
Embedded nonlinear model predictive control for obstacle avoidance
using PANOC

Ajay Sathya, Pantelis Sopasakis, Ruben Van Parys, Andreas Themelis, Goele Pipeleers and Panagiotis Patrinos

Abstract— We employ the proximal averaged Newton-type
method for optimal control (PANOC) to solve obstacle avoid-
ance problems in real time. We introduce a novel modeling
framework for obstacle avoidance which allows us to easily
account for generic, possibly nonconvex, obstacles involving
polytopes, ellipsoids, semialgebraic sets and generic sets de-
scribed by a set of nonlinear inequalities. PANOC is particularly
well-suited for embedded applications as it involves simple steps,
its implementation comes with a low memory footprint and its
fast convergence meets the tight runtime requirements of fast
dynamical systems one encounters in modern mechatronics and
robotics. The proposed obstacle avoidance scheme is tested on
a lab-scale autonomous vehicle.

Index Terms— Embedded optimization, Nonlinear model pre-
dictive control, Obstacle avoidance.

I. INTRODUCTION

A. Background and Contributions

Autonomous navigation in an obstructed environment is a
key element in emerging daily life applications. Examples are
driverless cars, fleets of automated guided vehicles traversing
an automated warehouse, agricultural robots and aerial
robots performing search-and-rescue expeditions. Well-known
approaches for finding collision-free motion trajectories are
graph-search methods [1], virtual potential field methods [2]
or methods using the concept of velocity obstacles [3].

More recent motion planning research focuses on
optimization-based strategies. Here, an optimal motion tra-
jectory is sought while collision-avoidance requirements
are imposed as constraints on this trajectory. There is a
broad range of such constraint formulations. The most
straightforward approach constrains the Euclidean distance
between the vehicle center and obstacle center [4]. This,
however, only allows to separate spheres — and, by extension,
ellipsoids — let alone, the computation of the distance from
an arbitrary set is generally not an easy operation.

Other approaches demand the existence of a hyperplane
between the vehicle and obstacle at each time instant [5],
[6]. This allows the separation of arbitrary convex sets.
Some methods formulate the collision avoidance requirement
by mixed-integer constraints [7]. These types of problems
are, however, cumbersome to solve in real-time. For some
specific problem types it is possible to transform the system

The work of P. Patrinos was supported by KU Leuven Research Council
BOF/STG-15-043. R. Van Parys is a PhD fellow of the Research Foundation
Flanders (FWO-Flanders).

1A. Sathya, R. Van Parys and G. Pipeleers are with the Dept. of Mechanical
Engineering, MECO research group, KU Leuven, 3001 Leuven, Belgium.

2P. Sopasakis, A. Themelis and P. Patrinos are with the Dept. of Electrical
Engineering (ESAT-STADIUS), KU Leuven, 3001 Leuven, Belgium.

dynamics such that collision-avoidance translates into simple
box constraints on the states [8], [9].

Model predictive control (MPC) is a powerful control
strategy where control actions are computed by optimizing
a cost function which is chosen in order to achieve a
control task. Constraints on states, inputs and outputs can
be seamlessly incorporated into such a framework. When
the system dynamics is linear, the constraints are affine and
the cost functions are quadratic, the associated optimization
problem is a quadratic program. There exists a mature
machinery of convex optimization algorithms [10], [11] which
are fast, robust and possess global convergence guarantees
which can be used to solve these problems.

Nevertheless, the dynamics of most systems of interest are
better modeled by nonlinear equations and constraints are
often nonconvex. This situation is very common in obstacle
avoidance involving nonconvex optimization problems. These
are commonly solved using sequential quadratic program-
ming (SQP) [10] and interior point (IP) methods [12] which
are not well-suited for embedded applications with tight
runtime requirements. Nonlinear MPC is often performed
using the real-time iteration scheme proposed in [13] which
trades speed for accuracy and is accompanied by global
convergence guarantees.

For an algorithm to be suitable for an embedded im-
plementation, it needs to involve only simple steps. This
deems methods of the forward-backward-splitting (FBS)
type [14], such as the proximal gradient method [15, Sec. 2.3],
appealing candidates. FBS-type algorithms can be used
to solve nonlinear optimal control problems with simple
input constraints via first eliminating the state sequence and
expressing the cost as a function of the sequence of inputs
alone — the so-called single shooting formulation. However,
despite its simplicity, FBS, like all first-order methods, can
exhibit slow convergence. Its convergence rate is at best Q-
linear with a Q-factor close to one for ill-conditioned problems
such as most nonlinear MPC problems.

In this work we propose a new modeling framework
for generic constraints which can accommodate general
nonconvex sets. The proposed methodology assumes that the
obstacles are described by a set of nonlinear inequalities and
does not require the computation of projections or distances
to them. Then, the obstacle avoidance constraints are written
as a nonlinear equality constraint involving a smooth function
which, in turn, is relaxed using a penalty function.

The resulting problems are solved using PANOC, a proxi-
mal averaged Newton-type method for optimal control, which
was recently proposed in [16]. Gradients of the cost function



are computed using automatic differentiation toolboxes such
as CasADi. The algorithm is simple to implement, yet robust,
since it combines projected gradient iterations with quasi-
Newtonian directions to achieve fast convergence.

The proposed framework is tested on a number of sim-
ulation scenarios where we show that it is possible to
avoid obstacles of complex shape described by nonlinear
inequalities. PANOC is compared with SQP and IP methods
and is found to be significantly faster. Furthermore, we present
experimental results on a lab-scale robotic platform which
runs a C implementation of PANOC.

B. Notation

Let IN be the set of nonnegative integers, IN[k1,k2] be the
set of integers in the interval [k1, k2] and IR = IR∪{+∞} be
the set of extended real numbers. For a matrix A ∈ IRm×n,
we denote its transpose by A>. For x ∈ IR, we define the
operator [x]

+
= max{x, 0}.

For a nonempty closed convex set U ⊆ IRn, the projection
onto U is the operator ΠU (v) = argminu∈U ‖u − v‖.
The distance from the set U is defined as distU (v) =
infu∈U ‖u − v‖. The class of continuously differentiable
functions f : IRn → IR is denoted by C1. The subset of C1

of functions with Lipschitz-continuous gradient is denoted
as C1,1. We use the notation C1,1

L for C1,1 functions with
L-Lipschitz gradients.

II. NMPC FOR OBSTACLE AVOIDANCE

A. Problem statement

Kinematic equations lead to continuous-time nonlinear
dynamical systems of the form ẋ = fc(x, u, t) where x ∈
IRnx is the system state, typically a vector comprising of
position, velocity and orientation data, and u ∈ IRnu is
the control signal. We assume that the position coordinates
z ∈ IRnd is part of the state vector. The continuous-time
dynamics can be discretized (for instance, using an explicit
Runge-Kutta method) leading to a discrete-time dynamical
system of the form

xk+1 = fk(xk, uk). (1)

As it is typically the case in practice, we assume that fk :
IRnx × IRnu → IRnx are smooth mappings.

The objective of the navigation controller is to steer the
controlled vehicle from an initial state x0 to a target state
xref , typically a position in space together with a desired
orientation. At the same time, the vehicle has to avoid certain,
possibly moving, obstacles which are described by open sets
Okj ⊆ IRnd , j ∈ IN[1,qk], each described by

Okj = {z ∈ IRnd : hikj(z) > 0, i ∈ IN[1,mkj ]}. (2)

Sets Okj need not be convex. Obstacle avoidance constraints
can be concisely written as

zk /∈ Okj , for j ∈ IN[1,qk]. (3)

Moreover, the vehicle is only allowed to move in a domain
which is described by the inequality

gk(xk, uk) ≤ 0, (4)

where gk : IRnx × IRnu → IRnc is a C2 function and ≤
is meant in the element-wise sense. Control actions uk are
constrained in a closed compact set Uk, that is

uk ∈ Uk, (5)

on which it is easy to project and hereafter shall be assumed
to be convex. Sets Uk often represent box constraints of the
form Uk = {u ∈ IRnu : umin ≤ u ≤ umax}.

B. Nonlinear model predictive control

Nonlinear model predictive control problems arising in
obstacle avoidance can be written in the following form

minimize `N (xN ) +

N−1∑
k=0

`k(xk, uk), (6a)

subject to x0 = x, (6b)
xk+1 = fk(xk, uk), k ∈ IN[0,N−1], (6c)
uk ∈ Uk, k ∈ IN[0,N−1], (6d)
zk /∈ Okj , j ∈ IN[1,qk], k ∈ IN[0,N ] (6e)
gk(xk, uk) ≤ 0, k ∈ IN[0,N ], (6f)
gN (xN ) ≤ 0. (6g)

The stage costs `k : IRnx × IRnu → IR for k ∈ IN[0,N−1]
in (6a) are C1,1 functions describing the distance of the state
from the reference state (destination and orientation) and may
be taken to be quadratic functions of the form `(xk, uk) =
(xk−xref)>Qk(xk−xref)+(uk−uref)>Rk(uk−uref). The
terminal cost `N : IRnx → IR in (6a) is a C1,1 function such
as `N (xN ) = (xN − xref)>QN (xN − xref).

C. Reformulation of obstacle avoidance constraints

Consider an obstacle described as the intersection of a
finite number of strict nonlinear inequalities

O = {z ∈ IRnd : hi(z) > 0, i ∈ IN[1,m]}, (7)

where hi : IRnd → IR are C1,1 functions. The constraint
z /∈ O — cf. (6e) — is satisfied if and only if

hi0(z) ≤ 0, for some i0 ∈ IN[1,m], (8)

or, equivalently,
[
hi0(z)

]2
+

= 0. This constraint can then be
encoded as

ψO(z) := 1
2

m∏
i=1

[
hi(z)

]2
+

= 0. (9)

We have expressed the obstacle avoidance constraints as a
nonlinear equality constraint. We should remark that, unlike
approaches based on the distance-to-set function [17], function
ψO in (9) is a C1 function of z with gradient

∇ψO(z)=


m∑
i=1

hi(z)
∏
j 6=i

(hj(z))2∇hi(z), ifx ∈ O

0, else
(10)

If O is a bounded set, then ψO is C1,1 in O and in IRn \O
and continuous on IRnd , therefore ψO is a C1,1 function.



The formulation of Equation (9) can be used for obstacles
described by quadratic constraints of the form O = {z ∈
IRnd : 1 − (z − c)>E(z − c) > 0}, such as balls and
ellipsoids. Then, the associated equality constraint becomes
[1− (z − c)>E(z − c)]2

+
= 0. Polyhedral obstacles of the

form O = {z ∈ IRnd : bi − a>
i z > 0,∈ IN[1,m]}, with

bi ∈ IR and ai ∈ IRnd , can also be accommodated by the
constraint

∏m
i=1 [bi − a>

i z]
2
+

= 0.

Equation (9) can also be used to describe general nonconvex
constraints such as ones described by semi-algebraic sets
where hi(z) are polynomials as well as any other obstacle
which is available in the aforementioned representation.

Obstacle avoidance constraints (9) are equivalent to the
existence of t ∈ IRm so that

min{t1, . . . , tm} = 0, (11a)

hi(z) ≤ ti, for i ∈ IN[1,m]. (11b)

This observation reveals a link to vertical complementarity
constraints which have been studied extensively in the
literature [18], [19].

D. Relaxation of constraints

Due to the fact that modeling errors and disturbances may
lead to the violation of imposed constraints and infeasibility of
the MPC optimization problem, it is common practice in MPC
to replace state constraints by appropriate penalty functions
known as soft constraints. Quadratic penalty functions are
often used for this purposes revealing a clear link between
this approach and the quadratic penalty method in numerical
optimization [15, Sec. 4.2.1].

Equality constraints, such as the ones arising in the refor-
mulation of the obstacle avoidance constraints in Section II-
C, can be relaxed by means of soft constraints. Indeed,
constraints of the form Φk(zk) = 0, k ∈ IN[1,N ], where
Φk : IRnd → IR+ are C2 functions, can be relaxed by
introducing the penalty functions Φ̃k(zk) = ηkΦk(zk) for
some weight factors ηk > 0.

That said, constraints like (9) for a set of time-varying
obstacles Okj = {z ∈ IRnd : hikj(z) > 0, i ∈ IN[1,mkj ]},
with j ∈ IN[1,qk], can be relaxed by the cost function

h̃k(zk) =

qk∑
j=1

ηkj

mkj∏
i=1

[
hikj(z)

]2
+
, (12)

for some positive weight factors ηkj > 0.
Note that the proposed approach for dealing with obstacle

avoidance constraints requires only a representation of the
obstacles in the generic form (7) and does not call for the
computation of distances to the obstacles as in distance-based
methods [4], [17], nor does it require the obstacles to be
(strictly) convex sets.

Similarly, inequality constraints of the form gk(xk, uk) ≤
0 and gN (xN ) ≤ 0 can be relaxed by introducing the
penalty functions g̃k(x, u) = βk [gk(x, u)]

2
+

and g̃N (x) =

βN [gN (x)]
2
+

for positive weights βk > 0, k ∈ IN[0,N ].

We may now relax the state constraints in (6) by defining
the modified stage cost and terminal cost functions

˜̀
k(x, u) = `k(x, u) + g̃k(x, u) + h̃k(zk),

˜̀
N (x) = `N (x) + g̃N (x),

leading to the following relaxed optimization problem without
state constraints

minimize ˜̀
N (xN ) +

N−1∑
k=0

˜̀
k(xk, uk), (13a)

subject to x0 = x, (13b)
xk+1 = fk(xk, uk), k ∈ IN[0,N−1], (13c)
uk ∈ Uk, k ∈ IN[0,N−1], (13d)

E. NMPC problem formulation

In this section we cast the nonlinear MPC problem (6) as

minimize
u∈Un

`(u), (14)

where the optimization is carried out over vectors u =
(u0, . . . , uN−1) ∈ IRn, with n = Nuu and ` : IRn → IR
is a real-valued C1,1

L`
function.

We introduce the following sequence of functions Fk :
IRn → IRnx for k ∈ IN[0,N−1]

F0(u) = x, (15a)
Fk+1(u) = fk(Fk(u), uk). (15b)

Define the smooth function ` : IRn → IR

`(u) := ˜̀
N (FN (u)) +

N−1∑
k=0

˜̀
k(Fk(u), uk). (16)

The gradient of function ` in (16) can be computed by means
of automatic differentiation (also known as reverse mode au-
tomatic differentiation, adjoint method and backpropagation)
as shown in Alg. 1 [20].

Algorithm 1 Automatic differentiation for ` in (16)
Input: x0 ∈ IRnx , u ∈ IRn.
Output: `(u), ∇`(u)

1: `(u)← 0
2: for k = 0, . . . , N − 1 do
3: xk+1 ← fk(xk, uk), `(u)← `(u) + ˜̀

k(xk, uk)
4: `(u)← `(u) + ˜̀

N (xN ), pN ← ∇˜̀
N (xN )

5: for k = N − 1, . . . , 0 do
6: pk ← ∇xk

fk(xk, uk)pk+1 +∇xk
˜̀
k(xk, uk)

7: ∇uk
`k(u)← ∇uk

fk(xk, uk) +∇uk
˜̀
k(xk, uk)

Problem (14) is in a form that allows the application of
the projected gradient iteration

uν+1 = Tγ(uν) := ΠU (uν − γ∇`(uν)), (17)

with γ > 0. In particular, if ` ∈ C1,1
L`

and γ < 2/L`, then all
accumulation points of (17), u?, are fixed points of Tγ called
γ-critical points, that is [10, Prop. 2.3.2]

u? = Tγ(u?). (18)



u

ϕγ(u)

`(u)

Fig. 1. Construction of the FBE with γ = 0.15 (red line) for the function
`(u) = sin(2u) over the set U = [0, 2] (thick blue line). The dashed line
shows the approximation of ` at a point u by the quadratic model Q`γ(v;u).
The value of FBE at u is then given by ϕγ(u) = infv∈U Q`γ(v;u). Note
that the local minima of ` over U are exactly the local minima of ϕγ .

III. FAST NONLINEAR MPC

The problem of finding a fixed point for Tγ can be reduced
to the equivalent problem of finding a zero of the fixed-point
residual operator which is defined as the operator

Rγ(u) = 1
γ (u− Tγ(u)). (19)

This motivates the adoption of a Newton-type iterative scheme

uν+1 = uν −HνRγ(uν), (20)

where Hν are invertible linear operators, appropriately chosen
so as to encode curvature information about Rγ . This is done
by enforcing the inverse secant condition sν = Hν+1y

ν , for
sν = uν+1 − uν and yν = Rγ(uν+1)−Rγ(uν) and can be
obtained by quasi-Newtonian methods such as the limited-
memory BFGS (L-BFGS) method [10] which is free from
matrix operations, requires only a limited number of inner
products and is suitable for embedded implementations. The
main weakness of this approach is that convergence is only
guaranteed in a neighborhood of a γ-critical point u?. We
shall describe a globalization procedure which hinges on the
notion of the forward-backward envelope function.

A. The Forward-Backward envelope function

The forward-backward envelope (FBE) is an exact, con-
tinuous, real-valued merit function for (14) [16], [21]–[24].
Function ` can be approximated at a point u ∈ U by the
quadratic upper bound

Q`γ(v;u) = `(u) +∇`(u)>(v − u) + 1/2γ‖u− v‖2. (21)

The FBE is then defined as

ϕγ(u) = inf
v∈U

Q`γ(v;u). (22)

This construction is illustrated in Fig. 1. Provided that it is
easy to compute the distance to U , the FBE can be easily
computed by

ϕγ(u) = `(u)− γ
2 ‖∇`(u)‖2 + dist2U (u− γ∇`(u)). (23)

Therefore, the computation of the FBE is of the same
complexity as that of a forward-backward step.

The FBE possesses several favorable properties, perhaps
the most important being that it is real-valued, continuous and
for γ ∈ (0, 1/L`) shares the same (local/strong) minima with

the original problem (14). This means that (14) is reduced to
an unconstrained minimization problem. Moreover, if ` ∈ C2,
then ϕγ ∈ C1 with ∇ϕγ(u) = (I − γ∇2`(u))Rγ(u).

B. PANOC Algorithm
We employ the proximal averaged Newton-type method

for optimal control, for short PANOC, which was recently
proposed in [16]. PANOC performs fast Newton-type updates
while an FBE-based linesearch furnishes it with global
convergence properties while it uses the same oracle as the
projected gradient method.

Algorithm 2 PANOC algorithm for problem (14)
Input: γ ∈ (0, 1/L`), L` > 0, σ ∈ (0, γ2 (1−γL`)), u0 ∈ IRn,

x0 ∈ IRnx , L-BFGS memory length µ.
1: for ν = 0, 1, . . . do
2: ūν ← ΠU (uν − γ∇`(uν))
3: rν ← γ−1(uν − ūν)
4: dν ← −Hνr

ν using L-BFGS
5: uν+1 ← uν − (1 − τν)γrν + τνd

ν , where τν is the
largest number in {1/2i : i ∈ IN} such that

ϕγ(uν+1) ≤ ϕγ(uν)− σ‖rν‖2 (24)

The iterative scheme, which is presented in Alg. 2, involves
the computation of a projected gradient point ūν in step 2 and
an L-BFGS direction dν in step 4. L-BFGS obviates the need
to store or explicitly update matrices Hν in (20) by storing a
number µ of past values of sν and yν . The computation of dν

requires only inner products which amount to a maximum of
4µn scalar multiplications. In step 5, the iterates are updated
using a convex combination of the projected gradient update
direction −γRγ(uν) and a fast quasi-Newtonian direction dν .
The algorithm is terminated when ‖Rγ(uν)‖∞ drops below
a specified tolerance.

In line 5, the backtracking line search procedure ensures
that a sufficient decrease condition is satisfied using the FBE
as a merit function. Under mild assumptions, eventually only
fast updates are activated and updates reduce to uν+1 =
uν + dν . The sequence of fixed-point residuals {rν}ν∈IN
converges to 0 square summably, while PANOC produces
sequences of iterates, {uν}ν∈IN and {ūν}ν∈IN, whose cluster
points are γ-critical points.

In absence of a Lipschitz constant L`, the algo-
rithm can be initialized with an estimate, e.g., L0

` =
‖∇u`(u0 + δu)−∇u`(u0)‖/‖δu‖, where δu ∈ IRn is a
small perturbation vector. Then, step 2 in Alg. 2 needs to
be replaced by the backtracking procedure of Alg. 3 which
updates L`, σ and γ.

Algorithm 3 Lipschitz constant backtracking
while `(ūν) > `(uν)− γ∇`(uν)>rν + L`/2‖γrν‖2 do
L` ← 2L`, σ ← σ/2, γ ← γ/2
ūν ← ΠU (uν − γ∇`(uν))

Alg. 3 updates L`, σ and γ only a finitely many times, so,
it does not affect the convergence properties of the algorithm.



Fig. 2. In-house developed mobile robot with trailer.

0 0.2 0.4 0.6 0.8
−0.2

0

0.2

0.4

0 0.4 0.8 1.2 1.6

−0.4

0

0.4

0.8

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

1 2 3 4 5 6 7
−2

−1

0

1

2

3

Fig. 3. Four obstacle avoidance scenarios using PANOC. The red X mark
denotes the destination point and various lines are trajectories from different
initial points. The dashed lines correspond to enlargements of obstacles which
are circumscribed by thick green lines. (First row) Obstacle avoidance with
circular and rectangular obstacles, (Down, left) Enlarged obstacle defined by
O = {(x, y) : y > x2, y < 1 + x2/2} and (Down, right) Enlarged obstacle
defined by O = {(x, y) : y > 2 sin(−x/2), y < 3 sin(x/2− 1), 1<x<8}.

In MPC, we may warm start the algorithm using the optimal
solution of the previous MPC instance. Unlike SQP and IP
methods, PANOC does not require the solution of linear
systems or quadratic programming problems at every iteration
and it involves only very simple operations such as vector
additions, scalar and inner products. Additionally, PANOC
converges globally, that is, from any initial point u0 ∈ IRn.

IV. SIMULATIONS

The proposed methodology is validated on the control of
a mobile robot carrying a trailer shown in Fig. 2. Assuming
zero slip of the trailer wheels, the nonlinear kinematics is

ṗx = ux + L sin θ · θ̇, (25a)

ṗy = uy − L cos θ · θ̇, (25b)

θ̇ = 1
L (uy cos θ − ux sin θ) , (25c)

where the state vector x = (px, py, θ) comprises the coordi-
nates px and py of the trailer and the heading angle θ. The
input u = (ux, uy) is a velocity reference which is tracked by
a low-level controller. The distance between the center of mass
of the trailer and the fulcrum connecting to the towing vehicle
is L = 0.5 m. In Fig. 3 we present four obstacle avoidance
scenarios involving, among other, obstacles described by
polynomial and trigonometric functions. The system dynamics
given in (25) is discretized using the fourth-order Runge-Kutta
method and using L-BFGS with µ = 10.

0 10 20 30 40 50

10−4

10−2

100

102

Time instant k

R
un

tim
e

(s
)

PANOC Proj. Grad.
IPOPT SS IPOPT MS
SQP SS SQP MS

Fig. 4. Comparison of runtime to solve the NMPC problem for four solvers:
PANOC, IPOPT and fmincon’s SQP algorithm (for the single and multiple
shooting formulations) and projected gradient (ForBES implementation).
These timings correspond to the navigation problem presented in Fig. 3
(upper right subfigure), starting from the initial point x0 = (−0.1,−0.2, π/5)
and with N = 50. The tolerance was set to 3 · 10−3 for all solvers. All
solvers are warm-started with their previous solution.

The single shooting formulation of Section II is solved
with PANOC, the interior point solver IPOPT, the forward-
backward splitting (FBS) implementation of ForBES and
the SQP of MATLAB’s fmincon. The problem was also
brought in a multiple shooting formulation where obstacle
avoidance constraints were imposed as in (9) and it was
solved using IPOPT and SQP. A comparison of runtime is
shown in Fig. 4. All simulations were executed on an Intel
i5-6200U CPU with 12 GB RAM machine running Ubuntu
14.04. PANOC exhibits very low runtime and outperforms
all other solvers by approximately two orders of magnitude.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed NMPC algorithm is validated on an in-
house mobile robot with a trailer (Fig. 2). The robot has
four independent DC motors with Mecanum wheels, which
render it holonomic. A low-level microcontroller implements
a velocity controller for each motor. Therefore, from a high-
level perspective, the robot can be treated as a velocity-steered
holonomic device. A trailer is attached to the robot and the
angle between robot and trailer is measured with a rotary
potentiometer. A ceiling camera detects the robot’s absolute
position and orientation using a marker attached on top of the
robot. This information is sent to the robot over Wi-Fi and
is merged with local encoder measurements to retrieve a fast
and accurate estimate of its pose. An Odroid XU4 platform
runs the NMPC algorithm on board the robotic platform.
PANOC is implemented in C following the C89 standard
without external dependencies and can, therefore, be readily
executed on embedded systems. The C code for performing
Alg. 1 was generated using the AD tool CasADi [25].

The NMPC algorithm is used to steer the vehicle
to a desired destination and trailer orientation xref =
(3.77, 1.40, 0.0). The system dynamics is discretized using
the Euler method. A quadratic cost function is employed
with Qk = QN = 0.1 · I3 and Rk = 0.01 · I2. Box
constraints are imposed on the inputs with umin = −0.8 m/s
and umax = 0.8 m/s. The obstacles are modelled as discussed
in Section II-C and are slightly enlarged for safety so as to
completely avoid collisions. A horizon length of N = 50



t = 0.0 s t = 1.4 s t = 2.5 s t = 3.5 s

Fig. 5. Point-to-point motion of a holonomic robot with a trailer. The robot avoids a circular and rectangular obstacle indicated with the green lines. The
predicted position trajectories are represented in blue and the target position is indicated with the red cross.

0

250

500

ν̄

0

60

120

t s
(m

s)

0 2.5 5

10−6

t (s)

‖r
ν
‖ ∞

Fig. 6. Number of iterations ν̄, solve time ts and final residual ‖rν‖∞
for each NMPC cycle.

is used and the NMPC control rate is 10 Hz. Fig. 5 shows
the resulting motion of the robot and the predicted position
trajectories at four time instants. PANOC is terminated when
‖rν‖∞ ≤ 10−6 or if the number of iterations reaches 500.
The number of iterations ν̄, the solving time ts on the Odroid
XU4 and the norm of the fixed point residual at termination
at each time instant k are shown in Fig. 6.

Additional material and videos from the experiments are
found at https://kul-forbes.github.io/PANOC.

VI. CONCLUSIONS AND RESEARCH DIRECTIONS

We proposed a novel framework which enables us to
encode nonconvex obstacle avoidance constraints as a smooth
nonlinear equality constraint. This offers a flexible modeling
framework and allows the formulation of nonlinear MPC
problems with obstacles of complex nonconvex geometry.
The resulting MPC problem is solved with PANOC which has
favorable theoretical convergence properties and outperforms
state-of-the-art algorithms. This framework was tested using a
C89 implementation of PANOC on a lab-scale robotic system.

Future work will focus on the development of a proximal
Lagrangian framework for the online adaptation of the weight
parameters in the obstacle avoidance penalty functions —
cf. (12) — so that (predicted) constraint violations, modeled
by h̃(zk), are below a desired tolerance. Moreover, the use
of semismooth Newton directions in PANOC will lead to
quadratic convergence and superior performance [21].

REFERENCES

[1] O. Takahashi and R. J. Schilling, “Motion planning in a plane using
generalized voronoi diagrams,” IEEE Trans. Rob. Autom., vol. 5, no. 2,
pp. 143–150, Apr 1989.

[2] J. Minguez, F. Lamiraux, and J.-P. Laumond, Motion Planning and
Obstacle Avoidance. Cham: Springer, 2016, pp. 1177–1202.

[3] D. Bareiss and J. van den Berg, “Generalized reciprocal collision
avoidance,” The Int. J. Robot. Res., vol. 34, no. 12, pp. 1501–1514,
2015.

[4] P. Wang and B. Ding, “A synthesis approach of distributed model
predictive control for homogeneous multi-agent system with collision
avoidance,” Int. J. Control, vol. 87, no. 1, pp. 52–63, 2014.

[5] T. Mercy, R. V. Parys, and G. Pipeleers, “Spline-based motion planning
for autonomous guided vehicles in a dynamic environment,” IEEE Trans.
Control Syst. Technol., vol. PP, no. 99, pp. 1–8, 2017.

[6] F. Debrouwere, W. Van Loock, G. Pipeleers, M. Diehl, J. De Schutter,
and J. Swevers, “Time-optimal path following for robots with object
collision avoidance using Lagrangian duality,” in 9th IEEE Int.
Workshop Rob. Mot. Conntrol (RoMoCo), 2013, pp. 186–191.

[7] B. Alrifaee, M. G. Mamaghani, and D. Abel, “Centralized non-
convex model predictive control for cooperative collision avoidance of
networked vehicles,” in IEEE ISIC, Oct 2014, pp. 1583–1588.

[8] J. V. Frasch, A. Gray, M. Zanon, H. J. Ferreau, S. Sager, F. Borrelli, and
M. Diehl, “An auto-generated nonlinear MPC algorithm for real-time
obstacle avoidance of ground vehicles,” in Eur. Control Conf., 2013,
pp. 4136–4141.

[9] V. Turri, A. Carvalho, H. E. Tseng, K. H. Johansson, and F. Borrelli,
“Linear model predictive control for lane keeping and obstacle avoidance
on low curvature roads,” in IEEE Intell. Transp. Syst. Conf., Oct 2013,
pp. 378–383.

[10] J. Nocedal and S. J. Wright, Numerical Optimization. Springer New
York, 2006.

[11] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[12] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathem. Progr., vol. 106, no. 1, pp. 25–57, Mar 2006.

[13] M. Diehl, H. G. Bock, and J. P. Schlöder, “A real-time iteration scheme
for nonlinear optimization in optimal feedback control,” SIAM J. Contr.
Optim., vol. 43, no. 5, pp. 1714–1736, 2005.

[14] H. Attouch, J. Bolte, and B. F. Svaiter, “Convergence of descent
methods for semi-algebraic and tame problems: proximal algorithms,
forward–backward splitting, and regularized Gauss–Seidel methods,”
Math. Progr., vol. 137, no. 1, pp. 91–129, Feb 2013.

[15] D. P. Bertsekas, Nonlinear programming. Athena Scientific, 1999.
[16] L. Stella, A. Themelis, P. Sopasakis, and P. Patrinos, “A simple and

efficient algorithm for nonlinear model predictive control,” in IEEE
CDC, Melbourne, Australia, 2017.

[17] E. Gilbert and D. Johnson, “Distance functions and their application to
robot path planning in the presence of obstacles,” IEEE J. Rob. Autom.,
vol. 1, no. 1, pp. 21–30, Mar 1985.

[18] H. Scheel and S. Scholtes, “Mathematical programs with complemen-
tarity constraints: Stationarity, optimality, and sensitivity,” Math. Op.
Res., vol. 25, no. 1, pp. 1–22, 2000.

[19] Y.-C. Liang and G.-H. Lin, “Stationarity conditions and their refor-
mulations for mathematical programs with vertical complementarity
constraints,” J. Optim. Theory Appl., vol. 154, no. 1, pp. 54–70, Jul
2012.

[20] J. C. Dunn and D. P. Bertsekas, “Efficient dynamic programming
implementations of Newton’s method for unconstrained optimal control
problems,” J. Optim. Theory & Appl., vol. 63, no. 1, pp. 23–38, 1989.

[21] P. Patrinos, L. Stella, and A. Bemporad, “Forward-backward truncated
Newton methods for convex composite optimization,” ArXiv e-prints,
Feb. 2014.

[22] L. Stella, A. Themelis, and P. Patrinos, “Forward-backward quasi-
Newton methods for nonsmooth optimization problems,” Comput.
Optim. Appl., vol. 67, no. 3, pp. 443–487, Jul 2017.

[23] A. Themelis, L. Stella, and P. Patrinos, “Forward-backward envelope
for the sum of two nonconvex functions: Further properties and
nonmonotone line-search algorithms,” ArXiv preprint, jun 2016.

[24] P. Patrinos and A. Bemporad, “Proximal Newton methods for convex
composite optimization,” in IEEE CDC, Dec 2013, pp. 2358–2363.

[25] J. Andersson, “A general-purpose software framework for dynamic
optimization,” PhD thesis, KU Leuven, Dept. Electr. Eng. (ESAT/SCD)

& Optimization in Engineering Center, October 2013.

https://kul-forbes.github.io/PANOC/

	Introduction
	Background and Contributions
	Notation

	NMPC for obstacle avoidance
	Problem statement
	Nonlinear model predictive control
	Reformulation of obstacle avoidance constraints
	Relaxation of constraints
	NMPC problem formulation

	Fast nonlinear MPC
	The Forward-Backward envelope function
	PANOC Algorithm

	Simulations
	Experimental results and discussion
	Conclusions and research directions
	References

