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Abbreviations 

 

CIT, cold ischemia time 

CS, cold storage 

DBD, donation after brain death 

DCD, donation after circulatory death 

DGF, delayed graft function 

ECD, expanded criteria donor 

HLA, human leukocyte antigen 

HMP, hypothermic machine preservation 

HR, hazard ratio 

HSP, heat-shock protein 

HTK, histidine-tryptophan-ketoglutarate 

KLF2, Kruppel-like factor type 2 

OR, odds ratio 

SCD, standard criteria donor 

SD, standard deviation 

SRTR, Scientific Registration of Transplant Recipients 

UW, University of Wisconsin 
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Abstract 

 

BACKGROUND 

Hypothermic machine perfusion (HMP) of deceased donor kidneys is associated with better 

outcome when compared to static cold storage (CS). Nevertheless, there is little evidence 

whether kidneys with short cold ischemia time (CIT) also benefit from HMP and whether 

HMP can safely extend CIT. 

 

METHODS 

We analysed prospectively collected data from the Machine Preservation Trial, an 

international randomized controlled trial. 752 Consecutive renal transplants were included: 1 

kidney of each of the 376 donors was preserved by HMP, the contralateral organ was 

preserved by CS.  

 

RESULTS 

The mean CIT was 15:05 hours (SD 4:58 hours). A subgroup analysis was performed, groups 

were based on CIT duration: 0-10 hours, 10-15 hours, 15-20 hours, or 20 hours and more. 

Delayed graft function (DGF) incidence in the subgroup with up to 10 hours CIT was 6.0% 

(N=3/50) in the HMP arm and 28.1% (N=18/64) in the CS arm (univariable p=0.002, 

multivariable OR 0.02, p=0.007). CIT remained an independent risk factor for DGF for 

machine perfused kidneys recovered from DBD donors OR 1.06, 95% CI 1.017-1.117, 

p=0.008), DCD donors (OR 1.13, 95% CI 1.035-1.233, p=0.006) and ECD donors (OR 1.14, 

95% CI 1.057-1.236, p=0.001). 
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CONCLUSION 

In conclusion, HMP resulted in remarkably lower rates of DGF in renal grafts that were 

transplanted after a short CIT.  Also, CIT remained an independent risk factor for DGF in 

HMP-preserved kidneys. 
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Introduction 

Kidney transplantation is the preferred treatment for end-stage renal disease. Transplantation 

numbers are limited by a shortage of organ donors. To utilise all available deceased donor 

organs, optimal preservation of allografts between procurement and transplantation is 

paramount. In kidney transplantation, preservation of deceased donor kidneys by hypothermic 

machine perfusion (HMP) has been associated with better posttransplant outcome than static 

cold storage (CS).
1-6

 Other benefits of HMP include the opportunity to study renovascular and 

perfusate parameters.
7-10

 

 

Hypothermically preserved grafts still sustain cold ischemic injury. During cold ischemia, 

there is a build-up of toxic substances, lysosomal instability and cellular oedema, through 

inactivation of Na+/K+ ATPase pumps, resulting in cold ischemic damage.
11,12

 Longer CIT in 

renal transplantation is associated with the occurrence of DGF, PNF and decreased graft 

survival.
13,14

 Especially marginal kidneys, kidneys from ECD and DCD donors, have shown 

to be more sensitive to cold ischemia.
13,15

 These processes are responsible for an increased 

risk of delayed graft function of the transplanted kidney and have a negative effect on the 

long-term graft and patient survival, particularly if the cold ischemia time is prolonged.
16

 

It is generally presumed that HMP only benefits marginal kidneys or kidneys that sustain 

significant ischemic injury and that kidneys that are transplanted after a short cold ischemic 

period do not benefit from this preservation technique.
2,4,17

 Another general clinical 

presumption is that cold ischemia time only has a small effect on outcome when a kidney is 

preserved by HMP, ie that a kidney is “safer” on the machine than it is in cold storage. The 

aim of this study was to test these 2 hypotheses.   
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Materials and Methods 

MACHINE PRESERVATION TRIAL 

We performed a post hoc data analysis of the Machine Preservation Trial data.
4,5

 This 

international multi-center randomized controlled trial was conducted in the Netherlands, 

Belgium and in the North Rhine-Westphalia federal state of Germany and investigated the 

effects of machine perfusion on delayed graft function (DGF), graft survival and other 

relevant end points. In the study, all consecutive donation after circulatory death (DCD) 

category III or IV and donation after brain death (DBD) kidney pairs were randomized in such 

a way that 1 kidney of each pair underwent HMP and the contralateral organ was cold stored. 

 

STUDY POPULATION AND INCLUSION CRITERIA 

376 DBD or DCD kidney donors aged 16 years or older were included. DCD donors were in 

Maastricht category III (awaiting circulatory death after withdrawal of treatment).
18

 Kidney 

pairs were only included if both organs were transplanted into 2 different recipients. 

Exclusion criteria were multi-organ transplantation in 1 or both recipients and death of a 

recipient within 1 week after transplantation (follow-up of 7 days was required for the 

primary end point: DGF).  

 

PRESERVATION 

All included kidneys underwent in situ vascular flush with either cold storage University of 

Wisconsin (CS-UW) or histidine-tryptophan-ketoglutarate (HTK) solution, based on local 

retrieval team practices. Kidney pairs were flushed out with the same solution. The HMP-

assigned kidneys were connected to the perfusion machine (LifePort Kidney Transporter, 

Organ Recovery Systems, Itasca, IL, USA) for the whole duration of the preservation period. 
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HMP was done with machine preservation solution (Kidney Preservation Solution-1, KPS-1, 

Organ Recovery Systems) at 1-8 degrees Celsius and a set perfusion pressure of 30mmHg. 

 

STATISTICAL ANALYSIS 

The patient cohort was divided into 4 different groups, based on the duration of the cold 

ischemia time. The empirically chosen groups are 0-10 hours, 10-15 hours, 15-20 hours or 

greater than 20 hours.  

 

Continuous variables are presented as mean ± standard deviation (SD) if there is a normal 

distribution and as median and range otherwise.  

 

Differences in baseline characteristics between donor types were tested with independent-

samples t-tests for normally distributed continuous variables, Mann-Whitney U-tests for non-

normally distributed continuous variables and χ
2
-tests for categorical variables. 

 

DGF was defined as any dialysis requirement in the first week after transplantation. Death-

censored graft survival was calculated with the Kaplan-Meier survival analysis method. 

Multivariable survival analysis was done with the Cox proportional hazards analysis, using 

the same covariates as in previous analyses with these data. The choice of these covariates 

was based on relevant literature. The risk of DGF was modelled with multivariable logistic 

regression analysis.
1,4-6,19

 Variables used in the Cox proportional hazards analysis and 

multivariable logistic regression analysis were: HMP or CS, donor and recipient age, time 

spent on the waiting list, panel-reactive antibody percentage, cold ischemia time, expanded or 

standard criteria donation, total number of HLA mismatches and the number of previous 

transplants. To further explore the impact of the preservation method on the effect that the 
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CIT had on the risk of DGF, an interaction term (preservation method x CIT) was added to 

the multivariable logistic regression model for DGF.   

 

All analyses were performed with SPSS (Statistical Package for the Social Sciences) version 

22.0. A p value of ≤0.05 was considered to indicate statistical significance.  

 

EXPANDED CRITERIA DONATION 

Expanded criteria donation was defined as a donor age over 60 years or a donor age between 

50 and 60 years with at least 2 of the following: a cerebrovascular cause of death, a serum 

creatinine level greater than 132 μmol/L (1.5mg/dL), or a history of hypertension.
5,20

  

 

ETHICAL APPROVAL 

Approval for this international trial was obtained from ethics review boards in each trial 

region and from the Eurotransplant Ethical Advisory Committee and the Eurotransplant 

Kidney Advisory Committee. 

 

Results 

Between November 1, 2005 and September 12, 2007, a total of 376 consecutive kidney 

donors were included and a total of 752 kidneys were randomly assigned to either HMP or 

CS.  

 

As a result of the study’s strictly paired design, donor characteristics were exactly the same 

for both treatment arms. Median donor age was 49.6 years (range 16-81). There were 294 

DBD donors and 82 DCD category III donors. 105 Were expanded criteria donors, the other 

271 were standard criteria donors.  
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Table 1 shows the previously reported overall baseline characteristics.
5
 For the HMP group, 

median recipient age was 53 years (range 11-79) and for the CS group, this was 52 (range 2-

79). Cold ischemia times were 15 hours and 10 minutes (range 3-47 hours) and 15 hours and 

5 minutes (range 3-30 hours), respectively. Table 2 shows baseline characteristics for each 

CIT subgroup.  

 

THE EFFECT OF HMP ON DGF ACROSS DIFFERENT COLD ISCHEMIA TIMES 

The effect of HMP on the incidence of DGF is shown in Table 3. We have performed a 

subgroup analysis after empirically dividing the dataset into 4 CIT groups (less than 10 hours, 

10-15 hours, 15-20 hours and more than 20 hours). The impact of HMP in this dataset was 

largest in the subgroup that had sustained the least amount of cold ischemic injury, a CIT less 

than 10 hours. In this subgroup, the incidence of DGF after transplantation was 6.0% (3 out of 

50) for kidneys preserved by HMP, whereas after CS this incidence was 28.1% (18 out of 64). 

This difference was statistically significant in both a univariable analysis (p=0.002) and a 

multivariable analysis (odds ratio (OR) = 0.015, p=0.007). In the group with the longest cold 

ischemic period, there was also a difference in DGF occurrence between the 2 preservation 

methods. Although this difference did not reach statistical significance, there was a definite 

trend, especially in the multivariable analysis. In this subgroup with the longest CIT, the OR 

for the risk of developing DGF was 0.335 (95% CI 0.11-1.015), p=0.053. In the other 

subgroups, that sustained 10-15 and 15-20 hours of cold ischemia, the differences in DGF 

incidence between CS and HMP preserved grafts were small. Full data are provided in Table 

S1 (<10 hrs), Table S2 (10-15 hrs), Table S3 (15-20 hrs) and Table S4 (>20 hrs) (SDC, 

http://links.lww.com/TP/B552). 
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THE EFFECT OF HMP ON 3 YEAR GRAFT SURVIVAL 

Kaplan-Meier and multivariable Cox proportional hazards analysis was performed to 

investigate whether the observed differences in DGF incidence would lead to a long-term 

effect of HMP versus CS on graft survival in each of the 4 CIT groups. For HMP and CS 

respectively, the graft survival rates were 88.0% vs 81.3% for 0-10 hours of CIT, 91.9% vs 

90.1% for 10-15 hours, 93.8% vs 88.5% for 15-20 hours and 84.9% vs 83.7% for more than 

20 hours of cold ischemia. There was no statistically significant 3 year graft survival benefit 

for HMP preserved kidneys in any of the 4 subgroups. Kaplan-Meier graphs are shown in 

Figure 1.  

 

THE EFFECT OF CIT ON THE RISK OF DGF DURING HMP VERSUS CS 

In a multivariable logistic regression analysis modelling the risk of DGF, the OR of each 

additional hour of CIT during CS overall was 1.08 (95% confidence interval (CI) 1.03-1.14, 

p=0.004). The multivariable OR of each hour of CIT during HMP overall was also 1.08 (95% 

CI 1.04-1.14, p=0.003). Multivariable interaction analysis showed that HMP vs CS did not 

change the effect that the CIT had on the risk of DGF (nonsignificant interaction with no 

evidence of effect modification, p=0.797). Next, multivariable analyses were performed for 

various donor type subgroups: The multivariable OR of an additional hour of CIT during 

HMP was 1.06 (95% CI 1.017- 1.117, p=0.008) for DBD kidneys and 1.13 (95% CI 1.035-

1.233, p=0.006) for DCD grafts. For ECD organs, the OR was 1.14 (95% CI 1.057-1.236, 

p=0.001).  

 

THE EFFECT OF PERFUSION SOLUTION 

Kidney pairs were flushed out with either CS-UW (n=226), HTK (n=143) or another 

perfusion solution (n=7). To rule out effects of the preservation solution in our analyses, we 
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compared groups for the prevalence of HTK and CS-UW use and performed both univariate 

and multivariate analyses. 

 

For 0-10 hours of CIT, 55% of the kidney pairs were flushed with CS-UW. For 10-15, 15-20 

and >20hrs, the percentage of kidney pairs flushed with CS-UW was 62%, 59% and 55%, 

respectively. There was no significant difference in the number of CS-UW flushed kidney 

pairs throughout the 4 CIT groups (
2
, p=0.48).  

 

In cold storage preserved kidneys, there was no significant effect of the preservation solution 

for either DBD (p=0.760) or DCD kidneys (p=0.829). The multivariate OR for DGF when 

comparing CS-UW to HTK as a preservation solution during cold storage was 1.481 (0.797-

2.752, p=0.214). 

 

Discussion 

Optimal preservation of deceased donor organs is paramount and sustains organ viability in an 

ex vivo setting.
21

 Hypothermic machine perfusion has been associated with lower rates of 

delayed graft function and better long term graft survival than its more widely employed 

counterpart, static cold storage.
4,5,22-24

   

 

Interestingly, in current clinical practice, there are some general assumptions about the 

benefits and limitations of hypothermic machine perfusion, based on the evidence that 

supports HMP as a more beneficial preservation method.
1-6,19,25

 This may have a paradoxical 

effect: the underestimation of some of the most well-known risk factors for delayed graft 

function, especially cold ischemia time, during HMP.  
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Our data suggest that these general assumptions may be a misconception about the protective 

effect of HMP. It is thought by many that the duration of cold ischemia time can be relatively 

safely extended if kidneys are machine perfused. We have shown that, quite surprisingly, 

HMP actually yields the largest benefit in kidneys which are preserved for a relatively short 

period, less than 10 hours of CIT. There was also a trend towards a relevant beneficial effect 

of HMP in kidneys that are stored for more than 20 hours. However, in this subgroup the 

differences in DGF incidence between HMP and CS were not significant, which is likely due 

to the relatively small number of organs in the prolonged CIT subgroup. In the other 2 

subgroups, the relative effect of HMP vs CS on the risk of DGF was less pronounced and, 

with limited numbers in each group, not statistically significant. Irrespective of a potential 

benefit of HMP, the present study shows that in HMP preserved kidneys it is also essential to 

limit CIT as much as possible. Previous studies have shown that CIT is an independent risk 

factor for DGF during CS.
13,16,26

 In a multivariable data analysis, we have shown that the 

detrimental effect of CIT during HMP has a similar magnitude as during CS: Regardless of 

whether the kidney is on the pump or in a bag, every additional hour of cold ischemia 

increases the odds for developing delayed graft function with 8%.  

 

In current clinical practice, HMP is used most often to preserve kidneys that are expected to 

undergo a long period of cold ischemia. The resulting lack of data on the beneficial effect of 

HMP versus CS for short preservation times may have led to the common presumption that 

there is no additional value of HMP in kidneys that are transplanted quickly. Gill et al have 

reported data from the Scientific Registration of Transplant Recipients (SRTR)
27

 which 

showed a significant beneficial effect of HMP in kidneys recovered from SCD, ECD and 

DCD donors, with various CIT. In contrast with our findings, data from these 94,709 

transplant recipients, showed no significant benefit in a subgroup of kidneys from ECD or 
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DCD donors, transplanted after a short CIT. There are several differences in study design 

which may explain this discrepancy. First, ours was a prospectively randomized study, with 

no selection of which kidneys were pumped and which were cold stored. Second, in our study 

kidneys were all machine perfused during the entire preservation period, whereas most renal 

grafts in the SRTR region were only on HMP for a few hours just prior to transplantation, 

preceded by a longer period of CS. Third, our dataset was not large enough to also create 

meaningful subgroups of ECD and DCD kidneys out of the subgroup of kidneys with a short 

CIT. 

 

The present analysis of prospectively collected data shows that there is a clear cut and quite 

remarkable benefit of HMP for kidneys that undergo no more than 10 hours of cold ischemia. 

In this subgroup, the incidence of DGF in kidneys preserved by HMP was much lower than 

for cold stored organs. Such a relatively large benefit of HMP over CS in terms of DGF 

reduction has not been reported before. The underlying mechanisms are unknown and 

different causes can only be hypothesized. The beneficial effect could perhaps be attributed to 

vasodilatation and a lower vascular resistance after HMP. De Vries et al have shown that the 

renal resistance of a recently procured and cooled kidney usually decreases in the first 30-60 

minutes of machine perfusion; after this period renal resistance hardly decreases any further.
8
 

Vasodilatation may lead to improved reperfusion after transplantation with potentially 

beneficial effects on renal cortical perfusion, oxygen and nutrient delivery after 

transplantation. When CIT is long, renal oedema inhibits capillary flow in both HMP and CS 

and the benefits of the initial vasodilatation may be cancelled out.  

 

In addition, HMP may in theory help to better wash out vasoactive and inflammatory 

molecules and limit inflammatory reactions inside the graft after transplantation.
28,29

 A 
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relatively short period of HMP is likely to provide an already quite extensive wash out, with 

longer HMP times perhaps not eliminating much more of these components. During HMP, 

there is a more continuous exchange of electrolytes and other molecules between the 

preservation solution and the intracellular space, compared to static CS. Because of this, 

accumulation of pro-inflammatory cytokines such as interleukin-1, interleukin-6, tumour 

necrosis factor-α and tumour growth factor-β, heat-shock proteins (mostly HSP-60 and HSP-

70) and complement factor 3a may be partially prevented.
7,28,30-32

 Inhibition of the innate 

immune system through toll-like receptors and the complement system could be 1 of the 

underlying mechanisms of action of HMP.
28,31

 

 

In addition, Kruppel-like factor 2 may play a pivotal role in protection of the vascular 

endothelium during HMP.
33

 KLF2 is a transcription factor that plays a role in the 

development and activation of the vascular endothelium. It also attenuates induction of pro-

inflammatory molecules like E-selectin and vascular cell adhesion molecule 1 (VCAM-1), 

regulates gene expression of thrombomodulin and activates of endothelial nitric oxide 

synthase (eNOS) potently. 
34,35

 KLF2 is upregulated by pulsatile endothelial shear stress.
35,36

 

This may explain part of the protective effect of HMP and this particular mechanism of 

benefit is not likely to be stronger after longer periods of machine perfusion. The provision of 

pulsatile flow upregulates KLF2 to protect the vascular endothelium of an organ during the 

preservation period.
33

 

 

HMP may also have potential deleterious effects on the preserved graft. Shear stress can cause 

vascular injury, particularly endothelial injury, as a result of pressure driven flow of cold 

perfusate. Oedema may occur as a result of ischemic injury, resulting in higher vascular 

resistance.
37,38

 This may further intensify perfusion injury. These deleterious effects seem to 

ACCEPTED



Copyright © Wolters Kluwer Health. Unauthorized reproduction of this article is prohibited.

17 

be most pronounced during prolonged perfusion and in kidneys that are most vulnerable to 

cold ischemia time. Gill et al have shown that in DCD donors, HMP and CS have comparable 

results after 36 hours of CIT.
27

 This may be in part be explained by the hypothesis that 

beneficial effects of HMP diminish over time and eventually even are outweighed by the 

method’s deleterious effects.  

 

In conclusion, the overall superiority of HMP over CS as a preservation method for renal 

grafts is evident and has been shown before by many studies. In the present analysis of data 

obtained in a large randomized controlled trial, we have shown that HMP is beneficial when 

cold ischemia times are short. Also, we have found that cold ischemia time remains an 

independent and equally relevant risk factor for DGF when kidneys are preserved by HMP 

instead of CS.  

 

LIMITATIONS 

We have performed a post hoc data analysis of a randomized controlled trial. Hence, common 

limitations of post hoc analyses also apply to the present study. One of the most important 

issues is that due to the division of original data into 4 subgroups, statistical power 

diminishes. As a result of relatively small numbers per subgroup, we may for example not 

have picked up differences in graft survival between HMP and CS preserved kidneys, which 

were evident in the overall study group that had a larger sample size.  
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Figure legends 

 

Figure 1: Kaplan-Meier analysis with up to 3 year follow-up data for different cold ischemia 

times. Multivariable p values derived from Cox models are displayed in each graph. 

  

ACCEPTED



Copyright © Wolters Kluwer Health. Unauthorized reproduction of this article is prohibited.

24 

Figure 1 
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Table 1: Overall baseline study characteristics. Data are presented as median (range) or as 

number of patients. 

 

 

 

 

 

  

  HMP CS 

Donor characteristics 

Age (yrs) Median (range) 49.6 (16-81) 49.6 (16-81) 

Donor type 

DBD  294 294 

DCD category III  82 82 

Standard criteria  271 271 

Expanded criteria  105 105 

Recipient characteristics 

Age (yrs) Median (range) 53 (11-79) 52 (2-79) 

Cold ischemia time (hrs:min)  15:10 (3-47) 15:05 (3-30) 
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Table 2: Baseline characteristics split by cold ischemia time. Data are presented as number of cases (percentage) or median (range). 

 

CIT group  0-10 hours 10-15 hours 15-20 hours 20+ hours 

  HMP CS HMP CS HMP CS HMP CS 

Cohort size (no.)  50 64 160 141 113 122 53 49 

Donor age (yrs) Median (range) 61 (18-81) 57 (20-77) 48.5 (16-78) 49 (17-81) 48 (17-68) 49 (17-78) 50 (21-77) 48 (16-71) 

Donor sex Male 31 (62.0%) 37 (47.8%) 85 (53.1%) 80 (56.7%) 74 (65.5%) 72  (59.0%) 30 (56.6%) 31 (63.3%) 

 Female 19 (38.0% 27 (42.2%) 75 (46.9%) 61 (43.3%) 39 (34.5%) 50 (41.0%) 23 (43.4%) 18 (36.7%) 

Recipient age (yrs) Median (range) 64 (26-75) 62,5 (26-75) 52 (13-72) 52 (7-79) 54 (11-79) 49.5 (2-77) 49 (24-76) 50 (13-68) 

CIT (hrs:min) Median (range) 7:31 (4-10) 8:02 (3-10) 14:10 (10-15) 13:30 (10-15) 16:59 (15-20) 16:58 (15-20) 22:39 (20-30) 22:33 (20-47) 

Renal arteries (no.) 1 27 (54.0%) 38 (59.4%) 95 (59.4%) 70 (49.6%) 48 (42.5%) 58 (47.5%) 21 (39.6%) 26 (52.1%) 

 2 21 (42.0%) 22 (34.4%) 52 (32.5%) 64 (45.4%)  48 (42.5%) 47 (38.5%) 24 (45.3%) 11 (22.4%) 

 ? 2 (4.0%) 4 (6.3%) 13 (8.1%) 7 (5.0%) 17 (15.0%) 17 (13.9%) 8 (15.1%) 12 (24.5%) 

Donor type DBD 47 (94.0%) 60 (93.8%) 131 (81.9%) 118 (83.7%) 80 (70.8%) 85 (69.7%) 36 (67.9%) 31 (63.3%) 

 DCD 3 (6.0%) 4 (6.3%) 29 (18.1%) 23 (16.3%) 33 (29.2%) 37 (30.3%) 17 (32.1%) 18 (36.7%) 

ECD donor Yes 27 (54.0%) 31 (48.4%) 44 (27.5%) 34 (24.1%) 24 (21.2%) 29 (23.8%) 10 (18.9%) 11 (77.6%) 

 No 23 (46.0%) 33 (51.6%) 116 (72.5%) 107 (75.9%) 89 (78.8%) 93 (76.2%) 43 (81.1%) 38 (22.4%) 

HLA mismatches (no.) 0 5 (10.0%) 2 (3.1%) 23 (14.4%) 30 (21.3%) 18 (15.9%) 17 (13.9%) 9 (17.0%) 5 (10.2%) 

 1 1 (2.0%) 4 (6.3%) 14 (8.8%) 11 (7.8%) 6 (5.3%) 8 (6.6%) 10 (18.9%) 5 (10.2%) 

 2 13 (26.0%) 17 (26.6%) 43 (16.9%) 31 (22.0%) 31 (27.4%) 41 (33.6%) 11 (20.8%) 13 (26.5%) 

 3 13 (26.0%) 18 (28.1%) 48 (30.0%) 45 (31.9%) 42 (37.2%) 40 (32.8%) 16 (30.0%) 21 (42.9%) 

 4 9 (18.0%) 15 (23.4%) 24 (15.0%) 19 (13.5%) 14 (12.4%) 12 (9.8%) 4 (7.5%) 5 (10.2%) 

 5 4 (8.0%) 4 (6.3%) 3 (1.9%) 2 (1.4%) 2 (1.8%) 2 (1.6%) 2 (3.8%) 0 (0.0%) 

 6 5 (10.0%) 4 (6.3%) 5 (3.1%) 3 (2.1%) 0 (0.0%) 2 (1.6%) 1 (1.9%) 0 (0.0%) 

Time spent on waiting list (yrs) Median (range) 5,5 (1-8) 6 (1-8) 5 (1-8) 5 (1-8) 5 (1-8) 4 (1-8) 5 (1-8) 5 (2-8) 

Previous transplants (no.) 0 40 (80.0%) 51 (79.7%) 110 (68.8%) 112 (79.4%) 76 (67.3%) 78 (63.9%) 34 (64.2%) 26 (53.1%) 

 1 10 (20.0%) 10 (15.6%) 42 (26.3%) 24 (17.0%) 33 (29.2%) 41 (33.6%) 13 (24.5%) 19 (38.8%) 

 2 0 (0.0%) 3 (4.7%) 7 (4.4%) 5 (3.5%) 3 (2.7%) 3 (2.5%) 4 (7.5%) 4 (8.2%) ACCEPTED



Copyright © Wolters Kluwer Health. Unauthorized reproduction of this article is prohibited.

27 

 3 0 (0.0%) 0(0.0%) 1 (0.6%) 0 (0.0%) 1 (0.9%) 0 (0.0%) 1 (1.9%) 0 (0.0%) 

 4 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (1.9%) 0 (0.0%) 

PRA  <5% 48 (96.0%) 60 (93.8%) 137 (85.6%) 127 (90.0%) 112 (91.8%) 112 (91.8%) 47 (88.7%) 42 (85.7%) 

 5-25% 2 (4%) 3 (4.8%) 14 (8.8%) 9 (6.3%) 5 (4.1%) 5 (4.1%) 0 (0.0%) 3 (6.1%) 

 25-50% 0 (0%) 1 (1.6%) 6 (3.8%) 3 (2.1%) 2 (1.6%) 2 (1.6%) 2 (3.8%) 1 (2.0%) 

 50-85% 0 (0%) 0 (0%) 3 (1.8%) 2 (1.4%) 1 (0.8%) 1 (0.8%) 2 (3.8%) 3 (6.1%) 

 >85% 0 (0%) 0 (0%) 0 (0.0%) 0 (0.0%) 2 (1.6%) 2 (1.6%) 2 (3.8%) 0 (0.0%) 
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Table 3: The incidence of DGF in the subgroup analysis. Data presented as number of cases 

and percentage of group total. Full multivariable models are provided in Table S1 (<10 hrs), 

Table S2 (10-15 hrs), Table S3 (15-20 hrs) and Table S4 (>20 hrs) (SDC, 

http://links.lww.com/TP/B552). 

 

CIT Delayed graft function 

 HMP CS Univariable Multivariable OR (95% CI) 

 N % N %   

<10 hrs 3 6.0 18 28.1 p=0.002 0.015 (0.001-0.317, p=0.007) 

10-15 hrs 39 24.4 32 22.7 p=0.593 0.893 (0.485-1.647, p=0.718) 

15-20 hrs 31 27.4 42 34.4 p=0.689 0.663 (0.355-1.240, p=0.199) 

>20 hrs 19 35.8 26 53.1 p=0.08 0.335 (0.110-1.015, p=0.053) 

Total 92 24.5 118 31.4   
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Variable Hazard Ratio  
(95% Confidence interval) 

P value 

Donor age (yrs) 1.093 (0.997-1.199) 0.057 
Recipient age (yrs) 0.991 (0.926-1.062) 0.804 
Machine perfusion vs cold storage  0.460 (0.168-1.264) 0.132 
Cold ischemia time (hrs) 1.036 (0.761-1.412) 0.821 
DCD donor vs DBD donor 0.000 0.984 
Expanded criteria vs standard criteria 0.122 (0.008-1.812) 0.126 
HLA mismatches (no.) 1.905 (1.162-3.121) 0.011 
Panel-reactive antibody level (%) 0.945 (0.763-1.171) 0.607 
Duration of pretransplant dialysis (yrs) 0.875 (0.669-1.144) 0.329 
Retransplantation vs first transplantation 2.086 (0.730-5.963) 0.170 

Table S1: Multivariate Cox risk analysis for delayed graft function. Cold ischemia time <10 hours. 

 

Variable Hazard Ratio  
(95% Confidence interval) 

P value 

Donor age (yrs) 1.022 (0.972-1.075) 0.387 
Recipient age (yrs) 0.998 (0.967-1.030) 0.916 
Machine perfusion vs cold storage  0.659 (0.301-1.446) 0.298 
Cold ischemia time (hrs) 1.187 (0.886-1.590) 0.252 
DCD donor vs DBD donor 1.274 (0.395-4.111) 0.686 
Expanded criteria vs standard criteria 2.758 (0.818-9.297) 0.102 
HLA mismatches (no.) 1.023 (0.785-1.334) 0.866 
Panel-reactive antibody level (%) 0.987 (0.944-1.033) 0.585 
Duration of pretransplant dialysis (yrs) 0.962 (0.806-1.148) 0.666 
Retransplantation vs first transplantation 1.635 (0.927-2.883) 0.089 

Table S2: Multivariate Cox risk analysis for delayed graft function. Cold ischemia time between 10 and 
15 hours. 
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Variable Hazard Ratio  
(95% Confidence interval) 

P value 

Donor age (yrs) 1.085 (1.015-1.160) 0.0168 
Recipient age (yrs) 0.981 (0.948-1.016) 0.2791 
Machine perfusion vs cold storage  0.469 (0.180-1.220) 0.1204 
Cold ischemia time (hrs) 1.018 (0.754-1.376) 0.9052 
DCD donor vs DBD donor 0.922 (0.315-2.701) 0.8826 
Expanded criteria vs standard criteria 0.354 (0.085-1.476) 0.1540 
HLA mismatches (no.) 0.942 (0.667-1.331) 0.7349 
Panel-reactive antibody level (%) 1.016 (0.996-1.035) 0.1142 
Duration of pretransplant dialysis (yrs) 1.109 (0.890-1.381) 0.3564 
Retransplantation vs first transplantation 1.423 (0.724-2.798) 0.3065 

Table S3: Multivariate Cox risk analysis for delayed graft function. Cold ischemia time between 15 and 
20 hours. 

Variable Hazard Ratio  
(95% Confidence interval) 

P value 

Donor age (yrs) 0.996 (0.941-1.055) 0.900 
Recipient age (yrs) 0.958 (0.915-1.004) 0.074 
Machine perfusion vs cold storage  0.824 (0.290-2.342) 0.717 
Cold ischemia time (hrs) 0.922 (0.782-1.087) 0.333 
DCD donor vs DBD donor 1.290 (0.369-4.506) 0.690 
Expanded criteria vs standard criteria 3.471 (0.744-16.198) 0.113 
HLA mismatches (no.) 1.484 (0.957-2.300) 0.078 
Panel-reactive antibody level (%) 1.030 (1.000-1.061) 0.050 
Duration of pretransplant dialysis (yrs) 0.985 (0.753-1.288) 0.911 
Retransplantation vs first transplantation 0.588 (0.203-1.700) 0.327 

Table S4: Multivariate Cox risk analysis for delayed graft function. Cold ischemia time longer than 20 
hours.  
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