
Supporting Interoperability and Scalable Customization for
Business-Process-as-a-Service

Majid Makki, Emad Heydari Beni, Dimitri Van Landuyt, Bert Lagaisse, Wouter Joosen

September 13, 2017

1 Introduction
Online software service providers, which include application service providers (ASP) and software
as a service providers (SaaS), are evolving and extending their services towards a business process
outsourcing (BPO) model. BPO comprises the delegation of many steps of a company’s business
processes to a specialized online software service provider.

Business processes as a service (BPaaS) can be defined as the offering of outsourced software
services that encapsulate business processes. These software services are offered online on a cloud
platform and typically adopt application-level multi-tenancy.

An Example. Many companies are outsourcing the business process of invoicing their customers
to specialized providers (see Figure 1). In the traditional approach, on-premise workflow systems
to manage the billing process are using the online web services of a document management provider
to create, layout, send and receive invoices to their customers. This billing workflow will have fine-
grained, synchronous interactions with this document service to create, send, update and resend
the invoices when these are not paid.

In a BPO context, this whole billing process is outsourced to a billing provider. The company
consuming the service of the billing provider now only has a long-term, coarse-grained interaction
with the billing process: start the billing process of a customer and notify me when the customer
has paid. While such a long-term interaction is running for weeks, the company might ask or
receive intermediate updates about the billing process, such as bill sent, bill resent, or bill paid.

BPaaS applications and services build upon workflow engines and middleware such as jBPM
or Windows Workflow Foundation to define and execute business processes. However, traditional
workflow engines were often not suitable to handle the complex requirements and challenges of
BPaaS and cloud-based deployments. In our research line on business process as a service, we have
investigated and tackled the following key research challenges.

Figure 1: A BPaaS Example: billing as a service

1



The interoperability challenge. As illustrated in the previous example, business process out-
sourcing results in decentralized business process flows between companies and involves long term
remote interactions between these work flows. Each of these companies typically has its own busi-
ness process middleware (BPM) to support its automated business processes, such as jBPM[Red],
Ruote[MKM+] or WWF[Mil09]. BPO thus results in remote workflow interactions between het-
erogeneous and federated workflow systems. In a lot of online BPO applications, a similar pattern
emerges:

1. There are two federated parties (e.g. two companies) with heterogeneous workflow technolo-
gies (e.g. a jBPM workflow engine and a workflow engine for scientific simulations).

2. The first party starts a remote workflow on the second party’s workflow system, and awaits
its result. This is typically a long term process that can take weeks or months.

3. The first party wants to follow up on the progress now and then. This inspection interaction
can be a pull request by the first party or a push notification by the second party. The
progress inspection is typically decoupled from the internal task implementation of the remote
workflow and expressed in a higher abstraction, e.g. payment pending or simulation 65%
completed.

However, this similar pattern has to be implemented over and over again in each application,
and for each type of workflow. Current workflow middleware only coordinates and supports short-
term remote interactions such as synchronous or asynchronous calls to web services via SOAP or
REST, on top of which the application-specific long-term interaction needs to be implemented.

The customization challenge. Workflows are defined as a composition and coordination of a
set of steps and calls to web services (REST or SOAP). In a multi-tenant setting, customers often
require customizations of these workflows to adapt to their company-specific data standards, their
own hosted services, and additional activities or steps that need to be taken in a business process.

As a coordinated composition of steps and service calls, workflows can thus require customiza-
tion at three levels:

1. Customization of the behaviour encapsulated in the implementation of one service. For
example to adapt a storage service to customer-specific data formats.

2. Customization of the binding to a certain service. For example, to wire the correct mail
service of a company to a workflow that is executing.

3. Customization of the control logic and steps in the workflow. For example to add additional
audit steps or verification steps in a billing process.

Much research has been done on the customization of service implementations and service bindings.
In the context of this paper we will therefore focus on the customization of the workflow definition
itself.

DistriNet contributions In the remainder of this paper we discuss DistriNet’s research solu-
tions that have contributed to tackling these challenges for BPaaS.

The interoperability challenge, and the frequently occurring, long-term remote interactions
between heterogenous workflow technologies requires (screams for) middleware support, on which
workflow applications can leverage to reuse the long-term remote interaction pattern, including
intermediate inspection via push or pull.

In Section 2 we describe the WF-interop solution. WF-Interop defines a set of interfaces that
enable standardized communication between federated and heterogeneous workflow engines. The
WF-Interop API focusses on deployment, activation and progress monitoring of workflows.

In Section 3 we present an in-depth analysis and comparison of different strategies for the
run-time customization of workflow definitions, on a tenant-per-tenant basis. We also assess their
impact on scalability and on the devops process.

We conclude with a discussion on the added value of these solutions for the SaaS market in
Section 4.

2



2 Tackling the interoperability challenge with WF-Interop
The WF-interop interfaces define both a reflective and adaptive middleware for workflows.

• Depending on the workflow engine, and the actual workflow, the interface of the middleware
adapts and publishes the supported operations at that moment. (e.g. the pause operation
for a workflow is only exposed if the workflow engine supports it and if a workflow is actually
running.)

• Running workflows can be inspected in terms of higher application-specific abstractions,
depending on the type of workflow. WF-interop supports both a pull and a push model for
state inspection.

Next to these advanced features, WF-interop also defines basic operations for workflow engines,
such as:

• Workflow engines can be inspected for which types of workflows a specific engine supports.

• Workflow engines can be asked to create new workflow types (via the deployment interface).

• Workflow engines can be contacted to instantiate new workflow instances (via the activation
interface).

The contribution of WF-interop is threefold. First, WF-interop introduces a standardized man-
agement interface for workflow engines to enable interoperability. Second, it introduces a reflective
and adaptive approach to support discoverability, evolvability and adaptability of engine manage-
ment interfaces. Third, to increase industry adoption, the WF-interop interfaces are currently
supported in a REST-based architecture between workflow engines, but also leverage well-known
principles such as Hypermedia as the Engine of Application State (HATEOAS) as a novel technique
to support adaptive management interfaces in middleware.

2.1 WF-Interop Principles
WF-Interop aims to standardize the communication between federated and heterogeneous workflow
engines with an adaptive and reflective approach to enable discoverability and evolvability of the
management interfaces.

Figure 2: Sequence of resources and their actions.

WF-Interop promises self-discoverability of functionalities for consumers without the necessity
of having static documentation. It assumes that workflow engines contain resources such as deploy-
ments, activations and progress monitoring as shown in figure 2. Various actions can be executed
on these resources which may bring the execution flow as well as the internal states of the enact-
ment engine to a different state. Upon execution of each action on a resource, WF-Interop guides
consumers by proposing next possible moves in the form of resources and their actions based on
the current application state. Consumers are able to read a short on-demand description for each
of the proposed actions in order to figure out the protocol, input properties and a brief description
of the semantics of the action. They may traverse the application state by invoking these proposed
actions on the same or the other resources.

This mechanism introduces API evolvability for workflow engine providers in terms of new
functionalities on top of WF-Interop. WF-Interop can be adopted as a base interface. Later on, new
resources along with their necessary actions can be defined and added to the appropriate application
states. The newly added resources are discoverable by the navigational information sent back to
the consumer upon each action invocation. Workflow engines come with different capabilities; some
may not cover all minimum functionalities defined by WF-Interop. The aforementioned mechanism
enables all providers with different levels of support to be adaptive to the current state of their
production.

3



2.2 WF-Interop REST Architecture
In this section, we propose a RESTful interface, called WF-Interop, to standardize the commu-
nication between federated and heterogeneous workflow engines. In addition, we transform our
proposed interface to an adaptive and reflective solution by using Hypermedia as the Engine of
Application State, known as HATEOAS.

WF-Interop focuses on four fundamental aspects of workflow engine interactions: (1) deploy-
ment of workflow definitions, (2) activation and (3) progress monitoring of process instances within
workflow systems including (4) observers.

According to our study based on runtime interfaces of several workflow engines and Workflow
Management Coalition (WfMc) standards, the workflow definition deployment and its related
functions are the first necessary requisite in our RESTful api proposal. In the first draft of the
deployment interface as listed in table 1, one can deploy, undeploy, modify, delete, and fetch
workflow definitions.

Table 1: Workflow Deployment Resources

Method URI
GET /deployments/ Get all Workflow definitions
POST /deployments/ Deploy a Workflow definition
GET /deployments/{id} Get a Workflow definition
PUT /deployments/{id} Update a Workflow definition
DELETE /deployments/{id} Undeploy a Workflow definition

The second interface provides activation functionalities for workflow process instances. The
fundamental methods for these resources are listed in the table 2. It includes functionalities such
as instantiation, aborting, pausing and resuming of process instances.

Table 2: Workflow Activation Resources

Method URI
GET /activations/ Get all workflow process instances
POST /activations/ Start a workflow process instance
GET /activations/{id} Get a workflow process instance
DELETE /activations/{id} Abort a workflow process instance
PUT /activations/{id}/pause Pause a workflow process instance
PUT /activations/{id}/resume Resume a workflow process instance

The last interface, specified in table 3, provides progress monitoring for workflow process in-
stances. This interface standardizes the interactions between enactment engines to support progress
reporting in a push and a pull model.

Table 3: Workflow Progress Resources

Method URI
GET /progress/{processInstanceID} Get current workflow state
GET /progress/{processInstanceID}/observers/ Get the list of observers
POST /progress/{processInstanceID}/observers/ Subscribe an observer
DELETE /progress/{processInstanceID}/observers/{observerID} Unsubscribe an observer

WF-Interop, as described in the previous paragraphs, aims at addressing interoperability is-
sues of workflow engines in a RESTful architecture. The rationale behind REST architectures is
described in Roy Fielding’s dissertation [Fie00] and the fourth layer of the Richardson Maturity
model [Fow10]. One of the principles in REST is to utilize Hypermedia as the Engine of Application
State (HATEOAS). HATEOAS is described as a constraint of REST and supports the aforemen-
tioned architectural features proposed by WF-Interop such as self-discoverability, evolvability and
adaptability.

As illustrated in figure 3, WF-Interop resources are dependent on each other and each resource
has a set of actions. Relying on Hypermedia[Not10] based principles, one is able to start from one
of these resources and explore the remainder of the dependency graph based on the current state

4



Figure 3: RESTful WF-Interop

of the application. In other words, consumers of the workflow engine are supposed to receive a
list of possible actions after execution of an action. These proposed actions come with on-demand
documentations enabling the clients to navigate the API’s without any prior knowledge about
interaction with workflow engines. For instance, one may execute a GET method on the Activation
resource in order to fetch a long running business process. Depending on the current application
state of the process and the policies of the enactment engine, WF-Interop may respond back some
other actions in Hypermedia format such as links to methods of the progress monitoring resource
for more comprehensive reporting or links to obtain intermediate results. All of the suggested
links are based on each engine’s capabilities which makes the RESTful WF-Interop adaptive to all
engines.

This architecture is change tolerant in the sense that workflow engines are able to either im-
plement new functionalities or even deprecate some actions by manipulation of hypermedia links
propositions. For example, some engines can implement some extra methods on top of the Progress
resource for additional capabilities and add those actions as links to the response bodies upon
proper Activation method calls.

2.3 Implementation, Validation and Further Reading
In [BLJ15] we further described the implementation and architecture of WF-interop in a proof-
of-concept middleware and illustrated its use with an accounting workflow that outsources the
billing workflow between a jBPM and Ruote workflow engine. Both engines remained unchanged
while all WF-Interop middleware support could be modularised in reusable software assets such as
application independent sub-processes and workflow activities.

In [HBLZ+17] we extended the WF-interop standard and middleware to support advanced au-
thorised delegation of workflow tasks. State-of-the-art workflow engines fall short of a distributed
authorisation mechanism for the heterogeneous, federated BPO setting. In a cross-organisational
context, the security requirements involve (i) delegation and verification of privileges in a confi-
dential manner, (ii) secure asynchronous operations during the long-term workflows even when
the users are logged-off, and (iii) controlling access to interfaces of the different workflow engines
involved.

To address these challenges, we present a voucher-based authorisation architecture and middle-
ware. We extended the WF-Interop middleware with a security module to support this authori-
sation architecture. We further validated our contributions by prototyping a billing workflow case
study on top of the extended WF-Interop middleware and evaluated the performance overhead of
the security extensions to the middleware.

3 Customization Challenge
This section deals with the challenge of customizing workflow definitions in a multi-tenant context.
Section 3.1 provides an overview of all workflow customization strategies which are applicable in
a multi-tenant BPaaS. Section 3.2 discusses the impacts of these strategies on the scalability of a
multi-tenant system. Section 3.3 briefly elaborates on how DevOps activities are affected by the
choice of a workflow customization strategy.

3.1 Overview of Strategies
There are essentially six strategies for customizing workflow definitions in a multi-tenant con-
text [VDA11]. These strategies are summarized in Table 4. As indicated in the table, some

5



strategies require deploying the workflow definition for each tenant separately while some others
allow global deployment of a single workflow definition for all tenants. In addition, some strategies
share the required effort for designing workflows between the BPaaS provider and tenant admin-
istrators while some others do not require tenant administrators to participate in the workflow
design.

Strategy Deployment Mode Work Distribution
Change Per-Tenant BPaaS Provider

Tenant Admins
Decision Points Global BPaaS Provider
Deviation Rules Global BPaaS Provider
Underspecification

Static Late Modeling (SLM) Per-Tenant BPaaS Provider
Tenant Admins

Static Late Binding (SLB) Per-Tenant BPaaS Provider
Dynamic Late Binding (DLB) Global BPaaS Provider

Table 4: Summary of Workflow Customization Strategies

The Change strategy [VDA11] requires the BPaaS development team to provide a base workflow
definition as well as a set of constraints for changing it. Then tenant administrators may change the
base workflow definition, insofar as the constraints permit, and deploy a specific workflow definition
for their own organization in the workflow engine which is shared between multiple tenants.

The Decision Point strategy [GWVLJ13], on the contrary, does not require any effort from
tenant administrators in designing the workflow definition. The BPaaS development team, instead,
embeds a number of decision points in the workflow definition which diverts the control flow
based on tenant preferences at runtime. Since applying tenant preferences takes place at runtime,
there is only a single instance of the workflow definition deployed in the workflow engine. For
instance, Figure 4 shows a BPMN 2.0 workflow fragment of a document processing application
which distributes generated documents either via email or by regular post. The decision point
marked by a cross branches the workflow based on tenant preferences about distribution type and
the branches merge back into the main flow after the document distribution phase is done.

Confirm Print Job Print Documents Request Pickup

Generate Emails Send Emails

Post

Email

Distribution Type

Figure 4: Decision Points for Choosing a Document Distribution Type - BPMN 2.0 Fragment

Applying tenant preferences in case of the Deviation Rule strategy, instead, is done from
outside of the workflow definition by means of a set of rules expressing tenant preferences and
enforcing deviation from the main flow at certain points. For instance, in the context of the above
example, the five activities shown in rectangles will be placed sequentially one after the other but
the skip rule shown in Listing 1 guarantees that documents are distributed via post which is the
preference of a specific tenant. Similar to the case of the Decision Points strategy, this strategy
requires only a single deployment of the workflow definition for all tenants and does not require
any effort from tenant administrators in designing the workflow.

1 skip−a c t i v i t i e s=Generate Emails , Send Emails

Listing 1: Partial View of Tenant Preferences for the Deviation Rules Strategy

6



The remaining strategies are grouped under the umbrella term “underspecification” because
their master workflow is “underspecified", i.e. has missing parts. For instance, Figure 5a is an “un-
derspecified” document processing workflow with 4 missing parts or placeholders indicated by a +
sign. In case of the Static Late Modeling (SLM) strategy, these placeholders are filled by work-
flow definitions designed by tenant administrators at customization time and the updated master
workflow will be deployed for each tenant separately. In case of the Static Late Binding (SLB)
strategy [ML08], existing sub-workflows are automatically bound to the master workflow at cus-
tomization time based and the automatically generated workflow will be deployed for each tenant
separately. For instance, one of the workflows depicted in Figure 5b and Figure 5c) will be bound
to the Distribute placeholder of the master workflow based on tenant preferences. In this case,
tenant administrators do not design any workflow. In case of the Dynamic Late Binding (DLB)
strategy [MVLWJ16], binding existing sub-workflows (such as those shown in Figure 5b and Fig-
ure 5c) to the master workflow takes place dynamically at runtime based on tenant preferences.
This implies that each workflow is only once deployed globally for all tenants. Similarly, all work-
flow definitions are designed by the BPaaS development team.

Start

Meta-data
Elicitation

Cleanup

End

Generate Sign Distribute Archive

(a) Master Workflow

Start

Confirm Print Job Print Documents Request Pickup

End

(b) Distribution by Post

Start

Generate Emails Send Emails

End

(c) Distribution by Email (Standard)

Figure 5: Underspecified Master Workflow along with Distribution Sub-workflows

3.2 Scalability Impacts
The choice of workflow customization strategy has an impact on scalability of a multi-tenant BPaaS.
Scalability of a multi-tenant offering is directly linked to the question of how resource consumption
increases when the number of tenants increases. As mentioned above and visible from Table 4,
some workflow customization strategies require deploying a workflow definition separately for each
tenant while a single global workflow deployment is sufficient when adopting other strategies. This
has a direct impact on the memory usage when the number of tenants increases.

129
293

2222

6171

56

0

1000

2000

3000

4000

5000

6000

7000

0

2
5
5

5
1
0

7
6
5

1
0
2

0

1
2
7

5

1
5
3

0

1
7
8

5

2
0
4

0

2
2
9

5

2
5
5

0

2
8
0

5

3
0
6

0

3
3
1

5

3
5
7

0

3
8
2

5

4
0
8

0

4
3
3

5

4
5
9

0

4
8
4

5

5
1
0

0

5
3
5

5

5
6
1

0

5
8
6

5

6
1
2

0

6
3
7

5

6
6
3

0

6
8
8

5

7
1
4

0

7
3
9

5

7
6
5

0

7
9
0

5

8
1
6

0

8
4
1

5

8
6
7

0

8
9
2

5

9
1
8

0

9
4
3

5

9
6
9

0

9
9
4

5

1
0
2

0
0

1
0
4

5
5

JV
M

 H
ea

p
 S

iz
e 

(M
B

)

Number of Tenants

Figure 6: Impacts of Different Workflow Customization Strategies on Memory Usage

7



Figure 6 roughly compares the memory footprint of the groups of strategies. For the per-tenant
deployment case, a single average document processing workflow definition is deployed repeatedly
and the changes in JVM heap size are recorded as the memory footprint of this group of strategies.
For the other group, a single document processing workflow is deployed and the change in JVM
heap size is recorded (cf. [MVLWJ16]). Memory usage in the latter case is 30.5 megabytes, and as
shown in Figure 6, does not change with increasing number of tenants while the memory used in
the former increases drastically increases when taking an increasing number of tenants on board.1
The memory footprint of the former group can increase even more when there is more than one
workflow definition and more complex ones in a single application.

The huge memory footprint of per-tenant workflow deployment, which is different from memory
usage of serving requests, indicates that adopting them requires grouping tenants and associating
each group to different (set of) server nodes because these strategies put a considerably restrictive
upper bound on the number of tenants that can be served using a single server node. This way, the
precision of scaling, i.e. how precisely resources are allocated to tenants, will be reduced specially
when the load on an application decreases significantly or when there is a large number of tenants
with a very low service load on average. In other words, due to high memory overhead of per-tenant
workflow deployment, it will be required to allocate multiple server nodes despite the low service
load. As a consequence, BPaaS providers will lose the chance of saving on infrastructure cost if
they implement one of these strategies.

3.3 DevOps Impacts
In addition to scalability, DevOPs activities are also affected by the choice of workflow customiza-
tion strategy. These impacts, which are discussed below, comprise four principal groups namely
development, testing, release and audit & monitoring.

Development. The Decision Point and Deviation Rules strategies yield the most difficult
workflow definitions to maintain over time as they confuse two different concerns namely implemen-
tation of the business logic and handling of tenant preferences [GWVLJ13, MVLWJ16]. The Static
Late Binding (SLB) and the Dynamic Late Binding (DLB) strategies require more effort from
the BPaaS development team compared to the Change and Static Late Modeling (SLM) espe-
cially the latter which postpones a great deal of the work to the customization time and delegates
it to tenant administrators (cf. Table 4).

Testing. It is easier to test new features for the BPaaS providers when adopting the SLB and DLB
because these two strategies break down the workflow into modules which can be independently
tested. On the contrary, the Change and the SLM strategies incurs the most burden vis-à-vis testing.
This is because they require tenant administrators participate in workflow design and consequently
necessitate online testing tools (cf. [VLWJ15]) such that tenant administrators can test workflows in
the customization dashboard of the BPaaS offering (e.g. [MVLJ16b]). This may require gathering
data for automating the testing process which itself incurs some overhead [MVLJ16a].

Release. In a multi-tenant context, new features should be released seamlessly, i.e. without
interrupting the service. This is because uninterested tenants should not be disturbed for releasing
a new feature which is of interest only for a subset of tenants. For the same modularity reason
mentioned above, releasing new features as sub-workflows are the most straightforward release
tasks when adopting the SLB and the DLB strategies. Releasing new features is not a major issue
when adopting the Change and the SLM strategies because the updated workflow definition is not
deployed globally. In other words, other tenants will not be disturbed. However, in case of adopting
the Decision Points or Deviation Rules strategies, seamless release is not possible unless two
different versions of a workflow definition coexist in the workflow engine. Such a version coexistence
requirement is not widely supported by workflow engines. For instance, in the realm of BPMN 2.0
engines, Activiti [Act] is the only widely used engine which supports version coexistence. For
the engines which do not support this, some workarounds will be required.

1The bounces in Figure 6 are the effect of the Java garbage collector (GC) which releases memory of unused
objects. But even Java GC cannot stop the increasing memory usage.

8



Audit & Monitoring. By adopting workflow customization strategies which deploy workflow
definitions on a per-tenant basis, the audit & monitoring tools of existing workflow engines can be
used without any problem [ML08]. This is the case for the Change, the SLM and SLB strategies.
However, an additional middleware is required on top of existing workflow audit & monitoring
tools when adopting the other three strategies. This middleware is responsible to give a single-
tenant view of a multi-tenant global workflow definition in case of monitoring and to filter out
other tenants data in the audit process.

4 Added value and Conclusion
SaaS-oriented software companies can add value to their offering by growing into the space of
business process outsourcing. Business process outsourcing refers to the systematic and controlled
delegation of many of the steps of a company’s business process, typically a process that is enabled
by ICT means. In fact the service provider will thus administer and manage the business process
steps according to a service level agreement. In summary, BPaaS is an important extension to
SaaS, as it allows the provider to add more value in the online application services; and as it
enables the outsourcer to obtain more cost efficiency.

However this cost efficiency should not reduce the customer-intimacy between provider and
consumer. Customer-specific customizations and extensions are crucial for the Flemish software
industry. Another challenge is that business process outsourcing results in decentralized, federated
business process flows that cross the borders of companies.

In this overview paper, we presented solutions to enable service providers in the cloud to
increase added value in their offerings by supporting complex business processes and workflows in an
interoperable and adaptable way. Specifically, we focussed on 1) solutions for secure interoperable
collaboration between such business processes in a federated, inter-organizational setting, and 2)
cloud-enabled scalable execution for multi-tenant workflows with customer-specific customizations.

The industry demand for these research solutions came from both service providers and tech-
nology providers. By engaging in BPaaS, the SaaS providers will add value to their business.
Moreover, building up of the necessary capabilities will be a key success factor in maintaining
and improving market leadership. The technical outcome of DistriNet’s research contributions
resulted in robust customization and secure outsourcing of whole business processes, and thus the
strengthening of existing SaaS offerings towards better services and competitive advantages.

References
[Act] Activiti User Guide. https://www.activiti.org/userguide/. Accessed: 2017-05-

24.

[BLJ15] Emad Heydari Beni, Bert Lagaisse, and Wouter Joosen. Wf-interop: Adaptive and
reflective rest interfaces for interoperability between workflow engines. In Proceedings
of the 14th International Workshop on Adaptive and Reflective Middleware, ARM
2015, pages 1:1–1:6, New York, NY, USA, 2015. ACM.

[Fie00] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, 2000. AAI9980887.

[Fow10] Martin Fowler. Richardson maturity model: Steps toward the glory of rest. 2010.

[GWVLJ13] Fatih Gey, Stefan Walraven, Dimitri Van Landuyt, and Wouter Joosen. Building a
customizable business-process-as-a-service application with current state-of-practice.
In International Conference on Software Composition, pages 113–127. Springer, 2013.

[HBLZ+17] Emad Heydari Beni, Bert Lagaisse, Ren Zhang, Danny De Cock, and Wouter Joosen.
A voucher-based security middleware for secure business process outsourcing. In 9th
International Symposium, ESSoS 2017, volume 10379, pages 19–35. Springer, Cham,
June 2017.

[Mil09] Matt Milner. A developer’s introduction to windows workflow foundation (wf) in.
net 4. Retrieved from: on Oct, 11(2010):47, 2009.

9

https://www.activiti.org/userguide/


[MKM+] J Mettraux, K Kalmer, R Meyers, HC de Mik, A Kohlbecker, M Barnaba, G Neskovic,
N Stults, O Pudeyev, M Gfeller, et al. Ruote-a ruby workflow engine.

[ML08] Ralph Mietzner and Frank Leymann. Generation of bpel customization processes for
saas applications from variability descriptors. In Services Computing, 2008. SCC’08.
IEEE International Conference on, volume 2, pages 359–366. IEEE, 2008.

[MVLJ16a] Majid Makki, Dimitri Van Landuyt, and Wouter Joosen. Automated regression test-
ing of bpmn 2.0 processes: a capture and replay framework for continuous delivery.
In Proceedings of the 2016 ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences, pages 178–189. ACM, 2016.

[MVLJ16b] Majid Makki, Dimitri Van Landuyt, and Wouter Joosen. Automated workflow re-
gression testing for multi-tenant saas: integrated support in self-service configuration
dashboard. In Proceedings of the 7th International Workshop on Automating Test
Case Design, Selection, and Evaluation, pages 70–73. ACM, 2016.

[MVLWJ16] Majid Makki, Dimitri Van Landuyt, Stefan Walraven, and Wouter Joosen. Scalable
and manageable customization of workflows in multi-tenant saas offerings. In Pro-
ceedings of the 31st annual acm symposium on applied computing, pages 432–439.
ACM, 2016.

[Not10] M Nottingham. Rfc5988: Web linking. Internet Engineering Task Force (IETF)
Request for Comments, 2010.

[Red] RedHat. jbpm business process management suite.

[VDA11] Wil MP Van Der Aalst. Business process configuration in the cloud: How to support
and analyze multi-tenant processes? In Web Services (ECOWS), 2011 Ninth IEEE
European Conference on, pages 3–10. IEEE, 2011.

[VLWJ15] Dimitri Van Landuyt, Stefan Walraven, and Wouter Joosen. Variability middleware
for multi-tenant saas applications. In Proceedings of the 19th International Software
Product Line Conference, pages 211–215, 2015.

10


	Introduction
	Tackling the interoperability challenge with WF-Interop
	WF-Interop Principles
	WF-Interop REST Architecture
	Implementation, Validation and Further Reading

	Customization Challenge
	Overview of Strategies
	Scalability Impacts
	DevOps Impacts

	Added value and Conclusion

