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Abstract 
The recent emergence of advanced manufacturing techniques such as additive manufacturing and an 

increased demand on the integrity of components have motivated research on the application of X-ray 

computed tomography (CT) for dimensional quality control. While CT has shown significant empirical 

potential for this purpose, there is a need for metrological research to accelerate the acceptance of CT 

as a measuring instrument. The accuracy in CT-based measurements is vulnerable to the instrument 

geometrical configuration during data acquisition, namely the relative position and orientation of X-

ray source, rotation stage, and detector. Consistency between the actual instrument geometry and the 

corresponding parameters used in the reconstruction algorithm is critical. Currently available 

procedures provide users with only estimates of geometrical parameters. Quantification and 

propagation of uncertainty in the measured geometrical parameters must be considered to provide a 

complete uncertainty analysis and to establish confidence intervals for CT dimensional measurements. 

In this paper, we propose a computationally inexpensive model to approximate the influence of errors 

in CT geometrical parameters on dimensional measurement results. We use surface points extracted 

from a computer-aided design (CAD) model to model discrepancies in the radiographic image 

coordinates assigned to the projected edges between an aligned system and a system with 

misalignments. The efficacy of the proposed method was confirmed on simulated and experimental 

data in the presence of various geometrical uncertainty contributors. 
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1 Introduction 
X-ray computed tomography (CT) is an imaging technique that employs penetrating electromagnetic 

radiation and dedicated mathematical algorithms to visualize, analyze and quantify both external and 

internal structures of the measured object in a non-destructive manner. The potential of CT as a 

multipurpose and effective measuring technology is widely recognized. However, the application of CT 

to metrologically rigorous tasks, such as dimensional quality control of manufactured products, 

demands considerable research efforts. The formal estimation and expression of measurement 

uncertainty is fundamental for acceptance of CT as a measuring instrument. This study applies to 

typical industrial cone-beam CT systems. 

The tomographic reconstruction step in CT generates a three-dimensional attenuation map 

(volume) of the measured object from a series of two-dimensional projections (radiographs) acquired 

at different perspectives. Attenuation maps consist of three-dimensional arrays of voxels (three-

dimensional equivalent of pixels), each having a grey value intensity within a specified range 

corresponding to the X-ray attenuation at the respective unit volume. While these 3D volumes provide 

users with visual information about the measured object, additional steps are required to extract 

dimensional information. The 3D attenuation map is converted to a surface model by image-

processing operations such as edge-based segmentation, in which material interfaces are specified by 

a significant transition between high and low intensities (large image gradients). Surface sampling can 

then be applied to the surface model to extract a point cloud of surface coordinates. 

Accurate CT reconstruction demands that the geometrical configuration during data acquisition, 

namely relative position and orientation of X-ray source, rotation stage, and detector, be consistent 

with the corresponding parameters used in the reconstruction algorithm [1]. For brevity, we use the 

word misalignment to refer to any type of inconsistency in geometrical parameters. Currently, 

available procedures provide users with only estimates of geometrical parameters. Quantification and 

propagation of uncertainty in the measured geometrical parameters must be considered to provide a 

complete uncertainty analysis and to establish confidence intervals for CT dimensional measurements. 

In previous work [2], we have shown that geometrical misalignments lead to inconsistent 

radiographic data, which results in various visual artifacts in the reconstructed volume and 

consequent errors in dimensional measurements. Due to the complex relationship between the 

presence of geometrical misalignments and errors in dimensional measurements, analytical 

expressions linking geometrical parameters to dimensional measurements are currently not available. 

As a result, the conventional GUM method of uncertainty determination [3], which is based on the 

presence of an analytical measurement model to propagate uncertainty components, cannot be 

applied [4]. An alternative to the GUM method is based on Monte Carlo variation of input parameters 

in a simulated CT measurement. However, the computational load associated with simulation of the CT 

measurement procedure, i.e. simulation of radiographic image acquisition, tomographic reconstruction 

of the CT volume, and surface segmentation, prohibits its practical application to real measurement 

tasks [5], [6]. These limitations motivate us to find an alternative method for quantifying the influence 

of geometrical misalignments on dimensional measurements. A critical condition for this alternative 

method is that it is not computationally intensive, yet captures error behaviors and their influence on 

dimensional measurements. 

The dimensional extent of an object can be defined by its surface. The inconsistency between the 

assumed geometry used in the back projection step of the reconstruction algorithm and the actual 

system geometry will result in errors in position of the segmented surface and consequently in errors 

in dimensional measurements. In this study, we introduce a new method for modelling surface 

coordinate errors due to geometrical misalignments without the need to perform a full CT simulation 

routine.  

The proposed method is rooted in approaches for model-based reconstruction [7], [8] and 

reconstruction of shapes from silhouettes [9]. These previous approaches aim to reconstruct object 

features from incomplete and noisy data. In our proposed method, discrepancies in the radiographic 
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image coordinates assigned to the projected edges between an aligned system and a system with 

misalignments are modelled. Our goal is to utilize the modelled radiographic discrepancies to quantify 

dimensional errors in the tomographically reconstructed edges. In a previous publication [2], 

distortions in the radiographic data due to detector angular misalignments were evaluated by way of a 

forward projection model. In this study, we extend our previous work and propose a method to 

propagate known misalignments to surface coordinate errors in the measurement volume. In previous 

work [2], only angular misalignments of the detector are considered. Here, we model the effects from 

all seven parameters that define the perspective projection geometry in a cone-beam CT 

system [10], [11]. The proposed algorithm is designed to provide computational benefits in the 

assessment of coordinate measurement uncertainty when compared to a full Monte Carlo simulation. 

A comparison of the algorithm output to observed surface deviations from simulated data and 

experimentally acquired tomographic data provide a proof of concept for the future application of the 

proposed method for assessing the contribution from instrument geometrical misalignments to task-

specific measurement uncertainty.  

The rest of the paper is organized as follows. We start by introducing the notation used throughout 

the paper and summarizing the underlying assumptions within our work in sections 2 and 3, 

respectively. In section 4, the geometry of a typical cone-beam X-ray CT system with a circular 

scanning trajectory is described and the influence of geometrical misalignments on the measurement 

volume is discussed. In section 5, we introduce the geometrical error model. Sections 6 and 7 

demonstrate the application of the proposed method to propagation of error in geometrical 

parameters to error in dimensional measurements with simulated CT datasets and experimentally 

acquired datasets, respectively. Monte Carlo procedure consists of repeated evaluations of a known 

model, each time varying the input values. Input parameters sampled from corresponding probability 

distributions. Consequently, for a single Monte Carlo run, the model is evaluated with exact values. 

 

 

2 Notation 
We use italic lowercase letters 𝑎 to denote scalars and bold italic letters 𝒂 to denote vectors; vectors 

are always column vectors. Bold italicized uppercase letters 𝑨 correspond to matrices. Non-italicized 

uppercase letters A are used for sets and surfaces. We use the formalism of homogeneous coordinates 

to describe transformations. A four-component column vector 𝒄 = (𝑎𝑐𝑥 , 𝑎𝑐𝑦, 𝑎𝑐𝑧, 𝑎)  is the 

homogeneous equivalent of vector 𝒄 = (𝑐𝑥 , 𝑐𝑦, 𝑐𝑧), where 𝑎 is the homogeneous scaling factor. We 

make no distinction between homogeneous or inhomogeneous vectors or matrices. Therefore, a three-

dimensional point coordinate can be defined as a 3 × 1 or 4 × 1 vector, depending on the context. The 

Euclidean scalar-product and cross-product of two vectors are denoted by 〈𝒂, 𝒃〉 and (𝒂 × 𝒃), 

respectively. ‖𝒂‖ is the corresponding Euclidean vector norm. Vector transpose is denoted by 

superscript 𝑇, for example the vector transpose of 𝒂 is given by 𝒂𝑇 . |𝑎| is the absolute value of the 

scalar 𝑎. 

 

 

3 Assumptions 
In this study, we focus only on the effects of geometrical misalignments, which are estimated in a 

separate procedure [10], [11]. We do not consider any other influence factors, such as noise, beam-

hardening, discretization error, cone-beam artifact, blurring, undersampling, etc. The X-ray focal spot 

is modelled as an infinitesimally small point source, the position of which is fixed (i.e. no focal spot 

drift). Rotary stage error motions are also not considered. The detector and measurement volume are 

not discretized into 2D pixel and 3D voxel grids, respectively. Therefore, the CT imaging system is 

treated as continuous space.  
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4 Cone-beam geometry 
The geometry of a cone-beam CT system is described as the relative position and orientation of the 

three major instrument components: X-ray focal spot, axis of object rotation, and flat-panel detector. In 

this section we parameterize the geometry of a typical cone-beam CT system with circular scanning 

trajectory and discuss the influence of geometrical misalignments on reconstruction results.  

 

 

4.1 Influence of geometrical misalignments 

The acquisition of radiographs for cone-beam CT consists of forward projecting a cone-shaped X-ray 

beam from the source focal spot, through the measurement volume, and onto a two-dimensional flat-

panel detector. The cone-beam can be modelled as a series of straight line trajectories (rays) from the 

source point to the detector plane. As the X-rays traverse the measurement volume, they are 

attenuated by matter along their respective trajectories. The intensity of X-rays along each path is 

measured by the detector element onto which they are incident. Radiographic intensity images are 

acquired from different angular positions of the measured object and stored into an acquisition 

dataset.  

CT reconstruction consists of generating a three-dimensional attenuation map of the measurement 

volume discretized onto a three-dimensional Cartesian lattice from the set of acquired two-

dimensional radiographs. One of the most commonly used tomographic reconstruction methods is the 

Feldkamp-Davis-Kress (FDK) algorithm, which is an extension of the single-slice filtered back-

projection algorithm to cone-beam geometries. The popularity of the FDK algorithm is in part due to 

its computational benefits [12]. The attenuation grey value for each voxel in the measurement volume 

is calculated from the collection of measured pixel intensities corresponding to the X-ray trajectories 

intersecting that voxel at all rotation positions. The path traversed by each X-ray trajectory through 

the measurement volume is dependent on the position and orientation of the voxel space relative to 

the X-ray source spot and the corresponding pixel from which the trajectory is back projected for all 

rotation positions of the measurement volume. Accurate back projection of measured X-ray intensities 

therefore depends on accurate knowledge of the CT geometrical parameters. Discrepancies between 

actual acquisition geometry and the assumed geometry in the tomographic back projection step will 

generate erroneous volumetric data. This concept is illustrated for the single-slice reconstruction of a 

sphere from data acquired with an ideally aligned CT system and again with a misaligned CT system. 

For simplicity of illustration, parallel-beam geometry is used. Figure 1a illustrates the back projection 

of the imaged disc (single slice of a sphere) from an aligned system for a—limited—set of 16 

projections. Figure 1b shows the same reconstructed slice from a misaligned system. Figures 1c and 1d 

illustrate the fully reconstructed slices from the aligned and misaligned systems, respectively. 

Misalignments result in significant artifacts of the reconstructed disc edge.  
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a) b) 

  
c) d) 

Figure 1. Influence of geometrical misalignments on the parallel-beam reconstruction of a sphere, shown for 
one slice. a) Reconstruction from 16 projections under ideal system alignment. b) Reconstruction from 16 
projections in the presence of geometrical misalignments. c) Reconstruction from the full set of projections 
under ideal system alignment. d) Reconstruction from the full set of projections in the presence of 
geometrical misalignments. 

 

 

4.2 Cone-beam geometry model 

The geometrical parameterization of a typical cone-beam CT with a circular scanning trajectory is 

illustrated in figure 2. A global right-handed Cartesian coordinate frame (GCF) is defined by three 

mutually orthogonal axes 𝑋, 𝑌, and 𝑍: 

 𝑌 axis is parallel to the rotation axis,  

 𝑍 axis passes through the cone-beam vertex (focal spot) and perpendicular to the rotation axis, 

and 

 𝑋 axis is given by cross product of 𝑌 and 𝑍, i.e. 𝑋 =  (𝑌 ×  𝑍). 

The coordinate frame origin coincides with the X-ray source focal spot 𝒔. Hence, 𝒔 = (𝑠𝑥, 𝑠𝑦, 𝑠𝑧) =

(0,0,0) in the GCF.  
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6 

 
Figure 2. The geometry of a cone-beam CT system is defined by the relative position and orientation of its main 
components: X-ray source focal spot, axis of object rotation, and detector. Each component is assigned a 
dedicated coordinate frame. The global coordinate frame (GCF) is fixed on the source focal spot, while the 
volume coordinate frame (VCF) and detector coordinate frame (DCF) are defined with respect to the GCF. 

 

The detector is assumed to be a rectangular regular planar grid of pixel elements. A detector 

coordinate frame (DCF) is defined by two orthonormal vectors 𝒖 and 𝒗, the origin of which coincides 

with the geometrical center of the detector 𝒅 = (𝑥𝑑 , 𝑦𝑑 , 𝑧𝑑). The vectors 𝒖 and 𝒗 are parallel to the 

pixel rows and columns, respectively. The normal to the detector plane 𝒏 is given by the cross-product 

of 𝒖 and 𝒗, i.e. 𝒏 = (𝒖 × 𝒗), and defines the orientation of the detector in the GCF. The set of three 

vectors 𝒖, 𝒗, 𝒏 forms orthonormal basis and can be explicitly parametrized using three extrinsic 

rotations with respect to GCF in the sequence (1) 𝜂 (rotation about Z axis), (2) 𝜑 (rotation about Y 

axis), and (3) 𝜃 (rotation about X axis) [11]. Consequently, detector orientation is given by rotation 

matrix 

 

𝑹 = [

(𝒖)𝑇

(𝒗)𝑇

(𝒏)𝑇

] = 𝑹𝜂𝑹𝜑𝑹𝜃 (1) 

 

where 𝑹𝜂 , 𝑹𝜑, and 𝑹𝜃 are the elemental rotation matrices that follow. 

 

𝑹𝜂 = [
cos 𝜂 − sin𝜂 0
sin𝜂 cos 𝜂 0

0 0 1
] , 𝑹𝜑 = [

cos𝜑 0 − sin𝜑
0 1 0

sin𝜑 0 cos𝜑
], 𝑹𝜃 = [

1 0 0
0 cos 𝜃 − sin𝜃
0 sin 𝜃 cos𝜃

]. (2) 

 

The orthogonal projection of the source onto the detector 𝒄 = (𝑢𝑐 , 𝑣𝑐) in DCF, typically referred to 

as the principal point, is given by 

 

[

𝑢𝑐

𝑣𝑐

𝑓
] = 𝑹 [

1 0 0 −𝑠𝑥

0 1 0 −𝑠𝑦

0 0 1 −𝑠𝑧

] [

𝑥𝑑

𝑦𝑑

𝑧𝑑

], (3) 

 

where 𝑓 is the signed orthogonal distance between the source and the detector plane (focal length).  

A right-handed Cartesian volume coordinate frame VCF (figure 2) is introduced to address the 

relative position and orientation of the measurement volume as a function of angular position of the 

rotation axis. The coordinate axes of the VCF are �̃�, �̃�, �̃�. During acquisition, the VCF is rotated by a set 

of angles 𝛼 distributed from 0° to 360° about the �̃� axis. The direction of positive rotation is given by 
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the right-hand screw rule. At the angular position 𝛼 = 0°, the �̃�, �̃�, �̃� axes of the VCF are parallel to the 

axes of the GCF. The origin of the VCF is given by 𝒓 = (0,0, 𝑧𝑟) in the GCF.  

For a given parameterization, the alignment of a cone-beam CT system with a circular scanning 

trajectory can be expressed by the following set of conditions. 

1. 𝒖 = (1,0,0), 𝒗 = (0, 1,0) and 𝒏 = (0,0,1), i.e. 𝜃 = 𝜑 = 𝜂 = 0°, 

2. position of principal point is coincident with detector geometrical center, that is 𝒅 = (0,0, 𝑧𝑑), 

and 

3. scalars 𝑧𝑑  and 𝑧𝑟 are accurately known. 

Consequently, geometrical error sources in a typical cone-beam CT system with a circular scanning 

trajectory can be expressed by a set of seven parameters [10], [11], which are illustrated in figure 3:  

 three detector rotational parameters: 𝜃, 𝜑, 𝜂;  

 three detector translational parameters 𝑥𝑑, 𝑦𝑑 , 𝜀𝑑 , where 𝜀𝑑  is a detector longitudinal offset 

of the assumed detector position along 𝑍 axis, such that 𝒅 = (𝑥𝑑 , 𝑦𝑑 , 𝑧𝑑 + 𝜀𝑑); 

 longitudinal offset in location of VCF from assumed position 𝜀𝑟, such that 𝒓 = (0,0, 𝑧𝑟 + 𝜀𝑟). 

Positivity of 𝜀𝑟 and 𝜀𝑑  is given by positivity of axes. Positivity of rotations 𝜃, 𝜑 and 𝜂 is defined by 

right-hand screw rule.  

 

  
a)  b)  

 
 

c)  d)  

 
 

 

e)  f)  g)  
Figure 3. Parameterization of geometrical errors. a) Offset of the detector center along 𝑍 axis. b) Offset in the 
position of VCF along 𝑍 axis. c) Offset of the detector center along 𝑋 axis. d) Offset of the detector center along 𝑌 
axis. e) Detector rotation about axis parallel to 𝑋. f) Detector rotation about axis parallel to 𝑌. g) Detector 
rotation about axis parallel to 𝑍. 
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5 CT geometrical error model 
5.1 Projection of object edges 

In metrology the dimensional extent of an object is defined by its surface. Let us start by considering 

single-material object 𝑓(𝒈), which is a set of all points 𝒈 embedded by surface S, such that 𝑓(𝒈) = 1 if 

point 𝒈 is inside S and 𝑓(𝒈) = 0 otherwise. Conventional CT reconstruction and segmentation is then 

equivalent to acquiring an estimation S∗ of S in the form of a tomographically reconstructed voxel 

model. Here and further we assume that the surface of interest is convex, an assumption that can be 

applied to most dimensional measurement tasks. Note that dimensional measurements of internal 

cavities such as a cylindrical hole or a half-sphere mold are performed by fitting a cylinder and a 

sphere, respectively, to the acquired surface points. Therefore, in the context of dimensional 

metrology, internal features can also be described by convex surfaces.  

Object boundaries on the projection define the object’s apparent contour. Cone-beam tomographic 

reconstruction of the object surface can be understood as the intersection of visual cones, each defined 

by back projection of the apparent contour into 3D space towards the source from all rotation 

positions 𝛼, 𝛼 ∈ [0, 360 ]. We illustrate this concept in figure 4a. For simplicity, the visualization is 

restricted to one slice and parallel geometry, in which case the cone apex is located at infinity and the 

visual cones are illustrated as cylinders. The set of visual cylinders from multiple projections construct 

shape of the object as it is illustrated in figure 4b. For cone-beam geometry, the apex of the visual cone 

coincides with source (figure 4c). 

 

 
 

a) b) 

 
 

c) d) 
Figure 4. Relation between apparent contour and silhouette. a) Schematic representation of the reconstruction 
of the grey-value slice in parallel-beam geometry. b) Visual cones from multiple projections shape the object 
boundary. For parallel geometry, the apex of the visual cone is at infinity. c) Visual cone and its relation with the 
apparent contour and silhouette for cone-beam geometry. d) Apparent contour distortion due to misalignments 
propagates directly to distortion of the silhouette. 
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Let us consider surface point 𝒒 ∈ S with surface normal 𝒂 that has a corresponding contour point 

𝒄 at some viewing perspective. Let us also trace the ray 𝒍 from source through 𝒒 towards the detector. 

The surface normal 𝒂 will be perpendicular to the ray 𝒍 and, following the terminology typically used 

in computer-aided design (CAD), will be called a silhouette point. The relationship between apparent 

contour and silhouette is illustrated in figure 4c. For a given viewing perspective, the set of all rays L 

that are perpendicular to the object’s surface will give a subset G of surface points (points of tangency), 

which is called object’s silhouette. 

If the alignment of a CT system satisfies the conditions outlined in section 4.2, for a given rotation 

position 𝛼 the apparent contour C𝛼  is back projected correctly to the corresponding silhouette G𝛼  of 

the object. Let us assume that the CT system is misaligned, i.e. one or more error parameters 

𝜀𝑟, 𝜀𝑑 , 𝑥𝑑 , 𝑦𝑑 , 𝜃, 𝜑, 𝜂 (section 4.2) are non-zero, then there will be a discrepancy in the detector 

coordinates assigned to the apparent contour C’𝛼 when compared to the same coordinates in the 

aligned system C𝛼. As a result, there will be discrepancy between the real surface S and the back 

projected edge Gα (figure 4d). The collection of erroneously back projected edges from all rotation 

positions of the object G𝛼 , ∀𝛼 ∈ [0°, 360°] generates an erroneous surface in the volumetric model of 

the object, shown as double borders in figure 1. Moreover, there will be discrepancies between 

apparent contours from different rotation positions; therefore, there will be no object with surface S 

which can produce the given apparent contours.  

 

 

5.2 Geometrical error model 

In this section we introduce a geometrical error model that utilizes the relationship between the 

apparent contour and the silhouette in the presence of geometrical misalignments to estimate the 

error in the tomographically reconstructed object surface. The model consists of first forward 

projecting the silhouette surface point to estimate the location of corresponding apparent contour 

point on the detector plane in the presence of geometrical misalignment, which is described by seven 

parameters 𝜀𝑟, 𝜀𝑑 , 𝑥𝑑 , 𝑦𝑑 , 𝜃, 𝜑, 𝜂  (see section 4.2). The second step involves back projecting the 

estimated apparent contour point with assumption of nominal geometry of the CT system. Forward- 

and back-projection are repeated for all surface points of the object to be scanned. 

 

 

5.2.1 Relationship between silhouette point and rotation position 

In order to define the relationship between silhouette and apparent contour, we first introduce the 

relationship between silhouette point and rotation position. Let us consider a single surface point 

𝒒 = (𝑞𝑥, 𝑞𝑦, 𝑞𝑧), 𝒒 ∈ S in the VCF with surface normal 𝒂 = (𝑎𝑥 , 𝑎𝑦, 𝑎𝑧). In the general case, one of two 

scenarios is possible: 

1. There will be no rays from source 𝒔 = (𝑠𝑥, 𝑠𝑦, 𝑠𝑧) that are tangent to S at 𝒒, 𝑞𝑦 ≠ 0 at any rotation 

position 𝛼 for current position of source and detector since cone-beam geometry with circular 

trajectory does not fulfill the condition for data sufficiency [13], [14]. This scenario occurs if the 

following inequality is satisfied: 

 

(𝑠𝑥𝑎𝑧 − 𝑠𝑧𝑎𝑥 + 𝑧𝑟𝑎𝑥)
2 + (𝑠𝑥𝑎𝑥 + 𝑠𝑧𝑎𝑧 − 𝑧𝑟𝑎𝑧)

2 < (𝑞𝑥𝑎𝑥 + 𝑎𝑦 (𝑞𝑦 − 𝑠𝑦) + 𝑞𝑧𝑎𝑧)
2

. (4) 

 

Consequently, the surface point 𝒒 will not correspond to a silhouette for any rotation position 𝛼. 

2. There will be two rays tangent to S at 𝒒 at the rotation positions 𝛼1 and 𝛼2, 𝛼1, 𝛼2 ≤ 360°. In the 

case of parallel beam scanning geometry, 𝛼2 = 𝛼1 + 180°, whereas for cone-beam scanning 

geometry the relationship between the two rotation positions depends on the position of 𝒒 in the 

measurement volume and is given by equation 6 below. 
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10 

𝛼1,2 = ±cos−1 (
𝑞𝑥𝑎𝑥 + 𝑎𝑦 (𝑞𝑦 − 𝑠𝑦) + 𝑞𝑧𝑎𝑧

√(𝑠𝑥𝑎𝑧 − 𝑠𝑧𝑎𝑥 + 𝑧𝑟𝑎𝑥)
2 + (𝑠𝑥𝑎𝑥 + 𝑠𝑧𝑎𝑧 − 𝑧𝑟𝑎𝑧)

2
)

+ tan−1 (
𝑠𝑥𝑎𝑥 + 𝑠𝑧𝑎𝑧 − 𝑧𝑟𝑎𝑧

𝑠𝑥𝑎𝑧 − 𝑠𝑧𝑎𝑥 + 𝑧𝑟𝑎𝑥
) 

(5) 

 

More information on equations (4) and (5) can be found in [14]. 

 

 

5.2.2 Forward projection 

Forward projection is the mapping of a three-dimensional volume into a two-dimensional image, in 

the case of CT the radiograph [15]. Let surface point 𝒒(𝑉𝐶𝐹) = (𝑞𝑥, 𝑞𝑦, 𝑞𝑧)(𝑉𝐶𝐹)
, 𝒒(𝑉𝐶𝐹) ∈ S with surface 

normal 𝒂 = (𝑎𝑥 , 𝑎𝑦, 𝑎𝑧) satisfy the second condition from section 5.2.1 (note that parameter 𝑧𝑟 must be 

updated if 𝜀𝑟 ≠ 0). To distinguish point coordinates in different coordinate frames, here and further 

we use corresponding subscripts. According to previous section, there are two rotation positions 𝛼1 

and 𝛼2 (eq. (5)) in which point 𝒒(𝑉𝐶𝐹) becomes a silhouette point 𝒒(𝐺𝐶𝐹)
(𝛼1)  and 𝒒(𝐺𝐶𝐹)

(𝛼2)
 respectively, as 

shown in figure 5. For brevity, the equations are shown for the generic rotation position 𝛼, which is 

substituted by 𝛼1 and 𝛼2 for 𝒒(𝐺𝐶𝐹)
(𝛼1)  and 𝒒(𝐺𝐶𝐹)

(𝛼2)
, respectively. Given the rotation direction about the �̃� 

axis, the location of the point 𝒒(𝐺𝐶𝐹)
(𝛼)

 in the GCF is given by 

 

𝒒(𝐺𝐶𝐹)
(𝛼)

=

[
 
 
 
 𝑞𝑥

(𝛼)

𝑞𝑦
(𝛼)

𝑞𝑧
(𝛼)

1 ]
 
 
 
 

(𝐺𝐶𝐹)

= [

1 0 0 0
0 1 0 0
0 0 1 (−𝑧𝑟 + 𝜀𝑟)
0 0 0 1

] [

cos 𝛼 0 − sin𝛼 0
0 1 0 0

sin 𝛼 0 cos𝛼 0
0 0 0 1

] [

𝑞𝑥

𝑞𝑦

𝑞𝑧

1

]

(𝑉𝐶𝐹)

. (6) 

 

Forward projection of point 𝒒(𝐺𝐶𝐹)
(𝛼)

 on the detector plane 𝒘(𝐷𝐶𝐹)
(𝛼)

= (𝑤𝑢
(𝛼)

, 𝑤𝑣
(𝛼)

)
(𝐷𝐶𝐹)

 can be 

represented in homogeneous coordinates as 

 

[
𝑎𝑤𝑢

(𝛼)

𝑎𝑤𝑣
(𝛼)

𝑎

] = 𝑷

[
 
 
 
 𝑞𝑥

(𝛼)

𝑞𝑦
(𝛼)

𝑞𝑧
(𝛼)

1 ]
 
 
 
 

(𝐺𝐶𝐹)

= [
𝑓 0 𝑢𝑐

0 𝑓 𝑣𝑐

0 0 1

] [

(𝒖′)𝑇

(𝒗′)𝑇

(𝒏′)𝑇

] [

1 0 0 −𝑠𝑥

0 1 0 −𝑠𝑦

0 0 1 −𝑠𝑧

]

[
 
 
 
 𝑞𝑥

(𝛼)

𝑞𝑦
(𝛼)

𝑞𝑧
(𝛼)

1 ]
 
 
 
 

(𝐺𝐶𝐹)

, (7) 

 

where the position of principal point 𝒄 = (𝑢𝑐 , 𝑣𝑐) and focal length 𝑓 are given by equation (3) with 

𝒅 = (𝑥𝑑 , 𝑦𝑑 , 𝑧𝑑 + 𝜀𝑑); 𝑷 is the homogeneous projective matrix and 𝑎 is a homogeneous scaling factor. 

Converting equation (7) from homogeneous coordinates to the DCF gives, 

 

𝒘(𝐷𝐶𝐹)
(𝛼)

= [
𝑤𝑢

(𝛼)

𝑤𝑣
(𝛼)

]

(𝐷𝐶𝐹)

= [
𝑎𝑤𝑢

(𝛼)
𝑎⁄

𝑎𝑤𝑣
(𝛼)

𝑎⁄
] (8) 

 

In figure 5 we show schematically the forward projection onto a misaligned detector. For 

simplicity, visualization is restricted to the middle plane. 
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11 

 
Figure 5. Schematic illustration of the forward projection step in the geometrical error model in the presence of 
a detector angular misalignment. The misaligned detector is shown as a solid line, whereas the aligned detector 
is shown as a dotted line. For simplicity, visualization is restricted to one plane. 

 

 

5.2.3 Back projection 

In figure 6 we show schematic illustration of the back projection step. It was discussed in the 

section 5.1 that the registered point 𝒘(𝐺𝐶𝐹)
(𝛼)

 in the misaligned system has different coordinates �̂�(𝐺𝐶𝐹)
(𝛼)

 

in the GCF of aligned system. Coordinates can be related by the following equation: 

 

�̂�(𝐺𝐶𝐹)
(𝛼)

= [

�̂�𝑥
(𝛼)

�̂�𝑦
(𝛼)

�̂�𝑧
(𝛼)

]

(𝐺𝐶𝐹)

= [
1 0 0
0 1 0
0 0 𝑧𝑑

] [
𝑤𝑢

(𝛼)

𝑤𝑣
(𝛼)

1

]

(𝐷𝐶𝐹)

. (9) 

 

As a result, the set of back projected edge points 𝒑(𝐺𝐶𝐹)
(𝛼1)  and 𝒑(𝐺𝐶𝐹)

(𝛼2)
 will differ from the actual set of 

forward projected points 𝒒(𝐺𝐶𝐹)
(𝛼1)  and 𝒒(𝐺𝐶𝐹)

(𝛼2)
. The homogeneous projective matrix 𝑷 (equation (7)) is 

generally not invertible since all the points lying on the ray from source to detector point �̂�(𝐺𝐶𝐹)
(𝛼)

 will 

be mapped onto �̂�(𝐺𝐶𝐹)
(𝛼)

. Consequently, a new silhouette point 𝒑(𝐺𝐶𝐹)
(𝛼)

 will be located along ray 𝒍 from 

source 𝒔 through point �̂�(𝐺𝐶𝐹)
(𝛼)

 (see figure 6). The direction 𝝆 = (𝜌𝑥 , 𝜌𝑦, 𝜌𝑧) of each ray is then given by 

 

𝝆 =
�̂�(𝐺𝐶𝐹)

(𝛼)
− 𝒔

‖�̂�(𝐺𝐶𝐹)
(𝛼)

− 𝒔‖
. (10) 

 

Deviations in geometrical parameters after effective calibration and compensation are expected 

to be reasonably small. We therefore assume that local deviations due to the misalignment do not alter 

the surface profile in the neighborhood of the point 𝒒(𝐺𝐶𝐹)
(𝛼)

. The positions of the new silhouette points 

𝒑(𝐺𝐶𝐹)
(𝛼)

 are then approximated as orthogonal projections of the original silhouette points 𝒒(𝐺𝐶𝐹)
(𝛼)

 on 

vector 𝝆 (equation (11)), i.e. 𝒑(𝐺𝐶𝐹)
(𝛼)

 is projected on a line that contains point 𝒓 and orthogonal to the 

line from 𝒔 to 𝒘(𝐺𝐶𝐹)
(𝛼)

. 
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12 

 

𝒑(𝐺𝐶𝐹)
(𝛼)

 = [

𝑝𝑥
(𝛼)

𝑝𝑦
(𝛼)

𝑝𝑧
(𝛼)

]

(𝐺𝐶𝐹)

= 〈−(𝒒(𝐺𝐶𝐹)
(𝛼)

− 𝒔) , 𝝆〉 [

𝜌𝑥

𝜌𝑦

𝜌𝑧

]. (11) 

 

The location of point 𝒑(𝐺𝐶𝐹)
(𝛼)

 in the VCF for rotation position 𝛼 = 0° is calculated as 

 

𝒑(𝑉𝐶𝐹) = [

𝑝𝑥

𝑝𝑦

𝑝𝑧

]

(𝑉𝐶𝐹)

= [
cos𝛼 0 sin𝛼

0 1 0
−sin𝛼 0 cos𝛼

] [
1 0 0 0
0 1 0 0
0 0 1 −𝑧𝑟

] [

𝑝𝑥
(𝛼)

𝑝𝑦
(𝛼)

𝑝𝑧
(𝛼)

]

(𝐺𝐶𝐹)

. (12) 

 

Substituting 𝛼1 and 𝛼2 for the generic rotation position 𝛼 in equations (9)-(12) gives two new 

surface points 𝒑(𝑉𝐶𝐹)
(1)

 and 𝒑(𝑉𝐶𝐹)
(2)

, as shown in figure 6. 

 

 
Figure 6. Schematic illustration of the back projection step in the geometrical error model in the presence of a 
detector angular misalignment. The misaligned detector is shown as a solid line, whereas the aligned detector is 
shown as a dotted line. For simplicity, visualization is restricted to one plane.  

 

 

5.2.4 Application of the geometrical error model for dimensional measurements 

In general, 𝒑(1) ≠ 𝒑(2) ≠ 𝒒  given the discrepancy between radiographs in the presence of 

misalignments. Consequently, the set of all surface sampling points S = { 𝒒} will produce two point 

clouds P1, = {𝒑(1)} and P2 = {𝒑(2)}. As was stated in section 5.1, due to the discrepancies between 

apparent contours from different rotation positions, there will be no single object with surface S which 

can produce the apparent contours. Hence, in the general case P1, P2 ∉ S, which can result in visually 

discernible artifacts in the reconstructed volume. In figure 7a, we show the cross-sectional profile of 

the reconstructed dataset in the presence of severe misalignment superimposed with the rendered 

point clouds P1 and P2 (solid and dotted lines, respectively) as generated by our geometrical error 

model (figure 7b). In practice, a CT system with such severe misalignments is unlikely to satisfy the 

criteria in performance verification (e.g. VDI/VDE 2630 part 1.3 [16]). However, for the purpose of 

comparing the output of the geometrical error model to simulation results, we utilize such 
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misalignments. It should be noted that the geometrical error model does not generate any points on 

the north and south poles of the sphere since the surface points around the poles do not fulfill the 

condition for data sufficiency (see section 5.2.1). 

 

 
 

a) b) 

  
 

c) d) 
Figure 7. Relationship between simulated and modelled data. a) Grey-value central slice of sphere as output by 
CT simulation superimposed by output of the geometrical error model. Two overlapping point clouds P1 and P2 
are rendered as solid and dotted lines respectively. b) P1 and P2 are shown separately for better visibility. c) 
The output of the geometrical error model is categorized in two point clouds Pext and Pint, which are shown as 
solid and dotted outlines, respectively. d) Pext and Pint are shown separately for better visibility. 

 

In figure 7a the conjunction of volumes enclosed by P1 and P2 corresponds to the volumetric 

region for which all projections were consistent and hence has relatively higher attenuation value. The 

exclusive disjunction of volumes enclosed by P1 and P2 gives the volumetric region where projections 

were not self-consistent thus resulting in “ghost”, or relatively lower attenuation, material. The grey 

value of the “ghost” material corresponds to approximately 50% of grey value range, i.e. due to the 

inconsistency of the recorded ray integrals from opposite rotation positions (see section 5.1), back-

projected grey values do not complement each other within the reconstruction. Even though P1 and P2 

provide valuable information about the influence of the misalignment on the reconstructed volume, 

they cannot be used for dimensional measurements since neither of them follows volumetric region 

with homogeneous material. That is, in figure 7a in the north-east quadrant P2 follows “ghost” 

material, whereas in the north-west quadrant P2 keeps to high attenuation volumetric region. 

Therefore, we categorize all points from sets P1 and P2 into an internal point cloud Pint which envelops 

Page 13 of 39 AUTHOR SUBMITTED MANUSCRIPT - MST-106686.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



14 

high attenuation grey value area and corresponds to an object’s contour with approximately 75% grey 

value gradient, and an external point cloud Pext which envelops the lower-attenuation “ghost” material 

and corresponds to an object’s contour with approximately 25% grey value gradient. In figure 7c,d, 

Pext and Pint are shown as solid and dotted outlines, respectively.  

If the magnitude of geometrical misalignment is reasonably small, then the gap between Pext and 

Pint becomes less visually pronounced. In figure 8a,b, we show the cross-sectional profile of the 

reconstructed dataset, which is less affected by the misalignment-induced artifacts. Even though 

misalignment-induced artifacts contribute to an overall perception of a blurred image, this blur cannot 

be compensated by image deblurring [17] because the point spread function needed for compensation 

fails to represent the effects of geometrical misalignment. 

 

  
a) b) 

  
c) d) 
Figure 8. Relationship between output of simulated data and the geometrical error model. a) Grey-value central 
slice of the simulated sphere in the presence of misalignment, and b) its magnified north-east quadrant. c) 
Relationship between simulated point cloud and output of the geometrical error model, and d) magnified north-
east quadrant of the sphere outlines. Dashed, dot-dashed and dotted outlines correspond to the output of the 
geometrical error model and represent middle, external and internal point clouds, respectively. The solid 
outline corresponds to the result of local adaptive surface determination.  

 

Since Pext and Pint correspond to approximately 25% and 75% grey value gradient, respectively, 

we use them to estimate the location of the surface that would be segmented with the conventional 

50% grey value gradient. We therefore introduce a middle point cloud Pmid, which is located between 

Pext and Pint. In figure 8c,d, we show outlines generated from four point cloud datasets. The dashed, 

dot-dashed and dotted point cloud outlines correspond to the output of the geometrical error model 

and represent the middle, external, and internal point clouds, respectively. The solid outline 

corresponds to the result of local adaptive surface determination applied to the simulated dataset 

shown in figure 8a,b. A saw-like pattern along the simulated outline (solid line) is observed in 
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figure 8d and is due to the partial volume effect and discretization error introduced by CT simulation 

and reconstruction. 

The proposed geometrical error model is a computationally efficient alternative to determining 

the influence of geometrical misalignments on dimensional measurements. Since every surface point is 

processed separately, the proposed method is highly parallel and is well suited for a fast 

implementation on modern parallel architectures. 

 

 

6 Evaluation of the geometrical error model on simulated data 
The efficacy of the geometrical error model introduced in section 5 was investigated by means of 

computer simulation. We compare the output of the geometrical error model, i.e. the set of modelled 

surface coordinate errors, with observed surface coordinate errors in the simulated CT measurement 

of a dedicated object. Henceforth, we refer to the output of CT simulation as simulated point cloud and 

to the output of the geometrical error model as modelled point cloud. 

In this study, we focus on the application of our model to the CT measurement of a simple object 

consisting of spheres in a particular arrangement. This initial application serves as a proof of concept, 

which can later be adapted for measurement of other more complex objects. In order to demonstrate 

the effectiveness of the method, we compare simulated and modelled point clouds against nominal 

point cloud in the presence of various geometrical error sources. Dimensional measurements are then 

performed on both simulated and modelled point clouds.  

 

 

6.1 Simulation and evaluation design 

Evaluation object 

The evaluation object is shown in figure 9. The evaluation object comprises thirteen spheres of 1 mm 

diameter arranged along a diagonal line. At the 𝛼 = 0° position, the sphere centers occupy the 𝑍𝑌-

plane of the measurement volume. The spheres are numbered 1 to 13 from the top to the bottom 

(along 𝑌) of the diagonal. The center of sphere 7 coincides with center of the volume. Spacing between 

adjacent spheres is 1.5 mm along the horizontal (𝑍) direction and 1.5 mm along the vertical (𝑌) 

direction. The diagonal distance between adjacent spheres is therefore approximately 2.121 mm. The 

proposed geometrical error model is evaluated for various individual geometrical error sources, 

shown in table 1.  
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Figure 9. Evaluation object and its dimensions. 

 
Table 1. Errors in geometrical parameters 

 

Error source Value 

𝜃 1° 

𝜑 0.5° 

𝜂 0.1° 

𝑥𝑑 0.25 mm 

𝑦𝑑  0.25 mm 

𝜀𝑑  2 mm 

𝜀𝑟 0.1 mm 

 

 

Simulated point cloud 

Computer simulations were carried out for the cone-beam geometry described in section 5.2. A set of 

radiographs of the reference object was generated in the presence of each error source shown in the 

table 1, separately. Other acquisition parameters used in the simulation are shown in table 2. Each CT 

dataset consists of 3600 projections of equally-spaced rotation positions of the reference object, 

corresponding to an angular increment Δ𝛼 = 0.1° between consecutive projections. Simulation of the 

radiographic dataset was performed using an in-house simulation software based on an Intel Embree 

ray-tracing kernel [18]. Each sphere in the reference object was represented as a triangulated surface. 

The upper bound on surface normal error was set to 1°, which resulted in approximately 5 ×

105 triangles per sphere. To eliminate any other error sources, we simulated a monochromatic X-ray 

spectrum, a point-like focal spot, and noise-free radiographs. For each detector pixel, 16 rays were 

traced and the average of the calculated intensities was assigned as a single pixel intensity. 

Tomographic reconstruction from the simulated radiographs was performed by FDK algorithm 

with a Ramp filter on Nikon Metrology XT Software Suite. Segmentation of the volumetric data and 

point cloud sampling was performed in VGStudio MAX (Volume Graphics, GmbH). Local adaptive 
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surface determination algorithm with default 4.0 voxels search distance was used for segmentation. 

The initial contour value was selected as the arithmetic mean of the grey value corresponding to the 

background and the grey value corresponding to material peak in the grey-value histogram. Surfaces 

were converted to point clouds in VGStudioMAX using “manual” mode with a volumetric sampling 

interval approximately equal to half of the voxel size (6 µm). 

 

Table 2. Acquisition parameters common to all simulated datasets. 

 

Parameter Value 

Detector size 400 × 400 mm 

Number of pixels 2000 × 2000 

Pixel size 0.2 mm 

Bit-depth 16bit 

𝑧𝑑  1060 mm 

𝑧𝑟 66.25 mm 

Number of voxels 2000 × 2000 × 2000 

Voxel size 12.5 µm 

Number of projections 3600 

Angular step 0.1° 

 

Modelled point cloud 

The evaluation object shown in figure 9 was represented as a point cloud with a corresponding surface 

normal at each data point. Following the approach described in [19], 104 random points uniformly 

distributed on a sphere surface were generated for every sphere. Surface points that satisfy 

condition (4), section 5.2.1, were not evaluated. The set of modelled point clouds Pext, Pint and Pmid 

were calculated according to equations (6)-(12) for every geometrical error source shown in table 1 

 

 

6.2 Misalignment-induced artifacts 

Geometrical misalignments affect the reconstructed data differently: some result in visually 

discernible artifacts in the reconstructed volume, while others do not present visually discernable 

artifacts, though still affect dimensional measurements. In the presence of 𝜃, 𝑦𝑑 , 𝜀𝑑  and 𝜀𝑟, there were 

no visually discernable double borders observed, i.e. all point cloud outlines (Pext, Pint, Pmid) appear to 

coincide. For this reason, the figures for visual effects due to 𝜃, 𝑦𝑑 , 𝜀𝑑  and 𝜀𝑟 are not presented. In the 

next sections it will be shown that, while these error sources have relatively negligible influence on the 

reconstructed sphere form, their influence on reconstructed sphere size and sphere position within 

the measurement volume is significant. 

In the presence of 𝜑, 𝜂 and 𝑥𝑑, non-symmetrical double-borders are observed as shown in figure 10 

left column. In figure 10, right column, the color of sphere surface points is rendered based on the 

orthogonal distance between Pint and Pext. The double-borders effect is not uniform along the sphere’s 

edge and its appearance strongly depends on the type of error source. The visual comparison of grey-

value slices to rendered point clouds in figure 10 demonstrates that the geometrical error model 

captures the systematic behavior of the corresponding misalignment.  
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a) 𝜑 = 0.5° 

  
b) 𝜂 = 0.1° 

  
c) 𝑥𝑑 = 0.25 mm 
Figure 10. (Left column) Grey-value central slices of sphere 1 in the presence of various geometrical errors. 
(Right column) 3D rendering of the point cloud representing sphere 1. Every point in the cloud is colored 
according to the orthogonal distance between Pint and Pext. The color scale is expressed in 𝜇m.  

 

 

6.3 Quantitative comparison of modelled and simulated point cloud data 

To investigate the agreement between modelled and simulated point clouds, a comparison was made 

of the middle point cloud Pmid (section 5.2.4) and the point cloud obtained from VG Studio MAX 

against a nominal point cloud representing the evaluation object. The nominal point cloud was 

obtained by random sampling of an ideal sphere surface (section 6.1) at the reference positions of the 

spheres (figure 9), therefore the nominal point cloud is considered to be free from errors. All three 

point clouds contained 𝑁𝑝 = ~104 points per sphere.  
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To enable this comparison, we implemented a point cloud comparison procedure in MATLAB 

(The MathWorks, USA). For every point 𝒑𝑖 = (𝑝𝑥 , 𝑝𝑦, 𝑝𝑧), 𝑖 = 1,… ,𝑁𝑝 in the nominal point cloud, the 

200 nearest points 𝒒𝑗 = (𝑞𝑥 , 𝑞𝑦, 𝑞𝑧), 𝑗 = 1,… ,200, were found in the corresponding point cloud using 

knn-search [20]. Then, a quadratic surface in the form 

 

𝑐0𝑞𝑥
2 + 𝑐1𝑞𝑦

2 + 𝑐2𝑞𝑧
2 + 𝑐3𝑞𝑥𝑞𝑦 + 𝑐4𝑞𝑦𝑞𝑧 + 𝑐5𝑞𝑥𝑞𝑧 + 𝑐6𝑞𝑥 + 𝑐7𝑞𝑦 + 𝑐8𝑞𝑧 + 𝑐9 = 0 (14) 

 

was fitted to points 𝒒𝑗 using the Taubin method [21]. The signed distance 𝑑𝑖 , , 𝑖 = 1,… ,𝑁𝑝 between 𝒑𝑖 

and the fitted surface was calculated for every point 𝒑𝑖 [22]. Positive deviations correspond to 

distance vectors that point outward from the surface of the nominal point cloud.  

Figure 11, left column, shows histograms of signed distances 𝑑𝑖  between the nominal and 

simulated point clouds for the sphere 1 in the absence of any geometrical errors (figure 11a) and in 

the presence of each error source presented in table 1 (figure 11b-h), whereas the right column shows 

comparison between modelled and nominal point clouds under the same scenarios. The mean value 

and corresponding 95% confidence interval (based on 2.5% and 97.5% quantile) are shown as solid 

and dashed lines, respectively.  

 

  
a) No geometrical error 

  
b) 𝜃 = 1.0° 
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c) 𝜑 = 0.5° 

  
d) 𝜂 = 0.1° 

  
e) 𝑥𝑑 = 0.25 mm 

  
f) 𝑦𝑑 = 0.25 mm 
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g) 𝜀𝑑 = 2 mm 

  
h) 𝜀𝑟 = 0.1 mm 
Figure 11. Histogram of signed distances between simulated and nominal point clouds (left column) and 
between modelled and nominal point clouds (right column) for sphere 1. Mean values and corresponding 95% 
confidence interval (based on 2.5% and 97.5% quantile) are shown as solid and dashed lines, respectively. 
Histograms are normalized by probability, i.e. the sum of the bar heights is less than or equal to 1. 

 

The results in the absence of any misalignment for the simulated point cloud (figure 11a, left) 

indicate that simulation accurately recovers the surface of the evaluation object and can therefore be 

used as the reference for comparison. The statistical dispersion of signed distances for the modelled 

point cloud (figure 11a, right) shows that rounding errors in the computational steps of the 

geometrical error model and the point cloud comparison method do not introduce significant errors. 

Results for 𝜃 (figure 11b), 𝜑 (figure 11c), 𝑦𝑑  (figure 11f), 𝜀𝑑  (figure 11g), and 𝜀𝑟 (figure 11f) show 

excellent agreement between simulated and modelled point clouds in terms of both distribution shape 

and dispersion. For 𝜂 (figure 11d) and 𝑥𝑑 (figure11 g), however, there is slight disagreement in results. 

Distribution of signed distances for 𝜂 in the simulated point cloud (figure 11d, left) has a bimodal 

shape, whereas signed distances in modelled point cloud obey a unimodal distribution (figure 11d, 

right). This observed behavior may originate from dependence of the effects of 𝜂 and the partial 

volume effect. Despite the fact that 𝑥𝑑 introduces significant double-borders, as was shown in 

figure 10c, the dispersion of signed distances in simulated data is lower than in modelled data 

(figure11 g). This disagreement is likely due to the fact that the influence of 𝑥𝑑  is partially 

compensated by the local adaptive surface determination applied to the simulated data. 

In appendix A, figure A.1, we show the rendering of point clouds corresponding to sphere 1 

colored according to the magnitude of signed distances 𝑑𝑖  in the presence of the error sources listed in 

table 1. Rendered point clouds indicate that the geometrical error model captures the principal 

influence of geometrical error sources on the reconstructed object’s surface. A summary of statistical 

information for all spheres 1-13 is provided as error-bar plots in appendix A, figure A.2. The results 

show that the output of the geometrical error model agrees with the CT simulation output. 
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6.4 Comparison in terms of dimensional measurements 

We define quantitative criteria for determining dimensional accuracy of the reconstructed volume. 

These criteria are center-to-center distances between sphere 1 and consecutive spheres and individual 

sphere roundness errors. Center position of sphere is assessed using least squares fit; radii of 

inscribed and circumscribed concentric spheres are determined by the minimum-zone method [23]. In 

figure 12, we show absolute error in center-to-center distances between sphere 1 and all consecutive 

spheres 2-13, i.e. point 5 in the plot corresponds to error in the distance between spheres 1 and 5. 

Modelled data is shown as filled circles, whereas simulated data is shown as crosses. Figure 12 

indicates that the difference between distances measured on modelled and simulated data is 

negligible. 

 

  
a) No geometrical error b) 𝜃 = 1° 

  
c) 𝜑 = 0.5° d) 𝜂 = 0.1° 

  
e) 𝑥𝑑 = 0.25 mm f) 𝑦𝑑 = 0.25 mm 
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g) 𝜀𝑑 = 2 mm h) 𝜀𝑟 = 0.1 mm 
Figure 12. Absolute error in center-to-center distance between sphere 1 and consecutive spheres 2-13, i.e. 
point 5 in the plot corresponds to error in the distance between spheres 1 and 5. Least squares fit was used to 
assess center point position of spheres. Modelled data is shown as filled circles, whereas simulated data as 
crosses. 

 

Figure 13 presents the inscribed and circumscribed radii. Modelled data is shown as filled 

circles and squares; simulated data is depicted as crosses and plus signs. The dashed line corresponds 

to the reference radius. In the absence of any misalignment (figure 13a) roundness error increases 

with increasing distance of the reconstructed sphere from the midplane, i.e. the 𝑋𝑍-plane containing 

the X-ray source. This behavior is due to the degradation of tomographically reconstructed edges on 

the south and north poles of spheres caused by cone-beam artifacts [13]. The effects of cone-beam 

artifacts are noticeable also in the simulated results in the presence of geometrical misalignments 

(figure 13b-h). The geometrical error model catches both deviation in radii and sphere roundness 

errors up to aforementioned behavior due to cone-beam artifacts. 

 

  
a) No geometrical error b) 𝜃 = 1° 
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c) 𝜑 = 0.5° d) 𝜂 = 0.1° 

  
e) 𝑥𝑑 = 0.25 mm f) 𝑦𝑑 = 0.25 mm 

  
g) 𝜀𝑑 = 2 mm h) 𝜀𝑟 = 0.1 mm 
Figure 13. Radius of inscribed and circumscribed concentric spheres evaluated based on the minimum-zone 
method. Modelled data is shown as filled circles ad squares, whereas simulated data is shown as crosses and 
plus signs. 

 

Note, that some error sources, like 𝜃, 𝜀𝑑 and 𝜀𝑟 cause offset of sphere center point without 

significantly affecting form error and radius. Therefore one can observe large dispersion of signed 

distances 𝑑𝑖  (figures 11, A.1 and A.2) but relatively low error in radius and form error (figure 13). 
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7 Evaluation of the geometrical error model on experimental data 

7.1 Evaluation object and CT system 

In the following study, we employ the object described in [24], which was used in several 

studies [11], [25] for estimation of geometrical parameters of a CT system. The object consists of 49 

steel spheres with 2.5 mm diameter arranged along a cylindrical carbon-fiber support, as shown in 

figure 14. The spheres are numbered 1 to 49 (see figure 15). Sphere number 2 is included to identify 

the orientation of the object in both radiographic and volumetric data. All sphere center positions 

except for sphere 2 were calibrated using tactile coordinate measuring machine. We therefore exclude 

sphere 2 from analysis. The object was measured using a Zeiss Prismo coordinate measuring machine 

equipped with a rotary table. The maximum permissible error of the coordinate measuring machine is 

(2 +  𝐿/300) µm, where 𝐿 is the measured length in mm [24]. Variation of sphere diameter and form 

error is below 0.25 𝜇m, and surface roughness 𝑅𝑎 is below 0.5 𝜇m [24].  

 

  
Figure 14. (Left) Photo of the object used in the experimental study. (Right) CAD model of the object used in the 
experimental study. Spheres are arranged in 10 circular trajectories along the outer circumference of a carbon 
fiber support. (Figure reproduced with permission from [11]) 
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Figure 15. Projection image of the object used in the experimental study. The 49 spheres are arranged along 10 
circular trajectories evenly spaced along a common cylindrical axis. Each sphere is assigned a number for 
identification. (Figure reproduced with permission from [11]) 

 

Two sets of radiographs were acquired on an experimental CT system at the Centre of 

Excellence Telč, Czech Republic. General parameters of the data acquisition system are summarized in 

table 3. The CT system was intentionally misaligned and the corresponding geometrical parameters, 

listed in table 4, were estimated using newly developed procedure for measurement of CT system 

geometry; more information on this procedure can be found in [11]. It should be noted that the 

procedure in [11] measures not only the geometrical parameters of the CT system, but also the 

position and orientation of the reference object within the GCF. Consequently, not only distances 

between the spheres can be used for comparison of experimental and modelled data but also positions 

of each individual sphere. Both datasets were reconstructed by FDK algorithm with a Ramp filter using 

Nikon Metrology XT Software Suite with the parameters presented in table 5. No corrections were 

applied either during or after reconstruction. All surfaces were determined using the local adaptive 

thresholding method with 4.0 voxels search distance in VGStudioMAX. Initial contour values were 

selected as the arithmetic mean of grey values corresponding to the carbon-fiber support peak and 

steel peak in the grey-value histogram. Surfaces were converted to point clouds in VGStudioMAX using 

built-in “manual” mode with a volumetric sampling interval approximately equal to half of the voxel 

size (30 𝜇m). Here and further, we refer to the resulted point cloud as experimental point cloud.  

The settings of the geometrical error model are described in table 4. Parameters 𝜀𝑟 and 𝜀𝑑  

were set to 0. The position of each individual sphere in the GCF was obtained using the procedure 

described in [11]. The modelled and nominal point clouds were obtained following the same steps as 

discussed in sections 6.1 and 6.3, respectively  
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Table 3. Specification of CT system used in the experimental study. 

 

Parameter Value 

Detector size 409.6 × 409.6 mm 

Number of pixels 2048 × 2048 

Pixel size 0.2 mm 

Detector bit-depth 15 bit 

Number of projections 720 

Angular step 0.5° 

 

 
Table 4. Geometrical parameters of the CT system used for experimental study as estimated by the procedure 

described in [11]. 

 

Parameter Dataset 1  Dataset 2  

𝑧𝑟, mm -400.662 -400.668 

𝑥𝑑, mm -0.132 -0.030 

𝑦𝑑 , mm 0.122 0.436 

𝑧𝑑 , mm -1212.424 -1209.897 

𝜃, ° 0.241 -0.450 

𝜑, ° 0.074 0.097 

𝜂, ° 0.022 0.027 

 

 
Table 5. Reconstruction settings. 

 

Parameter Dataset 1 Dataset 2 

Source-to-rotation distance, mm 400.662 400.668 

Source-to-detector distance, mm 1212.424 1209.897 

Voxel size, 𝜇m 66.093  66.232 

Number of voxels 2048 × 2048 × 2048 

Reconstruction filter Ramp 

 

 

7.2 Experimental results 

In figure 16, left column, we show a grey-value slice of sphere 8 for datasets 1 and 2. In dataset 1, 

double-borders and blur can be observed. Double-borders are less pronounced for dataset 2; however, 

blur is still evident. Following the same analysis steps as in section 6, we first show the three-

dimensional rendering of the point cloud representing sphere 8 color-mapped according to the 

orthogonal distance between internal and external point clouds in order to assess amount of “ghost” 

material.  
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a) Dataset 1 

  

b) Dataset 2 

Figure 16. (Left column) Grey-value cross-section of sphere 8. (Right column) Three-dimensional rendering of 
the point cloud representing sphere 8. Every point in the point cloud is colored according to the orthogonal 
distance between Pint and Pext. Color scale is expressed in 𝜇m. 

 

A comparison of both experimental and modelled point cloud against the nominal point cloud 

is shown in figure 17. The mean value of signed distances for experimental data is positively offset, i.e. 

reconstructed sphere has bigger diameter than its reference value. This offset can be explained by the 

influence of beam hardening artifacts on the grey-value profile of the reconstructed volume [25]. In 

appendix A, figure A.3 we show the 3D rendering of the point cloud corresponding to sphere 8 color-

mapped to signed distances 𝑑𝑖  for both datasets. In figure 18, we present summarized statistics for all 

spheres. The geometrical error model succeeded in predicting the observed behaviors from 

experimentally-acquired data up to the aforementioned offset.  

 

  
a) Dataset 1 
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b) Dataset 2 

Figure 17. Histogram of signed distances between experimental and nominal point clouds (left column) and 
between modelled and nominal point clouds (right column) for sphere 8. Mean values and corresponding 95% 
confidence interval (based on 2.5% and 97.5% quantile) are shown as solid and dashed lines, respectively. 
Histograms are normalized by probability, i.e. the sum of the bar heights is less than or equal to 1. 

 

  
a) Dataset 1 

  
b) Dataset 2 
Figure 18. Signed distance between experimental and nominal point clouds (left column), and modelled and 
nominal point clouds (right column) for individual spheres. Mean is shown as filled red circles. Bottom and top 
limit of error bar correspond to the 2.5% and 97.5% quantiles, respectively. 

 

Finally, figure 19 compares dimensional measurement results performed on experimental and 

modelled data. Following the same steps as in the simulation study (section 7), center point position of 

each sphere is measured using least squares fit (figure 19a-d), whereas form error is assessed using 

minimum-zone method (figure 19e). The significant offset of the detector center point along Y axis 

(table 4) resulted in a shift of the sphere center points from their expected positions. These effects are 
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noted as large dispersions of signed distances 𝑑𝑖  (figures 17, 18 and A3), albeit relatively low radius 

and form error (figure 19e). The geometrical error model is capable of reproducing the influence of 

the misalignments on the location of the sphere center point, as demonstrated in figure 19a-d. 

Measured inscribed and circumscribed radii on modelled and experimental data, shown in figure 19e, 

are offset similarly to the data shown in figure 18. We conclude that the geometrical error model is 

capable of reproducing the influence of geometrical misalignments on the dimensional measurement 

results. 

 

  
a) Error in position of sphere center in 𝑋 axis. 

  
b) Error in position of sphere center in 𝑌 axis. 

  
c) Error in position of sphere center in 𝑍 axis. 
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d) Absolute error in center-to-center distance from sphere 1 to all consecutive spheres (3-49), i.e. point 3 
corresponds to the distance between sphere 1 and 3. Modelled data is shown as solid lines with filled circles, 
whereas experimental data is shown as dashed lines and crosses. 

  
e) Radii of inscribed and circumscribed concentric spheres. Modelled data is shown as filled circles and squares, 
whereas experimental data is shown as crosses and plus sign. 
Figure 19. Dimensional errors in experimental datasets and dimensional errors predicted by the proposed 
geometrical error model. The left column presents dimensional measurements for dataset 1, whereas the right 
column corresponds to dataset 2. Center point position of each sphere is measured using least squares fit, 
whereas form error is assessed using minimum-zone method. Sphere 2 was excluded from comparison.  

 

 

8 Conclusion 

Assessment of uncertainty in CT dimensional measurements is fundamental for acceptance of CT as a 

measuring instrument. A feasible method for quantification of measurement uncertainty is by means 

of the Monte Carlo by simulation method. However, the computational cost of simulating the CT 

measurement procedure prohibits the practical application of Monte Carlo methods to real 

measurement tasks. In this paper we introduce a geometrical error model as an alternative to the 

computationally-demanding Monte Carlo by simulation method of uncertainty assessment.  

The geometrical error model is based on the forward- and back-projection of an object’s surface 

points extracted from CAD-model to assess discrepancies in the radiographic image coordinates 

assigned to the projected edges between an aligned system and a system with misalignments. We 

found that the proposed geometrical error model is successful in capturing errors in the 

tomographically reconstructed edges from simulated and experimental datasets of a simple object 

consisting of spheres in a particular arrangement. The validity of the model is also evaluated by 

comparing dimensional measurements (sphere center-to-center distances and radii) performed on 

simulated and experimental data. Extension of the proposed method to other geometrical error 

parameters and objects is a topic of future investigation. 

The computational load associated with the implementation of the proposed geometrical error 

model, namely the procedure for forward- and back-projection of surface points, is only a fraction of 
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what is required for full simulation of the CT measurement procedure. Simulation time of the CT 

measurement procedure depends on many parameters, such as hardware, implementation strategy, 

dataset size, parameters set, etc. Typically cited simulation times are between a few dozens of minutes 

up to several hours for a single simulation run. A single run of the proposed geometrical error model 

(MATLAB implementation, Intel Core i7 (5th Gen) 5600U / 2.6 GHz) for the evaluation object 

described in section 6.1 took approximately 1 second including application of Gaussian sphere fit to 

every sphere. Since the algorithm used to implement the proposed method processes every surface 

point separately, it is well suited for parallel processing. The proposed method therefore provides a 

considerable reduction in computation time in a single Monte Carlo run. 
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Appendix A 

 

  
a) 𝜃 = 1.0° 

  
b) 𝜑 = 0.5° 

  
c) 𝜂 = 0.1° 
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d) 𝑥𝑑 = 0.25 mm 

  
e) 𝑦𝑑 = 0.25 mm 

  
f) 𝜀𝑑 = 2 mm 
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g) 𝜀𝑟 = 0.1 mm 
Figure A.1. Three-dimensional rendering of point cloud representing sphere 1, which is color-mapped according 
to the signed distances between simulated and nominal point clouds (left column), and between modelled and 
nominal point clouds (right column). Color scale is expressed in 𝜇m. 

 

  
a) No geometrical error 

  
b) 𝜃 = 1.0° 
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c) 𝜑 = 0.5° 

  
d) 𝜂 = 0.1° 

  
e) 𝑥𝑑 = 0.25 mm 

  
f) 𝑦𝑑 = 0.25 mm 
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g) 𝜀𝑑 = 2 mm 

  
h) εr = 0.1 mm 
Figure A.2. Signed distance between simulated and nominal point cloud (left column), and modelled and 
nominal point cloud (right column) for individual spheres. Mean value is shown as filled circle. Bottom and top 
limit of error bar correspond to the 2.5% and 97.5% quantiles respectively. 
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a) Dataset 1 

  
b) Dataset 2 
Figure A.3. Three-dimensional rendering of point cloud representing sphere 8, which is color-mapped according 
to the signed distances between experimental and nominal point clouds (left column), and between modelled 
and nominal point clouds (right column). Color scale is expressed in 𝜇m. 
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