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Abstract

The group measure space construction of Murray and von Neumann associates
to every free ergodic probability measure preserving group action I' ~ (X, p)
a crossed product II; factor L>°(X) x I". Tt is a fundamental problem in the
theory of II; factors to classify these crossed products in terms of the underlying
group action.

The subalgebra L>®(X) C L*°(X) x I' plays an important role in such
classification results; it is a so-called Cartan subalgebra. When a crossed product
II; factor L*°(X) x I' has a unique Cartan subalgebra, we can partially recover
information about the group action I' ~ X from the associated II; factor. In
the most extreme case, we can completely recover the underlying action I' ~ X,
in the following sense: whenever L (X) x I' is isomorphic with another crossed
product L>®(Y) x A, then the action A ~ Y must be conjugate with I' ~ X.
A group action I' ~ X satisfying this property is called W*-superrigid. The
first W*-superrigid actions were discovered in 2009 in [Pe09, PV09].

In this thesis, we construct the first II; factors having exactly two group
measure space decompositions up to unitary conjugacy. Also, for every positive
integer n, we construct a II; factor M that has exactly n group measure space
decompositions up to conjugacy by an automorphism of M.

Our second main result is concerned with the existence of Cartan subalgebras
inside a given II; factor. It is a wide open problem to give an intrinsic criterion
for a II; factor M to admit a Cartan subalgebra A. When A C M is a Cartan
subalgebra, the A-bimodule L?(M) is “simple” in the sense that the left and
right action of A generate a maximal abelian subalgebra of B(L?(M)). A 1I;
factor M that admits such a subalgebra A is said to be s-thin. Recently, Popa
discovered an intrinsic local criterion for a II; factor M to be s-thin and left
open the question whether all s-thin II; factors admit a Cartan subalgebra.
We answer this question negatively by constructing s-thin II; factors without
Cartan subalgebras.






Contents

Acknowledgments i
Abstract i
Contents v
1 Introduction 1
2 Preliminaries 9
2.1 Von Neumann algebras . . . . . .. ... ... ... ... ... 9
2.1.1 Type classification of factors . . . . . . ... ... ... 11
2.1.2  Group von Neumann algebras . . . . . . ... ... ... 13
2.1.3 The group measure space construction . . . . . . .. .. 14
2.1.4 1II; factors arising from equivalence relations . . . . . . . 15
2.1.5 Cartan subalgebras . . . . . ... ... ... ... .. .. 17

2.1.6  Tensor products, amalgamated free products and ultra-
products . . . . ... L L 19
2.2 Bimodules . . . . . .. L 21
2.3 Amenability and relative amenability . . . . . ... ... .. .. 26
2.4 Popa’s intertwining-by-bimodules . . . . . ... ... 28
2.5 Mixing properties . . . . . . . ..o 31



vi

6

CONTENTS

2.6 (Relative) strong solidity and class Creg -« « -« v o« . o o ... 36
Counterexamples to C-rigidity 39
3.1 Co-induced actions . . . . . . . . ... 41
3.2 Proof of Theorem 3.3 . . . . . .. ... ... ... . ....... 43

A class of Il factors with exactly two group measure space

decompositions 51
4.1 Properties of the dual coaction . . . . ... ... ... ... .. 53
4.2 Transfer of rigidity . . . . . .. .. .. ..o 54
4.3 Embeddings of group von Neumann algebras . . . .. .. ... 56
4.4 Proof of Theorem 4.1 . . . . . . . . . . ... ... ... ..... 59
4.5 Examples of II; factors with a prescribed number of group
measure space decompositions . . . . ... ..o 74
Thin Il; factors with no Cartan subalgebras 85
5.1 Shlyakhtenko’s A-valued semicircular systems . . . . . . .. .. 88
5.2 Normalizers and (relative) strong solidity . . . .. ... . ... 97
5.3 Maximal amenability . . . . .. ... oo 103
5.4 Absence of Cartan subalgebras . . . ... ... ... ...... 107
5.4.1 Preliminaries on bimodules . . . . . .. ... ... ... 111
5.4.2 Relative diffuse subalgebras . . . . . . ... ... .. .. 114
5.4.3 Technical lemmas . . . . . . .. ... .. ... ... ... 124
5.4.4 Proof of Theorem 5.21 . . . . . ... ... ... ..... 128
5.5 Compact groups, free subsets, ¢y probability measures and the
proof of Theorem B . . . . . .. ... .. ... ... ...... 145
5.6 Property Gamma . . . . . .. ... Lo 156
Conclusion 171



CONTENTS vii

A Spectral gap rigidity for co-induced actions 175
A.1 The tensor length deformation . . . .. ... ... ... .... 176
A.2 Spectral gap rigidity . . . . .. ... oo 177
A.3 Controlling quasi-normalizers . . . . . . ... ... ... .... 184

Bibliography 187

List of publications 195

Index 197






Chapter 1

Introduction

This thesis is based on my two publications [KV15] and [KV16], which are joint
work with Stefaan Vaes. In particular, parts of this introduction have already
appeared in these articles.

A von Neumann algebra is an algebra of bounded linear operators on a Hilbert
space that is stable under taking the adjoint of an operator and that is closed
in the strong operator topology. The commutative von Neumann algebras are
of the form L*°(X, u) for some measure space (X, ). Therefore, von Neumann
algebras can be considered as non-commutative measure spaces.

The most important examples of von Neumann algebras arise from discrete
groups and their actions on probability spaces. Given a countable discrete
group T, the group von Neumann algebra L(T') is the von Neumann algebra
generated by the left regular representation of I' on the Hilbert space ¢2(T"). If
I acts on a probability space (X, u), then we can associate a group measure
space von Neumann algebra L™ (X) x I', generated by a copy of L*°(X) and
unitary elements (ug)ger satisfying ugun = ugp and uj fuy = f(g -) for g,h € T
and f € L>*(X).

The simple objects among von Neumann algebras are called factors. More
precisely, a factor is a von Neumann algebra with trivial center. Factors are
exactly the von Neumann algebras that cannot be written as a direct sum
of two. Moreover, Murray and von Neumann [vIN49] showed that any von
Neumann algebra can be written as a “generalized direct sum” of factors,
thereby theoretically reducing the study of von Neumann algebras to the study
of factors.
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Murray and von Neumann furthermore divided factors into 3 different types.
The type that we will focus on in this thesis is type II;. A factor M is said to
be of type II; if M is infinite-dimensional and admits a finite trace 7, i.e., a
positive linear functional 7: M — C satisfying 7(xy) = 7(yx) for all x,y € M.
Factors of type II; should be thought of as “continuous” analogues of the matrix
algebras M, (C), equipped with their usual trace tr,. Indeed, if M is a Iy
factor with its normalized trace 7, then 7(p) can take any value in the interval
[0, 1], when p ranges through the set of projections in M. On the other hand,
tr,, can only take a discrete set of values on the projections in M, (C).

The main examples of Iy factors are given by group von Neumann algebras L(T")
and the group measure space construction L (X) xT" introduced above. Indeed,
L(T) is a II; factor whenever I' is an icc group, meaning that all nontrivial
conjugacy classes of I' are infinite. The group measure space von Neumann
algebra L>®°(X) x I is a II; factor whenever the action I' ~ (X, u) is free,
ergodic and probability measure preserving (pmp).

One of the core problems in operator algebras is to classify these II; factors
associated with groups and group actions. A natural question to ask is to what
extent the II; factor L(I") or L>°(X) x I" “remembers” the group I' or the group
action T' ~ X, respectively. For amenable icc groups I', Connes [Co75] showed
that all group von Neumann algebras and all group measure space 1I; factors
are isomorphic. In fact, he proved that there is a unique amenable II; factor R.
This means that, within the class of amenable groups, all information about
the group gets lost when passing to the von Neumann algebra level.

For non-amenable groups I, the situation is much more complicated. Rigidity
phenomena appear and we are sometimes able to recover structural properties
of the group I" or group action I' ~ X only by looking at the associated von
Neumann algebra. Proving this kind of classification results for non-amenable
II; factors is, however, an extremely difficult problem, and not much progress
was made until the early 2000’s, when Popa developed his deformation/rigidity
theory, [Po01, Po03, Po04]. This was a major breakthrough and has led to far
reaching classification theorems. In particular, a surprisingly strong rigidity
property for II; factors was discovered, called W*-superrigidity: in certain cases,
the group measure space II; factor L>°(X) x I' entirely remembers I' and its
action on X. More precisely, a group action I' ~ X is called W*-superrigid if
whenever L®(X) xT' = L>°(Y) x A for any other action A ~ Y, we must have
that the two actions I' ~ X and A ~ Y are conjugate: there exists a group
isomorphism ¢: I' — A and a measure space isomorphism ®: X — Y such that
O(g-z) = ¢(g) - ®(z) for almost every z € X and g € I'. This extreme form
of rigidity was first discovered by Peterson in [Pe09] and since then, concrete
examples of W*-superrigid actions were found in [PV09, Io10, IPV10, GIT16],
to name a few.
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In these results, the subalgebra L>®(X) of L>(X) x I plays a special role.
Indeed, by [Si55], if there is an isomorphism 7: L®(X) x I' = L>®(Y) x A of
group measure space 11 factors satisfying 7(L>° (X)) = L*°(Y), then the two
group actions I' ~ X and A ~ Y must have the same orbit structure. More
precisely, the actions must be orbit equivalent, meaning that there is a measure
space isomorphism ®: X — Y such that ®(T" - z) = A - &(z) almost everywhere.
So, in order to prove that a given action I' ~ X is W*-superrigid, one must
solve two different problems. First, one shows that the subalgebra L>°(X) of
L>(X) x T is unique, in some sense. If that is the case, then any isomorphism
m: L®(X) x T’ = L*°(Y) x A must automatically satisfy m(L>°(X)) = L*>(Y),
so that the actions I' ~ X and A ~ Y are automatically orbit equivalent.
Secondly, one can apply methods from measured group theory to deduce that
the two actions are actually conjugate.

The subalgebra A = L>®(X) of M = L*°(X) x T' is Cartan: it is maximal
abelian and the normalizer Ny (A) = {u € U(M) | uAu* = A} generates
M. Note that a general Cartan subalgebra A C M need not be of group
measure space type, i.e., there need not exist a group I' complementing A in
such a way that M = A x I'. This is closely related to the phenomenon that a
countable pmp equivalence relation need not be the orbit equivalence relation
of a group action that is free. For the purpose of proving W*-superrigidity,
it is enough to show that a given II; factor M has a unique group measure
space Cartan subalgebra up to conjugacy by an automorphism, in the sense that
for any two group measure space Cartan subalgebras A, B C M, there exists
an automorphism ¢ € Aut(M) such that p(A) = B. However, the methods
used to prove such uniqueness results will usually yield a much stronger result,
namely that the given II; factor M has a unique general Cartan subalgebra up
to unitary conjugacy. Here, we say that two Cartan subalgebras A, B C M are
unitarily conjugate if there exists a unitary u € M such that uAu* = B. The
first actual uniqueness theorems for Cartan subalgebras up to unitary conjugacy
were only obtained in [OP07], where it was proved in particular that A is the
unique Cartan subalgebra of A xT" whenever I' = FF,, is a free group and F,, ~ A
is a free ergodic pmp action that is profinite. More recently, in [PV11], it was
shown that A is the unique Cartan subalgebra of A x T for arbitrary free ergodic
pmp actions of the free groups I' = F,,. A group I' satisfying this property is
called Cartan-rigid or C-rigid.

Since the work in [PV11], more and more groups have been shown to be C-rigid.
However, it is at the moment highly unclear how widespread the phenomenon of
C-rigidity is and there are no conjectures on a possible characterization of C-rigid
groups. The main reason for this is a lack of a wide variety of counterexamples,
i.e., groups I' that admit a crossed product L>®(X) x T'" with at least two non
unitarily conjugate Cartan subalgebras. All amenable groups serve as such
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counterexamples. Indeed, any crossed product by an amenable group I' is
isomorphic to the unique hyperfinite II; factor R, and it is known since [FM75]
that R has at least two Cartan subalgebras that are not unitarily conjugate. By
[Pa85], there are in fact uncountably many Cartan subalgebras up to unitary
conjugacy. On the other hand, all Cartan subalgebras of R are conjugate by an
automorphism, [CFW81]. The first example of a II; factor with at least two
Cartan subalgebras that are not conjugate by an automorphism was obtained
in [CJ82]. Later, several explicit examples of this phenomenon were given in
[OP08, PV09, SV11]. In all of these examples, the “second” Cartan subalgebra
of L®(X) x T comes from an abelian, normal subgroup of I'. In Chapter 3, we
show that in fact any group I' that contains an infinite, abelian, almost normal
subgroup is not C-rigid, up to taking the quotient by a finite normal subgroup
of I'. This is done by generalizing the constructions in [PV09] and [SV11] to
construct a concrete action of I' for which the associated crossed product has
at least two non-conjugate Cartan subalgebras.

Despite all the progress on uniqueness of Cartan subalgebras, there are so far
no results describing all Cartan subalgebras of a II; factor M once uniqueness
fails. However, in [KV15] we proved such a result for the special class of group
measure space Cartan subalgebras. The following is our main theorem.

Theorem A. (1) For every integer n > 0, there exist I, factors M that have
exactly 2" group measure space Cartan subalgebras up to unitary conjugacy.

(2) For every integer n > 1, there exist IT; factors M that have exactly n group
measure space Cartan subalgebras up to conjugacy by an automorphism of
M.

Two free ergodic pmp actions are called W*-equivalent if they have isomorphic
crossed product von Neumann algebras. Thus, a free ergodic pmp action
G ~ (X, p) is W*-superrigid if every action that is W*-equivalent to G ~ (X, p)
must be conjugate to G ~ (X, ). Theorem A(2) can then be rephrased in
the following way: we construct free ergodic pmp actions G ~ (X, p) with
the property that G ~ (X, ) is W*-equivalent to exactly n group actions, up
to orbit equivalence of the actions (and actually also up to conjugacy of the
actions, see Theorem 4.24).

The proof of Theorem A will be presented in Chapter 4. We will provide a
concrete construction of crossed product II; factors M for which all possible
group measure space decompositions M = L*(X) x " with ' ~ X can be
characterized. We also give concrete examples and computations, thus proving
Theorem A. A crucial ingredient in the proof is a version of Popa’s spectral gap
rigidity [Po06b], which is a powerful method for proving W*-rigidity results for
crossed products arising from Bernoulli actions of product groups. In Appendix
A, we present a generalization of these methods and results for co-induced
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actions. The proofs are easy adaptations of the proofs in [BV14, Theorems 3.1
and 3.3], which in turn were very close to the original proofs in [Po06b].

Note that in Theorem A, we can only describe the group measure space Cartan
subalgebras of M. The reason for this is that our method entirely relies on
a technique of [PV09], using the so-called dual coaction that is associated
to a group measure space decomposition M = B x A, i.e., the normal *-
homomorphism A: M — M ® M given by A(bvg) = bvs @ vs for all b € B,
s € A. When B C M is an arbitrary Cartan subalgebra, we do not have such a
structural *-homomorphism.

Our second main result is concerned with the existence of Cartan subalgebras
inside a given II; factor M. Not all IT; factors have a Cartan subalgebra, as
was first discovered by Voiculescu in [Vo95]. He showed that the group von
Neumann algebras L(T") of free groups I' = F,, with n > 2 have no Cartan
subalgebras. Having a Cartan subalgebra can be seen as a decomposability
property. Indeed by [FM75], when M admits a Cartan subalgebra, then M can
be realized as the von Neumann algebra Lo(R) associated with a countable
equivalence relation R, possibly twisted by a scalar 2-cocycle  (see Definition
2.2). If moreover this Cartan subalgebra is unique in the appropriate sense, this
decomposition M = Lq(R) is canonical.

Although a lot of progress on the existence and uniqueness of Cartan subalgebras
has been made, there is so far no intrinsic local criterion to check whether a
given II; factor admits a Cartan subalgebra. However, Popa recently found such
a criterion for the existence of a different kind of maximal abelian subalgebra
(MASA), called an s-MASA. We say that A C M is an s-MASA if A is a MASA
and if the A-bimodule oL?(M)4 is cyclic, i.e., there exists a vector & € L?(M)
such that A¢A spans a dense subset of L2(M). In [Pol6], Popa proved that a I1;
factor M admits an s-MASA if and only if M satisfies the s-thin approximation
property: for every finite partition of the identity pi,...,p, in M, every finite
subset F C M and every ¢ > 0, there exists a finer partition of the identity
Q- -, qm and a single vector ¢ € L?(M) such that every element in F can
be approximated up to ¢ in || - || by linear combinations of the ¢;£¢;. So, the
existence of an s-MASA in a II; factor M is an intrinsic local property.

Any Cartan subalgebra is also an s-MASA| but the converse is far from being
true. Indeed, s-MASAs are quite often singular, meaning that Ny (A) = U(A),
and in [Pol6] it is even proved that every s-thin IT; factor admits uncountably
many non-conjugate singular s-MASAs. However, all examples of s-MASAs so
far were inside I1; factors that also admit a Cartan subalgebra. Therefore, Popa
poses as [Po16, Problem 5.1.2] to give examples of s-thin factors without Cartan
subalgebras. We solved this problem in [KV16] by constructing s-thin IT; factors
M that are even strongly solid: whenever B C M is a diffuse amenable von
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Neumann subalgebra, the von Neumann algebra generated by the normalizer
N (B) stays amenable. Clearly, non-amenable strongly solid II; factors have
no Cartan subalgebras.

We obtain this new class of strongly solid II; factors by applying Popa’s
deformation /rigidity theory to Shlyakhtenko’s A-valued semicircular systems
(see [Sh97] and Section 5.1 below). When A is abelian, this provides a rich
source of examples of MASAs with special properties, like MASAs satisfying
the s-thin approximation property of [Po16]. This work will be presented in
Chapter 5.

Very interesting examples arise by taking A = L (K, u) where K is a second
countable compact group with Haar probability measure u. In this case, any
symmetric probability measure v on K whose support topologically generates K
can be used to construct a IT; factor M,, via Shlyakhtenko’s A-valued semicircular
systems (see Section 5.5). We show that M, is strongly solid whenever v is a ¢
probability measure, meaning that the convolution operator A\(v) on L2(K) is
compact (see Definition 5.46 and Proposition 5.47). On the other hand, when
the measure v is concentrated on a subset of the form F'U F~!, where F C K
is free in the sense that every reduced word with letters from F'U F~! defines a
nontrivial element of K, then A C M, is an s-MASA.

In Theorem 5.49, we construct a compact group K, a free subset ' C K
generating K and a symmetric ¢y probability measure v with support F'U F~1.
For this, we use results of [AR92, GHSSV07] on the spectral gap and girth of a
random Cayley graph of the finite groups PGL(2,Z/pZ). As a consequence, we
obtain the first examples of s-thin II; factors that have no Cartan subalgebras,
solving [Po16, Problem 5.1.2], which was the motivation for our work.

Theorem B. Tuking a compact group K and a symmetric probability measure
v on K as above, the associated I1y factor M, is non-amenable, strongly solid
and the canonical subalgebra A C M,, is an s-MASA.

We finally make some concluding remarks on the existence of ¢y probability
measures supported on free subsets of a compact group. On an abelian compact
group K, a probability measure v is ¢ if and only if its Fourier transform
U tends to zero at infinity as a function from K to C. Of course, no two
elements of an abelian group are free, but the abelian variant of being free is
the so-called independence property: a subset F' of an abelian compact group
K is called independent if any linear combination of distinct elements in F' with
coefficients in Z \ {0} defines a nonzero element in K. It was proved in [Ru60]
that there exist closed independent subsets of the circle group T that carry a ¢g
probability measure. It would be very interesting to get a better understanding
of which, necessarily non-abelian, compact groups admit ¢y probability measures
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supported on a free subset and we conjecture that these exist on the groups

SO(n), n > 3.






Chapter 2

Preliminaries

2.1 Von Neumann algebras

Given a complex Hilbert space H with inner product (-,-), we denote by B(H)
the algebra of bounded linear operators on H. The strong operator topology
is the weakest topology on B(H) for which the seminorms T' — ||T¢]|| are
continuous for all £ € H.

A von Neumann algebra is a x-subalgebra of B(H) that contains the identity
operator 1y and that is closed in the strong operator topology. Here, a *-
subalgebra of B(H) means a subalgebra that is closed under taking the adjoint
of an operator, T'+— T*. It is a basic result in functional analysis that we may
replace the strong operator topology with other operator topologies, such as the
weak operator topology (generated by the seminorms T — |(T¢,n)|, &,n € H),
the ultraweak operator topology or the ultrastrong operator topology.

The notion of a von Neumann algebra was first introduced by John von Neumann
in [vN29]. Motivated by his work on quantum mechanics and operator theory,
he introduced von Neumann algebras as a mathematical abstraction of quantum
mechanics. Together with Francis Murray, they developed the basic theory on
von Neumann algebras in a series of papers called “Rings of Operators”.

One of the most celebrated results from the early days of von Neumann algebra
theory is the double commutant theorem of von Neumann. It states that a
von Neumann algebra can be characterized purely algebraically as a “double
commutant” in the following sense. Given a subset S C B(H), we denote by
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S’ C B(H) the set of operators that commute with S, i.e.,
S"={z € B(H) |zy=yx forall y € S}.

It is not hard to see that if S is a self-adjoint set, meaning that S = 5%,
then S’ is always a von Neumann algebra. The converse also holds by the
double commutant theorem, i.e., von Neumann algebras can be characterized
as commutants.

Theorem 2.1 (The double commutant theorem, [vN29]). Let M C B(H) be a
x-subalgebra with 1y € M. Then M is a von Neumann algebra if and only if
M'"=M.

We also note that von Neumann algebras can be characterized abstractly without
referring to the underlying Hilbert space, namely as C*-algebras that have a
predual® [Sa56]. For this reason, we will often talk about von Neumann algebras
without referring to a specific Hilbert space.

Two von Neumann algebras M and N are said to be isomorphic if there exists
a *x-isomorphism M — N. Such a x-isomorphism is automatically normal,
meaning that its restriction to the unit ball of M is continuous with respect to
the weak (or strong) operator topologies on M and N (see [AP16, Proposition
2.5.8 and Corollary 2.5.9]). In particular, the weak/strong operator topologies
on the unit ball of M do not depend on the concrete representation of M on a
Hilbert space.

The most obvious example of a von Neumann algebra is B(H ) itself, in particular
the matrix algebras M, (C), n > 1. Another basic example is L (X, 1) for any
measure space (X, 1) with X being locally compact, where L> (X, ) is viewed
as multiplication operators on the Hilbert space L?(X, u). In fact, any abelian
von Neumann algebra is isomorphic with L (X, u) for some locally compact
space X equipped with a measure u (see for example [Di81, Theorem 1 and
Theorem 2, p. 132]). For this reason, von Neumann algebras are sometimes
referred to as “non-commutative measure spaces”. More interesting examples of
von Neumann algebras can be constructed from groups and group actions, as
we shall see later on.

A von Neumann algebra M is called a factor if it has trivial center, i.e., if
Z(M):=MnM'"=CIl.

Note that M is a factor if and only if M does not decompose as a direct sum of
two von Neumann algebras M; @ Ms. In [vN49], it was showed that any von

LA predual of a C*-algebra A is a Banach space B such that A = B*, where B* denotes
the dual Banach space of B.
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Neumann algebra acting on a separable Hilbert space can be written as a direct
integral of factors. In this way, factors can be seen as the basic building blocks
in the theory of von Neumann algebras.

In this thesis, we will usually consider von Neumann algebras M acting on a
separable Hilbert space. In this case, M is separable in the strong operator
topology and for this reason, we say that M is a separable von Neumann algebra.

2.1.1 Type classification of factors

One important feature of a von Neumann algebra M is that it always contains
many projections, i.e., elements p € M such that p = p* = p%. For example, if
x € M is a positive element, meaning that z = y*y for some y € M, then any
spectral projection of x belongs to M. In fact, M is equal to the norm-closed
linear span of its projections, by the Borel functional calculus. By studying the
projections of a von Neumann algebra, Murray and von Neumann classified
factors into three different types [MvN36]. We will here present a perhaps more
intuitive version of this type classification, where the types are defined in terms
of traces.

We denote by My = {z*z | + € M} the set of positive elements of a von
Neumann algebra M. A state on M is a linear functional ¢: M — C that is
positive, in the sense that ¢(z) > 0 for all x € M, and such that ¢(15) = 1.
If ¢ moreover satisfies p(xy) = ¢(yz) for all x,y € M, then ¢ is called a trace.
Note that this definition generalizes the definition of the usual (normalized)
trace on the matrix algebras M,,(C). It turns out that von Neumann algebras
that have a trace are particularly well-behaved, as we will come back to soon.
We will usually require our traces to have two additional properties. A state ¢
on M is called faithful if (x*z) = 0 implies that x = 0. Moreover, ¢ is called
normal if ¢ is weak operator continuous on the unit ball of M. Now, a tracial
von Neumann algebra (M, T) is a von Neumann algebra M equipped with a
faithful normal trace 7.

Given a tracial von Neumann algebra (M, 7), we can define a pre-inner product
on M given by (z,y)s := 7(ay*) for z,y € M. The associated norm ||z||z :=
7(z*x)Y/? is called the 2-norm on M. The completion of M with respect
to the 2-norm gives us a Hilbert space that we denote by L?(M). Since
the 2-norm satisfies the inequality |zy|2 < ||z|/||y]l2 for z,y € M, we get
a well-defined normal representation 7: M — B(L?*(M)) induced by left
multiplication of M on itself: 7(z)(y) = zy for x € M,y € M C L?*(M). This
representation is called the GNS representation of M with respect to 7, or also
the standard representation. We usually do not write 7 explicitly but simply
view M C B(L?(M)) as left multiplication operators.
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A more general setting is the case where M has no trace but it does have a
so-called tracial weight. This is a generalization of the infinite trace Tr on
B(H) when H is infinite-dimensional. A weight on M is a linear functional
w: My — [0,00] that may take the value co. We say that w is semifinite if
span{z € M, | w(z) < oo} is dense in M in the ultraweak operator topology.
The functional w is called tracial if w(x*z) = w(zx*) for all x € M, faithful
if w(z) = 0 implies = 0, and normal if w(sup;c;z;) = sup;c;w(x;) for
any bounded increasing net (z;);e; C M4. A von Neumann algebra is called
semifinite if it admits a normal faithful semifinite tracial weight.

We are now ready to give the type classification of Murray and von Neumann.
Let M be a factor. Then M is said to be of

o type Lif M = B(H) for some Hilbert space H;
e type Il if M is infinite-dimensional and M has a normal faithful trace;

o type Il if M has a normal faithful semifinite tracial weight Tr with
Tr(lp) = 0o and M 2 B(H) for any Hilbert space H;

o type III if M has no nontrivial tracial weight.

When M is a II; factor, the normal faithful trace is even unique by [MvN37].
Moreover, we have that two projections p,q € M are Murray-von Neumann
equivalent (written p ~ ¢), meaning that p = vv* and ¢ = v*v for some partial
isometry v € M, if and only if 7(p) = 7(q) (see [AP16, Corollary 2.4.11]).

One of the reasons why having a trace or a tracial weight is of great interest,
is that it allows for a certain dimension theory for the projections of the von
Neumann algebra. Recall that in the case of a matrix algebra M, (C), the trace
of a projection gives you its rank. In particular, tr,(p) € {0, %, e "T’l, 1}
for any projection p € M, (C), where tr,, denotes the normalized trace on
M, (C). In the case of a II; factor M with its trace 7, we have that {7(p) |
p € Proj(M)} = [0,1] (see [AP16, Proposition 4.1.6]). So, II; factors are
continuous dimensional analogues of the matrix algebras. Also, II, factors are
the continuous dimensional analogues of B(H) when dim H = co. On the other
hand, type III factors have no good “dimension function” at all.

The fact that the trace 7 on a II; factor M takes values in a continuous interval
means that M has no minimal projections. We say that M is diffuse. For tracial
von Neumann algebras M, being diffuse is equivalent with the existence of a
net of unitaries in M that converges to 0 weakly (this follows from Theorem
2.12 below). When M = L*°(X, p) is an abelian von Neumann algebra, we
have that M is diffuse if and only if p is atomless.
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On the other hand, a von Neumann algebra that has no diffuse direct summand
is called atomic. The atomic factors are exactly the factors of type I. When
M = L*°(X, ) is an abelian von Neumann algebra, then M is atomic if and
only if p is a purely atomic measure.

The main focus of this thesis is II; factors. By the theory of Connes [Co72],
any von Neumann algebra can be build out of type II; factors via constructions
such as tensor products and crossed products. So, II; factors can be seen as
the building blocks of all von Neumann algebras.

The main source of examples of II; factors comes from groups and group actions
on measure spaces. 1o any countable discrete group I', we can associate a group
von Neumann algebra L(I") that encodes the group structure. More generally,
the group measure space construction of Murray and von Neumann associates
a von Neumann algebra to any group action I' ~ (X, 1) on a measure space
(X, ). We will present these constructions in the following two subsections.

2.1.2 Group von Neumann algebras

Let I" be a countable discrete group and consider the left regular representation
A: T — U(L*(T)) given by

>\g(5h) = Ogh for g,h S F,
where (85 )ner denotes the canonical basis of ¢2(T).

The group von Neumann algebra L(T') associated with T is defined by
L(T) :=={)\; | g €T} C B(*(T")).

We will usually denote the unitaries Ay by ug. It is easy to check that L(I') is a
factor if and only if ' is icc, i.e., the conjugacy class of every nontrivial element
is infinite.

The group von Neumann algebra is equipped with a canonical faithful normal
trace defined by 7(x) = (2, d.) for x € L(T"). Therefore, L(T") is a II; factor
whenever T' is an icc group. Note that the GNS Hilbert space L?(L(T")) is
isomorphic with ¢2(T") via the isomorphism z +— x4,, x € L(T).

Any element z € L(T) can be written uniquely as a 2-norm converging sum
T =3 crrgug with z, € C. Indeed, we can write x6. = ) . ¥40q With
Ty = (x0e,dq) = T(auy) for all g € T' and the family (z,)ger uniquely determines

z. The decomposition x = dep Tqug is called the Fourier decomposition of x.
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If I is an abelian group, then its dual Tisa compact second countable abelian

group and we have a canonical isomorphism L(I"') = L*°(I") implemented by
the Fourier transform F: ¢2(I") — L*(T') : F(d4)(x) = x(g)-

2.1.3 The group measure space construction

A Borel space (X, B) is called standard if its o-algebra B can be generated by
a Polish topology on X (i.e., a separable and completely metrizable topology)
as its Borel o-algebra. Now, a standard probability space is simply a standard
Borel space (X, B) equipped with a probability measure p. Standard probability
spaces have a simple structure: they are always isomorphic to the interval [0, 1]
with a combination of the Lebesgue measure and a countable number of atoms,
[Ke95, Theorem 17.41]. It is natural to only consider standard probability spaces
in the theory of von Neumann algebras since there is a one-to-one correspondence
between standard probability spaces (X, 1) and separable abelian von Neumann
algebras L>°(X, u) (see [Di81, Theorem 1 and Theorem 2, p. 132]).

Let (X, 1) be a standard probability space and let o: T' ~ (X, i) be a probability
measure preserving (pmp) action of a countable discrete group I'. We will often
use the notation g - = to denote the action oy4(x) for g € T', x € X. Also,
we will sometimes view o as an action on L?(X) (or L®(X)) via the formula
oy(&)(@)=¢&(g7 - x) for € LA(X), g€,z € X.

To such an action o: I' ~ (X, 1), we can associate a von Neumann algebra
denoted by L>°(X)xT as follows. Consider the Hilbert space H = L*(X)®£2(T).
We can represent L (X) as operators on H given by f(( ® §5) = f€ ® §, for
€€ L?(X), s €. We can also represent I' on H via the unitary representation
w:l' > UH): ug(E®s) = 04(§) ®dg4s. The group measure space construction
L>°(X) x T is then defined as

L¥(X)x T :={fu, | f € L(X), g € T} C B(H).

Note that f and ug satisfy the relation ug fuy = o4(f). So, we can simply view
L>°(X) x T as being generated by a copy of L>°(X) and a copy of ', in terms
of unitaries (ug)ger with ugu, = ugp, that encode the action ¢ in the sense
that u, fuy = oy(f) for f € L>(X).

An action I' ~ (X, p) is called ergodic if any I'-invariant subset of X is either
null or co-null. Moreover, the action is called (essentially) free if the set of fixed
points {z € X | g - x = x} has measure zero for all g € I'. Whenever the action
I' ~ (X, p) is free, we have that L°°(X) is a maximal abelian subalgebra of
L>(X) x T, in the sense that L>(X)' N(L>*(X) xT') = L>*(X). Consequently,
for a free action I' ~ (X, ) of an infinite group I', we have that L>°(X) x I is
a factor if and only if I' ~ (X, i) is ergodic (see [AP16, Proposition 1.4.5]).
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The von Neumann algebra L>°(X) x I" has a canonical faithful normal trace
defined by 7(z) = (2(1x ® 0¢),1x ® ). This means that 7(fuy) = 0 when
g #eand 7(fuc) = [y fdp. So, L°(X) x I is a II; factor whenever I' ~ X is
a free ergodic pmp action and I is infinite.

As for group von Neumann algebras, we also have a Fourier decomposition for
the group measure space construction. Indeed, any element z € L (X) x T’
can be written uniquely as a 2-norm convergent sum x = ). _Toug With

er
xzg € L®(X) for all g (see [AP16, Section 1.4]). !

More generally, we can associate a crossed product von Neumann algebra P x T’
to any trace-preserving action I' ~ P on a tracial von Neumann algebra (P, 7).
An action of T on P is a homomorphism o: I' — Aut(P), where Aut(P) denotes
the group of *-automorphisms of P. The action o is called trace-preserving if
Too, =7 for all g € I'. Given a trace-preserving action o: I' ~ P, we can
represent both I and P on the Hilbert space L?(P) @ ¢?(I") analogous to the
group measure space case, in such a way that ugau; = o,(a) for g € I' and
a € P. The crossed product P x I' is then defined to be the von Neumann
algebra generated by P and (u,)ger inside B(L?(P) ® £2(T")). We again have a
canonical trace 7/ on P x I' defined uniquely by the formula 7/(auy) = 7(a)dy.c
for a € P, g € I'. Moreover, P x T is a factor whenever I' ~ P is ergodic and
properly outer in the following sense. The action I' ~ P is called ergodic if any
[-invariant element of P is contained in C1, and the action is called properly
outer if ag is an outer automorphism of P for all g € '\ {e}, i.e., oy is not of
the form o, = Adu for some unitary v € U(P). A proof of all of these facts
can be found in [AP16, Section 5.2].

2.1.4 Il; factors arising from equivalence relations

Any group action I' ~ (X, u) gives rise to an equivalence relation on X, where
the equivalence classes are given by the orbits of the action. In [FM75], Feldman
and Moore introduced a generalization of the group measure space construction,
where they constructed II; factors out of certain equivalence relations.

Let R C X x X be an equivalence relation on a standard probability space (X, ).
The full pseudogroup of R, denoted by [[R]], is defined to be the set of partial
automorphisms of X whose graph is contained in R. A partial automorphism of
X is a Borel isomorphism ¢: A — B where A, B C X are non-negligible Borel
subsets.

The equivalence relation R is said to be

e Borel if R is a Borel subset of X x X;
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e countable if the equivalence classes of R are countable;
o pmp if any partial automorphism ¢ € [[R]] preserves the measure p;

e ergodic if any R-invariant subset of X is either null or co-null. A subset
A C X is called R-invariant if A is equal (up to null sets) to its R-
saturation [A]g := {z € X | (z,a) € R for some a € A}.

An equivalence relation which is Borel, countable and pmp is said to be of type
II,. By [FMT75, Theorem 1], any equivalence relation of type I is given by the
orbits of some pmp action I' ~ X of a countable discrete group, but the action
need not be essentially free. The first example of an equivalence relation that is
not generated by a free group action was found by Adams in [Ad88].

The construction of Feldman and Moore associates a II; factor L(R) to any
ergodic equivalence relation R of type II;. More generally, the construction can
be “twisted” by a scalar 2-cocycle.

Let R C X x X be a II; equivalence relation. We define a o-finite measure p(")
on R by

ummwzf#weX|wweAmmm
X

for A C R Borel. By [AP16, Lemma 1.5.2], using that R is pmp, we can define
this measure equivalently by

xﬂw@=/#meX|@weAmmw
X

We denote by R? € X x X x X the set of all 3-tuples (x,y, z) with (z,7) € R
and (y, z) € R. Again since R is pmp, we can define a measure 1 on R by

u@mwz/#«%@eXxX|m%@eAmmm
X
=A#K%d€Xxle%@€Awmw

:A#K%weXxle%deANM%

for A ¢ R®? Borel.

A scalar 2-cocycle for R is a Borel map Q: R(® — T satisfying

Q(ya 2, t)Q(l’, Z, t)_lQ(x’ Y, t)Q({E7 Y, Z)_l =1 M(Q)'a“e'
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Definition 2.2 ([FM75]). Let R C X x X be a II; equivalence relation on a
standard probability space (X, ), and let Q: R3) — T be a scalar 2-cocycle
for R. For every partial automorphism ¢ € [[R]], we define an operator L on

L*(R, M) by
(L2E)(2,y) = LRan ()2, 07 (2),9)E(¢ ' (2),y) for €€ LA(R,uM).
The von Neumann algebra Lo(R) associated with (R, ) is defined by

La(R) = {Lg | ¢ € [[R]]}"-

If R is ergodic, then Lo(R) is a II; factor (see [AP16, Proposition 1.5.5]).
Moreover, we have that Lg(R) contains L°°(X) as a maximal abelian von
Neumann subalgebra, by viewing L>(X) as operators on L?(R, u(!)) via the
representation

(FO@.y) = f@)E(w,y) for [ € L=(X), €€ LR, uV).
When € is the trivial 2-cocycle, we simply write L(R) instead of Lo(R).

As a final remark, note that whenever R is the orbit equivalence relation
given by an ergodic pmp action I' ~ X that is free, then the II; factors
L(R) and L*(X) x T coincide. Indeed, the map ¢: X x I' — R given by
é(x,g) = (x,9g7 ! x) is a measure space isomorphism and thus induces a unitary
operator V: & s £ 0 ¢ from L*(R, ™M) to L2(X xT) = L2(X) @ *(T). Tt is
now easy to check that AdV: L>°(X) xT' — L(R) is an isomorphism satisfying
V*ugV = Lg for all g € I and V* fV = f for all f € L>(X).

2.1.5 Cartan subalgebras

In the introduction, we mentioned that the subalgebra L°°(X) of a crossed
product II; factor L*°(X) x I' plays a special role. This is because of Singer’s
theorem [Si55], which states that any isomorphism of crossed product II; factors
m: L®(X) x T — L>(Y) x A satisfying 7(L°(X)) = L*°(Y) must come from
an orbit equivalence of the actions ' ~ X and A~ Y.

A Cartan subalgebra of a II; factor is an abstraction of subalgebras of the form
L>®(X) C L®(X) x T". The definition is as follows.

Definition 2.3. Let M be a II; factor and A C M a von Neumann subalgebra.
Then A is called a Cartan subalgebra of M if

1) A is mazimal abelian (A is a MASA), i.e., AN M = A;
(1)
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(2) A is regular, i.e., its normalizer Ny (A) := {u € U(M) | uAuv* = A}
generates M as a von Neumann algebra.

Whenever I' ~ (X, ) is a free ergodic pmp action, then L>°(X) is a maximal
abelian subalgebra of the II; factor L>®°(X) x I'. Since L°°(X) by definition
is normalized by the canonical unitaries (ug)ger, we also have that L>°(X) is
regular. So, L*°(X) is indeed a Cartan subalgebra of L>°(X) x T'. Any Cartan
subalgebra A C M that arises from a group measure space decomposition in
this way is called a group measure space Cartan subalgebra, or a gms Cartan
subalgebra for short.

Not all Cartan subalgebras are gms Cartan subalgebras. More generally, it is
not hard to see that L>°(X) C Lo(R) is a Cartan subalgebra for any ergodic
II; equivalence relation R C X x X and any scalar 2-cocycle €2 for R. This is
in fact the most general construction of Cartan subalgebras inside separable 1Ty
factors.

Theorem 2.4 ([FM75]). Let M be a separable II; factor. Then A C M is a
Cartan subalgebra of M if and only if there exists an ergodic Il equivalence
relation R on a standard probability space (X, u) and a scalar 2-cocycle Q for
R such that the inclusion A C M is isomorphic with L>=°(X) C Lq(R).

Let us briefly explain how one associates an equivalence relation R to a Cartan
inclusion A C M, as in Theorem 2.4. Write A = L*(X) for some standard
probability space (X, u). Any normalizing unitary v € AN (A) gives rise to
an automorphism 6,, € Aut(X, u) given by a o 6, = u*au for a € A = L*>(X).
Since M is separable, we can take a countable || - ||2-dense subgroup I' < Ny (A).
The equivalence relation R associated with the Cartan inclusion A C M is given
by x ~y if and only if x = 6, (y) for some u € I". This equivalence relation is
of type II; and does not depend on the choice of I'.

Finally, we show the following well-known lemma, which states that A C M
being a Cartan subalgebra is preserved under taking corners. A corner of a
von Neumann algebra M is a von Neumann algebra of the form pMp for some
projection p € M. When M is a II; factor, then any corner of M is also a 1Ty
factor.

Lemma 2.5. Let M be a I} factor and let A C M be a Cartan subalgebra.
Then Ap C pMp is also a Cartan subalgebra, for any projection p € A.

Proof. By [AP16, Proposition 4.2.2], we have that (Ap)' NpMp = p(A'NM)p =
Ap so Ap C pMp is maximal abelian. By [Po03, Lemma 3.5], Ap C pMp is also
regular. O
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2.1.6 Tensor products, amalgamated free products and ultra-
products

We will here introduce some more constructions of von Neumann algebras,
namely the tensor product, the free product with amalgamation and the
ultraproduct.

Tensor products. The tensor product is a very fundamental construction
and corresponds to taking the direct product of groups. Let M C B(H) and
N C B(K) be von Neumann algebras. Given z € M and y € N, there is a
unique operator x®y on the Hilbert space H® K given by (xQy)(E®n) = z€Q@yn
for ¢ € H, n € K. The von Neumann algebra tensor product of M and N is
defined to be the von Neumann algebra generated by these operators, i.e.,

M@N={z®y|zeM, ye N} C B(H®K).

One can show that the tensor product is independent of the chosen
representations of M and N, up to isomorphism. In the case where M or
N is finite-dimensional, the von Neumann algebra tensor product coincides with
the algebraic tensor product and is simply denoted by M @ N. When I and A
are countable groups, we have that L(I') ® L(A) = L(T x A).

Let us mention a few basic properties of the tensor product (see [AP16,
Proposition 5.1.3] for a proof). We have that M ® N is a factor if and only if
M and N are both factors. Moreover, when (M, 7)) and (N, 7y) are tracial,
we can define a faithful trace on M ® N by the formula 7(x ® y) = 7as ()75 (y)
forx € M,y € N. In particular, M ® N is a II; factor whenever M and N are
I1; factors.

We can also define the tensor product of infinitely many tracial von Neumann
algebras (M;,7;)ien. Let H denote the closed linear span of all elements of the
form ®;ené; with & € L?(M;, ;) for all i € N and & = 1y, for all but finitely
many ¢ € N, where the closure is taken with respect to the inner product given
by (®ien&i, ®ienns) := [[;en(&ismi). Then @ (M;, 7;) is defined to be the von
Neumann algebra on H generated by the operators ),y z; with x; € M; for
all i € N and z; = 1 for all but finitely many i € N. Note that @ (M;,7;) is a
tracial von Neumann algebra with trace 7 given by 7(®ienz:) = [[;cn 7i(2i)-
As in the finite case, @N(Miv 7;) is a factor whenever each component M; is a
factor.

Amalgamated free products. The amalgamated free product of von
Neumann algebras is a construction that has its roots in group theory: given two
groups I', A that both contain a copy of the same subgroup X, the amalgamated
free product group I' xx A is defined as a certain quotient of the free product
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group I' *x A, where elements of X inside I" get identified with the corresponding
elements of ¥ inside A. We can mimic this construction in the setting of tracial
von Neumann algebras. Given two tracial von Neumann algebras (M, 7as) and
(N, 7n) that both contain a common von Neumann subalgebra A in such a way
that 7y = 7v on A, we can define a tracial von Neumann algebra M x4 N
generated by all “reduced words” in M and N, where elements of A get identified.
In the following, we will make this construction precise.

First, we need to define the notion of a conditional expectation. Given a von
Neumann algebra M and a von Neumann subalgebra A C M, a conditional
expectation from M onto A is a linear map E: M — A satisfying the following
properties.

o F is positive: E(M;) C Ay.
e F is a projection onto A: F(a) = a for all a € A.
o Eis A-bimodular: E(azb) = aE(z)b for all a,b € A and x € M.

Such a conditional expectation may not always exist. However, when (M, 1)
is a tracial von Neumann algebra and A C M is a von Neumann subalgebra,
then we can always find a unique trace-preserving conditional expectation of M
onto A (see for instance [BO08, Lemma 1.5.11]). This conditional expectation
is usually denoted by E4 (even though it depends on the choice of trace 7). We
use the notation M © A to denote the set of elements € M with E4(z) = 0.

Let (Mj, ) and (Ma, 72) be tracial von Neumann algebras and assume that
A C M; for both i = 1,2 and that 7|4 = 72|4. The amalgamated free product
M = My x4 Ms is the unique von Neumann algebra equipped with a faithful
normal conditional expectation E: M — A such that M is generated by M;
and My, and M; and M, satisfy the following freeness condition with respect
to E:

E(xy---x,) =0 whenever x € M;, © A and iy # i1

The details of the construction can be found in [Po93, VDNO92]. Using the
conditional expectation F, we can define a trace 7 on M = M x4 M5, extending
Tmand o, by T=T1 0 E =10 F.

Ultraproducts. The last construction that we will introduce is the
ultraproduct of tracial von Neumann algebras, which is a very useful tool
for studying the asymptotic behavior of sequences in a tracial von Neumann
algebra.

Let I be any set. An wultrafilter on I is a collection U of subsets of I satisfying
the following properties:
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. 0 ¢U;

e« if A,B€eU, then ANB € U;

e if AcU and A C B C I, then also B € U,
o forany AC I, either AcU or I\Ac€U.

An ultrafilter U is called free if it is non-principal, i.e., if it is not of the form
U={B CI|ipe B} for some fixed i € I.

Intuitively, subsets of I belonging to an ultrafilter ¢ should be thought of as
being “large”. Given (x;);cr € £°°(I), the limit of (x;);cs along an ultrafilter I
is the unique = € X such that {i € I | |z; — z| < e} € U for every € > 0. This
limit is denoted by lim;_ ;s x;.

Fix a free ultrafilter U on I and a tracial von Neumann algebra (M, 7). Let
£°(I, M) denote the algebra consisting of all bounded sequences (z;);e; with
x; € M, equipped with the norm |[(z;)icr|| := sup;e; ||2;]. The subspace
J = {(x;)ier | lim;—yq ||2;s]]2 = 0} is a closed two-sided ideal of £°°(I, M), and
the quotient ¢>°(I, M)/J is a (non-separable) von Neumann algebra (see for
instance [BO08, Appendix A]). We denote this von Neumann algebra by MY
and call it the ultraproduct of M. Note that MY has a normal faithful trace 7
given by 114((x;)ier) := lim;yy 7(x;). We view M as a von Neumann subalgebra
of MY by identifying M with the constant sequences in MY.

Let M = B x A be a crossed product von Neumann algebra and denote by AY
the ultraproduct group given by the quotient AY = A/ /K, where K = {(g;)icr |
lim; ;s g; = e}. Note that AY < U(MY) by identifying s = (s;)ier € AY with
the unitary element vy := (vg,)ie; € MY. Also note that A¥ and BY are in
crossed product position inside MY. Indeed, AY normalizes BY and

Epu(vs) = (Ep(vs,))ier = (7(vs,))ier = Tu(vs)

for s = (s;); € AY.

2.2 Bimodules

The notion of a bimodule is due to Connes and serves as the appropriate notion
of a representation in the theory of von Neumann algebras. The subject was
further developed by Popa and we refer to [AP16] for a thorough treatment of
the subject.
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Let (M,7) be a tracial von Neumann algebra. A left M-module p,H is a
Hilbert space H equipped with a normal #-representation m,: M — B(H).
This representation is referred to as the left M-action on H and we use the
notation x¢ := my(x)§ for x € M and ¢ € H. Similarly, a right M-module Hyy
is a Hilbert space H equipped with a normal #-representation of the opposite
algebra m.: M°° — B(H), referred to as the right M-action. Again, we will
use the notation £z := m,.(x°P)¢ for x € M and € € H.

Given two tracial von Neumann algebras (M,7) and (N,7), an M-N-
bimodule pyHpy is a Hilbert space H equipped with two commuting normal
s-representations my: M — B(H) and m,: N°° — B(H). We say that two
bimodules p;Hy and ) Ky are isomorphic if there exists a unitary operator
U: H — K that intertwines the actions in the sense that U(zfy) = zU (§)y for
zreM,yeN.

Given an M-N-bimodule y;Hy, the contragredient bimodule ~NH s is defined
by “flipping” the left and right actions. More precisely, H equals the conjugate
Hilbert space of H with left and right actions given by

y-€-x =&y~ reM,ye N, £ H.

The simplest example of an M-M-bimodule is given by the GNS representation.
Recall that the GNS Hilbert space L?(M) was defined to be the completion
of M with respect to the inner product (z,y)s = 7(zy*). Now, L*(M) is an
M-M-bimodule when equipped with the commuting left and right M-actions
induced by left and right multiplication of M on itself. This bimodule is called
the trivial M -bimodule. Note that we have a canonical anti-linear involution
operator J on L?(M) defined by J(x) = x* for € M. With this notation, we
have that JxJ € B(L?(M)) exactly equals the right action of 2* on L?(M).

More generally, when a: M — N is a normal *-homomorphism, we get an M-
N-bimodule H(«) := a(1)L?(N) with left and right actions given by z-¢ -y =
a(z)éy for x € M, y € N and £ € a(1)L*(N). This construction can be
generalized further by considering normal x-homomorphisms from M into an
amplification of N. An amplification of N is a von Neumann algebra of the form
p(B(£*(I)) ® N)p for some (possibly uncountable) index set I and a nonzero
projection p € B(¢?(I)) ® N. Note that we can view B(¢*(I)) ® N as the
von Neumann algebra of infinite-dimensional matrices (indexed over I) with
entries in N. Given a normal *-homomorphism a: M — p(B(¢*(I)) ® N)p,
we define H(a) = p({*(I) ® L*(N)) with M-N-bimodular actions given by
z-&yi=a(@)E(ley) for x € M,y € N. This is in fact the most general
example of an M-N-bimodule. Therefore, M-N-bimodules can be seen as
generalized x-homomorphisms between M and N.
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Proposition 2.6 (See e.g. [JS97, Theorem 2.2.2]). Let (M,7) and (N,T) be
tracial von Neumann algebras and let py Hy be an M-N-bimodule. Then there
exists a set I, a projection p € B({*(I)) @ N and a normal *-isomorphism
a: M — p(B({*(I)) ® N)p such that yHy is isomorphic with pH (o) .2

The proof of this proposition follows from the fact that any right N-module
Hy can be written as p(¢2(I) ® L?(N)) for some projection p € B(¢(*(I)) ® N,
where N acts diagonally from the right. If H is also a left M-module, then such
an isomorphism Hps = p(¢*(I) ® L*(N)) transforms the left M-action into a
normal *-homomorphism a: M — p(B(¢£*(I)) ® N)p.

Whenever we write a right M-module Hy; as p(¢2(I) @ L?(M)), the number
(Tr@7)(p) € [0,00] does not depend on the choice of projection p. We call
this number the right M-dimension of H and use the notation dim_;(H) :=
(Tr ®7)(p). A similar construction for left M-modules allows us to define the
left M -dimension dimp;_ (H) of a left M-module py H. Note however that these
notions of left and right dimensions depend on the trace 7 on M. When M is
a II; factor, the trace 7 is unique and therefore the notions of left and right
M-dimensions are intrinsic. Moreover, the left/right M-dimension is a complete
invariant for left/right M-modules in this case.

When N is a subfactor of a II; factor M, we define the Jones index [M : N| to
be the right N-dimension of the module L?(M)y.

The finitely generated right M-modules are of the form p(C" ® L?(M)) for some
n € N and some projection p € M,,(C) ® M (similarly for left modules). When
M is a II; factor, we have that H), is finitely generated if and only if Hj; has
finite right dimension. For general tracial von Neumann algebras (M, 7) this
is not too far from being true: H); has finite right dimension if and only if
there exists a central projection z € M arbitrarily close to 1 such that (Hz)ns
is finitely generated.

One very important example of an M-M-bimodule is the coarse M -bimodule
L?(M) ® L*(M) with M-bimodular actions given by

z-(E®@n) y:=axf@ny for z,y € M, S,UELQ(M).

It plays the same role as the regular representation does in the context of unitary
group representations. In fact, given any unitary representation 7: I' — U(K)
of a countable discrete group, one can construct an L(T')-bimodule as follows.
Let H(m) = K ® £*(T') and consider the following L(T')-bimodular actions on
H(r):

Ug (g & 55) “Up = Wg(f) ® 5gsh-

2In the case where M and N are separable, we may take I = N.
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Here, (ug)ger denotes the canonical unitaries of L(I') as usual. Using Fell’s
absorption principle (see e.g. [Pell, Lemma 1.1.6]), it follows that both the left
and the right actions extend to all of L(T"), so that H(w) is a well-defined L(I")-
bimodule. Via this construction, the trivial representation ¢: I' — C1 gives rise
to the trivial L(I")-bimodule and the left regular representation A\: I' — U (¢%(T"))
gives rise to the coarse L(T")-bimodule.

Just as for group representations, there is a notion of weak containment for
bimodules.

Definition 2.7. Let M and N be tracial von Neumann algebras and let p; Hpy
and pr K be two M-N-bimodules. Then 5y Hpy is said to be weakly contained
in 5y K if every coefficient of j; Hy can be approximated by a finite sum of
coefficients of Ky, i.e., for every £ € H, every finite subsets F C M and
E C N and every € > 0, there exist n1,...,n, € K such that

n
[(x€y, &) — meym|<5 forall z € F and y € F.
i=1

When an M-bimodule p;Hj; contains the trivial M-bimodule via an M-
bimodular embedding ¢: L?(M) < H, we obviously have an M-central and
tracial vector inside H, i.e., a vector £ € H such that 2 = x and (2, &) = 7(x)
for all z € M. Indeed, we simply take £ = ¢(1p/). Having an M-central
and tracial vector is in fact equivalent to containing the trivial M-bimodule.
Similarly, we can characterize weak containment of the trivial M-bimodule by
the existence of almost M-central and almost tracial vectors, in the following
sense.

Lemma 2.8 ([AP16, Proposition 12.3.11)). Let (M,7) be a tracial von
Neumann algebra and let P C M be a von Neumann subalgebra. An M -
P-bimodule yHp weakly contains the trivial M-P-bimodule ny L*(M)p if and
only if there exists a net of vectors (&;)icr in H such that

(1) lim;(x&;, &) = 7(x) for allx € M;

(2) lim; [|y&; — &yl = 0 for ally € P.

The following lemma contains two easy observations that we will need later on.

Lemma 2.9. Let (M, 1) be a tracial von Neumann algebra and let @ C M be
a von Neumann subalgebra.

(1) The coarse M-bimodule L?(M) ® L?(M) restricted to Q is contained in a
multiple of the coarse Q-bimodule L?(Q) @ L*(Q).
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(2) Let g € Q' N M be a nonzero projection and let z € Z(Q) be the support
projection of Eq(q). Then L*(Q)z is isomorphic with L*(Q)q, as Q-
bimodules.

Proof. (1) We have that L?(M) is contained in a multiple of L?(Q), as either
a left @Q-module or a right Q-module. So, L*(M) ® L*(M) is contained in
L?(Q)® 2(I) ® £2(I) ® L*(Q) as Q-bimodules for some index set I, and this is
simply a multiple of the coarse @-bimodule.

(2) Define a bounded linear map T: L?*(Q)z — L?(Q)q by T(¢) = £q. Note that
T is Q-bimodular and that the image of T is dense in L?(Q)q. Moreover, T is
injective since £g = 0 implies that ¢Eg(q) = 0 and hence £z = 0, for £ € L*(Q).
Letting U: L?(Q)z — L*(Q)q be the partial isometry coming from the polar
decomposition of T, we have that U is a Q-bimodular unitary as wanted. [J

We end this section by introducing a way of composing bimodules, namely
Connes’s tensor product of bimodules. For this, we first need to discuss the
notion of left and right bounded vectors.

Let (M, 7) be a tracial von Neumann algebra. A vector £ in a right (resp. left)
M-module H is said to be right (resp. left) bounded if there exists a k > 0
such that ||€a|| < k||all2 (resp. ||a&|| < &||al|2) for all @ € M. We will use the
notation Hy (resp. oH) to denote the set of all right (resp. left) bounded vectors
of H. For the trivial M-bimodule H = L?(M), we have that Hy = oH = M.
In general, when H is a right M-module, the subspace Hy C H is always dense
and similarly for left M-modules.

Whenever ¢ is right bounded, we denote by £(¢) the map L?(M) — H: a — &a.
Similarly, when ¢ is left bounded, we denote by (&) the map L?(M) — H: a
a&. Given right bounded vectors £, 7, the operator £(£)*4(n) belongs to M
and is denoted (£,n) . This defines an M-valued scalar product associated
with the right M-module H. Similarly, if £,n € H are left bounded vectors,
we define an M-valued scalar product associated with the left M-module H
by m(&,n) = Jr(&)*r(n)J € M. Here, J denotes the canonical involution on
L?(M) given by J(z) = a* for x € M.

When H)y is a right M-module and ;K is a left M-module, we can define a
positive sesquilinear form on the algebraic tensor product Hy ® K by

(E1@m1,& @mn2) = (1, (€1, &) M m2) K-

The Hilbert space obtained by separation and completion of Hy ® K with
respect to this sesquilinear form is denoted by H ®); K, and the image of
E®n € Hy® K inside H ®); K is denoted by £ ®,; 1. By construction, we
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have the following important property:
Ca@yun=E®@pan for a € M.

If H is an N-M-bimodule and K is an M-P-bimodule for some tracial von
Neumann algebras N and P, then H ®j; K becomes a N-P-bimodule when
equipped with the bimodular actions

r-(E@mn) -y =@y, xEN,yeEP.

The N-P-bimodule H ®j; K is called the Connes tensor product of yHys and
MKP-

Note that this construction of the Connes tensor product could also be carried
out using left bounded vectors of K instead of right bounded vectors of H.
However, these two constructions lead to isomorphic bimodules.

2.3 Amenability and relative amenability

Recall that a countable discrete group I is called amenable if it admits a left-
invariant mean, i.e., a finitely additive probability measure on the power set
P(T) that is invariant under the left translation action of I' on itself. A similar
notion of amenability exists for II; factors and is defined in such a way that
L(T) is amenable if and only if " is amenable.

Following [Co75], a von Neumann algebra M C B(H) is said to be amenable
(or injective) if there exists a conditional expectation of B(H) onto M. This
definition is independent of the chosen representation of M as operators on a
Hilbert space (see e.g. [AP16, Proposition 10.2.2]). When (M, 7) is a tracial
von Neumann algebra, we have that M is amenable if and only if there exists a
state ¢ on B(L?(M)) that is M-central, in the sense that ¢(27) = ¢(Tx) for all
z € M and T € B(L?*(M)), and such that ¢| = 7 (see e.g. [AP16, Proposition
10.2.5]). Such a state is called a hypertrace for M and is the analogue of a
left-invariant mean on a group. One can easily show that a countable discrete
group I' is amenable if and only if L(T") is amenable (see e.g. [AP16, Chapter
10]). Even more, when I is a non-amenable group, the group von Neumann
algebra L(I') has no amenable direct summand.

In [Co75], Connes showed that a separable II; factor is amenable if and only if it
is hyperfinite, meaning that there is an increasing sequence of finite dimensional
von Neumann subalgebras M,, C M such that M = (J,,cy M»)". It has been
known since the work of Murray and von Neumann [MvN43] that there is a
unique hyperfinite Il factor, which is usually denoted by R. So by the work
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of Connes, there is a unique separable amenable II; factor. In particular, any
amenable icc groups give rise to the same group von Neumann algebra and
any free ergodic pmp actions of amenable groups give rise to the same crossed
product von Neumann algebra.

As for countable groups, there are many equivalent definitions of amenability
for von Neumann algebras. We will mention one very useful characterization,
which involves bimodules. Recall that a group I' is amenable if and only if the
trivial representation of I' is weakly contained in the left regular representation
of T (see e.g. [BO08, Theorem 2.6.8]). The following is the analogue in the
setting of tracial von Neumann algebras.

Proposition 2.10 ([Po86, Theorem 3.1.2]). A tracial von Neumann algebra
(M,7) is amenable if and only if the trivial M-bimodule L*(M) is weakly
contained in the coarse M-bimodule L?(M) ® L*(M).

In [OP07, Section 2.2], the concept of relative amenability was introduced. The
definition makes use of Jones’ basic construction: Given a tracial von Neumann
algebra (M, 7) and a von Neumann subalgebra N C M, we can consider the
orthogonal projection ey : L?(M) — L?(N). The Jones basic construction
(M, en) is defined as the von Neumann algebra inside B(L?(M)) generated by
M and ey. Equivalently, (M, en) equals the commutant of the right N-action
on L?(M), ie., (M,ex) = B(L*(M)) N (N°PY.

Let @ C (M,7) be a von Neumann subalgebra and p € M a projection.
Following [OP07, Definition 2.2], we say that a von Neumann subalgebra
P C pMp is amenable relative to @Q inside M if there exists a positive functional
@ on p(M,eq)p that is P-central and satisfies ¢|parp = 7. By definition, we
have that P is amenable if and only if P is amenable relative to C1 inside M.
The following proposition states a few equivalent characterizations of relative
amenability in terms of bimodules.

Proposition 2.11 (J[OP07, Theorem 2.1], [PV11, Proposition 2.4]). Let (M, )
be a tracial von Neumann algebra, let p € M be a projection and let P C pMp,
Q C M be von Neumann subalgebras. The following are equivalent.

e P is amenable relative to QQ inside M.

oMpL? (DMp) p is weakly contained in pnrp(pL*(M) ®¢ L*(M)p)p.

pMpL?(pMp)p is weakly contained in pn,(pL*(M) ®q K)p for some
Q-P-bimodule K.

o There exists a net (§;)ier in pL?(M)®q L*(M)p such that (x&;,&;) — 7(z)
for all x € pMp and ||a&; — &alla — 0 for all a € P.
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By combining Propositions 2.10 and 2.11, we see that when @ is amenable, then
P is amenable relative to ) if and only if P is amenable. Indeed, this follows
from the fact that the M-bimodule L*(M) ®¢g L?(M) is weakly contained in
the coarse M-bimodule, when @ is amenable.

We say that P is strongly non-amenable relative to @ if Pq is non-amenable
relative to @ for every nonzero projection ¢ € P’ NpMp. Note that in that case,
also poPpy is strongly non-amenable relative to @ for all nonzero projections
po € P (see [DHI16, Lemma 2.6.2]).

2.4 Popa’s intertwining-by-bimodules

A general technique in the theory of II; factors is to try to “locate” certain
subalgebras of a given II; factor M. The strongest way to obtain this is to show
that one subalgebra A C M can be unitarily conjugated into another subalgebra
B C M, in the sense that uAu* C B for some u € U(M). Note that in this
case, H = u*L?(B) is an A-B-subbimodule of L?(M) with dim_pz(H) < oo (in
fact dim_p(H) = 1). Such a bimodule is called an intertwining bimodule of
A into B. Having an intertwining bimodule is in general much weaker than
unitary conjugacy. However, Popa showed in [Po03] that the existence of an
intertwining bimodule of A into B exactly means that a corner of A can be
conjugated into a corner of B via a partial isometry. This is made precise in
the following theorem.

Theorem 2.12 ([Po03, Theorem 2.1 and Corollary 2.3]). Let (M,7) be a
tracial von Neumann algebra. Let p,q € M be projections and let P C pMp and
Q C qMgq be von Neumann subalgebras. The following are equivalent.

(1) There exists a nonzero P-Q-subbimodule H C pL*(M)q with dim_q(H) <
00.

(2) There exist nonzero projections pg € P and qo € Q, a normal unital
x-homomorphism 0: poPpy — qoQqo and a nonzero partial isometry
v € poMqo such that xv = vl(x) for all x € poPpy.

(3) There exists a nonzero projection r € M,(C) ® Q, a normal unital *-
homomorphism 0: P — r(M,(C) ® Q)r and a nonzero partial isometry
v € My ,(C) ® pMgq such that zv = v0(x) for all x € P.

(4) There is no net of unitaries w; € U(P) satisfying ||Eq(z*w;y)|l2 — 0 for
all x,y € pMq. Here, Eg denotes the unique trace-preserving conditional
expectation of M onto Q.
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If one of the four equivalent conditions from Theorem 2.12 holds, then we say
that P intertwines into Q inside M and we denote this by P <j; @, or simply
P < @ if there is no doubt about the ambient von Neumann algebra M.

When P and @ are Cartan subalgebras of a II; factor M, then the intertwining
criterion P < @) is equivalent with a true unitary conjugacy of P and Q.
Therefore, Theorem 2.12 is extremely useful for proving unitary conjugacy of
Cartan subalgebras.

Theorem 2.13 ([Po01, Theorem A.1)). Let M be a II; factor and let P,QQ C M
be Cartan subalgebras. Then P < Q if and only if P and @ are unitarily
conjugate.

The intertwining relation < is not transitive. For example, if M is diffuse then
M <pyec M & Cand M & C <pyqe C but M £Ayge C. However, there is
a stronger notion, called full intertwining, for which we do have transitivity.
Given von Neumann subalgebras P C pMp and Q C ¢Mgq, we say that P fully
intertwines into @ and write P -45\04 Q if Ppg <y @ for all nonzero projections
po € P'NpMp. Tt is not hard to show that if A, B,C C M are (possibly
non-unital) subalgebras, then A <{\4 B and B <{\4 C implies A <{\4 C. Also,
A <p Band B <{w C implies A < C (see [Va07, Lemma 3.7] for a proof of
these facts).

Note that a tracial von Neumann algebra M is atomic if and only if M </ C1,
and M is diffuse if and only if M 4 C1.

We are particularly interested in the case where M is a crossed product M =
A x T by a trace-preserving action I' ~ (A4,7). Given a subset F C I, we
denote by P the orthogonal projection of L?(M) onto the closed linear span
of {auy | a € A, g € F}, where {uy}4er denote the canonical unitaries in L(T').
By [Val0, Lemma 2.5], a von Neumann subalgebra P C pMp satisfies P 4{\4 A
if and only if for every € > 0, there exists a finite subset F' C I' such that

l = Pr(z)ll2 < |

le forall x€P.

We also need the following elementary lemma.

Lemma 2.14. LetI' ~ (A, 7) be a trace-preserving action and put M = AxT.
If P C M is a diffuse von Neumann subalgebra such that P <f A, then

P £ L(D).

Proof. Let € > 0 be given and assume P </ A. As explained above, we can
take a finite set F' C T such that |[u — Pp(u)||2 < § for all u € U(P). Moreover,
since P is diffuse, we can choose a net of unitaries (w;) C U(P) tending to 0
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weakly. We will prove that ||Epr)(zw;y)||2 — 0 for all z,y € M, meaning that
P £ L(T"). Note that it suffices to consider z,y € (A);.

Take z,y € (A)1. Write w; = > cp(wi)gug with (wi), € A. Then,

1EL ) (Pr(zwig))ll3 = Y Im(w(wi)gog(y))* =0
geF

since w; — 0 weakly. Take iy large enough such that
By (Pr(zwiy))]2 < g for all i > iy .
Since Pp is A-bimodular, we have that
| EL ) (Pr(zwiy)) — Epe)(zwiy)l2 < ||[Pr(zwy) — zwiylls

= [l2(Pp(wi) —wi)yll2 < =

\]

for all i. We conclude that ||Ep ) (zw;y)|l2 < € for all i > . O

On the level of group von Neumann algebras, the notion of intertwining-by-
bimodules simply translates into the following finite index criterion.

Lemma 2.15. Let T be a countable discrete group and let Ay, Ay < T be
subgroups. Then, L(A1) <y L(A2) if and only if there evists g € I' such that
[Al Ay ﬂgAgg’l] < 00.

Proof. Assume that [A; : Ay N gAag™!] < oo for some g € I'. Then {g~'sgAs |
s € A1} is a finite subset of I'/As and hence

H :=span {{*(sAs) | s € g~ 'A1g}

is a L(g~'A1g)-L(Az)-subbimodule of ¢2(I") with finite right L(As)-dimension.
This means that L(g~'A1g) <y L(Az). Since L(g~'A1g) = ujL(Ar)uy, we
then also have that L(A1) <ry L(A2).

Conversely, assume that [A; : A; N gAag™!] = oo for all g € I'. Given any finite
subset F' C I, we claim that there exists an s € A; such that s ¢ gAsh for all
g,h € F. Indeed, assume that this is not the case. Then

AMc | ghoh= | (gh297")gh.

g,heF g,heF

By [Neb4, Lemma 4.1], this contradicts the fact that gAog~! N A; has infinite
index in A; for all g € T'.
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Let I be the directed set consisting of all finite subsets of I', ordered by inclusion.
Given F' € I, we define up := ugs € L(A1) where s € Ay is an element such that
8 ¢ U, ner 9A2h. This gives us a net (u;);es of unitaries in L(A1) such that

| ELiagy (zuiy)|l2 = 0 for all z,y € L(T).

By Theorem 2.12, this means that L(A1) Arry L(A2). O

We end this section with the following elementary result, which shows the
relationship between relative amenability and intertwining-by-bimodules.

Proposition 2.16. Let (M,7) be a tracial von Neumann algebra and
Q,P1,P, C M be von Neumann subalgebras with Py C P,. Assume that
Q s strongly non-amenable relative to Py. Then the following holds.

(1) If @ <m Pa, there exist projections ¢ € @, p € P, a nonzero partial
isometry v € ¢gMp and a normal unital x-homomorphism 0 : qQq — pPsop
such that xv = vl(x) for all x € ¢Qq and such that, inside Py, we have
that 0(qQq) is non-amenable relative to P;.

(2) We have Q £ Py.

Proof. (1) Assume that Q < P,. By Theorem 2.12, we can take projections
q € Q, p € Py, a nonzero partial isometry v € ¢Mp and a normal unital *-
homomorphism 0: ¢Qq — pPep such that zv = vf(z) for all € ¢Qq. Assume
that 8(¢Qq) is amenable relative to P; inside P,. We can then take a positive
functional ¢ on p(P»,ep,)p that is 0(¢gQq)-central and satisfies ¢|,p,p, = 7.
Denote by ep, the orthogonal projection of L?(M) onto L?(P;). Observe that
ep,{M,ep )ep, = (P2,ep,). We can then define the positive functional w on
q{M,ep,)q given by

w(T) = p(ep,v*Tvep,) forall T € ¢(M,ep,)q .

By construction, w is ¢Qg-central and w(z) = 7(v*zwv) for all z € ¢Mq. Writing
qo = vv*, we have o € (Q' N M)q and it follows that ¢Qqqo is amenable relative
to P;. This contradicts the strong non-amenability of ) relative to Pj.

Finally, note that (2) follows from (1) by taking P; = Px. O
2.5 Mixing properties

Recall that a unitary representation 7: I' — U(H) of a countable discrete group I'
is said to be weakly mizing if {0} is the only finite-dimensional subrepresentation.
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This is equivalent with the existence of a sequence (g,)nen C I such that
(m(gn)&,m) — 0 for all &,n € H. The representation 7 is called mizing if this
limit holds for any sequence (g, )nen C I' with g, — oo (in the sense that g,
escapes all finite subsets of I'). The following proposition is classical, see for
example [Pell, Proposition 1.5.6].

Proposition 2.17. Let m: T' — U(H) be a unitary representation. The
following are equivalent.

o m is weakly mizing.
e The representation m @ T contains no nonzero invariant vectors.
e The representation m ® p contains no nonzero invariant vectors for any
(finite-dimensional) unitary representation p: I' — U(K).
Similar notions of mixing and weak mixing exist for group actions I' ~ (X, u)
and for bimodules y Hjs of tracial von Neumann algebras N and M.
Definition 2.18. A pmp action I' ~ (X, ) is called

o weakly mizing if for any £ > 0 and any finite collection of measurable
subsets Aq,..., A, C X, there exists a g € I" such that

Iw(AiNgAj) — p(Ai)u(A;)| <e forall i,j=1,...,n;

o mizing if for any measurable subsets A, B C X and any sequence g, € I’
with g, — oo, we have that

wANgyB) = p(A)u(B) as n — oo.

It is clear from the definition that a weakly mixing action is in particular
ergodic. More generally, we can define (weak) mixing for trace-preserving
actions I' ~ (B, 7) in an analogous way.

Definition 2.19. Let I' ~ (B, 7) be a trace-preserving action on a tracial von
Neumann algebra (B, 7). The action is called

o weakly mizing if for every finite set aq,...,a, € B and every € > 0, there
exists g € I' such that

|T(ai04(a;)) — m(a;)T(a;)| <e forall 4,j=1,...,n;
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o mizing if for every a,b € B and every sequence g, € I' with g, — oo, we
have that
T(aog, (b)) = 1(a)T(b) as n — oo.

When T' ~ (X, 1) is a pmp action, we have that I' ~ X is (weakly) mixing if
and only if I' ~ L*>°(X) is (weakly) mixing. The following proposition states
some equivalent formulations of being weakly mixing.

Proposition 2.20 ([Va06, Proposition D.2]). Let o: T' ~ (B, 7) be a trace-
preserving action. The following are equivalent.

(i) The action o is weakly mizing.
(ii) C1 is the only finite-dimensional invariant subspace of B.
(iii) The associated unitary representation of I' on L?(B)©C1 is weakly mizing.

(tv) The diagonal actionT' " B B: g- (a ®b) = g4(a) ® a4(b) is ergodic.

Example 2.21. Given a countable group I' and a standard probability space
(X, i), we can form the Bernoulli action T' ~ (X, u)" given by g - (2)ser =
(xgs)ser. More generally, given any action I' ~ I on a countable set I, the
generalized Bernoulli action T ~ (X, p)! is given by g« (z;)ier = (wg.4)ier- It
is a classical result that the generalized Bernoulli action I' ~ (X, u1)! is weakly
mixing if and only if the action I' ~ I has infinite orbits (see [PV06, Proposition
2.3 and Lemma 2.4]).

When o: I' ~ (B, 1) is a trace-preserving action that globally preserves a von
Neumann subalgebra By C B, we have that the subspace B & By is also globally
preserved. Even though B & By is not a subalgebra, we still say that o restricts
to an action of I' on B & By. We say that this action is weakly mixing if the
associated unitary representation of I' on L?(B) © L?(By) is weakly mixing.
Exactly as in the proof of Proposition 2.20, it can be shown that I' ~ B © By
is weakly mixing if and only if B & By contains no nontrivial finite-dimensional
I'-invariant subspace. For completeness, we provide a proof of this fact.

Proposition 2.22. Let o: T' ~ (B, ) be a trace-preserving action that globally
preserves a von Neumann subalgebra By C B. The following are equivalent.
(i) o: T ~ B 6 By is weakly mixing.
(ii) B © By contains no nontrivial finite-dimensional T'-invariant subspaces.

(iii) The diagonal action T ~ (B® B) © (Bg ® By) is ergodic.
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Proof. (i) = (ii) is clear from the definition.

To show (ii) = (iii), suppose that « € B ® B is a I'-invariant element. Denote
by ¢ the canonical embedding B — L?(B). Given &,n € L?(B), we denote by
we , the vector functional on B given by we ,(a) = (a&,n). Define a Hilbert-
Schmidt operator T': L?(B) — L?(B) by T¢ = ¢((id ® w,(1),¢)(2)). Then TT*
is a trace-class operator that commutes with the unitary representation of I'
on L?(B) associated with o. So, any spectral projection of TT* has finite rank
and still commutes with . Since the image of T is contained in ¢(B), we obtain
using (ii) that € By ® B. By symmetry, we also obtain x € B ® By and hence
x € By ® By. So, (B® B) & (By ® By) has no I'-invariant vectors.

To show (iii) = (i), assume that o: I' ~ B & By is not weakly mixing. Then
there exists € > 0 and bq,...,b, € B S By such that

Z \T(ag(bi)b;)|2 >e for all g €T.

ij=1

Define z = >""" | b; ®b; € (B® B)© (By® By). Let 1 € B® B be the unique
element of minimal 2-norm in the weakly closed convex hull of {(oy ® 04)(z) |
g € I'}. Note that z1 € (B® B) & (By ® By). For any g € I', we have that

T((0g ® og)(@)z") = Y (o (b:)b)I* > e.

4,5=1

It follows that 7(x12*) > ¢ and hence x; # 0. By uniqueness of z1, we also
have that z; is (04 ® 04)ger-invariant. This contradicts (iii). O

Given a tracial crossed product M = A x I' and given a subgroup A < IT', we
will often consider the conjugation action {Adugy}gsea on M. This action has
an obvious non weakly mixing part, which we can describe as follows. We
denote by vCr(A) the virtual centralizer of A inside T, i.e., vCr(A) consists of
all elements s € I" that commute with a finite index subgroup of A. Let Ag C A
be the von Neumann subalgebra generated by the set of all a € A such that
{os(a) | s € A} spans a finite-dimensional subspace of A. Note that vCr(A) is a
subgroup that normalizes Ag. Now, it is clear that the action {Adus}seca is not
weakly mixing on neither Ay nor vCr(A). The following lemma shows that the
crossed product Ag x vCr(A) C M is the only non weakly mixing part of M.

Lemma 2.23. Let 0: T ~ (A, 7) be a trace-preserving action and put M =
AxT. Fiz a subgroup A < T and let K := vCr(A) be its virtual centralizer.
Let Ag C A be as above, i.e., Ag is generated by the set of all a € A such that
span{os(a) | s € A} is finite-dimensional. Then the unitary representation
{Adus}sen s weakly mizing on L*(M) © L?(Ag x K).
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Proof. Let H = L?(M) © L?*(Ag x K) and recall that L?(M) = L?(A) @ £2(T).
Put

H, =L*(A) @ (1) e *(K)), H,=L*(Ac Ay) @ ().

Then H; and Hy are closed subspaces of H that are invariant under the
representation {Adus}sea, and such that H = span H; U He. It is enough
to show that {Adwus}sen is weakly mixing on H; and Hy since then, any
finite-dimensional invariant subspace F C H satisfies F C Hi- N Hy = {0}.

To prove that {Adus}sea is weakly mixing on Hs, it suffices to show that
the representation {0, }sea is weakly mixing on L?(A © Ag). By construction,
A © Ay contains no nonzero finite-dimensional {o;}seca-invariant subspace. By
Proposition 2.22; this exactly means that the representation {os}sca is weakly
mixing on L?(A S Ap).

To prove that {Adus}sea is weakly mixing on Hs, it suffices to show that
{Adus}sen is weakly mixing on ¢2(I' — K). But this follows from [PVO06,
Lemma 2.4] since {sgs~! | s € A} is infinite whenever g € ' — K. O

Note that it in particular follows from Lemma 2.23 that the conjugation action
I' ~ L(T) is weakly mixing if and only if T is icc.

Finally, we introduce the notion of a (weakly) mixing bimodule. Let (M, 7) be
a tracial von Neumann algebra and let A, B C M be von Neumann subalgebras.
Popa’s non-intertwinability condition (see Theorem 2.12) saying that B A A
is equivalent with the existence of a net of unitaries b; € U(B) such that
lim; || Ea(zbiy)|l2 = 0 for all x,y € M, can be viewed as a weak mixing condition
for the B-A-bimodule pL?(M), (cf. the notions of relative (weak) mixing in
[Po05, Definition 2.9]). This then naturally lead to the notions of mixing and
weakly mixing bimodules in [PS12].

Recall from Section 2.2 the notion of left and right bounded vectors in a B-A-
bimodule H, as well as the A-valued inner product (£,7) for right bounded
vectors £, € H.

Definition 2.24 ([PS12]). Let (A,7) and (B,7) be tracial von Neumann
algebras and pH 4 a B-A-bimodule.

(1) pH4, is called left weakly mizing if there exists a net of unitaries b; € U(B)
such that for all right bounded vectors £, € H, we have

lin | {bi€,n) all2 = 0.



36 PRELIMINARIES

(2) pHy is called left mizing if every net b, € U(B) tending to 0 weakly
satisfies

lim [{bi€, ) all> = 0

for all right bounded vectors &, € H.

We similarly define the notions of right (weak) mizing. When 4H 4 is a symmetric
A-bimodule in the sense of Definition 5.4, left (weak) mixing is equivalent with
right (weak) mixing and we simply refer to these properties as (weak) mixing.

Example 2.25. If 7: I' — U(K) is a weakly mixing group representation, then
the associated L(I')-bimodule H = ¢2(T') ® K is left weakly mixing. Indeed,
if (gn)nen C T is a sequence such that (7(g,)&,n) — 0 for all £,y € K, then
ug, € L(T') is a sequence of unitaries witnessing the left weak mixing of H.

In [Po03, Section 2|, Popa proved that the intertwining relation B <; A is
equivalent with the existence of a nonzero B-A-subbimodule of L?(M) having
finite right A-dimension (see Theorem 2.12). In the same way, one gets the
following characterization of weakly mixing bimodules. For details, see [PS12]
and [Bol4, Theorem A.2.2].

Proposition 2.26 ([Po03, PS12, Bol4]). Let (A,7) and (B,7) be tracial von
Neumann algebras and gH 4 a B-A-bimodule. The following are equivalent.

1) pHy4 is left weakly mizing.

(1)

(2) {0} is the only B-A-subbimodule of gH 4 of finite A-dimension.
(3) (H ®4 H)p has no nonzero B-central vectors.
(4)

4) p(H ®4 K)p has no nonzero B-central vectors for any A-B-bimodule K.

2.6 (Relative) strong solidity and class C

In the study of non-amenable II; factors, it is natural to consider different kinds
of indecomposability properties. One such property is primeness, which means
that a given II; factor cannot be written as a nontrivial tensor product. More
precisely, a I factor M is called prime if any tensor product decomposition
M = M, ® My forces either M; or My to be finite-dimensional. A similar
property is the impossibility of writing M as a crossed product or more generally
as L(R) for some equivalence relation R. Recall from Theorem 2.4 that this
exactly amounts to M not having a Cartan subalgebra. Therefore, absence of
Cartan subalgebras can also be seen as an indecomposability property.
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In [0203], Ozawa discovered a new property that generalizes primeness. This
property was called solidity and is defined as follows. A von Neumann algebra
M is called solid if the relative commutant A’ N M is amenable for any diffuse
von Neumann subalgebra A C M. It is clear from the definition that any solid
von Neumann algebra is also prime. Ozawa proved that the group von Neumann
algebra L(T) is solid for any nonelementary hyperbolic group T, in particular
for any free group F,, with n > 2.

The strongest indecomposability property for von Neumann algebras is strong
solidity, which was introduced by Ozawa and Popa in [OP07].

Definition 2.27 ([OP07]). Let (M, 7) be a diffuse tracial von Neumann algebra.
We say that M is strongly solid if for any diffuse amenable von Neumann
subalgebra A C M, the normalizer Ny (A)” = {u € U(M) | udu* = A} stays
amenable.

Note that, as the name suggests, strong solidity implies solidity. Indeed, if
A C M is a diffuse von Neumann subalgebra, then A contains a diffuse amenable
von Neumann subalgebra B C A. Since A’ N M C Ny (B)”, it follows that
strong solidity of M implies solidity of M. It is immediate that strong solidity
also implies absence of Cartan subalgebras for non-amenable von Neumann
algebras M. Therefore, strong solidity is a very interesting property and has
become a key concept in the context of Popa’s deformation/rigidity theory.

Ozawa and Popa showed that the free group factors L(F,) with n > 2
are strongly solid, thereby generalizing previous results by Voiculescu [Vo95]
(absence of Cartan), Ge [Ge98] (primeness) and Ozawa [0z03] (solidity). In
fact, they showed an even stronger property: for every free ergodic profinite?
action F,, ~ X, the crossed product M = L*°(X) x F,, is strongly solid relative
to L*°(X) in the following sense. For any diffuse amenable subalgebra A C M,
either N/ (A)” stays amenable or A < L*°(X). The results of Ozawa and
Popa were generalized by Popa and Vaes in [PV11, PV12], and they obtained
the following remarkably strong result. For any trace-preserving action of a
hyperbolic group I' on a tracial von Neumann algebra B, the associated crossed
product M = B x T is strongly solid relative to B, i.e., for any diffuse subalgebra
A C M that is amenable relative to B, either Ay (A)” stays amenable relative
to B or A <j; B. This led to the notion of relative strong solidity, which is
defined as follows.

Definition 2.28. A group I is called relatively strongly solid if for any tracial
crossed product M = P x T and any von Neumann subalgebra QQ C pMp that is

3An action T' ~ X is called profinite if L>(X) is a limit of an increasing sequence of
finite-dimensional I'-invariant subalgebras of L>°(X).
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amenable relative to P, we have that either Q < P or the normalizer N, (Q)”
stays amenable relative to P.

As in [CIK13, Definition 2.7], we denote by C.ss the class of all non-amenable
relatively strongly solid groups. The class Cyg is quite large. Indeed, by [PV11,
Theorem 1.6], all weakly amenable groups that admit a proper 1-cocycle into
an orthogonal representation weakly contained in the regular representation
belong to Ciss. In particular, the free groups F,, with 2 < n < co belong to
Crss and more generally, all free products A1 * As of amenable groups Ay, A
with [A1] > 2 and |Ag| > 3 belong to Cyss. By [PV12, Theorem 1.4], all weakly
amenable, non-amenable, bi-exact groups belong to Cyss and thus C,¢s contains
all nonelementary hyperbolic groups.

Lemma 2.29. Let T be a group in Cyss and M = P x ' any tracial crossed
product. If Q1,Q2 C pMp are commuting von Neumann subalgebras, then either
Q1 <m P or Q2 is amenable relative to P.

Proof. Assume that Q1 4y P. By [BO08, Corollary F.14], there exists a diffuse
abelian von Neumann subalgebra A C @7 such that A £5; P. Because I' € C,,
we get that Nap(A)” is amenable relative to P. Since Q2 C Nparp(A)”, also
(2 is amenable relative to P. O

From Lemma 2.29, it follows that for groups I in C,g, the centralizer Cr(L)
of an infinite subgroup L < I' is amenable. So, torsion-free groups I' in C,g
have the property that Cr(g) is amenable for every g # e. As a consequence,
torsion-free groups I' in C,g are icc and even have the property that every non-
amenable subgroup L < T is relatively icc in the sense that {hgh™! | h € L}
is an infinite set for every g € I', g # e. Finally note that torsion-free groups
I' in Cyss have no nontrivial amenable normal subgroups. In particular, every
nontrivial normal subgroup of I' is relatively icc.



Chapter 3

Counterexamples to C-rigidity

Recall from the introduction the notion of C-rigidity.

Definition 3.1 ([PV11, Definition 1.4]). A countable group I is called C-rigid
if for any free ergodic pmp action I' ~ (X, i), the associated crossed product
L>°(X) x T has a unique Cartan subalgebra up to unitary conjugacy.

In [PV11], Popa and Vaes gave the first examples of C-rigid groups. In fact,
they provided a rather large class of C-rigid groups, including free groups I,
with n > 2. Since then, more and more groups have been shown to be C-rigid.
On the other hand, there are not a lot of counterexamples to C-rigidity. So far,
all known counterexamples have an infinite amenable almost normal subgroup.

Definition 3.2. Let I' be a countable discrete group. A subgroup A < T'is
called almost normal if gAg=! N A has finite index in A for all g € T.

It is immediate from the definition that a subgroup A < I' is almost normal
if and only if the left translation action A ~ I'/A has finite orbits. A typical
example of a group with an almost normal subgroup is the Baumslag-Solitar
group BS(n,m) = {(a,b | ba"b~! = a™) with n,m € Z\ {0}, where the subgroup
generated by a is almost normal.

In this chapter, we will prove that any group with an infinite abelian almost
normal subgroup is non-C-rigid, up to taking the quotient by a finite normal
subgroup (this work is unpublished). The proof is inspired by [PV09, Example
5.8], where it is shown that any semidirect product group H x G with H infinite
abelian is non-C-rigid.

39
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Theorem 3.3. Let I be a countable discrete group with an infinite abelian
almost normal subgroup A, and let F' = ﬂgEF gAgt.

(1) If F is infinite, then I" is non-C-rigid.
(2) If F is finite, then I'/F is non-C-rigid.

It is a natural question to ask whether I'/F being C-rigid implies that T' itself
is C-rigid, when F' < I is a finite normal subgroup. This is related to the
question whether C-rigidity passes to finite index restrictions/extensions, in the
following sense. Given a finite index inclusion of II; factors N C M, is it true
that IV has a unique Cartan subalgebra if and only if M has a unique Cartan
subalgebra? A priori, there is no reason why such stability properties should
hold true. For instance, if N C M is a finite index inclusion of II; factors and
if A C N is a Cartan subalgebra, there is no reason why A should also be a
Cartan subalgebra of M. In order to get better stability properties, the notion
of Cys-rigidity was introduced in [PV11] (based on work of Ozawa and Popa in
[OP07]). Recall that a subfactor N C M is said to be of finite index if the
Jones index [M : N] = dim_y L*(M) is finite.

Definition 3.4 ([OP07, Proposition 4.12], [PV11, Definition 1.4]). A group I’
is called C-rigid if for any free ergodic pmp action T' ~ (X, u), the 1Ty factor
M = L*(X) x T has the following property:

(a) Every MASA A C M whose normalizer Ns(A)” is a finite index subfactor
of M, is unitarily conjugate to L*°(X).

Clearly, any Cs-rigid group is also C-rigid. In [OP07, Proposition 4.12], it was
proved that the property (a) of Definition 3.4 above is stable under amplifications
and under finite index restrictions/extensions of II; factors.

In [VV14], another strengthening of C-rigidity was introduced, called class C,
this time being stable under group extensions and commensurability!. In order
to define class C, we first need the notion of a virtual core subalgebra. This
plays the role of a generalized Cartan subalgebra in the definition of class C.

Definition 3.5 ([VV14]). A von Neumann subalgebra A C M is called a
virtual core subalgebra if A’ M = Z(A) and if the inclusion Ny (A)” € M has
essentially finite index, in the sense of Definition 5.26.

Definition 3.6 ([VV14, Definition 4.2]). An infinite group T" is said to belong
to class C if for every trace-preserving cocycle action I' ~ (B, 7) and every
amenable virtual core subalgebra A C p(B x I')p, we have that A < B.

ITwo groups are called commensurable if they contain isomorphic finite index subgroups.
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Here, a cocycle action is a map «: I' — Aut(B) together with a 2-cocycle
v: I'x I' = U(B) such that

o, = id, agoap = Advg 0 agh,
Vge = Ve,g = 1, Vg, hVgh ks = Ctg(Vh k) Vg hk, g.hkel.

So far, all known examples of C-rigid groups are also in class C and we have no
tools to distinguish between the notions of C-rigidity, Cs-rigidity and class C.
Indeed, all tools currently available are insensitive to finite index issues.

Using the notion of class C, we get a nicer formulation of Theorem 3.3. We
leave it as an open question whether the same conclusion holds for C,-rigidity
or even C-rigidity.

Corollary 3.7. IfT' is a countable group containing an infinite, abelian, almost
normal subgroup, then T" is not in class C.

Proof. Using Theorem 3.3, it is enough to show that if I" is in class C, then I'/F'
is also in class C for any finite normal subgroup F' < T'.

Assume that T is in class C and let F' < T" be a finite normal subgroup. Let
T'/F ~ (B,7) be an arbitrary cocycle action and put M = B x (I'/F). By
composing with the quotient map, we can lift this to a cocycle action of T’
on (B,7). Put N = BxT. Now, z := \T}qZheF“h € B x T is a central
projection in N, and we have that z(B xT') = B x (I'/F) via the isomorphism
z(bug) — bugp.

Let A C pMp be a virtual core subalgebra. Since M =2 2N, A can be seen as a
virtual core subalgebra of zp/Np. Since I' is in class C, it follows that A <y B
and equivalently A <,; B. O

In the rest of this chapter, we will prove Theorem 3.3. This is done by
constructing an explicit free ergodic pmp action I'/F ~ X such that the
crossed product L>®°(X) x (I'/F) has two Cartan subalgebras that are not
unitarily conjugate. The action I'/F ~ X will be constructed explicitly as a
certain co-induced action.

3.1 Co-induced actions

Let G be a locally compact second countable group and let H be an open
subgroup of G such that H acts on a probability space (X, ). We can “co-
induce” this H-action to an action of G as follows.
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Note that the quotient H\G is countable since H is an open subgroup of G.
Choose a section §: H\G — G such that 0(H) = e and let r: G — H be the
unique map satisfying g = r(g)0(Hg). Note that r(e) = e and r(hg) = hr(g) for
h € H,geG. Wedefine Q: H\G x G — H by Q(Ht,g) = r(t)"r(tg). Then
Q is a 1-cocycle for the action G ~ H\G, in the sense that

Q(Ht, gh) = Q(Ht,9)(Htg. h), g.h,t€G.

A different choice of section @ gives rise to a cocycle cohomologous with €.

The formula
(9-2)ut = QHL, g) - TH1g, z = (Tre)com\a) € XT\C

then gives a well-defined action of G on X*\C called the co-induced action of
H ~ X to G. It is independent of the choice of section, in the sense that a
different choice of section leads to a conjugate action.

It is clear that the co-induced action G ~ XH\C is pmp whenever H ~ X is
pmp. In the case where G is a countable discrete group, the following well-known
lemma gives sufficient conditions for when G ~ XH\E is free and ergodic (even
weakly mixing).

Lemma 3.8. Let ' be a countable discrete group with A < T' a subgroup of
infinite index, and let A ~ (X, u) be a pmp action on a standard probability
space. Then the co-induced action T' ~ X\ is weakly mizing. If the action
A~ X is free, then T ~ X™\U is also free.

Proof. Let Ay,..., A, C X™\I' be Borel sets and let ¢ > 0. We have to find a
g € I' such that

lv(A; NgA;) —v(Aiv(4;) <e, i,j=1,...,n, (3.1)

where v denotes the product measure on X*\I'. We will first assume that the
A;’s are product sets, i.e., A; = [[;cp\r At where A! = X for cofinitely many
t. So, we have a finite subset F C A\I" such that A = X for all ¢ ¢ F and all
1=1,...,n.

Note that gA; = HteA\F Q(t, g) - A;g. Since A\I is infinite, there exists g € T’
such that tg ¢ F for all t € F. Then v(A4; NgA;) = v(A)r(4;) for all
1,7 =1,...,n, proving (3.1) in the case where the A;’s are product sets. In the
general case, we simply approximate the A;’s with product sets, so we conclude
that the co-induced action I' ~ XM is weakly mixing.
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Assume next that A ~ X is free. Denote by Fix(g) the set of fixed points for
g €T, ie., the set of z € X*\I' such that g -2 = . For g € T'\ {e}, we have

Fix(g) = {(w¢)tea\r | Q(t, g) - 21y = x; for all t}

C{(z)tear | Tag = QA g) 7" - 20}

If g € A, then this is a null-set by freeness of the action A ~ X. If g ¢ A, then
this is a null-set by Fubini’s Theorem. We conclude that the action I' ~ XA\I
is free. O

We can also define co-induced actions in the more general setting of tracial
von Neumann algebras. Assume that A < I' are countable groups and that
A ~ (A, 7) is a trace-preserving action. Let AMI = Qtear (4, 7) denote the
infinite tensor product and let 7,: A — AMI t € A\T', denote the embedding
as the t’th tensor factor. Then, the co-induced action I' ~ AMT is defined by

g'ﬂ-At(a) :ﬂ-Atgfl(Q(Atag_l)_l 'a)> CLEA, gGF,

where Q: A\I' x I' — A denotes the cocycle defined above. As in the proof of
Lemma 3.8, one sees that the co-induced action I' ~ A\ is weakly mixing
whenever A has infinite index in T'.

3.2 Proof of Theorem 3.3

Let A < T be an infinite abelian almost normal subgroup. Given a free ergodic
pmp action I' ~ X, we denote by L>®(X)" the subalgebra of A-invariant
functions inside L>(X). Note that A = L>(X)*V L(A) is an abelian subalgebra
of M = L°(X ) xT. The following proposition gives a criterion for when A C M
is a MASA.

Proposition 3.9. Let A < T be an abelian almost normal subgroup and let
' ~ X be a free ergodic pmp action. Take a standard probability space (Y, v)
and a surjective Borel map 7: X — Y such that L>®(Y) =2 L>®(X)® and such
that the inclusion v: L= (Y) < L (X) is given by o(f)(z) = f(7(x)).

Assume that w(g - x) # w(z) for all g € T' — A and for almost every z € X.
Then, A = L>®(X)A Vv L(A) is a MASA of M := L>(X) x T.

Proof. Let b€ A’N M and let b= 3" . bgug with by € L>(X) be its Fourier

decomposition. Then fb, = (g- f)b, for all f € L>°(X)" and all g € I". Hence
Iy, f = 1y, (g - f) where Uy denotes the set U, = {z € X | by(x) # 0}. We
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need to show that p(U,) = 0 for g ¢ A. By our assumption that (g - z) # 7(z)
almost everywhere, we may replace U, with the set

{w € X |bg(w) #0, m(z) # (g™ @)}

Take a separating sequence of non-negligible Borel sets (V,,)neny C Y, ie., for
any x # y in Y, there exists n € N such that x € V,, and y ¢ V,,. Put
V, = 7~ %(V,,) € X. Then V, is a non-negligible and A-invariant subset of
X. Moreover, for any € Uy, we can find n € N such that n(z) € V,, and

w(g7t-x) ¢ V,, ie,z € V, N (g- ‘7”)6- Hence

Up=JUsn Vo (g- Vo).
neN

In order to show that p(U,) = 0, it therefore suffices to show that pu(U, N
VN (g-Vn)¢) = 0 for all n. Above, we saw that 1y, f = 1y, (g - f) for all
A-invariant functions f € L>°(X)A. Since 15 is A-invariant for all n, it follows

that ILUgrﬁn = ILUgmng/n' Hence, u(Uy N Vo N (g Vn)) = 0 for all n so that

mw(Ug) = 0.
We conclude that b, = 0 for all g € I' = A. Moreover, b, is A-invariant for all
g € A since

> bgug =b=upbuj, = > (h-bglug, heA.

geA geA

Hence, b € A and thus A’N M C A. This means that A is maximal abelian. [J

We will prove the two statements (1) and (2) of Theorem 3.3 separately, using
Proposition 3.9.

To prove (1), assume that F:= () gAg~! is infinite. By replacing A with F,
we may assume that A is an infinite abelian normal subgroup of I'. We will also
assume that A has infinite index in I since otherwise, I' would be an amenable
group, which is already known to be non-C-rigid.

Let K be a compact second countable abelian group into which A embeds
densely and assume that the conjugation action a: I' ~ A, ag(s) = gsg~ L,

extends to an action on K. For example, this can be obtained by considering

the embedding ¢: A — TA given by u(s) = (w(s)) 3 and letting K = ((A). We
will consider the action I' ~ KT/ co-induced from the left translation action
A ~ K. This action is free, ergodic and pmp by Lemma 3.8.

Put X = K'/A. Since A is a normal subgroup of ', we can consider A as
a subgroup of X via the embedding A — K'/A given by ¢ — (tgt_l)tep/,\.
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Let A denote the closure of A inside X under this embedding. Note that
A={x € X |za = au(zp) for all t € T'}, where o denotes the extension of the
conjugation action of I' on A. Now, the restricted action A ~ X is simply given

by left multiplication of A, and the set of A-invariant functions in L*°(X) is
equal to L= (X/A).

In order to apply Proposition 3.9, we need to show that the quotient map
m: X — X/A satisfies 7(g - x) # w(x) almost everywhere for all g € I' — A. So,
for fixed g € I' — A, we need to show that

w(lo e X | (g )t e Bp) =0,
Note that (g-x)z~! € A if and only if
QAL 9)znrg(Tar) ™F = ar(Q(A, g)wag(za)") forall ¢t €T.

By Fubini’s theorem, it follows that {x € X | (g-x)z~! € A} is indeed a null-set.

Using Proposition 3.9, we conclude that A := L>°(X)" v L(A) is a MASA in
M :=L>(X)xT.

Next, we will show that A C M is regular. Since A is a normal subgroup of I, we
clearly have that u, normalizes A for all g € I'. Moreover, L>°(X) is generated
by the characters on the group X = K'/A so it is enough to check that these
normalize A. When w is a character on K'/A we have that h-w = w(h™")w
for all h € A, since A acts by left multiplication on K'/A. Hence,

wupw* =w(h - w*)up =w(h)u, € A for all h € A.
We conclude that A is a Cartan subalgebra.

That A is not unitarily conjugate to the canonical Cartan subalgebra L (X)
follows from the fact that A is infinite. Indeed, let h,, € A be a sequence tending
to infinity. For fixed g € T', we then have Ep(x)(up,uy) = 0 for n so large
that h,, escapes {g~'}. Thus it follows from Popa’s intertwining-by-bimodules
theorem, Theorem 2.12, that A £ L*>°(X). Since A and L*>°(X) are Cartan
subalgebras, this means that they are not unitarily conjugate, by Theorem 2.13.

This finishes the proof of Theorem 3.3 (1).

To prove (2), assume instead that F' = ﬂg€F gAg~! is finite. Again, we will
assume that A has infinite index in I'. In order to construct an action I'/F ~ X
satisfying the assumption of Proposition 3.9, we will work with the relative
profinite completion of T with respect to A. This is a construction introduced in
[Sc80] that generalizes the notion of a quotient group by a normal subgroup to
the case of an almost normal subgroup. We start by recalling this construction.
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Denote by Sym(A\I') the group of all permutations of the countable set A\I'
endowed with the topology of pointwise convergence. We have a homomorphism
m: ' = Sym(A\I') induced by right multiplication on A\I'. Note that ker(w) =
Nyer gAg™! = F. Let G denote the closure of 7(I") inside Sym(A\I') and let
K denote the closure of m(A). Then G is a locally compact group called the
relative profinite completion of T' with respect to A. Note that if A is a normal
subgroup of I', then ker 7 = A so that K = {e} and G = T'/A. However, since
we assumed that F' is finite, we have that ker m # A so that K is nontrivial.

Lemma 3.10 ([Sc80]). Let K < G be as above. Then K is a compact, open,
almost normal subgroup of G. Moreover, the map A\I' — K\G given by
Ag — Kn(g) is a bijection.

Proof. Let A\, € A be any sequence and let {x1,...,2r} C A\ be a finite set.
Since the right action A ~ A\T has finite orbits, the set {m(A,)x1 }nen is finite.
So, we can choose y; € A\I' such that Ny := {n € N | 7(\,)z1 = y1} is an
infinite set. Inductively, we get y1,...,yr € A\I' and an infinite set Ny C N
such that 7(Ap)z; = y; for all i = 1,...,k and all n € Nj. This means that
the sequence (7(An))nen has an accumulation point. We conclude that 7(A) is
precompact and hence K is compact.

Next, note that for ¢ € G, we have that ¢ € K if and only if ¢(A) = A. Hence
K is open inside G. It now follows that K N gKg~" is an open subgroup of the
compact group K for all g € G, hence of finite index. This means that K is
almost normal in G.

Finally, we show that the map A\I' = K\G: Ag — K= (g) is bijective. Assume
that Km(g) = Kn(h) for g,h € T. Then 7(gh™1)(A) = A so that Ag = Ah.
Thus, the map Ag — Kn(g) is injective. To show surjectivity, let ¢ € G be
arbitrary and take a sequence (g, )neny C I such that m(g,) — ¢. Since K is
open, we have that 7(g,)¢~! € K for n large enough. But this means that
Ko = Kn(gn)- O

We will consider the action of I' on X := K*\I' co-induced from the translation
action A ~ K given by A-k =nw(\)k, A € A, k € K. This is an ergodic pmp
action by Lemma 3.8, but not necessarily free since m need not be injective.
However, as in the proof of Lemma 3.8, we see that if Fix(g) has positive
measure, then g must belong to ker m = F'. So, by taking the quotient with the
finite normal subgroup F', we get a free ergodic pmp action I'/F ~ X. Note
that I'/F' still has an infinite abelian almost normal subgroup, namely A/F. So,
we may replace I' with I'/F and assume that F is trivial so that ' ~ X is a
free ergodic pmp action.
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Put M = L*°(X) x T and let A C M be the subalgebra generated by L(A) and
the A-invariant functions L>(X)", as in Proposition 3.9. We will show that A
is a Cartan subalgebra of M that is not unitarily conjugate with L*°(X).

In order to show that A is a Cartan subalgebra, we will also consider the
action G ~ K¥\G co-induced from the left translation action K ~ K. Since
A\TI' = K\G via the bijection Ag — Kn(g), we get that the action of T' on K\I
is just the composition of 7: I' = G and the co-induced action G ~ KX\ ie.,

g-z=m(g) -z for gel, z e KM = KK\,

We first show that the co-induced action G ~ K®\C is free, in the sense that
{x € K¥\¢ | Stabg(z) = {e}} has measure 1. Here, Stabg(x) denotes the
stabilizer subgroup of G, i.e.,

Stabg(z) :={g€ G| g -z =z}
Lemma 3.11. The action G ~ K¥\G | co-induced from the translation action

K ~ K, is free.

Proof. Let : K\G — G be a section with §(K) = e and let r: G — K be the
unique map satisfying g = r(g)0(Kg). Let Q: K\G x G — K be the associated
1-cocycle. Recall that the co-induced action is defined by the formula

(9 2)xt = QKL g)  Tkig, g€G, = (zxi)rer\c € KX\

Clearly, K ~ K¥\C is free since (k- x)x = kxg for k € K, x € KX\¢. We
proceed by showing that the action is free on every right coset, i.e., that the set
U, :={z € KK\ | g-x € K -z} has measure zero for all g € G — K.

Fix g € G— K. First, note that if g-x = k- x for some k € K, then k is uniquely
determined from g and x by the formula k = (¢9- ) g2 " = r(g)zx o) . Hence

Ug={z € KK\G | xKx;(;r(g)*lg cx=ux}.
To show that this set has measure zero, we will consider the sets
Upe={x € KE\C |ag =k, a2, =0 and k0 'r(g) lg -z =z}

for fixed k,¢ € K. To show that U, has measure zero, it is by Fubini’s Theorem
enough to show that Uy has measure zero for all k,¢ € K, when considered as
a subset of KK\G—{K.Kg}

Fix k,¢ € K and put h = kl~'r(g)"'g. Note that Kh = Kg. If z € Uy 4, then

TKt = (h . I‘)Kt = Q(Kt, h)l’[{th for all t € G.
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In particular, xgp2 = Q(Kh, h)~1¢ which means that the Kh? coordinate is
completely determined for all z € Uy . Thus if Kh? ¢ {K, Kg}, we get that
Uk C KF\G—{K.Kg} has measure zero as wanted.

It remains to check what happens if Kh? € {K, Kg}. Clearly, we cannot have
that Kh? = Kh since h ¢ K, so we assume that h? € K. Fix t € G such that
Kt ¢ {K,Kg}. Then also Kth ¢ {K,Kg} since Kg= Kh = Kh~'. Note that
Uke C{z | xxe = Q(Kt,h)xge}- This is a null-set in KE\G—{K.Kg} gince
both Kth and Kt do not belong to {K, Kg}. If Kt = Kth, then Q(Kt, h) # e,
so that Uy ¢ is even empty in this case.

We conclude that U, is indeed a null-set. To finish the proof, we simply note
that

{z € KK\C | Stabg(z) # {e}} = U {z | Stabg(x) N Kg # {e}}
KgeK\G

= U U,

KgeK\G

Since K\G is countable, we conclude that the action G ~ K¥\C is free. [

The following folklore lemma is a key ingredient in our argument. It states that
we can identify the action K ~ K¥\G with a translation action K ~ K x Y.
A complete proof can be found in [MRV13].

Lemma 3.12 ([MRV13, Lemma 10]). Let K be a compact second countable
group and let K ~ (X, ) be a free pmp action on a standard probability space
(X, u). Denote by m the Haar measure on K. There exists a standard probability
space (Y,n) and a Borel isomorphism

0: K xY — {z € X | Stabg (z) = {e}},

such that 0.(m x n) = p and such that 8(kh,y) = k- 0(h,y) for all k,h € K,
yeyY.

Using this identification, we can identify the A-invariant functions of L™ (K¥\%)
with 1x ® L*(Y). Denote by py: K x Y — Y the projection onto the Y-
coordinate. In order to apply Proposition 3.9, we need to show that the map
p:=py o 07! satisfies p(g - x) # p(x) for all g € ' — A and almost all z € X.

Fix g € I' = A and put Xo = {z € X | Stabg (z) = {e}}. Given z € X, write

0" (x) = (k,y) and 0" (g-z) = (k,§) with k,k € K and y,g € Y. If y = 3,
then kk—m(g~!) o = x. Since g ¢ A, this implies that stabg(z) # {e}. So, we
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have shown that

fw € Xo | plg-) = ple)} C {x € X | stabg(x) # {e}}.

Since the action G ~ X is free, by Lemma 3.11, it follows that {z € X |
plg-x) = p(x)} is a null-set. So, I' ~ X satisfies the assumption in Proposition
3.9 and we conclude that A C M is a MASA.

Next, we show that A C M is regular. Since A is a MASA it is enough to show
that the quasi-normalizer of A generates M, by [PS03, Theorem 2.7].

The quasi-normalizer QN 1 (A) of A inside M is defined to be the set of elements
x € M for which there exist finitely many elements z1,...,Tn,Y1,---,Ym € M
such that

A C iAxi and Az C iyjA.

i=1 j=1

The fact that A is an almost normal subgroup of I' easily implies that v, €
ON 1 (A), as shown in the following lemma.

Lemma 3.13. For every g € ', we have that ug € ON p(A).

Proof. Fix g € T'. Since A is almost normal, there exist finitely many elements
G1s---,9n € I such that gA C J;—; Ag;. Then

ugA C S Aug L¥(X)N = 37 AL (X)9A9 .
=1

i=1

By Lemma 3.14, we also have (f;)7; C L>(X) such that

LX) A < ST L(X)Af; forall i=1,...,n.
j=1
It follows that we have a finite set of elements x1,...,xny € M such that
ugA C Zf\;l Ax;. Similarly, one finds a finite set of elements y1,...,yx € M
such that Au, C 2?21 y;A. O

Lemma 3.14. Let T ~ (X, u) be a free pmp action of a countable group T' on
a standard probability space X. Assume that A < T' is a normal subgroup of
finite index. Then L>(X)' has finite index in L>(X)™, in the sense that there
exist finitely many functions (fi)7_, C L>®(X)™ such that

L (X)A ¢ zn:LDO(X)Ffi.
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Proof. Since A is a normal subgroup of I', we have an action of I'/A on L™ (X)".
Write L>(X)A = L>(Y) for some standard probability space Y. Since I'/A is
finite, we can partition Y into finitely many Borel sets Y7, ...,Y,, C Y such that
each Y; contains exactly one element from each orbit of the action I'/A ~ Y.

We claim that the functions f; = 1y, € L>®(Y), i = 1,...,n, will do the job.
Indeed, for any Borel subset B C Y, we have that

n n n
]1B = Z ]lBﬂYi = Z ]lF-(BﬁYi)ﬂYi S ZLOO(Y)F]CZ
i=1 i=1 im1

Since L>®(Y) = L>(X)" and L= (Y)!' = L>°(X)", this finishes the proof. [
Lemma 3.15. The subalgebra A C M is reqular.

Proof. Since A C M is a MASA, we have that NV (A)” = QN p(A)” by [PS03,
Theorem 2.7]. It follows from Lemma 3.13 that u, € Ny (A)”.

Using the identification K*\' = K x Y from Lemma 3.12 and using the fact
that L>°(K) is generated by the characters on K, we see that L>°(KM\) =
L>°(K xY) is generated by the unitaries w of the form

wk,y) =x(k)fly), keK,yeY,

where x is a character on K and f is a unitary in L°°(Y"). These unitaries
normalize A since

wupw® =w(h - w*)up, = x(h)up for all h e A.
So, we have that L>®(K*\I') € Ny (A)”. We conclude that Ny (A) = M. O
We have now shown that A C M is a Cartan subalgebra. Exactly as in the

proof of (1), we see that A is not unitarily conjugate with L°°(X). This finishes
the proof of Theorem 3.3.



Chapter 4

A class of 1l factors with
exactly two group measure
space decompositions

This chapter is based on my joint publication with Stefaan Vaes [KV15], in
which we construct examples of II; factors with a prescribed number of group

measure space decompositions. As stated in the introduction, we will here prove
Theorem A.

Theorem A. (1) For every integer n > 0, there exist I} factors M that have
exactly 2™ group measure space Cartan subalgebras up to unitary conjugacy.

(2) For every integer n > 1, there exist II; factors M that have exactly n group
measure space Cartan subalgebras up to conjugacy by an automorphism of
M.

The II; factors M in Theorem A are concretely constructed as follows. Let T’
be any torsion-free nonelementary hyperbolic group and let 8: I' ~ (Ag, 70)
be any trace-preserving action on the amenable von Neumann algebra (Ao, 79)
with Ay # C1 and Ker3 # {e}. We denote by (Ao, 7)", or simply Af,
the infinite tensor product @ (Ao, 79) as defined in Section 2.1.6. We then
define (A,7) = (Ao, 70)" and consider the action o: I' x I' ~ (A, 7) given by
o(g,n)(Tr(a)) = Tgpp—1(Bu(a)) for all g,h,k € T and a € Ay, where 71,: Ag — A
denotes the embedding as the k’'th tensor factor. Note that ¢ can be seen as
the co-induced action of 5: I' ~ Ag to I' X I', when viewing I' as the diagonal
subgroup of I' x T'.

51
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Our main result describes exactly all group measure space Cartan subalgebras
of the crossed product M = AL x (I' x T).

Theorem 4.1. Let M = A} x (I x ') be as above. Up to unitary conjugacy,
all group measure space Cartan subalgebras B C M are of the form B = B}
where By C Ag is a group measure space Cartan subalgebra of Ay with the
following two properties: By(Bo) = By for all g € T and Ay can be decomposed
as Ag = By X Ao with Bg(Ag) = Ag for all g € T.

In Section 4.4, we actually prove a more general and more precise result, see
Theorem 4.7. In Section 4.5, we give concrete examples and computations, thus
proving Theorem A (see Theorem 4.24).

Our method relies on a technique of [PV09], using the so-called dual coaction
that is associated to a group measure space decomposition. Given a II; factor
M as in Theorem 4.1 and an arbitrary group measure space decomposition
M = B x A, we can associate a dual coaction, i.e., a normal x-homomorphism
A: M — M® M given by A(bvs) = bus ®v, for all b € B, s € A. By classifying
all possible such embeddings A: M — M ® M in terms of the initial structure
of M = Af x (I' x T'), we are able to relate the “mysterious” decomposition
M = B x A with the “original” decomposition M = Af x (I' x I'). This allows
us to classify all possible group measure space decompositions M = B x A.

Let us give a brief outline of the proof of Theorem 4.1. Given a II; factor M
as in Theorem 4.1 and given the dual coaction A: M — M ® M associated
with an arbitrary group measure space decomposition M = B x A, Popa’s key
methods of malleability [Po03] and spectral gap rigidity [Po06b] for Bernoulli
actions allow to prove that A(L(T' x I')) can be unitarily conjugated into
M ® L(I' x T'). An ultrapower technique of [Iol1], in combination with the
transfer-of-rigidity principle of [PV09], then shows that the “mysterious” group
A must contain two commuting non-amenable subgroups A1, As. Note here that
the same combination of [Iol11] and [PV09] was used in [CdSS15] to prove that
if 'y, T'y are nonelementary hyperbolic groups and L(T'y x ') & L(A), then A
must be a direct product of two non-amenable groups. Once we know that A
contains two commuting non-amenable subgroups A1, A3, we use a combination
of methods from [Io10] and [IPV10] to prove that A;jA; C T" x I'. From that
point on, it is not so hard any more to entirely unravel the structure of B
and A. Throughout these arguments, we repeatedly use the crucial dichotomy
theorem of [PV11, PV12] saying that hyperbolic groups I are relatively strongly
solid: in arbitrary tracial crossed products M = P x I, if a von Neumann
subalgebra Q C M is amenable relative to P, then either () embeds into P, or
the normalizer of @) stays amenable relative to P.
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4.1 Properties of the dual coaction

Let M = B x A be any tracial crossed product von Neumann algebra and
denote by {vs}sea the canonical unitaries. To such a crossed product, we can
associate a normal x-homomorphism A: M — M ® M called the dual coaction,
defined by A(bvs) = bvs @ v, for all b € B and s € A.

The following elementary lemma states that the only subalgebras A C B x A
that are invariant under A are the ones coming from the crossed product
decomposition.

Lemma 4.2. A von Neumann subalgebra A C B x A satisfies A(A) C A® A if
and only if A = By % Ay for some von Neumann subalgebra By C B and some
subgroup Ao < A that leaves By globally invariant.

Proof. Let a € A and write a = ) _, asvs with as € B. Fix s € A such that
as # 0 and define the normal linear functional w on B x A by w(x) = 7(zvial).
Then (w® 1)A(a) = ||las||3vs. Since A(a) € A® A, it follows that vy € A.
Similarly, we define a linear functional p on B x A by p(z) = 7(zv?). Then
(1®p)A(a) = asvs € A and it follows that as € A. Since this holds for all s, we
conclude that A = By x Ag where By = ANBand Ag ={s€ A |vs€ A}. O

The proof of the next result is almost identical to the proof of [IPV10, Lemma
7.2(4)]. For the convenience of the reader, we provide all details.

Proposition 4.3. Assume that (B, T) is amenable. If Q C M is a von
Neumann subalgebra without amenable direct summand, then A(Q) is strongly
non-amenable relative to M & 1.

Proof. We first prove that the (M ® M )-M-bimodule

M®M (LQ(M ®M) ®

L2(M&@ M
M1 (Mg ))A

(M)
is weakly contained in the coarse (M ® M)-M-bimodule. Denoting by o: M ®

M — M ® M the flip automorphism, this bimodule is isomorphic with the
(M ® M)-M-bimodule

wan (M & M ® M) jageyane) -

So, it suffices to prove that the M-M-bimodule rrg1L? (M & M) is weakly
contained in the coarse M-M-bimodule. Noting that this M-M-bimodule is
isomorphic with a multiple of the M-M-bimodule »;(L*(M) ®p L*(M)) ,,, the
result follows from the amenability of B.
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Assume now that A(Q)g is amenable relative to M ® 1 for some nonzero
projection ¢ € A(Q)' N M ® M. By the bimodule characterization of relative
amenability (see Proposition 2.11), this means that ¢L?(M @ M)q is weakly
contained in qL?(M @ M) @01 L (M ® M)q as ¢(M ® M)q-A(Q)g-bimodules.

Take z € @ such that A(z) is the support projection of Ex(g)(¢). Then z is a
nonzero central projection in (). We will prove that @)z is amenable and thereby
reach a contradiction.

Clearly, A embeds the trivial Qz-bimodule into the A(Q)-bimodule L?(A(Qz)).
By Lemma 2.9 (2), it follows that the trivial Qz-bimodule is contained in

A@ L (M ® M)qa(q)-

By our relative amenability assumption and the fact that ¢ < A(z), it follows
that the trivial QQz-bimodule is weakly contained in

A(Q)(A(Z)L2(M®M) @M1 LQ(M@M)A(Z))A(Q).
By the first part of the proof, this bimodule is weakly contained in
A@ AL (M E M) ® L*(M)z)q,
which is weakly contained in the coarse Qz-bimodule by Lemma 2.9 (1).

We conclude that the trivial QQz-bimodule is weakly contained in the coarse
(Qz-bimodule and hence )z is amenable. O

4.2 Transfer of rigidity

Fix a trace-preserving action A ~ (B, ) of a countable discrete group A and
put M = B x A. We denote by {vs}sea the canonical unitaries in L(A) C M.
Whenever G is a family of subgroups of A, we say that a subset F' C A is small
relative to G if F' is contained in a finite union of subsets of the form gXh where
g,h € A and ¥ € G (see [BOO8, Definition 15.1.1]).

Following the transfer of rigidity principle from [PV09, Section 3], we prove the
following theorem.

Theorem 4.4. Let A ~ (B, T) be a trace-preserving action and put M = B x A.
Let A: M — M ® M be the dual coaction given by A(bvs) = bus ® vs for
be B,se A. Let G be a family of subgroups of A. Let P,Q C M be two von
Neumann subalgebras satisfying

(1) A(P) -<M§M M®Q7
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(2) PAy BxX forall¥ eg.

Then there exists a finite set x1,...,x, € M and a § > 0 such that the following
holds: whenever F C A is small relative to G, there exists an element sp € A—F
such that

n
> 1B (wwseap) |15 > 6
i,k=1

Proof. Since A(P) <z M @ Q, we can find a finite set 21,...,2, € M and
p > 0 such that

S [ Eyso (1ee)Aw) A @a)) |32 p forall weU(P).
ik=1

Given a subset F' C A, we denote by Pr the orthogonal projection of L?(M)
onto the closed linear span of {bv, | b € B,s € F}. Since P £Aj; B x X for all
¥ € g, it follows from [ValO, Lemma 2.4] that there exists a net of unitaries
(wj)jes C U(P) such that ||Pr(w;)[2 — 0 for any set /' C A that is small
relative to G. For each j € J, write w; = )\ wivs with w) € B and compute

n 2

Y IBygo (L@ z)A@w) (@) l5= )

ik=1 ik=1

Z wiv, @ Eg(ivsx})
seA

2

n
Yo D Il IEq i) -

i,k=1seA

We now claim that the conclusion of the theorem holds with 6 = £. Indeed,
assume for contradiction that there exists a subset F' C A that is small relative
to G such that

n
Z |Eg (zvsx}) |3 <8 forall s€ A—F.
i,k=1

)

Put K = max{||z;||?||z}]3 | z' k = 1,...,n} and choose jo € J such that
| P (w))|I3 =D ,cp w3 < ;722 for all J > jo. We then get for j > jo

p<d > Il IBo(wivszi)l3

seN i, k=1
< 2K 7|2 izs< PP
<Ky wllz+ D Ilwlll3 <31t35>
seF sEAN—F

which is a contradiction. O
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4.3 Embeddings of group von Neumann algebras

Following [I010, Section 4] and [IPV10, Section 3|, we define the height hr of
an element in a group von Neumann algebra L(I') as the absolute value of the
largest Fourier coefficient, i.e.,

hr(x) = sup |7 (2vuy)| for x € L(T).
g€er

Whenever G C L(I'), we write
hr(G) = inf{hr(z) | z € G} .

In the following, we will view ' as a subgroup of U(L(T")) by identifying T’ with
the canonical unitaries {uy}4er C L(I'). Note that hp(I') = 1.

When T is an icc group and A is a countable group such that L(A) = L(T")
with Ar(A) > 0, it was proven in [IPV10, Theorem 3.1] that there exists a
unitary u € L(T') such that «TAu* = TT'. We need the following generalization.
For this, recall that a unitary representation is said to be weakly mizing if
{0} is the only finite-dimensional subrepresentation. Also recall the equivalent
characterizations of weak mixing from Proposition 2.17.

Theorem 4.5. Let T' be a countable group and p € L(T') a projection. Assume
that G C U(pL(T)p) is a subgroup satisfying the following properties.

(1) The unitary representation {Adv},eg on L?*(pL(T)p © Cp) is weakly
mizing.

(2) IfgeT and g # e, then G" £ L(Cr(g)).
(3) We have hr(G) > 0.

Then p =1 and there exists a unitary u € L(T') such that uGu* C TT.

Proof. Write M = L(T") and denote by A: M — M ® M: A(ug) = ug ® u,
the comultiplication on L(I"). We first prove that the unitary representation
on L2(A(p)(M ® M)A(p) © A(Cp)) given by {Ad A(v)},eg is weakly mixing.
To prove this, assume that H C L2(A(p)(M ® M)A(p)) is a finite-dimensional
subspace satisfying A(v)HA(v*) = H for all v € G. Writing P = G”, it follows
that the closed linear span of HA(pMp) is a A(P)-A(pMp)-subbimodule of
L?(A(p)(M & M)A(p)) that has finite right dimension. By [IPV10, Proposition
7.2] (using that P £ L(Cr(g)) for g # €), we get that H C A(L?(pMp)). Since
the unitary representation {Adv},eg on L?(pMp © Cp) is weakly mixing, we
conclude that # C CA(p).
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Using the Fourier decomposition v = - (v)gug, We get for every v € G that

(v ® A@)(AW) @v7) =Y [(v)g]* = hr(v)* > hr(G)*.

gel

Defining X € M ® M ® M as the element of minimal || - ||2 in the weakly closed
convex hull of {(v ® A())(A(W)* ®v*) | v € G}, we get that 7(X) > hp(G)?,
so that X is nonzero, and that (v ® A(v))X = X(A(v) @ v) for all v € G. Also
note that (p ® A(p))X = X = X(A(p) ® p). By the weak mixing of both Adwv
and Ad A(v), it follows that X X* is multiple of p ® A(p) and that X*X is a
multiple of A(p) ® p. We may thus assume that

XX"=p®A(p) and X' X =A(p)®@p.

Define Y = (1® X)(X ®1). Note that Y € M @ M ® M ® M is a partial
isometry with YY* =p®@p® A(p) and Y*Y = A(p) ® p® p. Also,

Y=wovAWw)Y(A(w)* @v* ®@v*) forall veg.

Since Y is nonzero, it follows that the unitary representation £ — (v ® v)EA(v*)
of G on the Hilbert space (p ® p)L?(M ® M)A(p) is not weakly mixing. We
thus find a finite-dimensional irreducible representation w: G — U(C") and a
nonzero Z € M, 1(C) @ (p® p)L*(M ® M)A(p) satisfying

(wh)@vev)Z =ZA(w) forall veg.

By the weak mixing of Adv and Ad A(v) and the irreducibility of w, it follows
that ZZ* is a multiple of 1 ® p ® p and that Z*Z is a multiple of A(p). So,
we may assume that ZZ* = 1® p ® p and that Z*Z = A(p). It follows that
Z*(M,(C) ® p® p)Z is an n2-dimensional globally {Ad A(v)},ecg-invariant
subspace of A(p)(M & M)A(p). Again by weak mixing, this implies that n = 1.
But then, since 7(ZZ*) = 7(Z*Z), we also get that p=1. So, Z€ M ® M is a
unitary operator and w: G — T is a character satisfying w(v)(v ® v)Z = ZA(v)
for all v € G.

Denoting by o: M ® M — M ® M the flip map and using that c o A = A, it
follows that Zo(Z)* commutes with all v ® v, v € G. By weak mixing, Zo(Z)*
is a multiple of 1. Using that (A ®id)o A = (id® A) o A, we similarly find that
(Z®1)(A®id)(Z) is a multiple of (1® Z)(id ® A)(Z). By [IPV10, Theorem
3.3], there exists a unitary v € M such that Z = (v* @ u*)A(u). But then,

A(uvu”) = w(v) wou” @ uou”  forall veg.

By [IPV10, Lemma 7.1], this means that uwou* € TT for every v € G. O
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We end this section with some easy observations regarding the height hAr. Note
that we can also define the height inside an amplification of a group von
Neumann algebra L(I")" := M,,(C) ® L(I") by the formula

he([zig]ij=1) = | max hre(zy), i € L),

3,7=1,...,
where we identify elements of L(I")™ with n X n-matrices over L(I").

The following lemma shows that the property of having height bounded away
from zero is preserved under conjugacy by a partial isometry.

Lemma 4.6. Let v € M; ,,(C) ® L(T') be a nonzero partial isometry and put
p=wvv* € L(T). Given a bounded subset G C pL(T")p, we have that hr(G) > 0
if and only if hE(v*Gv) > 0.

Proof. Assume that there is a sequence (zx)reny C G such that hp(zp) — 0.
Since G is bounded, we may assume that ||zx|| < 1 for all k.

Write v = (v1,...,v,) with v; € L(T') and let v; = Eger(vi)gug be the
Fourier decompositions. We also write x; in its Fourier decomposition x; =
> ger(@k)gug. Then,

n n
viTRY = Z VI TRY; ® ey = Z Z (Vi) g(@k) gsn-1 (V) nts @ €45

i,7=1 i,7=1s,g9,h€T

and hence

ht(v'ziv) = max sup Z (vi)g(@r) gsh—1 (V5)n]-
5,j=1,....;n g gher

Let € > 0 be given and choose a finite set F' C I' such that }_ . p |(vi)g|? < %
for alli,5 =1,...,n. Then choose N € N such that hp(zy) < ﬁ for k> N.

For any s € T and any ¢,j € {1,...,n}, we have
|3 @slen)g o] < D2 hrle) +| D0 Wg@r)y (v
g,hel g,heF g¢ F,hel’

+’ > (vi)g(ﬂﬁk)gflsh(vj)h’. (4.1)

gEF,h¢F

We claim that each of the three terms occurring in this expression are smaller
than § when k > N. This is clear for the first term, by our choice of N. For

the second term, note that > o p ,cp (Vi)g(2k)g-15n(v))n is a Fourier coefficient
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of the element (1 — Pr)(v})xv;, where Prp € B(¢%(T)) denotes the orthogonal
projection onto the linear span of {u, | g € F'}. Therefore,

. €
> (W)g(ﬂ«"k)gflsh(vj)h’ < I = Pr)(vi)zrvjllz < gllzwllllosll <
g¢F,hel’

€
3

Similarly, one shows that the third term in (4.1) is smaller than £. From (4.1),
it now follows that

hi(v*zrv) = max sup Z (vi)g(@k)g-15n(vj)n| <€ for k> N.
4,5=1,...,n g gher

We conclude that A (v*Gv) > 0 implies Ar(G) > 0. The other implication is
shown analogously, using that v(v*Gv)v* = pGp = G. O

4.4 Proof of Theorem 4.1

Theorem 4.1 is an immediate consequence of the more general Theorem 4.7 that
we prove in this section. In order to make our statements entirely explicit, we
define a group measure space (gms) decomposition of a tracial von Neumann
algebra (M, 7) to be any pair (B, A) where B C M is a maximal abelian von
Neumann subalgebra and A C U(M) is a subgroup normalizing B such that
M = (BUA)" and Eg(v) =0 for all v € A\ {1}. This of course amounts to
writing M = B x A for some free and trace-preserving action A ~ (B, 7).

We then say that two gms decompositions (B;, A;), i = 0,1, of M are

e identical if By = By and TAg = TAq;

« unitarily conjugate if there exists a unitary u € U (M) such that uBou* =
By and uTAgu* = TAq;

e conjugate by an automorphism if there exists an automorphism 6 €
Aut(M) such that 0(Bg) = By and 6(TAg) = TA;.

Recall from Section 2.6 the class C,ss consisting of all non-amenable relatively
strongly solid groups.

Theorem 4.7. Let ' be a torsion-free group in the class Crss. Let (Ao, 7o)
be any amenable tracial von Neumann algebra with Ag # C1 and B: T ~
(Ao, T0) any trace-preserving action such that Ker 8 is a nontrivial subgroup of
L. Define (A, 1) = (Ao, m0)' and denote by m: Ag — A the embedding as the
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k’th tensor factor. Define the action o: ' xT' ~ (A, T) given by oy py(mx(a)) =
Takh—1(Bn(a)) for all g,k,h €T and a € Ag. Denote M = A x (I' x I).

Up to unitary conjugacy, all gms decompositions of M are given as M = B x A
with B = B and A = ASF) X (T'xT) where Ag = By xAg is a gms decomposition
of Ay satisfying Bq(Bo) = By and Bq(Ag) = Ag for all g€ T.

Moreover, the gms decompositions of M associated with (By, Ag) and (B1, A1)
are

(1) wnitarily conjugate iff (Bo, Ao) is identical to (By,A1);

(2) conjugate by an automorphism of M iff there exists a trace-preserving
automorphism 0y: Ay — Ay and an automorphism ¢ € Aut(I') such that
HO(BO) = By, 90(TAO) =TA, and 0y o 69 = 5¢(g) 06y fOT’ all g € T.

In Proposition 4.20 at the end of this section, we discuss when the Cartan
subalgebras B = B} are unitarily conjugate and when they are conjugate by
an automorphism of M.

First, let us show that the decompositions M = B x A arising from [S-invariant
gms decompositions of Ay as in Theorem 4.7 are indeed gms decompositions of
M.

Proposition 4.8. Let M = A x (I' x I') be as in Theorem 4.7 and let Ay =
By x A be a gms decomposition of Ag satisfying Be(Bo) = Bo and Bg(Ao) = Ao
forallgeT. Put B= B} andA:AéF) X (I'xT). Then M = B x A is a gms
decomposition of M.

Proof. Assume that (By, Ag) is a gms decomposition of Ag satisfying (,(Bo) =
By and f4(Ag) = Ap for all g € T. Then, {fy}ger defines an action of T’
by automorphisms of the group Ag. We can co-induce this to the action of
I’ x I by automorphisms of the direct sum group A(()F) given by (g, h) - mx(v) =
Tgkh-1(Br(v)) for all g, h, k € T and v € Ay, where 7 : Ag — A(()F) denotes the
embedding as the k’th direct summand. Putting B := B} and A := Aér) x(I'xT),
we have found the crossed product decomposition M = B x A. It remains to
check that the action o: A ~ B is free. So, we need to show that for all b € B
and all s € A\ {e}, we have that

br =og4(x)b forall ze B = b=0. (4.2)

To prove this, let s = (s;)ier(g, h) € A\ {e}, where (s;)ier € Aér) and (g,h) €
I' x I'. Since Ag ~ By is free, clearly also Aér) ~ B} is free. So, if s € A(()F)
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we are done. Assume therefore that (g,h) # (e,e) and let b € B\ {0}. Let
0<e< % and choose a finite set 7 C I" and by € B such that |[b—bg|2 < €.
Assume that bx = o4(x)b for all x € B. Then ||bpx — os(x)bgl|2 < 2¢||x| for all
x € B. Let t € T be such that t ¢ F U g ' Fh and such that ¢ # gth~!. We can
do this because I is icc and either g # e or h # e. Put z = m(u) € B, where
u € U(By) is a unitary with 7(u) = 0. Then

[box — os(z)boll2 = [|boll2llme(u) = Tgn-1(sgen-1 - Bg(u))ll2
= 2|lboll2 = 2([[bl]2 — €) > 2e,

a contradiction. Hence (4.2) holds and the action o: A ~ B is free. O

In the rest of this section, we prove Theorem 4.7. So, we fix a group T'
and an action o: I' x I' ~ A as in the formulation of the theorem. We put
M=Ax (T xT).

We first prove the following lemma, which allows us to control commuting non-
amenable subalgebras of M. The proof relies on Popa’s spectral gap rigidity
for Bernoulli actions, generalized to the setting of co-induced actions such as o.
We provide a full proof of these generalizations in Appendix A.

Lemma 4.9. Let (N,7) be a tracial factor and let Q1,Q2 C N ® M be
commuting von Neumann subalgebras that are strongly non-amenable relative to
N ® 1. Then Q1 V Q2 can be unitarily conjugated into N @ L(T' x ).

Proof. Since A is amenable, we get that ()7 and @2 are strongly non-amenable
relative to N ® (A x L) whenever L < I" x I is an amenable subgroup. For
every g € I', we denote by Stab g C I' x I the stabilizer of g under the left-right
translation action I' x I' ~ T'. We also write Stab{g, h} = Stab g N Stab h.

We start by proving that Q2 A N ® (A x Stabyg) for all g € T'. Assume the
contrary. Whenever h # g, the group Stab{g,h} = Cr(h~!g) is amenable
since I' is torsion-free and in class Ciss. By Proposition 2.16 it follows that,
Q2 £ N®(AxStab{g, h}). Also by Proposition 2.16, along with [Va07, Remark
3.8], we can take projections ¢ € Q2 and p € N ® (A x Stab g), a nonzero partial
isometry v € ¢(N ® M)p and a normal unital *-homomorphism

0: gQ2q — p(N ® (A x Stabg))p

such that xv = vf(z) for all z € ¢Q2¢ and such that, inside N ® (4 x Stab g),
we have that 6(¢qQ2q) is non-amenable relative to N ® A and we have that
0(qQ2q) A4 N ® (A x Stab{g, h}) whenever h # g.
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Write P := 0(qQ2q) Np(N@M)p. By Lemma A.4, P C p(N®(AxStabg))p. In
particular, v*v € p(IN ® (A x Stab ¢g))p and we may assume that v*v = p. Since
Stabg = T', we have Stabg € C,ss and Lemma 2.29 implies that P < N ® A.
Conjugating with v and writing e = vo* € (Q5 N (N ® M))q, we find that
e(@yN(N®M))e < N® A. Since Q1 C Q5N (N ® M), it follows that
Q1 < N ® A. By Proposition 2.16, this contradicts the strong non-amenability
of @1 relative to N ® A. So, we have proved that Q2 £ N ® (A x Stabg) for
allg eT.

Since @1 is strongly non-amenable relative to N ® A and since Q2 A N ® (A %
Stab g) for all g € T, it follows from Theorem A.2 that u*Qsu C N ® L(T x I)
for some unitary u € N ® M. Since u*Qou £ N ® L(Stabg) for all g € T, it
follows from Lemma A.4 that also u*Qiu C N @ L(I' x T"). This concludes the
proof of the lemma. O

We now also fix a gms decomposition M = B x A. We view A as a subgroup of
U(M) and denote by A: M — M ® M the associated dual coaction given by
A(b)=b®1forallbe B and A(v) =v®wv for all v € A.

Lemma 4.10. Writing Q1 = L(T x {e}) and Q2 = L({e} x T'), we have
A(Q2) <pysm M @ Qi for either i =1 ori =2.

Proof. By Proposition 4.3, A(Q1) and A(Q2) are strongly non-amenable relative
to M ® 1. So by Lemma 4.9, we can take a unitary v € M ® M such that

U*A(Ql V QQ)’U C M@L(F X F) .

We therefore have the two commuting subalgebras v*A(Q1)v and v*A(Q2)v
inside M ® L(T’ x I'). If v*A(Q1)v was amenable relative to both M ® Q; and
M ® @2, then it would be amenable relative to M ® 1 by [PV11, Proposition
2.7], which is not the case. Hence v*A(Q1)v is non-amenable relative to either
M® Q1 or M ® Q2. Assuming that v*A(Q1)v is non-amenable relative to
M ® Q1, Lemma 2.29 implies that A(Q2) < M ® Q1. O

In the following three lemmas, we prove that A contains two commuting non-
amenable subgroups Aj, As < A. The idea is as follows. Lemma 4.10 shows
that essentially, A(Q1) C M ® @; and A(Q2) C M ® @y, for {7,5} ={1,2}. If
we assume that these inclusions literally hold, then the same argument as in the
proof of Lemma 4.2 gives two subgroups A;, Ay < A such that Q1 C B x A; and
Q2 C B x As. Then Ay and Ay are non-amenable and commute. Unfortunately,
this simple argument completely breaks down if we merely have an intertwining
as in Lemma 4.10 instead of a literal inclusion.
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The method that we use to produce such commuting subgroups is taken from
[Io11] and our proofs of Lemmas 4.11, 4.12 and 4.13 are very similar to the proof
of [Iol1l, Theorem 3.1]. The same method was also used in [CdSS15, Theorem
3.3]. For completeness, we provide all details.

Combining Lemma 4.10 with our transfer of rigidity theorem (Theorem 4.4),
we get the following.

Lemma 4.11. Denote by G the family of all amenable subgroups of A. For
either i =1 or i = 2, there exists a finite set x1,...,x, € M and a § > 0 such
that the following holds: whenever F' C A is small relative to G, we can find an
element vp € A — F such that

n
> 1Eq, (zrvra)|3 > 6.
k,j=1

Lemma 4.12. There exists a decreasing sequence of non-amenable subgroups
Ay < A such that Q; <y B % (U,, Ca(Ay)) for either i =1 or i = 2, where
Ca(A,,) denotes the centralizer of A, inside A.

Proof. As in Lemma 4.11, we let G denote the family of all amenable subgroups
of A. We denote by I the set of subsets of A that are small relative to G.
We order I by inclusion and choose a cofinal ultrafilter U on I, meaning that
{Sel|S DSy} elforall Sy €I. Consider the ultrapower von Neumann
algebra MY and the ultrapower group AY. Every v = (vp)per € AY can be
viewed as a unitary in MY and as explained at the end of Section 2.1.6, A¥ and
BY are in crossed product position inside MY.

Assume without loss of generality that ¢ = 1 in Lemma 4.11 and denote by
v = (vp)res the element of AY that we found in Lemma 4.11. Denote by K C
L?(MY) the closed linear span of MvM and by Pk the orthogonal projection
from L?(MY) onto K. Put ¥ = A NvAv~!. We claim that Q2 <ps B x 2.

Assume the contrary. This means that we can find a sequence of unitaries
an € U(Q2) such that |Epus(zany)ll2 — 0 for any z,y € M. We prove that
(an€al,my — 0 as n — oo for all &,n € K. For this, it suffices to prove that
(anzva’al,yvy') — 0 for all z,2’,y,y’ € M. First, note that for all z € M, we
have Ej(v*zv) = Ep(v*Epys(2)v) by definition of the subgroup ¥. Hence

[anzvz'al, yoy')| = |7 (Ep (v y*anav)a’ay’™))

R L

= |T<EM(U*EB>42(y*an$)'U)x any )‘

< 2Ny M Epxs(y”ant)ll2 — 0
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as wanted.

Next, Lemma 4.11 provides a finite set L C M such that

> l1Equ(@vy™)[3 # 0.

z,yeL

In particular, we can take z,y € L such that Equ (zvy*) # 0. Put & =
Pr(Equ(zvy)). We claim that { # 0. Since Eqgu(zvy*) # 0, we get that
[zvy* — Equ (zvy”)l2 < [|zvy*[|2. Since zvy* € K, it follows that

zvy”™ — &ll2 = | Pk (zoy” — Equ(zvy”))ll2 < llzvy”|2.
Hence £ # 0.

Since K is an M-bimodule and since (); commutes with 5, we have that
af = €a for all a € Q. In particular, (a,€al, &) = [|£]|3 > 0 in contradiction
with the fact that (a,€a’,&) — 0. This proves that Q2 <) B x X.

It remains to show that there exists a decreasing sequence of subgroups A,, < A
such that for all n we have A,, ¢ G, and such that ¥ = J,, Ca(Ay). For every
T C I, we denote by A the subgroup of A generated by {vpvg! | F,F' € T}.
An element w € A belongs to ¥ if and only if there exists a 7 € U such that w
commutes with A7. Enumerating ¥ = {w;,ws, ...}, choose S,, € U such that
w, commutes with As_ . Then put 7, := 81 N...NS, € U. By construction,
Y =U, Ca(A7,). It remains to prove that A ¢ G for all T € U.

Fix T € U and assume that A+ € G. For fixed F/ € T, we have that
{vp | F € T} C Ajvp:. So, Fy := {vp | F € T} is small relative to G.
Define 7/ C I by 7' = {F € I | F; C F}. Since U is a cofinal ultrafilter
and T € U, we get TNT' #0. So we can take F' € T with F} C F. Then,
vp € A— F C A — F; but also vg € Fy. This being absurd, we have shown that
Ar ¢ Glorall T elU. O

Lemma 4.13. There exist two commuting non-amenable subgroups A1 and
Ao inside A. Moreover, whenever A1, Ay < A are commuting non-amenable
subgroups, L(A1A3) can be unitarily conjugated into L(T' x T').

Proof. From Lemma 4.12, we find a decreasing sequence of non-amenable
subgroups A, < A such that Q; <y B x (|J,, Ca(Ay,)) for either i =1 or ¢ = 2.
Since @; has no amenable direct summand, we get that the group (J,, Ca(An)
is non-amenable. It follows that C (A,) is non-amenable for some n € N. Then
Ay := A, and Ay := Cx(A,,) are commuting non-amenable subgroups of A.

Whenever Ay, Ay < A are commuting non-amenable subgroups, it follows from
Lemma 4.9 applied to N = C1 that L(A;) V L(A2) can be unitarily conjugated
into L(T' x T). O
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From now on, we fix commuting non-amenable subgroups A;,As < A. By
Lemma 4.13, after a unitary conjugacy, we may assume that L(A;As) C L(I'xT).

Lemma 4.14. If N C L(T' x T') is an amenable von Neumann subalgebra such
that the normalizer Nioxry(N)" contains L(A1Az), then N is atomic. Also,
L(A1A2) N L(T x T) is atomic.

Proof. Using [Val0, Proposition 2.6], we find a projection ¢ in the center of the
normalizer of N such that Ng </ L(T)® 1 and N(1 —¢q) A L) ®1

Assume for contradiction that ¢ # 1. Since N(1 — ¢q) £ L(I") ® 1 and since
I' € Cis, it follows that L(A;)(1 — ¢) is amenable relative to L(I') ® 1 for both
i =1,2. Tt then follows from [PV11, Proposition 2.7] that L(A;)(1 — ¢) is non-
amenable relative to 1 ® L(T"), hence L(A2)(1 —¢) < 1® L(T') by Lemma 2.29.
By Proposition 2.16, we get a nonzero projection gy < 1 — ¢ that commutes with
L(A2) such that L(As)go is amenable relative to 1 ® L(T"). But since L(A2)qo is
also amenable relative to L(I") ® 1, it follows from [PV11, Proposition 2.7] that
L(A2)qo is amenable relative to C1, hence a contradiction.

We conclude that ¢ = 1 so that N </ L(T') ® 1. By symmetry, we also
get that N </ 1 ® L(T'). By [DHI16, Lemma 2.8], it follows that N </
(LM ®1)Nn(1® L(T)) = C1 so that N is atomic.

To prove that L(AjAs) N L(T x T') is atomic, it suffices to prove that every
abelian von Neumann subalgebra D C L(A;1A2)' NL(T x T') is atomic, by [BOOS,
Corollary F.14]. But then D is amenable and its normalizer contains L(A;A3),
so that D is indeed atomic. O

The proof of the following lemma is essentially contained in the proof of [OP03,
Proposition 12]. It roughly states that after a unitary conjugacy, L(A;) C
LI ®1and L(Az) C 1® L(T"), up to amplifications and up to switching around
A1 and AQ.

Lemma 4.15. For every minimal projection e € L(A1A2) N L(T x T), there
exist projections p € M,(C) ® L(T"), ¢ € L(T") ® M, (C) and a partial isometry
u€ M,1(C)®@ L(T xT') @ My, 1(C) such that u*u = e, uu* = p® q and such
that either

uL(A)u” C p(My(C) @ L(D))p @ ¢ and uL(Az2)u” C p @ q(L(T) ® My (C))q,

uL(A)u* Cp®q(LT) @ M, (C))g and uL(A2)u* C p(M,(C)® L(I"))p®q.
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Proof. By [PV11, Proposition 2.7], L(Ag)e is non-amenable relative to either
LT)®1or 1® L(T). Assume that L(As)e is non-amenable relative to L(I') ® 1.
By Lemma 2.29, L(Aj)e < L(I') ® 1. Take a projection p € M,,(C) ® L(T"), a
nonzero partial isometry v € (p® 1)(M,1(C) ® L(I' x I'))e and a unital normal
s-homomorphism 6: L(A1) — p(M,(C) @ L(I'))p such that

(0(x) @ )v =vx forall z € L(Ay).

Since I € Cygs and A; is non-amenable, the relative commutant ¢(L(A1)) N
p(M,(C)® L(I"))p is atomic. Cutting with a minimal projection, we may assume
that this relative commutant equals Cp.

Write P := L(A;)' N L(T' x ') and note that v*v,e € P with v*v < e. Since
L(A3) C P, we have that Z(P) C L(A1A2) N LT x T'). It follows that
Z(P)e = Ce. So, ePe is a II; factor and we can take partial isometries

v1,..., U, € ePe with v;v7 < v*v for all ¢ and ZZ 107v; = e. Define u €
My ((C) Q L(I' x I') ® M, 1(C) given by u =" vv; Q e;1.

Since vPv* commutes with 0(L(A1)) ® 1, we have vPv* C p ® L(T") and
we can define the normal #-homomorphism 7: v*vPv*v — L(T') such that
vyv* = pn(y) for all y € v*vPv*v. By construction, u*u = e and uu* = p®yq
where ¢ € L(T') ® M,,(C) is the projection given by ¢ = >\, n(viv]) ® ;.
Defining the *-homomorphism

m

7: ePe — q(L(T) ® M, (C))q: Z n(viyvy) @ eij

and using that L(Ag)e C ePe, we get that
uL(A)u* =0(L(A1)) ® ¢ and uL(Ax)u® =p@n(L(Az)e) .

This concludes the proof of the lemma. O

Recall from Section 4.3 the notion of height of an element in a group von
Neumann algebra (here, L(T" x T)), as well as the height of a subset of L(I" x ).
The proof of the following lemma is very similar to the proof of [Io10, Theorem
4.1].

Lemma 4.16. For every projection p € L(A1As) N L(T x T'), we have that
hFxP(A1A2p) > 0.

Proof. Tt suffices to prove that hrxr(A;Asp) > 0 for all minimal projections
p € L(A1A2) N LT x T'). Indeed, if p € L(A1A2) N L(T x I') is an arbitrary
projection, then we find a minimal projection py < p since L(A;As) N L(T x T')
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is atomic. If hryr(Ai;Aspg) > 0 then it follows from Lemma 4.6 that also
hFXF(AlAgp) > 0.

So, we fix a minimal projection p € L(A1A) N L(T x T'). Using the conjugacy
of Lemma 4.15 along with Lemma 4.6, we see that the heights of Ayp and Asp
do not interact, so that it suffices to prove that hrxr(A;p) > 0 for i = 1,2. By
symmetry, it is enough to prove this for ¢ = 1.

Assume for contradiction that hrxr(A1p) = 0. Take a sequence v,, € A; such
that hryr(vep) — 0. For every finite subset S C T' x ', we denote by Ps the
orthogonal projection of L?(M) onto the linear span of L?(A)u,, g € S. We
claim that for every sequence of unitaries w,, € L(I'xT"), every a € M & L(I' xT)
and every finite subset S C I" x I', we have that

liTIln || Ps (pvpaws,)|l2 =0 .

Since Ps(z) = > c5 Ea(ruy)ug, it suffices to prove that [|[Ea(pvpaw,)|2 — 0
for all @ € M © L(I’ x T"). Every such a can be approximated by a linear
combination of elements of the form apu, with ap € A©Cl and g € I' x I
So, we may assume that a € A © C1. Such an element a can be approximated
by a linear combination of elementary tensors, so that we may assume that
a= ®i€g a; for some finite nonempty subset G C I" and elements a; € Ag © C1.
Note that o4(a) L op(a) whenever g,h € I' x ' and g- G # h - G (where we use
the left-right translation action of I' x I" on I'). We also assume that ||a|| < 1.

Let ¢ > 0. By Lemma 4.15, we have that either L(A;)p </ L(I') ® 1 or
L(A1)p </ 1 ® L(T). So, we can take a finite subset Fy C T such that, writing
F =T x FyU Fy x T', we have |[pv — Pr(pv)||2 < € for all v € A;. Then,

| Ea(pvnaw,) — Ea(Pr(pvy)aw,)|2 < e

for all n, so that in order to prove the claim, it suffices to prove that
| Ea(Pr(pvy)aw,)|l2 — 0. Put k = 2|Fp||G|?>. Note that for every h € I' x T,
the set {g € F | g-G = h-G} contains at most x elements. Using the Fourier
decomposition for elements in L(T" x T'), we have

E4(Pr(pvn)awy,) = Z(pvn)g (wn)sf1 Jg(a) .

geF

Thus, for all h € I' x T', we have

|(EA(Pr(pvn)awy), on(a))] < & hrxr(pvn) -
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But then, using the Cauchy-Schwarz inequality, we get that

1EA(Pr(pvn)aws) |3 < Y [(Ea(Pr(pva)aws) , (pva)n (wa)n-1 on(a))]
heF

SHhFXF(pUn) Z |(pvn)h||(wn)h*1|

hEDxT
< Khrxr (pon) lpvsll2 |wnllz2 < & hrxr(pv,) — 0.

So, the claim is proved.

Put 0 = ||p|l2/4. Because I' € C,ys and B C M is a Cartan subalgebra, we
have that B </ A. By Lemma 2.14, we have B 4 L(I' x ') and we can take a
unitary b € U(B) such that ||Errxr)(b)|2 < 4. Since B <f A, we can take a
finite subset S C I" x ' such that ||pd — Ps(pd)||2 < 6 for all d € U(B) (using
[Val0, Lemma 2.3]). For every n, we have that v,bv} € U(B). Therefore,

[pvnbuy, — Ps(punbuy)|l2 < 0
for all n. Since || Errxry(b)ll2 < 4§, writing by = b — Eprxr)(b), we get
|| Ps (pvnbvy,) — Ps(punbivy,)|l2 < 6.

By the claim above, we can fix n large enough such that ||Pg(pvnbivy)|l2 < 6.
It follows that

Ipll2 = llpvnboyll2 < 35 < pll2,

which is absurd. So, we have shown that hryr(pAi) > 0 and the lemma is
proved. O

Having height bounded away from zero as in Lemma 4.16 allows us to deduce
that AqAs sits as a subgroup of I' X I', up to unitary conjugacy.

Lemma 4.17. There exists a unitary u € L(T' x T') such that uAjAsu* C

T(T x T'). Also, the unitary representation {Adv},en,a, @5 weakly mizing on
L3(M) & Cl.

Proof. Write Ag = A1As. Denote the action of A on B by ~,(b) = vbv* for all
v € A, b€ B. Define K < A as the virtual centralizer of Ay inside A, i.e., K
consists of all v € A such that the set {wvw™" | w € Ag} is finite. Equivalently,
K consists of the elements that commute with a finite index subgroup of Ag.
Define By C B as the von Neumann algebra generated by the unital x-algebra
consisting of all b € B such that {7,(b) | v € Ag} spans a finite-dimensional
subspace of B. Note that By is globally invariant under ~,, v € K. Viewing
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M as the crossed product M = B x A, we have by construction that the
unitary representation {Adv},ca, is weakly mixing on L?(M) © L?(By x K)
(see Lemma 2.23).

For every g € T', define Stabg < I X I' to be the stabilizer of g under the
left-right action I' x I' ~ I'. We have L(Ag) C L(I' x T') and L(Ag) A L(Stabg)
for all g € T', since Stabg = I' is in class C,s. Since By X K quasi-normalizes
L(Ao), Lemma A.4 yields By x K C L(I' x I'). By definition of K, we can
take a decreasing sequence of finite index subgroups Ay, < A such that
K =J,,Ca(Ao,n). Tt follows from Lemma 4.14 that L(K) is contained in a
hyperfinite von Neumann algebra. So, K is amenable and thus also By x K
is amenable. Since By x K is normalized by Ag, it follows from Lemma 4.14
that By x K is atomic. So, K is a finite group and By is atomic. We can then
take a minimal projection p € By x K and finite index subgroups Az < A; and
A4 < As such that p commutes with AzAy.

Lemmas 4.14, 4.15 and 4.16 apply to the commuting non-amenable subgroups
A3, Ay < A. So, by Lemma 4.16, we get that Arxr(pAsA4) > 0. By construction,
the unitary representation {Adv},cp,n, is weakly mixing on pL(I' x T')p & Cp.
For every g € I' x I' with g # e, the centralizer Crxr(g) is either amenable or
of the form I' x L or L x I" with I < I" amenable, because I' is torsion-free
and in class Cyss (see end of Section 2.6). Therefore, L(AsAy) 4 L(Crxr(g)) for
all g # e. It then first follows from Theorem 4.5 that p = 1, so that we could
have taken A3 = A; and A4 = Ao, and then also that there exists a unitary
u € L(T' x I') such that uAjAgu* C T(T x T').

Since we also proved that By x K = Cl1, it follows as well that the unitary
representation {Adv},en,a, is weakly mixing on L?(M) © C1. O

Lemma 4.18. Whenever Ay C T({e} x T') is a non-amenable subgroup, we
have M NA, =L(T) ® 1.

Proof. Define I'y < T" such that TAy = T({e} x I's). Then I'y is non-amenable
and MNAL = MNL({e} xT'y)". Since I is torsion-free and in class C,s5, we even
have that I'y < T is relatively icc. Hence MNL({e} xT'2)’ € Ax(I'x{e}). Since
the action {e} x 'y ~ A is weakly mixing, it follows that M N L({e} x T'2)’ C
LT x {e}). So, M N Ay C L(T') ® 1 and the converse inclusion is obvious. [

Lemma 4.19. There exist commuting subgroups Hi, Ho < A and a unitary
u € M such that A; < H; fori=1,2 and uTH; Hou* = T(I' x T).

Proof. By Lemma 4.17, after a unitary conjugacy, we may assume that Ay, Ay <
A are commuting non-amenable subgroups with A;Ay C T(I' x I'). By Lemma
4.15, we have that L(A;) < L(T") ® 1 and L(A3) < 1 ® L(T"), after exchanging
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Ay and As if needed. This means that A; C T(I' x F) and Ay C T(F x T") for
some finite subset F' C I", by Lemma 2.15. Since I is torsion-free, it follows
that A; C T(T x {e}) and Ay C T({e} x T).

Denote by {7, }vca the action of A on B. Define H; < A as the virtual
centralizer of As inside A. So, H; consists of all v € A that commute with a
finite index subgroup of Ay. Similarly, define B; as the von Neumann algebra
generated by the x-algebra consisting of all b € B such that ~,(b) = b for all
v in a finite index subgroup of As. Since finite index subgroups of As are
non-amenable, it follows from Lemma 4.18 that By x Hy C L(T') ® 1. We also
find that
L(F)@lCL(Ag)/ﬂ(BNA) C By xH;.

So, By x H; = L(T") ® 1. In particular, the subgroups Hy, A2 < A commute.
Because I € Cyss and By C L(T') ® 1 is normalized by Hj, it follows that By
is atomic. Since A; < Hi, the unitaries v € A;As normalize B;. By Lemma
4.17, they induce a weakly mixing action on B;. Since Bj is atomic, this forces
B; = C1. We conclude that L(H;) = L(T") ® 1.

We now apply Lemmas 4.14, 4.15 and 4.16 to the commuting non-amenable
subgroups Hy, Ay < A. We conclude that hr(H;) > 0. Since L(H;) = L(T) ® 1,
the group Hj is ice. So, the action {Adv},em, on L(T) is weakly mixing. Since
for g # e, the group Cr(g) is amenable, also L(Hy) A L(Cr(g)). So, by Theorem
4.5, there exists a unitary u; € L(T') such that (u1 ® 1)Hy(uf ®1) = T(T x {e}).

Applying the same reasoning as above to the virtual centralizer of H; inside A,
we find a subgroup Hs < A, containing A; and commuting with H;, and we
find a unitary us € L(T) such that (1 ® ug)Ha(1 ® us) C T({e} xT'). So, we
get that

(u1 ®U2)H1H2(’LLT X u;) = T(F X F) .

O

Finally, we are ready to prove Theorem 4.7. As mentioned above, Theorem 4.1
is a direct consequence of Theorem 4.7.

Proof of Theorem 4.7. We already showed in Proposition 4.8 that any (-
invariant gms decomposition Ay = By x Ay of Ay gives rise to a gms
decomposition M = B} x (Aér) x (' xT')) of M. We now show that all
gms decompositions are of this form.

Assume that (B, A) is an arbitrary gms decomposition of M. By Lemma 4.19 and
after a unitary conjugacy, we have I' x I' C TA. Denoting by A: M — M @ M
the dual coaction associated with (B, A) and given by A(b) = b ® 1 for all
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be Band A(v) =v®w for all v € A, this means that A(u(g,p)) is a multiple of
U(g,h) ® U(g,p) for all (g,h) €' x T

Denote Ag := m.(A9) C A and observe that Ag. commutes with all ug g,
g € Ker 3. Then, A(Ag,c) commutes with all u(g gy ® ug 4), g € Ker 8. Since I'
is a torsion-free group in Cygs, the nontrivial normal subgroup Ker 8 < I must be
non-amenable and thus relatively icc. It follows that the unitary representation
{Adu(g g)tgeker g is weakly mixing on L?(M) © L?(Ag,). This implies that
A(Ao,e) C A()’e @Ao’e.

By Lemma 4.2, we get a crossed product decomposition Ag = By x Ag such
that m.(By) = B N Ap,e and m.(Ag) = AN Age. For every g € T', we have
that u(g 4y € TA. So, u(y ) normalizes both B and Ag ., so that 8,(Bo) = Bo.
Also, u(4 4y normalizes both A and A ., so that B4(Ag) = Ag. For every g € T,
we have that u(, .y € TA so that u(, ) normalizes B and A. It follows that
7g(Bo) C B and my(Ag) C A for all g € I'. We conclude that

BicB and A" x(I'xT)CTA. (4.3)

Since Ag is generated by By and Ag, we get that M is generated by B} and
A(()F) x (' x T'). Since M is also the crossed product of B and A, it follows
from (4.3) that B} = B and TAéF) x (I' x T') = TA. In particular, By C Ag
must be maximal abelian. So, (Bp,Ag) is a gms decomposition of Ay that
is {84} 4er-invariant, while the gms decomposition (B, A) of M is unitarily
conjugate to the gms decomposition associated with (By, Ag).

It remains to prove statements (1) and (2). Take {8,}ger-invariant gms
decompositions (B, Ag) and (B1, A1) of Ag. Denote by (B,A) and (B’,A’) the
associated gms decompositions of M.

To prove (1), assume that u € M is a unitary satisfying uBu* = B’ and
uTAu* = TA’. It follows that for all g € I' x T, we have uugu* € U(A)uy(q)
where ¢ € Aut(I" x I'). Write u = ), .1, apup with a, € A for the Fourier
decomposition of u. It follows that {p(g)"thg | g € T x '} is a finite set
whenever ay, # 0. Since I x T is icc, it follows that aj can only be nonzero for
one h € I' x I'. So u is of the form w = apuy. Since uj, normalizes both B and
A, we may replace u with uuj so that u € U(A).

For each g € T, we define E;: A — Ay by Eg(z) = 7, (Ex,(a0)(x)), z € A.
Let (gn)nen be a sequence in I" that tends to infinity, and let b € By. Since
(g, (b))nen is a asymptotically central in A, we get that

By 3 Ey, (umg, (b)u*) = b,
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hence By C B;. By symmetry, it follows that By = B;. Similarly, we see
that TAg = TA; so we conclude that (B, Ag) and (B, A1) are identical gms
decompositions of Ayg.

To prove (2), assume that § € Aut(M) is an automorphism satisfying 0(B) = B’
and 6(TA) = TA’. Define the commuting subgroups Ay, Az < A’ such that
O(T(T x {e})) = TA; and O(T({e} xTI')) = TA2. Applying Lemma 4.19 to the
gms decomposition (B’; A’) of M and these commuting subgroups Aj, Ay < A/,
we find commuting subgroups H;, Hy < A’ and a unitary u € M such that
A; < H; for i = 1,2 and uTHyHou* = T(I' x T'). Since ' x {e} and {e} x T’
are each other’s centralizer inside A and since (TA) = TA’, we must have that
Az’ = Hz for i = 1,2

Writing 6; = Adw o 6, we have proved that 6;(T(I' x I')) = T(I' x I'). This
equality induces an automorphism of I' xI'. Since I is a torsion-free group in Cis,
all automorphisms of I' x T" are either of the form (g, h) — (¢1(g), ¢2(h)) or of
the form (g,h) — (¢1(h), p2(g)) for some automorphisms ¢; € Aut(T'). Indeed,
o(T x {e}) and p({e} x ') are commuting non-amenable subgroups of I x T.
Since I' is in Cygs, it follows that o(I'x {e}) < L(I' ®1 or (" x {e}) < 1® L(T).
In the first case, we get by Lemma 2.15 that ¢(I'x {e}) C T(I'x F) for some finite
subset F' C T'. Since I is torsion-free, it follows that (I x {e}) C T(T x {e}).
In the second case, we get instead that ¢(I' x {e}) C T({e} x I'). Reasoning
similarly with p({e} x T'), we see that ¢ has the desired form.

The formulas ((u(g,n)) = w(n,g) and ((m(a)) = -1 (Bk(a)) for all g,h,k € T
and a € Ag define an automorphism ¢ € Aut(M) satisfying ((B’) = B’ and
C(A") = A’. So composing 6 with ¢ if necessary, we may assume that we have
@1, 02 € Aut(I") such that 01 (ug n)) € Tu(y, (g),0(r)) for all g,h € T'. We still
have that the gms decompositions (61(B), 81(A)) and (B’, A’") of M are unitarily
conjugate.

Because wu(g,q) commutes with 7.(Ag) for all ¢ € Kerf, the unitary
representation on L*(M) & C1 given by {Ad u(y, (g),4s(g)) }geKer g is N0t weakly
mixing. There thus exists a k € T such that ¢1(g9)k = kw2 (g) for all g in a finite
index subgroup of Ker 3. So after replacing ¢ by (Ad u(c x)) 001, we may assume
that ¢1(g) = p2(g) for all g in a finite index subgroup of Ker 5. Let K < Ker
denote this finite index subgroup, i.e., K = {g € Ker 5 | v1(9) = v2(g)}

We now show that in fact, K = Ker 8. Assume that this is not the case. Then
there exists g € Ker 8 such that ¢1(g) # @2(g). Since Ker § < T is relatively
icc and since K < Ker 8 has finite index, we have that the set

{p1(h)(L1(9)p2(9) " Dpr(h) ™" | h e K} = {@1(hgh™")pa(hg™'h™") | h € K}
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is infinite. On the other hand, for h, k € K we have that
e1(hgh™ )2 (hg'h™") = @1 (kgk™")@a(kg k™" &
o1(kg 'k hgh™) = o (kg 'k~ hgh ™) &
e1(g7 'k thg) = wa(g” kT Thg) &
g 'kTthg e K &
g thgK = g kgK.

Since K < Ker § has finite index, we have reached a contradiction. We conclude
that K = Ker 3, i.e., p1(g) = ¢2(g) for all g € Ker 5. Since Ker S is a normal
subgroup of T, it follows that o1 (k)2 (k)~! commutes with o1 (g) for all k € T
and g € Ker 8. Using again that Ker 3 is relatively icc, it follows that ¢1 = o
and we denote this automorphism by ¢.

Taking the commutant of the unitaries w4, g € Kerf, it follows that
01(me(Ag)) = me(Ap). We define the automorphism 6y € Aut(4y) such that
010m, = m.00y. Since 64 (U(g’g)) S Tu(ip(g)ﬂp(g)) and since m0 3, = Ad U(g,q) OTe)
we get that 0y o 8, = B,(g) 0 0o for all g € T. Tt follows that (6o(Bo), (o)) is a
{Bg}ger-invariant gms decomposition of Ay. The associated gms decomposition
of M is (01(B),61(A)). This gms decomposition of M is unitarily conjugate
with the gms decomposition (B’,A’). It then follows from (1) that y(By) = By
and 6 (TA()) =TA;. O

We finally prove a criterion for when the possible gms Cartan subalgebras of M
are conjugate.

Proposition 4.20. Under the same hypotheses and with the same notations
as in Theorem 4.7, if (Bo,Ao) and (Bi,A1) are {B4}g4er-invariant gms
decompositions of Ay, then the associated Cartan subalgebras of M given by By
and BY are

(1) wnitarily conjugate iff By = B ;

(2) conjugate by an automorphism of M iff there exists a trace-preserving
automorphism 0y: Ay — Ay and an automorphism ¢ € Aut(I') such that
0o(Bo) = By and 0y o By = Byg) 0 0o for all g € T.

Proof. To prove (1), it suffices to prove that By A B} if By # B;. Take a
unitary u € U(By) such that u & B;. Then |Ep, (u)||2 < 1. Let {91,92,...}
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be an enumeration of I' and define the sequence of unitaries (w,) C U(BY) by
Wy = Tg, .y (W) Tg, o (u) -+ Ty, (u). We will show that

|Epr(zwny)llz — 0 for all z,y € M, (4.4)

so that Bf # BY. It is enough to prove this for x = au(g.py and y = bu( ;) with
g,h,s,t € T and a,b € A. Moreover, we may assume that a,b € 7p(AL) for
some finite subset F' C I". If (g, h) # (s,t)~!, we have that | Epr (zwny)l2 =0

for all n, so we assume that (g,h) = (s,¢)~1. Then
|Epr (zwny)ll2 = | Epr (a0 (g,n) (Wn)o(g,n) (b)) l2-

Choose ng so large that g, does not belong to the finite set F'U g~ 'Fh for
n > ng. For n > ng, we then have that

1EBr (a0 (g,n) (wn)o (g, (0)ll2 = | Epr (a0 (g.n) (D)2l Epr (0(g.n) (wn)) |2

< [lalll[olll E5, (Br(w)ll5 — 0,
since ||Ep, (Bn(u))|l2 < 1. So, (4.4) holds and this finishes the proof of (1).

To prove (2), denote by (B,A) and (B’,A’) the gms decompositions of M
associated with (Bo,Ag) and (By,A1). Assume that § € Aut(M) satisfies
6(B) = B’. Then, (B’,0(A)) is a gms decomposition of M. By Theorem 4.7,
(B’,0(A)) is unitarily conjugate with the gms decomposition associated with
a {By}ger-invariant gms decomposition (Bg,As) of Ag. By (1), we must have
Bs; = Bj. So the gms decompositions associated with (By, Ag) and (Bi, Az)
are conjugate by an automorphism of M. By Theorem 4.7(2) there exists an
automorphism 6y € Aut(4y) as in (2). O

4.5 Examples of Il; factors with a prescribed num-
ber of group measure space decompositions

For every amenable tracial von Neumann algebra (A, 79) and for every trace-
preserving action of I' = Fo, on (Ag,79) with nontrivial kernel, Theorem
4.7 gives a complete description of all gms decompositions of the II; factor
M = A§ x (I x T) in terms of the I-invariant gms decompositions of Aj.

In this section, we construct a family of examples where these [-invariant gms
decompositions of Ag can be explicitly determined. In particular, this gives
a proof of Theorem A. We will construct Ag of the form Ay = L*°(K) x H;
where H; is a countable abelian group and H; — K is an embedding of H; as
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a dense subgroup of the compact second countable group K. Note that we can
equally view K as Hy where Hy is a countable abelian group and the embedding
H, — H, is given by a bicharacter 2: H; x Hy — T that is non-degenerate: if
g € Hy and Q(g,h) =1 for all h € Hy, then g =e¢ ; if h € Hy and Q(g,h) =1
for all g € Hy, then h =e.

We consider the crossed product L (I/{'\Q) x H; associated with the left translation
action of H; on f{\g We can then view Loo(}/l\g) X H; as being generated by
the group von Neumann algebras L(H;) and L(H,) 2 L>(Hs), with canonical
unitaries {ug }gem, and {upren, satistying uyup, = Q(g, h)upuy for all g € Hy,
h € H,.

Given a subset S C Hy, we define S* < Hj to be the orthogonal complement
with respect to €, i.e., the set of elements h € Hy such that Q(g,h) = 1 for
all g € S. Similarly, we define T+ < H; when T C Hy. We call a dir/\ect sum
decomposition H; = 51 ® T} /q\dmissible if the closures of S1, 71 in Hs give a
direct sum decomposition of Hs.

Lemma 4.21. Hy = 51 & T is admissible if and only if there exists a direct
sum decomposition Hy = Sy © Ty satisfying S1 = Sy, S = Sf-, T = Tf‘ and
T =Ts.

Proof. Assume that Hy = S| @ T} is admissible. Since Hy = I/{\Q and since

Hy = S, @ Ty, we have that Hy = Sy @ Ty where Sy := T} and T := 5. Note
that

Sy = {ha € Hy | p(hy) =1 for all p € S}

= {hy € Hy | Q(s1,ho) = 1 for all 51 € S;} = Si,

and similarly T, = Tj-. Moreover, since Hy, = 5, @ T, we have that St =
(5%)L =51, N Hy =5 and similarly T2L =T.

For the converse, assume instead that Hy = Sy @ Th with S; = S5, Sy = Si-,
Ty =T and T} = T5-. If ¢ € S NTy, we have that ¢(hy) = 1 for all
hy € St = Sy and all hy € Tt = Ty. Since Hy = Sy @ Ty, this implies
that ¢ = 1. So, f/f\g = S; @ T; and thus the decomposition H; = S; @ T} is
admissible. O

Proposition 4.22. Let Ly, Ly be torsion-free abelian groups and L, — f; a
dense embedding. Put T'g = SL(3,Z) and H; = L3. Consider the natural action

of T'o on the direct sum embedding Hy — ff;, defining the trace-preserving
action {Bg}g4er, of To on Ag = L>(Hs) x Hy.
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Whenever L1 = Py ® Q1 is an admissible direct sum decomposition with
corresponding Ly = Py @ Qa, put S; = P2, T; = Q} and define By =
L(Sl) vV L(Sg), Ao =T T5.

Then (Bo,Ao) is a {Bg}ger,-invariant gms decomposition of Ag. FEvery
{Bg}ger, -invariant gms decomposition of Ay is of this form for a unique
admissible direct sum decomposition Ly = Py ® Q1.

Proof. Let Ly = P; @ Q1 be an admissible direct sum decomposition, and let
By = L(S1) V L(S2) and Ay = T1 T be as above. We clearly have a crossed
product decomposition Ay = By x Ay satisfying 84(Bg) = By, 84(Ao) = Ao for
all g € T'y. Using the relation ugup = Q(g, h)upug for g € Hy, h € Hy and the
fact that S; = Sy, Sy = Si-, we also get that By C Ay is maximal abelian. So,
(Bo, Ao) is a {84 }ger,-invariant gms decomposition of Ag.

Conversely, let (By, Ag) be an arbitrary {8, }gcr,-invariant gms decomposition
of Ag. Define the subgroup I'1 < T'y as

1 *x
Fleoﬂ 0 =
0

We also put Hl(l) =L ®0® 0. Because L; is torsion-free, the following holds.

. a~g:gf0rallaef‘1andgEHl(l).

e I';-g is infinite for all g € H; \Hl(l).
e I'T.his infinite for all h € Hy \ {0}, where 'Y’ denotes the transpose of T';.

From these observations, it follows that L(Hfl)) is equal to the algebra of
I'j-invariant elements in Ay and that L(Hl(l)) is also equal to the algebra of
elements in Ay that are fixed by some finite index subgroup of I'y. Since both
By and Ag are globally T'g-invariant, it follows that L(H 1(1)) = Bél) X Aél) where
A(()l) < Ay denotes the subgroup of elements that are fixed by a finite index

subgroup of I'; and B(()l) C By denotes the von Neumann subalgebra generated
by elements that are fixed by a finite index subgroup of I';y.

We similarly consider H1(2) =0®L; ®0and H{g) =0®0® L;. We conclude
that L(Hl(z)) = B(()z) X A(()l) for all i = 1,2, 3. The subgroups Hl(l)7 H{z) and Hl(?’)
generate H1 and H; is abelian. So, “everything” commutes and we conclude
that L(Hy) = By xA; for some von Neumann subalgebra B; C By and subgroup
Ay < Ap. A similar reasoning applies to LOO(I/{\Q) = L(H3) and we get that
L(HQ) = By x Ay for By C By and Ao < Ao.
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Since L(H1)L(Hz) is || - ||2-dense in Ay and L(Hy) N L(Hz) = C1, we get that
A1As = Ag = AoAq and A N Ay = {e}. Tt then follows that for all b; € B; and
s; € Aj, i = 1,2, we have that Ep,(bivs,bavs,) equals zero unless s; = e and
s2 = e, in which case, we get b1by. We conclude that By Bs is || - ||2-dense in
Bo.

For every x € L(H;) and g € H;, we denote by (x), = 7(zuj) the g-th Fourier
coefficient of . Comparing Fourier decompositions, we get for all z; € L(H;)
that

z1xe = xoxq iff Q(g,h) =1 whenever g € Hi,h € Ha, (21)g # 0, (z2)n #0 .

(4.5)
Since B; C L(H;) and since By, By commute, we obtain from (4.5) subgroups
S; C H; such that Q(g,h) =1 for all g € S1, h € Sy and such that B; C L(S;).
Since BBy is dense in By, it follows that By C L(S1) V L(Sz2). Since L(S1) V
L(S7) is abelian and By is maximal abelian, we conclude that By = L(S1)VL(S2).
Thus, B; = L(S;) for i = 1,2. When g € S5, the unitary u, commutes with
L(S3), but also with L(S1) because L(S1) = By C L(H;) and L(H;) is abelian.
Since By is maximal abelian, we get that g € S;. So, S; = S5 and similarly
Sy = Si-.

The next step of the proof is to show that Ag is abelian, i.e., that A; and As
are commuting subgroups of Ag. Put T; = H;/S;. Slnce 51 S5 and Sy = St

we have the canonical dense embeddings T7 — SQ and Ty — 51 Viewing
L> (51 X Sg) = L(S1) V L(S2) as a Cartan subalgebra of Ay, the associated
equivalence relation is given by the orbits of the action

T1><T2m§;><3;: (gah)(yvz):(hyvgz)a

where the actions on the right, namely T3 ~ 3; and To ~ 3;, are given by
translation. Indeed, the automorphisms induced by the normalizing unitaries
{ug}gen, and {uh}h6H2 of L°°(51 X Sg) are exactly given by the above action.
But viewing By = L(S1) V L(SQ) the same equivalence relation is given by

the orblts of the _action Ao 51 X 52 So, we have an orblt equlvalence
d: .5'1 ><Sg — 51 ><52 satisfying @ (71 xT2)-x) = Ag-®(z) for z € 51 ng To such
an orbit equivalence, we can associate a 1-cocycle w: (T7 x Ty) X (51 X SQ) — Ao
defined by the formula

O(t-x) =w(t,z) P(x) for teTy x Ty, x €51 x 5.
The 1-cocycle relation for w states that
w(tite, ) = w(t,te - v)w(ta,x) for t1,to €Ty xTo, x € 3} X 3;

By construction (see also [Si55, Lemma 2.2 and Corollary 2.3]), for all g € Hy,
h € Hy and s € Ag, the support of the Fourier coefficient Ep, (viugup) is the
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projection in LOO(E'; X 3;) given by the set

{(y.2) € 81 x 82 | w((9S1,hS2), (y,2)) = s} .

Since L(H;) = By x Ay, we get for all g € T} that the projection given by the
set
{(y,Z) € 51 xSy ‘ w((g,e), (y72)) = S}

belongs to B for all s € Ag and is zero for s ¢ A;. This means that the map
(y,2) = w((g,e), (y,2)) only depends on the first variable and takes values in
A; a.e. Reasoning similarly for h € Ts, we find w;: T; x S; — A; such that

w((g7 6), (yv Z)) = w1 (g7 y) and w((e’ h)) (y’ Z)) = w2(h’7 Z) a.e.

Writing (g, h) = (g,€)(e, h) and (g, h) = (e, h)(g, €), the 1-cocycle relation for w
implies that
wi(g; b - y)wa(h, 2) = wa(h, g - 2) wi(g,y) (4.6)

forall g € Ty, h € Ty anda.e.yeﬁ,zeg.
Define the subgroup G; < A; by
Gi={sc A |VteAytst™ € \}.

Similarly, define Go < As. Note that G; and G2 are normal subgroups of Ag
since Ag = A1Az. Since A; N Ay = {e}, we also have that G; and G5 commute.
Rewriting (4.6) as

wi(g,y)wa(h,z) = wa(h,g- 2)wi(g,h~" - y),
we find that for all g € Ty, h € Ty and a.e. y,y’ € 51,z €S,
wa(h,2) " wi(g,y") " wig, y) walh, 2) € Ar
Since L(Hsy) = Bs x Ay, the essential range of wy equals As. It thus follows that
wi(g,y) " wilg,y) € Gu

for all g € T1 and a.e. y,y’ € S;. For every g € Ty, we choose 61(g9) € Ay
such that wi(g,y) = d1(g) on a non-negligible set of y € S1. We conclude
that wy(g,y) = 01(9) p1(g,y) with pi1(g,y) € G1 a.e. We similarly decompose
wa(h, z) = d2(h) pa(h, 2).

With these decompositions of w; and ws and using that Gy, Gy are commuting
normal subgroups of Ag, it follows from (4.6) that for all g € Ty, h € Ty,
the commutator do(h) 161 (g)1d2(h)d1(g) belongs to G1G2, so that it can be
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uniquely written as 71 (g, h)n2(g, h) =t with n;(g, h) € G;. It then follows from
(4.6) that

p1(g,h - y) = 02(h) (g, h) palg,y) 62(R) ™", (4.7)
pa(h, g - 2) = 61(g) m2(g, h) pa(h, 2) 61(g) ™",

almost everywhere. Since S; < H; is torsion-free, S’I has no finite quotients
and thus no proper closed finite index subgroups. It follows that finite index
subgroups of Ty act ergodically on S;. We claim that for every g € T1, the map
y — p1(g,y) is essentially constant. To prove this claim, fix g € 77 and denote

&: S — G &(y) = u1(g,y). For every h € Ty, define the permutation
pn: G1 = Gi: pa(s) = 62(h)m(g, h) s d2(R) " .

So, (4.7) says that £(h-y) = pn(§(y)) for all h € T; and a.e. y € S;. Defining
V1 C G as the essential range of &, it follows that {pn }rer, is an action of T on
V1. The push forward via € of the Haar measure on 3: is a {pp }heT,-invariant
probability measure on the countable set V; and has full support. It follows
that all orbits of the action {pp}rer, on Vi are finite. Choosing s € Vi, the
set £1({s}) C Sy is non-negligible and globally invariant under a finite index
subgroup of Ty. It follows that £(y) = s for a.e. y € S1, thus proving the claim.

Similarly, for every h € Ty, the map z +— ua(h, 2) is essentially constant. So
we have proved that wi(g,y) = 01(g) and wa(h, z) = d2(h) a.e. But then, (4.6)
implies that A; and Ay commute, so that Ay is an abelian group.

Since Ag is a factor, B{}O = C1 and thus L(Ag) C Ap is maximal abelian.
Since L(Ag) = L(A1) V L(Ag) with L(A;) C L(H;), the same reasoning as with
B; C L(H;), using (4.5), gives us subgroups T; C H; such that L(A;) = L(T;)
and Tl = TQJ', T2 = TlJ‘ Since L(Hl) = Bl X Az with Bl = L(SZ) and

So far, we have proved that By = L(S1) V L(S2) and L(Ag) = L(T1) V L(T%).
In any crossed product By x Ay by a faithful action, the only unitaries in
L(Ag) that normalize By are the multiples of the canonical unitaries {vs}sea.
Therefore, TT1Ty = TAg. We have thus proved that the gms decomposition
(Bo, Ao) is identical to the gms decomposition (L(S1) V L(Sz2), T1T2).

Since Ag, Hy and Hj are globally {5,}4er,-invariant, it follows that T; is a
globally SL(3, Z)-invariant subgroup of H;. Thus, T; = @} for some subgroup
Q; < L;. Since By, H; and Hy are globally I'g-invariant, it follows in the same
way that S; = Pf’ for some subgroups P; < L;. Then, L; = P; & Q; and
Py, Py, as well as 1, Q2, are each other’s orthogonal complement under €. So,
L1 = P; & Q; is an admissible direct sum decomposition. O
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We now combine Proposition 4.22 with Theorem 4.7 and Proposition 4.20. We
fix once and for all I' = Fo,, I'g = SL(3,Z) and a surjective homomorphism
B: T —» Iy so that the automorphism g — (g~1)7 of T lifts to an automorphism
of T'. An obvious way to do this is by enumerating I'y = {go, g1, . . .} and defining
B:T — Ty by B(s;) = g; for i > 0, where (s;);cn are free generators of I'. Note
that Ker 8 is automatically nontrivial.

We also fix countable abelian torsion-free groups L1, Ly and a dense embedding
Ly — L2 Put H; = L3 and let I" act on H; — H2 through #. Then define
Ay = L>®(H,) x Hy together with the natural action 8: I' ~ (Ag, 7). Put
(A, 7) = (Ap,m0)" with the action I' x I' ~ (A, 7) given by (g,h) - mx(a) =
Takh-1(Bn(a)) for all g, h, k €T, a € Ag. Write M = A x (I' x I').

We call an automorphism of L; admissible if it extends to a continuous
automorphism of L2 We call an isomorphism 6: L1 — Lo admissible if it
extends to a continuous isomorphism Lo — L.

Theorem 4.23. Whenever L1 = P; ® Q1 is an admissible direct sum
decomposition with corresponding Ly = Py ® Q2, we define B(Py,Q1) =
(L(P})V L(P) and A(Py, Q1) = (Q3 @ @3)1) x (I' x I).

e Every B(P1,Q1),A(P1,Q1) gives a gms decomposition of M.

e FEvery gms decomposition of M is unitarily conjugate with a B(Py,Q1),
A(Py, Q1) for a unique admissible direct sum decomposition L1 = P; © Q1.

o Let L1 = PL® Q1 and L1 = P| & Q) be two admissible direct sum
decompositions with associated gms decompositions (B, ) and (B',\’).

— (B,A) and (B',\) are conjugate by an automorphism of M if and
only if there exists an admissible automorphism 6: Ly — L1 with
0(P) = P|, 0(Q1) = Qf, or an admissible isomorphism 0: Ly — Lo
with O(P1) = Py, 0(Q1) = Q5.

— The Cartan subalgebras B and B’ are unitarily conjugate if and only
if P =

— The Cartan subalgebras B and B’ are conjugate by an automorphism
of M if and only if there exists an admissible automorphism 0: L1 —
Ly with 0(Py) = P| or an admissible isomorphism 6: Ly — Lo with
0(P) = Pj.

Proof. Because of Proposition 4.22, Theorem 4.7 and Proposition 4.20, it only
remains to describe all automorphisms v¢: Ag — Ag that normalize the action
B: T~ Ag. This action [ is defined through the quotient homomorphism
I' - T'y. Every automorphism of I’y = SL(3,Z) is, up to an inner automorphism,



EXAMPLES OF Il; FACTORS WITH A PRESCRIBED NUMBER OF GROUP MEASURE SPACE
DECOMPOSITIONS 81

either the identity or g — (g71)T (see [HR51]). So, we only need to describe all
automorphisms 1: Ag — Ap satisfying either ¢ o 8, = B4 09 for all g € I'y, or
Yo By = Pg-1yr 0.

In the first case, reasoning as in the first paragraphs of the proof of Proposition
4.22, we get that ¢(L(H;)) = L(H;) for i = 1,2. So, for every g € Hi, ¥(uy)
is a unitary in L(H;) that normalizes L(H,). This forces ¢(uqy) € TH; and
we conclude that ¢(TH;) = TH;y. Similarly, ¢(THy) = TH,. In the second
case, we obtain in the same way that ¢(TH;) = THsy and ¢(THy) = TH;. The
further analysis is analogous in both cases and we only give the details of the
first case.

We find automorphisms 6;: H; — H; such that ¢ (u,) € Tug,(4) for all i = 1,2
and g € H;. Since 6; commutes with the action of SL(3,Z) on Hy, we get that
61 = 63 for some automorphism : L, — L,. Similarly, we get an automorphism

n: Ly — Ly such that s = n>. Because 1) is an automorphism of Ay, it follows
that Q(g,h) = Q(0(g),n(h)) for g € Ly, h € Ly. This means that the dual

—_ T~

automorphism 7: Lo — Lo extends 6 and hence 6: L; — Ly is an admissible
automorphism. It follows that ¢ maps the gms decomposition associated with
L, = P ® @ to the gms decomposition associated with Ly = 6(P;) ® 0(Q1).
This concludes the proof of the theorem. O

The following concrete examples provide a proof of Theorem A.

Theorem 4.24. Consider the following two embeddings w;: Z" — T?", for
n>1.

e m(k) = (af',abr, ... akr | abr) for rationally independent irrational

angles a; € T.

o mo(k) = (o, Bk ... o, BE) for rationally independent irrational
angles a, B € T.

Applying Theorem 4.23 to the embeddings m, and 7o, we obtain

e a I factor M that has exactly 2" gms decompositions up to unitary
conjugacy, and with the associated 2™ Cartan subalgebras not conjugate
by an automorphism of M ;

e a Il factor M that has exactly n+ 1 gms decompositions up to conjugacy
by an automorphism of M, and with the associated n+1 Cartan subalgebras
not conjugate by an automorphism of M.

Proof. Whenever F C {1,...,n}, we have the direct sum decomposition Z" =
P(F) @ P(F¢) where P(F) = {x € Z" | Vi & F,z; = 0}.
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In the case of 71, these are exactly all the admissible direct sum decompositions
of Z™. Also, the only admissible automorphisms of Z™ are the ones of the form
(21,...,20) = (6121, ...,6p2y,) With g; = £1. Since Z" ¥ Z*", there are no
isomorphisms “exchanging L; and Ly”. So, we get 2™ gms Cartan subalgebras
and these are all not conjugate by an automorphism.

In the case of 7y, all direct sum decompositions and all automorphisms of
Z"™ are admissible. For every direct sum decomposition Z" = P; & @)1, there
exists a unique k € {0,...,n} and an automorphism 6 € GL(n,Z) such that
0(P) = P({1,...,k}) and 6(Q1) = P({k + 1,...,n}). Again, there are no
isomorphisms exchanging L, and Lo. So, the n + 1 direct sum decompositions
z"=P({1,...,k})oP({k+1,...,n}), 0 < k < n, exactly give the possible gms
decompositions of M up to conjugacy by an automorphism of M. When k # £/,
there is no isomorphism 6 € GL(n,Z) with 0(P({1,...,k})) = P({1,...,k'}).
Therefore, the n + 1 associated Cartan subalgebras are not conjugate by an
automorphism. O

Remark 4.25. In this remark, we show that the number of gms decompositions
(up to unitary conjugacy) of the IIy factors produced by Theorem 4.23 is always
either infinite or a power of 2.

When L;, Lo are torsion-free abelian groups and L; < f/; is a dense embedding,
then the set of admissible homomorphisms L, — L is a ring R that is torsion-
free as an additive group. The admissible direct sum decompositions of L; are
in bijective correspondence with the idempotents of R. Indeed, any idempotent
@ € R gives rise to an admissible direct sum decomposition L; = P & @ by
letting P = (L) and Q = (1 — ¢)(L1). Conversely, any admissible direct sum
decomposition Ly = PHQ gives rise to an idempotent admissible homomorphism
w: L1 — Ly given by ¢(p,q) = (p,0) for p € P, ¢ € Q. Given p € R, we will
use the notation pt :=1—p € R.

As a torsion-free ring, R either has infinitely many idempotents, or finitely
many that are all central. To see this, assume that p € R is a non-central
idempotent. Take € R such that px # zp. Note that px = pxp + pxpt and
xp = prp + prap. Since pr # xp, we have that either pzpt # 0 or prap # 0.
Assume without loss of generality that pzp- # 0. For any n € N, we put
pn = p + nprpt € R. It is easy to check that p, is an idempotent for all n.
Since R is torsion-free, all p,, are different so that R contains infinitely many
idempotents.

So, if R has finitely many idempotents then they are all central. In that
case, there exists a central idempotent that is minimal with respect to the
order relation p < ¢ < pq = p. Let {p;}"_; be a maximal family of minimal
central idempotents. By maximality, we have that > ., p; = 1. Given any
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idempotent p € R, we therefore have p = Z?:l pp; and pp; € {0,p;} for all
i by minimality of p;. It follows that there are 2™ idempotents in R, namely
{37 eipi | & € {0,1} Vi}. We conclude that the number of idempotents in R
is either infinite or a power of 2.

Remark 4.26. Still in the context of Theorem 4.23, we call a subgroup P; < Ly
admissible if L; N P, = Py, where P; denotes the closure of P; inside Ls. Note
that P; < Ly is admissible if and only if there exists a subgroup P> < Lo such
that Py = Pf‘ and P, = PQJ-. Whenever P; < L; is an admissible subgroup,
we define B(Py) := (L(P}?) v L(P3))''. Tt is easy to check that all B(P;) are
Cartan subalgebras of M and that B(P;) is unitarily conjugate with B(P]) if
and only if P, = P.

Also note that an admissible subgroup P; < L; cannot necessarily be
complemented into an admissible direct sum decomposition L; = P; @ 1. In
such a case, B(P;) is a Cartan subalgebra of M that is not of group measure space
type. It is highly plausible that these B(P;) describe all Cartan subalgebras of
M up to unitary conjugacy. We could however not prove this because all our
techniques make use of the dual coaction associated with a gms decomposition
of M.






Chapter 5

Thin |l factors with no
Cartan subalgebras

In this chapter, which is based on my joint article [KV16] with Stefaan Vaes, we
prove Theorem B from the introduction, in which we find examples of s-thin 11y
factors that have no Cartan subalgebras. Recall that the s-thin approximation
property, as stated in the introduction, was introduced by Popa in search of
an intrinsic characterization for a II; factor to have a Cartan subalgebra. In
[Po16], Popa showed that a II; factor M is s-thin if and only if M admits an
s-MASA. We will use this as the definition of s-thinness.

Definition 5.1. Let A be a MASA in a II; factor M. Then A C M is called
an s-MASA if the A-bimodule 4L2?(M) 4 is cyclic, i.e., if there exists a vector
¢ € L2(M) such that A¢A spans a dense subspace of L%(M).

We say that M is s-thin if M contains an s-MASA.

When a II; factor is s-thin, we can think of it as being “thin” relative to its
abelian subalgebras. This is closely related to the notion of being thin defined in
[GP98], where the thinness is measured relative to the hyperfinite subalgebras
of a given II; factor.

Note that a MASA A C M is an s-MASA if and only if the abelian von Neumann
subalgebra AV JAJ C B(L*(M)) is a MASA, where J denotes the canonical
involution on L?(M) (see for instance [AP16, Theorem 3.1.4]).

Using the Feldman-Moore theorem, Theorem 2.4, It is easy to see that a
separable Cartan subalgebra is also an s-MASA (see [FM75, Proposition 2.9])

85
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and therefore, any separable II; factor that admits a Cartan subalgebra is also
s-thin. The converse implication was left as a question by Popa in [Pol6], and
was the motivation for our work. The following is our main theorem.

Theorem 5.2. There exist non-amenable s-thin I, factors that are strongly
solid.

Recall from Section 2.6 the notion of strong solidity, which is a stronger property
than absence of Cartan subalgebras.

Our examples of 1I; factors are given by Shlyakhtenko’s construction of A-
valued semicircular systems (see [Sh97] and Section 5.1 below), generalizing
Voiculescu’s free Gaussian functor [Vo83]. The data for this construction consists
of a tracial von Neumann algebra (A, 7) and a symmetric A-bimodule 4H 4,
where the symmetry is given by an anti-unitary operator J: H — H satisfying
J?=1and J(a-&-b) =0b*-JE-a*. The construction produces a tracial von
Neumann algebra M containing A such that 4L%(M), can be identified with
the full Fock space
L2(A)@@(H®A @4 H) .

n>1 n times

We refer to Section 5.1 for further details on this construction.

In the same way as the free Gaussian functor transforms direct sums of real
Hilbert spaces into free products of von Neumann algebras, the construction
of [Sh97] transforms direct sums of A-bimodules into free products that are
amalgamated over A. Therefore, the deformation/rigidity results and methods
for amalgamated free products introduced in [IPP05, Io12], and in particular
Popa’s s-malleable deformation obtained by “doubling and rotating” the A-
bimodule, can be applied and yield the following result, proved in Corollaries
5.14 and 5.22 below (see Theorem 5.21 for the most general statement).

Theorem 5.3. Let (A,7) be a tracial von Neumann algebra and let M be the
von Neumann algebra associated with a symmetric A-bimodule 4Hy. Assume
that aH 4 is weakly mizing (Definition 2.24) and that the left action of A on H
1s faithful. Then, M has no Cartan subalgebra. If moreover sH 4 is mixing and
A is amenable, then M is strongly solid.

In the particular case where A is diffuse abelian and the bimodule 4Hy4 is
weakly mixing, we have that A C M is a singular MASA. As explained in
the introduction, interesting examples arise by taking A = L*° (K, u) where K
is a second countable compact group with Haar probability measure . Any
symmetric probability measure v on K gives rise to a symmetric A-bimodule
H, (see Section 5.5), and when v satisfies certain special properties, the von
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Neumann algebra M, associated with H, is a strongly solid II; factor that
contains A as an s-MASA (see Proposition 5.47 for the precise statement). In
Theorem 5.49, we construct a compact group K and a probability measure v
on K satisfying these “special” properties. As a consequence, we obtain the
first examples of s-thin II; factors that have no Cartan subalgebras, proving
our main theorem (Theorem 5.2).

As we explain in Remark 5.11, the so-called free Bogoljubov crossed products
L(F) x G associated with an (infinite-dimensional) orthogonal representation
of a countable group GG can be written as the von Neumann algebra associated
with a symmetric A-bimodule where A = L(G). Therefore, our Theorem 5.3 is
a generalization of similar results proved in [Hol2b] for free Bogoljubov crossed
products. Although free Bogoljubov crossed products M = L(F,) x G with G
abelian provide examples of MASAs L(G) C M with interesting properties (see
[HS09, Hol2al]), L(G) C M can never be an s-MASA (see Remark 5.48).

The point of view of A-valued semicircular systems is more flexible and even offers
advantages in the study of free Bogoljubov crossed products M = L(F,) x G.
Indeed, in Corollary 5.24, we prove that these II; factors M never have a Cartan
subalgebra, while in [Hol2b], this could only be proved for special classes of
orthogonal representations.

In Theorem 5.19, we prove several maximal amenability results for the inclusion
A C M associated with a symmetric A-bimodule (H, J). The study of maximal
amenable von Neumann subalgebras was originally motivated by a question of
Kadison from the 1960s: is any self-adjoint element in a II; factor M contained
in a hyperfinite II; factor? This question was answered in the negative by
Popa in [Po83]. He showed that the von Neumann subalgebra of a free group
factor L(FF,,), n > 2, generated by one of the free generators of F,,, is maximal
amenable. This provided the first example of a maximal amenable subalgebra
that is also abelian. Using the same approach, known as Popa’s asymptotic
orthogonality, many more maximal amenability results have been obtained since
[Po83]. Recently, new methods for proving maximal amenability results were
developed in [BC14, BH16], based on the study of centralizers of states. By
combining the methods of [Po83, BH16], we prove in Theorem 5.19 among
other things that A C M is maximal amenable whenever A is amenable and
H is weakly mixing, where M is the von Neumann algebra associated with a
symmetric A-bimodule (H,J). Again, these results generalize [Hol2a, Hol2b]
where the same was proved for free Bogoljubov crossed products.

Finally, we have added a section about property Gamma, Section 5.6, which
did not appear in [KV16]. The definition of property Gamma goes back to
the work of Murray and von Neumann, [MvN43], and was originally used
to distinguish the hyperfinite II; factor R from the free group factors L(IF,,),



88 THIN Il; FACTORS WITH NO CARTAN SUBALGEBRAS

n > 2. A separable II; factor M is said to have property Gamma if there
exists a nontrivial central sequence in M, i.e., a bounded sequence a,, € M
with |lapx — za,|l2 — 0 for all x € M, such that a, is not asymptotically
scalar. When M is the von Neumann algebra associated with some symmetric
A-bimodule (H, J) that is weakly mixing, we show that all central sequences of
M asymptotically lie in A (see Theorem 5.55), and this allows us to characterize
when M has property Gamma. Similar results were proved in [Hol2b] for
free Bogoljubov crossed products and our proof uses the same methods. In
particular, when M = M, arises from a symmetric probability measure v on a
compact group K as in Section 5.5, we will characterize when M, has property
Gamma in terms of the measure v.

5.1 Shlyakhtenko’s A-valued semicircular systems

We first recall Voiculescu’s free Gaussian functor from the category of real
Hilbert spaces to the category of tracial von Neumann algebras. Let Hg be a
real Hilbert space and let H be its complexification. The full Fock space of H
is defined as

F(H)=CoPH.
n=1

The unit vector € is called the vacuum vector. Given a vector £ € H, we define
the left creation operator ¢(§) € B(F(H)) by

L) =¢ and L(E)(E1® - R&) =ERE® &, .

Put
D(Hr)" == {€(&) +£(§)" | £ € Hr}" .

In the literature, the notation I'(Hg) is used to denote the C*-algebra generated
by the operators (&) 4+ £(£)* for £ € Hg.

The von Neumann algebra I'(Hg)"” is equipped with the faithful trace given by
7(-) = (-, Q). In [Vo83], it is proved that the operator X = £(£) + £(£)* has a
semicircular distribution with respect to the trace 7, in the sense that

R

T(X™) = i/ t"VR?—t2dt forall neN,
7TR2 —R

where R = || X |, and it is proved that I'(Hg)"” = L(Fqim m, ). By the functoriality

of the construction, any orthogonal transformation u of Hg gives rise to an

automorphism «, of T'(Hg)" satisfying a,,(£(£) + £(§)*) = £(u€) + £(u&)* for

all £ € Hg. So, every orthogonal representation 7: G — O(Hg) of a countable
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group G gives rise to the free Bogoljubov action o.: G ~ T'(Hg)" given by
0r(g) = azg forall g € G.

In [Sh97], Shlyakhtenko introduced a generalization of Voiculescu’s free Gaussian
functor, this time being a functor from the category of symmetric A-bimodules
(where A is any von Neumann algebra) to the category of von Neumann algebras
containing A. We will here repeat this construction in the case where A is a
tracial von Neumann algebra.

Definition 5.4. Let (A, 7) be a tracial von Neumann algebra. A symmetric A-
bimodule (H, J) is an A-bimodule 4H 4 equipped with an anti-unitary operator
J: H — H such that J? =1 and

Ja-&-b)=0b"-JEa", Vabe A.
Note that the complexification of a real Hilbert space can be seen as a symmetric
C-bimodule, where the symmetry J is given by complex conjugation.

Let (A, 7) be a tracial von Neumann algebra and let (H,J) be a symmetric
A-bimodule. We denote by H®4 the n-fold Connes tensor product H @ 4 H @4
-++®4 H. The full Fock space of the A-bimodule 4H 4 is defined by

Fa(H)=L*(A) @ éﬂw . (5.1)

We denote by H the set of left and right A-bounded vectors in H, as defined
in Section 2.2. Since A is a tracial von Neumann algebra, H is dense in H.
Given a right bounded vector £ € H, we define the left creation operator ¢(&)
on F4(H) analogously to the case where A = C by

((§)(a) =&a, acA,

)61 ®a...®an) =E@461®a...Qa&, &GEH.

Note that al(§) = £(a&) and £(§)a = £(£a) for a € A and that the adjoint map
£(€)* satisfies

0(&)*(a) =0 forall a € L*(A),
)" (G1®a...®a&n) =(§,61)a&a®a...®a, for §eH.
We also have a right creation operator r(§) on F4(H) defined by
r(§)(a) =af, acA,

)61 ®a...®a6) =61 ®a...0a8Qa& LGEH.
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Definition 5.5. Given a tracial von Neumann algebra (A, 7) and a symmetric
A-bimodule (H,J), we consider the full Fock space F4(H) given by (5.1) and
define

D(H,J,A,7)" = AV{LE) + L&) | eH, JE=EY C B(Fa(H)),
where A C B(Fa(H)) is given by the left action on Fa(H). We also have

D(H,J, A r)" = AV {L(&) +L(J)" | £ € H}" .

We denote by € the vacuum vector in Fa(H) given by Q = 14 € L?(A). We
define T as the vector state on M = T'(H, J, A, 7)" given by the vacuum vector
Q. Whenever n > 1 and &;,...,&, € H, we define the Wick product as in
[HR10, Lemma 3.2] by

n

W(Er-sn) = D UE) - LEN(TEia)" - £(TEn)" . (5.2)

i=0
As in [HR10, Lemma 3.2], we get the following lemma.

Lemma 5.6. Forn>1 and &1,...,&, € H, we have that W(&1,...,&,) € M
and

W(€17,€H>Q:§1®A®A€n

Moreover, the set of Wick products W(&1,...,&,) with n > 1 and & € H,
together with A, spans an SOT-dense x-subalgebra of M.

Proof. Since £(£)*Q = 0 for any £ € H, it is clear that W(&,...,&,)Q =
104 Q- ®4&,. We prove by induction on n that W(&q,...,&,) € M.

For n = 1, we have W(&) = €(&) + £(J&)* € M. Next, assume that
W(&1,...,&) € M for all k <n. A direct computation shows that

W(gO)W(gh cee 7571) = W(§07§17 e 757’7,) + <J607€1>AW(§27 e 7671)

So, by induction hypothesis

W&o, 6n) = W)W (&, &n) — (JE0,&1) AW (&2, .-, &n) € M.

To prove the final statement, let My be the linear span of {W(&y,...,&,) | n >
1,& € H} U A. Since M is generated by My, it is enough to show that Mj is a
x-subalgebra. We have that

W(,y..., &) =W (J&, ..., JJE),



SHLYAKHTENKO'S A-VALUED SEMICIRCULAR SYSTEMS 91

so that M is closed under taking the adjoint. Moreover, assuming that m < n,
we have that

W(glv ce 7€TL)W(7]1’ v 777771) = Z W(fb ce 7£’I’L—ia’ia M+iy--- 777771) € MOa
i=0

where a; = 0(J&n—ip1)* - 0(J&) () L(n;) € A for i = 1,...,m and
agp = 1. So, My is an SOT-dense *-subalgebra of M. O
Proposition 5.7 ([Sh97]). The state 7(-) = (- Q,Q) defined above is a faithful
trace on M.

Proof. Define J: Fa(H) — Fa(H) by J(a) = a* for a € A and

T(E1®a-®akn) =JE ®a--®aJG

for &1,...,&, € H. Then J is an anti-unitary map satisfying 72 = 1. One
easily checks that J(&)J = r(JE) for all £ € H and that JaJ is just right
multiplication by a* on F4(H). This implies that JMJ commutes with M.
Indeed, for £,n € H with J¢ =& and Jn =0, we have (£, an)a = a{€a,n) since

(Jr(€a) r(n)Jz,y) = (r(€a)y”,r(n)z") = (y"&a,x™n) = (J(x™n), J(y"Ea))
= (nz,a”¢y) = (L(§)"(an)z, y) ,
for all x,y € A. It follows that
(0&)"r(n) + £(&)r(n)*)(a) = (£, an)a = al8a,n) = (r(n)"4() + r(n(&)")(a),

for all @ € A. Since ¢(€) and r(n)* clearly commute when restricted to Fa(H)©
L2(A), it follows that £(&) + £(£)* commutes with 7(n) + r(n)*. We conclude
that M commutes with JM J.

Next, we show that J(z€2) = 2*Q for all x € M. This clearly holds for z € A
so it suffices to prove it for  of the form = = W (¢y,...,&,) with & € H. We
have

TW (&, 6)) =T (61 ®a - ®an) =JE ®a - ®@a &
=W(J&n,..., )2 =W(&,....6,) Q.
We now get that
T(zy) = (zy, Q) = (T (y*Q), Q) = (Ty" T, Q) = (Ty" T2, Q)

= (xQ, JyTQ) = (xQ,y* Q) = (yzQ, Q) = 7(yz) ,
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for all x,y € M and hence T is a trace.

It follows from Lemma 5.6 that Q € F4(H) is a cyclic vector for both M and
JMJ. Hence € is also separating for M and it follows that 7 is faithful. [

By construction, we have that L?(M) = Fa(H) as A-bimodules.

In [Sh97], Shlyakhtenko used the terminology A-valued semicircular system for
the family {£(&) + £(£)* | £ € H,JE = £}, as an analogue to the free Gaussian
functor case, where the operator £(§) + £(£)* has a semicircular distribution
with respect to 7.

Remark 5.8. In the original article [Sh97], Shlyakhtenko used a seemingly
different setup to define the von Neumann algebras I'(H, J, A, 7)"”. Instead of
using a symmetric A-bimodule (H, J) as input, he used a system of completely
positive maps on A. More precisely, to any von Neumann algebra A and any
set of linear maps ¢;;: A — A, 4,5 € I such that a — (¢;;(a));jer: A —
A® B(¢*(I)) is normal and completely positive, Shlyakhtenko associated a von
Neumann algebra ®(A, ¢). Let us briefly explain how a symmetric A-bimodule
(H,J) gives rise to such a system of maps (y;;)i jer in the case where A is
tracial.

Let (&;)icr be a maximal family of symmetric unit vectors such that the A-
subbimodules A§; A are all pairwise orthogonal. We then obtain the desired
system of maps (¢;;)i jer by letting ¢;;: A — A be the linear map given by
pij(a) = £(&)* al(&;) = (&, aj)a. It is easy to check that our construction of
T'(H,J, A, )" coincides with Shlyakhtenko’s construction of ®(A, ¢). Moreover,
[Sh97, Lemma 2.2] shows that any such system (g;;)i jer gives rise to an A-
bimodule H spanned by vectors & € H satisfying (&;,a;)a = @i;(a). Note
however that Shlyakhtenko’s construction also works when A is non-tracial. In
this case, the associated von Neumann algebra ®(A, ¢) is of type III.

Example 5.9. (1) When H = L?(A) is the trivial A-bimodule with J(a) = a*,
we simply get
D(H, J, A7) = AB L¥[0,1] .

Indeed, A commutes with ¢(14) + ¢(14)* and they together generate
I'(H,J,A,7)". Tt is not hard to see that £(14) has the same *-distribution
as a free creation operator from the free Gaussian functor. Hence, the
operator £(14) + £(14)* has a semicircular x-distribution and in particular,
it generates a von Neumann algebra isomorphic with L°°[0,1]. It is also easy
to see that £(14) 4+ £(14)* is independent from A with respect to 7, so that
{€(14) + £(14)*}" and A are in tensor product position with each other.

From this example, we see that I'(H, J, A, 7)" is not always a factor.
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(2) When H = L?(A)® L?(A) is the coarse A-bimodule with J(a®b) = b* @ a*,
we get (see [Sh97, Example 3.3])

I'(H,J, A1) = (A7) L>®[0,1] .

This example shows that the construction of I'(H, J, A, 7)” may depend on
the trace on A. Indeed, if A = C? we can consider the trace 75 for any
d € (0,1) given by 75(a,b) = da + (1 — )b, a,b € C. By [Dy92, Lemma
1.6], we have that L(Z) * (A,75) = L(Fi12501-s)), the interpolated free
group factor. It is wide open whether the interpolated free group factors
are all isomorphic. So at least, there is no obvious isomorphism between
I'(H,J, A 75,)" and T'(H, J, A, 75,)" for §; # d2. In Example 5.12, we shall
actually see that even the factoriality of I'(H, J, A, 7)"” may depend on the
choice of the trace 7. For a general factoriality criterion for I'(H, J, A, )",
see Theorem 5.21.

Note that the construction of I'(H, J, A, 7)" is functorial in the following sense.
If U e U(H) is a unitary operator that is A-bimodular and commutes with J,
then U defines a trace-preserving automorphism of M =T'(H, J, A,7)"” in the
following way. Since U is A-bimodular, we can define a unitary U™ on H®4 by
U1 @4 Q4&) =U& R4 - R4 UE,. The direct sum of these unitaries
(and the identity on L?(A)) then gives an A-bimodular unitary operator on
Fa(H), which we will still denote by U. Note that UL(§)U* = £(U¢) for all
& € H. Since U commutes with J, it follows that UMU* = M so that AdU
defines an automorphism of M.

Recall that for Voiculescu’s free Gaussian functor, we have that the direct sum
of Hilbert spaces translates into the free product of von Neumann algebras, in
the sense that T'(Hy @ Hs)"” =T(H;)"” *T'(Hz)”. In the setting of A-bimodules
in general, we instead get the amalgamated free product over A as stated in
the following proposition.

Proposition 5.10 ([Sh97, Proposition 2.17]). Let (Hy,J1) and (Hz,J3) be
symmetric A-bimodules. Put H = Hy & Hy and J = J; & Js. Then

F<H7 J7 Aa T)N = F(Hla J17 Aa T)N *A F(HQa J27 A7 T)N )
with respect to the unique trace-preserving conditional expectation onto A.

Remark 5.11. As we recalled in the beginning of this section, to every
orthogonal representation 7: G — O(Kpg) of a countable group G on a real
Hilbert space Kg is associated the free Bogoljubov action o,: G ~ I'(Kg)".
Write A = L(G) and equip A with its canonical tracial state 7. Denote by K
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the complexification of Kg and define the symmetric A-bimodule 4 H4 given by

H=0FG) @K with uy- (6, ®&) up = i @ 7(9)€ 5.3
5.3
and  J(8, ® ) = 81 @ m(h1)E

where (J,)4ec denotes the canonical orthonormal basis of £2(G). We then have
a canonical trace-preserving isomorphism

[(Kg)" %" G =T(H,J, A1)

that maps L(G) onto A identically and W(&y,...,&,) with & € Kg onto
W(e @&1,...,0e @&p).

Example 5.12. This final example illustrates that even the factoriality of
['(H,J,A,7)" may depend on the choice of 7. Take A = C?, a € Aut(A) the flip
automorphism and H = C? with A-bimodule structure given by a-¢-b = a(a)&b.
Define J: H — H by J(a) = a(a)*. For every 0 < § < 1, denote by 75 the trace
on A given by 75(a,b) = da + (1 — §)b. By symmetry, it suffices to consider the
case 0 < 6 < 1/2. For any 0, when A is equipped with the trace 75, the n-fold
tensor power H®4 can be identified with C? with the bimodule structure given
by
{afb if n is even,
a-§-b= o
ala)éb  if nis odd.

Denote by ¢5 the left creation operator ¢(14) with respect to the trace 75. When
we represent /5 on the Hilbert space @, +, C? via the identification above, we
get that

ls = XDV,

where £ denotes the shift operator on - C2, X denotes the left A-action and
D = (6,1 —4) is the Radon-Nikodym derivative between 75 and the usual inner
product on C2.

Put
Ms :=T(H,J, A,T(;)N =AA)V {l; + f:;}”.

We still denote by 75 the canonical trace on My. Note that M = X(A) v {Ss}”,
where S5 = (A(A™Y4) 4 £*A(AY4) and A = Da(D)~ = (6/(1 —0), (1 — 8)/0).
Indeed, we have that

SsA(a(DYH DY) = 15 + £

Note also that S5 = S;. Denoting by e = (1,0) and f = (0,1) the minimal
projections in A, we have that Sse = fSj.
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Next, we calculate the possible eigenvalues of Ss. Given § = @, & €
@D,,~, C?, we have that

S5(6) = @ o LAYy + P amTHAY Y (5.4)
n=1

n=0
Assume that £ € ker(Ss). Using (5.4) coordinate-wise, we get
a(AYhg =0,

" THATYNE, g+ amTHAYYE, =0 for n> 1.

It follows that &, = 0 for all n odd and that & = (4)’%*’”250 for all k£ > 0.
Writing & = (€01, &02) € C2, we thus get

2 _ - —k/2 2 _ 2 - 1;6 g 2 = J g
I =Y 1A% = lenl® D (——) +lld (1) -
k=0 n=0 n=0

If 6 = 1/2, both of the sums above are divergent and hence £y = {y2 = 0. So,
ker Sy /5 = {0} in this case. If § < %, we get that the first sum in the expression
above diverges while the second sum converges. This forces £y; = 0 and we get
that ker Ss has dimension 1.

Next, assume that £ is an eigenvector for Ss, with eigenvalue A # 0. Again,
using (5.4) coordinate-wise yields

A_1/4£1 = )‘507
AV L+ AV, = N\, for modd,

AV, + ATV L =)\, for neven.
It follows that &, = a,& where a,, € C? is defined recursively by
Qp = A(_l)n“/‘l)\an_l — A(_l)nﬂman_g, n > 2.

Assume without loss of generality that the first coordinate of &y is nonzero.
Letting b,, € C denote the first coordinate of a,,, we get that b, satisfies the
following recurrence relation

5 \Da 5 \ (DT
bn - )\ (1_5> bn—l - (]_—6) bn_2.

One can show that this recurrence relation is not stable so that in particular,
b, does not converge to zero. Thus

oo oo
€17 =" llanoll® = Y [bnéor [* = oo,
n=0 n=0
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a contradiction. We conclude that Ss has no eigenvalue different from zero, for
all0 < § < % This means that Ss is diffuse on the orthogonal complement of
ker Ss.

We have now shown the following: When § = 1/2, the operator Ss is non-
singular and diffuse; When 0 < ¢ < 1/2, the kernel of S5 has dimension 1 and
S5 is diffuse on its orthogonal complement. We denote by zs the projection onto
the kernel of Ss. Using the description of ker Ss from the computations above,
we get that zs is a minimal and central projection in My with 75(z5) =1 — 20.
We conclude that there is a trace-preserving *-isomorphism

(Ms,75) = Ma(C)@ B @ C (5.5)
§(Tr ®70) 1-26

where (B, 7o) is a diffuse abelian von Neumann algebra with normal faithful
tracial state 79 and where we emphasized the choice of trace at the right hand
side. Under the isomorphism (5.5), we have that

6*—)(611@1)@0, fi—>(€22®1)@1, 55*—)((612+621)®b)@0, 25}—)0691

where b € B is a positive non-singular element generating B.

Next, taking H & H and J @ J, it follows from Proposition 5.10 that
Ms = F(HEBH,JEB J,A,T(;)” = Ms*xq Ms ,

where we used at the right hand side the amalgamated free product with respect
to the unique 75-preserving conditional expectations, which we will denote by
E 4. We denote with superscripts () and (2) the elements of My viewed in the
first, resp. second copy of Mjs in the amalgamated free product. Note that
fM = £ and that, denoting this projection as f, we get that fM(gl)f and
fM§2)f are free inside fM;f. Indeed, this follows from the fact that Mél) and
M§2) are free with respect to F4 and that E4(z) = 75(z) f for any z € fMéz)f,
i =1,2. It now follows from [Vo86] that the projection z := z((sl) Az§2)
if and only if 6 < 1/3. We also have that z is a minimal central projection in

M.
By [IPP05, Theorem 1.2.1], using that B is diffuse, we have that

is nonzero

BDY N (1 -2 Ms(1 -2y c MO (1-2),  i=1,2 (5.6)
Also note that (1 — zgl)) V(l— zgz)) =1—z. We claim that

(BY v BAY A Ms(1—2) = A1 — 2). (5.7)
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Indeed, let x € (BM v B®)Y N M;s(1 — 2). By (5.6), we have that z; :=
z(1 — (z)) € M(Z)( (z)) for both z =1,2. By assumptlon x commutes
with b1by for any unitaries b, € U(BW) and by € U(B®@). Tt follows that
bix1by = baxobs € A(1 — 2). Thus z; € A(1 — z) for both ¢ = 1,2 and since
(1- z((sl)) v(1- Z§2)> =1 — z, it follows that z € A(1 — z).

By (5.7), Z(M;)(1 —2) C A(1 — 2). Since aSs = Ssa(a) for a € A, this implies
that Z(M;)(1 — z) = C(1 — z). Hence

Z(./\/l(;) =Cz+ (C(l — Z)

We conclude that T'(H @ H, J & J, A, 75)" is a factor if and only if 1/3 < 6 < 2/3.

5.2 Normalizers and (relative) strong solidity

The main result of this section is the following relative strong solidity theorem
for A-valued semicircular systems. In the special case of free Bogoljubov crossed
products (see Remark 5.11), this result was proven in [Hol2b, Theorem B]. As
explained in the introduction, the A-valued semicircular systems fit perfectly
into Popa’s deformation/rigidity theory. The proof of Theorem 5.13 therefore
follows closely [IPP05, HS09, HR10, Io12, Hol12b], using in the same way Popa’s
s-malleable deformation given by “doubling and rotating” the initial A-bimodule
AH 4 (see below).

Theorem 5.13. Let (A, 7) be a tracial von Neumann algebra and (H,J) a
symmetric A-bimodule. Put M = T'(H,J, A,7)". Let ¢ € M be a projection
and B C qMq a von Neumann subalgebra. If B is amenable relative to A,
then at least one of the following statements holds: B <y A or Nay(B)” stays
amenable relative to A.

As a consequence of Theorem 5.13, we get the following strong solidity theorem.

Corollary 5.14. Let (A, 7) be a tracial von Neumann algebra and (H,J) a
symmetric A-bimodule. Put M =T (H, J, A, 1)". Assume that 4H 4 is mizing.
If B C M is a diffuse von Neumann subalgebra that is amenable relative to A,
then Nyr(B)" stays amenable relative to A.

So if A is amenable and oH 4 is mizing, we get that M is strongly solid.
Proof. Let P := Ny(B)". Since BV (B'N M) C P, we have P'N M = Z(P).

Therefore, there exists a largest projection z € Z(P) such that Pz </ A.
In particular, Pz is amenable relative to A. It remains to prove that also
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P(1 — 2) is amenable relative to A. Note that by maximality of z, we have that

P(l1-2z) £ A

Put zp = 1 — 2. Since the bimodule 4H, is mixing, the inclusion A C M is
mixing in the sense of [Po03, Proof of Theorem 3.1] and [Io12, Definition 9.2].
Since Ny a2, (Bzo)” = Pzo, since Bz is diffuse and since Pz Aas A, it follows
from [Io12, Lemma 9.4] that Bzy Ay A. It then follows from Theorem 5.13
that Pz is amenable relative to A. O

To prove Theorem 5.13, we fix a tracial von Neumann algebra (A, 7) and a
symmetric A-bimodule (H,J). Put M = T'(H,J, A,7)" as in Definition 5.5.
Recall that L2(M) = Fa(H) = L*(A) & @°°, H®A4.

We construct as follows an s-malleable deformation of M in the sense of [Po03].

Put
M=T(H®H,JoJ AT).

By Proposition 5.10, we have M = M x4 M. We denote by 7 and my the
two canonical embeddings of M into M. When no embedding is explicitly
mentioned, we will always consider M C M via the embedding 7.

Let U, e U(H @ H), t € R, be the rotation with angle ¢, i.e.,

Ui (€,m) = (cos(t)€ — sin(t)n, sin(t)€ + cos(t)n) for &ne H .

Since the construction of T'(H, J, A, 7)"” is functorial, this gives rise to an
automorphism 6; := AdU; € Aut(M). Note that /5 0 7 = .

Define g € U(H) by B(&,n) = (&, —n) for &,n € H. Again by functoriality, we
have that 8 defines an automorphism of M. Now,  satisfies 5(z) = x for all
x € m(M), 82 =id and Bo6; = 6_; 0 3 for all t. Hence (M, (6;)ser) is an
s-malleable deformation of M.

The following two lemmas are the key ingredients in the proof of Theorem 5.13.

Lemma 5.15. Let g € M be a projection and P C qMq a von Neumann
subalgebra. If 0,(P) <y mi(M) for some i € {1,2} and somet € (0,F), then
P <y A

Lemma 5.16. Let ¢ € M be a projection and P C qgMq a von Neumann
subalgebra. If 0;(P) is amenable relative to A inside M for all t € (0, %), then
P is amenable relative to A inside M.

Before proving Lemma 5.15 and Lemma 5.16, we first show how Theorem 5.13
follows from these two lemmas.
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Proof of Theorem 5.13. Put P = Nyaq(B)”. We apply [Val3, Theorem A] to
the subalgebra 6,(B) C M x4 M for a fixed ¢t € (0,%). Note that 6,(B) is
normalized by 6;(P). So, we get that one of the following holds:

(1) 6,(B) =<m A.
(2) 0:(P) <a (M) for some i € {1,2}.
(3) 6,(P) is amenable relative to A inside M.

If 1 or 2 holds, it follows by Lemma 5.15 that B <a; A. So, if we assume that
B An A, we get that 0;(P) is amenable relative to A inside M for all ¢ € (0, 7).
It then follows from Lemma 5.16 that P = Nju4(B)” is amenable relative to
A inside M. O

Proof of Lemma 5.15

We now turn to the proof of Lemma 5.15. We first give a sketch of the proof.
For each k € N, we let p, € B(L?M) denote the projection onto H%%. Given
a von Neumann subalgebra P C ¢Mgq, we first show that if 6;(P) < m;i (M)
for some i € {1,2} and some t € (0, §), then P has “bounded tensor length”,
in the sense that there exists k¥ € N and § > 0 such that || Zf:o pi(a)ll2 > 0
for all a € U(P) (see Lemma 5.18). Next, we reason exactly as in the proof
of [Po03, Theorem 4.1]. Since §; converges uniformly to id on the unit ball of
pi(M) for any fixed i € N, we get a ¢t € (0,5) and a nonzero partial isometry
v € M such that 6;(a)v = va for all a € U(P ) Using the automorphism (3, we
can even obtain t = m/2, i.e., ma(a)v = vmi(a) for all a € U(P). Using results
of [IPP05] on amalgamated free product von Neumann algebras, this implies
that P < A.

For simplicity, we put M; = m;(M) C M for i € {1,2}. Note that
L*(My) = @@H@o L*(My) = L*(A) & (0 & H)®A
k=1

as subspaces of L2(M) = Fa(H @ H). Denote by ey, € B(L?*(M)) the
projection onto L?(M;).

Lemma 5.17. If pu, € L*(My) is a bounded net of wvectors such that
limy, 00 [Pk (1tn)|] = 0 for all k >0, then for alli = 1,2, 0 <t < T, integers
a,b,c,d > 0 and vectors &;,m;, Vi, pi € H & H, we have

llear, (€(§1) -+ - £(&a)l(np)” -+ - L(m) r(ve) - - r(y)r(p1)” - 7(pa) " Uspn) | = 0,

as n — Q.
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Proof. Fix t € (0, %) and define §; = cost and d; = sint. Define the operator

Z; € B(L*M) for i = 1,2 by
b e—b— d
Zi = @ 5@'67b7d(Ut®A ®A 128 ®a US4).
e>b+d
Denote p>, = > oo, piand poy = Zf;ol pi- When k > b+d, we have || Z;p> .|| =
6574 Since lim,, ||[p<y(ttn)|| = 0 for every , we get that lim,, || Z;(1,)|| = 0.
So, it suffices to prove that

enr, (0(&r) - (&))" -+ L(n1) r(ve) - - - r(y)r(p1)* - - 7(pa) " Usp>praln))

= (qi1) - £(qi€a) )™ -+ £(m1) "1 (give) - - - 7 (@y)r(p1)” - - 7(pa)™ Zi(pe)

for all 4 € L?(My), where g; and g denote the orthogonal projections of H @& H
onto H & 0 and 0 & H, respectively. It is sufficient to check this formula for
B=p1 R4 @A e With u; € H@ 0 and e > b+ d, where it follows by a direct
computation. Indeed, let & = £(np)* - £(m)*(Uppt1 @4 -+ @4 Ugpip) € A and
y=r(p1)* - 1(pa)" (Utpte—at1 ®a - @4 Uppie) € A. Then

enr; (6(60) -+ (&))" - - - £(m) " (ve) - - - ()7 (p1)" - - 7(pa) "Us(1))
=ey, (619 RO Upipy1 @ - Q@ Uple—d - Y@ @ -+ D Ye)
=61 @ ®¢ila @ ifip41 @ - @ ifle—ay @ @71 ® -+ @ GiYe
= U(qi&1) -+ 0(qi€a)l(mp)™ -+ - L(m) " r(qive) -+ (@ )r(p1)” - - 7(pa)* Zi(p).-
O

Lemma 5.18. If a, € M is a bounded net with lim,, ||pk(ay,)||2 = 0 for all
k >0, then
lim | By, (20:(an)y)ll2 = 0,

n— oo

forallie {1,2},0<t <% and z,y € M.

Proof. Tt suffices to take x = W(&y,...,&) and y = W(n1,...,nm) with &, n; €
H & H (as defined in Section 5.1), since these elements span a || - ||o-dense
subspace of M & A. Then,

EMi (xat(an)y) = €M, ('TJy*JUt (anQ))

m

k
=D > enn (U&r) - L) TExra)" - L(TEk)"
s=0r

=0

(M) - (e ) (Ine)* - (In)*Up(@n92))
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and the result now follows from Lemma 5.17. O
We are now ready to finish the proof of Lemma 5.15.

Proof of Lemma 5.15. Assume that 6,(P) < M; for some ¢ € {1,2} and ¢ €
(0, %). Without loss of generality, we assume that i = 1. By Lemma 5.18, we
get a ¢ > 0 and x > 0 such that || Z;:()pj(a)ﬂg > 26 for all a € U(P). Note
that (Uy(pi(a)), p;(a)) = 0 if i # j and that (Uy(pi(a), pi(a)) = cos(t)|p:(a)[3
Choose to € (0, %) such that cos(tg)’ > 1/2 for all i = 0,..., k. Note that we
may choose tg of the form ¢y = w/2". For all @ € U(P), we then have

(01 (a)a”) = (Ui (a),a) = 3 (U, (pi() Zcos to)lpi (@) 3

> Zcos to)'|lpi(a)||3 >

Let v be the unique element of minimal 2-norm in the weakly closed convex
hull of {6, (a)a* | @ € U(P)}. Then v € M and 0, (a)v = va for all a € U(P).
Moreover, v # 0 since 7(v) > 6.

Put wy = 64, (vB(v*)). Then w; satisfies wia = oy, (a)wy for all a € U(P).
However, we do not know yet that w; is nonzero. Assuming that P £y, A, we
have from Proposition 5.10 and [IPP05, Theorem 1.2.1] that P’ NgMgq C ¢Mgq,
hence v*v € ¢M¢q. Thus

wiwy = Oy, (B(v)v vB(0")) = b4, (B(v0")) # 0 .

By iterating this process, we obtain w = w, 1 # 0 such that wa = 0, /(a)w
i.e., wm(a) = m2(a)w for all a € P. This means that P <, Mz. As in [Ho07,
Claim 5.3], this is incompatible with our assumption P 4j; A. So it follows
that P < A and the lemma is proved. O

Proof of Lemma 5.16

Proof. Let P C ¢Mq and assume that 6;(P) is amenable relative to A in M
for all t € (0,%). As in the proof of [Io12, Theorem 5.1] (and [Val3, Theorem
3.4]), we let I be the set of all quadruples i = (X,Y,d,t) where X C M and
Y C U(P) are finite subsets, 6 € (0,1) and ¢t € (0,%). Then I is a directed
set when equipped with the ordering (X,Y,4,t) < (X', Y’,d’,t') if and only if
XcX,YcY' §d<dandt <t
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By [OP07, Theorem 2.1], we can for each ¢ = (X,Y,4,t) € I choose a vector
& € 0:(q) L2 (M) @4 L*(M)0;(q) such that [|&]]2 < 1 and

[(x&;, &) — T(x0:(q))| <6 forallx € X or x = (6:(y) —y)" (6:(y) —y), y €Y,

10:(9)& — &i0i(y)]2 <0 forally €Y .

Moreover, we may assume that & satisfies (z§;,&;) = (§x,&;) for all x € M
and ¢ € [.

We now prove that the gMg-P-bimodule ,7,L?(¢Mq)p is weakly contained in
aMq(qL* (M) ® 4 L*(M)q)p. By Lemma 2.8, it suffices to show that

lim(x¢&;, &) = 7(x) for every = € gMgq,
(5.8)
lim [|[y§; — &ylla =0 for every y € P.

Let y € U(P) and ¢ > 0 be given. Choose t > 0 small enough so that
10:(y) — yll2 < \/Lfs' We have

ly&i — iyl < (v — Oc(y)&ill2 + 10: ()& — &b (W)l2 + [1€:(0c(y) — ) |2

for any i € I. Moreover, for i > ({0}, {y}, %,t) we have

1ty — 0:())&ill3 = ((0e(y) — v)" (0e(y) — v)&i, &)

g2 e

<N0:w) =)0l + 5 < 5
Similarly, we get that [|£;(6:(y)—y)|l2 < §. Thus, we conclude that ||y&;—&yll2 <

e for i > ({0}, {y}, %,t) and so the second assertion of (5.8) holds true. The
first assertion is proved similarly, using that ||0:(¢) — ¢||]2 — 0 as ¢ — 0.

By Proposition 5.10, we have M = M7 %4 M5. Under our identification M = My,
we claim that ;L?(M)y = 3 (L?(M) ®4 K)4 for some A-bimodule 4K4. To
see this, note that

Ep (21 Z2mg1) = 0,

whenever m > 1, z1,%om+1 € M1, 225 € M2 © A and z2j41 € M © A for all
j=1,...,m—1. Also, L>(M & M) is the closed linear span of such elements.
It follows that

LA (Mo M) = @ LA(M) @A L*(My© A) @4 - @4 LA (My© A) @4 L* (M),

m>1
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where the tensor product on the right hand side should be understood as an
alternating tensor product between L?(My © A) and L?(M; © A), with 2m + 1
tensor factors in total. So, letting

K = @LZ(MQGA) R4 Ra L2(M2@A) ®AL2(M1)®L2(A),

m>1

it follows that ;L?(M)a = 3(L*(M) ®4 K)a as claimed.

We conclude that the bimodule ,u,L%(¢Mq)p is weakly contained in
aMq(qL* (M) ®4 (K @4 L*(M)q))p. It then follows from Proposition 2.11 that
P is amenable relative to A inside M. This finishes the proof of Lemma 5.16. [

5.3 Maximal amenability

Fix a tracial von Neumann algebra (A, 7) and a symmetric Hilbert A-bimodule
AH 4 with symmetry J: H — H. Denote by M =T'(H, J, A, 7)" the associated
von Neumann algebra with faithful normal tracial state 7. We prove the following
maximal amenability property by combining Popa’s asymptotic orthogonality
[Po83] with the method of [BH16]. In the special case of free Bogoljubov crossed
products (see Remark 5.11), part 3 of Theorem 5.19 was proved in [Hol2b,
Theorem D].

Theorem 5.19. Assume that sHa is weakly mizing. Then the following
properties hold.
(1) Z(M)={a€ Z(A) | a =&a forall £ € H}.

(2) If BC M is a von Neumann subalgebra that is amenable relative to A
inside M and if the bimodule g aH 4 is left weakly mizing, then B C A.

(3) A wvon Neumann subalgebra of M that properly contains A is not amenable
relative to A inside M. If the A-bimodule 4H 4 is faithful', then M has no
amenable direct summand. If A is amenable, then A C M is a mazximal
amenable subalgebra.

Proof. As above, identify

L*(M)=L*(A)e P H

n>1

LA P-Q-bimodule PHQ is called faithful if the *-homomorphisms P — B(H) and Q°° —
B(H) are faithful.
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and denote by H C H the subspace of vectors that are both left and right
bounded.

1. Since oH4 is weakly mixing, it follows from Proposition 2.26 that the n-
fold tensor products H ®% (with n > 1) have no A-central vectors. Therefore,
A'NM = Z(A). Looking at the commutator of a € Z(A) and £(§) + £(JE)*,
the conclusion follows.

2. Since B is amenable relative to A inside M, we can fix a B-central state
w € (M, e)* such that w|y = 7.

Claim I. For every £ € ‘H and every € > 0, there exists a projection p € A such
that 7(1 — p) < € and such that

w(l(Ep)l(ép)™) <.

To prove this claim, fix £ € H and € > 0. Define a = \/(&,£) 4 and denote by
q € A the support projection of a. Take a projection ¢; € ¢Ag that commutes
with a, such that 7(¢—gq1) < /2 and such that ag; is invertible in g; Ag;. Denote
by b € g1 Ag; this inverse and define n = £b. By construction, £(n)*4(n) = ¢
and £q1 = na.

Pick a positive integer N such that 2=V < ¢/(2|/a||?). Put x = 2~. Then pick
§ > 0 such that § < &/(x2||al|?). We start by constructing unitary operators
v1,...,0s € U(AN B) and a projection go € g1 Agr such that 7(q1 — q2) < €/2
and such that the vectors n; = v;n satisfy

lg2(mi,mj) 4 2| <& whenever i # j (5.9)
(and where we indeed use the operator norm at the left hand side of (5.9)).

We put ey = ¢; and v; = 1. Denoting by (a;);cr the net of unitaries in BN A
witnessing the left weak mixing of g 4Ha, we get that lim; ||(n, a;n)all2 = 0.
Let r; € q1Ag1 be the spectral projection of (n, a;n)%(n, a;n) 4 associated with
the interval [0,62]. Then (r;);cs is a net of projections such that

(g — 7)) < 672 7((n,ain)iy(n,aim)a) — 0

and

[, asm)arill> = [lri(n, am)’ (n, am) ardl| < 6% for every i.
Take ¢ large enough such that 7(¢g1 — ;) < £/4 and define e; := r; and v := a;.
We have now constructed vy,vs. Inductively, we double the length of the
sequence, until we arrive at vy,...,v.. After k steps, we have constructed
the projections e; > --- > ¢; and unitaries vy,...,v9x in U(B N A) such that
7(ej—1 —e;) < 2797 1¢ and such that the vectors n; = v;n satisfy

llex (mismj)aer|| <8 whenever i # j .
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As in the first step, we can pick a unitary a € U(B N A) and a projection
ert1 € erAey, such that 7(ep — exy1) < 27572 and such that

llex+1 (i, ans)aery1ll <0

for all i,5 € {1,...,2*}. It now suffices to put vyr_; = av; for all i = 1,..., 2.
We have doubled our sequence. We continue for IV steps and put g; = en. So,
(5.9) is proved.

Put p; = nig2 = vinga. Define P; = £(;)¢(u;)* and note that P; = v; Pyvf. Also
note that P; is a projection since 1 was chosen such that P, is a projection. By
construction, ||P;P;|| < & whenever i # j. Writing P = ", P; it follows that
| P2 — P|| < k6. Since P is a positive operator, we conclude that || P|| < 1+ £24.
Since w is B-central and v; € B for all i, we get that

kw(P) = w(P)=wP)<||P| <1+r%.

i=1
Therefore, w(P;) < k™1 + Kk < ||al| 2.

Since ¢; and a commute, the right support of (¢1 — ¢2)a is smaller than ¢y,
hence it is a projection of the form g; — py where py € q1 Aqy. Since the left and
right supports of an element have the same trace and since the left support of
(¢1 — ¢2)a is smaller than ¢; — g2, we have that 7(¢1 — po) < 7(q1 — g2) < /2.
By construction, q1apg = geapg. Since py < g1 and n = nq1, it follows that

§po = £q1po = Napo = Mq1apPo = 7G2Gy -

Define the projection p € A given by p = (1 — ¢q) + po. Since £(1 — q) = 0,
we still have {p = ngaapg. Because 1 —p = (¢ — ¢1) + (¢1 — po), we get that
7(1 — p) < e. Finally,

w(l(Ep)e(Ep)*) = w(t(ng2) apoa™ £(ng2)*) < |lal|® w(€(ng2)€(ng2)")
= |la|Pw(P1) < €.
So, we have proven Claim I.

Claim II. For every £ € H and every € > 0, there exists a projection p € A
such that 7(1 — p) < e and such that w(¢(&p)e(Ep)*) = 0.

For every integer k > 1, Claim I gives a projection p;, € A with 7(1 —pg) < 27 Fe
and w(l(Epi)l(Epk)*) < 1/k. Defining p = A, pr, we get that 7(1 — p) < € and,
for every k > 1,

w(l(Ep)(Ep)) = w(l(E)pL(€)) < w(l(&)prt(§)") = w(l(Epr)l(Epr)™) < 1/k .
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So, w(¢(ép)t(&p)*) = 0 and claim IT is proved.

We can now conclude the proof of 2. Denote by F4: M — A and Eg: M — B
the unique trace-preserving conditional expectations. It is sufficient to prove that
EpoE4 = Ep. So we have to prove that Eg(x) =0 for allz € M© A. Using the
Wick products defined in (5.2), it suffices to prove that Eg(W(&1,...,&)) =0
forall k > 1 and all &,...,& € H.

Since w is B-central and w|y; = 7, there is a unique conditional expectation
®: (M,es) — B such that ®|yy = Ep and w = 70 ®. Indeed, given T €
(M,ea), we define a positive linear functional wr on B by wr(z) = w(Tx).
For b € By, we have

wr(B)* = lw(®PTH2)? < w (B2 T2 )w(b) < |IT|Pw(®)? = | TI7(b)*.

By the Radon-Nikodym Theorem, there exists a unique element ®(7T") € B4
such that w(Th) = 7(®(T)b) for b € B. Extending ® to all of (M,e4) gives a
conditional expectation ®: (M,e4) — B such that ®|p; = Ep and w = 70 P.

We first consider k > 2 and &q,...,& € H. By Claim II, we can take sequences
of projections p,, ¢, € A such that p, — 1 and ¢, — 1 strongly and

(L(E1pn)l(&1pn)") = 0 = (L(J (&k)qn)L(J (€k)an)")

for all n. Then also ®(£(&1p,)T) = 0 = O(TL(J(&k)gn)*) for all n and all
T € (M, ey), by the Cauchy-Schwarz inequality. We conclude that

Ep(W(&ipn, &2, &k—1, k) = ®(W (§1pn, &2, -+, §k—1, k) = 0
for all n. Since Fp is normal, it follows that Fg(W(&1,...,&)) = 0.

We next consider the case k = 1. So it remains to prove that Eg(€(§)+4(J€)*) =
0 for all £ € H. For this, it is sufficient to prove that ®(¢(£)) = 0 for all £ € H.
By Claim IT and reasoning as above, we find a sequence of projections p,, € A
such that p, — 1 strongly and ®(£(€p,)T) =0 for all n and all T € (M, e4).
In particular, we can take T'= 1 and get that ®(£(£)p,) = 0 for all n. Write
en = 1 — p,. Using the Cauchy-Schwarz inequality, we get

B(U(E)) R(L(E)) = B(L(E)en) " R(U(E)en) < [I(E)I* B(en) = [E(E)I* E(en) -

Since Ep(e,) — 0 strongly, we conclude that ®(¢(£)) = 0. This concludes the
proof of 2.

3. It follows from 2 that a von Neumann subalgebra of M properly containing
A is not amenable relative to A and thus, not amenable itself. Whenever
H # {0}, we have A # M and we conclude that M is not amenable. By 1, any
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direct summand of M is given as the von Neumann algebra associated with
the symmetric weakly mixing Az-bimodule Hz where z € Z(A) is a nonzero
central projection satisfying £z = z¢€ for all £ € H. If 4H 4 is faithful, we have
Hz # {0} and it follows that this direct summand is not amenable. The final
statement is an immediate consequence of 2. O

5.4 Absence of Cartan subalgebras

In this section, we give a complete description of the structure of the von
Neumann algebra M =T'(H, J, A, 7)" associated with an arbitrary symmetric
A-bimodule (H,.J).2 We describe the trivial direct summands of M and then
prove that the remaining direct summand never has a Cartan subalgebra and
describe its center (see Theorem 5.21). In all interesting cases, there are no trivial
direct summands and this allows us to prove absence of Cartan subalgebras
whenever H is a weakly mixing A-bimodule (Corollary 5.22), when A is a IT;
factor and H is not the trivial bimodule nor the bimodule given by a period 2
automorphism of A (Corollary 5.23), and finally for arbitrary free Bogoljubov
crossed products (Corollary 5.24). This last result improves [Ho12b, Corollary
C].

To prove our general structure theorem, we need the following terminology. Fix
a separable tracial von Neumann algebra (A, 7). We say that an A-bimodule
H is given by a partial automorphism if one of the following two equivalent
conditions holds.

e The commutant of the right A-action on H equals the left A-action, and
vice versa.

o There exists a projection e € B(£*(N)) ® A, a central projection z € Z(A)
and a normal surjective #-isomorphism a: Az — e(B((*(N)) ® A)e such
that 4Hy = e(f?(N) ® L?(A)) with the bimodule structure given by
a-&-b=ala)d.

If (H,J) is a symmetric A-bimodule that is given by a partial automorphism,
then I'(H, J, A, 7)" is “trivial”, in the sense that it is essentially equal to A. We
can compute this using the methods of Example 5.12.

Proposition 5.20. Let (A, 7) be a separable tracial von Neumann algebra and
(H,J) a symmetric A-bimodule such that H is given by a partial automorphism
of A. Put M =T(H,J A, 7)". Then M contains a subalgebra N of index 2 (in

2For simplicity, we will in this section restrict ourselves to the case where A is a separable
von Neumann algebra.
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the sense that N is fized by an order 2 automorphism of M) such that N is a
direct sum of a corner of A and a corner of A ® L*°[0,1].

Proof. Let o: Z/2Z ~ H denote the action given by o(1)(§) = —¢ for € €
H. Clearly 0 commutes with J and with the left and right A-actions. By
functoriality, we get an action o: Z/2Z ~ M satisfying o(1)W (&1,...,&,) =
(=1)"W(&,..., &) for &,...,&, € H. Let

N=AV{W(&,...,&) | neven, &,...,& € HY' C M,

and note that N equals the subalgebra of M that is fixed under o. So, N is an
index 2 subalgebra of M.

Let a: Az — p(B(£?N)®A)p be an isomorphism such that H = p(¢?(N)®L?(A))
with A-bimodular actions given by a-£-b = a(a)éb. We then have that H® 4 H =
L?(p(B(£*N)® A)p) with A-bimodular actions given by a-£-b = a(a)éa(b). So,
a gives an isomorphism between H ®4 H and the trivial Az-bimodule. Since
H is symmetric, we have that H =2 H and hence H ® 4 H is isomorphic with

the trivial Az-bimodule. Let ®: H ® 4 H — L?(A)z denote this isomorphism.

Let & = ®71(2) € H ®4 H. Since & is a left and right bounded vector in
L?(M), there is a unique element S € M such that SQ = &. Note that S € N,
S is self-adjoint and S commutes with A. We claim that N = AV {S}”. Indeed,
since A§gA = H ® o4 H, we have that W (&;,8&) € AV {S}” for any &;,& € H.
Inductively, it follows that W (&y, ..., &) € AV{S}” for any k € Nand & € H,
and thus N C AV {S}”. The reverse inclusion is trivial.

Write {S}" = L (X, u), where u is the spectral measure of S. By decomposing
p into its continuous and atomic parts, we get that {S}” = L*°[0,1] & @,.,; C,
where T is a set indexing the atoms of u. Let zg € {S}” denote the projection
onto the continuous part and let (z;);c; denote the projections onto the atoms.
Then
N =AV{S} = L®[0,1]® Az & P Az.
iel
O

Fix a symmetric A-bimodule (H,J) and denote M = I'(H,J, A,7)"”. Then,
M has two trivial direct summands. First denote by zgp € Z(A) the largest
projection such that zoH = {0}. Then, zg € Z(M) and Mzy = Az. Next,
there is a largest projection z; € Z(A)(1 — zp) such that z; H = Hz; and such
that the A-bimodule Hz; is given by a partial automorphism of A (see Lemma
5.40 for details). Again z; € Z(M) and Mz is essentially equal to a corner of
A, up to amplifications and an index 2 extension (see Proposition 5.20).
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Writing zp = 1 — (20 + 21), we thus get that
M = Az ®T(Hz1,J, Az1,7)" ®T(Hzg, J, Aza, )"

and only the third direct summand is “interesting and nontrivial”. By Lemma
5.40, the symmetric Azo-bimodule H z, is completely nontrivial in the following
sense: the left action of Az, on H is faithful and there are no nonzero projections
e,f € Z(A)zy such that eH = Hf and such that eH is given by a partial
automorphism of Azy. So it suffices to describe the structure of the von

Neumann algebra associated with an arbitrary completely nontrivial symmetric
A-bimodule.

We denote by dim_ 4 (K) the right A-dimension of a right Hilbert A-module
K. Recall that the value of dim_ 4 (K) depends on the choice of the trace 7.
We similarly define dim4_ (K) for a left Hilbert A-module K. As in (5.10), for
every A-bimodule H, there is a unique element A% in the extended positive part
of Z(A) characterized by 7(A%e) = dim_4(eH) for every projection e € Z(A).

Theorem 5.21. Let (A, 7) be a separable tracial von Neumann algebra and
(H,J) a completely nontrivial symmetric A-bimodule. Write M = T'(H, J, A, T)".
There is a canonical central projection g € Z(M) (which most of the time is
zero) such that the following holds.

(a) No direct summand of M (1 — q) is amenable relative to A(1 — q).
(b) No direct summand of M (1 — q) admits a Cartan subalgebra.
(c) Mq= Aq and the support of E4(1 — q) equals 1.

(d) Defining C :={a € Z(A) | a = a for all € H}, we get that Z(M) =
Z(A)g+C(1—q).

Moreover, we have that Ea(q) = Z(AY), where Z: (0, +00) — R is the positive
function given by Z(t) =1 —1t when t € (0,1) and Z(t) =0 when t > 1.

Corollary 5.22. Let (A,7) be a separable tracial von Neumann algebra and
(H,J) a symmetric A-bimodule. Put M = T'(H,J, A, 7)". If 4H4 is weakly
mizing and faithful, then no direct summand of M has a Cartan subalgebra and
ZM)={a€ Z(A) | a& =&a forall £ € H}.

Proof. Let z € Z(A) be a nonzero central projection. Since zH # {0} and zH
is still left weakly mixing as an A-bimodule, we have that dim_ 4(2H) = 400
and that zH is not given by a partial automorphism of A. So the conclusions
follow from Theorem 5.21. O
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When A is a II; factor, the results of Theorem 5.21 can be formulated more
easily as follows.

Corollary 5.23. Let A be a separable II; factor with its unique tracial state T
and let (H,J) be a symmetric A-bimodule. Denote M =T'(H,J, A, 7)". Unless
H is zero or H is the trivial A-bimodule or H is the symmetric A-bimodule
associated with a period 2 outer automorphism of A, the following holds: M is
a factor, M is not amenable relative to A, and M has no Cartan subalgebra.

Proof. Since A is a 11; factor, the only symmetric A-bimodules given by a partial
automorphism of A are the trivial A-bimodule and the A-bimodule given by o €
Aut(A) with a o a being inner. Indeed, assume that a: A — e(B(£2(N)) ® A)e
is a x-isomorphism and H = e(f*(N) ® L?(A)) with A-bimodular actions given
by a- & - b= a(a)b. By [AP16, Proposition 12.1.5] and since H is symmetric,
we have that

1

(Tr@7)(e) =dim_4(H) = dima_(H) = CEDIGk

and hence (Tr®7)(e) = 1. It follows that H = L?(A) and that a: A — A
is a *-isomorphism. Since H is symmetric, we must have that o? is an inner
automorphism of A.

When a symmetric A-bimodule H is not given by a partial automorphism of A,
we have that dim_ 4 (H) > 1. So, Z(AY%) = 0, where Z: (0,00) — R denotes the
function defined in Theorem 5.21. The conclusion now follows from Theorem
5.21. O

We finally deduce that free Bogoljubov crossed products never have a Cartan
subalgebra. In [Hol2b, Corollary C], this was proven under extra assumptions
on the underlying orthogonal representation.

Corollary 5.24. Let G be an arbitrary countable group and m: G — O(KR)
an orthogonal representation of G with dim(Kg) > 2. Denote by o.: G ~
T(KRr)” = L(Faim i) the associated free Bogoljubov action with crossed product
M :=T(KR)" %%~ G (see Remark 5.11). Then no direct summand of M has
a Cartan subalgebra. Also, M is a factor if and only if w(g) # 1 for every
g € G\ {e} that has a finite conjugacy class.

Proof. Write A = L(G) with its canonical tracial state 7. By Remark 5.11, we
can view M =T'(H, J, A,7)” where the symmetric A-bimodule (H,J) is given
by (5.3). Denote by K the complexification of Kg. Observe that H = (2(G)® K
with bimodule structure a - € - b = a(a)&b, where a: L(G) — L(G) @ B(K) is
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given by a(uy) = uy @ m(g) for all g € G. Since (7 ® id)a(a) = 7(a)l for all
a € L(QG), it follows that A%, = dim(Kg) 1.

The left and right actions of A on H are faithful. Since H® 4 H can be identified
with the bimodule associated with the representation m ® 7, the center valued
dimension of H ® 4 H as a left A-module equals dim(Kg)% 1. It follows from
Lemma 5.39 below that H is completely nontrivial. Since dim Kr > 1, it
follows from Theorem 5.21 that no direct summand of M has a Cartan and
that Z(M) ={a € Z(A) | a§ =&a for all £ € H}.

Let a € Z(A) be such that a§ = &a for all { € H. By writing a = > . aguy
for the Fourier decomposition of a and using that ¢ commutes with 6, ® n for
all n € K, we get

Z ag0g ® 1) = Z agdg @ m(g)n, 1€ K.
9eG geG

It follows that w(g) = 1 for any g € G that appears with nonzero coefficient in
the Fourier decomposition of a. But since a € Z(A), the only group elements
that appear in the Fourier decomposition are the ones with finite conjugacy class.
It follows that M is a factor whenever 7(g) # 1 for every g € G\ {e} with a finite
conjugacy class. Conversely, assume that m(g) = 1 for some g € G\ {e} with a
finite conjugacy class F' = {hgh™! | h € G}. Then the element a = D ger Ug 18
a nontrivial central element of M. We conclude that M is a factor if and only
if w(g) # 1 for every g € G\ {e} that has a finite conjugacy class. O

Before proving Theorem 5.21, we will first introduce some general notions for
bimodules and prove some technical lemmas.

5.4.1 Preliminaries on bimodules

—

Let (A, 7) be a tracial von Neumann algebra and denote by Z(A) the extended

positive part of Z(A), i.e., when we identify Z(A) = L*(X, ), then Z/(\A)
consists of all measurable functions f: X — [0,4o00] up to identification of
functions that are equal almost everywhere.

Whenever (B, 1) and (A, 7) are tracial von Neumann algebras and H is a B-

A-bimodule, we denote by A%, € E(E) the unique element in the extended
positive part of Z(B) characterized by

7(A%e) =dim_4(eH) for all projections e € Z(B) . (5.10)
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Writing H = p(¢?(I)® L?(A)) with the bimodule action given by b-£-a = a(b)€a
where a: B — p(B(£%(I)) ® A)p is a normal *-homomorphism, we get that
(A% ) = (Tr@7)a(-) and this also allows to construct Af;.

—

By symmetry, we can also define A}, € Z(A) characterized by the formula
T(A%e) = dimp_(He) for every projection e € Z(A).

Recall that a right Hilbert A-module K is finitely generated if and only if
K = p(C" ® L?*(A)) for some n € N and some projection p € M,,(C) ® A. Any
finitely generated right A-module K admits a Pimsner-Popa basis, i.e., right
bounded elements &1, ... ,&, € K such that

£= Za (&,6)a (5.11)

for all right bounded elements £ € K. Indeed, identifying K with p(C"® L?(A)),
this amounts to letting & = p(e; ® 14) where {e;}_; denotes the canonical

basis of C™. We denote by tx € K ® 4 K the associated vector given by

= &®al;. (5.12)

=1

Lemma 5.25. Let K be an A-bimodule that is finitely generated as a right
A-module. Choose a Pimsner-Popa basis {&;}"  C K and let tg € K @4 K
be the associated vector defined in (5.12). Then tx is an A-central vector and
(tre,tx)a = A% If A% is bounded, i.e., A% € Z(B), then & is also left
bounded for each 1.

Proof. Giving a Pimsner-Popa basis {£}7_, for the right Hilbert A-module K
is the same as defining a right A-linear unitary operator 6: e(C" ® L?(A)) — K
for some projection e € A™ := M,,(C) ® A, with §, = 0(e(er ® 1)). Define the
faithful normal *-homomorphism a: A — eA™e such that 8(«a(a)f) = af(§) for
alla € A and £ € e(C" @ L%(A)).

For a € A, we now have that

atg = Y &-a(a); @ali= Y & @a-ala)y = txa,

i.j=1 i.j=1
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so that tx is A-central. Moreover, for z,y € A,

n

(Ctr) Ut ) y)a = Y (& @ali 20,6048 - y)

ij=1

_Z )i @ 1), (€, &) - aly®)(e; @ 1))
—Z J(e: @1),a(x™)(e; @ 1)

= (Tr@7)(alzy”)) = (AkT,y)2,
which means that (ty,tx)a = Ak.

Finally, assume that A% is bounded. Define the vector £ € C"* ® K given by

= Z@Qﬁ)ﬁk .
k=1

Then, b¢ = £a(b) for all b € A and, in particular, £ € (C* @ K)e.

Define the normal positive functional w: A — C: w(a) = (a&,&). Then w is
A-central, so we find A € L*(Z(A))T such that w(a) = 7(ad) for all a € A.
But for all projections ¢ € A, we have

7(qA) = w(q) = (g€, &) = (€a(q), &) = (TraT)(a(g)) = dim_A(¢K) .

This means that A = A%. Since A% is bounded, we get that
> lla&l® = [lag|)* = r(a*aldf) < [|A%[llal3  for all a € 4,

which implies that the vectors &, € H are left A-bounded. O

Recall that the A-dimension of a left or a right A-module depends on the choice
of trace on A. Therefore, a better way to keep track of the dimension of an
A-module in the case where A is not a factor, is to consider the center valued
dimension, which is defined as follows. Let L be a right A-module. Then we
may identify L with p(¢2(I) ® L?(A)) for some projection p € B(¢*(I)) ® A.
The center valued right A-dimension of L is defined by

—

zdim_4(L) = (Tr®Ez(a))(p) € Z(A),
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where Ez(4) denotes the conditional expectation of A onto its center Z(A).
Similarly, if L is a left A-module, we can define the center valued left A-dimension
denoted by zdim 4 (L). We have that L is finitely generated as a right (resp.
left) Hilbert A-module if and only if zdim_ 4 (L) (resp. zdim4_ (L)) is bounded
(see [AP16, Proposition 9.3.2]).

Note that the definition of the center valued dimension is independent of the
trace 7 on A since Ez(4) is intrinsic. Moreover, the center valued dimension
is a complete invariant for left/right A-modules: two left/right A-modules are
isomorphic if and only if they have the same center valued left /right A-dimension
(see [AP16, Section 9.3]).

We will also need the notion of essentially finite index for inclusions of tracial
von Neumann algebras. Given a tracial von Neumann algebra (@, 7) and a von
Neumann subalgebra P C @, the Jones index of the inclusion P C @ is defined
to be [Q : P] := dim_p L*(Q). Note that the value of [Q : P] is not canonical
since it depends on 7. Therefore, when we speak about a finite index inclusion,
it will always be with respect to a certain trace. In [Va07, Appendix A], Vaes
introduced a broader notion of a finite index inclusion, which is independent of
the choice of trace.

Definition 5.26 ([Va07, Definition A.2]). A von Neumann subalgebra P of a
tracial von Neumann algebra (@, 7) is said to be of essentially finite index if
there exist projections ¢ € P’ N Q arbitrarily close to 1 such that Pq C ¢Qq has
finite Jones index.

Proposition 5.27 ([Va07, Proposition A.2]). Let P be a von Neumann
subalgebra of (Q, 7). The following are equivalent.

(1) P is of essentially finite index in Q.
(2) qQq <4qq Pq for every nonzero projection ¢ € P' N Q.

(3) There exists a projection ¢ € P' N Q arbitrarily close to 1 and there exist
finitely many elements y1,...,y, € Qq such that

rq = ZyzEP(yZ*x) for all z € Q.
i=1

5.4.2 Relative diffuse subalgebras

In this subsection, we will introduce the notion of a relative diffuse subalgebra
and we will provide a structural characterization of being relative diffuse. Our
goal is to prove Lemma 5.38, in which the setup is as follows: B C (M, 1) is a
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von Neumann subalgebra of a separable tracial von Neumann algebra M, S € M
is a self-adjoint operator that commutes with B, and D = {S}'Vv B C M. For
simplicity, we will only consider this specific setup.

We start by considering the abelian case. Let A C D be an inclusion of
abelian von Neumann algebras and write A = L (Y,v) and D = L™ (X, u).
Such an inclusion ¢: L*(Y,v) — L (X, ) amounts to a surjective Borel map
m: (X, p) — (Y,v) satisfying v = m.p and o(f) = fom for all f € L=(Y,v) (see
for instance [AP16, Theorem 3.3.4]).

A Borel map 7: (X, u) — (Y, v) satisfying m.u = v is called a factor map. Tt is
a classical result in measure theory that such a factor map 7: (X, u) — (Y, v)
gives rise to a disintegration of u, as stated in the following theorem. For a
proof, we refer to [Bo07, Theorem 10.4.14].

Theorem 5.28 (The Disintegration Theorem). Let (X,u) and (Y,v) be
standard probability spaces, and let m: X — Y be a factor map. There exists
a disintegration of pu with respect to w, i.e., a family of probability measures
{tty}yey on X such that

(1) py is supported on the fiber =1 ({y}) for ally € Y;

(2) the map y — py is a Borel map in the following sense: for each Borel set
B C X, the map y — p,(B) is Borel;

(3) we have that u = fY Wy dv(y). More precisely, for any measurable function
f: X —10,00],

Jor@aw = [ [ e @)

Moreover, the disintegration of p is unique in the following sense: if {1, }yey is
another disintegration of p with respect to m, then p, = /1,; v-almost everywhere.

Definition 5.29. Let (X, ) and (Y, v) be standard probability spaces and
let 7: (X,u) — (Y,v) be a factor map. Let {u,}yecy be the associated
disintegration of u. We say that the factor map 7 is diffuse if p, is non-atomic
for almost all y € Y.

If A= L>*Y,v) C L*(X,u) = D is an inclusion of abelian von Neumann
algebras, then we say that D is diffuse relative to A (or that A C D is relatively
diffuse) if the associated factor map 7: (X, u) — (Y, v) is diffuse.

Example 5.30. Let (Y,v) be a standard probability space and let (X, u) =
([0,1] x Y, A x v), where A denotes the Lebesgue measure on [0,1]. We then



116 THIN Il; FACTORS WITH NO CARTAN SUBALGEBRAS

have a factor map py: [0,1] x Y — Y given by py (z,y) = y. Note that this
is exactly the factor map associated with the canonical inclusion L*>(Y,v) C
L>[0,1] ® L>=(Y,v). The disintegration of u associated with the factor map
py is trivial, in the sense that p, = A x d,, for all y. Therefore, py is called the
trivial diffuse factor map.

It is a folklore result that any diffuse factor map 7: (X, u) — (Y, v) is trivial, in
the sense that there is a measure space isomorphism 6: (X, u) — ([0, 1] xY, Axv)
such that py o8 = w. As a corollary, we get that any relatively diffuse inclusion
A C D of abelian von Neumann algebras is isomorphic with the canonical
inclusion A C L*[0,1] ® A. Since I was unable to find a reference for these
facts, I will here provide a full proof.

Recall that any non-atomic standard probability space (X, ) is isomorphic
with ([0, 1], A), where A\ denotes the Lebesgue measure. So, if 7: (X, p) —
(Y,v) is a diffuse factor map, we get a family of measure space isomorphisms
0, : (X, py) = ([0,1], A). In the following, we will show that these isomorphisms
6, can be chosen in a uniform way so that 6: (X, ) — ([0,1] x Y, A x v) given
by 0(x) = (0r(z)(z), 7(x)) defines an isomorphism with the trivial factor map.

Lemma 5.31 ([Ke95, Theorem 17.41]). Let u be any non-atomic probability
measure on [0,1] and let A denote the Lebesgue measure. Define

9u': [07 1] - [Ov 1] : gu(x) = .U([O"r])a

and let N, C [0,1] be the set of y for which g, '({y}) contains more than
one point. Then N, is countable, in particular A(N,) = 0, and letting W, =
9, (N,), we have that

s [0, A\ Wy = [0, 1]\ Ny,

is continuous, bijective and satisfies (g,)«(1) = A.

Proof. Because 1 has no atoms, we have that g, is continuous. Moreover, g,, is
increasing and satisfies g, (0) = 0 and g, (1) = 1. It follows that g, is surjective.
So, for each y € [0,1], the preimage g, '({y}) is a closed interval, and all of
these intervals are pairwise disjoint. There can be only countably many disjoint
closed intervals with a positive length inside [0,1]. So, it follows that N, is
countable.

Since g,: [0,1] — [0,1] is surjective, also the restriction g,: [0,1] \ W, —
[0,1] \ NV, is surjective. To show that it is injective, assume that z; < x5 and
gu(x1) = gu(x2). Then p([z1,z2]) = 0 and g, (z) = gu(z1) for all z € [z1, x2].
It follows that g, (z1) € N, and hence z, € W),.
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Finally, when y € [0,1] \ Ny, write y = g,(z) for some z € [0,1] \ W,,. Note
that g, *([0,y]) = [0,2]. Thus,

((9)1)([0, 9]) = ([0, 2]) = gpu(2) =y = ([0, 9])-
So, (gu)*ﬂ =\ O

Proposition 5.32. Let (X,u) and (Y,v) be standard probability spaces and
let m: X =Y be a diffuse factor map. Then 7 is isomorphic with the trivial
diffuse factor map py: ([0,1] x VA x v) = (Y,v).

Proof. Define Z C X xY by Z = {(z,n(x)) | x € X}. Then Z is a Borel set,
being the graph of the Borel map =, and it is isomorphic with X. Let {gy,}yey
be the disintegration of p with respect to m and define the probability measure
von X xY by

v(A) = / Ly (Ay) dr(y), A C X xY Borel,
Y

where A, denotes the fiber A, = {x € X | (z,y) € A}. Note that v(Z) = 1.

We may assume that X = [0, 1]. By Lemma 5.31, we have continuous bijections
Gu, X\ Wy, = X\ Ny, such that (g,,)«ny = A. Moreover, g, is given by
9u, () = py([0,2]). Note that (x,y) — u,([0,]) is a Borel map by [Ke95,
Theorem 17.25].

Define the Borel map 6: X xY — X x Y given by 0(z,y) = (1y([0,]),y).
With the notation IV, from Lemma 5.31, put

N={(a,y) e X xY |aec Ny} ={(a,y) € XxY| )\(g;yl({a})) > 0}.
We claim that N is a Borel set. Indeed, define the set
V={(y,a,2) €Y x X x X | g, (x) = a}.

Note that V' is Borel, being the graph of the Borel map (x,y) — g,,(x). By
[Ke95, Theorem 17.25], the map (y,a) — A(V{y,q)) is Borel. It follows that

N ={(a,y) € X xY | A\(Viy,0)) > 0}
is indeed a Borel set.

Put W =60""(N). Then W = {(z,y) € X XY |z € Wy, }, so that

(W) = /Y 4y (W, ) di(y) = 0.

Now, 0: (X xY)\W — (X xY)\ N is a bijection because this holds fiber wise.
Moreover, 0,y = A X v. So, under the isomorphism X =& Z C X x Y, we have
that : X — [0,1] x Y is a measure space isomorphism satisfying m = py of. O
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Proposition 5.33. Let A C D be an inclusion of separable abelian von
Neumann algebras. The following are equivalent.

(i) D is diffuse relative to A.

(ii) There is an isomorphism ®: D — L*°[0,1] ® A satisfying ®(a) =1®a
for all a € A.

(iii) There exists a unitary u € D such that Ea(u*) = 0 for all k € Z \ {0}
and such that {u}’' VvV A= D.

(iv) D 4£p A.

Proof. The equivalence (i) < (ii) follows directly from Proposition 5.32.

(if) = (iili): Assume that D = L*°[0,1] ® A. Pick a Haar unitary ug € L*°[0, 1],
ie., T(uk) = 0 for all k € Z \ {0}. Letting u = ug ® 14 € U(D), we get the
desired unitary.

(iii) = (ii): Let uw € U(D) be a unitary as in the statement of (iii). Note that
u generates a diffuse von Neumann subalgebra of D that is in tensor product
position with A. So, D = {u}"’" Vv A= L*>°[0,1] ® A and this isomorphism is the
identity on A.

(ii) = (iv): This is a consequence of Popa’s intertwining-by-bimodules theorem,
Theorem 2.12.

(iv) = (i): Write A = L*(Y,v) and D = L*(X, u), and let p = [, p,, dv(y)
be the disintegration of p associated with the inclusion A C D. If D is not
diffuse relative to A, then we find a set Yy C Y of positive measure such
that u, has an atom for all y € Yy. Assume first that there is a Borel map
f: Yy — X such that f(y) is an atom of u, for all y € Y;. Since f is injective,
the image Xo := {f(y) | v € Yo} is a Borel set, by [Ke95, Corollary 15.2]. Then
p:=lx, € L*°(X, ) is a nonzero projection such that

pLOO(Xa :U/) = LOO(X()v/’(‘) = LOO(Y()vV)v

via the isomorphism 7*: L*>(Yp,v) — L (X, ) induced by 7. In particular,
D <p A.

It remains to show that the Borel map f from above does indeed exist. By
[Ke95, Theorem 17.25], we have that the map x — jir(5)({2}) is a Borel map
from X to R. In particular, the set

Xo ={z € X | pin(a) ({2}) > 0}
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is Borel. Now, the map 7: Xy — Y} is a surjective countable-to-one Borel map
and hence it has a Borel cross-section f: Yy — X by [Bo07, Theorem 6.9.6].
This gives us the desired map f. O

We now turn to the non-commutative case, in the setting of Lemma 5.38. Let
M be a separable tracial von Neumann algebra, let B C M be a von Neumann
subalgebra and let S € M be a self-adjoint operator commuting with B. Put
D =BV{S}".

We first show that the subalgebras B and Z(B) V {S}" of D form a so-called
commuting square, which is a notion due to Popa [Po83]. Two von Neumann
subalgebras @1, Q2 of a tracial von Neumann algebra (M, 7) are said to form
a commuting square if Eg, o Eg, = Eqg, o Eg,, where Eg, denotes the unique
T-preserving conditional expectation of M onto @;. In that case, we have that

Eq, 0 Eq, = EQ,nq-.-
Lemma 5.34. The von Neumann subalgebras B and Z(B) V {S}' form a
commuting square inside D, with BN (Z(B) v {S}’) = Z(B).

Proof. For any a € Z(B)V {S}”, we have that b — 7(ba) is a trace on B. Since
Ez(p) is preserved by any trace on B, it follows that 7(ba) = 7(Ezp)(b)a) for
allb € B and all a € Z(B) V {S}H. This means that EZ(B)\/{S}”(b) = Ez(B)(b)
for all b € B. Thus, EZ(B)V{S}“ oFEp = EZ(B)-

Letting ep, ez(p) and ez(pyv{s}~ denote the associated Jones projections in
B(L?(M)), we now have that ez(Byv{s}” €B = ez(p)- laking the adjoint, also
epez(Byv{s)’ = ez(p)- Restricting to M yields Ep o Ez(p)y(sy» = Ez(p)- 0O

Definition 5.35. Let B C D be as above. We say that D is diffuse relative to
B if the abelian inclusion Z(B) C Z(B) V {S}" is relatively diffuse.
Because of the commuting square property, we get the following characterizations

of relative diffuseness, motivating Definition 5.35 above.

Proposition 5.36. Let B C D be as above. The following are equivalent.

(i) D is diffuse relative to B.
(it) D 4p B.
(iii) The D-bimodule L?(D) ®p L?*(D) contains no nonzero D-central vectors.

(iv) For any B-D-bimodule K, the D-bimodule L?>(D) ®p K contains no
nonzero D-central vectors.
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Proof. Note that D 4p B exactly means that pL?(D)p is left weakly mixing.
By Proposition 2.26, we get that (ii) < (iii) < (iv).

(i) = (ii): Assume that D is diffuse relative to B. By Proposition 5.33, this
means that {S}” Vv Z(B) = L*>[0,1] ® Z(B) via an isomorphism that is the
identity on Z(B). Let u, € L*|[0,1] be a sequence of unitaries tending to
0 weakly. Then w, := u, ® 1g € D is a sequence of unitaries such that
|Ez By (xwny)|l2 — 0 for all z,y € {S}”" Vv Z(B). Since B and {S}" Vv Z(B)
form a commuting square, it follows that |Eg(zw,y)|l2 — 0 for all z,y € D.
Indeed, it is enough to show this for z,y € {S}”. In that case, we have that
zwypy € Z(B) V {S}’ and hence

| Es(zwny)ll2 = [[(Ep o Ez(Byvisy)(@wny)ll2 = [|Ez () (rwny)|l2 — 0.

By Popa’s intertwining-by-bimodules theorem, Theorem 2.12, this means that
D £p B.

(if) = (i): Assume that D is not diffuse relative to B, i.e., Dy := Z(B)V {S}" is
not diffuse relative to Z(B). By Proposition 5.33, this means that Dy <p, Z(B).
In fact, we proved the following stronger property in the proof of Proposition
5.33: there exist nonzero projections z € Z(B) and p € Dyz such that the linear
map a: Dop — Z(B)z given by a(z) = Ez(p).(2)Ez(p).(p) " for x € Dop is a
x-isomorphism. Since Dy and B form a commuting square inside D = Dy V B,
with BN Dy = Z(B), it follows that the linear map a: Dp — Bz given by

a(r) = Ep.(x)Ep.(p)~! is a xisomorphism extending a. Also note that
a(zb) = a(x)b for x € D and b € B. In particular, the D-B-bimodule L?(D)p
has right B-dimension equal to 7(z), and thus D <p B. O

We finish this subsection with two lemmas that will be needed in the proof of
Theorem 5.21.

Lemma 5.37. Let ®: D — B be a conditional expectation of the form ®(x) =
Ep(xa) for some positive element a € Z(B)V {S}'. If D is diffuse relative to
B, then there ezists a unitary u € U(Z(B) V {S}") such that ®(u*) =0 for all
ke Z\{0}.

Proof. Assume first that B = L*°(Y,v) and D = L*°(X, i) are abelian. Let
{1ty }yey be the disintegration of p associated with the factor map 7: X — Y
coming from the inclusion B C D. Note that ® is given by

/d 2)dpy(z), deD.

Since ® is a conditional expectation, we have that ®(1) = 1 and hence
Jx a(x) duy(z) = 1 for v-almost all y € Y. Tt follows that =: (X, an) — (Y,v)
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is a factor map and that y — au, is the associated disintegration of au. By
Proposition 5.32, we get a measure space isomorphism 6: (X, au) — ([0, 1] x
Y, Axv) such that py of = 7. This induces a *-isomorphism 9: D — L>[0,1]®B
satisfying 0(®(f)) = Eg(8(f)) for f € D, where Ep: L>®[0,1]® B — B denotes
the usual trace-preserving conditional expectation. Let w € L°°[0, 1] be a Haar
unitary and put u = 6-(w ® 1) € D. Then,

fod(u*) = Eg(w* ®1p) =7(w")1p =0, keZ\{0}
This finishes the proof in the abelian case.

If B is not abelian, notice that since B and Dy := Z(B)V{S}" form a commuting
square inside D, we have that ®(x) = Ep(ra) = Ezp)(xa) for all z € Dy. By
applying the first part of the proof to the abelian inclusion Z(B) C Dy, we find
a unitary u € Dy such that ®(u*) = 0 for all k € Z \ {0}. O

Lemma 5.38. Let (A, 1) be a separable tracial von Neumann algebra and (H, J)
a symmetric A-bimodule. Write M =T (H, J, A, 7)". Let p € A be a projection
and B C pAp a von Neumann subalgebra such that B’ N pAp = Z(B). Let
K C pH be a B-A-subbimodule that is finitely generated as a right Hilbert
A-module. Assume that A% is bounded and satisfies A% > p, as B-A-bimodule.

Let (&,)7_, be a Pimsner-Popa basis for K as a right A-module. Then the
vectors & are also left A-bounded and using the notation of (5.2), we define
S € pMp given by

n
= W(&,J (5.13)
k=1
Then S € B’ N pMp, S is self-adjoint and the von Neumann algebra D :=
{S}'V B is diffuse relative to B.

Proof. Giving a Pimsner-Popa basis (§)7_; for the right Hilbert A-module K
is the same as defining a right A-linear unitary operator 6: e(C" @ L*(A)) — K
for some projection e € A™ := M, (C) ® A, with & = 6(e(e ® 1)). Define the
faithful normal *-homomorphism «: B — eA™e such that 0(«(b)¢) = b(§) for
all b € B and £ € ¢(C" ® L*(A)). View C" ® K as a B-A"-subbimodule of
C" @ pH. Define the vector ¢ € C* ® K given by

:Za®§k~
k=1

Then, b¢ = £a(b) for all b € B and, in particular, ¢ € (C* ® K)e.

Define the normal positive functional w: pAp — C: w(a) = (a&, §). Since w is B-
central and B’ NpAp = Z(B), we find A € L'(Z(B))" such that w(a) = 7(al)
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for all @ € pAp. As in the proof of Lemma 5.25, we have that A = A% and that
the vectors & € H are left A-bounded.

So, the vectors &, are both left and right A-bounded and thus the operator S
given by (5.13) is a well-defined element of pMp. Since

S = 3" (UET(E)) + LENHE)" + LT (1) 1)) |

k=1

we get that S = S§*. From this formula, we also get that S commutes with B.
Put S; := A+ S. Since A € Z(B), it suffices to prove that {S1}” Vv B is diffuse
relative to B.

Write Ay = pAp and A; = eA™e. Equip A; and A, with the non-normalized
traces given by restricting 7 to Ay and Tr ®7 to Aa. View § as a vector in the
Aj-As-bimodule L := (C™ ® pH)e and note that

<£’€>A2 =, A1<§7§> =A

Write L' := e¢(C™ ® Hp), view L' as an As-A;-bimodule and note that the
anti-unitary operator

n

Ji:L— L Z?@uk = e @ J(ur)
k=1 k=1

satisfies Jy(apb) = b*Jy(pn)a* for all p € L, a € A; and b € Ay. Define ¢’ € L'
given by & = J1(€)A~1/2. Then ¢’ satisfies the following properties.

€, =p, a,(€,¢)=a(A™") and a(b)' =€'b Vbe B.
Define the Hilbert spaces

Leven = L*(A1) ® @B (L ®a, L),
m=1

o0

Loaa = L' ®4, Leven = @ (L' @4, (L@a, L)) .

m=0

Note that Leven is an Aj-bimodule, while Lyqq is an As-A;-bimodule. Then,
W = 0(&)AY? 1 4(¢)* (5.14)

is a well-defined bounded operator from Leyen t0 Loqa and W*W € B(Leyen)-
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Using the natural isometry L ® 4, L' — p(H ® 4 H)p, we define the isometry
Vi Loven — pL?(M)p given as the direct sum of the compositions of

2m

(Lo, L) = (p(H @4 H)p) " — p(HEE)p.
Then V is A;-bimodular and
VW*W=5,V. (5.15)

To compute the *-distribution of B U {51} with respect to the trace 7, it is thus
sufficient to compute the *-distribution of B U {W*W} acting on Leyen and
with respect to the vector functional implemented by p € L%(A;) C Leven-

0
even

Define the closed subspaces L
linear span

C Leven and L%, C Loaa given as the closed

LYyen = SPa{L*(B), (£ ®4, £)*1 B | m > 1},

L0y = SPAR{(€ ®a, (€ @4, €)% )B | m > 0} .

Since £ ® 4, & is a B-central vector and since (£,&)4, = e and (¢/,&') 4, = p,
we find that W(L%,,) c L%, and W*(LY,,) C L2 So to compute the

even even’

*-distribution of B U {W*W}, we may restrict B and W*W to L?

even*

Consider the full Fock space F(C?) of the 2-dimensional Hilbert space C2,
with creation operators ¢ = {(e1) and ¢ = £(es) given by the standard basis
vectors eq,ea € C2. Denote by 7 the vector state on B(F(C?)) implemented
by the vacuum vector Q € F(C?). For every A > 1, consider the operator
X (\) € B(F(C?)) given by X (\) = vV Alo+£5. We find that X (\)* X (\) = Ay*y
with y = £y + A\~Y/2¢%. Tt then follows from [Sh96, Lemma 4.3 and discussion
after Definition 4.1] that the spectral measure of X (A)*X(A) has no atoms.
Also for every A > 1, n is a faithful state on {X(N\)* X (\)}".

Identify Z(B) = L*°(Z, 1) for some standard probability space (Z, u). View A
as a bounded function from Z to [1, +00) and define Y € B(F(C?))® L>°(Z, j1)
given by Y(2) = X(A(z)). We can view Y as an element of B(F(C?))® B acting
on the Hilbert space F(C?)® L?(B). Also, n® is faithful on (1@ BU{Y*Y})".
Define the isometry
Ut Lo = FCH) @ LA(B): U((€@a, £)¥41b) = (1 ® e2)®™ @b .

By construction, UW*W = Y*YU and U is B-bimodular. It follows that
the x-distribution of B U {S;} with respect to 7 equals the x-distribution of
1® BU{Y*Y} with respect to n®7. So there is a unique normal *-isomorphism

U: (10 BU{Y*Y}) — (BU{S:1})"
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satisfying U(1®b) = b for all b € B and ¥(Y*Y) = S51. Also, To ¥ =@ 7.
Since for all z € Z, the spectral measure of Y (2)*Y (z) has no atoms, we have
that 1 ® BV {Y*Y}” is diffuse relative to 1 ® B. Hence, BV {S1}" is diffuse
relative to B. O

5.4.3 Technical lemmas

Recall from the beginning of this section the notion of an A-bimodule given by
a partial automorphism of A.

Lemma 5.39. Let (A, 1) be a separable tracial von Neumann algebra and T
an A-bimodule with left support e. Denote ¥ := zdima_ (T @4 T'). Then, the
support of ¥ equals e and ¥ > e. Defining e; = 1¢1}(X), the following holds.

(1) Denoting by f1 € Z(A) the right support of e1T, we have that e;T = T f1
and that the A-bimodule e1T is given by a partial automorphism of A.

(2) When es € Z(A)e and fo € Z(A) are projections such that eosT = T fo
and such that the A-bimodule esT is given by a partial automorphism of
A, then e < ej.

(3) If es € Z(A)e is a projection such that e3T is finitely generated as a right
Hilbert A-module, then the left support of esT @4 T N (te,7A)L equals
63(1 — 61).

Proof. Choose a projection p € B(f?(N)) ® A and a normal unital *-
homomorphism a: A — p(B(¢f*(N)) ® A)p such that T = p(¢*(N) @ L?(A))
with the A-bimodule structure given by a - £ - b = a(a)&b. Note that e equals
the support of a. Also note that T ®4 T = L?(p(B((*(N)) @ A)p) with the
A-bimodule structure given by a - & - b = a(a)éa(b).

Define ey = 1(91)(¥) and denote by fo € Z(A) the right support of eqT".
Note that (1® fo)p is the central support of a(eg) inside p(B(¢?(N)) ® A)p. By
construction, zdim4_ (egT®4T) = eoX < eg. It follows that egT @4 T is finitely
generated as a left A-module and hence the commutant of the left A-action on
eoT @4 T is a finite von Neumann algebra. A fortiori, p(B(¢*(N))® A)p(1® fo)
is a finite von Neumann algebra. We can thus choose a sequence of projections
Gn € Z(A) fo such that ¢, — fo and p(1 ® ¢,,) has finite trace for all n. Denote
by pn, € Z(A)eo the support of the homomorphism that maps a € Aeg to
a(a)(1® g,). It follows that p, — eg.

Since the closure of a(Aeg)(1 ® q,) inside L?(p(B(¢*(N)) ® A)p) has zdim 4
equal to p,, we conclude that ¥p, > p, for all n and thus Yey > eg. From the
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definition of eg, it then follows that Yeg = eg and ey = e; (as defined in the
formulation of the lemma), as well as ¥ > e and fy = f;. Since p, X = p,, for
all n, it also follows that a(Ap,)(1 ® ¢,) is dense in a(p,)L*(B(£*(N)) ® A)p
for all n, because the orthogonal complement has dimension zero. This means
that a(e;) = (1 ® f1)p and that a: Ae; — p(B(F?(N)) ® A)p(1® f1) is a
surjective x-isomorphism. So, e;T" = T'f; and this A-bimodule is given by a
partial automorphism of A.

The first statement of the lemma is now proved. Take ex € Z(A)e and fo € Z(A)
as in the second statement of the lemma. It follows that e;T @4 T = esT ®4
eaT = e3L?(A) so that zdimy_(e2T ®4 T) = ez. Hence, €23 = eq, meaning
that €9 S e1.

Finally take e3 € Z(A) as in the last statement of the lemma. We have
(Tr ®@7)a(es) = dim_4(e3T) < oco. Under the above isomorphism between
T®aT and L?(p(B(¢*(N))® A)p), the vector t., corresponds to a(es). So we
have to determine the left support z of a(e3)pL?(B(£*(N)) ® A)p N aAesz)*.
A projection eq € Z(A)es is orthogonal to z if and only if a(Aey) is dense in
a(eq)pL?(B(¢?(N)) ® A)p. This holds if and only if there exists a projection
f1 € Z(A) such that a(es) = (1® f4)p and a(Aeys) = p(B(F2(N)) ® A)p(1® f4).
Since this is equivalent with e4 < e, we have proved that z = e3(1 —e;). O

Lemma 5.40. Let (A, 7) be a separable tracial von Neumann algebra and (H, J)
a symmetric A-bimodule with left (and thus also, right) support e € Z(A). There
is a unique projection e; € Z(A) such that ey H = Hey, the A-bimodule e; H is
given by a partial automorphism of A and the A(e — e1)-bimodule (1 — e1)H is
completely nontrivial.

Proof. By Lemma 5.39, we find projections e, f1 € Z(A)esuch that e H = H fy,
the A-bimodule e; H is given by a partial automorphism of A and writing
ey := e —e1, fo = e — fi1, the Aes-Afs-bimodule es H = H fy is completely
nontrivial. Since H = H, we must have e; = f1 and e = f5. The uniqueness
of e; also follows from Lemma 5.39. O

Lemma 5.41. Let (A, 7) be a separable tracial von Neumann algebra and T an
A-bimodule with left support e € Z(A) and right support f € Z(A). If AL <e
and AL < f, then AL =e, AL = f and T is given by a partial automorphism
of A.

Proof. Let eg € Z(A)e be the maximal projection with the following properties:
the right support fo € Z(A)f of egT satisfies egT = T fo, the A-bimodule eT
is given by a partial automorphism of A and A% = eg, AL = fo. We have to
prove that eg = e.
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Assume that e is strictly smaller than e. Since eyT = T fy, also fy is strictly
smaller than f. Denote e; = e—eg and f; = f— fo. Note that e;T = T'f;. Since
dim_4(T) = 7(A%) < 7(e) < 1 and similarly dim4_(7) < 1, it follows from
[PSV15, Proposition 2.3] that there exists a nonzero A-subbimodule K C e;T
with the following properties: K is finitely generated, both as a left Hilbert
A-module and as a right Hilbert A-module, and denoting by ey € Z(A)ey
and fo € Z(A)f; the left, resp. right, support of K, there is a surjective
*-isomorphism «: Z(A)fy — Z(A)es such that £a = a(a) for all £ € K,
a € Z(A)fg

Denote by D the Radon-Nikodym derivative between 7 o o and 7, so that
7(b) = 7(a(b) D) for all b € Z(A)fo. By a direct computation, we get that

A% = Da(zdim_4(K)) and a(A%) = D71 zdimy_(K) .
In particular, we get that
A% a(A%) = zdimy_ (K) a(zdim_ 4 (K)) . (5.16)

By Lemma 5.39 and the computation in the proof of [PSV15, Lemma 2.2], we
have

zdimy_ (K) a(zdim_4(K)) = zdima_ (K ®4 K) > e . (5.17)

Since Aﬁ( < ez and A% < fa, in combination with (5.16), it follows that Aﬁ( =
ez and A% = fo. From (5.17), we then also get that zdima_ (K ®4 K) = es.
By Lemma 5.39, K is given by a partial automorphism of A.

Since ez > AL = Al + AL 1o = ea+ AL 1ok, we conclude that e;T 6 K =
{0}. So, 2T = K and e,T is given by a partial automorphism of A. This then
contradicts the maximality of eq. O

Lemma 5.42. Let (A, 7) be a separable tracial von Neumann algebra and (H, J)
a symmetric A-bimodule. Write M =T'(H,J, A, 7)".

Let p € A be a projection and B C pAp a von Neumann subalgebra such that
B' NpAp = Z(B) and such that Nya,(B)" has essentially finite index in pAp.
Let Ky C pH be a B-A-subbimodule satisfying the following three properties.

(1) Ky is a direct sum of B-A-subbimodules of finite right A-dimension.
(2) The left action of B on K is faithful.
(3) The A-bimodule AK; is left weakly mixing.

Then there exists a diffuse abelian von Neumann subalgebra D C B’ NpMp that
is in tensor product position with respect to B. More precisely, there exists a
unitary u € B' N pMp such that Eg(u*) = 0 for all k € Z \ {0}.
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Proof. We claim that for every ¢ > 0, there exists a projection z € Z(B) with
7(p — z) < € and a B-A-subbimodule L C zH such that L is finitely generated
as a right Hilbert A-module and such that A% is bounded and satisfies AY > 2.
To prove this claim, denote K := AK; and let (K;);cr be a maximal family
of mutually orthogonal nonzero B-A-subbimodules of pK that are finitely
generated as a right A-module. Denote by R the closed linear span of all K.
Whenever u € Npa,(B) and i € I, also uK; is a B-A-subbimodule of pK that
is finitely generated as a right A-module. By the maximality of the family
(K;)icr, we get that uK; C R. So, uR = R for all u € N,a,(B). Writing
P := N,ap(B)"”, we conclude that R is a P-A-subbimodule of pK.

Since P C pAp is essentially of finite index and since 4K 4 is left weakly mixing,
Lemma 5.44 says that for every projection g € P, the right A-module ¢R is
either {0} or of infinite right A-dimension. By the assumptions of the lemma
and the maximality of the family (K;);er, the left B-action on R is faithful. So
gR # {0} and thus dim_4(¢R) = oo for every nonzero projection ¢ € B. This
means that for every nonzero projection g € B,

ZT(qA%i) = Zdim,A(in) =dim_4(¢R) = 0 .
iel iel

So we can find a projection z € Z(B) and a finite subset Iy C I such that
7(p — z) < € and such that the operator A := Aﬁ(iz is bounded and
satisfies A > z. Defining L = Zielo zK;, the claim is proved.

Combining the claim with Lemma 5.38, we find for every € > 0, a projection
z € Z(B) with 7(p — 2) < € and a unitary u € (Bz) N zMz such that
Ep(u*) =0 for all k € Z\ {0}. So, we find projections 2, € Z(B) and unitaries
up € (B2y)' N 2,Mz, such that Eg(uf) =0 for all k € Z\ {0} and such that
V,, zn = p. We can then choose projections 2], € Z(B) with 2], < z, and

n2n = p. Defining u = 3 u,z2,,, we have found a unitary in B’ N pMp
satisfying Ep(u¥) = 0 for all k € Z\ {0}. So, the lemma is proved. O

Above we also needed the following two lemmas.

Lemma 5.43. Let (N,7) be a separable tracial von Neumann algebra and
B C N an abelian von Neumann subalgebra. Assume that D C B’ N N is
a diffuse abelian von Neumann subalgebra that is in tensor product position
with respect to B. Then there is no nonzero projection ¢ € B' N N satisfying
q(B'NN)q = Bg.

Proof. Put P = B’ N N and assume that ¢ € P is a nonzero projection such
that ¢Pq = Bq. Note that B C Z(P) because B is abelian. Take a nonzero
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projection z € Z(P) such that z = ' | v;u} where vy,...,v, are partial
isometries in Pq. Note that zq # 0 and write p = zq. Then,

Pp = zPq =span{v;gPq|i=1...,n} =span{v;B |i=1,...,n}.

So, L?(P)p is finitely generated as a right Hilbert B-module. Define Q = BV D
and denote by e € @ the support projection of Eg(p). Then £ — &p is an
injective right B-linear map from L?(Q)e to L?(P)p. So also L?(Q)e is finitely
generated as a right Hilbert B-module. Since Q = B ® D with D diffuse and
since e is a nonzero projection in Q = B ® D, this is absurd. O

Lemma 5.44. Let (A, 1) be a separable tracial von Neumann algebra and 4K 4
an A-bimodule that is left weakly mizing. Let p € A be a projection and P C pAp
a von Neumann subalgebra that is essentially of finite index (see Definition
5.26). If L C pK is a P-A-subbimodule and q € P is a projection such that
qL # {0}, then the right A-dimension of qL is infinite.

Proof. Assume for contradiction that ¢ € P is a projection such that ¢L is
nonzero and such that gL has finite right A-dimension.

By Proposition 5.27, since P C pAp is essentially of finite index, there exist
projections p; € P’ NpAp that lie arbitrarily close to p such that Ap; is finitely
generated as a right Pp; module. There also exist central projections z € Z(P)
that lie arbitrarily close to p such that Pzq is finitely generated as a right
gPg-module. Indeed, take a projection z € Z(P) arbitrarily close to the central
support of ¢ such that z = """, v;v} with partial isometries v, ..., v, € Pgq.
Then Pzq C Y ., v;(¢Pq) as wanted.

Take such p; and z with p;zqL # {0}. Then Ap;zq is finitely generated as a
right ¢Pg-module. Therefore, the closed linear span of Ap;zqL is a nonzero
A-subbimodule of K having finite right A-dimension. This contradicts the left
weak mixing of 4H 4. O

5.4.4 Proof of Theorem 5.21

Proof of Theorem 5.21. Let K C H be the maximal left weakly mixing A-
subbimodule of H, i.e., the orthogonal complement of the span of all A-
subbimodules of H having finite right A-dimension. Denote by zg € Z(A)
the support of the left A-action on K. In the first part of the proof, assuming
zo # 0, we show that

(1) Z(M)zo C Z(A)zo,
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(2) every M-central state w on (M, e4) that is normal on M satisfies w(zg) =
0.

Note that K C zgH. Denote by K C K the dense subspace of vectors that are
both left and right bounded. Define the von Neumann subalgebra N C zqM zg
given by

N = (A2 U{W(E T (W) [ & ne K1), (5.18)
where we used the notation of (5.2). Then, the linear span of Az and elements of
the form W (&, J(p1), ..., &k, J(uk)), k > 1, &, pu; € K, is a dense x-subalgebra
of N.

Whenever Ky, ..., K, C H are A-subbimodules, we denote by concatenation
K; -+ K, the A-subbimodule of L?(M) given by

K- K, =K ®4 - ®1K,CH®s--®4HC L*(M).

In the same way, we write powers of A-subbimodules and when K; C H"* are
A-subbimodules, then K --- K,, C H* "k is a well-defined A-subbimodule.

Using this notation, note that L*(NN) is the direct sum of L?(Az) and the
spaces L, := (K J(K))", n > 1. Since K is a left weakly mixing A-bimodule,
it follows that N N (Azp) = Z(A)zo.

We claim that
(3) N 4N Az, meaning that the N-A-bimodule L?(N) is left weakly mixing.

Since N N (Azy) = Z(A)zp, to prove this claim, it suffices to show that
dim_4(L?(N)e) = +oo for every nonzero projection e € Z(A)z. Since the
left action of Azg on K is faithful and K is left weakly mixing, we get that
dim_4(K J(K)e) = +o0o. So certainly dim_4(L?*(N)e) = +o0o and the claim
follows.

Proof of (1). Define the A-subbimodule R C L?(M) given as

R:= (H@(K+J(K)))@é(H@K)H"(H@J(K)).

n=0

Since K is left weakly mixing and J(K) is right weakly mixing, all A-
central vectors in L?(M) belong to L?(A) + R. Next note that left and right
multiplication by elements of N induces an N-bimodular unitary operator

L*(N)®4 R®a L*(N) — NRN C L*(20Mz) .

Since the N-A-bimodule L?(N) is left weakly mixing, it follows that NRN has
no nonzero N-central vectors. Every element z € Z(M)z, defines a vector in
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L?(20M zp) that is both A-central and N-central. By A-centrality, we conclude
that 2 € Azy + 20R2p. In particular, x € L?(N) + NRN. Since z is N-central
and NRN has no nonzero N-central vectors, we get that z € L?(N) and thus,
T € Z(A)ZO

Proof of (2). Denote Leyen := L?(N) and define Loqq as the direct sum of
the A-bimodules (K J(K))® K, n > 0. Note that both Leyen and Logq are
N-A-bimodules. The same argument as in the proof of Theorem 5.19, using the
left weak mixing of K, shows that the von Neumann algebras B(Leyen) N (A°P)’
and B(Lega) N (A°P)" admit no N-central states that are normal on N. Note
that we have the following decomposition of L?(zgM) as an N-A-bimodule:

L2(20M) = (Leven ®4 (LQ(A) o P(H o K) H"))EB
n>0

(Loaa @4 (12(4) & P(H & J(K) H")) .
n>0

This decomposition induces #-homomorphisms from B(Leyen) N (A°P)" and
B(Loaa) N (A°P)" to B(zgL?(M)) N (A°) = 2o(M,ea)zo. So, 20(M,ea)zo
admits no N-central state that is normal on N. A fortiori, (2) holds.

Next we define the projection z; € Z(A)(1 — z) given by

21 =11 1o0) (Al _2o)rr) - (5.19)
We also write z = 29 + 21 and 29 =1 — 2.

Denote by ¢’ € Z(A)z; the maximal projection with the following properties:
the right support f € Z(A) of ¢’H satisfies ¢’ H = zH f and the A-bimodule
e'H is given by a partial automorphism of A. Define ¢ = z; — €'.

By the definition of zy, we get that the A-bimodule (1 — z9)H is a sum of
A-bimodules that are finitely generated as a right Hilbert A-module. It then
follows from the definition of z; that we can choose a projection e; € Z(A)z;
that lies arbitrarily close to z; and for which there exists an A-subbimodule
Ly C z1 H with the following properties:

e the left support of L; equals ey,
e L, is finitely generated as a right Hilbert A-module,

. A%l is bounded and satisfies AKLI > d1e1 for some real number §; > 1.

Denote by es the left support of e (H © L1). Making e; slightly smaller, but
still arbitrarily close to z1, we may assume that es is the left support of an
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A-subbimodule Ly C ey (H © L) with the following properties: Lo is finitely
generated as a right Hilbert A-module and A%Q is bounded. By construction,
es < ey. Since esL; and Lo are orthogonal and have the same left support
eq, it follows that for nonzero projections s € Z(A)es, the A-bimodule sH is
not given by a partial automorphism of A. This means that es < e and thus,
es < eey. Define L = Ly + Ly. Using notation (5.12), it follows from Lemma
5.39 (1) and (3) that the left support of eaL J(L)ez N (te, A)* equals ey. A
fortiori, the left support of eoL Hz N (te,r A): equals es.

We put e3 = ee; — eg. Since ey is the left support of e (H © Lq), we get that
esH = e3l; = ezL. Since ez < e, applying Lemma 5.39 to the A-bimodule zH,
we conclude that the left support of e3L Hz N (te, m A)* equals e3. Summarizing,
L has the following properties:

e the left support of L equals ey,
e L is finitely generated as a right Hilbert A-module,
« AY is bounded and satisfies A} > de; for some real number § > 1,

o the left support of L Hz N (tp A)* equals ee;.

Denote by s € Z(A) the left support of L H(zg + e1) N (t A)*. Since e; could
be chosen arbitrarily close to z1, it follows that s lies arbitrarily close to e.

We next prove that
(4) Z(M)scC Z(A)s,
(5) every M-central state w on (M, e4) that is normal on M satisfies w(s) = 0.

Write A := A%, choose a Pimsner-Popa basis (), for the right Hilbert
A-module L and put

n
te=tp =Y &®aJ&).
i=1
Since A is bounded, the vectors & € H are both left and right bounded by
Lemma 5.25.

Denoting by Pr the orthogonal projection onto a Hilbert subspace T' C H, the
main properties of ¢, used throughout the proof, are:

(t,H)a=alt,t) =4, £&)"t=J(PL(E)) and r(§)"t = PL(J(S)) ,

for all left and right bounded vectors £ € H.
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Since the vectors ; are both left and right bounded, we can define the self-adjoint
element Sy € ey Me; given by

n

Sii=) W& J(&)

=1

By Lemma 5.38, we have that S, € e;Me; N (Aey)’ and that the von Neumann
algebra D := Ae; V {S1}” is a subalgebra of e; Me; N (Aep)’ that is diffuse
relative to Ae;. Using Lemma 5.37, we fix a unitary v € U(D) satisfying
Eae, (uk) =0 for all k € Z \ {0}.

Defining
Spi= Y WG, T ()& T(€0))

i1, in=1

and denoting by € € L?(M) the vacuum vector, we get that

th i =S =t®4---Rat . (5.20)
—_——

k times

By induction, we see that S; € D for all £k > 1. With the convention that
So = e, the elements {Si}r>0, form a Pimsner-Popa basis for the right A-
module L?(D) 4. More precisely, we have that (Sy, S¢)a = E4(SrS¢) = 0 for
k # ¢, and every element € D can be written as a || - ||2-converging sum
T =3 po o Skrr with ), = A FE (2Sk).

Proof of (4). We start by proving that an element x € Z(M)e; must belong to D.
Define Ty C H? as the closure of tA. Note that £(¢)¢(t)*A~! is the orthogonal
projection of H? onto Ty. Then define Ty := H? © Ty and T3 := H3 © (ToH +
HTyp). Observe that L?(e; Me; © D) is spanned by the D-subbimodules

DHD , DT2D , DI3D , DILH"T5D withn > 0. (5.21)

We will prove that each of the D-bimodules in (5.21) is contained in a multiple
of a D-bimodule of the form L?(D) ®4 K for some A-D-bimodule K.

For the first one, DH D, fix a left and right bounded vector p € H with [|u| < 1.
Using the notation ¢; introduced in (5.20), one checks that for k& > 1,

SEW () =1t ®a 4+ tg—1 ®4 Pr(p) and

W(u)Sk2 = p®@aty + Prry(p) @atp—1 .
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When p,n € H are left and right bounded vectors, we have (tx ®4 p,nQat;) =0
if k # [, while

(tk @A p, 1 @aty) = (€(n)*(tk @a p), tr)
= (J(PL(n) ®a tk—1 @a s tr)
= (J(PL(n) ®a te—1,7(1)"t)
= (J(PL(n)) ®a th—1,th—1 ®a PL(J (1)) .

It follows by induction that (ty ®4 p,n @4 tr) = ((PrJ)?*u,n) for any k > 0.
Thus, for a,b € A,

(apb, ) ifk=1=0,

PpJ)%* 4 (JPL)*F) b ifh=1>1

(SkaW (u)bsi, W)y = { (L) . PR dibn ) =
(a(PpJ)**=Y Ppub, 1) ifk=1+1>1,
(aJ (PLJ)*+ b, 1) ifk=1—1>0.

We next claim that

Ei=e1®apu®aer + Z(A*’“Sk ®a (PLJ)* 4+ (JPL)?*) (1) ®a A*’“Sk)
k=1

+ 30 (AT Sk @4 (PLd)? Pr(i) 04 A8y
k=0

+ ARS8, @4 J(PLI)2 (1) @4 A-k—lskﬂ)

is a well-defined element in L?(D) ®4 H ®4 L?(D). This follows because
EA(S]%) = <tk7tk>A = A* and thus

|AFS43 = r(A2*s) = r(A ) <57+,
where § > 1.
By construction,
(SkaW ()bS1, W(p)) = (Ska £ bSi, &o)

where &y = €1 ®4 1t ®4 e1. This means that the D-bimodule DuD is contained
in L?(D) ®4 H ®4 L*(D). Since this holds for any p € H, we have that the
D-bimodule DHD is contained in a multiple of L?(D) ®4 H ®4 L*(D).
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Next, we do similar computations for the remaining D-bimodules occurring in
(5.21). Let K C H™ be one of the A-bimodules Ty, T3 or To H*Ty, k > 1, and
fix a left and right bounded vector p € K. Then ¢(¢)*u =0 and r(¢)*p =0, so
it follows that

SW()Q =th ®a p+tr1 ®a (PL®1%20" D) (1) and
WSk = p@aty + (12" @ Prpy) (1) @4 tir
for k > 1. Note that
(P @ 190D (), 1) = (u, (P @ 190 D)(1)) = (u,8) = 0,

and similarly ((1°"=Y @ Py1)) (1), t) = 0. It follows that S, W (k) is orthogonal
to W(u)Se whenever k,¢ > 1 except when k = ¢ = 1. In the remaining cases,
we have that

(S1W (1), W (1)) = (P ® 1207 V) (), ),

(W () S1, W () = (11 @ Pypy) (1), ),
(S1W (1) S1, W () = (P @ 1202 @ Pypy) (), p1)-
Define £ € L?(D) ®4 K ®4 L*(D) by
f=e1@ap®@aer +S1A7T @4 (PL @18 D) (1) @4 €1

+e1®a (1% @ Prpy) () ®4 S1 AT

+ 5187 @4 (PL @190 @ Pyr)) (1) ®a S1ATE
By construction,

(SkaW (p)Seb, W () = (Ska & Seb, &) for k,£>0, a,be A,

where £y = €1 ® 4 4t ® 4 1. This means that the D-bimodule DK D is contained
in a multiple of L?(D) ®4 K ®4 L*(D).

We have thus proved that all D-bimodules in (5.21) are contained in a multiple
of a bimodule of the form L?(D) ®4 K for some A-D-bimodule K. Since D is
diffuse relative to A, it follows from Proposition 5.36 that L?(e;Me; © D) has
no D-central vectors. In particular, Z(M)e; C D.

We are now ready to prove (4). Fix x € Z(M). We have to prove that zs € A.
Because of (1) and the previous paragraphs, we can uniquely decompose x(zg+e1)
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as the || - ||2-convergent sum

x(zo +e1) =ap + Z Say (5.22)
k=1

with ag € A(zo +e1) and ay, € Ae; for all £ > 1. Note that ag = Ea(z)(z0 +€1)
and ap = A FE4(Syx) for all k > 1.

Let now n € L H(zo+e1) N (tA)* be an arbitrary left and right bounded vector.
Note that

n= Zﬁ @4 J(n;) (5.23)

where the vectors n; € (2o + e1)H are both left and right bounded. Define

= S W& )

and note that W(n) € sM(zo +e1) C e1 M (29 + €1).

Using that W(n) commutes with = and using the decomposition of x(zy + e1)
n (5.22), we find that

W (n)x§2 = W(n)(z0 + e1)x2 = W(n)aot + Z W (n)Skarf2

k=1
=nag + Z (7] ®atrar + (1® PJ(L))(U) ®a tkflak> ,
k=1

aW(n)Q =ze;W(n)Q = age1 W(n)Q + Z arSEW(n)Q
k=1

= qaon + Z <aktk ®an+arty—1 ®a (PL® 1)07))
k=1

(ao + a1) 77+Z (ak + ap1)ty ®an -
k=1

In this last expression for W ()<, all terms except (ag + a1)n are orthogonal
to W(n)z. We conclude that (ag + ags1)tr ®4 1 = 0 and thus 4{(n,n)(axr +
ak+1) = 0 for all £ > 1 and for all choices of 1. Since the left support of
L H(z0+ e1) N (tA)L equals s, it follows that (ay + agi1)s = 0 for all k > 1.
This means that azs = (—1)*1a;s for all k > 1.
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Since
oo oo oo
+oo > [|zl3 > ) [|Skanslls =Y r(sajArars) > > 6F||ars|3
k=1 k=1 k=1

it follows that a;s = 0. So, axs = 0 for all k > 1. From (5.22), it follows that
xs € A, so that (4) is proved.

Proof of (5). Fix an M-central state w on (M, e4) that is normal on M. We
have to prove that w(s) = 0. Recall that we defined Ty C H? as the closure
of tA. Consider the following orthogonal decomposition of e L?(M) as an
A-bimodule:

al> (M)=Voo VoV, where Vo ::@TOH" ,
n=0

o0 o0
Vii=L*(Aer) o P Ho L)H" , Va:=Lo@LHoT)H" .
n=0 n=0
Denote by @Q; € e1(M,ea)e; the projections onto V;, for ¢ = 0,1,2. So,
e1 = Qo + Q1 + Q2. Also note that the projections @); commute with A. We
prove below that w(sQp) = w(Q1) = w(Q2) = 0. Once these statements are
proved, (5) follows.

To prove that w(Q1) = 0, note that for all u € V; and all k > 1, we have that
Skpt = tr @4 p and thus, Spu is orthogonal to Vi. So, for all u, ' € Vi and
d € D, we get that
(dp, 1) = (Ea(d)p, 1') -

Above we introduced the unitary element u € U(D) satisfying E4(u¥) = 0 for
all k € Z\ {0}. Tt follows that the subspaces u*V; are all orthogonal. So, the
projections u*Q,u~F are all orthogonal. By M-centrality, w takes the same
value on each of these projections. So, w(Q1) = 0.

To prove that w(Q2) = 0, we argue similarly. For all u € V5 and all k& > 2, we
have that Sgpu =t ®4 1+ tx—1 ®4 1 and thus, Sgp is orthogonal to V5. On
the other hand, S1pu =1t ®4 p + p and here, only ¢t ® 4 p is orthogonal to Va. It
follows that for all u, ' € V3 and d € D,

(dp, ") = (@(d)p, 1)

where ®: D — D is the linear map given by ®(d) = E4(d) + A"1E4(dSy).
Notice that ®(d) = E4(dx) where z = e; + A71S; € Z(D) and that ®(a) = a
for a € Ae;. Moreover, x is a positive element since

A+S =) XiX;>0 where X;=10(&)+(J&)".

i=1



ABSENCE OF CARTAN SUBALGEBRAS 137

Since D is diffuse relative to Aey, Lemma 5.37 now gives us a unitary v € U(D)
such that ®(v*) = 0 for all k € Z \ {0}. It follows that the subspaces v*V5 are
all orthogonal. As in the previous paragraph, we get that w(Q2) = 0.

It remains to prove that w(sQg) = 0. Fix n € LH(z9 4+ e1) © Tp as in (5.23)
and define

W= m®at&).
=1

Note that ' € (20 +e1)H J(L) ©Tp. From (2), we already know that w(zg) = 0.
Since ey’ € Vi + Vs, we also know that w(f(e1n)¢(e1n’)*) = 0. Both together
imply that w(¢(n')¢(n')*) = 0.

For all n > 0 and € H", we have that
W(n) (0 @at@ap) =n@an @at@ap+ Yy L&) () @at®ap)
i=1
+ (' sn)a(t®@ap).

Since

"D L&) 0 = T E) ) 0 = ') = (' in')a
i=1 i=1
and since the projection Qg is given by Qo = A~14(¢)4(t)*, we get that
QoW () (0 @at®@ap) = (n',n)a A" (t@at@ap)+ (1)t ©a p)

for all n > 0 and all p € H™. This means that
QoW ()l(n @at) = (', 1) a (AT L(t@at) +L(t)) = £(t) (0,0} a 1+ ATI(Y)).

Because

AT = AT )] = AT <67 <1,
the operator R := 1+ A~1/(t) is invertible. Also note that £(¢)¢(t)* < ||A]|1 so
that
L' @at)e(n' @at)” < Al )ewm)" -
So, we find € > 0 and x > 0 such that
e 6(t) (', n')a)? ()" < €(t) (') a RR™ (') a €(1)"
= QoW @at)e(n ®at)" Wn)"Qo  (5.24)

< KQoW ()€1 )e(n')* W (n)*Qo -
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We already proved that w(¢(n')¢(n')*) = 0. Since w is M-central, also

w(W (e )e(n') W(n)*) =0.

Because e; = Qo + Q1 + Q2 and w(@Q1) = w(Q2) = 0, the Cauchy-Schwarz
inequality implies that w(Y) = w(QoY) = w(Y Qo) for all Y € e1(M,ea)e;.
Therefore,

w(QoW (me(n")e(n' ) W (1) Qo) = w(W (n)e(n)e(n')* W (n)*) =0.

It then follows from (5.24) that

w(((',n')a)* AQo) =0

for all bounded vectors ' € (z0 + e1)H J(L) © Ty. By the Cauchy-Schwarz
inequality and the normality of w restricted to M, we get that w(a; Qo) — w(aQo)
whenever a; € A is a bounded sequence such that |la; — alla — 0. Since the
right support of the A-bimodule (zg + e1)H J(L) © Ty equals s, it follows that
w(sQop) = 0. Since we already proved that w(Q1) = w(Q2) = 0, it follows that
(5) holds.

Since s lies arbitrarily close to e, it follows from (1)-(2) and (4)-(5) that
(6) Z(M)(z0+e€) C Z(A)(z0 +e),

(7)  every M-central state w on (M, e4) that is normal on M satisfies w(zg +
e) =0.

Recall that z = z9 4 21 and 20 = 1 — (29 + 21). Note that A£2H < z9. We claim
that zo0Hzo = {0}. Denote by ey € Z(A)zy the left support of 2o Hzy. Note
that by symmetry, ey also is the right support of 2o Hz5. By Lemma 5.41, we
get that Aﬁo He, = €0 and that egHeg is given by a partial automorphism of A.
Since

AﬁgH = AﬁoHeo + AioH(l—eo) =é€o + AﬁoH(l—eo)

and since AL, < eg, we get that egH (1 — o) = {0}. We conclude that egH =
Hey = egHeg and that this A-bimodule is given by a partial automorphism of
A. Since H is assumed to be completely nontrivial, we get that eyg = 0 and the
claim is proved.

Recall that e € Z(A)z; was defined as e = z; — e’ where ¢/ € Z(A)z; has
the following properties: denoting by f € Z(A) the right support of ¢'H,
we have that ¢/H = zH f and that the A-bimodule ¢'H is given by a partial
automorphism of A. We claim that f < z. To prove this claim, denote f1 := fzs.
If f1 # 0, we find a nonzero projection e” € Z(A)e’ such that e”H = zH f; and
such that this A-bimodule is given by a partial automorphism of A. Above,
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we have proved that zoHze = {0}. A fortiori, 20 H f1 = {0}, meaning that
Hf, = zH f;. But then, ¢”H = H f;, contradicting the complete non-triviality
of H. So, we have proved that f < z.

We next claim that f < zp + e. To prove this claim, assume that f’ := fe’
is nonzero. Then, f'H = fe'H = fzHf C Hz because f < z. Applying the
symmetry J, it follows that H ' = zH f’ and thus ¢” H = H f’ for some nonzero
projection e” € Z(A)e', again contradicting the complete non-triviality of H.
So, we have proved that f < zy + e.

Since €' H is given by a partial automorphism of A, we can take projections
e € Z(A)e' arbitrarily close to ¢ such that ¢’H is finitely generated as a
right Hilbert A-module and AY,, ,; is bounded. Denote by f’ € Z(A)f the right
support of ¢’/ H. Since the right A-action equals the commutant of the left A-
action on e’ H, we can for each a € Z(A)e” find a unique element a(a) € Z(A) f’
such that a = £a(a). This gives rise to a #-isomorphism «: Z(A)e” — Z(A)f’
satisfying a = {a(a) for all a € Z(A)e”. Let (y;)"_, be a Pimsner-Popa basis
of the right A-module ¢”H and define

Ri=0(yi) +£(J(3))" and R=3 RiR;=ALy+y W ().

i=1 i=1
Note that R; € ¢’M f' and R € ¢ Me". Since AL, ,; = e”’AY, > €”, it follows
from Lemma 5.38 that the support projection of R equals e”.

Let z € Z(M) and using (6), take a € Z(A)(zo + €) such that (zp + e)z = a.
Since f’ < zg + e, we have f'z = af’ and thus

rR=Y RiaR; =) Riaf R} =a '(af')R.
=1

i=1

Since the support projection of R equals €”, we have proved that Z(M)e” C
Z(A)e”. Since € lies arbitrarily close to €', together with (6), it follows that

(8) Z(M)zcC Z(A)=.
Next, we will show that
(9) every M-central state w on (M, e4) that is normal on M satisfies w(z) = 0.

Using (7), it is enough to show that w(e’) = 0. We do this similarly to the
argument above. With R; € ¢”Mf' and R € e’Me" as above, we get by
M-centrality of w that
n
w(R) =) w(RiR:) =0,

i=1
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since RfR; € f/Mf" and w(f’) < w(zo +¢€) = 0. Since €’ is the support
projection of R, it follows that w(e”) = 0 and hence w(e’) = 0, as e” was chosen
arbitrarily close to €’. This finishes the proof of (9).

To prove the first two statements of the theorem, it remains to see what happens
under the projection zs.

Denote Ay = A£2H~ By the definition of z9, we have that Ay < z5. Let (p;)ier
be a (possibly infinite) Pimsner-Popa basis for the right A-module zoH. Since
A, is bounded, we may choose the vectors p; to be left and right bounded. For
the same reason,

5= i ®a J ()
iel
is a well-defined bounded A-central vector in zo H Hz, and the infinite sums
Gn = Z W kiys I (Riy)s - - s Bis I (i)
are well-defined bounded operators in zoM 25 N (Azg)" satisfying
G,l=5,: =54 - @48 .
—_—
n times

By convention, we put Gy = z5. From the definition of G,,, we obtain the
recurrence relation

G1Gn =Gpny1 + G+ D82Gy (5.25)
for all n > 1, and thus G, 41 = (G1 — 1)G,, — Ay Gp—q for all n > 1.

Denote by ¢ € z3 Mz the projection onto the kernel of G; + As. Although
the sum defining G is infinite, the computations in the proof of Lemma 5.38
remain valid and it follows that the kernel of (G + Az) 1413 (A2) is reduced to
zero. So, ¢ < Tg1)(Az).

With the convention that sg = 222, we claim that

qt = i(_l)k(@ —Ag)sp = i(—l)ksk(zg —Ay) . (5.26)
k=0 k=0
Because
Z ” z9 — Az 8k‘||2 = Z (<3k75k>A (2;2 — A2)2)

k=0

Z A2 Z9 — A2)2) = T(Zg — Ag) < 00
k=0
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the right hand side of (5.26) is a well-defined element p € L?(29M z3) satisfying,
with || - ||2-convergence,

p= i(—l)k(ZQ — Ag) Gk .
k=0

Note that p = p*. Using the recurrence relation (5.25), it follows that (G +
As)p =0 and thus p = gp. Taking the adjoint, also p = pgq.

On the other hand, because (G + Ag)g = 0, we have G1¢ = —Asq. Using the
recurrence relation (5.25), it follows that Gxq = (—1)*Akq for all £ > 0. It then
follows that

oo

pa=Y (22— A)Abq=T(1)(As)g=1¢q.
k=0
We already proved that pg = p, so that p = g and (5.26) is proved.

From (5.26), we get for all £ € H that

(£(&) +£(J())7) a2 = (U(&z2) + £(J(§22))") g2 =0 .

So, for all z € M, we have that xqg = FE(z)g. Taking the adjoint, also
qr = qE4(x) for all x € M. Since ¢ commutes with A, it follows that ¢ € Z(M)
and Mq = Aq. From (5.26), we also get that E4(q) = 22 — As and thus
Ea(q) = Z(AY,) where Z: (0, +00) — R is defined as in the formulation of the
theorem. So, Fa(1 —¢q) = z + Ay and this operator has support equal to 1.
Statement (c) of the theorem is now proved.

We next prove that
(10) Z(M)(22 —q) C Z(A)(22 — q).

Take x € Z(M) and write

[e9)
T29€) = ch with ¢, € zoH™ .
n=0
Using (8), take a € Z(A)z such that zz = a. Also write ag = E4(x22) and note
that Co = a()Q.

Since zoHzo = 0, we have zoH = 20Hz and we get, for every £ € H, that

o0

D (UE) +L(J()) = (L) +£(J(9))) 22202

n=0

— o (€O + UI(©))) 229
=xJ(228) = 22 J(228) = a J(228) .
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Comparing the components in H" for all n > 0, we find that

08 C=0 , L& G=aJ§)—J()a , U Cut1=—J(§) ®aCu

for all £ € zoH and all n > 2. Since (, € zoH™ for all n, it first follows that
¢1 = 0 and then inductively, that ¢, = 0 for all odd n.

Next, we get that (5 = s, — sag, where

Sa 1= 3 i @4 0 (1)

icl
is a well-defined A-central vector in zoH?zs.

Before continuing the proof, we give another expression for s,. For all u, u’ €
zoM = z9Hz, we have that W(J(u),u') € zMz. Since xz = a and x € Z(M),
it follows that a commutes with W (J(u), p’). This means that

aJ(p)@ap =J(p) @ap'a forall p,u' € 2H.

It follows that a J(u) ®4 s = J(p) @4 s, for all u € zoH. Defining the normal
completely positive map ¢: Az — Az, given by

@(b) = (J(ui),bJ(ui))a forall be Az,
el

we get that ¢(a)s = Ags,. Since p(z) = Ag, there is a unique normal
completely positive map ¢ : Az — Azy such that ¢¥(b)As = (b) for all b € Az.
We conclude that s, = ¥(a) s = si(a).

Writing a1 = 9(a) — ag, we get that (o = sa;. We then conclude that (s, =
(=1)"*1 sy, ay for all n > 1. Define the spectral projection r = 1y1}(Asz). Since

<C2n7 §2n>A = CLI <Sna 3n>A ayp = ai( Ag ai,

we get that ||Cenr|| = ||air|]2 for all n. Since Y, [|¢anr||* < 0o, we conclude
that a;r = 0 and thus zr € A.

Using (5.26), it follows that z(z3 — As) = ga1 + as for some element as € A.
Since zr € A, it follows that x(z2 — ¢) € A(z2 — ¢q). Since the support of
EA(z2 — q) equals zo, it follows that (10) holds.

Using (8) and (10), to conclude the proof of statement (d), it suffices to prove
that for any a € Z(A), we have a(1 — ¢) € Z(M) if and only if a € C, where
C' is defined in the formulation of the theorem. This follows immediately by
expressing the commutation with £(§) 4+ £(J(§))* for all £ € H and using that
(€(&) +£(J(£))*) ¢ = 0, as shown above.
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Let w be an M-central state on (M, e4) that is normal on M. To conclude
the proof of statement (a), we have to show that w(l —¢) = 0. By (9),
we already know that w(z) = 0. With u; € 201 = 22Hz as above, define
yi = L(p;) + €(J(pi))*. Note that y; € zoMz and that G1 + Ay = >, v;y). By
M-centrality and normality of w on M, and because y;y; € zMz, we get that
w(G1 + Az) = 0. So, w(z2 — q) = 0 since z3 — ¢ is the support projection of
G1+ As. Since we already know that w(z) = 0, we conclude that w(1 — ¢) = 0.

It remains to prove statement (b). Assume that s € Z(M)(1 — ¢) is a nonzero
projection and that B C Ms is a Cartan subalgebra. Since Np5(B)’ = Ms, a
combination of statement (a) and Theorem 5.13 implies that B <3; A(1 — q).
The A-subbimodule zoH = 29 Hz of L?>(M) has finite right A-dimension equal
to 7(As) and realizes a full intertwining of A(z2 — ¢) into Az. It then follows
that B <; Az.

By Theorem 2.12, we can take projections q; € B, p € Az, a faithful normal
unital *-homomorphism 0: Bq; — pAp and a nonzero partial isometry v € g1 Mp
such that bv = v6(b) for all b € Bgy. Since B C Ms is maximal abelian, we
may assume that vo* = ¢;. By [loll, Lemma 1.5], we may assume that
By := 0(Bq1) is a maximal abelian subalgebra of pAp. Write g2 = v*v and note
that ¢o € Bj N pMp. We may assume that the support projection of FE(g2)
equals p.

Since z = 2y + 21, at least one of the projections pzg, pz; is nonzero. Since we
can cut down everything with the projections zy and 21, we may assume that
either p < zg or p < z3.

Proof in the case where p < z;. Recall that we denoted by K C H
the largest A-subbimodule that is left weakly mixing and that zg is the left
support of K. First assume that the By-A-bimodule pK is left weakly mixing.
Define the orthogonal decomposition of the pAp-bimodule pL?(M)p given by
pLQ(M)p =U; ® U with

Uy =@ pKH"p and U, = L*(pAp) © @D p(H © K)H"p .

n=0 n=0

We claim that v*Ny, pq (Bgi)v C Us.  To prove this claim, take u €
Ny vq (Bqr) and write u*bu = «(b) for all b € Bgy. Put = v*uv and denote
by y the orthogonal projection of x onto U;. Since U; is a pAp-subbimodule
of pL?(M)p, we get that y is a right pAp-bounded vector in U; and that
0(b)y = yb(«a(b)) for all b € Bg. Since the By-A-bimodule pK is left weakly
mixing, also U; is left weakly mixing as a Bg-pAp-bimodule. So, we can take a
sequence of unitaries b, € U(Bgy) such that lim,, [|[(8(b,)y, ¥)papll2 = 0. But,

(0(bn)y, y)pap = (Y0(a(bn)), ) pap = 0(a(bn)™) (Y5 Y)pap -
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Since 6(cv(by)) is a unitary in By, we have [|6(c(bn)*) (4, y)papll2 = (4, ) papll2
for all n. We conclude that y = 0 and thus v*uv € Us. Since the linear span of
Nogimg (Bqr) is || - ||2-dense in g1 Mgy, we get that goMgs C Us.

Again consider the von Neumann subalgebra N C zoM zg introduced in (5.18).
Since
PpLz(N)p(UQ) C LQ(pAp) s

we get that Epnp(gaMg2) C pAp. Denote by Ny C pNp the von Neumann
algebra generated by the subspace Epnp(g2Mq2). So, No C pAp. In particular,
En(q2) € A, so that En(q2) = Fa(q2) and thus, Ex(g2) has support p. By
[Iol1, Lemma 1.6] combined with Proposition 5.27, the inclusion Ny C pNp is
essentially of finite index in the sense of Definition 5.26. A fortiori, pAp C pNp
is essentially of finite index. This contradicts the left weak mixing of the
N-A-bimodule L?(N) that we obtained in (3).

Next assume that the By-A-bimodule pK is not left weakly mixing and take
a nonzero By-A-subbimodule K; C pK that is finitely generated as a right
Hilbert A-module. Denote by z{ € Z(By) the support projection of the left
action of By on Kj. Since K; # {0}, also z{, # 0. Since the support of F4(ga)
equals p, we get that E4(qez)) = Ea(g2)zy # 0. So, g2z # 0 and we can cut
down everything by z{ and assume that the left By action on K; is faithful.

Put P = Npap(Bo)”. Whenever u € Ny, g, (Bgi) with ubu® = a(b) for all
b € Bqi, we have E4(v*uv)0(b) = 0(a(b))Ea(v*uv) for all b € Bgy. Since By C
pAp is maximal abelian, it follows that E4(v*uv) € P. So, Ea(q2Mge) C P.
From [Ioll, Lemma 1.6] combined with Proposition 5.27, we conclude that the
inclusion P C pAp is essentially of finite index in the sense of Definition 5.26. So,
all conditions of Lemma 5.42 are satisfied and we can choose a diffuse abelian
von Neumann subalgebra D C BN pMp that is in tensor product position with
respect to By. Since Bqy C ¢y M ¢ is maximal abelian, also Bogs C g2 M gs is
maximal abelian. So, ¢2(B) N pMp)gs = Bogz, contradicting Lemma 5.43.

Proof in the case where p < z;. As proven above, we can find projections
e1 € Z(A)z that lie arbitrarily close to z; and for which there exists an A-
subbimodule L C z;H with the following properties: the left support of L
equals ey, L is finitely generated as a right Hilbert A-module, A¢ is bounded
and AEL > ey. Taking e; close enough to z; and cutting down with ey, we
may assume that p < e;. By Lemma 5.38, we can choose a diffuse abelian von
Neumann subalgebra D C (Ae;)’ NejMe; that is in tensor product position
with respect to Ae;. Then Dp C BjNpMp and Dp is in tensor product position
with respect to By. Since Dp is diffuse abelian and ¢2 € BjNpMp is a projection
satisfying g2 (B N pMp)gs = Boge, this again contradicts Lemma 5.43. O
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5.5 Compact groups, free subsets, ¢, probability
measures and the proof of Theorem B

For every second countable compact group K with Haar probability measure u
and for every symmetric probability measure v on K, we consider A = L (K, ),
the A-bimodule H, = L?*(K x K, u x v) with A-actions given by

(F-¢-G)(z,y) = Fay)&(x,y) G(z) forall FGe Aand (€ H,, (5.27)
and the symmetry J,: H, — H, given by
(J,€)(x,y) = E(xy,y~1) forall z,y € K . (5.28)
We put M, =T'(H,,J,, A, u)".

In Proposition 5.47 below, we characterize when the bimodule H, is mixing
(so that M, becomes strongly solid by Corollary 5.14) and when A C M, is an
s-MASA. For the latter, the crucial property will be that the support S of v
is of the form S = F U F~! where F' C K is a closed subset that is free in the
following sense.

Definition 5.45. A subset F' of a group G is called free if

gt g #e

for all nontrivial reduced words, i.e., for all n > 1 and all g1,...,9, € F,
€1,...,6n € {£1} satisfying e; = €41 whenever 1 <i<n —1and ¢g; = giy1.

On the other hand, the mixing property of H, will follow from the following ¢
condition on the measure v.

Whenever K is a compact group, we denote by A\: K — U(L?*(K)) the left
regular representation. For every probability measure v on K and every unitary
representation m: K — U(H), we denote

w(v) = /Kﬂ'(l‘) dv(z) € B(H) .

Definition 5.46. A probability measure v on a compact group K is said to
be ¢y if the operator A(v) € B(L*(K)) is compact.

We denote by Irr(K) the set of equivalence classes of the irreducible
representations of K, and we denote by € € Irr(K') the equivalence class of the
trivial representation. Since the regular representation of K decomposes as the
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direct sum of all irreducible representations 7 € Irr(K), each appearing with
multiplicity equal to its dimension, we get that a probability measure v is ¢ if
and only if

lim l=(v)|| =0,

melrr(K),m—00

i.e., if and only if the map Irr(K) — R : 7 — ||w(v)]| is ¢o. In particular, when
K is an abelian compact group, a probability measure v on K is cp if and only
if the Fourier transform of v is a ¢g function on K.

Proposition 5.47. Let K be a second countable compact group with Haar
probability measure p. Put A = L>®(K,u). Let v be a symmetric probability
measure on K without atoms. Define the A-bimodule H, with symmetry J, by
(5.27) and (5.28). Denote by M,, =T'(H,,J,, A, )" the associated tracial von
Neumann algebra. Let S be the support of v, i.e., the smallest closed subset of
K with v(S) = 1.

(1) The bimodule H, is weakly mizing, A C M, is a singular MASA, M, has
no Cartan subalgebra and A C M, is a mazimal amenable subalgebra.

(2) The von Neumann algebra M, has no amenable direct summand. The
center Z(M,) of M, equals L (K/Ky) where Ko C K is the closure of
the subgroup gemerated by S. So if S topologically generates K, then M,
s a non-amenable I, factor.

(3) If S is of the form S = FUF~! where F C K is a closed subset that is
free in the sense of Definition 5.45, then A C M, is an s-MASA.

(4) If v is co in the sense of Definition 5.46, then the bimodule H, is mizing
and thus M, is strongly solid.

Proof. 1. Note that

HEA S 2K x K x - x K, i X v % -+ X 1) (5.29)

n times n times

with the A-bimodule structure given by
(FgG)(may177yn) = F(l‘yl yn)g(xayla ,yn)G(ﬂi) :

Indeed, we can define an A-bimodular isometry &: HEA = L?(K x K™, pux v™)
by

P(&1 ®a - ®a&n)(@ Y15 Yn) = Hfz‘(myl “Yn—is Yn—it+1)-
i=1
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Define D C K x K given by D = {(y,y~!) | y € K}. Since v has no atoms, we
have (v x v)(D) = 0. It then follows that H, ® 4 H, has no nonzero A-central
vectors. By Proposition 2.26, the A-bimodule H, is weakly mixing, so also
L?(M,) © L?(A) is a weakly mixing A-bimodule. Let a,, € U(A) be a sequence
of unitaries such that |[(a,&,n)all2 — 0 for all left and right bounded vectors
&€ L?(M,) o L?(A). For x € Ny, (A), we have that

{an, z) alls = [(z7aneQ, D) all2 = [l2"anz||2 = 1.

This implies that 2 € A by the choice of (ay,)nen. So, we have that Ny, (4) C A.
Hence A C M,, is a MASA and this MASA is singular. By Theorem 5.21, M,
has no Cartan subalgebra. By Theorem 5.19, we get that A C M, is a maximal
amenable subalgebra.

2. Since H, is weakly mixing, we get from Theorem 5.19 that M, has no
amenable direct summand and that Z(M,) consists of all a € A satisfying
a-§=¢-aforall £ € H,. It is then clear that L>°(K/Ky) C Z(M,). To prove
the converse, fix a € A with a-£ =¢-a for all £ € H,. We find in particular that
a(zy) = a(x) for p x v-a.e. (z,y) € K x K. Let U,, be a decreasing sequence of
basic neighborhoods of ¢ in K. Define the functions b,, given by

ba(y) = p(Uy) ! / a(zy) du(z) .

Un

For every fixed n, the functions b, still satisfy b,(zy) = b(z) for pu x v-a.e.
(z,y) € K x K. But the functions b,, are continuous. It follows that b, (zy) =
bp(x) forall z € K and ally € S. So, b, € C(K/Ky). Since lim,, ||b, —all1 =0,
we get that a € L™(K/Ky).

3. Denote by W,, C (F U F~1)" the subset of reduced words of length n.
Since v has no atoms, we find that v™(W,) = 1. Denote by m,: K" — K
the multiplication map and put S,, := m,(W,,). Since F is free, the subsets
S, C K are disjoint. By freeness of F', we also have that the restriction of m,
to W, is injective. Define the probability measures v, := (m,).(v™) and then
n=16+30% 27" 1y, Using (5.29), we get that H®4 = L2(K X Sy, pu X 1,)
for all n > 1. Since the S,, C K are disjoint, it follows that 4L?(M,), is
isomorphic with the A-bimodule

LXK x K,pxn) with (F-&-G)(z,y) = F(xy) &(z,y) G(z) .
So, AL*(M,), is a cyclic bimodule and A C M, is an s-MASA.

4. Define & € H, by &(z,y) = 1 for all 2,y € K and note that & is a cyclic
vector for 4(H,)a. Denote by ¢: A — A the completely positive map given
by ¢(a) = (£o,a€0)a. Note that as a function in L*°(K, u), we have that



148 THIN Il; FACTORS WITH NO CARTAN SUBALGEBRAS

p(a)(z) = [ a(zy)dv(y) for z € K. To prove that H, is mixing, it is sufficient
to prove that lim, ||¢(ay)|l2 = 0 whenever (a,) is a bounded sequence in A
that converges weakly to 0. Denoting by p: K — L?(K) the right regular
representation, we get that ¢(a) = p(v)(a) for all a € A C L*(K). Since p(v)
is a compact operator, we indeed get that lim,, ||p(v)(a,)|l2 = 0. So, H, is a
mixing A-bimodule. By Corollary 5.14, M,, is strongly solid. O

Remark 5.48. In the special case where K is abelian, we identify L>° (K, u) =
L(G), with G := K being a countable abelian group. Then the symmetric
L>(K, p)-bimodule H, given by (5.27) and (5.28) is isomorphic with the
symmetric L(G)-bimodule associated, as in Remark 5.11, with the cyclic
orthogonal representation of G with spectral measure v. In particular, as
in Remark 5.11, the von Neumann algebras M, = I'(H,, J,,, L°(K), )" can
also be realized as a free Bogoljubov crossed product by the countable abelian
group G. In this way, Proposition 5.47 generalizes the results of [HS09, Hol2a].
Note however that for a free Bogoljubov crossed product M = TI'(Kg)"” x G with
G abelian, the subalgebra L(G) C M is never an s-MASA. Indeed, if we let
7: G — O(Kg) be an orthogonal representation, A = L(G) and H = (?(G)® K
the associated A-bimodule, then H ® 4 H = (*(G) ® K ® K is the bimodule
associated with 7 ® 7. Let F' € B(H ® 4 H) denote the operator that flips the
two copies of K and view F as an operator on L?(M). Then F commutes with
the left and right A-actions but F' ¢ AV JAJ. So, AV JAJ C B(L?*M) is not
maximal abelian and hence A is not an s-MASA. This shows that our more
general construction is essential to prove Theorem B.

For non-abelian compact groups K, we can still view K = @, but G is no longer
a countable group, rather a discrete Kac algebra. It is then still possible to
identify the II; factors M in Proposition 5.47 with a crossed product T'(Kg)"” x G,
where the discrete Kac algebra action of G on T'(KR)” is the free Bogoljubov
action associated in [Va02] with an orthogonal co-representation of the quantum
group G.

The main result of this section says that in certain sufficiently non-abelian
compact groups K, one can find “large” free subsets F' C K, where “large”
means that F' carries a non-atomic probability measure that is ¢g. We conjecture
that the compact Lie groups SO(n), n > 3, admit free subsets carrying a cg
probability measure. For our purposes, it is however sufficient to prove that
these exist in more ad hoc groups.

For every prime number p, denote by I',, the finite group I', = PGL2(Z/pZ).
The following is the main result of this section. Recall that the support of a
probability measure v on a compact space K is defined as the smallest closed
subset S C K with v(S) = 1.
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Theorem 5.49. There exists a sequence of prime numbers p, tending to
infinity, a closed free subset F C K := [[°. T, topologically generating K
and a symmetric, non-atomic, co probability measure v on K whose support
equals FU F~1.

We then immediately get:

Proof of Theorem B. Take K and v as in Theorem 5.49. Denote by M, the
associated von Neumann algebra with abelian subalgebra A C M, as in
Proposition 5.47. By Proposition 5.47, we get that M, is a non-amenable,
strongly solid II; factor and that A C M, is an s-MASA. O

Before proving Theorem 5.49, we need some preparation.

The Alon-Roichman theorem [AR92] asserts that the Cayley graph given by a
random and independent choice of k > ¢(¢) log |G| elements in a finite group
G has expected second eigenvalue at most €, with the normalization chosen so
that the largest eigenvalue is 1. In [LR04, Theorem 2], a simple proof of that
result was given. The same proofs yields the following result. For completeness,
we provide the argument.

Whenever G is a group, m: G — U(H) is a unitary representation and
gi,...,9x € G, we write

7T(917"'7gk

k
Z (5.30)

Lemma 5.50 ([LR04]). Let G,, be a sequence of finite groups and k,, a sequence
of positive integers such that k,/log|G,| — oco. For every € > 0 and for a
uniform and independent choice of ky, elements g1,..., gk, € Grn, we have that

lim P( 7(g1, ... g )| < & for all € Ir(Gy) \ {€} ) —1

W‘\»—l

Proof. Fix a finite group G and a positive integer k. Let g1, ..., gr be a uniform
and independent choice of elements of G. Denote by \g: G — U(£*(G) © C1)
the regular representation restricted to ¢2(G) & C1. Put d = |G| — 1. Both

k
1 Ao(g;) + Ao
T(g1,. .., g) = ;ZO‘%—O%) and
k. .
1 iho(g;) —iAo(g4)*
S0 = L3 Dols) = ide(s)

<
I
—
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are sums of k independent self-adjoint d X d matrices of norm at most 1 and
having expectation 0. We apply [AWO01, Theorem 19] to the independent random
variables
24 Ao(gs) + Aol(gs)”

4 )
satisfying 0 < X; < 1 and having expectation 1/2. We conclude that for every
0<e<1/2,

X; =

1 1 1
P(IIT (g1, g0l <) =P((1-e)5 < %;Xj <(1+o))
J:
52
>1-2d exp(—k4log2) .

The same estimate holds for S(g1, ..., gx). Since Ao(g1,---,9%) = T(g1,---,9k)—
1S(g1,...,9k) and since Ao is the direct sum of all nontrivial irreducible
representations of G (all appearing with multiplicity equal to their dimension),
we conclude that

2

P(|7(g1,...,g0)|| <€ forall m € Irr(G) \ {e}) > 1—4|G| exp(—kmfm) .
Taking G = G,,, k = ky, and n — oo, our assumption that k,/log|G,| — oo
implies that for every fixed € > 0,

2

3

and thus the lemma follows. O

On the other hand, in [GHSSV07] it is proven that random Cayley graphs of
the groups PGL2(Z/pZ) have large girth. More precisely, we say that elements
g1, ---,9k in a group G satisfy no relation of length < ¢ if every nontrivial
reduced word of length at most ¢ with letters from glil,...,g,f1 defines a
nontrivial element in G. The estimates in the proof of [GHSSV07, Lemma 10]
give the following result. Again for completeness, we provide the argument.

Lemma 5.51 ([GHSSVO07]). Let p, be a sequence of prime numbers tending to
infinity and let k,, be a sequence of positive integers such that log ky, / log p,, — 0.
Put Ty, =PGL2(Z/pnZ). For every £ >0 and for a uniform and independent
choice of ky, elements g1,...,gr, € I'p,, we have that

lim P( 91,---, 9k, Satisfy no relation of length < 5) =1.

n—oo
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Proof. Let G be a group. A law of length ¢ in G is a nontrivial element w
in a free group F, such that w has length ¢ and w(g1,...,g,) = e for all
gi,-..,9n € G. For example, if G is abelian, the element w = aba~'b~! of F,
defines a law of length 4 in GG. Since the labeling of the generators does not
matter, any law of length ¢ can be defined by a nontrivial element of F,, with
n < £. In particular, there are only finitely many possible laws of a certain
length £.

Since Foo < Fy < PSLy(Z), the group PSLo(Z) satisfies no law. For every
prime number p, write I'), = PGLy(Z/pZ). Using the quotient maps PSLo(Z) —
PSLo(Z/pZ), we get that a given nontrivial element w € F,, can be a law for at
most finitely many I',,. So, for every £ > 0, we get that I',, satisfies no law of
length < ¢ for all large enough primes p. (Note that [GHSSVO07, Proposition
11] provides a much more precise result.)

Let w = g;'---g;/ with i; € {1,...,k} and ¢; € {£1} be a reduced word of
length ¢ in glil7 . ,g,fl. Let p be a prime number and assume that w is not a
law of I',. With the same argument as in the proof of [GHSSV07, Lemma 10,
we now prove that for a uniform and independent choice of gi,...,g; € I'p, we
have that ¢ 1

gr) = e <Z(1+—)*.

P(w(gi,..., k) eml—‘p)_p(l—i—pfl)

Denote F), = Z/pZ, not to be confused with the free group F,. Write G, =
GLy(F,) C F2*?. Define the map

(5.31)

W: (FP2)" 5 F220 Wan,...,a) = by, - by,

where bij = aj, when ¢; = 1 and bij equals the adjunct matrix of a;, when
g; = —1. Note that the four components W, s,t € {1,2}, of the map W are

polynomials of degree at most £ in the 4k variables a € (Fg“)k. Define the
subset W C (FI?XQ)IC given by

W={ac (ngz)k | W(a) is a multiple of the identity matrix }
k
= {a S (Fp2><2) ’ Wu(a) — WQQ(Q) = ng(a) = ng(a) = 0} .
We also define V = W N (G,)* and

u = {g € (Fp)k | w(gla"'agk) = einrp} :
The quotient map G, — I'j, induces the (p — 1)*-fold covering 7: V — U.

The subset W C F;k is the solution set of a system of three polynomial equations
of degree at most £. If each of these polynomials is identically zero, we get that
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W = F3* and thus Y = (I',)*. This means that w is a law of T, which we
supposed not to be the case. So at least one of the polynomials is not identically
zero. The number of zeros of such a polynomial is bounded above by ¢p*¢—1
(and a better, even optimal, bound can be found in [Se89]). So, [W| < £p*+—1.
Then also |V| < ¢p**~! and because 7 is a (p — 1)¥-fold covering, we find that

Ul < t(p—1)"Fptht.

Since [I'p| = (p— 1) p(p + 1), we conclude that

. u { _ _
P(w(gl,...,gk):eml"p)zut C < —( 1) 2’“(p—i—l) kp3k
P p
12 3k
< Z -
S

So, (5.31) holds.

Now assume that p,, is a sequence of prime numbers and k,, are positive integers
such that p, — oo and log k,,/ log p,, — 0. For all n large enough, 3k, < p, —1
and for all n large enough, as we explained in the beginning of the proof, I,
has no law of length < ¢. Since (1 + 1/x)* < 3 for all > 0 and since there are

less than (2k)“*! reduced words of length < [ in glil, . ,g,fl, we find that for
all n large enough and a uniform, independent choice of g1, ..., gk, €'y, , we
have

L3

P(g1,..., 9k, satisfy a relation of length < ¢in T, ) < (2kn)*

By our assumption that log k,, /log p, — 0, the right hand side tends to 0 as
n — oo and the lemma is proved. O
Combining Lemmas 5.50 and 5.51, we obtain the following.

Lemma 5.52. For all € > 0 and all kg, po,? € N, there exists a prime number
p > po, an integer k > ko and elements gi1,...,9r € I, = PGL2(Z/pZ)
generating the group I'y such that

(1) |I7(g1y .-y 96)ll < e for every nontrivial irreducible representation ™ €
Irr(T)),

(2) g1, .-, gk satisfy no relation of length < €.

Proof. Choose any sequence of prime numbers p,, tending to infinity. Define
kn, = [(logpn)?|. Since [Ty, | = (pr — 1) pn (pn + 1), we get that k,/log [T, | —
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oo. Also, logk,,/logp, — 0. So Lemmas 5.50 and 5.51 apply and for a large
enough choice of n, properties (1) and (2) in the lemma hold for p = p,, k =k,
and a large portion of the k,-tuples (¢1,...,9%,) € I‘Zz.

The first property in the lemma is equivalent with

Lk
H (E ]_Zl)\<gj))22(rp)ec1H =€,

where \: I', — ¢%(T,) is the regular representation. If ¢ < 1, it then follows in
particular that there are no nonzero functions in ¢?(I',) © C1 that are invariant
under all A(g;), meaning that every element of I', can be written as a product
of elements in {g1,...,gx}. So, we get that g1,..., g generate T'. O

Having proven Lemma 5.52, we are now ready to prove Theorem 5.49.

Proof of Theorem 5.49. As in (5.30), for every finite group G, subset F' C G
and unitary representation w: G — U(H), we write

1
7(F) := vl > 7lg) .

For every prime number p, we write I'), = PGL2(Z/pZ). We construct by
induction on n a sequence of prime numbers p, and a generating set

n
F,C K, := H T,
j=1

such that, denoting by 6,,_1: K,, — K, _1 the projection onto the first n — 1
coordinates, the following properties hold.

(1) 0,—1(F,) = Fy—1 and the map 6,,_1: F,, — F,,_; is an r,-fold covering
with r,, > 2.

(2) If 7 € Irr(K,,) and 7 does not factor through 6,,_1, then |7(F,)| < 1/n.

(3) The elements of F,, satisfy no relation of length < n.

Assume that py,...,pn,_1 and Fi,..., F,_1 have been constructed. We have
to construct p, and F,. Write k1 = |F,,—1| and put kg = max{2n + 1,k;}. By
Lemma 5.52, we can choose kg > kg, a prime number p,, and a subset F' C I,
with |F| = ko such that the elements of F' satisfy no relation of length < 3n
and such that ||7(F)|| < 1/(4n) for every nontrivial irreducible representation
mof Iy, .
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Write Fr,—1 = {g1,...,9x,  and F = {hy,..., hg, }. Note that we have chosen
ko > max{2n + 1,k1}. So we can define the subset F,, C K,,_1 xI', = K,
given by

Fp = {(gi, hihjhy ) [ 1<i<ky, 1< j <hy, i#j}.
Note that 6,,_1(F,,) = F,,—1 and that the map 6,,_1: F,, — F,,_; isa (k2—1)-fold
covering.

Every irreducible representation = € Irr(K,) that does not factor through 6,,_1
is of the form m = m; ® my with m € Irr(K,,—1) and with 79 being a nontrivial
irreducible representation of I';, . Note that

1

m(Fa) = 1 > (mi(gi) @ wa(hi) Ty ma(hi)*) |

i=1

where

1
Ti = k2 1 Z 7T2(hj) .

1<j<ks, j#i

For every fixed ¢ € {1,...,k;}, we have

ko 1
TZ = kQ — 17T2(F) — ﬁ'ﬂé(h@) .

Therefore,
. (5.32)

SRS

1Tl < 2[lm2(E)] + 5~ <

1
2n
It then also follows that ||7(F,)| < 1/n.

We next prove that F), is a generating set of K,,. Fix i € {1,...,k;}. For all
s,t€{1,...,ka} with s # ¢ and ¢ # 4, we have

(gi» hihshi ) (gi, hihehy V) ™Y = (e, hi hshy P hit)

It thus suffices to prove that the set H; := {h.h; ' | s,t € {1,...,k2} \ {i}}
generates I', for each i € {1,...,k1}.

Denote by A the regular representation of I', restricted to ¢2(T,, )©C1. Define

1
R; = — Z Ao(hy) -

1<j<ks,j#i

By (5.32), we get that ||R;|| < 1. Then also ||R;R}|| < 1. So, there is no nonzero
function in ¢2(I', ) ©C1 that is invariant under all A(h), h € H;. It follows that
each H; is a generating set of Iy, .



COMPACT GROUPS, FREE SUBSETS, Cy PROBABILITY MEASURES AND THE PROOF OF
THEOREM B 155

Denote by 1, : K, — I',, the projection onto the last coordinate. If the elements
of F}, satisfy any relation of length < n, applying n,, will give a nontrivial relation
of length < 3n between the elements of F'. Since such relations do not exist, we
have proved that the elements of F), satisfy no relation of length < n.

Define K = [[,2, ', and still denote by 6,,: K — K,, the projection onto the
first n coordinates. Define

F={keK|0,(k)eF, foralln>1}.

Note that F C K is closed and 6,,(F) = F,,. Denoting by (F) the subgroup of
K generated by F, we get that 0,,((F)) = K,, for all n. So, (F) is dense in K,
meaning that F' topologically generates K.

Since each map 6,,_1: F,, — F,_1 is an r,-fold covering, there is a unique
probability measure vy on K such that (6,).(v0) is the normalized counting
measure on F,, for each n. Since r,, > 2 for all n, we have that |F,,| — oo and
hence the measure vy is non-atomic. Indeed, for any z € K and any n € N, we

have that 1

vo({z}) < (07" ({0 (2)})) = A

Note that the support of vy equals F'. Define the symmetric probability measure
v on K given by v(U) = (vo(U) + vo(U1))/2 for all Borel sets U C K. The
support of v equals F U F~!. Since A(v) = (AM(vo) + M(10)*)/2, to conclude
the proof of the theorem, it suffices to prove that F is free and that vy is a ¢q
probability measure.

Let gi* - - - g5 be a reduced word of length m with g1,...,gm € F. Taken >m
large enough such that 0,,(g;) # 0, (gi+1) whenever g; # g;11. We then get that
0,(g1)%t -+ - 01 (gm )™ is a reduced word of length m < n in the elements of F,.
It follows that

e # 0n(91) 0 (gm)"™ = 0 (g5 -~ 957) -

So, g7' -+ g5 # e and we have proven that F' is free.

We finally prove that ||7(vg)|| < 1/m for every irreducible representation m of
K that does not factor through 6,,: K — K,,. Since there are only finitely
many irreducible representations that do factor through 6,,: K — K,,, this will
conclude the proof of the theorem. Let 7 be such an irreducible representation.
There then exists a unique n > m such that 7 = my 08,, and 7 is an irreducible
representation of K, that does not factor through 6, _1: K,, — K,_1. Since
(6n)«(10) is the counting measure on F,, get that 7(vy) = mo(F,) and thus

1

1
= ||mo(Fo)|| < = < — .
7o)l = Imo(Fu)ll < = < -
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5.6 Property Gamma

Given a tracial von Neumann algebra (M, 7), a central sequence for M is a
|| - ||-bounded sequence z,, € M that asymptotically commutes with M in the
sense that

lim ||xny — yzu|l2 =0 forall y e M.

n—oo

The central sequence (z,,)nen is said to be trivial if lim,, o |2 — 7(z5)1]]2 = 0.

A separable II; factor M admits a nontrivial central sequence if and only if
there exists a central sequence consisting of unitaries u,, € U(M) with 7(u,) =0
for all n (see for instance [AP16, Theorem 15.2.3]). This property is known
as property Gamma and was first introduced by Murray and von Neumann
[MvN43] in order to distinguish between the hyperfinite II; factor R and the
free group factors L(F, ), n > 2. Historically, this provided the first example of
a non-hyperfinite factor.

A separable II; factor M is called a full factor if it does not have property
Gamma, i.e., if it has no nontrivial central sequences. Connes showed [Co75]
that being a full factor is equivalent with the following stronger property: the
unitary representation (Adw)yey(ary on L*(M) & C1 given by (Adu)é = ufu*
has spectral gap in the following sense.

Definition 5.53. Let (7, H) be a unitary representation of a group G. We say
that 7 has spectral gap if it does not weakly contain the trivial representation,
i.e., if w has no almost invariant vectors.

Having nontrivial central sequences can also be expressed in terms of the
ultrapower von Neumann algebra. Indeed, a separable II; factor M has property
Gamma if and only if M’ N M* # C1 for any free ultrafilter w on N, where M¥
denotes the von Neumann algebra ultrapower of M with respect to w. The von
Neumann algebra M’ N MY is called the central sequence algebra of M (with
respect to w).

If A C M is a von Neumann subalgebra, we say that a central sequence (z,)nen
for M asymptotically lies in A if ||z, — Ea(zy)]l2 — 0 as n — oco. If every
central sequence of M asymptotically lies in A, we have that M'NM“ C A'NAY,
for any free ultrafilter w on N.

Fix a separable tracial von Neumann algebra (A, 7) and a symmetric A-bimodule
(H,J). Put M =T(H, J,A,7)". Our goal in this section is to locate the central
sequences of M and in particular find a criterion for when M is a full factor.
Since even factoriality of M is very difficult to characterize in general (see
Theorem 5.21), we will restrict ourselves to the case where H is a weakly mixing
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bimodule. At the end of this section, we will apply this criterion to the factors
M, that we constructed in Section 5.5, where v is a symmetric probability
measure on a compact group K.

In the case of free Bogoljubov actions, Houdayer showed the following.

Theorem 5.54 ([Hol2b, Theorem A]). Let G be any countable discrete group
and w: G — O(HR) any faithful orthogonal representation such that dim Hg > 2.

If n(G) is discrete in O(Hg) with respect to the strong operator topology, then
I'(Hg)"” % G s a full factor.

We can rephrase the condition 7(G) C O(Hg) being discrete in the following
way: There exists no sequence g,, € G with g, — oo such that

m(gn) — & for all & € Hy.

The natural analogue of this in the setting of symmetric A-bimodules is the
following: There exists no nontrivial sequence of unitaries a, € U(A) such that

lan€ar —&|| = 0 forall € € H.

We prove that this is indeed a criterion for M being a full factor. The proof is
based on the proof of [Hol2b, Theorem A], as well as techniques from the proof
of Theorem 5.19.

Theorem 5.55. Let (A, 1) be a separable tracial von Neumann algebra and
(H,J) a symmetric A-bimodule. Assume that aH 4 is faithful and weakly mizing.
Then any central sequence for M asymptotically lies in A and the central sequence
algebra of M is exactly given by

M' N M* = {(a,) € AN A* | li_r>n lang — &anl| =0 for all £ € H}.
n—w

Proof. Tt is enough to show that M’ NM®“ C A, since the rest of the statement
follows trivially by looking at the commutator of a,, € A and £(§) + £(J&)* for
EeH.

Let (,)nen be a central sequence for M and put y,, = x,, — Fa(z,). We may
assume that sup,, ||y, || < 1. We first prove the following two claims, analogously
to Claim I and Claim IT in the proof of Theorem 5.19.

Claim 1. For any £ € H and any € > 0, there exists a projection p € A with
7(1 —p) < € such that

nh_?;o 16(EP)E(EP)™ (yn)ll2 < e.
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Proof of claim. Put a = \/{£,&)a € A and let ¢ € A be the support projection
of a. Take a spectral projection ¢; € gAq of a such that ag; is invertible in
¢1Aq: and such that 7(¢ — ¢1) < €/2. Let b € ¢1.Aq; be its inverse and put

1 = &b. Then ¢(n)*4(n) = ¢1 and &g = na.

Pick N € N such that 27V < I|la]| ~*&* and put £ = 2. Then choose § > 0
so small that § < %|lal~2ex~3/2. Exactly as in the proof of Theorem 5.19,
we find unitaries vy,...,v, € U(A) and a projection g € g1 Aq; such that
7(q1 — ¢2) < £/2 and such that the vectors 7; := v;n satisfy

||q2<7h’777j>AQQH <6 forall 1i#j.

Put p; = nig2 = vingz and P; = £(u;)¢(1;)*. Note that P; = v; Pyv} and that P,
is a projection for all i. By construction, ||P;P;|| < § whenever i # j. Putting
P =3%"% | P, it follows as in the proof of Theorem 5.19 that || P| < 1+ x24.

Since y,, asymptotically commutes with A and since P; commutes with the right
A-action, we have that

lim || P(yn)lle = lim [|v; Projysll2 = lim |lv;Pry,vf (|2 = lim [[Pi(ys)|l2
n—o00 n— o0 n—oo n—00
foralli =1,...,k. Also note that

(132 Piw)l13 = D2 NP ) I3] = | S 4P Py, )| < 3 = ).

i#]

It follows that

K
Jim (1P (ya)llz = lim | Z;Pi(yn)llé

] . 2_ J—
> Jim 33 1720n) 1§ St = 1)

= i tim_ [Py (ya) 3 — d(s — 1).

On the other hand, since ||P|| < 1+ x%d, we have that | P(y,)|l2 < 1 + x26 for
all n. Thus,
K li_>m P (yn)ll3 — 0k(k — 1) < (1 + K26)2.
n oo

We conclude that

1 25)2
1Pl < /S 1) < a2

lim
n— oo
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Since ¢; and a commute, the right support of (¢1 — ¢g2)a is a projection of the
form g1 —po where py € ¢1Aq; is a projection with 7(q1 —po) < 7(q1 — g2) < &/2.
By construction, ¢1apg = gaapg. Since py < ¢1 and n = nqy, it follows that

&po = £q1po = Napo = Mq1apPo = 7G2Gy -

Define the projection p € A given by p = (1 — q) + po. Since £(1 — ¢) = 0,
we still have £p = ngaapg. Because 1 —p = (¢ — ¢1) + (¢1 — po), we get that
7(1 —p) < €. Finally,

Tim [[6€p)AEP)* ()2 = Tim_[[€(n2) apoa” €(nga)" (w2
< flal* lim [[£(ng2)€(na2)" (yn)ll2

= [lall® lim [|Pi(yn)ll2 < e.
n—oo
So, we have proven the claim. O

Claim 2. For every & € H and € > 0, there exists a projection p € A with
7(1 —p) < € such that

Jim[16(¢p)€(Ep)” (yn) |2 = 0.

Proof of claim. For every k € N, Claim 1 gives us a projection p € A such
that 7(1 — pi,) < 27%¢ and

i (6P ()l <

Let p = /\k21pk. Then 7(1 — p) < € and for every k > 1, we have that
Tim [EPAER) W)l = Tim [6E)PE) ()2

< Tim [[(€)prl(§)" (yn)ll2

— lim [[6(Epp)l(Epy)* !

= lim [[6(€pr)eEpr)" (yn)ll2 < 7
It follows that lim, . [[£(£p)€(Ep)* (yn)|l2 = O as claimed. =

We are now ready to finish the proof of Theorem 5.55, which is done exactly
as in [Hol2b, Proposition 6.1]. Given any right A-submodule L of H and an
integer k > 1, we define

Xk(L) =5pan{éy ®a - ®@a&n | n >k, & € L} C Fa(H),
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where £ denotes the set of left and right A-bounded vectors in L. For simplicity,
we write x(L) := x1(L). Given any closed subspace S C L%(M), we denote by
Pg the orthogonal projection onto S.

Let £ € ‘H be any symmetric vector. By Claim 2, we can take a projection
p € A with 7(1 — p) < ¢ such that

Jim [[6(Ep)€(Ep)* (yn)l2 = 0.

Put & = p&p. Note that ¢ is symmetric and since y, asymptotically
commutes with p, we have that lim, . [|€(£)0(€)*(yn)|l2 = 0. Using the
polar decomposition [AP16, Lemma 8.4.9], we may write £’ = &y (¢, &’ >1/2 with
&o € H aright bounded vector such that &’ A = £y A and such that (g, &) 4 is the
range projection of (¢/,¢&’ )1/2 Note that P, &7 = = 0(&)¢(&o)*. Take a spectral

projection g € pAp of a := (¢, ¢ >114/ lying arbltrarily close to the support of a
such that aq is invertible inside gAq. Then, £yq = £'b for some b € ¢Aq and thus
P e = L(ENbb*L(E")*. So, after replacing p with a slightly smaller projection
but still arbitrarily close to 1, we may assume that Pz = = £(&Hbb*e(¢')*.

Since limy, oo [|€(§)2(€")* (yn)]l2 = 0, we get that lim, HPX @) (Wn)ll2 = 0.
Since also y, € M © A, it follows that
lim |y, — PX(Heﬁ)(yﬂ)||2 =0. (5.33)

n— oo

Denote by J: Fa(H) — Fa(H) the anti-unitary involution defined in the proof
of Proposition 5.7. Note that

W(E) (x(H & & A)) C x2('A),
TIW(ENT(x(H e &'A)) C L*(A) & x(H & {A).

Indeed, for left and right bounded vectors n € H © &’A and ¢ € ’H®I/€4, k>0
(note that ¢ € A if k = 0), we have that (J&,n)a = (§,n)a = 0 since &' is

symmetric and hence
W(ENn®a¢) =& @an@a+(J& mal =€ @an®aC € x2(£A),
TIWENT @A) =n@aC@a& +n(JC,EVaex(HOETA) ifk>1,

IWENT(0C) =n¢ @a & + (J(1¢),&")a € L*(A) & x(H © &'A) if k= 0.
In particular,

W(E)(x(H e &A) LH,

W(E)(x(HoEA) LIW(E )T (x(H o & A)).
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For all n € N, we have
W(E)zn — 2, W (&) = W(E ) Ealan) +ya) — TW(E)T (Ealzn) + yn)
= (W(E)Ealzn) = IW(E)TEalan) = TW(E)Tyn) + W(E )y
Thus
W (&)zn — 2, W (E)]3

= |W(E)Ea(zn) = TW(E)T Ealzn) = TW(E) Tynllz + W (E ynll3

+ 2Re( W () Ba(@n) = TW(E)T Ealan) = TW(E)Tyas W (€ )yn )-
Using (5.33) along with the orthogonality properties above, we get
(WE)VEa(2n),W(E)yn) = (WIEVEa(2n), W(E ) n — Py wn))) = 0,
as n — oo and similarly

(TW(ENTEa(an), W( )yn) =0 as n— oo,

<jW(§’)jyn, W(ﬁ/)yn> —0 as n— oo.
Since also ||W (&' )z, —x, W (&)]]2 — 0, we get from the above computation that

W (&) Ea(zn) = TW(E)TEa(zn) = TW(E)Tynll2 = 0 and

W (& )ynll2 — 0.
Using (5.33) again, it follows that ||W(§I)PX(H687)(y")||2 — 0. Since
g(fl)*PX(Heﬁ) (yn) = 0, we have that

||W(€/)PX(H@g7)(yn)||2 = ¢’ ®a PX(H@@)(%L)”Q

2
= (€ €V P ez () 2-

So, we have that |[{(£',£') 4 PX(He@)(yn)‘|2 — 0. Using (5.33) once more, we
get limy, o0 [|[{€/, €Y A ynll2 = 0. Recall that & = p€p and that 7(1 — p) < e.
Since e can be chosen arbitrarily small, we have that ||(£,&)4 — (£/,&) all2 is
arbitrarily small. Tt follows that lim, e [|[{§, &) A Ynll2 = 0.

Since this holds for all symmetric vectors £ € H and since 4 H 4 is faithful, we
conclude that

lim ||z, — Ea(zy,)]2 = lim |yl =0.

n— oo n— oo

So, () nen is asymptotically contained in A.
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Example 5.56. Let 4 H4 be a weakly mixing symmetric A-bimodule and
assume that M =T'(H, J, A,7)" is a factor. Then M is a full factor whenever
H contains a nonzero mixing A-subbimodule. Indeed, assume that K C H
is a mixing A-subbimodule and that M is not a full factor. Since M is a II;
factor, this means that there exists a central sequence consisting of unitaries
(an)nen C U(M) with 7(a,) = 0 for all n. After passing to a subsequence if
necessary, we may assume that a, converges weakly to some a € M. Then
a € Z(M) = C1. Since 7(a) = 0, it follows that a = 0. So, a,, — 0 weakly.

Since K is mixing, we now get that |[{(a,&,n)all2 — 0 for all left and right
bounded vectors £, € K. In particular,

[(an&; Ean)| = [T({an, Ean) a)| = [7({an, ) aan)| < [[{an, §) all2]lanll2 — 0,
for all £ € K. Thus,

0 = lim [|ang — €anl|* = lm([lang® + [I§an]|* — 2Re(ang, €an)) = 2|81,

for all £ € K, which is a contradiction.

In Section 5.5, we defined the von Neumann algebras M, = I'(H,, J,,, A, 7)"”
associated with a symmetric probability measure v on a compact second
countable group K. Recall that A = L*°(K, p), where p denotes the Haar
measure on K, and that H, = L?(K x K, i x v) with A-bimodular actions given
by (5.27) and symmetry J, given by (5.28). For the remainder of this section,
we will use Theorem 5.55 to characterize when M, has property Gamma in
terms of the measure v.

In Proposition 5.47, we saw that M, has nontrivial center if and only if v(Ky) = 1
for some closed proper subgroup Ky < K. This is equivalent with the existence
of a nontrivial irreducible representation (7, L) of K and a unit vector £ € L
such that v(K;¢) =1, where

Kre:={ve K|[n(z)f= ¢}
Indeed, this follows from the following well-known lemma.

Lemma 5.57. Let Ky be a closed subgroup of a compact second countable
group K. Then Ko # K if and only if there exists a montrivial irreducible
representation w of K that has a nonzero Ky-invariant vector.

Proof. Given two representations (mq, Hy) and (mq, H2) of K, we denote by
C(m1,m2) the intertwiner space, i.e., C(m,m2) consists of all bounded linear
operators T': H; — Hpy such that T'm (x) = me(2)T for all x € K. Note that a
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representation 7 of K has a nonzero invariant vector if and only if C'(e, ) # {0}.
So, we have to show that Ky = K if and only if C(e, 7|k,) = {0} for all
7w € Irr(K) \ {e}.

By the Frobenius reciprocity theorem, C(e,7|k,) = C(Ag/k,,T), where
Ak /K, denotes the regular representation of K on L?(K/Ky). Note that any
nontrivial irreducible representation (7, H) that is contained in Ag /g, satisfies
C(Ak/Kkos ™) # {0}. Indeed, the projection P: L?(K/K,) — H is a nontrivial
intertwiner between \g/k, and 7. So, we have that C(e, 7|k,) = {0} for all
7 € Irr(K) \ {e} if and only if Ag,f, is trivial, which holds if and only if
K = K. 0

Given a sequence of irreducible representations m = (m,,, L, )nen of K and given
a sequence of unit vectors & = (&, )nen with &, € L, we define the subgroup

Kre:={z € K| nh_)ngo |7 ()& — &nll = 0}

Lemma 5.58. The subgroup K ¢ defined above is Borel. Moreover, if m, — oo,
then Kr e # K.

Proof. We have that K ¢ is Borel since

Kre=() U N €K | Im(@)e - &l < 1)

k=1no=1n=ng

Next, assume that 7, — co. Note that € K ¢ if and only if (7, (2)&,, &) — 1.
By the dominated convergence theorem, we have that

/K <7T’ﬂ(aj)§n>€n> dli($> — M(Kﬂ—’g) as n — oQ.

But, by the Schur orthogonality relations, we have fK<7rn(a:)fn, &) du(z) =0
whenever m, # 1. Since 7, — 00 as n — 00, it follows that K, ¢ # K. O

Above, we saw that M, has a nontrivial central element if and only if V(K ¢) = 1
for a single 7 € Irr(K) \ {e} and a single unit vector £&. In the following
proposition, we will show that M, has a nontrivial central sequence, i.e. property
Gamma, if and only if v(K; ¢) = 1 for sequences ™ = (7, )nen and &€ = (&, )nen,
under the assumption that M, is a factor. We will also show that this condition

is equivalent with the operator A(v) not having spectral gap when restricted to
L*(K) o Cl.
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Given a representation m of K and a symmetric probability measure v on K,
recall that we defined the operator 7(v) by

(v = /K () dv(z).

Note that m(v) is a self-adjoint operator with ||7(v)|| < 1. We denote by Ag
the left regular representation of K restricted to L?(K) © Cl1. In the following
proposition, the equivalence between (1) and (4) states that M, is a full factor if
and only if Ag(r) has a spectral gap, meaning that there exists 6 > 0 such that
the spectrum of \o(v) is contained in [—1,1 —4§]. Compare this with Proposition
5.47, where we saw that H, is mixing if and only if A\(v) is a compact operator.

Theorem 5.59. Let v be a symmetric non-atomic probability measure on a
compact second countable group K, and let M, =T(H,, J,, A, 7)" be as defined
above. Assume that the support of v topologically generates K, i.e., M, is a
factor. Then the following are equivalent.

(1) M, has property Gamma.

(2) There exists a sequence of irreducible representations m = (7p)nen on K
with m, — 00 and a sequence of unit vectors (&, )nen such that v(K  ¢) = 1.

(3) For anye > 0, any § € (0,1) and any finite subset F C Irr(K), there
exists (w, L) € Irr(K) — F and a unit vector & € L such that

v({z € K |Re(m(x)&0,&0) >1—¢e}) >1—0.
(4) The spectrum of Ao(v) contains 1.

Proof. (2) = (1): For each n, denote by L,, the finite-dimensional Hilbert space
on which 7, acts. We will view each L,, as a subspace of L := (?(N). Let
fn: K — L be the map given by f,(k) = m,(k)&,. Then f,, defines an element
in L®(K)® L C L*(K) ® L for each n with ||f,||cc = 1. Note that

(r ®id)(f) = / T (K)En dpa(k) = 0 if 7, # 1,
K
by the Schur orthogonality relations. So for n so large that 7, # 1, we have
that f, € (L*(K)©Cl)® L.

Recall that A = L*°(K). Fix an essentially bounded function n € L?(K x
K, x v) = H, and note that n € H, is left and right A-bounded. Using the
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notation f, -1 := (r(n) ® 1)(f,) and 5 - f, = (£(n) @ 1)(f»), we have that

1w -m—n- full® = /K /K 7 (29)En - 02, 9) — (@, 9) - 70 ()P i) do(y)
- / / 0, 9) 7 () (o ()6 — €)1 dpa(z) dr(y)
K JK

< Inll% /K n (0)6n — Enll? duy).

Since v(Kr¢) = 1 and since ||m,(y)€, — &,|| — 0 for all y € K ¢, we get by
Lebesgue’s dominated convergence theorem that [, |7, (y)&, — & l1* dv(y) — 0
as n — 00. So, we have proved that ||f, -n —n- fol| = 0 for all n € H, with
17]|oc < 0o. This means that f,, € (L?(M,)©C1)® L asymptotically commutes
with W(n) € M,. Hence, f, asymptotically commutes with the x-subalgebra
My given by

My = span({W(m,...mn) | ni € Hy, ||Milloo < 00} UA).

Note that My is || - ||o-dense in M,. Also note that f, is a tracial vector
for all n € N, ie., (Xfn, fn) = (fnz, fn) = 7(x) for all z € M,.. Indeed, for
a € A= L>(K), we have that

UFntts f) = (@fos fu) = /K (@) (2)En, 7 (2)E0) du(z)

— [ a@)lul? dut) = r(a).
K

Moreover, when 2 € M, © A we have that zf, € L?(M, © A) ® L so that
(fn, fny = 0. Therefore,

(@fns fn) = (Ea(@) fn, fn) = T(Ba(z)) =7(x) forall x € M,,
and similarly (f,x, fn) = 7(x).

We can now conclude that f, asymptotically commutes with all of M,,. Indeed,
given x € M, and ¢ > 0, choose x¢9 € My such that ||z — x¢[l2 < 5. Then,

2 fn — fazll2 < (2 = 20) full2 + |T0 fr — fazollz + || fr(zo — ) |2
=2[|x — 2oll2 + |r0 fr — fuwoll2-

It follows that ||z f, — foz|l2 < € for n so large that |zofn — fn2oll2 < 5.
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We have now shown that f, is asymptotically M,-central. So, the unitary
representation (Adu ® 1),ey(a,) on (L*(M,) © C1) @ L does not have spectral
gap. Since this is just a multiple of (Ad u),ey(ar,), We have that (Adu),cy(ar,)
on L?(M,) © C1 also does not have spectral gap. By [Co75], we conclude that
M, has property Gamma.

(3) = (2): Given (3), pick a sequence m, — oo in Irr(K) together with a
sequence of unit vectors &, such that

v({x € K | Re(mp(x)&n,&n) > 1 — %}) >1-27"

Define 1
Kny = [] {& € K | Re (mn(2)€n,6a) > 1 -~}

n>ngo

Then v(Kp,) > 1 =307 27" =1—27"% and thus v(U, _; Kn,) = 1. If
x € Ky, then Re (m, ()&, &n) > 1 — % for n > ng. Then Re (7, (z)&,,&n) — 1
and thus @ € Kre. So, Uy Kny C Krge. Since v(U,_; Kn,) = 1, we

conclude that v(K,¢) = 1.

(1) = (3): Given 7w € Irr(K), we denote by L, the finite-dimensional Hilbert
space on which 7 acts and we denote by d, the dimension of L,. Assume that
(3) does not hold. Pick ¢ >0 and § € (0,1) and F' C Irr(K) finite such that

v({z € K |Re(n(2)6,6) < (1—e)||€)?}) =6  forall 7¢ F and €€ L.

When 7 € Irr(K), we denote by m;; € L>(K) = A the ij’th matrix coefficient
of w, for i,j € {1,...,d,}, that is, m;(x) = (7w(x)e;,e;) where (e;); is an
orthonormal basis for L.

By the Peter-Weyl theorem,

{Vdr -mij | melr(K), 1<i,j<d.}

is an orthonormal basis for L?(K). Since K is compact, we have L>(K) C
L?(K). Let a, € U(L**(K)) be a sequence of unitaries tending to zero weakly.

Write
dx
an = Z Z(an)ﬂ,i,j'frij;

n€lrr(K) i,j=1

with coefficients (ap)x,ij = dx(an,m;) € C. We need to show that (a,)nen
cannot be a central sequence for M,,. It is enough to show that (a,-(1®1),(1®
1) - a,) does not converge to 1 as n — oo.
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For all m, 7" € Irr(K) and 4,5 € {1,...,d,} and k,l € {1,...,d }, we have that

(- (01, @) ) = [ [ a7 dta) dvl)

=dg [ 7)) ) vt

By the Peter-Weyl theorem, we have that z — m;5(z) and z — 7},;(z) are
orthogonal if m # 7’. Moreover, x — m;s(x) and x — mg(z) are orthogonal if
1#£ korif s#1. So, if 7 = 7', we get

<7Tij : (1®1), (1®1) "/Tkl> = 5zk/

K

715(3) /K (@) (@) du(z) du(y)

1
= dulmal} [ i) dvty) = o [ i) dvty)
K T JK

We conclude that

0 if m#£7 ori#k
G(1e1), 1e1) ) = )
{mig - ( ) ( ) ) {dlﬂmej(y)dy(y) if r=7"andi=k.

Now

7

(an . (1 & 1),( Z Z an T, an Trzl/ le(y) dl/(y)

melrr( ) 7,1

Z Z/ f(wz)fwz>dV()

melrr(K) i=1

where €, ) = 2%, 1 (,)n.i 65 Note that 2, 37, €8, |2 < flanl3 = 1.
Also, since a,, — 0 weakly, we have that ||§EL7r 1)|| — 0 as n — oo for every fixed

m and i. Let d = max,ecp d; and choose N € N so large that ”f&,i)HQ < 2&%
forn> N, forallme Fandi=1,...,d;,.
By the choice of F, € and §, we have for 7w ¢ F' that

[ R )€7n ) A0) < 0= €T P+ (1= DT

= (1 - ed) 1€ oI
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Thus, for n > N,

Re{a, - (1@1),(101)-an) < Y > €l plP+ D D> (1 —ed)léf o I°

melF i n¢F i

20 )
<4 (1-ef)=1-——.
_2+( gd) 5

It follows that

limsup Re(a, - (1®1),(1®1)-a,) <1——

n—oo 2 ’
and thus (a,)nen cannot be a central sequence for M,,.

By Theorem 5.55, all central sequences of M, asymptotically belong to A. So,
we conclude that (1) does not hold.

(2) = (4): In the following, we denote by o(T') C C the spectrum of an operator
T. Assume that o(Ao(v)) C [—1,1 — 0] for some § > 0. Since Ag decomposes as
the direct sum of all nontrivial irreducible representations of K, each occurring
with multiplicity equal to its dimension, we have that o(w(v)) C [-1,1 — 4] for
all m € Irr(K) \ {€}. So, we have that (w(v)£,£) <1 — 46 for all = and all unit
vectors £, which implies that

[m(v)€ —€|? =2 — 2(n(v)E,€) > 26.

In particular, there can be no sequences (7, )neny and (&, )nen with m, — oo
such that v(K,¢) = 1.

(4) = (3): Assume that (3) does not hold. We claim that for any sequence
(7 )nen in Irr(K) with 7, — oo and any sequence of unit vectors (&, )nen, we
have that ||m, ()&, — &,|| does not converge to 0. Indeed, assume that this is
not the case, i.e., |1, (V)& — &u|| — 0 for some choice of (7, )nen and (&,)nen-
Equivalently, we have that (m,(v)&,, &) — 1, ie.,

/ Re (7 (2)&n, &) dv(z) — 1.
K

Since also Re (7, (2)&,,&n) < 1 for all € K, this implies that for any § > 0,

we have
v({z € K | Re (mp(2)&n,&n) > 1 —6}) — 1.

This contradicts the fact that (3) does not hold.

We conclude that there exists a finite subset F' C Irr(K) and § > 0 such that
for any (7, L) ¢ F, we have

Iw()¢ —€ll = all¢]l for all € € L.
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Fix (m,L) ¢ F and ¢ € L with [|¢]| = 1. Then (7(v)¢,€) < 1 — & and hence
52
lr ()€ = (1 =)l = (1 = Ng = 7)€, &) = 5 = A,
for all A € R. Tt follows that 7(v) — (1 — A)1 is invertible whenever 0 < A\ < %
So, o(n(v)) C [-1,1 — %] forall m ¢ F.
Note that any 7 € Irr(K) \ {€} satisfies 1 ¢ o(w(v)). Indeed, since 7 is finite-
dimensional, we have that o(m(v)) consists of the eigenvalues of m(v). Since

7 is irreducible and since the support of v topologically generates K, we have
that 1 is not an eigenvalue of 7(v) and hence 1 ¢ o(m(v)).

For each m € F, choose ¢, > 0 such that o(n(v)) C [-1,1 — 0,]. With
6= min({%} U{0x}rer), we now have that o(X\g) C [~1,1— 9] as wanted. [

Note that in the case where K is abelian, we have that M, has property Gamma
if and only if there exists a sequence of characters w = (wy)neny C K with
wy, — oo such that v(K,,) = 1, where

K,={z e K|wy(r) —1}.

Example 5.60. Even the circle K = T has quite a few such subgroups K,
that are large enough to carry a non-atomic probability measure. For instance,
consider the characters w,, = 2" € Z = K. When identifying K with R/Z, the
characters wy,: R/Z — R/Z are given by w,(z) = 27’2, We denote by d(z,Z)
the distance from a point z € R to Z. Then,

K, ={z €R/Z|d2" z,Z) = 0}.

Define 7: {0, 1} — K by 7(A) = 3222, Ax2*°. Then,
2 n 2 2 e 2 2
2M (A =) AM2W M 4 Y aen R
k=1 k=n-+1

Note that the first sum on the right hand side belongs to Z, while the second
sum can be bounded as follows:

Z )\k2n2,k2: Z )\k27(k:7n)(k+n)
k=n+1 k=n+1

< Z )\k2—(k+n)
k=n+1

<o .9t .



170 THIN Il; FACTORS WITH NO CARTAN SUBALGEBRAS

Thus, 7({0,1}) C K. So, it suffices to find a non-atomic probability measure
supported on ({0, 1}1V). But then we can simply take the push-forward under
7 of any non-atomic probability measure on the Cantor set {0, 1}.

Let v denote such a symmetric non-atomic probability measure that is supported
on K,,. Then the associated von Neumann algebra is a II; factor by Proposition
5.47, since K, is dense in K. By Theorem 5.59, M, has property Gamma.



Chapter 6

Conclusion

Cartan subalgebras play an important role in the classification of II; factors.
One of the main questions of interest is that of existence and uniqueness of
Cartan subalgebras and more generally, how many Cartan subalgebras a given
II; factor has. Indeed, the number of Cartan subalgebras of a II; factor M tells
us in how many ways M decomposes as L(R), the II; factor associated to an
equivalence relation R.

The group measure space (gms) Cartan subalgebras are the ones arising as
L>(X) € L*(X) x T for a free ergodic pmp action I' ~ X. By Singer’s
theorem, the number of gms Cartan subalgebras of a 11y factor M tells us in
how many ways M decomposes as a crossed product M = L*°(X) x ', up
to orbit equivalence of the actions. In particular, when M has a unique gms
Cartan subalgebra, there is a unique free ergodic pmp action I' ~ X up to orbit
equivalence such that M = L>°(X) x I'. When this action is in fact unique up
to conjugacy, then we say that I' ~ X is W*-superrigid. This means that the
action I' ~ X can be completely recovered from the II; factor L™ (X) x I

Uniqueness of Cartan subalgebras is thus an important step in proving W*-
superrigidity and is therefore a very desirable property. The first theorem
proving uniqueness of Cartan subalgebras up to unitary conjugacy was obtained
by Ozawa and Popa in their breakthrough article [OP07] and since then, more
and more uniqueness results have been proved. On the other hand, it remains
an open problem to find II; factors with exactly n Cartan subalgebras, for some
n > 2.

In this thesis, we solved this open problem in the case of gms Cartan subalgebras.
Our main theorem describes all of the gms Cartan subalgebras for a specific
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class of II; factors. In particular, for any n > 1, we found explicit examples
of II; factors M with exactly n gms Cartan subalgebras up to conjugacy by
an automorphism of M. This means that M has exactly n crossed product
decompositions up to orbit equivalence of the actions. We proved that this
even holds up to conjugacy of the actions: M has exactly n crossed product
decompositions up to conjugacy of the actions. We were also able to find II;
factors with exactly n gms Cartan subalgebras up to unitary conjugacy but
only in the case where n is a power of 2.

It would be very interesting to find examples of II; factors for which all Cartan
subalgebras can be determined, not only the ones of group measure space type.
However, one would need an entirely different approach since our proof relies
on the existence of a dual coaction A: M — M ® M associated to a crossed
product decomposition of M.

In this thesis, we also addressed the question of when a group I' is C-rigid,
meaning that any crossed product L°°(X) x T by a free ergodic pmp action of
I' has a unique Cartan subalgebra up to unitary conjugacy. It is a big open
problem to characterize the class of C-rigid groups and for this reason, one is
interested in finding interesting counterexamples to C-rigidity. At the moment,
all known counterexamples have an infinite amenable almost normal subgroup.
We showed that all groups with an infinite abelian normal subgroup are non-C-
rigid. Moreover, we showed that all groups I' with an infinite abelian almost
normal subgroup satisfy a slightly weaker property: There exists a finite normal
subgroup F' < I' such that I'/F" is non-C-rigid. Since C-rigidity is not known to
satisfy any “finite index” stability properties, we were unable to conclude that
I itself is non-C-rigid.

It is expected that there are also other counterexamples to C-rigidity, that
is, groups without an infinite abelian almost normal subgroup. It would be
interesting to look for such examples in order to get a better understanding of
C-rigidity.

Finally, we presented new examples of II; factors without Cartan subalgebras.
The motivation for this work was a question raised by Popa: does there exist s-
thin IT; factors without Cartan subalgebras? The s-thin approximation property
was introduced by Popa in search of an intrinsic criterion for a II; factor to have
a Cartan subalgebra. We answered Popa’s question affirmatively by finding
concrete examples of s-thin II; factors that are even strongly solid. In order to
construct these examples, we studied the von Neumann algebras associated with
Shlyakhtenko’s A-valued semicircular systems in the case where A is a tracial von
Neumann algebra. By applying Popa’s deformation/rigidity theory, we proved
general structural properties of such von Neumann algebras, and under certain
conditions, we were able to show that the associated von Neumann algebra
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is a non-amenable, s-thin and strongly solid II; factor. Concrete examples of
A-valued semicircular systems satisfying these conditions were constructed from
¢o probability measures supported on free subsets of compact groups. We were
able to prove the existence of such measures in an ad hoc way and conjectured
that such measures should also exist on the natural compact groups SO(n) for
n > 3.






Appendix A

Spectral gap rigidity for
co-induced actions

In [Po03, Po04], Popa discovered that all Bernoulli actions I' ~ (X, u) have
a remarkable deformation property: the flip automorphism on X x X can
be continuously deformed into the identity via a one-parameter group of
automorphisms that commute with the Bernoulli action. This property is
called malleability. In combination with certain rigidity properties, this allowed
Popa to prove powerful W*-rigidity results for Bernoulli crossed products
L>*(X) x . In [Po05], the rigidity is given by Kazhdan’s property (T) of the
group I'; whereas [Po06b] uses spectral gap rigidity of the Bernoulli action in
the case where I is a direct product of two non-amenable groups.

In this appendix, we will show how Popa’s malleability and spectral gap rigidity
(more precisely, the generalization provided in [BV14, Theorems 3.1 and 3.3])
carries over to the case where I' ~ (X, u) is a co-induced action. In fact,
the results carry over almost verbatim but we will nevertheless provide a full
argument for the sake of completeness. In the end of this appendix, we will prove
some useful results for controlling quasi-normalizers inside crossed products
associated with co-induced actions. These results are also direct generalizations
of the same results for Bernoulli actions.

Given a tracial von Neumann algebra (Ao, 79) and a countable set I, we denote
by (Ao, 70)" (or just Al) the von Neumann algebra tensor product @ ; (Ao, 7o)
For each i € I, we denote by 7;: Ay — Aé the embedding of Ay as the i’th tensor
factor. When A < T is a subgroup with a trace-preserving action A ~ (Ag, 70),
we get a co-induced action ' ~ (Ag, 79)™\I' as defined in Section 3.1. In this
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appendix, we will view co-induced actions as being actions “build over a set”,
in the following sense.

Definition A.1. Let I' ~ I be an action of a countable group I' on a countable
set I. We say that a trace-preserving action o: I' ~ (Ag,m0)! is built over
I' ~ 1 if it satisfies

O'g(T('z'(AQ)) = 7Tg~i(A0) for all gel,iel.

Assume that T' ~ A{ is an action built over I' ~ I. Choose a subset J C I that
contains exactly one point in every orbit of I' ~ I. For every j € J, the group
Stab j globally preserves ;(Ag). This defines an action Stab j ~ Ay that can be

co-induced to an action I' ~ Ag/ StabJ The original action T' ~ A} is conjugate
with the direct product of all these co-induced actions. In particular, co-induced
actions are exactly actions built over a transitive action I' ~ I = T'/T.

A.1 The tensor length deformation

The tensor length deformation is a variant of Popa’s malleable deformation
for Bernoulli crossed products, due to [Io06]. This deformation can be defined
more generally for crossed products coming from co-induced actions (or rather
actions built over I' ~ I as defined in Definition A.1) as follows.

Let I' ~ I be an action on a countable set [ and let o: I' ~ (Ag,7)! be an
action built over T' ~ I. Let M = A} x T be the corresponding crossed product.
We can extend the action o to an action &: I' ~ (Ag * L(Z))! uniquely in such
a way that

Gg(mi(b)) = mgs(b) forall be L(Z), geT, iel.

Indeed, for a fixed g € I, the automorphism o, of Al is the composition of the
shift automorphism 7;(a) — 74.;(a) with a certain tensor product automorphism
Ricr o, with o € Aut(Ap). We can then define 6, to be the composition of
Qe (og *id) with the same shift automorphism.

Let M = (Ao * L(Z))! x T be the crossed product associated with &. Let
u; € L(Z) be the canonical generating unitary and let h € L(Z) be the self-
adjoint element with spectrum [—m, 7] such that u; = exp(ih). For t € R, we
put u; = exp(ith). Then (u;)ier is a one-parameter group of unitaries in L(Z)
with |7(u¢)| < 1 for all ¢ # 0.

We still denote by m; the embedding as the i’th tensor factor Ay * L(Z) —

(Ao * L(Z))! for i € I. We can then define automorphisms o; € Aut(M), t € R,
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by ay(ug) = ug for g € I' and oy (m;(z)) = mi(wzwf) for & € Ag * L(Z). Note
that this is well defined since I' acts trivially on L(Z).

Now, M together with (o )ier is a malleable deformation called the tensor length
deformation. To explain this terminology, consider the completely positive map
e M — M given by 1y = Eproay. Let py = |7(u)|? and note that 0 < p; < 1
for t # 0. Whenever a € A} is an elementary tensor given by a = X p a; with
a; € Ag© Cl and F C I a finite set, we have
Pi(aug) = pltF‘aug7 teR, gel.

Note that the tensor length deformation is s-malleable in the sense of [Po06a,
Section 6]. Indeed, we can define an automorphism g € Aut(]T/f) by 8(z) =«
for z € M and B(m;(u1)) = m;(ul) for ¢ € I. This is well defined since I' acts
trivially on L(Z). By construction, 82 = id and 30 ay = a_; o 3, meaning that
the deformation (o )ier is s-malleable.

A.2 Spectral gap rigidity

Using the tensor length deformation, Popa’s spectral gap rigidity [Po06b] applies
to actions built over I' ~ I. The generalization provided in [BV14, Theorems
3.1 and 3.3] carries over verbatim and this gives the following result. For
completeness, we include a full proof.

Whenever I' ~ I and F C I, we denote by Stab(F') the subgroup given by
Stab(F) ={g €' | g-i=iforalli € F}, and we denote by Norm(F') the
subgroup given by Norm(F) ={g €T |g-F = F}.

Theorem A.2. Let I' ~ I be an action of an icc group on a countable set.
Assume that Stab{i,j} is amenable for all i,j € I with i # j. Let (Ao, 10) be a
tracial von Neumann algebra and (N, T) a tracial factor. Let T ~ (Ao, 7o) be
an action built over T ~ I and put M = Al x T.

If PC N® M is a von Neumann subalgebra that is strongly non-amenable
relative to N @ AL, then the relative commutant Q :== P' " N @ M satisfies at
least one of the following properties:

(1) there exists an i € I such that Q < N ® (A} x Stabi) ;
(2) there exists a unitary v € N @ M such that v*Qu C N ® L(T).

For the rest of this section, fix M as in Theorem A.2 and let M, (at)ter denote
the tensor length deformation as defined in Section A.1. Me moreover put



178 SPECTRAL GAP RIGIDITY FOR CO-INDUCED ACTIONS

M =N®M and M = N® M. We will still denote by oy the automorphism
id ® ay on M.

The first step in the proof of Theorem A.2 is to show that the von Neumann
subalgebra @ is “rigid” in the sense that a; — id uniformly on ). This is where
spectral gap rigidity comes into play. An M-bimodule p; Hj; is said to have
spectral gap if it does not weakly contain the trivial M-bimodule, i.e., if it has
no almost M-central and almost tracial vectors. In our case, the spectral gap
comes from the bimodule K defined in the following lemma. We show that K
is essentially coarse relative to N ® A}, so that pKp has spectral gap by our
non-amenability assumption on P.

Lemma A.3 ([BV14, Lemma 3.2]). Let pmKa C mLA(M © M)aq be the
M-subbimodule given by

x€N,gel, FCI, 2<|F| < oo,
= . with a; € Ag * LZ i

K =span { = ® mr(a)ug “ i?Fa o a 0 Jor alli
and with a; € Ag * LZ & Aq for at
least 2 elements v € F

Put My = N®@ Al C M. Then there exists an Mo-M-bimodule H such that
MK\ is weakly contained in ap(L* (M) @ty H) M-

Proof. Let S C NN denote the set of all sequences (s,)nen With s, € N for
which there exists k € N such that s,, = 0 for n > k and s,, # 0 for n < k. Given
such a sequence s € S, we can associate an Ag-subbimodule Hy C L?(Ag * LZ)
given by

H, = SpﬁAouil (AQ S Cl)u? (Ao S (Cl) s (AQ ) Cl)uikAo,

where k € N is the smallest number such that s, = 0 for all n > k. Then,
L*(Ag * LZ) = @, Hs as Ap-bimodules.

Given a finite subset F C I with |F| > 2 and nontrivial sequences s; € S for
each 1 € F, we let K denote the M-subbimodule of K given by

Si)ieF

K(sl ZWM<1®7T.7:(®16.7 He,))M

)ie]—‘

Define the subgroup A < T' given by
Ai={geTl |g-F=Fandsy, =s;forallicF},

and let Q = N ® (Aé\}- x A). Note that uy K, for all g € A.

We claim that K,

)ie]’u; =K (si
is contained in the M-bimodule

)iE]—‘

)7‘,6}'

L*(M) ®q L* (M) ©q L*(M).
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To see this, let ¢,c’ € K(y,),c»

d =107mr(Ricrc) with ¢;, ¢, € ugsi)l(Ao@(Cl)ugsi)2 e (A0@<C1)u§5i)k C H,,
for all 7+ € F. One easily checks that

be elements of the form ¢ = 1 ® 7x(®;cxc¢;) and

(wey, ) = (Eg(x)cEg(y),d) = (x Qg c®q y,1 ®¢g ¢ ®¢ 1)

for all x,y € M. Since the union of all subsets McM with ¢ as above spans a
dense subspace of K, this implies that K, is contained in L*(M) ®q

i)i€f7

L*(M) ®¢g L*(M), as M-bimodules.

i)ieF

Given two finite subsets F,F C I with |F|,|F’'| > 2 and sequences (s;)icr,
(st)icr as above, we have that exactly one of the following conditions holds.

1. There exists g € I' such that g- F = F" and s ; = s; for all i € F. In this
case, Ky =ug K so that K,

Yier = K(st),cm

1K

*
)icF! ierUg

2. There exists no such g € I'. In this case, K,

i)ieF DierF "

Since the K(y,),.’s moreover span a dense subspace of K, we can choose a
sequence of M-subbimodules K,, C K of the form K, = K, (s™)icrn for some
Fy, and some (s7);cr,, such that K = @, K,,. Writing as above

K2

Ay ={g€Tl|g - Fn=F,and sy, =s; foralli € F,},

Qn = NB (A" x A,),
we then have that

K ¢ @PLAM) 8q, L* (M) ®q, L*(M).

Note that Stab(F,) < A, is a subgroup of finite index. Since |F,| > 2, we
have by assumption that Stab(F,) is amenable. Hence, A,, is also amenable.
It now follows from Lemma [MP03, Proposition 6] that N ® (A} x A,,) is
amenable relative to N ® Al = My. In particular, Q,, is amenable relative
to My. By [PV11, Proposition 2.4], this means that yL*(M)g, is weakly
contained in L2(M)®pq, L2(M) for alln € N. So, if welet H = @,, L*(M)®q,,

L2 (M) ®q, L*(M) as an My-M-bimodule, we have that K is weakly contained
in L2(M) Om, H. O

Proof of Theorem A.2. Let K be the M-bimodule from Lemma A.3 and let
Py denote the projection of L?(M) onto K. We start by proving the following
claim.
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Claim L. If sup,cyq) | Pr (@t (b))]l2 — 0 as t — 0, then also

sup |lag(b) —blla =0 as t—0.
beU(Q)

For n > 0, let H,, C L?(M) be the closed subspace defined by

xe€N,gel', FCI, |F|=n,
H, = span 1?®7T}'(a)ug a= ®a; witha; € Ag©Cl forallie F ¢,
ieF

and let P, denote the orthogonal projection of L?(M) onto H,. Note that
L* (M) = ,,, Hn. By definition of the tensor length deformation ay, we have
that -

o0

lae(b) = BlI3 =D 2(1 = pi) | Pa(®) I3 for all beU(Q),

n=0

where p; = |7(us)|?.

Exactly as in the proof of [BV14, Theorem 3.1], we get the following formula
for || Px (at(y))|l2 when y € M.

[P (e (@)lI5 =D (1= c(t,n))|[Pa(y) |3 for all y € M, (A1)
n=0
where sn1)
on 2y 2(n— IS
ity = 4P n(1— p;)p; Tfn > 1,
1 ifn=0.

Note that ¢(t,n) — 0 as n — oo for fixed ¢ > 0, since 0 < p; < 1.

To prove the claim, assume that sup,cy () [|[Pr (a¢(b))|l2 — 0 as t — 0. Given
e > 0, choose t > 0 such that ||Px(ca4(b))||2 < € for all b € U(Q). Then take
no € N such that ¢(t,n) <  for n > ny. By (A.1), we get that

5 S IPO)IB < IPilen®)IF < 2 for all beU(Q)

n=no
Moreover, we choose sy > 0 such that 1 — p? < &2 for |s| < sgp and 0 < n < ng.
Then, for all b € U(Q) and |s| < sp, we get

oo

laws (0) = Bl13 = > 2(1 = p) I Pa(B)13

n=0

no—l

< D 2P )3 +2 D [Pa(d)]3 < 262 + 467
n=0

n=no
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This proves the claim.

Next, assume for contradiction that supyey () [l (b) — bl[2 does not converge
to zero as t — 0. By the claim above, we find € > 0 and ¢y > 0 such that
for every 0 < t < tg, there exists by € U(Q) with ||Px(az(b:))]]2 > €. Put
& = Px(ay(by)). Using that Pk is M-bimodular and that b, € Q@ = P' N M,
we get that ||x&; — &zl — 0 as t — 0 for each fixed x € P. Indeed,

l2&: — &exll2 < [[zan(be) — ar(be) |2 = [[a—t(2)br — bra—t(z)]|2
<2flai(z) — |2 + |lzbe — bizl]2 = 2||a—t(z) — 2|2 = O.

We also have that ||z& |2 < ||z]|2, since b; is a unitary. From Lemma [BV14,
Lemma 2.10], it now follows that there exists a nonzero projection ¢ € P’ N M
such that the ¢ Mg-M-bimodule ¢K is left Pg-amenable. By Lemma A.3, we
have that ¢K is weakly contained in ¢L?(M) ®, H so [PV11, Corollary 2.5]
gives that ¢L?(M) @, H is left Pg-amenable. But then also gatq(qL*(M)) a1,
is left Pg-amenable by [PV11, Proposition 2.4.4], which exactly means that Pgq
is amenable relative to M. This contradicts our assumptions on P.

We have now shown that

sup ||las(b) —blla =0 as t— 0.
beU(Q)

To prove Theorem A.2, assume that @ does not satisfy (1), i.e., Q A N® (A} x
Stabi) for all ¢ € I. We then have to show that @ satisfies (2), i.e., we have
to find a unitary v € M such that v*Qv C N ® L(T"). We start by proving the
following claim.

Claim II. There exists a nonzero partial isometry v € M such that vv* €
Q' NM and v*Quv C N ® L(I).

Take ¢ > 0 of the form ¢ = 27" such that ||oy(b) —b||2 <  for all b € U(Q). Then
|7(ba (b)*)] > % for all b € U(Q). Let y be the unique element of minimal 2-
norm in the weakly closed convex hull of {boy(b)* | b € U(Q)}. Then |r(y)| > I
so y is nonzero, and byay(b)* =y for all b € U(Q) by uniqueness of y. Letting
wo € M be the partial isometry from the polar decomposition of y, we get that

zwy = woey(x) for all x € Q.

Using the s-malleability of oy, we can even obtain ¢ = 1 in the equality
above. Indeed, let 8 € Aut(M) be the automorphism defined in Section A.1.
Recall that 3% = id, f(z) = x for + € M and that Boa; = a_y 0 3. Put

w1 = oy (B(wg)wp) € M. Since Q A N @ (A x Stabi) for all i € I, it follows
from Lemma A.4(1) that wow§ € M. It follows that w; is a nonzero partial



182 SPECTRAL GAP RIGIDITY FOR CO-INDUCED ACTIONS

isometry and one easily checks that xw; = wiagi(x) for all z € Q. So, we have
doubled ¢. Since t = 27", we can continue inductively in this way and obtain a
nonzero partial isometry w = w, € M such that

zw =waq(z) for all z € Q. (A.2)

Next, we show that there exists a finite subset F C I (possibly empty) such
that Q < N ® (A7 x Stab F). Assume that this is not the case. By Theorem
2.12 (and [Va07, Remark 3.3]), this means that there exists a net of unitaries
vy, € @ such that

||EN§(AOF><Stabf)(a”"b*)H2 — 0 forall a,b€ M and F C I finite.

From this, we will deduce that

| Ep(zos (v)y")]l2 = 0 for all =,y € M. (A.3)

Let S C M denote the set of all elements of the form 1y ® mr(®ieFx;), where
F C I is finite and x; € (Ag * LZ) © Aga1(Ap) for all ¢ € F. Note that
span{Muzay(AL) | z € S} forms a || - ||o-dense subalgebra of M. So, it is enough
to show (A.3) for z,y € S.

Let z,y € S and write z = 1 ® 7x(®z;) and y = 1 ® ng(®y,) with F,G C I
finite subsets and x;,y; € (Ao * LZ) & Apa1(Ag) for i € F, j € G. We also write
U =3 er(vn)?uy with (v,)? € N ® Al = My for the Fourier decomposition
of v,,. Then

Enm(zar(va)y*) = Y Eaa(war((va)?)og(y*)uy)
gel’

= Z EMO (xal((vn)g)ag(y*))ug'

gel

Note that Eaq, (zo((vn)9)og(y*)) = 01if g- G # F. So, it is enough to sum
over all ¢ € T' with ¢- G = F. Since F is finite, we can take a finite set
{91,...,9r} C ' such that {g | g- G = F} is the disjoint union of the sets
Stab(F)g; for i =1,...,k.
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Now

9

Ep(zai(vy)y

||
ii M»

Epm, (waq N®A0F((Un)sgi))gsgi (y*))USQ'i

Il
ii M»

Z
Z xoq N®AJ:((U7L)Sgi)uS)Ugi (y*))ugi

I
ok

E (.73011 (ENg(AOFxStab F) (’Unu; ))U!]i (y*))ugz
1

.
Il

Em(zan(zn)y”),

where z, = Zle EN@(A{xStab}')(vnu;)ugr By assumption, we have that
|znll2 — 0 and hence (A.3) follows.

Applying (A.3) to x = y = w, where w is the partial isometry from (A.2), yields
[Em(won (vn)w®)ll2 = [[onEa(ww?)|l2 = | Ep(ww?)[l2 — 0,
contradicting the fact that w # 0.

We conclude that there is a finite subset 7 C I such that Q < N®(A{ xStab F).
Our assumption that Q A N ® (A} x Stabi) for all i € I implies that F must
be empty. This means that Q@ < N ® L(T").

By Theorem 2.12, there exists a *-homomorphism 6: Q — ¢(M,,(C)@N®L(T))q
for some n € N and projection ¢ € M,(C) ® N ® L(T'), and there exists
a nonzero partial isometry v € M; ,(C) ® M such that zv = vf(zx) for all
xr € Q. Since Q £ N ® (A} x Stabi) for all i € I, we may assume that also
0(Q) £ N ® L(Stabi), by [Va07, Remark 3.8]. By Lemma A.4 (1), it follows
that

0(Q) Nq(M,(C)® M)q C M,(C)® N® L(T).

In particular, v*v € M,(C) ® N ® L(I"). We also have that (Tr®7)(v*v) =
7(vv*) <1 sosince N ® L(T") is a IT; factor, we may assume that n = 1. Then
v € M does the job: it is a nonzero partial isometry such that vv* € Q' N M
and v*Quv C N ® L(T"). This finishes the proof of Claim II.

To get a unitary instead of merely a partial isometry, we use a simple maximality
argument. Let (v;)jes C M be a maximal family of nonzero partial isometries
such that v;07 € Q' N M are mutually orthogonal and v;Qu; C N ® L(I') for
all j. By Claim II (applied to Q(1 — Z vjvy)) and by maximality of (v));e,
we have that >, v;vf = 1. Since vjv; € N @ L(I') and since N ® L(I') is a 1Ly
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factor, we can take partial isometries w; € N @ L(I') such that wjw] ;

and such that the projections wjw; are mutually orthogonal. Tt is now easy to

check that w:= 3", vjw; is a unitary in M such that v*Qu C N ® L(I'). O

— py¥oy .
= V; V4

A.3 Controlling quasi-normalizers

Recall that for a von Neumann subalgebra P C M, we define QN (P) C M
as the set of elements © € M for which there exist x1,...,Tn, Y1, -, Ym € M
satisfying

P C Z.Pfi and Px C ZyjP.
i=1 j=1
Then QN s (P) is a #-subalgebra of M containing P. Its weak closure is called
the quasi-normalizer of P inside M.

The following lemma is proved in exactly the same way as [IPV10, Lemma
4.1] and goes back to [Po03, Theorem 3.1]. We will provide a proof, which is
essentially the same as the proof of [Va07, Lemma 4.2].

Lemma A.4. Let Ay C By be tracial von Neumann algebras and let T' ~ Bé
be an action built over T' ~ I that leaves A} globally invariant. Let (N,T) be
an arbitrary tracial von Neumann algebra and put M = N ® (A} x T) and

M=N®(B{«T).
(1) If P C pMp is a von Neumann subalgebra such that
P #4m N ® (Af x Stabi)  forall i €1,
then QJ\/pﬁp(P) is contained in pMp.

(2) Fizig € I and assume that Q C q(N® (A x Stabig))q is a von Neumann
subalgebra such that

Q ANB(alxstabio) N @ (Af x Stab{io, j}) for all j # io.

Then QN g (Q) is contained in g(N @ (A} x Stabig))g.

The proof of Lemma A.4 relies on the following general lemma based on Popa’s
intertwining technique. For a proof, we refer to [Va07].

Lemma A.5 ([Va07, Lemma 4.1]). Let (M, 1) be a tracial von Neumann algebra
and let P C N C M be von Neumann subalgebras. Assume that there is a net
of unitaries v; € P such that

|Ep(zviy)|l2 = 0 forall xe M, ye Mo N.
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Then Q./\/M(P)N C N.

Proof of Lemma A.4. To prove (1), assume that P A N @ (A} x Stabi) for all
i € I. By Theorem 2.12 (and [Va07, Remark 3.3]), there exists a net of unitaries
vn, € P such that

IENg (At xstab i) (@0ny)[[2 = 0 for all z,y € pMp and all i€ I.
By Lemma A.5, it is enough to show that
| Er(avab)]|2 — 0 for all a € pMp, be pMp© pMp.

We may assume that a and b are of the form ¢ = 2 ® T7x(®;cra;) and b =
yR7g(®jegb;) with z,y € N, F,G C I finite subsets and a;,b; € By. Moreover,
we have that b;, € By © A for at least one jo € G.

Write v, = 3 cp(vn)9uy with (v,)? € N® Af. Then

IEm(avad)lls = > [ Engar (& ® mr(®a:)(00)? (y @ og(mg(20;)))]3-
gel

Note that 7(7r(®a;)(vyn)904(mg(®b;))) =0 if g - jo ¢ F so it is enough to sum
over the set {g € T'| g-jo € F}. Since F is finite, we can take a finite set of
elements gi,...,gx € I' such that {g | g jo € F'} is the disjoint union of the
sets gs Stab jg for s =1,..., k. Then

k
IEsm@vad)l3 <D Y @@ 7r(®a:))(0a)*" (y © 04,1 (mg(@5))))13
s=1 heStab jo

k
<Y Y lmr(@a)Pllmg (@bl |z (o) 13

s=1 heStab jo

k
= [lm 7 (®a) | lmg (@0)1* D I Engag sstab jo) (Fontiy, y)II3

s=1
— 0.

This concludes the proof of (1).

To prove (2), take instead a net of unitaries v, € U(Q) such that

||EN@(A£NStab{iO’j}))(xvny)Hz — 0 forall z,y € N® (A} x Stabiy), j # io.
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Again by Lemma A.5, it suffices to show that
HEN@(AéNStabio)(avnb)||2 —0 forall a e M, be MS (A} x Stabiy).

We may assume that a and b are of the form a = aguy and b = bouy, where
g, h €T and ap = 2QTr(®icrai), bo = y@mg(Qjegh;) withz,y € N, F,G C I
finite subsets and a;,b; € Ap for all ¢ € F, j € G. Since b is orthogonal to
Al x Stabig, we have that h ¢ Stabig. Let jo = h - iy # io.

Writing vn = ) cgiab i, (Un)"us with (v,)" € N @ A, we get

1B x5 (a5 wstab io) (a0nd) 15 = > llaoog ((vn)*)ogr (bo) 3.
ke(Stabig)Ng=1(Stabig)h—1

If (Stabig) N g~*(Stabig)h~t = 0 we are done, so assume that this set is
nonempty. For fixed kg € (Stabig) N g~!(Stabig)h ™!, we then have that

(Stabig) N g~ (Stabig)h ™' = ko(Stabig N h(Stabig)h™') C ko Stab{ig, jo}-

Hence,

IENg (AL ustab o) (@) I3 < > llaoog((vn) %) agrok (bo) 13
keStab{io,jo}

< laolPlbol® D lwa)** 3

keStab{ig,jo}

= llaolI*[1bo 1 E x5 ag wstabiio jo}) (Vntiig I3 = 0.

O
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