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Abstract

The Architectural, Engineering and Construction (AEC) industry is looking to

integrate Building Information Modelling (BIM) for existing buildings. Cur-

rently these as-built models are created manually which is time-consuming.

An important step in the automated Scan-to-BIM procedure is the interpreta-

tion and classification of point cloud data. This is computationally challenging

due to the sheer size of point cloud data of an entire building. Additionally,

the variety of objects makes classification problematic. Existing methods focus

on specific sensors or environments to improve their results. The goal of this

research is to provide a method that is sensor independent and labels entire

buildings at once.

This paper presents a method to automatically identify structural elements

for the purposes of Scan-to-BIM. More specifically, a Random Forests classi-

fier is employed for the classification of the floors, ceilings, roofs, walls and

beams. First, the point cloud is pre-segmented into planar primitives. This

significantly reduces the data while maintaining accuracy. Both contextual

and geometric features are used to describe the observed patches. By pre-
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segmenting the data, more distinct features can be extracted from the input

information. The algorithm is evaluated using realistic data of a wide variety

of existing buildings including houses, school facilities, a factory, a castle and

a church. The experiments prove that the proposed algorithm is capable of

labelling structural elements with reported precisions of 85% and 87% recall

in highly cluttered environments. In future work, the classified patches are

processed by class-specific reconstruction algorithms to create BIM geometry.

Keywords: Classification, Semantic Labelling, Scan-to-BIM,

Pre-segmentation, Point Clouds, Building

1. Introduction

The implementation of Building Information Modelling (BIM) for existing

buildings is gaining popularity. Experiencing the advantage of BIM for new

constructions, the industry now looks to implement as-built BIM. The need for

resource efficiency, planning and communication have prompted stakeholders5

to adopt intelligent models that reflect the state of the asset as it was built to

properly manage their data. These as-built models store an immense amount

of information about a building at the varying stages of the construction’s life

cycle [1]. This metric and non-metric information allows the different parties

in the construction process to better operate, analyse and evaluate the asset [2].10

As-built BIM is currently being employed for documentation, maintenance,

quality control, etc. [3].

The production of BIM models with as-built conditions is labour inten-

sive and error prone. The existing documentation of the asset is often sparse

or non-existent. Moreover, it often does not match the as-design model of the15

building due to construction changes or renovations [4, 5]. Current procedures

rely on dense spatial measurements for the modelling of the geometry. Typi-

cally, 3D point cloud data is acquired by 3D laser scanners or photogrammetry

[6]. The automated reconstruction of BIM objects is still ongoing research [7].

A key step in the workflow is the identification of observations of structural20
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elements. Several machine learning algorithms have been proposed to classify

building objects. However, these methods often rely on specific sensors or en-

vironments [8, 9]. The goal of this research is to extend the existing approaches

to be applicable to point cloud data of any source that includes both interior

and exterior environments of a wide variety of buildings.25

This paper presents an automated solution for the classification of point

cloud data for the purposes of as-built BIM. More specifically, structural ele-

ments such as floors, ceilings, roofs, walls and beams are automatically iden-

tified in existing structures. Typically, these structures have a wide variety of

elements, are heavily cluttered and have problems with occlusion as depicted30

in Fig. 1. Machine learning techniques are proposed for the labelling of the

elements. The scope of this research is focussed on the processing of metric

information as it is the most consistent in point cloud data.

The remainder of this work is structured as follows. Section 2 presents a

background in as-built modelling. In section 3 the related work is discussed.35

In Section 4 the methodology is presented. The test design and experimental

results are proposed in Section 5. Finally, the conclusions are presented in

Section 6.

2. Background

The procedure of converting point cloud data to BIM geometry is referred40

to as Scan-to-BIM. Most automated workflows consists of three consecutive

steps: Segmentation, classification and reconstruction. First, the point cloud is

segmented into point clusters. It is considered as an instance of unsupervised

pattern recognition and can be solved by several machine learning techniques

[10]. Planar clusters are often proposed [11, 12] but other primitives are not45

excluded.

Second, each cluster is provided with a class label. This step, referred to

as classification, is considered an instance of supervised learning that identi-

3



Figure 1: Example point clouds of structures used during testing: Chemical facility (a), house (b),

multi-storey school building (c) and a church (d).
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fies the class of new observations given a set of explanatory variables known

as features [10, 13]. Commonly in literature both geometric and contextual50

features of the observations are employed [14, 15]. Examples of local geo-

metric features are the area, surface dimensions and orientation. Geometric

contextual features may describe the similarity, proximity, coplanarity and or-

thogonality. The set of features, grouped in a feature vector, is processed by

a pre-trained classification model to predict the labels. These functions are55

referred to as classifiers. Both heuristics and machine learning algorithms

have been proposed for classification. Heuristic models are based on user

defined rules in a certain structure. These rules require no training of the

model parameters as they are intuitively set. While being very efficient, heuris-

tics are typically case specific. Alternatively, machine learning algorithms are60

employed such as Discriminant Analysis (DA), Decision Trees, Support Vec-

tor Machines (SVM), Neural Networks (NN), Probabilistic Graphical Models

(PGM), etc. [8, 12, 13, 16, 17, 18, 19]. The parameters of these models are

learned from known observations. Machine learning methods often generalise

better than heuristics but require extensive training data to work adequately.65

Currently, classification is used in a wide variety of applications such as navi-

gation, object recognition and remote sensing.

In the third step, the labelled clusters are processed by class-specific recon-

struction algorithms that create the BIM objects. Once the initial geometry has

been constructed, the topology of the objects is adjusted to create a realistic70

BIM model. Afterwards, non-metric properties such as materials are added to

the individual elements.

3. Related Work

Semantic labelling of building geometry has been a major research topic

over the last decade. Both imagery and LIght Detection And Ranging (LIDAR)75

data are considered for the classification of structures. The terrestrial applica-

tions are split into the processing of indoor and outdoor scenery. Most indoor
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applications focus on the extraction of small scale objects for navigation and

interaction purposes [5, 20, 21, 22, 23, 24]. Outdoor applications often look to

identify façades, windows, roads, etc. on a larger scale [9, 14, 25, 26, 27, 28, 29]80

Our approach is located in between as we look to label up to several hundreds

of scans and generic point clouds of both indoor and outdoor scenery.

Closely aligned with our research is the work of Armeni et al. [30] and

Xiong et al. [12, 31] who both proposed methods for the classification of struc-

tural elements of generic point cloud data for the purposes of 3D reconstruc-85

tion. They label multiple scans of office and school facilities using machine

learning techniques. We expand their approach by investigating whether pre-

trained models can be generalised for the classification of a wide variety of

structures including castles, churches, factories, etc.

Related to the detection of structural elements is the classification of rooms90

in a building. Mura et al. [32], Ochmann et al. [32] and Ikehata et al. [33]

consider the reconstruction to be a graph optimization problem. However,

the assumption of closed rooms is only applicable for certain cases. In this

research, the features do not specifically encode room information but describe

certain object configurations such as the probability of a wall being located in95

between the floor and the ceiling.

Classification algorithms are often linked to a certain sensor set up or point

cloud format [8, 15, 34, 35]. This allows the integration of additional informa-

tion into the classification procedure. For instance, the sensors location pro-

vides cues for the positioning of certain objects. Valero et al. classifies individ-100

ual scans captured by a Terrestrial Laser Scanner (TLS) for the segmentation

of rooms [36]. However, some features are excluded as each scene is labelled

individually. In our procedure, the input point cloud is considered as the sole

entity and is labelled accordingly. This allows the use of multi-scene features

such as the relation between walls in adjacent rooms.105

Several researchers have presented results for the labelling of built envi-
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ronments using heuristics [37, 38, 39, 40, 41, 42]. However, to classify a wider

variety of buildings, more complex models are considered. For instance, Sup-

port Vector Machines (SVM) have been a popular approach in the past few

years [43, 44, 45]. SVM have been successfully implemented for the clas-110

sification of both indoor and outdoor point cloud data. Non-linear models

such as Decision Trees are also considered for the identification of building

elements [12, 29, 46, 47]. These weak learners are often bootstrap aggre-

gated or boosted to produce stronger classification algorithms [48]. In our

research a similar Random Forests classifier is proposed for the semantic la-115

belling. Additionally, Probabilistic Graphical Models (PGM) are considered

[8, 15, 28, 49, 50]. By representing the data as nodes in a graph, probabilis-

tic reasoning allows the likelihood maximisation of the labels of the nodes.

Both implementations of Markov Random Fields (MRF) and Conditional Ran-

dom Fields (CRF) have been presented for the classification of point cloud120

data [15, 34, 51, 52, 53, 54, 8]. Their ability to model pairwise and higher

order edge potentials between the nodes increases the model performance and

aids classification regularity. The pairwise terms smooth the labelling as most

CRF implementations favour associative classification [28]. This is especially

useful in point-wise classification methods that have weaker features [9]. Cur-125

rently, Probabilistic Graphical Models are not implemented into our approach

as we incorporate the contextual information such as the topology as unary

terms.

Prior knowledge has also been proposed for semantic labelling of buildings.

Existing plans or models significantly reduce the search area of object recogni-130

tion algorithms and aid the scene understanding. Several methods have been

proposed for model matching between the as-built and as-designed conditions

[55, 56]. However, our approach does not rely on prior knowledge as it is typ-

ically scarce and error prone.
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Figure 2: Pre-segmentation: Registered point cloud (Left) and the resulting planar patches

(Right).

4. Methodology135

In this research, a classification procedure is presented for the labelling of

structural objects in built environments. More specifically, a Random Forests

(RF) is implemented with geometric and contextual features for the seman-

tic labelling. First, the data is pre-segmented into planar patches for data re-

duction. This is a well understood problem and thus the Pointfuse engine of140

Arithmetica is utilised [57]. After loading the points into the software, planar

patches are incrementally fit through each point cluster with similar normals

(Fig. 2). The resulting planar patches are processed by the classification model.

4.1. Feature Extraction145

Distinct features are computed for each observed patch si similar to Wein-

mann et al. [14]. Both geometric and contextual characteristics are exploited.

The former encodes the object’s individual geometric information such as shape,

size and orientation. The latter encodes both associative and non-associative

information in relation to a group of reference surfaces. In addition to the

nearest neighbours, class-specific nearby patches are considered for the fea-

tures. For instance, the repetitivity and frequent topological configurations of

certain reference groups is captured. Table 1 summarizes the different types
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Table 1: List of all features calculated for each observed patch

Local features Count Contextual features Count

Surface Area 1 Normal Similarity 1

Orientation 2 Coplanarity 1

Dimensions 2 Parallelity 1

Proximity 4

Topology 5

and the number of features used in the experiments. The context differs for

the varying feature descriptors (Fig. 3). Both the immediate neighbourhood of

the observed surface is exploited as well as larger reference groups. Addition-

ally, several features only employ surfaces with specific characteristics such as

orientation as context (Fig. 3 b,c). For instance, the vertical topology feature

Dz(u ∈ si ,v ∈ sj ) evaluates the vertical distance between the observed surface si

and the large horizontal surfaces sj within its vicinity (Fig. 3 b). The normal

similarity feature computes ~ni · ~nlarge between the normal vector of the surface

~ni and the normals of the nearby large surfaces ~nlarge. Coplanarity is defined

as

Coplanarity(si , sj ) =


−1 ~ni · ~nj < cosθt

|(~ci − ~cj ) · ~ni | else
(1)

where |(~ci − ~cj ) · ~ni | is the distance between centroids along the normal to

the neighbouring parallel surfaces (Eq. 1). The parallellity is similar but with

the reference surfaces conditioned to be directly in front of or behind of the

observed surface. The proximity feature captures the repetitivity of certain

object configurations. It is defined as the minimum distance Dmin(u ∈ si ,v ∈ sj )150

between the boundary of the observed surface si and a set of reference surfaces

sj . The following distances are evaluated: the vertical distance to the closest

large horizontal surface above (1), the vertical distance to the closest large hor-

izontal surface underneath (2), the distance to the closest large vertical surface

(3), and the number of connected surfaces (4). The topology features encode155
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Figure 3: Visualisation of class specific neighbours: Conventional nearest neighbours (a), signifi-

cantly large nearby surfaces (b), significantly large horizontal surfaces above/below (c) and nearby

small surfaces (d).

the presence of object configurations. These binary predictors serve as dis-

criminative features between classes. For instance, a horizontal patch is more

likely to be a ceiling when there are large horizontal patches directly above it.

Five relations are observed describing the presence of horizontal and vertical

surfaces: Small surfaces above (1) and below the patch (2) (Fig.4a), the posi-160

tion of vertical patches (3) and the position of horizontal patches above (4) and

below (5) (Fig.4b). Finally, all features values are combined in feature vectors

x = {x1, . . . ,xn} and are passed to the classifier for further processing.

4.2. Model formulation

Each observed surface is assigned a class label y ∈ Y = {l1, . . . , lk} given the165

feature vectors x. The label prediction p(y|x) is computed by a pre-trained

Random Forests (RF) classifier similar to Munoz et al. [58], Vosselman et al.
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Figure 4: Representation topology predictors: Topology small surfaces (Left), evaluation topology

nearby significantly large horizontal surfaces (Right).

[58], Niemeyer et al. [59], etc. [8, 54]. This classifier bootstrap-aggregates a

number of weak learners [48]. The training data is copied into M different

bootstrapped data sets and a predictive discreet decision tree ym(x) is trained170

for each subset. Each tree consists of a series of binary splits that separate

the input variables. The split is the result of the best fit partitioning of the

feature vector space for the classes along one of the major axes. Typically, a

single tree has the tendency to overfit. By bagging a large number of trees, the

variance is significantly reduced which aids the generalisation of the model.175

Once the Random Forests classifier is trained, future observations are classified

by a majority vote of the hypotheses of the decision trees.

The Random Forests model is trained using leave-p-out cross validation.

Consecutively, p known observations are used for validation and the remaining

observations are used for training. The final optimized model is achieved by180

averaging the model parameters. A regularization parameter λ is introduced

that penalises overfitting. The feature extraction and prediction algorithm are

implemented in the Rhinoceros plug-in Grasshopper[60]. This intuitive pro-

cedural programming platform allows for flexible data processing and evalu-

ation. The classified patches are exported to the Rhinoceros model space for185

validation and further processing.
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Figure 5: Example test cases with reconstructed surfaces: House 4000 surfaces (a), Campus 30000

surfaces (b), Office 26000 surfaces (c), Row house 1800 surfaces (d), Multi-storey office 3000 sur-

faces (e), heritage site 10000 (f), church 6500 surfaces (g) and chemical plant 15000 surfaces(h).

12



Figure 6: Example test data with ground truth: Laboratory (a), classroom (b), chemical plant

(c), flat roof structure (d), heritage roof beam structure (e) and heritage room (f). Red=floors,

purple=ceilings, blue=roofs, green=walls, yellow=beams and grey=clutter.
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5. Experiments

The algorithm was tested on a wide variety of buildings. 10 structures in-

cluding houses, offices, industrial buildings and churches were used for train-

ing and testing (Fig 5). The size of the projects varies between 300 million190

and 1,4 billion points and were acquired with different sensors such as Ter-

restrial Laser Scanners. The test sites were acquired under realistic conditions

including clutter, occlusions, traffic, etc. The pre-segmentation was performed

with the Aritmica’s Pointfuse software [57]. The point clouds were subsam-

pled with a 1cm spacing and processed on an Intel®Core i7-4900MQ CPU @195

2.80Ghz with 4 cores and 4 hyperthreads and 32GB RAM. Over 90,000 sur-

faces were computed for the projects. On average, the patch creation had a

standard deviation of 1mm compared to the initial point clouds. A subset of

the data was used for the experiments. Only the surfaces larger than 0.4m2

were considered since the smaller surfaces mainly consisted of clutter and fur-200

niture pieces. The remaining 7000 surfaces were labelled manually and served

as ground truth for the classification (Fig. 6). The available classes included

floors, ceilings, roofs, walls, beams and clutter. All 17 predictors from table 1

were considered for the classification of the observations. The Random Forests

classifier was trained with a p = 5 cross-validation. In order to obtain an unbi-205

ased classification model, the training data set was balanced by sampling the

same number of observations for each class.

5.1. Performance

The classification results are depicted in the confusion matrices in Fig.7.

The average recall and precision is 87% and 85% respectively, resulting in an210

overall average accuracy of 86%. This is very accurate given the large variety of

buildings and objects that were evaluated. Typical objects such as floors, ceil-

ings and walls were extracted with over 88% accuracy. This proves that while

buildings have many unique objects and are heavily cluttered, their structural

elements are reliably detected.215
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Figure 7: Classification results Random Forests classifier: Recall (Left), Precision (Right). The

percentage defined under the ’True Class’ is the amount of available test data.

Not-surprisingly, a large number of evaluated surfaces are objects for which

the classes are not available (28%). Combined with the small surfaces, over

90% of the pre-segmented patches are non-structural objects. However, the

feature predictors are sufficiently distinct for the Random Forests classifier to

properly differentiate the structural from the non-structural patches.220

The confusion matrices show that the beams class underperforms (Fig. 7).

This is expected due to the increased feature variance of this class. Beams have

no obvious direction and are prone to occlusions. Increased confusion rates are

observed between the walls and clutter classes as well as the ceiling and roof

classes. The confusion rate of walls and clutter is approximately the same for225

both classes (avg. 10%). This is mainly due to the misclassification of wall-like

objects such as built-in closets and blackboards and actual wall objects such

as niches and wall details (Fig.8a,c,d & e). In contrast, the confusion between

the ceilings and roofs is only observed for the roofs (16%). This is due to the

fact that several data sets do not have roofs making the top ceilings harder to230

interpret (Fig.8b). Several misclassifications are due to our sensor independent

approach. For instance, the ceiling in Fig.8f was misclassified as a floor as it

was the most likely state given the context. Information regarding the position
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Figure 8: Several misclassification examples. Large closets, doors and machinery labelled as walls

(a,c and d), unobstructed ceilings labelled as roofs (b), near vertical ceilings labelled as walls (e)

and unobstructed ceilings labelled as floors (f).
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Table 2: Averaged classification results of Random Forests compared to K-Nearest Neighbours,

multiceptron Neural Network, Linear Support Vectors Machines and Boosted Decision Trees.

Classifier Training [s] AUC [%]
Recall/Precision [%]

Beams Ceilings Clutter Floors Roofs Walls

Random Forests 13.7 86 62/81 93/84 83/81 93/93 73/93 89/88

KNN 2.1 78.7 53/70 74/70 78/76 82/72 61/78 85/87

Neural Network 1.2 69.6 61/29 65/84 73/74 87/78 74/59 83/85

SVM 15.8 74 13/51 78/59 71/71 76/86 52/69 85/80

Boosted Trees 14.4 77.8 27/70 80/72 76/69 91/83 46/88 85/84

of the sensor would have avoided this misclassification but would make the

approach dependent on a specific sensor set up.235

5.2. Comparison

We compared the results of the Random Forests classifier with other com-

mon machine learning methods. Table 2 depicts the results of the model per-

formance for K-Nearest Neighbours (KNN), a multiceptron Neural Network

(NN), Support Vector Machines (SVM) and boosted decision trees. All models240

were tested with the same predictors and data as the proposed model. Both the

recall and precision values were observed. From table 2 is derived that most

classifiers had fast training speeds and were able to properly label the candi-

date data. This proves that the used predictors are both distinct and robust

for the detection of structural elements in cluttered and noisy environments.245

When comparing Random Forests to the other classifiers, it is observed that

the used model outperforms the other classifiers. When comparing against

a Neural Network, a clear trade off is observed between speed and perfor-

mance. However, since our approach focusses on post-processing applications,

the training time is of lesser concern.250

6. Discussion and Conclusion

In this paper, a method is presented for the automated classification of

point cloud data of structural objects in buildings. More specifically, the data
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is pre-segmented and processed by machine learning algorithms to label the

floors, ceilings, roofs, beams, walls and clutter in noisy and occluded environ-255

ments. This step is crucial in the automated procedure of creating Building

Information Modelling (BIM) objects from raw metric information.

By pre-segmenting the point cloud data, the amount of observations is dras-

tically reduced while maintaining the metric accuracy. This allows for the pro-

cessing of larger data sets and provides additional features. A Random Forests260

classifier is implemented that exploits both geometric and contextual features.

A variable neighbourhood search is presented to encode various contextual

relations. The results show that the proposed classifier is able to reliably la-

bel the pre-segmented patches given the feature observations. However, some

classes underperform due to the large variance in feature values within the265

class. Classes such as beams consist of a wide variety of possible objects and

suffer from occlusions. The results can be improved by narrowing down the

possible objects of a single class by splitting the class into various subclasses

such as pillar, beam, pipe, etc. Additionally, while the sensor independent ap-

proach generalises well, the lack of additional information such as the sensors270

position affects the model performance.

From the comparison to other classifiers is derived that most classification

methods are capable of identifying the correct class of new observations given

distinct and robust descriptors and a large number of known observations. The

experiments prove that the feature values of observations in different buildings275

and configurations are similar and discriminative.

In future work, the method will be investigated further to improve the la-

belling performance. Additionally, More types of primitives will be considered

along with appropriate features. This will enhance the current classification

and allows for the processing of non-planar classes such as cylindrical beams280

and pipes as well as furniture. Also, research will be performed towards the

integration of probabilistic graphical models to increase the methods perfor-
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mance.
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