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Abstract 21 

Analysis of the effects of hydro-climatic variables on economic outcomes helps to inform the 22 

design of agricultural and water polices and the economic assessment of climate change impacts. 23 

This paper presents an analysis of the multi-sectoral and distributional economic impacts of 24 

rainfall shocks in the Awash river basin in Ethiopia. Using novel disaggregated data on crop 25 

production, we estimate the direct impacts of rainfall shocks on agriculture and then use a 26 

Computable General Equilibrium model to simulate how these rainfall shocks propagate through 27 

the wider economy of the basin under three different climate change scenarios. Results are 28 

examined by sector and income group. The basin’s economy and expanding agricultural sector 29 

are highly vulnerable to the impacts of rainfall shocks. A rainfall decrease scenario could lead to 30 

a 5% decline in the basin’s GDP, with agricultural GDP standing to drop by as much as 10%, 31 

whilst all sectors benefit from greater rainfall amounts. Distributional impacts depend on 32 

location in the basin and type of household, with poor households accruing greater benefits 33 

relative to non-poor households under a scenario of additional rainfall and suffering lower 34 

income losses under a scenario of rainfall decrease. 35 

Keywords: computable general equilibrium, Ethiopia, rainfall variability, agricultural shocks, 36 

climate change in Sub-Saharan Africa, poverty 37 
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1. Introduction 39 

Understanding the impact of hydro-climatic factors on the economy informs the design of 40 

agricultural and water polices. It has important implications for the economic appraisal of 41 

investments in the water sector vis-à-vis investments in other sectors, quantifying if and how 42 

unmanaged hydro-climatic variables lead to unfavorable economic outcomes. In the face of 43 

climate change and increasing water demands, this understanding also informs adaptation 44 

decisions and is increasingly being integrated into investment decision-making. 45 

For over a decade, scholars have highlighted the regional and global economic effects of hydro-46 

climatic variables on economies, recognizing for instance that factors such as rainfall variability 47 

and drought affect economic outcomes at multiple scales ranging from national economic 48 

production (Barrios et al., 2010; Grey and Sadoff, 2007; Sadoff et al., 2015; Hall et al., 2014; 49 

Garrick and Hall, 2014) to household wealth and income dynamics (Dercon, 2004; Coulter et al, 50 

2010; Barrett and Santos, 2014). Despite recognition of the importance of hydro-climatic 51 

variables in influencing economies and perpetuating poverty traps, there still remains much to be 52 

studied in terms of the mechanisms by which these variables influence different economic 53 

sectors and how the impacts are distributed through society and different income groups.  54 

This paper follows this line of work and aims to quantify the multi-sectoral and distributional 55 

impacts of rainfall shocks in the Awash River basin, Ethiopia. This analysis has implications for 56 

informing adaptation strategies in the Awash basin and, more broadly, for understanding current 57 

and future vulnerabilities to climatic factors in areas such as Sub-Saharan Africa where rainfed 58 

agriculture is predominant . 59 

The paper is structured as follows. Section 2 reviews the motivating evidence for this study and 60 

articulates the main contributions. Section 3 presents the data and the analytical framework used 61 

to investigate the linkages between economic activities and rainfall and extremes at the river 62 

basin scale.  In Section 4 the results are presented and in Section 5 the limitations are discussed. 63 

Section 6 presents conclusions from the study and suggests areas for future research. 64 

2. Motivating Evidence and Contribution  65 

The question of climate’s role (both rainfall and temperature) in influencing the economy has 66 

challenged thinkers for several decades and is of increasing relevance to assessments of the 67 



economic effects of climate change (Hsiang, 2016; Carlton and Hsiang, 2016). In the case of 68 

rainfall, studies examining its role in influencing economic outcomes have ranged from 69 

econometric analyses at the global scale (Brown and Lall, 2006; Brown et al., 2013) to 70 

household level surveys (Dercon and Christiaensen, 2007; Coulter et al., 2010). Overall, studies 71 

have found that rainfall variability and extremes have a significant effect on both household 72 

welfare and national economic output, especially in agricultural-based economies (Shiferaw et 73 

al., 2014). 74 

Given the natural relationship between agricultural production and rainfall, it is not surprising 75 

that in agricultural-dependent economies where most agriculture is rainfed, variations in rainfall 76 

can cause significant economic impacts. However, this intuition may be difficult to test in 77 

practice, because high resolution data on agricultural production and rainfall are often lacking 78 

and because it is difficult to estimate how direct impacts, especially on the agricultural sector, are 79 

transmitted through other sectors of the economy. 80 

Early work in the economics literature used production function approaches to establish a 81 

relationship between hydro-climatic variables and agricultural output and then simulate the 82 

impacts of changing climate conditions (Adams, 1989; Dell, 2014). More recently, studies have 83 

used panel methods to estimate the impact of climatic factors on agricultural production. Most of 84 

these studies have focused on the role of temperature, such as Deressa and Hassan (2009) who 85 

showed how increasing temperatures would reduce crop revenue in Ethiopia or Schlenker and 86 

Lobell (2010) who demonstrated that higher temperatures lead to lower agricultural yields in Sub 87 

Saharan Africa. Other studies have examined the role of climate variability and extreme weather 88 

events in influencing crop production at local (Rowhani et al., 2011) and global scales (Lesk et 89 

al., 2016), quantifying the extent to which crop yields are sensitive to both intra- and inter-90 

seasonal changes in temperature, precipitation, and drought occurrence. Panel data analysis has 91 

also been used to examine farmer responses to changes in rainfall variables, for instance by 92 

examining how rainfall variability in Ethiopia impacts fertilizer use (Alem et al., 2000) or food 93 

crop choices (Bezabih and Di Falco, 2012), or the impacts of rainfall shocks on agroecosystem 94 

productivity (Di Falco and Chavas, 2008). 95 

Beyond analysis of the agricultural sector, econometric analyses using panel data have been 96 

employed to investigate the effects of long-term hydro-climatic fluctuations and extremes on 97 



national economies. Examples include Barrios et al (2010) who showed that higher rainfall is 98 

associated with faster economic growth in Sub-Saharan Africa, Brown and Lall (2006) who 99 

established a statistically significant relationship between greater rainfall variability and lower 100 

per capita GDP, Brown et al. (2011) who demonstrated negative effects of droughts on GDP per 101 

capita growth and Brown et al. (2013) who found that rainfall extremes (i.e., droughts and 102 

floods) have a negative influence on GDP growth.  Recent work by Sadoff et al. (2015) has used 103 

for the first-time surface runoff to test its impact on national economies, finding that it has a 104 

negative impact on economic growth at the global level.  105 

Building on empirical estimates of the direct effects of rainfall on economic outcomes, scholars 106 

have also investigated the economy-wide impact of water-related variables, especially rainfall 107 

variability and availability. These analyses have relied on Computable General Equilibrium 108 

(CGE) models to show the impact of rainfall on economies at various scales under historical 109 

climate variability and also under climate change. Pauw et al. (2011) combined a crop loss model 110 

with a CGE model to estimate the effects of rainfall extremes on Malawi’s economy. Strzepek et 111 

al. (2008) used a CGE model to look at variability in water supply and model the economic value 112 

of reduced variability following the construction of the High Aswan dam in Egypt. Other 113 

applications of CGE models to assess the indirect impacts of water-related variables include 114 

Berrittella et al. (2007), who investigated the role of water resources and scarcity in international 115 

trade, Roson and Damania (2016), who explored the macroeconomic impact of future water 116 

scarcity and alternative water allocation strategies, and Carrera et al. (2015), who assessed the 117 

effects of extreme events (flood shocks) in Northern Italy.  118 

In the context of Ethiopia, analysts have emphasized the vulnerability of the agricultural sector to 119 

climate change (Deressa et al, 2008) and found evidence of the linkages between economic 120 

outcomes and rainfall variability (Grey and Sadoff, 2007). Revisiting the Grey and Sadoff (2007) 121 

analysis with a longer data series, Conway and Schipper (2011) found a weaker relationship 122 

between rainfall and GDP, but still emphasized the sensitivity of Ethiopia’s economy to major 123 

droughts and argued that evidence of the relationship between wet and dry extremes and the 124 

economy is essential to assess the significance of future climate change. Following a similar line 125 

of work, Deressa (2007) investigated the economic impact of climate on Ethiopia’s agriculture 126 

and found that increasing temperature and decreasing rainfall have negative effects on farmers’ 127 



net revenues. Bewket (2009) identified strong correlations between cereal production and rainfall 128 

in the Amhara region and similar conclusions were reached by Alemayehu and Bewket (2016) 129 

for the central highlands. 130 

Despite this growing body of work, there remain some unanswered questions of scholarly and 131 

policy relevance. First, most studies have typically focused on country-level assessments, 132 

without diagnosing the distributional and multi-sectoral impacts of rainfall shocks at the river 133 

basin scale. Although country-level assessments provide valuable information to focus policy-134 

makers’ attention on the issue, the most interesting variations in economic variables of relevance 135 

for decision-making are often observed at regional rather than national scales (Henderson et al, 136 

2012), and for different sectors and income groups. Second, as noted by Brown et al. (2013), 137 

most analyses to date have relied on spatially averaged rainfall data, which introduces systematic 138 

biases in the results by smoothing out variability and extremes.  139 

To address these gaps and contribute to the existing literature on the impacts of hydro-climatic 140 

variability and climate change at different scales, this study analyses the multi-sectoral and 141 

distributional impacts of rainfall shocks in the Awash basin, Ethiopia. First, the direct impacts of 142 

rainfall shocks on crop production are quantified. To avoid bias due to rainfall averaging, 143 

spatially disaggregated rainfall data to estimate the effects of positive (floods) and negative 144 

(droughts) rainfall anomalies on agricultural production are used. Second, a CGE model is used 145 

to quantify how these shocks are transmitted through the economy under three different climate 146 

scenarios. This allows us to quantify the potential economic impacts of climate change-induced 147 

variations in rainfall. Using a CGE model also allows us to compute the indirect impacts of 148 

rainfall shocks for different income groups, providing an understanding of the distributional 149 

implications of rainfall shocks.  150 

3. Background 151 

The Awash River basin, spanning 23 administrative zones, covers 10% of Ethiopia’s area and 152 

hosts about 17% of its population. In aggregate, the water available for use (including surface 153 

water and groundwater) of the Awash river basin meets existing demand, with 4.9 billion m3 154 

available per year on average compared to an average annual demand of 2.8 billion m3 (Tiruneh 155 

et al., 2013). However, this availability is highly variable both temporally and spatially. Most 156 



rainfall occurs between July and September and water availability during the dry season is on 157 

average 28% lower than in the rainy season (Bekele et al., 2016). The lower reaches of the 158 

Awash receive on average 27% to 45% of the rain that falls in the upstream basin areas and also 159 

experience greater variability, as shown in Figure 1.  160 

The high spatial and temporal variability makes it difficult (and therefore economically costly) 161 

for actors in the basin to plan investments that take advantage of the water when it is available. 162 

Furthermore, recurrent extreme wet and dry weather events challenge economic activities in the 163 

basin. The large portion of rural poor engaged in rainfed agriculture in the drought-prone 164 

marginal lands located in the middle and lower reaches of the basin suffer greatly from recurring 165 

drought, which often make populations reliant on international food assistance for survival 166 

(Edossa et al, 2010).  167 

The Awash Basin’s economy is dominated by the agricultural and services sectors, with the latter 168 

prevailing in the large urban center of Addis Ababa. Agriculture dominates water use (about 169 

89% of total water use in the basin) and is expected to continue to be the basis for economic 170 

growth in the coming years (Tiruneh et al., 2013). Crop production in particular is a major 171 

component of the basin’s economy and has seen rapid growth in recent years, with the value of 172 

output expanding by 7.9% per year in real terms between 2004 and 2014. Data collected for this 173 

study shows that as of 2012, the total irrigated area of the basin is less than 2% of the total area 174 

under cultivation.   175 



 176 

Figure 1. Mean (left panel) and coefficient of variation (right panel) of monthly rainfall by administrative zone in the 177 
Awash basin (1979-2015). Rainfall data from the Global Precipitation Climatology Centre (Schneider et al., 2011). 178 

4. Data and Methods 179 

4.1. Data 180 

4.1.1. Crop Production 181 

We examine the effect of rainfall shocks on crop production in the different administrative zones 182 

of the Awash basin. A panel of crop production for each zone for multiple crops from 2004 to 183 

2014 was constructed using data from the Central Statistical Agency (CSA) annual surveys of 184 

private peasant holdings and of commercial farms (large and medium commercial farm surveys). 185 

The crops contained in CSA’s records considered in this study are barley, cereals, chat, coffee, 186 

cotton, fruits, hops, maize, pulses, oilseeds, pulses, sorghum, sugarcane, vegetables, and wheat. 187 

Zonal level prices of these items from the CSA were included to produce data on monetary 188 

values and to construct price deflators that help intertemporal comparisons. 189 

4.1.2. Rainfall 190 

The rainfall data used in this study were obtained from the Global Precipitation Climatology 191 

Centre (GPCC) (Schneider et al., 2011). These are rainfall time series of monthly rainfall totals 192 

from 1979 to 2015 on a 0.5x0.5 degrees grid (approximately 55 km x 55 km). The gridded 193 



rainfall data were assigned to each administrative zone in the Awash basin using proportional 194 

assignment, meaning that the rainfall value assigned to each administrative zone is the average of 195 

the grid cells’ values intersecting it weighted by the fraction of the administrative zone covered 196 

by each grid cell. 197 

The gridded datasets were analyzed to obtain information on the occurrence of extreme weather 198 

events. A number of different metrics have been proposed in the literature to define flood and 199 

drought events based on rainfall time series (Keyantash and Dracup, 2002). In this study, the 200 

weighted anomaly standardized precipitation index (WASP) was used to define drought. This 201 

index was selected because it has been widely applied in previous studies exploring the 202 

relationship between rainfall and runoff variables and economic activities (Brown et al, 2013; 203 

Brown et al., 2011; Sadoff et al., 2015). 204 

The WASP index calculates deviations in monthly rainfall from its long-term mean and then 205 

sums those anomalies weighted by the average contribution of each month to the annual total 206 

(Brown et al., 2011; Lyon and Barnston, 2005): 207 

𝑊𝐴𝑆𝑃𝑁 =  ∑ (
𝑃𝑖 − 𝑃̅𝑖

𝜎𝑖
)

𝑁

𝑖=1

∙ (
𝑃̅𝑖

𝑃̅𝐴

)                                                                                                             (1) 208 

Where 𝑃𝑖   is the observed rainfall for month 𝑖 and 𝑃̅𝑖  is the long-term average rainfall for month 209 

𝑖, 𝜎𝑖 is the standard deviation of monthly rainfall for the month in question and 𝑃̅𝐴 is the mean 210 

annual rainfall. 𝑁 indicates the number of months over which the index is calculated. Following 211 

Brown et al. (2011), 𝑁 was set to 12 to capture annual rainfall anomalies. WASP values less than 212 

or equal to -1 indicate the occurrence of a drought D (Brown et al., 2011; Sadoff et al., 2015). 213 

Floods were identified using the peak-over-threshold approach (e.g., Katz et al., 2002), which 214 

defines all rainfall values above a predefined threshold level as floods. The threshold was set to 215 

the monthly values 90th percentile for each zone. While this offers an index capable of 216 

identifying periods with extremely wet conditions, floods can occur over time spans much 217 

shorter than can be captured using monthly data, so it is important to recognize that the index 218 

remains relatively crude. Given the lack of sub-monthly rainfall data or data on flood events, this 219 

is the most practical way to try to identify flood events or, at least, periods with extended higher 220 

than average rainfall. 221 



To drive the CGE analysis and estimate economy-wide effects under climate change, three 222 

rainfall scenarios were developed using output from the CMIP5 (Climate Model Intercomparison 223 

Project). The main rationale behind these scenarios is to identify rainfall projections which allow 224 

for a ‘what if’ analysis of the implications of changes in rainfall on the economy of the Awash 225 

basin. These are not meant to be predictive rainfall projections, they are meant to be 226 

representative projections of plausible changes in rainfall in the Awash basin, spanning the 227 

primary dimensions along which changing rainfall conditions might affect economic outcomes. 228 

All scenarios comprise four years long monthly rainfall time series. The characteristics of the 229 

three scenarios and the data and model sources used to generate them are described in Table 1. 230 

Table 1. Climate scenarios used in the Computable General Equilibrium analysis with a brief description of their 231 
characteristics and the sources used to generate the rainfall time series. [rcp: representative concentration pathway]. 232 

Scenario Description Source 

Rainfall 

decrease 

A modest decrease (about 5% compared to 

long-term averages) in rainfall throughout 

the basin, relatively evenly distributed 

throughout the year 

rcp 85 HadGEM2-ES r1i1p1 (2090/01 

to 2094/12) 

Rainfall 

increase 

A modest increase in rainfall (about 5% 

compared to long-term averages) throughout 

the basin, relatively evenly distributed 

throughout the year 

rcp 45 CNRM-CM5 r1i1p1 (2025/01 to 

2029/12) 

Spatial 

redistribution 

A modest decrease in rainfall in the upper 

reaches of the basin, accompanied by an 

increase in rainfall in the lower reaches of 

the basin 

rcp 45 CESM1-CAM5 r1i1p1 (2025/01 

to 2029/12) 

4.2. Methods 233 

4.2.1. Direct Impacts Using Regression 234 

In the panel analysis, monthly rainfall, flood, and drought events are matched to crop production 235 

by crop type for each administrative zone during the period 2004-2014. Summary statistics for 236 

these variables are presented in Appendix A. The regression model estimates crop production for 237 

each crop type as a function of rainfall r for each month m, occurrence of a drought D and a 238 



flood F. To account for the productivity changes registered in the basin between 2004 and 2014, 239 

we also include a linear time trend T. Using the panel of rainfall, extreme weather events and 240 

crop production we estimate the following: 241 

𝑌𝑖,𝑡 = 𝑐 +  ∑ 𝛼𝑚𝑟𝑚𝑖,𝑡 

𝑚

+  𝛽 ∙ 𝑇 +  𝛾 ∙ 𝐷𝑖,𝑡 + 𝜉𝐹𝑖,𝑡 +  𝜖𝑖,𝑡                                                                      (2) 242 

where administrative zones are indexed by i and years by t. Y is the production for each crop, c is 243 

a constant term, and 𝜖𝑖,𝑡 is the error term that captures variation in crop production unexplained 244 

by the other variables. This econometric specification was in part dictated by the CGE model’s 245 

structure, which requires changes in productivity as an input rather than value. Additionally, 246 

while output value, or production multiplied by price, is an important measure of economic 247 

impact, its relationship to rainfall is complicated due to the extra variable of price. It is not clear 248 

how price might change with respect to rainfall, because it depends on a wide variety of other 249 

factors such as international market conditions and output in other sectors. 250 

By analyzing different crops separately, we are able to account for the fact that crops might 251 

respond differently to rainfall, as some crops require less water or require it at different times 252 

during the year. Including flood F and drought D events in the regression allows for extreme 253 

weather events to be controlled in all specifications and avoid biases due to temporal averaging 254 

of rainfall. Data limitations mean that there are insufficient degrees of freedom to allow the 255 

relationship between water availability and output to vary in each of the 23 zones. Zonal fixed 256 

effects were considered, but tests failed to show statistically significant differences between 257 

zones in the basin, and so were excluded from the analysis for parsimony. 258 

4.2.2. From Regression Results to CGE Input 259 

The estimated direct impacts on crop production were used as the starting point to compute the 260 

multi-sectoral and distributional impacts of rainfall shocks with the CGE model. In our 261 

application of the model, we are interested in computing the overall impact, in equilibrium, of 262 

productivity changes in agriculture induced by rainfall shocks on multiple sectors and income 263 

groups. To compute this impact the following steps were followed: 264 



1. Estimate the elasticity of crop production to rainfall shocks. This was accomplished by 265 

employing a log-log format whereby regression coefficients from the panel analysis are 266 

interpreted as elasticities.  267 

2. Compute productivity shock in agriculture. For each climate change scenario in Table 1, 268 

the percentage productivity shock in agriculture was computed using the crop elasticities 269 

estimated in step 1 and an assumption about how these shocks relate to livestock 270 

production. Due to the lack of data on livestock production, livestock impacts were 271 

estimated by taking an average of the sorghum and maize impacts within each zone, 272 

weighted by the relative share of production for the two crops in the relevant zone. In 273 

doing this, livestock production is assumed to track these two staple crops, which were 274 

chosen because they are often used as feed for livestock (FAO, 2006). 275 

3. Apply productivity shocks to baseline levels of production. The percentage productivity 276 

shocks were applied to the baseline levels of production, defined as the economic 277 

performance (either GDP or income) observed during the period 2011-2015. 278 

4. Run CGE model. The levels of production modified with the productivity shocks were 279 

inserted in the CGE model to evaluate the multi-sectoral and distributional impacts of 280 

rainfall shocks for each year during the period 2011-2015. 281 

This process hinges on using observed variability (estimated in step 1) to make projections of 282 

what might happen outside the bounds of that observed variability. The econometric model 283 

examines direct effects within a relatively narrow band of variability, in which rainfall 284 

availability is often the binding constraint. Because there are other factors including adaptive 285 

responses to extreme conditions that are either unobservable or unable to be modelled due to the 286 

data constraints discussed in Section 5, using regression estimates alone will not account for the 287 

presence of these factors that might become binding with sufficient deviation in rainfall. That 288 

may then overstate the true impact of rainfall shocks. In order to prevent such an overstatement, 289 

the impacts were censored to be no more than 20% growth or 30% decline in any year at the 290 

individual level. These numbers were chosen to be consistent with the maximum changes 291 

observed in the historical economic data. However, in doing so, the true impacts on production 292 

of the climatic scenarios may be understated, meaning that the estimates presented here are 293 

considered conservative. 294 



4.2.3. Indirect Multi-sectoral and Distributional Impacts using CGE Modelling 295 

This study uses a recursive dynamic CGE model, which is an extension of the International Food 296 

Policy Research Institute (IFPRI)’s standard static model (Lofgren et al., 2002; World Bank, 297 

2008) widely applied to study climate change impacts on Ethiopia’s economy (e.g., World Bank, 298 

2008; Arndt et al., 2011; Robinson et al., 2012; Gebreegziabher et al., 2015). A CGE model is a 299 

representation of the interactions between producers and consumers in the economy. It tracks the 300 

selling of goods from households to firms, the selling of factor services from households to firms 301 

and the investment expenditure arising from household savings (Yu et al., 2013). 302 

The CGE model takes as inputs factor endowments (amount of labor, land, and capital), sector 303 

productivity and updated country-specific data on production and consumption. The outputs of 304 

the CGE model include production by sector, income by household group and other which are 305 

not examined in this study (international trade, public accounts). 306 

The values of the variables and parameters in the CGE model are drawn from the 2009/10 307 

updated version of the 2005/06 Ethiopian Social Accounting Matrix (SAM) constructed by the 308 

Ethiopian Development Research Institute (EDRI, 2009). This SAM is a representation of all the 309 

transactions and transfers between agents in Ethiopia. It records all economic transactions taking 310 

place in a given year, for multiple sectors, representative households, and commodities amongst 311 

other factors.  312 

The Ethiopian Social Accounting Matrix (SAM) is a comprehensive, economy-wide data 313 

framework, representing the economy of the nation and also consistent with macro- to micro- 314 

accounting framework based on Ethiopia’s national accounts, the 2004/05 Household Income, 315 

Consumption, and Expenditure Survey (HICES) and other data. The SAM is disaggregated into 316 

113-activities (i.e., 77 in Agriculture, 24 in industry, 11 in service, and a mining sector), 64-317 

commodities, 16-factors, 13-households, and 17-tax (8 indirect commodity taxes and 9 direct 318 

taxes) accounts. The SAM also has government, saving-investment, inventory, and rest of the 319 

world accounts to capture all income and expenditure flows. 320 

Households are disaggregated into poor and non-poor according to their income compared to the 321 

absolute poverty lines for 2009 and 2010, which are approximately 2590 birr per year (EDRI, 322 

2009). Following the Ethiopian SAM, households are further categorized into five types: (i) 323 

highland cereal producing areas, (ii) highland other crops producing areas, (iii) drought prone 324 



areas, (iv) pastoral areas and, (v) urban areas (EDRI, 2009).  The urban and highland cereal and 325 

other crops producing households are mostly located in the upper reaches of the basin to the 326 

south-west, whilst pastoralists and drought prone households are mostly located in the 327 

downstream part (north-east) of the basin. 328 

Although the CGE and SAM represent the whole economy of Ethiopia, their application to 329 

estimate results at the basin level is justified for the following reasons. First, the productivity 330 

shocks inserted in the CGE model are generated using basin-level data only and are weighted 331 

using the share of agricultural commodities produced in the basin. Second, the basin accounts for 332 

about 30% of Ethiopia’s GDP and contains all the five household types included in the Ethiopian 333 

SAM. Third, they are the best and only available mathematical tools to study the economic 334 

response to rainfall shocks and climate change in this basin.  335 

5. Results 336 

5.1. Direct Impacts on Crop Production 337 

We first present the direct impacts of rainfall shocks on crop production and then show how 338 

these impacts are transmitted through the basin’s economy and for different sectors and income 339 

groups. The estimated coefficients for each crop and month are presented in Table 2 and they 340 

suggest significant responses of crop production to rainfall, with impacts depending on the 341 

season, the type of crop and the occurrence of extreme events. Regression diagnostics, including 342 

tests for normality, misspecification, and multicollinearity, suggest that our regression model is 343 

well specified (see Appendix B).  344 



Table 2. Regression coefficients by crop.  *, ** and *** indicate significance at the 0.01, 0.05, and 0.1 levels respectively. 345 

 346 

 347 

348 

Crop Type
Annual 

Total
January February March April May June July August September October November December

Flood 

Indicator

Drought 

Indicator
Constant

Chat -6173.2 -2259.9** 230.2 -591.0 854.7* 78.4 92.9 -483.6*** 94.7 368.7* 1093.6*** 708.2** -153.5 -127323 -29690.8 12400000

Coffee -1316.4* 67.9 254.9*** 3.2 38.3 63.5*** -48.5 -61.7** -31.6 61.1** 324.5*** 437.5*** 88.4 -62572.1*** -77864.9*** 2623877*

Cotton 6992.2 -23.9 -375.5* 376.4 -365.8 -31.7 -340.2 173.0 -278.6 -11.9 338.9 -184.9 -638.0* 138389.7* -68320.9 -13900000

Fruit 4052.9 647.9 333.5** 327.4 -33.9 84.1* -64.6 -24.0 -64.2 36.2 529.3*** 932.4** 158.6 -130002*** -202061*** -8130089

Barley 18112.4 5471.2 1865.7 -840.1 213.2 723.0 502.6 1313.9 1180.1 49.6 2904.2* 4011.2 4229.7* -862148** -1314542** -36800000

Maize 33854.9 4645.6 1967.7 1020.6 502.8 1891.1** 4872.6*** -1466.8 -1035.7 1238.4 6283.7** 8391.6*** 4542.8* -1296638** 1470011 -68000000

Sorghum -30722 -8178.5* 619.2 -3804.1 4459.1** 1161.0 -4002.2*** 762.0 2966.7** 1769.6 8851.8*** 9429.4*** -1949.6 -611047 -528243 60800000

Teff 77644.3*** 3948.6 -536.3 -966.7 -347.5 736.1 4559.4*** 2908.1** 1728.0 -1025.6 -361.8 468.8 4283.7* -653947 3036354 -156000000***

Wheat 45285.7 17785.1** 6374.4** 4263.8 -1388.5 1806.8* 937.3 491.4 957.4 173.1 7027.7** 10209.7** 4874.7 -2319072*** -60217.8 -91400000

Hops 1792.9*** 148.3* -65.5* -49.5 63.4* -28.3* 26.8 90.4** -8.9 19.9 -21.9 -31.2 -15.9 -1056.8 88007.3 -3597995***

Oilseeds -1033.7 995.3 941.3* -318.5 241.7 300.1*** 304.8 -166.9 76.6 223.4 1470.8*** 1076.2** 787.0 -210079* -437613** 1963214

Other Cereals -1115.7** 116.1 157.9** -41.8 28.5 27.6* -109.5*** 103.5*** -2.4 16.83 152.9** 265.0*** 65.2 -44812.2* -54733 2215645**

Pulses 41725.8*** 4636.6 311.2 -620.7 63.2 568.9 -313.9 2276.8** 1857.9* -545.2 1581.7 1193.8 1598.6 -671002** 1373913 -83900000***

Sugarcane 203321.1 13428.4 -1649.0 18104.3 -11092.9 -103.8 5385.5 -12420.1 7517.2 -2211.7 7270.7 -6473.5 -10549.9 -3128590 -3299997 -406000000

Vegetables 13475.9*** 1885.2*** 57.2 1020.6*** -119.5 249.3** 875.3*** -233.6* 14.2 33.8 323.9 1601.9*** 1197.0*** -253954*** 62263.2 -27000000***

Rainfall Extreme event



Production of several crops, including fruits, cereals (wheat, sorghum, maize) and oilseeds, 349 

shows a strong positive relationship with additional rainfall during the harvest (October to 350 

November). Additional rainfall is also beneficial in April and May-June for sorghum and maize 351 

respectively, suggesting potential benefits of additional water availability during the sowing 352 

period for these two crops. Teff shows a positive relation with rainfall availability in June and 353 

July, again highlighting the potential benefits of extra water availability during the time of 354 

sowing. As found in Alemayehu and Bewket (2016), additional rainfall in August has a positive 355 

impact on crops including wheat, teff, sorghum and barley (Table 2). Some crops, including 356 

cotton and barley are less sensitive to additional rainfall amounts, only showing statistically 357 

significant impacts at greater levels of significance (Table 2). 358 

The occurrence of extreme events impacts crop production. Coffee, fruit, and barley show a 359 

statistically significant negative relationship with both floods and droughts. Flood events 360 

negatively influence production of maize, wheat, pulses, and vegetables, whilst oilseeds 361 

production suffers largely due to droughts. Physical mechanisms that could account for the 362 

negative effect of flood events include water-logging of poorly drained fields or crop damage 363 

following heavy downpours (WFP, 2014).  364 

Our econometric results show surprisingly a positive, albeit not statistically significant, effect of 365 

droughts on some crops (see maize, teff and hops for instance). This result is explained by 366 

bearing in mind that the regression outputs include both the physical effects and the decision 367 

effects of extreme events. Based on perceived water availability, farmers may change what, 368 

where, when or how much they plant. Using our framework, we are not able to differentiate 369 

between lower crop output due to crop loss/failure to grow fully or due to farmers’ decision to 370 

substitute to other, more profitable crops. Our focus on crop production offers a partial picture of 371 

the full impacts of extreme weather conditions on agriculture, as these impacts may be affected 372 

by changes in harvested area and cropping intensity not considered here.  373 

5.2. Economy-wide and Multi-Sectoral Impacts 374 

To assess the economy-wide impacts of rainfall shocks in agriculture, we run the CGE model 375 

under the three different climate scenarios described in Section 4. The economy-wide impacts of 376 

the three climate scenarios are presented in Figure 2, which shows the deviation in basin GDP 377 

from the baseline, defined as the economic performance observed in the basin during the period 378 



2011-2015. The economy of the basin is vulnerable to changing rainfall patterns as represented 379 

in our climate scenarios. All scenarios apart from the rainfall increase scenario entail significant 380 

decreases in the GDP of the basin with respect to the 2011-2015 baseline, underscoring the 381 

economy’s sensitivity to rainfall shocks and extreme weather events beyond the agricultural 382 

sector. Under a rainfall decrease scenario, the basin’s economy could decline by almost 5%, 383 

which is not unreasonable given that during the 1984-1985 drought Ethiopia’s GDP dropped by 384 

about 10% (World Bank, 2008). 385 

Our analysis suggests that under a scenario of decreasing rainfall availability in the upstream part 386 

of the basin (Scenario 3: Spatial Redistribution), the entire basin’s GDP would suffer. This can 387 

be explained by considering that some of the most productive agriculture in the basin takes place 388 

in the upstream highlands of the basin, where higher levels of rainfall are also recorded. Rainfall 389 

reductions in these areas could have significant negative impacts on the basin’s economy. A 390 

modest rainfall increase (about 5%) throughout the basin (Scenario 2: Rainfall increase) could 391 

potentially benefit the economy of the basin. This is not surprising given the extent of rainfed 392 

agriculture in the Awash and it parallels findings from other climate change impact studies for 393 

Ethiopia (e.g., Deressa, 2009). 394 

 395 

Figure 2. Macroeconomic impacts of three different climate scenarios measured as deviations from the baseline GDP 396 
(2011-2015).  397 



The CGE model results also show the response of sectoral output under the alternative climate 398 

scenarios. Figure 3 presents the percentage change from the baseline in output by sector. 399 

Unsurprisingly, the impacts on agriculture are the largest in all three scenarios and are always 400 

negative except under a wetter climate.  401 

The impacts on the industrial and services sectors are more heterogenous. Under the rainfall 402 

increase scenario, the industrial sector production increases by less than 1%. However, industry’s 403 

production increases by about 5% under the spatial redistribution scenario. The rainfall shocks 404 

affect relative prices and incomes, triggering endogenous adaptation responses by farmers, 405 

producers, and consumers (Robinson et al., 2013), which could explain the positive impacts 406 

observed for the industrial sector under some scenarios. When agricultural production goes down 407 

due to lower rainfall, the wages that industry pays to workers can decrease in real terms due to 408 

decreased opportunity costs, lowering the costs of production and leading to minor increases in 409 

overall industrial productivity as observed in the Spatial Redistribution scenario.  410 

 411 

Figure 3. Macroeconomic impacts by sector of three different climate scenarios measured as deviations from the baseline 412 
GDP (2011-2015).   413 



5.3. Distributional Impacts 414 

The CGE simulations were also used to explore the distributional implications of rainfall shocks. 415 

Figure 4 shows the cumulative impacts on household incomes for two income groups (poor and 416 

non-poor) and for different household types. Results show that impacts depend on household 417 

income and type, with urban and highland producers (mostly located in the upper reaches of the 418 

basin) and pastoralists (mostly located in the downstream areas) households suffering the 419 

greatest impact under scenarios of rainfall decrease and spatial redistribution. The large impact 420 

on urban households can be explained by considering the higher food prices following rainfall 421 

shocks, as also noted by Gebreegziabher et al. (2015).   422 

Under the rainfall reduction scenario, the CGE results show that poor households located in the 423 

drought prone areas and in cereal cultivated highlands may benefit from rainfall shocks. This 424 

effect may be due to the different crops that these groups tend to farm and consume. The poor in 425 

these two household types do better because the cereals and legumes on which they rely are more 426 

resilient to rainfall shocks than other water sensitive crops, such as vegetables, and assets, such 427 

as livestock, which make up a larger part of a high-income household’s earnings and diet. 428 

Shocks in the agricultural sector might raise the price of some crops, which are mostly grown by 429 

poor households in the highlands and drought prone areas (e.g., legumes) and which, although 430 

less profitable during normal rainfall years, become profitable during low rainfall years because 431 

they are more drought-resistant. This can account for the increases in the income of some of the 432 

poor households shown in Figure 4 and moves some of the production into the industrial sector 433 

(see Figure 3). 434 

Under a scenario of rainfall increase, all income categories benefit from greater rainfall amounts, 435 

with poor households accruing greater benefits relative to non-poor households. The positive 436 

effect of additional rainfall is also visible in the results for the ‘spatial redistribution’ scenario, 437 

where rainfall increases in the lower reaches of the basin (pastoralist areas) lead to positive 438 

economic impacts and rainfall decreases in the upper reaches lead to negative economic impacts 439 

(highland areas). These results suggest that adaptation in agriculture, for instance in the form of 440 

soil and conservation technologies (Evans et al., 2012; Kato et al., 2011), institution-building to 441 

plan for water allocation (Mosello et al., 2015), increases in irrigated area (Calzadilla et al., 442 



2013) and sustainable intensification (Gilmont and Antonelli, 2012; Grafton et al., 2015), could 443 

offset some of the negative effects caused by changes in rainfall patterns due to climate change. 444 

The CGE results reflect the limitations of the SAM, which fails to capture the multiple ways that 445 

farmers and consumers change their behavior under different circumstances and only accounts 446 

for marketed goods. The poor might suffer less in terms of income losses, but they certainly 447 

suffer more in terms of adjustments costs which cannot be quantified in the CGE analysis 448 

(Robinson et al., 2013).  449 

 450 

Figure 4. Five Year cumulative impacts on household incomes for different climate scenarios measured as deviations from 451 
the income in the baseline period (2011-2015). Poor and non-poor categories are established based on their annual income 452 
according to the absolute poverty lines for 2009 and 2010, which are 2590 birr per year. 453 

6. Discussion  454 

This study presents new evidence of the direct effects of rainfall shocks on agriculture and of the 455 

indirect effects of these shocks on the wider economy of the Awash basin. The methodological 456 

framework developed in this study is of relevance to other river basins around the world 457 

especially in regions like Sub-Saharan Africa where rainfed agriculture is dominant (IWMI, 458 

2010). Our analysis highlighted several ongoing challenges for research seeking to quantify the 459 

impacts of hydro-climatic variables on economic outcomes for multiple sectors and income 460 

groups.  461 



First, data reliability and availability remain an issue. We could not validate our crop production 462 

estimates against other sources of data, thus we are left with uncertainty over consistency of 463 

collection methods and presence of other sources of variability (e.g., pests or soil erosion 464 

phenomena occurring in different administrative zones within the basin) masking rainfall effects 465 

(e.g., Conway and Schipper, 2011). To deal with the lack of data on livestock production we had 466 

to assume it to be related to sorghum and maize. Although this is a reasonable assumption given 467 

these crops’ use as fodder, direct accounts of livestock production would provide more robust 468 

data for the analysis. In future work, bottom-up crop models such as APSIM (McCown et al., 469 

1996) could be used to validate the crop production estimates and expand the analysis to project 470 

crop water needs in the future (e.g., Grafton et al. 2017).  471 

We used state-of-the-art rainfall estimates and accounted for spatial and temporal variation in 472 

rainfall patterns, though we did not investigate how different rainfall estimates affect our results. 473 

As we move towards improved data collection on rainfall and crop water requirements based on 474 

remote sensing (Garcia et al., 2016) and improved process-based modelling of crop response to 475 

rainfall patterns (Vanutrecht et al., 2014; Ewert et al., 2015), these datasets will provide new 476 

information to validate the type of analysis presented here and inform water management 477 

decisions at the basin scale.  478 

A third set of limitations arises from the estimation of the wider economic and distributional 479 

implications of rainfall shocks. The CGE model assumes that households and firms have the 480 

capacity to rapidly respond to changes. In practice, this is rarely the case as firms and households 481 

may struggle due to financial or other constraints to respond to rainfall shocks. Standard CGE 482 

models cannot be used to simulate the human costs of these adjustments nor can they be used to 483 

estimate impacts on non-market goods. This consideration is particularly relevant when trying to 484 

quantify impacts on poor households, which rely more on non-market goods sensitive to rainfall 485 

patterns –such as domestic labor to collect water– and impacts on health or food security which 486 

might arise from rainfall shocks. Furthermore, our CGE model results are likely to present an 487 

overall underestimation of impacts because production adjusts to shocks in one sector by 488 

switching factors of production to other sectors. In reality, these adjustments may not happen 489 

making multi-sectoral impacts larger than what was estimated here. 490 



A fourth limitation comes from our focus on rainfall shocks, which makes our estimates of 491 

climate-related economic vulnerabilities conservative. The estimated impacts for the four 492 

scenarios only reflect economic impacts mediated through rainfall shocks on agricultural 493 

production. This means that we do not quantify all the possible mechanisms by which climatic 494 

factors may affect economic outcomes in the basin. The findings of this study could be 495 

complemented with data on direct economic losses related to hydro-climatic events on multiple 496 

economic sectors (e.g., Carrera et al., 2015; You and Ringler, 2010), on the effects of green 497 

water availability and variability (water stored in soils) on rainfed agriculture (Kummu et al. 498 

2014) and on the effects of higher temperature on crop production. This would allow for a more 499 

comprehensive assessment of the effects of climatic changes and of failure to adapt to these 500 

changes on the economy of the Awash basin. Our results are conservative also because we do not 501 

quantify the impact that rainfall shocks have on willingness to invest and returns on investments.  502 

Finally, there are limitations linked to our methodological choices, which were dictated by data 503 

and model availability. The regression results presented in Section 5 are bound by the extremes 504 

in the observed data, which do not necessarily include the most extreme historical events which 505 

may have occurred in the basin but for which we could not find matching economic data (e.g., 506 

the 1983-1985 drought). Furthermore, in order to use the regression results in the CGE analysis 507 

we had to assume that the crop production shocks are time invariant, which may not be the case 508 

under climate change. This limitation is linked to the recognition that as climate change 509 

materializes, threshold effects and nonlinearities in the ways in which crops respond to rainfall 510 

may occur. 511 

7. Conclusion  512 

This study has quantified the distributional and multi-sectoral impacts of rainfall shocks in the 513 

Awash basin, Ethiopia. Panel data analysis of novel disaggregated data on crop production was 514 

used to assess the direct impacts of rainfall shocks on agriculture. Building on these empirical 515 

results, a CGE model was used to simulate how these impacts propagate through the basin’s 516 

economy under three different climate scenarios.  517 

Given the dominance of rainfed agriculture in the basin (covering around 98% of total cropland 518 

as of 2012), changes in rainfall patterns due to climate change can severely compromise 519 



economic activities in the basin. Under a rainfall decrease climate scenario,  basin-wide GDP 520 

would drop by 5% compared to current GDP, with the agricultural sector losing as much as 10% 521 

and the services and industrial sectors losing about 3%. Conversely under a scenario of increased 522 

rainfall, the basin’s GDP could show potential increases in the range of 5% to 10% compared to 523 

current GDP. This highlights how additional water availability could foster agricultural 524 

production and have positive ramifications on the economy of the whole basin.  525 

All income categories benefit from greater rainfall amounts.  Poor households show the greatest 526 

increase in income relative to non-poor households under a rainfall increase scenario. Under a 527 

rainfall decrease scenario, most households suffer income losses, with non-poor households 528 

suffering more in relative terms. Under this scenario some poor households located in the 529 

drought prone areas and in the highland cereal cultivating areas show an increase in incomes, an 530 

effect that may be due to the different crops that these groups tend to farm and consume.  531 

This study demonstrates the additional information gained by estimating the distributional and 532 

multi-sectoral impacts of rainfall shocks at the local level, at the same time highlighting the data-533 

related challenges linked with finer scales. Future work should focus on collecting more 534 

empirical evidence on economic and water-related variables—such as data on livestock 535 

production and estimates of the direct impacts of and adjustment costs to rainfall shocks on the 536 

manufacturing sector and different income groups—and on the adaptation options available to 537 

address climate-related vulnerability across the basin.  538 
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Appendix A 551 

This appendix presents summary statistics for the crop production (Table A1) and rainfall data 552 

(Table A2) used in the regression. 553 

Table A1. Summary statistics for production (in quintal) by crop type average across administrative zones in the Awash 554 
basin (2004-2015). 555 

Variable Mean Std. Dev. Min Max 

Other 

cereals 
13,553 26,458 - 294,905 

Chat 47,576 133,962 - 979,389 

Coffee 10,674 25,938 - 172,402 

Cotton 17,791 120,447 - 1,251,661 

Fruits 31,988 66,413 - 685,153 

Barley 367,410 546,965 - 2,539,189 

Maize 569,694 824,738 - 3,894,270 

Sorghum 674,522 880,303 - 3,730,086 

Teff 662,449 884,438 - 3,861,619 

Wheat 670,572 1,078,072 - 7,383,871 

Hops 7,378 15,992 - 117,291 

Oilseeds 71,576 122,728 - 716,748 

Pulses 465,112 573,383 - 2,141,646 

Roots 377,810 1,147,978 - 12,900,000 

Sugarcane 357,672 3,933,832 - 59,800,000 

Vegetable 82,512 124,162 - 705,176 

 556 

Table 3. Summary statistics for monthly rainfall (in mm) and drought and flood indicators (dimensionless) averaged 557 
across administrative zones in the Awash basin (2004-2015). 558 

Variable Mean 

Std. 

Dev. Min Max 

January rainfall 13.988 14.155 0.000 53.900 

February rainfall 21.617 31.124 0.000 128.000 

March rainfall 48.209 29.072 0.000 145.000 

April rainfall 73.720 39.042 0.044 191.000 

May rainfall 114.775 117.521 0.014 578.000 



June rainfall 72.159 51.447 0.016 219.000 

July rainfall 187.794 81.827 0.167 383.000 

August rainfall 203.252 73.411 17.200 419.592 

September rainfall 119.328 72.241 0.972 489.000 

October rainfall 45.960 30.010 0.000 114.888 

November rainfall 21.627 23.960 0.029 102.000 

December rainfall 9.229 14.676 0.000 89.500 

Flood indicator 0.111 0.107 0.000 0.417 

Drought indicator 0.004 0.031 0.000 0.250 

Appendix B 559 

Regression diagnostics were run to check for normality, misspecification, and multicollinearity 560 

in the data. To check for normality, the quantiles of the variables were compared with the 561 

quantiles of a normal distribution. The Ramsey RESET test was applied to check for 562 

misspecification and the variance inflation factor was applied to check for multicollinearity. All 563 

tests show that the regression model is well specified and does not suffer from non-normality nor 564 

multicollinearity. Heteroscedasticity robust standard errors are used in the estimation. Results for 565 

these tests can be obtained from the corresponding author. 566 

To check for stationarity, we apply the Harris and Tzavalis (1999) test. The test’s null hypothesis 567 

is that the time series variables have a unit-root (i.e., are non-stationary) against an alternative 568 

where the variables are stationary. The test is designed for datasets which have a short temporal 569 

span, which is the case for our data which only span 5 years. The results from the unit root tests, 570 

including time trends, are shown in table A3.  571 

Table B1. Results from the Harris-Tzavalis unit root test. 572 

Dependent variables 

Variable Z Statistics P – Value  

Chat -5.8235        0.0000 

Coffee -6.9240        0.0000 

Cotton -7.1352        0.0000 

Fruits -10.5179        0.0000 

Barley -6.1699        0.0000 

Maize -7.5870        0.0000 

Sorghum -4.1650        0.0000 

Teff -2.7134        0.0000 

Wheat -1.4014        0.0000 



Hops -10.5721 0.0000 

Oilseeds -7.1738        0.0000 

Other cereals -8.5530 0.0000 

Pulses -6.0815        0.0000 

Sugarcane -14.0250 0.0000 

Vegetable -6.7963        0.0000 

Independent variables 

Variable Z Statistics P – Value  

January -10.8872        0.0000 

February  -9.0277        0.0000 

March -5.9884        0.0000 

April -7.4327        0.0000 

May -9.9355        0.0000 

June -11.4783        0.0000 

July -6.8600        0.0000 

August -4.8693        0.0000 

September -9.0702        0.0000 

October -3.5365        0.0000 

November -10.0436        0.0000 

December -9.3680        0.0000 

 573 

 574 
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