or Carrier 3 in a monopoly scenario. Beware that all 
parcels’ origins are assumed to be the monopoly holder’s depot. Only one small 
advantage is to be made from assigning carrier monopolies in this type of dense 
region, with cost decreases of between 4 and 7%. All carriers’ delivery routes 
appear to already be saturated and there is little advantage insofar as including 
additional parcels in their workload. Moving the depot from the region’s edge 
to a central location (Carrier 3) results in greater KPI improvements, with a cost 

Fig. 9   Influence of the percentage of parcels delivered at collection points (horizontal) on three KPIs 
(vertical)

Table 4   Vehicle properties for 
the default diesel van

The vehicle’s range is adjusted to reflect the speed limits and maxi-
mum route duration

City Rural

Speed (diesel van) 30 km/h 50 km/h
Range 300 km 500 km
Max route time 10 h
CO2 emission 3140 g/l
Stop duration 4 min
MultiStop duration 0.4 min per parcel
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decrease of 14%, mainly due to the decrease in distance traveled per parcel. It 
may, however, still be questioned whether this decrease in delivery cost suffi-
ciently compensates for the probable increase in costs and complexity in the long 
run, since parcels must be redistributed outside current carrier logistic flows.

Region 2 is more rural with a total of 150 parcels requiring delivery over a period 
of 5 weeks, corresponding to a (very) low parcel density. Parcel and depot data were 
obtained from only one single major carrier operating in this region. For investigating 
the effect of multiple carriers in the region, the delivery data have been divided into 
five sets. Subsequently, these sets have been assigned to separate fictitious carriers, 
thus mimicking the effect of five carriers operating simultaneously within the region. 
All parcels are assumed to be delivered within 1 week, albeit on their original deliv-
ery day of the week. In the reference scenario, parcels are delivered by five carriers 
independently. Four different scenarios simulate the impact of a rural carrier monop-
oly. The resulting costs and emissions are compared against the reference scenario.

Characteristics of the employed vehicles are those of a standard diesel van run-
ning at 50  km/h, as described in Table  4. Given how rural regions demand long 
travel distances per parcel, these are valid assumptions when compared against the 
30 km/h for (sub)urban regions.

Figure 11 summarizes the results of scenarios in which all activities of two, three, 
four, or five carriers are merged into a monopoly home delivery. The results are 
compared against the reference scenario, where all five carriers conduct their deliv-
ery share in the region.

By contrast to the results obtained in the (sub)urban region, the benefits of 
enforcing a regional carrier monopoly are considerable. Decreases in emissions, 
costs, required vehicles, and distance per parcel of up to 80% were observed, while 
the average route duration increased from 4h40 to almost 8 h, thereby highlighting 
the capability of operating far more efficient routes when under increasing density 
conditions.

Fig. 10   Relative delivery costs in case of an urban carrier monopoly (either Carrier 1, 2, or 3), compared 
to the situation, where all three carriers have a share
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Compared to urban deliveries, however, a monopolist’s absolute rural delivery 
costs remain almost twice as high while the distance per parcel increases threefold, 
illustrating how low-density regions prove commercially challenging even under 
monopoly conditions.

5.2.4 � Alternative delivery policies

Impact of reduced service time and start–stop technology
The following experiments concern simulating the impact of reducing the time 

required to deliver a parcel to its destination (service time) and the application of 
start–stop technology during parcel delivery. 47,000 parcels are delivered by the 
default diesel van with a service time of 4 min for the reference scenario. The simu-
lation scenarios, meanwhile, consider service times of 1–5 min, and for each service 
time duration, the influence of applying start–stop technology is investigated.

Several interesting conclusions may be extrapolated from the results presented in 
Fig. 12. First and foremost, applying start–stop technology significantly reduces emis-
sions during parcel delivery. Emissions are reduced by almost 40% for the base case 
(represented by the black line), where the service time is 4 min when switching off the 
engine during parcel delivery instead of letting the engine run idle (represented by the 
red line). Second, the graph clearly illustrates how service time must be halved to 2 min 
to obtain the same emission reductions as those obtained by applying start–stop technol-
ogy when service time equals 4 min. Thus, from a purely ecological point of view, the 
application of start–stop technology represents a simple and immediate benefit, since it 
is much easier to implement than delivery policy changes which halve service time.

Figure 13, by contrast, visualizes the influence of start–stop technology and ser-
vice time upon delivery costs. Given that the application of start–stop technology 
only affects total fuel cost (which is marginal compared to the driver’s wage cost), 
it is unsurprising that the application of start–stop technology has only a negligible 

Fig. 11   Relative KPIs in a rural carrier scenario, where two, three, four, or five carriers are merged into 
a monopoly, reflecting increasing delivery density. The reference scenario reflects all five carriers having 
their share
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influence upon delivery costs. Therefore, from an economic perspective, it may be a 
difficult decision concerning whether or not investing in additional start–stop tech-
nology for new vehicles is worthwhile. Much greater cost reductions are obtained by 
reducing service time. Indeed, with high driver wage costs, any reduction in service 
time should incur significant delivery cost savings. These results demonstrate the 
need to further investigate the effects on service times by reducing parcel sizes and 
thereby increasing the percentage of parcels deliverable by mailbox.

Impact of increased time windows
The following experiments simulate the impact of increasing time windows for par-

cel delivery in an urban environment. Default diesel vans with a 4 min service time are 
employed to deliver over 47,000 parcels. The simulation investigates the impact of length-
ening parcel delivery time windows from 1 to 4 days for 20, 40, and 60% of the parcels.

Fig. 12   Influence of service times [horizontal (min)] and start–stop technology (start–stop) on emissions 
(vertical). The reference scenario considers 4 min service time for standard vehicles without start–stop 
technology

Fig. 13   Influence of service times [horizontal (min)] and start–stop technology (start–stop) on delivery 
cost (vertical). The reference scenario considers 4  min service time for the standard vehicles without 
start–stop technology
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Figure 14 presents the results, where the horizontal axis corresponds to the three 
scenario categories (20, 40, and 60%) and the vertical axis details the level of emissions 
relative to the reference scenario (no extended time windows). The figure illustrates 
how increasing time windows does not yield the expected benefits. Indeed, increasing 
the time windows for 60% of the parcels by 4 days only results in emission decreases of 
7%. In addition, a time window increase for 20% of the parcels by 2, 3, or 4 days result 
in similar emission decreases. A careful analysis of the results revealed that the real 
routes are densely loaded with deliveries. Regardless of any time window flexibilities, 
the most restrictive constraint appears to be the drivers’ working time limits.

5.3 � Discussion and insights

This paper’s primary objective was to investigate the most profitable mode of 
e-commerce delivery operations, and it sought to reduce CO2 emissions while sat-
isfying customer service expectations. Computational experiments provided several 
insights which may be summarized as follows:

1.	 Contrary to intuition, regional carrier monopolies do not increase delivery effi-
ciency, except in regions with very low parcel density.

2.	 Delivering parcels to a collection point instead of customers’ homes significantly 
decreases both external (emissions) and internal costs (delivery cost, service time, 
fleet size). Moreover, customers collect their order at a delivery point whenever 
it proves convenient. This represents an indirect benefit for the transporter (no 
additional waiting times, no failed deliveries).

3.	 Significant benefits are obtained in all scenarios when the percentage of bundled 
deliveries is increased. Indeed, the number of orders requiring delivery to one 
point does not linearly increase service time at this destination.

Fig. 14   Impact of increased delivery time windows on emissions. The horizontal axis indicates the por-
tion of deliveries with increased time windows and the vertical axis presents relative emissions. The ref-
erence scenario indicates emissions for the original time windows
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4.	 Reducing delivery duration has the greatest impact on total cost, as expected, 
since it shortens the drivers’ working time. For instance, if a customer is not at 
home, the driver must first wait for some time before writing a delivery notice.

5.	 Extending time windows does not yield the expected benefit, the primary reason 
being that most tours are saturated and cost reductions are marginal when com-
pared against driver costs or those generated by to-the-door delivery.

6 � Conclusion

The paper proposed a general optimization approach to the e-commerce deliv-
ery problem, enabling the assessment of various operational delivery policies on 
both costs and emissions. A mixed integer programming formulation, heuristic 
approaches, and several delivery policies were presented. Computational results 
were obtained by applying the presented heuristics to a selection of anonymized 
real-world data gathered from e-commerce delivery transporters.

Interestingly, experimental results often proved counter-intuitive. For example, 
while one might assume that extending delivery time windows would reduce both 
costs and emissions, results indicate that such relaxations result in little or no profit. 
Given high personnel costs, one would have also assumed that reducing the driving 
time would be beneficial. Instead, it appears that, especially in urban areas, reducing 
delivery time potentially contributes more significantly towards cost and emission 
reductions than reducing the actual driving time. Results reveal how emission costs 
are decreased by up to 78% when utilizing a dense collection point network and 
by up to 80% when enforcing a regional carrier monopoly in rural areas. Another 
important observation is that switching off vehicle engines during individual parcel 
delivery reduces the environmental impact considerably.

Several interesting avenues exist for future research. Recently, many companies 
in the United States and India have begun implementing a crowd-shipping strategy 
(Archetti et al 2016). By employing crowd-shipping, distributors ask customers who 
are collecting their orders to deliver those of other customers on their return jour-
ney in exchange for certain incentives. From a policy point of view, the environmen-
tal impact of integrating crowd-shipping into policies such as delivering to collec-
tion points or carrier bundling on home deliveries is worth exploring. This paper 
researches the impact of a few new policies, but many more remain to be investigated. 
Other research directions may focus on the realistic modeling of certain vehicle pro-
cesses, such as energy consumption or CO2 emissions. The vehicles’ capacity con-
straints may represent yet another important issue that should be further investigated.
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Appendix

See Tables 5, 6, 7.
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