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Leveraging the Fulcrum Point in Robotic Minimally
Invasive Surgery

Caspar Gruijthuijsen, Lin Dong, Guillaume Morel, and Emmanuel Vander Poorten

Abstract—In robotic Minimally Invasive Surgery (MIS) the
incision point acts as a fulcrum around which the surgical
instrument pivots. The fulcrum point has been the topic of much
research. Mechanisms have been invented to enforce instrument
motion about such a fulcrum. Other systems establish a fulcrum
through coordinated control of their joints. For laparoscopists,
the fulcrum point is an obstacle to overcome through a lot of
training. For robots, it is a hurdle requiring careful consideration.

In this paper, new estimation methods are proposed to exploit
the properties of a fulcrum and turn its presence into an
advantage. The paper starts by presenting a novel fulcrum
estimation method that is robust against measurement noise and
quantization effects. A general fulcrum refinement method is
proposed next. This method can be used as add-on to ameliorate
alternative estimation approaches. It is shown how the fulcrum
can also be leveraged to get accurate, high-bandwidth estimates
of the instrument tip. The quality with which the instrument tip
is estimated has a large impact on the performance of advanced
guidance schemes, such as haptic virtual walls. User tests are
included, demonstrating substantially improved guidance thanks
to the algorithms presented in this work.

Index Terms—Medical robots and systems, surgical robotics:
laparoscopy, haptics and haptic interfaces

I. INTRODUCTION

FOR many surgical interventions Minimally Invasive
Surgery (MIS) is becoming the standard. In MIS, surgical

instruments pass through small incisions in the patient’s skin.
Smaller incisions lead to smaller scars, but smaller incisions
also constrain the instrument motion degrees of freedom
(DoFs) to a greater extent. The instrument can pivot about
the incision point; it can rotate about and translate along its
longitudinal axis, but motion is constrained in the directions
tangential to the body wall. The incision thus acts as a fulcrum
which introduces other difficulties for the surgeon. Motion
and forces are inverted and scaled. The scale factor varies
with insertion depth. This variable scaling complicates correct
perception of the forces that are exerted at the instrument tip.
Friction forces that develop between the instrument and the
incision and torques that are required to deform the body wall,
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e.g. to incline the instrument up to a certain angle, further mask
the haptic perception.

A key motivation for introducing robotic surgery in the ’80s
consisted exactly in bypassing problems of motion inversion
and variable scaling associated to the presence of the fulcrum.
Knowledge of the fulcrum location was incorporated in the
robot navigation and control algorithms. By doing so, the
complex instrument handling from MIS could be transformed
into a simpler tracking and positioning problem in Cartesian
space. Surgeons were relieved as this resembles the situation
of instrument handling in open surgery more closely.

Rigid link MIS robots can be roughly classified in four
categories based on the way they deal with the fulcrum point.
In the first category, robots possess a fixed pivoting point
in their workspace, by their mechanical design. This point,
the Remote Center of Motion (RCM), lies outside of the
robot’s mechanism. Before starting the intervention, the robot
is servoed so as to maximally align the RCM with the incision.
The second category comprises the so-called Local Center of
Motion (LCM) systems. Systems such as the body-mounted
Ligth Endoscope Robot (LER) [1], its successor VikY [2] and
the MC2E robot [3] are representative for this category. LCM
systems possess a ‘local’ fulcrum point that is an integral part
of their linkage structure and that is made to coincide with the
patient’s incision. Robots with a ‘virtual’ RCM form the third
category. These robots have no particular mechanisms that
constrain their motion, but they are programmed to maintain
a ‘virtual’ fulcrum point through coordinated control of a
plurality of their joints. Robots of this category may have
e.g. an anthropomorphic structure, like DLR’s MIRO robot [4].
Finally, a fourth category consists of ‘passive’ wrist robots. At
the end of their kinematic chain, these robots typically possess
a spherical wrist, to which the instrument is hinged. The axial
rotation of the instrument is controlled, but the direction of the
instrument axis is not constrained. Therefore, the instrument
will freely pivot around the constraining point, namely the
incision point in the patient. A passive wrist is thus always
aligned with the incision.

Accurate knowledge of the incision point is important for
all these robotic MIS approaches. For the mechanical RCM
and LCM approaches, the location of the incision point needs
to be accurately aligned with the center of motion [5] of the
mechanism. Improper alignment may lead to excessive forces
on both instrument and patient. An increased prevalence of
Trocar Site Herniation (TSH) after robotic surgery has been
reported [6], [7]. In virtual RCM approaches, the position of
the incision must be known and expressed w.r.t. the robot base
frame, in order for the software to be able to enforce a fulcrum
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constraint [8], [9], [10], [11]. Inaccuracies may cause harm to
or lead to dangerous situations for the patient.

In passive wrist robots, contrarily, misalignment does not
lead to excessive forces on the body wall. By their nature,
the incision constraint cannot be violated and as such, these
robots are considered safer than virtual RCM approaches. They
are also easier to set up than mechanical RCM approaches,
which require an alignment procedure. Still, knowledge of
the fulcrum point is crucial for their control. In fact, this
knowledge lies at the genesis of passive wrist robots: by virtue
of it, wrist actuators can be eliminated and the mechanical
construction greatly simplified [12]. However, this reasoning
implies that inaccuracies in the fulcrum position will also lead
to inaccuracies in the instrument control. As such, for passive
wrist robots, an identification step is also needed to accurately
locate the incision.

Since the instrument tip position depends on the location
of the incision, inaccurate knowledge of the latter translates
to incorrect estimates of the tip position. Whereas during set
up of MIS robots of the first three categories an alignment
procedure is required to avoid TSH, for passive RCM robots an
identification step is needed to precisely quantify the location
of the incision.

The above illustrates the importance of accurate knowledge
of the fulcrum position in robotic MIS. This paper introduces
a new, more robust method to estimate the location of the
fulcrum point. Additionally, a method is proposed that exploits
the estimated fulcrum position to improve the pose estimation
of the surgical robot itself. Moreover, it is shown how specific
characteristics of the fulcrum point can be exploited to improve
the stability of some haptic control schemes. This method
can also be applied to any fulcrum estimation approach found
in literature. In this paper, the presented work is principally
applied to passive wrist robots, but it is also more generally
applicable.

The structure of the paper is as follows. In Sec. II, methods
for fulcrum estimation will be discussed. A new method for
fulcrum estimation that can cope with high measurement noise
is proposed in Sec. III. Next, Sec. IV shows how to improve
the tip position measurement. A series of simulations and in-
vitro experiments are described in Sec. V, showing the benefits
of the proposed methods. After a discussion of the obtained
results in Sec. VI, the paper is concluded in Sec. VII.

II. STATE OF THE ART

This section surveys a number of methods for fulcrum
estimation that have been proposed in literature. The methods
can be largely classified in three groups: methods that rely on
(1) external measurement equipment, (2) force sensors, or (3)
kinematic data only. Depending on the application, some of
these works target RCM alignment, others target robot control,
or both. Yet other works estimate the fulcrum position to help
real-time instrument tracking in endoscopic images [13], [14].
Indeed, the fulcrum location can help generate seed points
for more accurate initialization of instrument segmentation
routines.

A. Fulcrum estimation by external measurement equipment

Several approaches have been developed where the fulcrum
is estimated using measurement equipment that is set up ex-
ternally w.r.t. the surgical robot. Mostly, this concerns cameras
positioned within the line of sight. These methods try to
detect instrument axes within the generated images. Typically,
least squares or other optimization methods are employed to
calculate the best intersection between the detected lines. The
approaches mainly differ in the methods adopted to detect
edges in the image. Some methods express the results in the
image space, others in the Cartesian space. Also the type of
employed camera may differ.

Krupa et al. make use of optical trackers attached to the
instrument shaft to detect the instrument [15]. While assuming
a motionless fulcrum, the intersection between two detected
axes is computed, leading to a fulcrum estimate expressed in
image space. Nageotte et al. study a number of approaches to
recover the 3D fulcrum position from monocular images [16].
They start from the assumption that an edge detection al-
gorithm has already located the instrument borders in the
images, with possible errors. Then, they present three methods
and a refinement strategy to estimate the fulcrum, mostly
based on perspective calculus. Their study elaborates on the
optimal conditions for each of their approaches. Wilson et al.
present a stereocamera approach [17]. First, edge detection
is performed via user interaction. Then, the instrument’s
centerline is computed in the images of the mutually calibrated
cameras. Via triangulation, a 3D representation is obtained.
The intersection of the 3D centerlines is treated as the fulcrum
location. Alternatively, mutually registered images can be
captured by moving a robot-mounted camera over different
poses. Voros et al. ask the surgeon to identify the fulcrum
point in two registered images via a voice-controlled mouse,
after which the 3D position is computed [14]. Rosa et al.
ask the operator to carefully pivot a calibration instrument
through the incision. The Hough method and pruning methods
are applied to automatically detect the instrument in the large
set of stereocamera images. A least squares fit is adopted
to compute the 3D fulcrum point [5]. The fulcrum position
- or incision in the patient - may also be planned during a
preoperative phase. Navigation systems that help register the
patient to the pre-operative plan can then be used to assist the
surgeon in making the incision at the correct location [9], [18].

Most above approaches include some procedural steps that
involve supervision of an operator. This makes it somewhat
cumbersome for use in clinical applications. Furthermore, an
additional registration step is typically needed in order to
express the estimated fulcrum position in the robot space.
Registration is hard to automate and serves as a source for
potential errors. These arguments indicate other approaches
might be better suited for automatically obtaining the fulcrum
in the robot space.

B. Fulcrum estimation from force sensing

Since the body wall has a non-negligible thickness, there
will always be some forces (and torques) generated as the
instrument is pivoting about the incision. The larger the
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misalignment between the RCM and the incision, the larger the
generated forces will be. By measuring these forces, e.g. via a
dedicated force/torque sensor, it is thus possible to estimate the
location of the fulcrum point. Krupa et al. propose to apply a
reference excitation force signal to estimate the tissue stiffness
at the incision point. From this, they derive the fulcrum
location [12]. It is also possible to estimate the location of
the fulcrum by measuring the induced forces when pivoting
the instrument about a known point along its axis and by
exploiting the lever principle [19], [20].

When the force sensor is mounted on the robot, these
approaches offer an estimate that is directly expressed in
the robot space, thus eliminating the need for an additional
registration procedure. However, most methods require that
the instrument is only contacting at the incision point and
thus not at the tip. The aforementioned works build upon
the assumption that the incision point exerts a pure force on
the instrument. This ignores the fact that significant torques
are applied on the body wall, just to be able to incline the
instrument [21], even when the system is perfectly aligned.
Force sensors are noisy and prone to drift. They require
calibration, pose difficulties when it comes to sterilization and
are expensive. Also, the position of the force sensor must be
known for fulcrum estimation, e.g. by mounting them on the
surgical robot and using the robot kinematics.

C. Fulcrum estimation from kinematic data

For robots that do not have a fixed center of motion, the
robot’s kinematic data can be exploited to estimate the fulcrum
position. Obviously, kinematic data is readily available and
fulcrum estimates will be conveniently expressed in robot
space. While ideally measurement data should reflect that the
instrument passes through a single fixed point in space, in
practice this is not the case, due to measurement noise, motions
of and forces applied to the incision point. Similarly to camera-
based approaches, kinematic approaches locate the incision by
searching for the intersection that minimizes the distance to
all recorded instrument axes.

An early approach proposed to record two sequential axes.
The point in space where the mutual distance between the
axes is minimal, was considered as fulcrum. Ortmaier et al.
repeated this process for multiple axis pairs and averaged the
resulting points [22]. Dong et al. generalized this method by
forming it into a least squares estimation problem [23]. Each
time the instrument has sufficiently moved, the pose of the axis
is added to a circular buffer of size n. The best intersection
between the axes in the buffer yields the fulcrum estimate.

Dong’s method is appealing, as it allows detecting in parallel
the fulcrum’s presence (small n) and its position (large n).
It also updates the fulcrum when the incision moves. By
appropriate choice of n, a trade-off can be made between
accuracy and mobility of the fulcrum estimate. However, the
method does not fully incorporate the fact that the position and
orientation are often decoupled in MIS robots. For instance
spherical wrists, commonly employed in virtual RCM or
passive wrist systems, noise on orientation sensors will have
a large impact on the estimated fulcrum location. Fig. 1
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Figure 1: Least squares solution for best line intersection
(green) between two noiseless measurements (red) and four
synthetic, ‘noisy’ measurements at equal angles (blue). The
estimated intersection differs from the ground truth at the
intersection of the red lines.

illustrates how methods based on least squares estimates will
systematically misjudge the incision depth in case of noisy
orientation measurements. It depicts, for a simplified case
with two correct measurements and four synthetic, ‘noisy’
measurements, how the fulcrum estimate is systematically
pulled towards the robot’s wrist.

The next section introduces an algorithm that can robustly
handle noisy situations.

III. EXTENDED KALMAN FILTER FOR
FULCRUM ESTIMATION

An Extended Kalman Filter (EKF) was developed for
estimating the fulcrum point, based on kinematic data of
the instrument. This method is tailored for cases where the
available data consists of instrument poses measured by a
robotic manipulator with a decoupled position and orientation
measurement. For other robot topologies, where this condition
is not fulfilled, the method can be straighforwardly expanded
by incorporating the robot kinematic model in the measure-
ment model of the EKF.

The governing equations for the EKF are given as [24]:

xk = g(xk−1)+εεεk, (1)
zk = h(xk)+δδδ k, (2)

with xk the current state vector and xk−1 the state vector at
the previous estimation step. The prediction model is described
by the function g(). εεεk expresses the noise on the prediction.
Further, zk is the measurement vector at time k, h() the
measurement model and δδδ k the measurement noise vector.

The state vector is defined as:

xk =
[
px,k py,k pz,k fx,k fy,k fz,k

]T
, (3)

with p =
[
px py pz

]T the position of the end effector and
f =
[

fx fy fz
]T the position of the fulcrum (Fig. 2.a).

For the prediction step a very simple motion model can be
used:
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xk = g(xk−1)+εεεk = xk−1 +εεεk. (4)

This model assumes a constant position for p and f. For p,
the noise component in εεε is relatively large, while for f it is
smaller, depending on the desired sensitivity to motion of the
fulcrum.

For the measurement model, as argued above, it is assumed
that the robot can measure the pose of the instrument w.r.t. its
base frame. As the rotation of the instrument about its axis
is irrelevant for fulcrum estimation, it suffices to measure the
instrument’s direction vector i, represented with an altitude-
azimuth angle pair (α,β ):

i =
[
ix iy iz

]T
=
[
cosα cosβ cosα sinβ sinα

]T
, (5)

The end effector position is measured directly. This allows to
summarize the measured data as:

zk =
[
p̃x,k p̃y,k p̃z,k α̃k β̃k

]T
. (6)

A tilde is used to notify that it concerns measured data. Con-
sidering that the instrument position and orientation informa-
tion are contained in the state vector, and after introducing the
auxiliary variable d= f−p=

[
dx dy dz

]T , the measurement
model yields:

zk = h(xk)+δδδ k =


px,k
py,k
pz,k

atan2
(

dz,k,
√

d2
x,k +d2

y,k

)
atan2

(
dy,k,dx,k

)

+δδδ k. (7)

The components of the measurement noise δδδ have to be set
in accordance with the specific hardware. To obtain direction-
independent orientation noise, the noise on α and β may be
modelled as N(0,σ2

α) and N(0, σ2
α

cos2 α
), respectively, because∥∥∥∥ ∂ i

∂α

∥∥∥∥= 1 and
∥∥∥∥ ∂ i

∂β

∥∥∥∥= cosα. (8)

It is important to note that discontinuities can occur in
β when the EKF algorithm internally subtracts the actual
measurement from the evaluation of the measurement model
and the β -terms are on opposite ends of [−π,π[-interval.

p
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y

z
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ik

tk

fp,k fr,k
fr,k−

Figure 2: Representation of the symbols used for (a) the EKF
and (b) the fulcrum refinement.

These jumps can be avoided by normalizing the subtraction
result to the [−π,π[-range.

With the above equations, the EKF is completely specified.
As the state vector contains the fulcrum position, its estimate
will naturally emerge from the EKF algorithm at runtime, with
the certainty of the estimate increasing over time.

IV. FULCRUM REFINEMENT FOR TIP POSITION
MEASUREMENT

Measuring the position of the tip of a surgical instrument
can be a delicate issue. In MIS, long and slender instruments
are attached to the robot wrist. Therefore, the accuracy with
which the tip position can be estimated depends to a large
extend on the accuracy with which the wrist orientation is mea-
sured. As in any real-world application, noise and inaccuracies
have to be carefully handled. Considering passive wrist robots,
they typically have no or very low transmissions in their joints,
as they need to be back-drivable. The low reduction ratio does
not allow raising the measurement resolution and precision.
Also, for other robots, the wrist sensors have comparatively
low quality, because of e.g. space considerations. Given that
any orientation measurement error is amplified by the instru-
ment length, accurate measurement of the robot tip solely
relying on robot proprioception is difficult. In the following, a
new approach is introduced, which makes use of the estimated
fulcrum point to enhance the tip position measurement. In
Sec.V-D, it will be shown how this not only contributes to an
improved quality of tip measurement, but also helps to reach
better haptic performance.

A first approach one might consider in order to remove
orientation measurement noise, would be to apply a low
pass filter on the orientation data. However, real-time filtering
requires a causal filter. The unavoidable phase lag would limit
the accuracy of tip position estimates, and hence it would also
be detrimental for the performance of any controller that uses
this data. A second approach that could be considered, consists
of drawing a line between the wrist center and through the
fulcrum point. From the knowledge of the instrument length, it
is then possible to determine the tip position. This method does
not introduce phase lag: measurements of the wrist position
produce a tip measurement at the same rate. However, the
method relies on good knowledge of the fulcrum position. As
there will be inaccuracies in fulcrum estimation, also due to
the fact that the incision may move over time, its estimate may
be inaccurate. Especially when the wrist comes close to the
fulcrum, errors in the estimated fulcrum location are strongly
amplified towards the tip.

In summary, the precision with which the tip position can
be estimated from raw wrist orientation measurements is poor,
but the accuracy can be good in the sense that there are no
systematic errors. By filtering the orientation estimate can be
improved at the cost of phase lag. The tip position can be
computed at high bandwidth and with great precision from
the fulcrum estimate, but it has poor accuracy, e.g. when the
estimated fulcrum position deviates from the actual one. Note
that a deviation can be detected when observing that the esti-
mated fulcrum position does not coincide with the measured
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instrument axis. This is because in reality the instrument axis
and the incision are to coincide as long as the instrument is
inserted in the body.

In the following, a method is introduced that uses the best of
all worlds: the accuracy of the raw orientation measurements,
the noise rejection of the filtering, and the delay-free high
bandwidth thanks to the fulcrum estimate. While filtering
the wrist orientation induces a delay, filtering the fulcrum
position forms less of a problem, as it is assumed that this
position is (approximately) stationary1. To this end, consider
the fulcrum estimate f, the wrist position p and the measured
direction vector of the instrument i. The projection of f onto
the instrument axis is formulated as:

fp = p+[(f−p) · i]i. (9)

As fp is projected directly on the instrument axis, it is noisy
and not usable for stable tip estimation. Instead, f can be set
to track fp with a low correction gain γ . This yields a ‘refined’
fulcrum estimate fr (Fig. 2.b):

fr,k = fr,k−1 + γ(fp,k− fr,k−1), (10)

with k the time step. This is equivalent to applying an
exponential filter to the projected fulcrum:

fr,k = (1− γ)fr,k−1 + γfp,k. (11)

With a proper, close to zero, choice of γ , it is ensured that fr
will move towards the instrument axis. Using fr and instrument
length l, the tip position estimate t can be obtained as:

t = p+
fr−p
‖fr−p‖ l. (12)

With this new estimate for the tip position, systematic errors,
such as those arising from an off-axis fulcrum estimate, are
eliminated. Noise on t is suppressed thanks to the exponential
filter. The measurements have no phase lag w.r.t. p. The
proposed method can be used in combination with any fulcrum
estimation approach.

V. EXPERIMENTS

The proposed algorithms are validated in this section. The
fulcrum estimation and the tip position measurement methods
were validated both in simulation and experimentally. Each
time, the outcome is compared to the least squares method
by Dong et al. [23], which is representative for the current
state-of-the-art.

A. Description of the simulation experiment

In this subsection the details of the simulations that were
conducted are summarized. To assess the robustness and the
responsiveness to measurement noise of the fulcrum estimation
methods, the behaviour of a robotic manipulator holding an
instrument and constrained by an incision into a patient, was
simulated. The topology of the robot was such that the position

1In a future extension outside the scope of this work, this assumption may
be relaxed by superposition of an estimated trajectory that e.g. reflects the
periodic motion caused by breathing or other physiological phenomena.

and the orientation of the end effector were decoupled, by
means of a spherical wrist. The kinematics of the simulated
robot were based on Achilles, which will be detailed in
a Sec. V-D. The simulation environment was built up so
that it was straightforward to introduce both Gaussian and
quantization noise on the orientation measurements in the
wrist. The position of the wrist was assumed to be perfectly
known. Since this concerns a simulation setup, the ground
truth for the fulcrum position is available and a deviation from
this ground truth can be easily analysed. For each simulation
experiment, the robot end effector was programmed to move
over a circular trajectory with a diameter of 15 cm at a height
of 25 cm above the fulcrum. Each revolution took 2 s and the
simulation time step was 1 ms.

B. Robustness of fulcrum estimation against measurement
noise

To estimate the robustness of the fulcrum estimation method
against measurement noise, the circular trajectory was applied,
while measurement noise was added to the orientation mea-
surements. During this motion, the fulcrum was estimated by
Dong’s method, with varying buffer size (respectively 10, 20
and 100 samples), and with the EKF method. The simulation
was run as long as needed to fill all buffers. The fulcrum
error was characterised by the Cartesian distance between the
ground truth and the estimated fulcrum position. Fig. 3.a and
Fig. 3.b show the fulcrum error when respectively Gaussian
noise with an increasing standard deviation and quantization
noise with an increasing quantization step (decreasing resolu-
tion) were added. All methods handle low noise very well,
but it can clearly be seen that the EKF method is more
robust against Gaussian noise than the state-of-the-art method.
By increasing the buffer size, latter method does keep its
performance over a wider noise range. For quantization noise
the EKF still outperforms the state-of-the-art method, but the
effect is less pronounced. As the Gaussian noise increases, the
state-of-the-art method converges towards a systematic error.
Basically, the solution converges towards the center of the
circular trajectory of the end effector, in this case 25 cm above
the fulcrum. This corresponds to the effect mentioned in Fig. 1.

C. Responsiveness of fulcrum estimation

The simulation was conducted once more to assess the
responsiveness of the fulcrum estimation methods. The robot
end effector was made to move once more over the aforemen-
tioned circular trajectory. Between 10 s and 13 s the instrument
was held stationary. During this period the fulcrum was then
displaced 5 cm sideways. Gaussian noise with a standard
deviation of 0.2◦was added to the orientation measurements.
Dong’s method, with varying buffer sizes, and the EKF method
were run for fulcrum estimation. Fig. 3.c, and its close-up
in Fig. 3.d, show how the fulcrum error evolves over time
during the described motions. It can be seen that at start-up the
EKF method responds immediately but converges a bit slower
than Dong’s method with a small buffer. However, when the
fulcrum moves, the EKF method always keeps on tracking the
instrument axis. This explains why for the EKF the fulcrum
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Figure 3: Experimental results. The simulated fulcrum error is presented for different fulcrum estimation approaches, (a) with
increasing Gaussian noise on the instrument orientation measurement, (b) with increasing quantization noise on the instrument
orientation measurement, and (c) as a function of time, with an external fulcrum motion at 10−13 s. A close-up of (c) around
the time of the fulcrum motion is shown in (d). The results for haptic tip control with different tip measurement approaches
are shown in (e)-(f). The box plots in (e) illustrate for each tip measurement approach how far the instrument tip had travelled
in contact with the virtual wall, at the moment test subjects ended the experimental run, because of unsafe wall behaviour or
task completion. (f) indicates how the effective wall penetration (positive = no penetration) evolved in function of the travelled
distance.

error never reaches a 5 cm error. Contrarily, the state-of-the-art
method only starts compensating for the fulcrum motion when
the effector resumes its circular trajectory at 13 s, as motion is
necessary to update the buffer and thus excite the algorithm.

D. Haptic tip control

To evaluate the value of the newly proposed instrument tip
estimation method (that also relies on fulcrum estimation), a
user experiment was set up. Achilles, a passive wrist robot,
which is a modified version of the Virtuose3D (Haption SA,
Laval, France), was used to this end. Achilles’ controller
runs at 1 kHz, which is suitable for haptic control. The wrist
position is measured with highly precise encoders offering a
position resolution in the µm-range. The wrist orientation is
measured with potentiometers. The noise on these was found
to have a standard deviation of 0.2◦. A 40 cm instrument was
attached to Achilles’ wrist. For the experiment the instrument
was inserted through a fixed, mechanical fulcrum (Fig. 4).

Test subjects were asked to comanipulate the instruments
together with the robot, such that the instrument tip slides over
a virtual wall, which was placed horizontally at a distance of
7.5 cm below the fulcrum. A virtual wall with a stiffness of
2000 N/m was implemented in the robot controller. The wall is

representative for a forbidden region that may be programmed
in an MIS scenario to protect fragile areas. The users are
asked to start with the instrument oriented perpendicularly
w.r.t. the wall. They are to slide the instrument sideways, while
keeping soft contact with the virtual wall. To be able to follow
the wall, the users need to insert the instrument gradually
deeper through the fulcrum. Fig. 4 illustrates how this gesture
takes place. As the instrument moves sideways and deeper,
its axis becomes more parallel to the wall. This represents an
increasingly difficult situation for the virtual wall controller.
Indeed, correct estimation of the orientation becomes increas-
ingly more important to determine the penetration of the tip in
the virtual wall. Also, due to fulcrum effect [25], the stiffness
that needs to be rendered at the wrist rises. The subjects were
asked to stop sliding over the wall when the instrument was
fully inserted, or when they considered it too unsafe to proceed
under a clinical condition, e.g. when overly large vibrations
occurred.

For this experiment six different approaches to estimate
the tip position were implemented and used by the virtual
wall controller. The tip position was calculated 1) using the
wrist position in combination with the raw wrist orientation
measurement and 2) with a filtered wrist orientation measure-
ment (cut-off frequency at 10 Hz), 3) using the wrist position
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Fulcrum

Handle
Achilles

Tip

Virtual wall

Figure 4: The experimental setup for haptic tip control. Left:
the initial condition, with the instrument inserted through
the fulcrum and touching the virtual wall perpendicularly.
Right: the situation after the instrument tip has travelled some
distance over the virtual wall.

in combination with a fulcrum estimate based on Dong’s
method, 4) based on Dong’s method, plus the additional
fulcrum refinement step from Sec. IV, 5) based on the EKF,
and 6) based on the EKF, plus the fulcrum refinement step.
Five subjects were asked to do the task twice with all six tip
measurement approaches. The methods were presented in a
random order to the test subjects.

Fig. 3.e shows box plots of the distances that subjects were
able to slide the instrument tip over the virtual wall. The
figure shows that estimating the tip via the fulcrum position
yields better haptic control. Subjects felt confident and safe in
regions that were far more challenging for the haptic controller.
Fig. 3.f shows the actual wall penetration of the instrument
tip. To obtain the actual tip position, the raw position and
orientation data were post-processed and filtered by a non-
causal, zero-phase filter. The wall penetration is plotted in
function of the distance travelled over the wall. Most methods
yield a wall penetration of around zero. This corresponds to the
expectations, as the instrument tip is supposed to softly touch
the wall. While users were able to travel further over the wall
with Dong’s method, compared to raw or filtered estimates,
it turns out that the actual tip position drifts away from the
location of the wall. This phenomenon arises because the
method from Dong does not ensure that the fulcrum estimate
is on the instrument axis. As can be seen, such deviation can
cause large, systematic errors towards the tip, as earlier argued
in Sec. IV. For the other three methods the fulcrum estimate
is attracted towards the instrument axis and as such does not
suffer from this phenomenon.

VI. DISCUSSION

From the experiments, it can be seen that the EKF has a
number of advantages over state-of-the-art methods that are
typically based on least squares estimation.

Firstly, as visible in Fig. 3.a, the EKF-based method is
more robust against measurement noise. In a surgical situation
robustness is vitally important. Even when sensors with lower
performance are used, fairly accurate estimates of the fulcrum
can still be obtained. Also in the presence of quantization
noise the performance of the EKF outperforms other methods,
although to a lesser extent (see Fig. 3.b).

Secondly, the method does not require a minimal amount of
excitation, i.e. change in instrument pose, before updating its
estimate. Other methods do not update the fulcrum’s estimate
when the instrument is kept stationary. Contrarily, the EKF
method pulls the fulcrum estimate towards the instrument
axis, even if the latter shows no motion. This behaviour is
desired, as in a normal situation the instrument will always
pass through the fulcrum.

Thirdly, because a minimum excitation is not needed, each
measurement at 1 kHz is taken into account. As such, the
EKF method is able to update the fulcrum estimate more
quickly than other methods (Fig. 3.c-3.d). The advantage here
is twofold. In the initialization phase of the algorithm, it
takes less time and less probing around with the inserted
instrument to find a good fulcrum estimate. This makes that
the initialization procedure becomes less cumbersome and also
more fail-safe. Analogously, the EKF method can quickly
accommodate in case the fulcrum moves. Patient movement
or movement of the fulcrum due to physiological phenomena
or tissue deformation cannot be excluded. The sensitivity of
the filter to motion of the fulcrum can be easily tuned to fit
to a particular situation by adjusting the covariance in the
prediction function for the fulcrum position.

Thanks to the experiments, the value of the EKF’s property
of attracting the fulcrum estimate towards the instrument was
recognized. The fulcrum refinement method from Sec. IV
can be added to transfer this behaviour also to other fulcrum
estimation approaches that lack such property. Fig. 3.f shows
how Dong’s method experiences problems to get an accurate
tip measurement. However, after application of the fulcrum
refinement method, the error in Dong’s method vanishes too.

Finally, based on the box plots in Fig. 3.e one understands
that tip estimates that rely on estimated fulcrum positions also
improve the stability of the haptic controller. This is especially
true when dealing with a robot that has noisy orientation
sensors in its wrist. This is a common condition when for
instance direct drive, passive wrist robots are concerned.
Indeed, both [22] and [26] indicate that noise jeopardized their
controller stability.

Note that shaft flexion can jeopardize the estimation of the
fulcrum position as well as the instrument tip position. When
small diameter instruments are used, this problem is more
prominent, as this goes unnoticed by proximal pose measure-
ments. If flexion occurs temporarily, the fulcrum estimation
can be robustified by increasing the EKF measurement noise
δδδ related to i. Otherwise, additional sensing, such as force
sensing, may be needed to improve the position estimates.

VII. CONCLUSION
This papar studies the fulcrum point in robotic MIS. An

EKF-based method for fulcrum estimation was introduced.
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This method was particularly interesting for its noise rejection
capabilities. Additional advantages of this method, mainly for
real-time applications, are its responsiveness to changes in
the fulcrum position and its property to attract the fulcrum
estimate towards the instrument axis, even when the instru-
ment is stationary. Other fulcrum estimation approaches from
literature do not take into account that the fulcrum estimate
should always coincide with the instruments axis in MIS. A
fulcrum refinement strategy has been proposed that allows
upgrading prior works to incorporate this knowledge. It is
demonstrated in this work that accurate knowledge of the
fulcrum position provides a means to obtain accurate and high-
bandwidth estimates of the tip position. As the method avoids
measurement delays and does not introduce the systematic
errors other methods do, it is of particular use for building
haptic control schemes. The paper showed how this improved
tip position estimation allows a substantial enhancement of
haptic guidance schemes. All above methods focused on
passive RCM robots, but are thought to be more broadly
applicable. A validation of the presented methods in an in-
vivo setting remains the topic of future work.
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