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Abstract

The group measure space construction of Murray and von Neumann associates
to every free ergodic probability measure preserving group action Γ y (X,µ)
a crossed product II1 factor L∞(X) o Γ. It is a fundamental problem in the
theory of II1 factors to classify these crossed products in terms of the underlying
group action.

The subalgebra L∞(X) ⊂ L∞(X) o Γ plays an important role in such
classification results; it is a so-called Cartan subalgebra. When a crossed product
II1 factor L∞(X)o Γ has a unique Cartan subalgebra, we can partially recover
information about the group action Γ y X from the associated II1 factor. In
the most extreme case, we can completely recover the underlying action Γ y X,
in the following sense: whenever L∞(X)oΓ is isomorphic with another crossed
product L∞(Y )o Λ, then the action Λ y Y must be conjugate with Γ y X.
A group action Γ y X satisfying this property is called W∗-superrigid. The
first W∗-superrigid actions were discovered in 2009 in [Pe09, PV09].

In this thesis, we construct the first II1 factors having exactly two group
measure space decompositions up to unitary conjugacy. Also, for every positive
integer n, we construct a II1 factor M that has exactly n group measure space
decompositions up to conjugacy by an automorphism of M .

Our second main result is concerned with the existence of Cartan subalgebras
inside a given II1 factor. It is a wide open problem to give an intrinsic criterion
for a II1 factor M to admit a Cartan subalgebra A. When A ⊂M is a Cartan
subalgebra, the A-bimodule L2(M) is “simple” in the sense that the left and
right action of A generate a maximal abelian subalgebra of B(L2(M)). A II1
factor M that admits such a subalgebra A is said to be s-thin. Recently, Popa
discovered an intrinsic local criterion for a II1 factor M to be s-thin and left
open the question whether all s-thin II1 factors admit a Cartan subalgebra.
We answer this question negatively by constructing s-thin II1 factors without
Cartan subalgebras.
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Chapter 1

Introduction

This thesis is based on my two publications [KV15] and [KV16], which are joint
work with Stefaan Vaes. In particular, parts of this introduction have already
appeared in these articles.

A von Neumann algebra is an algebra of bounded linear operators on a Hilbert
space that is stable under taking the adjoint of an operator and that is closed
in the strong operator topology. The commutative von Neumann algebras are
of the form L∞(X,µ) for some measure space (X,µ). Therefore, von Neumann
algebras can be considered as non-commutative measure spaces.

The most important examples of von Neumann algebras arise from discrete
groups and their actions on probability spaces. Given a countable discrete
group Γ, the group von Neumann algebra L(Γ) is the von Neumann algebra
generated by the left regular representation of Γ on the Hilbert space `2(Γ). If
Γ acts on a probability space (X,µ), then we can associate a group measure
space von Neumann algebra L∞(X)o Γ, generated by a copy of L∞(X) and
unitary elements (ug)g∈Γ satisfying uguh = ugh and u∗gfug = f(g ·) for g, h ∈ Γ
and f ∈ L∞(X).

The simple objects among von Neumann algebras are called factors. More
precisely, a factor is a von Neumann algebra with trivial center. Factors are
exactly the von Neumann algebras that cannot be written as a direct sum
of two. Moreover, Murray and von Neumann [vN49] showed that any von
Neumann algebra can be written as a “generalized direct sum” of factors,
thereby theoretically reducing the study of von Neumann algebras to the study
of factors.
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2 INTRODUCTION

Murray and von Neumann furthermore divided factors into 3 different types.
The type that we will focus on in this thesis is type II1. A factor M is said to
be of type II1 if M is infinite-dimensional and admits a finite trace τ , i.e., a
positive linear functional τ : M → C satisfying τ(xy) = τ(yx) for all x, y ∈M .
Factors of type II1 should be thought of as “continuous” analogues of the matrix
algebras Mn(C), equipped with their usual trace trn. Indeed, if M is a II1
factor with its normalized trace τ , then τ(p) can take any value in the interval
[0, 1], when p ranges through the set of projections in M . On the other hand,
trn can only take a discrete set of values on the projections in Mn(C).

The main examples of II1 factors are given by group von Neumann algebras L(Γ)
and the group measure space construction L∞(X)oΓ introduced above. Indeed,
L(Γ) is a II1 factor whenever Γ is an icc group, meaning that all nontrivial
conjugacy classes of Γ are infinite. The group measure space von Neumann
algebra L∞(X) o Γ is a II1 factor whenever the action Γ y (X,µ) is free,
ergodic and probability measure preserving (pmp).

One of the core problems in operator algebras is to classify these II1 factors
associated with groups and group actions. A natural question to ask is to what
extent the II1 factor L(Γ) or L∞(X)oΓ “remembers” the group Γ or the group
action Γ y X, respectively. For amenable icc groups Γ, Connes [Co75] showed
that all group von Neumann algebras and all group measure space II1 factors
are isomorphic. In fact, he proved that there is a unique amenable II1 factor R.
This means that, within the class of amenable groups, all information about
the group gets lost when passing to the von Neumann algebra level.

For non-amenable groups Γ, the situation is much more complicated. Rigidity
phenomena appear and we are sometimes able to recover structural properties
of the group Γ or group action Γ y X only by looking at the associated von
Neumann algebra. Proving this kind of classification results for non-amenable
II1 factors is, however, an extremely difficult problem, and not much progress
was made until the early 2000’s, when Popa developed his deformation/rigidity
theory, [Po01, Po03, Po04]. This was a major breakthrough and has led to far
reaching classification theorems. In particular, a surprisingly strong rigidity
property for II1 factors was discovered, called W∗-superrigidity: in certain cases,
the group measure space II1 factor L∞(X)o Γ entirely remembers Γ and its
action on X. More precisely, a group action Γ y X is called W∗-superrigid if
whenever L∞(X)o Γ ∼= L∞(Y )oΛ for any other action Λ y Y , we must have
that the two actions Γ y X and Λ y Y are conjugate: there exists a group
isomorphism ϕ : Γ→ Λ and a measure space isomorphism Φ: X → Y such that
Φ(g · x) = ϕ(g) · Φ(x) for almost every x ∈ X and g ∈ Γ. This extreme form
of rigidity was first discovered by Peterson in [Pe09] and since then, concrete
examples of W∗-superrigid actions were found in [PV09, Io10, IPV10, GIT16],
to name a few.



INTRODUCTION 3

In these results, the subalgebra L∞(X) of L∞(X) o Γ plays a special role.
Indeed, by [Si55], if there is an isomorphism π : L∞(X)o Γ→ L∞(Y )o Λ of
group measure space II1 factors satisfying π(L∞(X)) = L∞(Y ), then the two
group actions Γ y X and Λ y Y must have the same orbit structure. More
precisely, the actions must be orbit equivalent, meaning that there is a measure
space isomorphism Φ: X → Y such that Φ(Γ · x) = Λ ·Φ(x) almost everywhere.
So, in order to prove that a given action Γ y X is W∗-superrigid, one must
solve two different problems. First, one shows that the subalgebra L∞(X) of
L∞(X)o Γ is unique, in some sense. If that is the case, then any isomorphism
π : L∞(X)o Γ→ L∞(Y )o Λ must automatically satisfy π(L∞(X)) = L∞(Y ),
so that the actions Γ y X and Λ y Y are automatically orbit equivalent.
Secondly, one can apply methods from measured group theory to deduce that
the two actions are actually conjugate.

The subalgebra A = L∞(X) of M = L∞(X) o Γ is Cartan: it is maximal
abelian and the normalizer NM (A) = {u ∈ U(M) | uAu∗ = A} generates
M . Note that a general Cartan subalgebra A ⊂ M need not be of group
measure space type, i.e., there need not exist a group Γ complementing A in
such a way that M = Ao Γ. This is closely related to the phenomenon that a
countable pmp equivalence relation need not be the orbit equivalence relation
of a group action that is free. For the purpose of proving W∗-superrigidity,
it is enough to show that a given II1 factor M has a unique group measure
space Cartan subalgebra up to conjugacy by an automorphism, in the sense that
for any two group measure space Cartan subalgebras A,B ⊂M , there exists
an automorphism ϕ ∈ Aut(M) such that ϕ(A) = B. However, the methods
used to prove such uniqueness results will usually yield a much stronger result,
namely that the given II1 factor M has a unique general Cartan subalgebra up
to unitary conjugacy. Here, we say that two Cartan subalgebras A,B ⊂M are
unitarily conjugate if there exists a unitary u ∈M such that uAu∗ = B. The
first actual uniqueness theorems for Cartan subalgebras up to unitary conjugacy
were only obtained in [OP07], where it was proved in particular that A is the
unique Cartan subalgebra of AoΓ whenever Γ = Fn is a free group and Fn y A
is a free ergodic pmp action that is profinite. More recently, in [PV11], it was
shown that A is the unique Cartan subalgebra of AoΓ for arbitrary free ergodic
pmp actions of the free groups Γ = Fn. A group Γ satisfying this property is
called Cartan-rigid or C-rigid.

Since the work in [PV11], more and more groups have been shown to be C-rigid.
However, it is at the moment highly unclear how widespread the phenomenon of
C-rigidity is and there are no conjectures on a possible characterization of C-rigid
groups. The main reason for this is a lack of a wide variety of counterexamples,
i.e., groups Γ that admit a crossed product L∞(X)o Γ with at least two non
unitarily conjugate Cartan subalgebras. All amenable groups serve as such
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counterexamples. Indeed, any crossed product by an amenable group Γ is
isomorphic to the unique hyperfinite II1 factor R, and it is known since [FM75]
that R has at least two Cartan subalgebras that are not unitarily conjugate. By
[Pa85], there are in fact uncountably many Cartan subalgebras up to unitary
conjugacy. On the other hand, all Cartan subalgebras of R are conjugate by an
automorphism, [CFW81]. The first example of a II1 factor with at least two
Cartan subalgebras that are not conjugate by an automorphism was obtained
in [CJ82]. Later, several explicit examples of this phenomenon were given in
[OP08, PV09, SV11]. In all of these examples, the “second” Cartan subalgebra
of L∞(X)o Γ comes from an abelian, normal subgroup of Γ. In Chapter 3, we
show that in fact any group Γ that contains an infinite, abelian, almost normal
subgroup is not C-rigid, up to taking the quotient by a finite normal subgroup
of Γ. This is done by generalizing the constructions in [PV09] and [SV11] to
construct a concrete action of Γ for which the associated crossed product has
at least two non-conjugate Cartan subalgebras.

Despite all the progress on uniqueness of Cartan subalgebras, there are so far
no results describing all Cartan subalgebras of a II1 factor M once uniqueness
fails. However, in [KV15] we proved such a result for the special class of group
measure space Cartan subalgebras. The following is our main theorem.
Theorem A. (1) For every integer n ≥ 0, there exist II1 factors M that have

exactly 2n group measure space Cartan subalgebras up to unitary conjugacy.
(2) For every integer n ≥ 1, there exist II1 factors M that have exactly n group

measure space Cartan subalgebras up to conjugacy by an automorphism of
M .

Two free ergodic pmp actions are called W∗-equivalent if they have isomorphic
crossed product von Neumann algebras. Thus, a free ergodic pmp action
Gy (X,µ) is W∗-superrigid if every action that is W∗-equivalent to Gy (X,µ)
must be conjugate to G y (X,µ). Theorem A(2) can then be rephrased in
the following way: we construct free ergodic pmp actions G y (X,µ) with
the property that Gy (X,µ) is W∗-equivalent to exactly n group actions, up
to orbit equivalence of the actions (and actually also up to conjugacy of the
actions, see Theorem 4.24).

The proof of Theorem A will be presented in Chapter 4. We will provide a
concrete construction of crossed product II1 factors M for which all possible
group measure space decompositions M = L∞(X) o Γ with Γ y X can be
characterized. We also give concrete examples and computations, thus proving
Theorem A. A crucial ingredient in the proof is a version of Popa’s spectral gap
rigidity [Po06b], which is a powerful method for proving W∗-rigidity results for
crossed products arising from Bernoulli actions of product groups. In Appendix
A, we present a generalization of these methods and results for co-induced
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actions. The proofs are easy adaptations of the proofs in [BV14, Theorems 3.1
and 3.3], which in turn were very close to the original proofs in [Po06b].

Note that in Theorem A, we can only describe the group measure space Cartan
subalgebras of M . The reason for this is that our method entirely relies on
a technique of [PV09], using the so-called dual coaction that is associated
to a group measure space decomposition M = B o Λ, i.e., the normal ∗-
homomorphism ∆: M → M ⊗M given by ∆(bvs) = bvs ⊗ vs for all b ∈ B,
s ∈ Λ. When B ⊂M is an arbitrary Cartan subalgebra, we do not have such a
structural ∗-homomorphism.

Our second main result is concerned with the existence of Cartan subalgebras
inside a given II1 factor M . Not all II1 factors have a Cartan subalgebra, as
was first discovered by Voiculescu in [Vo95]. He showed that the group von
Neumann algebras L(Γ) of free groups Γ = Fn with n ≥ 2 have no Cartan
subalgebras. Having a Cartan subalgebra can be seen as a decomposability
property. Indeed by [FM75], when M admits a Cartan subalgebra, then M can
be realized as the von Neumann algebra LΩ(R) associated with a countable
equivalence relation R, possibly twisted by a scalar 2-cocycle Ω (see Definition
2.2). If moreover this Cartan subalgebra is unique in the appropriate sense, this
decomposition M = LΩ(R) is canonical.

Although a lot of progress on the existence and uniqueness of Cartan subalgebras
has been made, there is so far no intrinsic local criterion to check whether a
given II1 factor admits a Cartan subalgebra. However, Popa recently found such
a criterion for the existence of a different kind of maximal abelian subalgebra
(MASA), called an s-MASA. We say that A ⊂M is an s-MASA if A is a MASA
and if the A-bimodule AL2(M)A is cyclic, i.e., there exists a vector ξ ∈ L2(M)
such that AξA spans a dense subset of L2(M). In [Po16], Popa proved that a II1
factor M admits an s-MASA if and only if M satisfies the s-thin approximation
property: for every finite partition of the identity p1, . . . , pn in M , every finite
subset F ⊂ M and every ε > 0, there exists a finer partition of the identity
q1, . . . , qm and a single vector ξ ∈ L2(M) such that every element in F can
be approximated up to ε in ‖ · ‖2 by linear combinations of the qiξqj . So, the
existence of an s-MASA in a II1 factor M is an intrinsic local property.

Any Cartan subalgebra is also an s-MASA, but the converse is far from being
true. Indeed, s-MASAs are quite often singular, meaning that NM (A) = U(A),
and in [Po16] it is even proved that every s-thin II1 factor admits uncountably
many non-conjugate singular s-MASAs. However, all examples of s-MASAs so
far were inside II1 factors that also admit a Cartan subalgebra. Therefore, Popa
poses as [Po16, Problem 5.1.2] to give examples of s-thin factors without Cartan
subalgebras. We solved this problem in [KV16] by constructing s-thin II1 factors
M that are even strongly solid: whenever B ⊂ M is a diffuse amenable von
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Neumann subalgebra, the von Neumann algebra generated by the normalizer
NM (B) stays amenable. Clearly, non-amenable strongly solid II1 factors have
no Cartan subalgebras.

We obtain this new class of strongly solid II1 factors by applying Popa’s
deformation/rigidity theory to Shlyakhtenko’s A-valued semicircular systems
(see [Sh97] and Section 5.1 below). When A is abelian, this provides a rich
source of examples of MASAs with special properties, like MASAs satisfying
the s-thin approximation property of [Po16]. This work will be presented in
Chapter 5.

Very interesting examples arise by taking A = L∞(K,µ) where K is a second
countable compact group with Haar probability measure µ. In this case, any
symmetric probability measure ν on K whose support topologically generates K
can be used to construct a II1 factorMν via Shlyakhtenko’sA-valued semicircular
systems (see Section 5.5). We show that Mν is strongly solid whenever ν is a c0
probability measure, meaning that the convolution operator λ(ν) on L2(K) is
compact (see Definition 5.46 and Proposition 5.47). On the other hand, when
the measure ν is concentrated on a subset of the form F ∪ F−1, where F ⊂ K
is free in the sense that every reduced word with letters from F ∪F−1 defines a
nontrivial element of K, then A ⊂Mν is an s-MASA.

In Theorem 5.49, we construct a compact group K, a free subset F ⊂ K
generating K and a symmetric c0 probability measure ν with support F ∪ F−1.
For this, we use results of [AR92, GHSSV07] on the spectral gap and girth of a
random Cayley graph of the finite groups PGL(2,Z/pZ). As a consequence, we
obtain the first examples of s-thin II1 factors that have no Cartan subalgebras,
solving [Po16, Problem 5.1.2], which was the motivation for our work.

Theorem B. Taking a compact group K and a symmetric probability measure
ν on K as above, the associated II1 factor Mν is non-amenable, strongly solid
and the canonical subalgebra A ⊂Mν is an s-MASA.

We finally make some concluding remarks on the existence of c0 probability
measures supported on free subsets of a compact group. On an abelian compact
group K, a probability measure ν is c0 if and only if its Fourier transform
ν̂ tends to zero at infinity as a function from K̂ to C. Of course, no two
elements of an abelian group are free, but the abelian variant of being free is
the so-called independence property: a subset F of an abelian compact group
K is called independent if any linear combination of distinct elements in F with
coefficients in Z \ {0} defines a nonzero element in K. It was proved in [Ru60]
that there exist closed independent subsets of the circle group T that carry a c0
probability measure. It would be very interesting to get a better understanding
of which, necessarily non-abelian, compact groups admit c0 probability measures
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supported on a free subset and we conjecture that these exist on the groups
SO(n), n ≥ 3.





Chapter 2

Preliminaries

2.1 Von Neumann algebras

Given a complex Hilbert space H with inner product 〈·, ·〉, we denote by B(H)
the algebra of bounded linear operators on H. The strong operator topology
is the weakest topology on B(H) for which the seminorms T 7→ ‖Tξ‖ are
continuous for all ξ ∈ H.

A von Neumann algebra is a ∗-subalgebra of B(H) that contains the identity
operator 1H and that is closed in the strong operator topology. Here, a ∗-
subalgebra of B(H) means a subalgebra that is closed under taking the adjoint
of an operator, T 7→ T ∗. It is a basic result in functional analysis that we may
replace the strong operator topology with other operator topologies, such as the
weak operator topology (generated by the seminorms T 7→ |〈Tξ, η〉|, ξ, η ∈ H),
the ultraweak operator topology or the ultrastrong operator topology.

The notion of a von Neumann algebra was first introduced by John von Neumann
in [vN29]. Motivated by his work on quantum mechanics and operator theory,
he introduced von Neumann algebras as a mathematical abstraction of quantum
mechanics. Together with Francis Murray, they developed the basic theory on
von Neumann algebras in a series of papers called “Rings of Operators”.

One of the most celebrated results from the early days of von Neumann algebra
theory is the double commutant theorem of von Neumann. It states that a
von Neumann algebra can be characterized purely algebraically as a “double
commutant” in the following sense. Given a subset S ⊂ B(H), we denote by

9
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S′ ⊂ B(H) the set of operators that commute with S, i.e.,

S′ = {x ∈ B(H) | xy = yx for all y ∈ S}.

It is not hard to see that if S is a self-adjoint set, meaning that S = S∗,
then S′ is always a von Neumann algebra. The converse also holds by the
double commutant theorem, i.e., von Neumann algebras can be characterized
as commutants.

Theorem 2.1 (The double commutant theorem, [vN29]). Let M ⊂ B(H) be a
∗-subalgebra with 1H ∈M . Then M is a von Neumann algebra if and only if
M ′′ = M .

We also note that von Neumann algebras can be characterized abstractly without
referring to the underlying Hilbert space, namely as C∗-algebras that have a
predual1 [Sa56]. For this reason, we will often talk about von Neumann algebras
without referring to a specific Hilbert space.

Two von Neumann algebras M and N are said to be isomorphic if there exists
a ∗-isomorphism M → N . Such a ∗-isomorphism is automatically normal,
meaning that its restriction to the unit ball of M is continuous with respect to
the weak (or strong) operator topologies on M and N (see [AP16, Proposition
2.5.8 and Corollary 2.5.9]). In particular, the weak/strong operator topologies
on the unit ball of M do not depend on the concrete representation of M on a
Hilbert space.

The most obvious example of a von Neumann algebra is B(H) itself, in particular
the matrix algebras Mn(C), n ≥ 1. Another basic example is L∞(X,µ) for any
measure space (X,µ) with X being locally compact, where L∞(X,µ) is viewed
as multiplication operators on the Hilbert space L2(X,µ). In fact, any abelian
von Neumann algebra is isomorphic with L∞(X,µ) for some locally compact
space X equipped with a measure µ (see for example [Di81, Theorem 1 and
Theorem 2, p. 132]). For this reason, von Neumann algebras are sometimes
referred to as “non-commutative measure spaces”. More interesting examples of
von Neumann algebras can be constructed from groups and group actions, as
we shall see later on.

A von Neumann algebra M is called a factor if it has trivial center, i.e., if

Z(M) := M ∩M ′ = C1.

Note that M is a factor if and only if M does not decompose as a direct sum of
two von Neumann algebras M1 ⊕M2. In [vN49], it was showed that any von

1A predual of a C∗-algebra A is a Banach space B such that A = B∗, where B∗ denotes
the dual Banach space of B.
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Neumann algebra acting on a separable Hilbert space can be written as a direct
integral of factors. In this way, factors can be seen as the basic building blocks
in the theory of von Neumann algebras.

In this thesis, we will usually consider von Neumann algebras M acting on a
separable Hilbert space. In this case, M is separable in the strong operator
topology and for this reason, we say thatM is a separable von Neumann algebra.

2.1.1 Type classification of factors

One important feature of a von Neumann algebra M is that it always contains
many projections, i.e., elements p ∈M such that p = p∗ = p2. For example, if
x ∈M is a positive element, meaning that x = y∗y for some y ∈M , then any
spectral projection of x belongs to M . In fact, M is equal to the norm-closed
linear span of its projections, by the Borel functional calculus. By studying the
projections of a von Neumann algebra, Murray and von Neumann classified
factors into three different types [MvN36]. We will here present a perhaps more
intuitive version of this type classification, where the types are defined in terms
of traces.

We denote by M+ = {x∗x | x ∈ M} the set of positive elements of a von
Neumann algebra M . A state on M is a linear functional ϕ : M → C that is
positive, in the sense that ϕ(x) ≥ 0 for all x ∈M+, and such that ϕ(1M ) = 1.
If ϕ moreover satisfies ϕ(xy) = ϕ(yx) for all x, y ∈M , then ϕ is called a trace.
Note that this definition generalizes the definition of the usual (normalized)
trace on the matrix algebras Mn(C). It turns out that von Neumann algebras
that have a trace are particularly well-behaved, as we will come back to soon.
We will usually require our traces to have two additional properties. A state ϕ
on M is called faithful if ϕ(x∗x) = 0 implies that x = 0. Moreover, ϕ is called
normal if ϕ is weak operator continuous on the unit ball of M . Now, a tracial
von Neumann algebra (M, τ) is a von Neumann algebra M equipped with a
faithful normal trace τ .

Given a tracial von Neumann algebra (M, τ), we can define a pre-inner product
on M given by 〈x, y〉2 := τ(xy∗) for x, y ∈ M . The associated norm ‖x‖2 :=
τ(x∗x)1/2 is called the 2-norm on M . The completion of M with respect
to the 2-norm gives us a Hilbert space that we denote by L2(M). Since
the 2-norm satisfies the inequality ‖xy‖2 ≤ ‖x‖‖y‖2 for x, y ∈ M , we get
a well-defined normal ∗-representation π : M → B(L2(M)) induced by left
multiplication of M on itself: π(x)(y) = xy for x ∈M , y ∈M ⊂ L2(M). This
representation is called the GNS representation of M with respect to τ , or also
the standard representation. We usually do not write π explicitly but simply
view M ⊂ B(L2(M)) as left multiplication operators.
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A more general setting is the case where M has no trace but it does have a
so-called tracial weight. This is a generalization of the infinite trace Tr on
B(H) when H is infinite-dimensional. A weight on M is a linear functional
ω : M+ → [0,∞] that may take the value ∞. We say that ω is semifinite if
span{x ∈ M+ | ω(x) <∞} is dense in M in the ultraweak operator topology.
The functional ω is called tracial if ω(x∗x) = ω(xx∗) for all x ∈ M , faithful
if ω(x) = 0 implies x = 0, and normal if ω(supi∈I xi) = supi∈I ω(xi) for
any bounded increasing net (xi)i∈I ⊂M+. A von Neumann algebra is called
semifinite if it admits a normal faithful semifinite tracial weight.

We are now ready to give the type classification of Murray and von Neumann.
Let M be a factor. Then M is said to be of

• type I if M ∼= B(H) for some Hilbert space H;

• type II1 if M is infinite-dimensional and M has a normal faithful trace;

• type II∞ if M has a normal faithful semifinite tracial weight Tr with
Tr(1M ) =∞ and M � B(H) for any Hilbert space H;

• type III if M has no nontrivial tracial weight.

When M is a II1 factor, the normal faithful trace is even unique by [MvN37].
Moreover, we have that two projections p, q ∈ M are Murray-von Neumann
equivalent (written p ∼ q), meaning that p = vv∗ and q = v∗v for some partial
isometry v ∈M , if and only if τ(p) = τ(q) (see [AP16, Corollary 2.4.11]).

One of the reasons why having a trace or a tracial weight is of great interest,
is that it allows for a certain dimension theory for the projections of the von
Neumann algebra. Recall that in the case of a matrix algebra Mn(C), the trace
of a projection gives you its rank. In particular, trn(p) ∈ {0, 1

n , . . . ,
n−1
n , 1}

for any projection p ∈ Mn(C), where trn denotes the normalized trace on
Mn(C). In the case of a II1 factor M with its trace τ , we have that {τ(p) |
p ∈ Proj(M)} = [0, 1] (see [AP16, Proposition 4.1.6]). So, II1 factors are
continuous dimensional analogues of the matrix algebras. Also, II∞ factors are
the continuous dimensional analogues of B(H) when dimH =∞. On the other
hand, type III factors have no good “dimension function” at all.

The fact that the trace τ on a II1 factor M takes values in a continuous interval
means thatM has no minimal projections. We say thatM is diffuse. For tracial
von Neumann algebras M , being diffuse is equivalent with the existence of a
net of unitaries in M that converges to 0 weakly (this follows from Theorem
2.12 below). When M = L∞(X,µ) is an abelian von Neumann algebra, we
have that M is diffuse if and only if µ is atomless.
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On the other hand, a von Neumann algebra that has no diffuse direct summand
is called atomic. The atomic factors are exactly the factors of type I. When
M = L∞(X,µ) is an abelian von Neumann algebra, then M is atomic if and
only if µ is a purely atomic measure.

The main focus of this thesis is II1 factors. By the theory of Connes [Co72],
any von Neumann algebra can be build out of type II1 factors via constructions
such as tensor products and crossed products. So, II1 factors can be seen as
the building blocks of all von Neumann algebras.

The main source of examples of II1 factors comes from groups and group actions
on measure spaces. To any countable discrete group Γ, we can associate a group
von Neumann algebra L(Γ) that encodes the group structure. More generally,
the group measure space construction of Murray and von Neumann associates
a von Neumann algebra to any group action Γ y (X,µ) on a measure space
(X,µ). We will present these constructions in the following two subsections.

2.1.2 Group von Neumann algebras

Let Γ be a countable discrete group and consider the left regular representation
λ : Γ→ U(`2(Γ)) given by

λg(δh) = δgh for g, h ∈ Γ,

where (δh)h∈Γ denotes the canonical basis of `2(Γ).

The group von Neumann algebra L(Γ) associated with Γ is defined by

L(Γ) := {λg | g ∈ Γ}′′ ⊂ B(`2(Γ)).

We will usually denote the unitaries λg by ug. It is easy to check that L(Γ) is a
factor if and only if Γ is icc, i.e., the conjugacy class of every nontrivial element
is infinite.

The group von Neumann algebra is equipped with a canonical faithful normal
trace defined by τ(x) = 〈xδe, δe〉 for x ∈ L(Γ). Therefore, L(Γ) is a II1 factor
whenever Γ is an icc group. Note that the GNS Hilbert space L2(L(Γ)) is
isomorphic with `2(Γ) via the isomorphism x 7→ xδe, x ∈ L(Γ).

Any element x ∈ L(Γ) can be written uniquely as a 2-norm converging sum
x =

∑
g∈Γ xgug with xg ∈ C. Indeed, we can write xδe =

∑
g∈Γ xgδg with

xg = 〈xδe, δg〉 = τ(xu∗g) for all g ∈ Γ and the family (xg)g∈Γ uniquely determines
x. The decomposition x =

∑
g∈Γ xgug is called the Fourier decomposition of x.
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If Γ is an abelian group, then its dual Γ̂ is a compact second countable abelian
group and we have a canonical isomorphism L(Γ) ∼= L∞(Γ̂) implemented by
the Fourier transform F : `2(Γ)→ L2(Γ̂) : F(δg)(χ) = χ(g).

2.1.3 The group measure space construction

A Borel space (X,B) is called standard if its σ-algebra B can be generated by
a Polish topology on X (i.e., a separable and completely metrizable topology)
as its Borel σ-algebra. Now, a standard probability space is simply a standard
Borel space (X,B) equipped with a probability measure µ. Standard probability
spaces have a simple structure: they are always isomorphic to the interval [0, 1]
with a combination of the Lebesgue measure and a countable number of atoms,
[Ke95, Theorem 17.41]. It is natural to only consider standard probability spaces
in the theory of von Neumann algebras since there is a one-to-one correspondence
between standard probability spaces (X,µ) and separable abelian von Neumann
algebras L∞(X,µ) (see [Di81, Theorem 1 and Theorem 2, p. 132]).

Let (X,µ) be a standard probability space and let σ : Γ y (X,µ) be a probability
measure preserving (pmp) action of a countable discrete group Γ. We will often
use the notation g · x to denote the action σg(x) for g ∈ Γ, x ∈ X. Also,
we will sometimes view σ as an action on L2(X) (or L∞(X)) via the formula
σg(ξ)(x) = ξ(g−1 · x) for ξ ∈ L2(X), g ∈ Γ, x ∈ X.

To such an action σ : Γ y (X,µ), we can associate a von Neumann algebra
denoted by L∞(X)oΓ as follows. Consider the Hilbert spaceH = L2(X)⊗`2(Γ).
We can represent L∞(X) as operators on H given by f(ξ ⊗ δs) = fξ ⊗ δs for
ξ ∈ L2(X), s ∈ Γ. We can also represent Γ on H via the unitary representation
u : Γ→ U(H) : ug(ξ⊗ δs) = σg(ξ)⊗ δgs. The group measure space construction
L∞(X)o Γ is then defined as

L∞(X)o Γ := {fug | f ∈ L∞(X), g ∈ Γ}′′ ⊂ B(H).
Note that f and ug satisfy the relation ugfu∗g = σg(f). So, we can simply view
L∞(X)o Γ as being generated by a copy of L∞(X) and a copy of Γ, in terms
of unitaries (ug)g∈Γ with uguh = ugh, that encode the action σ in the sense
that ugfu∗g = σg(f) for f ∈ L∞(X).

An action Γ y (X,µ) is called ergodic if any Γ-invariant subset of X is either
null or co-null. Moreover, the action is called (essentially) free if the set of fixed
points {x ∈ X | g · x = x} has measure zero for all g ∈ Γ. Whenever the action
Γ y (X,µ) is free, we have that L∞(X) is a maximal abelian subalgebra of
L∞(X)oΓ, in the sense that L∞(X)′ ∩ (L∞(X)oΓ) = L∞(X). Consequently,
for a free action Γ y (X,µ) of an infinite group Γ, we have that L∞(X)o Γ is
a factor if and only if Γ y (X,µ) is ergodic (see [AP16, Proposition 1.4.5]).
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The von Neumann algebra L∞(X) o Γ has a canonical faithful normal trace
defined by τ(x) = 〈x(1X ⊗ δe), 1X ⊗ δe〉. This means that τ(fug) = 0 when
g 6= e and τ(fue) =

∫
X
f dµ. So, L∞(X)o Γ is a II1 factor whenever Γ y X is

a free ergodic pmp action and Γ is infinite.

As for group von Neumann algebras, we also have a Fourier decomposition for
the group measure space construction. Indeed, any element x ∈ L∞(X) o Γ
can be written uniquely as a 2-norm convergent sum x =

∑
g∈Γ xgug with

xg ∈ L∞(X) for all g (see [AP16, Section 1.4]).

More generally, we can associate a crossed product von Neumann algebra P o Γ
to any trace-preserving action Γ y P on a tracial von Neumann algebra (P, τ).
An action of Γ on P is a homomorphism σ : Γ→ Aut(P ), where Aut(P ) denotes
the group of ∗-automorphisms of P . The action σ is called trace-preserving if
τ ◦ σg = τ for all g ∈ Γ. Given a trace-preserving action σ : Γ y P , we can
represent both Γ and P on the Hilbert space L2(P )⊗ `2(Γ) analogous to the
group measure space case, in such a way that ugau∗g = σg(a) for g ∈ Γ and
a ∈ P . The crossed product P o Γ is then defined to be the von Neumann
algebra generated by P and (ug)g∈Γ inside B(L2(P )⊗ `2(Γ)). We again have a
canonical trace τ ′ on P o Γ defined uniquely by the formula τ ′(aug) = τ(a)δg,e
for a ∈ P , g ∈ Γ. Moreover, P o Γ is a factor whenever Γ y P is ergodic and
properly outer in the following sense. The action Γ y P is called ergodic if any
Γ-invariant element of P is contained in C1, and the action is called properly
outer if αg is an outer automorphism of P for all g ∈ Γ \ {e}, i.e., αg is not of
the form αg = Adu for some unitary u ∈ U(P ). A proof of all of these facts
can be found in [AP16, Section 5.2].

2.1.4 II1 factors arising from equivalence relations

Any group action Γ y (X,µ) gives rise to an equivalence relation on X, where
the equivalence classes are given by the orbits of the action. In [FM75], Feldman
and Moore introduced a generalization of the group measure space construction,
where they constructed II1 factors out of certain equivalence relations.

LetR ⊂ X×X be an equivalence relation on a standard probability space (X,µ).
The full pseudogroup of R, denoted by [[R]], is defined to be the set of partial
automorphisms of X whose graph is contained in R. A partial automorphism of
X is a Borel isomorphism ϕ : A→ B where A,B ⊂ X are non-negligible Borel
subsets.

The equivalence relation R is said to be

• Borel if R is a Borel subset of X ×X;
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• countable if the equivalence classes of R are countable;

• pmp if any partial automorphism ϕ ∈ [[R]] preserves the measure µ;

• ergodic if any R-invariant subset of X is either null or co-null. A subset
A ⊂ X is called R-invariant if A is equal (up to null sets) to its R-
saturation [A]R := {x ∈ X | (x, a) ∈ R for some a ∈ A}.

An equivalence relation which is Borel, countable and pmp is said to be of type
II1. By [FM75, Theorem 1], any equivalence relation of type II1 is given by the
orbits of some pmp action Γ y X of a countable discrete group, but the action
need not be essentially free. The first example of an equivalence relation that is
not generated by a free group action was found by Adams in [Ad88].

The construction of Feldman and Moore associates a II1 factor L(R) to any
ergodic equivalence relation R of type II1. More generally, the construction can
be “twisted” by a scalar 2-cocycle.

Let R ⊂ X ×X be a II1 equivalence relation. We define a σ-finite measure µ(1)

on R by
µ(1)(A) :=

∫
X

#{y ∈ X | (x, y) ∈ A} dµ(x),

for A ⊂ R Borel. By [AP16, Lemma 1.5.2], using that R is pmp, we can define
this measure equivalently by

µ(1)(A) =
∫
X

#{x ∈ X | (x, y) ∈ A} dµ(y).

We denote by R(2) ⊂ X ×X ×X the set of all 3-tuples (x, y, z) with (x, y) ∈ R
and (y, z) ∈ R. Again since R is pmp, we can define a measure µ(2) on R(2) by

µ(2)(A) :=
∫
X

#{(y, z) ∈ X ×X | (x, y, z) ∈ A} dµ(x)

=
∫
X

#{(x, z) ∈ X ×X | (x, y, z) ∈ A}dµ(y)

=
∫
X

#{(x, y) ∈ X ×X | (x, y, z) ∈ A} dµ(z),

for A ⊂ R(2) Borel.

A scalar 2-cocycle for R is a Borel map Ω: R(2) → T satisfying

Ω(y, z, t)Ω(x, z, t)−1Ω(x, y, t)Ω(x, y, z)−1 = 1 µ(2)-a.e.
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Definition 2.2 ([FM75]). Let R ⊂ X ×X be a II1 equivalence relation on a
standard probability space (X,µ), and let Ω: R(2) → T be a scalar 2-cocycle
for R. For every partial automorphism ϕ ∈ [[R]], we define an operator LΩ

ϕ on
L2(R, µ(1)) by

(LΩ
ϕξ)(x, y) = 1Ranϕ(x)Ω(x, ϕ−1(x), y)ξ(ϕ−1(x), y) for ξ ∈ L2(R, µ(1)).

The von Neumann algebra LΩ(R) associated with (R,Ω) is defined by

LΩ(R) := {LΩ
ϕ | ϕ ∈ [[R]]}′′.

If R is ergodic, then LΩ(R) is a II1 factor (see [AP16, Proposition 1.5.5]).
Moreover, we have that LΩ(R) contains L∞(X) as a maximal abelian von
Neumann subalgebra, by viewing L∞(X) as operators on L2(R, µ(1)) via the
representation

(fξ)(x, y) = f(x)ξ(x, y) for f ∈ L∞(X), ξ ∈ L2(R, µ(1)).

When Ω is the trivial 2-cocycle, we simply write L(R) instead of LΩ(R).

As a final remark, note that whenever R is the orbit equivalence relation
given by an ergodic pmp action Γ y X that is free, then the II1 factors
L(R) and L∞(X) o Γ coincide. Indeed, the map φ : X × Γ → R given by
φ(x, g) = (x, g−1 ·x) is a measure space isomorphism and thus induces a unitary
operator V : ξ 7→ ξ ◦ φ from L2(R, µ(1)) to L2(X × Γ) ∼= L2(X) ⊗ `2(Γ). It is
now easy to check that AdV : L∞(X)oΓ→ L(R) is an isomorphism satisfying
V ∗ugV = Lg for all g ∈ Γ and V ∗fV = f for all f ∈ L∞(X).

2.1.5 Cartan subalgebras

In the introduction, we mentioned that the subalgebra L∞(X) of a crossed
product II1 factor L∞(X)o Γ plays a special role. This is because of Singer’s
theorem [Si55], which states that any isomorphism of crossed product II1 factors
π : L∞(X)o Γ→ L∞(Y )o Λ satisfying π(L∞(X)) = L∞(Y ) must come from
an orbit equivalence of the actions Γ y X and Λ y Y .

A Cartan subalgebra of a II1 factor is an abstraction of subalgebras of the form
L∞(X) ⊂ L∞(X)o Γ. The definition is as follows.

Definition 2.3. Let M be a II1 factor and A ⊂M a von Neumann subalgebra.
Then A is called a Cartan subalgebra of M if

(1) A is maximal abelian (A is a MASA), i.e., A′ ∩M = A;
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(2) A is regular , i.e., its normalizer NM (A) := {u ∈ U(M) | uAu∗ = A}
generates M as a von Neumann algebra.

Whenever Γ y (X,µ) is a free ergodic pmp action, then L∞(X) is a maximal
abelian subalgebra of the II1 factor L∞(X) o Γ. Since L∞(X) by definition
is normalized by the canonical unitaries (ug)g∈Γ, we also have that L∞(X) is
regular. So, L∞(X) is indeed a Cartan subalgebra of L∞(X)o Γ. Any Cartan
subalgebra A ⊂ M that arises from a group measure space decomposition in
this way is called a group measure space Cartan subalgebra, or a gms Cartan
subalgebra for short.

Not all Cartan subalgebras are gms Cartan subalgebras. More generally, it is
not hard to see that L∞(X) ⊂ LΩ(R) is a Cartan subalgebra for any ergodic
II1 equivalence relation R ⊂ X ×X and any scalar 2-cocycle Ω for R. This is
in fact the most general construction of Cartan subalgebras inside separable II1
factors.

Theorem 2.4 ([FM75]). Let M be a separable II1 factor. Then A ⊂ M is a
Cartan subalgebra of M if and only if there exists an ergodic II1 equivalence
relation R on a standard probability space (X,µ) and a scalar 2-cocycle Ω for
R such that the inclusion A ⊂M is isomorphic with L∞(X) ⊂ LΩ(R).

Let us briefly explain how one associates an equivalence relation R to a Cartan
inclusion A ⊂ M , as in Theorem 2.4. Write A = L∞(X) for some standard
probability space (X,µ). Any normalizing unitary u ∈ NM (A) gives rise to
an automorphism θu ∈ Aut(X,µ) given by a ◦ θu = u∗au for a ∈ A = L∞(X).
SinceM is separable, we can take a countable ‖ ·‖2-dense subgroup Γ < NM (A).
The equivalence relation R associated with the Cartan inclusion A ⊂M is given
by x ∼ y if and only if x = θu(y) for some u ∈ Γ. This equivalence relation is
of type II1 and does not depend on the choice of Γ.

Finally, we show the following well-known lemma, which states that A ⊂ M
being a Cartan subalgebra is preserved under taking corners. A corner of a
von Neumann algebra M is a von Neumann algebra of the form pMp for some
projection p ∈M . When M is a II1 factor, then any corner of M is also a II1
factor.

Lemma 2.5. Let M be a II1 factor and let A ⊂ M be a Cartan subalgebra.
Then Ap ⊂ pMp is also a Cartan subalgebra, for any projection p ∈ A.

Proof. By [AP16, Proposition 4.2.2], we have that (Ap)′∩pMp = p(A′∩M)p =
Ap so Ap ⊂ pMp is maximal abelian. By [Po03, Lemma 3.5], Ap ⊂ pMp is also
regular.
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2.1.6 Tensor products, amalgamated free products and ultra-
products

We will here introduce some more constructions of von Neumann algebras,
namely the tensor product, the free product with amalgamation and the
ultraproduct.

Tensor products. The tensor product is a very fundamental construction
and corresponds to taking the direct product of groups. Let M ⊂ B(H) and
N ⊂ B(K) be von Neumann algebras. Given x ∈ M and y ∈ N , there is a
unique operator x⊗y on the Hilbert spaceH⊗K given by (x⊗y)(ξ⊗η) = xξ⊗yη
for ξ ∈ H, η ∈ K. The von Neumann algebra tensor product of M and N is
defined to be the von Neumann algebra generated by these operators, i.e.,

M ⊗N = {x⊗ y | x ∈M, y ∈ N}′′ ⊂ B(H ⊗K).

One can show that the tensor product is independent of the chosen
representations of M and N , up to isomorphism. In the case where M or
N is finite-dimensional, the von Neumann algebra tensor product coincides with
the algebraic tensor product and is simply denoted by M ⊗N . When Γ and Λ
are countable groups, we have that L(Γ)⊗ L(Λ) ∼= L(Γ× Λ).

Let us mention a few basic properties of the tensor product (see [AP16,
Proposition 5.1.3] for a proof). We have that M ⊗N is a factor if and only if
M and N are both factors. Moreover, when (M, τM ) and (N, τN ) are tracial,
we can define a faithful trace on M ⊗N by the formula τ(x⊗ y) = τM (x)τN (y)
for x ∈M , y ∈ N . In particular, M ⊗N is a II1 factor whenever M and N are
II1 factors.

We can also define the tensor product of infinitely many tracial von Neumann
algebras (Mi, τi)i∈N. Let H denote the closed linear span of all elements of the
form ⊗i∈Nξi with ξi ∈ L2(Mi, τi) for all i ∈ N and ξi = 1Mi for all but finitely
many i ∈ N, where the closure is taken with respect to the inner product given
by 〈⊗i∈Nξi,⊗i∈Nηi〉 :=

∏
i∈N〈ξi, ηi〉. Then

⊗
N(Mi, τi) is defined to be the von

Neumann algebra on H generated by the operators
⊗

i∈N xi with xi ∈Mi for
all i ∈ N and xi = 1 for all but finitely many i ∈ N. Note that

⊗
N(Mi, τi) is a

tracial von Neumann algebra with trace τ given by τ(⊗i∈Nxi) =
∏
i∈N τi(xi).

As in the finite case,
⊗

N(Mi, τi) is a factor whenever each component Mi is a
factor.

Amalgamated free products. The amalgamated free product of von
Neumann algebras is a construction that has its roots in group theory: given two
groups Γ,Λ that both contain a copy of the same subgroup Σ, the amalgamated
free product group Γ ∗Σ Λ is defined as a certain quotient of the free product
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group Γ ∗ Λ, where elements of Σ inside Γ get identified with the corresponding
elements of Σ inside Λ. We can mimic this construction in the setting of tracial
von Neumann algebras. Given two tracial von Neumann algebras (M, τM ) and
(N, τN ) that both contain a common von Neumann subalgebra A in such a way
that τM = τN on A, we can define a tracial von Neumann algebra M ∗A N
generated by all “reduced words” inM and N , where elements of A get identified.
In the following, we will make this construction precise.

First, we need to define the notion of a conditional expectation. Given a von
Neumann algebra M and a von Neumann subalgebra A ⊂ M , a conditional
expectation from M onto A is a linear map E : M → A satisfying the following
properties.

• E is positive: E(M+) ⊂ A+.

• E is a projection onto A: E(a) = a for all a ∈ A.

• E is A-bimodular: E(axb) = aE(x)b for all a, b ∈ A and x ∈M .

Such a conditional expectation may not always exist. However, when (M, τ)
is a tracial von Neumann algebra and A ⊂ M is a von Neumann subalgebra,
then we can always find a unique trace-preserving conditional expectation of M
onto A (see for instance [BO08, Lemma 1.5.11]). This conditional expectation
is usually denoted by EA (even though it depends on the choice of trace τ). We
use the notation M 	A to denote the set of elements x ∈M with EA(x) = 0.

Let (M1, τ1) and (M2, τ2) be tracial von Neumann algebras and assume that
A ⊂Mi for both i = 1, 2 and that τ1|A = τ2|A. The amalgamated free product
M = M1 ∗AM2 is the unique von Neumann algebra equipped with a faithful
normal conditional expectation E : M → A such that M is generated by M1
and M2, and M1 and M2 satisfy the following freeness condition with respect
to E:

E(x1 · · ·xn) = 0 whenever xk ∈Mik 	A and ik 6= ik+1.

The details of the construction can be found in [Po93, VDN92]. Using the
conditional expectation E, we can define a trace τ onM = M1 ∗AM2, extending
τ1 and τ2, by τ = τ1 ◦ E = τ2 ◦ E.

Ultraproducts. The last construction that we will introduce is the
ultraproduct of tracial von Neumann algebras, which is a very useful tool
for studying the asymptotic behavior of sequences in a tracial von Neumann
algebra.

Let I be any set. An ultrafilter on I is a collection U of subsets of I satisfying
the following properties:
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• ∅ /∈ U ;

• if A,B ∈ U , then A ∩B ∈ U ;

• if A ∈ U and A ⊂ B ⊂ I, then also B ∈ U ;

• for any A ⊂ I, either A ∈ U or I \A ∈ U .

An ultrafilter U is called free if it is non-principal, i.e., if it is not of the form
U = {B ⊂ I | i0 ∈ B} for some fixed i0 ∈ I.

Intuitively, subsets of I belonging to an ultrafilter U should be thought of as
being “large”. Given (xi)i∈I ∈ `∞(I), the limit of (xi)i∈I along an ultrafilter U
is the unique x ∈ X such that {i ∈ I | |xi − x| < ε} ∈ U for every ε > 0. This
limit is denoted by limi→U xi.

Fix a free ultrafilter U on I and a tracial von Neumann algebra (M, τ). Let
`∞(I,M) denote the algebra consisting of all bounded sequences (xi)i∈I with
xi ∈ M , equipped with the norm ‖(xi)i∈I‖ := supi∈I ‖xi‖. The subspace
J := {(xi)i∈I | limi→U ‖xi‖2 = 0} is a closed two-sided ideal of `∞(I,M), and
the quotient `∞(I,M)/J is a (non-separable) von Neumann algebra (see for
instance [BO08, Appendix A]). We denote this von Neumann algebra by MU
and call it the ultraproduct of M . Note that MU has a normal faithful trace τU
given by τU ((xi)i∈I) := limi→U τ(xi). We viewM as a von Neumann subalgebra
of MU by identifying M with the constant sequences in MU .

Let M = B o Λ be a crossed product von Neumann algebra and denote by ΛU
the ultraproduct group given by the quotient ΛU = ΛI/K, where K = {(gi)i∈I |
limi→U gi = e}. Note that ΛU < U(MU ) by identifying s = (si)i∈I ∈ ΛU with
the unitary element vs := (vsi)i∈I ∈ MU . Also note that ΛU and BU are in
crossed product position inside MU . Indeed, ΛU normalizes BU and

EBU (vs) = (EB(vsi))i∈I = (τ(vsi))i∈I = τU (vs)

for s = (si)i ∈ ΛU .

2.2 Bimodules

The notion of a bimodule is due to Connes and serves as the appropriate notion
of a representation in the theory of von Neumann algebras. The subject was
further developed by Popa and we refer to [AP16] for a thorough treatment of
the subject.
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Let (M, τ) be a tracial von Neumann algebra. A left M-module MH is a
Hilbert space H equipped with a normal ∗-representation π` : M → B(H).
This representation is referred to as the left M -action on H and we use the
notation xξ := π`(x)ξ for x ∈M and ξ ∈ H. Similarly, a right M -module HM

is a Hilbert space H equipped with a normal ∗-representation of the opposite
algebra πr : Mop → B(H), referred to as the right M -action. Again, we will
use the notation ξx := πr(xop)ξ for x ∈M and ξ ∈ H.

Given two tracial von Neumann algebras (M, τ) and (N, τ), an M-N-
bimodule MHN is a Hilbert space H equipped with two commuting normal
∗-representations π` : M → B(H) and πr : Nop → B(H). We say that two
bimodules MHN and MKN are isomorphic if there exists a unitary operator
U : H → K that intertwines the actions in the sense that U(xξy) = xU(ξ)y for
x ∈M , y ∈ N .

Given an M -N -bimodule MHN , the contragredient bimodule NHM is defined
by “flipping” the left and right actions. More precisely, H equals the conjugate
Hilbert space of H with left and right actions given by

y · ξ · x = x∗ξy∗, x ∈M, y ∈ N, ξ ∈ H.

The simplest example of an M -M -bimodule is given by the GNS representation.
Recall that the GNS Hilbert space L2(M) was defined to be the completion
of M with respect to the inner product 〈x, y〉2 = τ(xy∗). Now, L2(M) is an
M -M -bimodule when equipped with the commuting left and right M -actions
induced by left and right multiplication of M on itself. This bimodule is called
the trivial M-bimodule. Note that we have a canonical anti-linear involution
operator J on L2(M) defined by J(x) = x∗ for x ∈M . With this notation, we
have that JxJ ∈ B(L2(M)) exactly equals the right action of x∗ on L2(M).

More generally, when α : M → N is a normal ∗-homomorphism, we get an M -
N -bimodule H(α) := α(1)L2(N) with left and right actions given by x · ξ · y :=
α(x)ξy for x ∈ M , y ∈ N and ξ ∈ α(1)L2(N). This construction can be
generalized further by considering normal ∗-homomorphisms from M into an
amplification of N . An amplification of N is a von Neumann algebra of the form
p(B(`2(I))⊗N)p for some (possibly uncountable) index set I and a nonzero
projection p ∈ B(`2(I)) ⊗ N . Note that we can view B(`2(I)) ⊗ N as the
von Neumann algebra of infinite-dimensional matrices (indexed over I) with
entries in N . Given a normal ∗-homomorphism α : M → p(B(`2(I)) ⊗ N)p,
we define H(α) := p(`2(I) ⊗ L2(N)) with M -N -bimodular actions given by
x · ξ · y := α(x)ξ(1 ⊗ y) for x ∈ M , y ∈ N . This is in fact the most general
example of an M -N -bimodule. Therefore, M -N -bimodules can be seen as
generalized ∗-homomorphisms between M and N .



BIMODULES 23

Proposition 2.6 (See e.g. [JS97, Theorem 2.2.2]). Let (M, τ) and (N, τ) be
tracial von Neumann algebras and let MHN be an M -N -bimodule. Then there
exists a set I, a projection p ∈ B(`2(I)) ⊗ N and a normal ∗-isomorphism
α : M → p(B(`2(I))⊗N)p such that MHN is isomorphic with MH(α)N .2

The proof of this proposition follows from the fact that any right N -module
HN can be written as p(`2(I)⊗ L2(N)) for some projection p ∈ B(`2(I))⊗N ,
where N acts diagonally from the right. If H is also a left M -module, then such
an isomorphism HM

∼= p(`2(I)⊗ L2(N)) transforms the left M -action into a
normal ∗-homomorphism α : M → p(B(`2(I))⊗N)p.

Whenever we write a right M -module HM as p(`2(I) ⊗ L2(M)), the number
(Tr⊗τ)(p) ∈ [0,∞] does not depend on the choice of projection p. We call
this number the right M -dimension of H and use the notation dim−M (H) :=
(Tr⊗τ)(p). A similar construction for left M -modules allows us to define the
left M -dimension dimM−(H) of a left M -module MH. Note however that these
notions of left and right dimensions depend on the trace τ on M . When M is
a II1 factor, the trace τ is unique and therefore the notions of left and right
M -dimensions are intrinsic. Moreover, the left/right M -dimension is a complete
invariant for left/right M -modules in this case.

When N is a subfactor of a II1 factor M , we define the Jones index [M : N ] to
be the right N -dimension of the module L2(M)N .

The finitely generated rightM -modules are of the form p(Cn⊗L2(M)) for some
n ∈ N and some projection p ∈Mn(C)⊗M (similarly for left modules). When
M is a II1 factor, we have that HM is finitely generated if and only if HM has
finite right dimension. For general tracial von Neumann algebras (M, τ) this
is not too far from being true: HM has finite right dimension if and only if
there exists a central projection z ∈M arbitrarily close to 1 such that (Hz)M
is finitely generated.

One very important example of an M -M -bimodule is the coarse M-bimodule
L2(M)⊗ L2(M) with M -bimodular actions given by

x · (ξ ⊗ η) · y := xξ ⊗ ηy for x, y ∈M, ξ, η ∈ L2(M).

It plays the same role as the regular representation does in the context of unitary
group representations. In fact, given any unitary representation π : Γ→ U(K)
of a countable discrete group, one can construct an L(Γ)-bimodule as follows.
Let H(π) = K ⊗ `2(Γ) and consider the following L(Γ)-bimodular actions on
H(π):

ug · (ξ ⊗ δs) · uh := πg(ξ)⊗ δgsh.
2In the case where M and N are separable, we may take I = N.
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Here, (ug)g∈Γ denotes the canonical unitaries of L(Γ) as usual. Using Fell’s
absorption principle (see e.g. [Pe11, Lemma 1.1.6]), it follows that both the left
and the right actions extend to all of L(Γ), so that H(π) is a well-defined L(Γ)-
bimodule. Via this construction, the trivial representation ι : Γ→ C1 gives rise
to the trivial L(Γ)-bimodule and the left regular representation λ : Γ→ U(`2(Γ))
gives rise to the coarse L(Γ)-bimodule.

Just as for group representations, there is a notion of weak containment for
bimodules.

Definition 2.7. Let M and N be tracial von Neumann algebras and let MHN

and MKN be two M -N -bimodules. Then MHN is said to be weakly contained
in MKN if every coefficient of MHN can be approximated by a finite sum of
coefficients of MKN , i.e., for every ξ ∈ H, every finite subsets F ⊂ M and
E ⊂ N and every ε > 0, there exist η1, . . . , ηn ∈ K such that

|〈xξy, ξ〉 −
n∑
i=1
〈xηiy, ηi〉| ≤ ε for all x ∈ F and y ∈ E.

When an M -bimodule MHM contains the trivial M -bimodule via an M -
bimodular embedding ι : L2(M) ↪→ H, we obviously have an M -central and
tracial vector inside H, i.e., a vector ξ ∈ H such that xξ = ξx and 〈xξ, ξ〉 = τ(x)
for all x ∈ M . Indeed, we simply take ξ = ι(1M ). Having an M -central
and tracial vector is in fact equivalent to containing the trivial M -bimodule.
Similarly, we can characterize weak containment of the trivial M -bimodule by
the existence of almost M -central and almost tracial vectors, in the following
sense.

Lemma 2.8 ([AP16, Proposition 12.3.11]). Let (M, τ) be a tracial von
Neumann algebra and let P ⊂ M be a von Neumann subalgebra. An M-
P -bimodule MHP weakly contains the trivial M -P -bimodule ML

2(M)P if and
only if there exists a net of vectors (ξi)i∈I in H such that

(1) limi〈xξi, ξi〉 = τ(x) for all x ∈M ;

(2) limi ‖yξi − ξiy‖ = 0 for all y ∈ P .

The following lemma contains two easy observations that we will need later on.

Lemma 2.9. Let (M, τ) be a tracial von Neumann algebra and let Q ⊂M be
a von Neumann subalgebra.

(1) The coarse M -bimodule L2(M)⊗L2(M) restricted to Q is contained in a
multiple of the coarse Q-bimodule L2(Q)⊗ L2(Q).
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(2) Let q ∈ Q′ ∩M be a nonzero projection and let z ∈ Z(Q) be the support
projection of EQ(q). Then L2(Q)z is isomorphic with L2(Q)q, as Q-
bimodules.

Proof. (1) We have that L2(M) is contained in a multiple of L2(Q), as either
a left Q-module or a right Q-module. So, L2(M) ⊗ L2(M) is contained in
L2(Q)⊗ `2(I)⊗ `2(I)⊗L2(Q) as Q-bimodules for some index set I, and this is
simply a multiple of the coarse Q-bimodule.

(2) Define a bounded linear map T : L2(Q)z → L2(Q)q by T (ξ) = ξq. Note that
T is Q-bimodular and that the image of T is dense in L2(Q)q. Moreover, T is
injective since ξq = 0 implies that ξEQ(q) = 0 and hence ξz = 0, for ξ ∈ L2(Q).
Letting U : L2(Q)z → L2(Q)q be the partial isometry coming from the polar
decomposition of T , we have that U is a Q-bimodular unitary as wanted.

We end this section by introducing a way of composing bimodules, namely
Connes’s tensor product of bimodules. For this, we first need to discuss the
notion of left and right bounded vectors.

Let (M, τ) be a tracial von Neumann algebra. A vector ξ in a right (resp. left)
M -module H is said to be right (resp. left) bounded if there exists a κ > 0
such that ‖ξa‖ ≤ κ‖a‖2 (resp. ‖aξ‖ ≤ κ‖a‖2) for all a ∈ M . We will use the
notation H0 (resp. 0H) to denote the set of all right (resp. left) bounded vectors
of H. For the trivial M -bimodule H = L2(M), we have that H0 = 0H = M .
In general, when H is a right M -module, the subspace H0 ⊂ H is always dense
and similarly for left M -modules.

Whenever ξ is right bounded, we denote by `(ξ) the map L2(M)→ H : a 7→ ξa.
Similarly, when ξ is left bounded, we denote by r(ξ) the map L2(M)→ H : a 7→
aξ. Given right bounded vectors ξ, η, the operator `(ξ)∗`(η) belongs to M
and is denoted 〈ξ, η〉M . This defines an M -valued scalar product associated
with the right M -module H. Similarly, if ξ, η ∈ H are left bounded vectors,
we define an M -valued scalar product associated with the left M -module H
by M 〈ξ, η〉 = Jr(ξ)∗r(η)J ∈ M . Here, J denotes the canonical involution on
L2(M) given by J(x) = x∗ for x ∈M .

When HM is a right M -module and MK is a left M -module, we can define a
positive sesquilinear form on the algebraic tensor product H0 �K by

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 = 〈η1, 〈ξ1, ξ2〉M η2〉K .

The Hilbert space obtained by separation and completion of H0 � K with
respect to this sesquilinear form is denoted by H ⊗M K, and the image of
ξ ⊗ η ∈ H0 �K inside H ⊗M K is denoted by ξ ⊗M η. By construction, we
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have the following important property:

ξa⊗M η = ξ ⊗M aη for a ∈M.

If H is an N -M -bimodule and K is an M -P -bimodule for some tracial von
Neumann algebras N and P , then H ⊗M K becomes a N -P -bimodule when
equipped with the bimodular actions

x · (ξ ⊗M η) · y := xξ ⊗M ηy, x ∈ N, y ∈ P.

The N -P -bimodule H ⊗M K is called the Connes tensor product of NHM and
MKP .

Note that this construction of the Connes tensor product could also be carried
out using left bounded vectors of K instead of right bounded vectors of H.
However, these two constructions lead to isomorphic bimodules.

2.3 Amenability and relative amenability

Recall that a countable discrete group Γ is called amenable if it admits a left-
invariant mean, i.e., a finitely additive probability measure on the power set
P(Γ) that is invariant under the left translation action of Γ on itself. A similar
notion of amenability exists for II1 factors and is defined in such a way that
L(Γ) is amenable if and only if Γ is amenable.

Following [Co75], a von Neumann algebra M ⊂ B(H) is said to be amenable
(or injective) if there exists a conditional expectation of B(H) onto M . This
definition is independent of the chosen representation of M as operators on a
Hilbert space (see e.g. [AP16, Proposition 10.2.2]). When (M, τ) is a tracial
von Neumann algebra, we have that M is amenable if and only if there exists a
state ϕ on B(L2(M)) that isM -central, in the sense that ϕ(xT ) = ϕ(Tx) for all
x ∈M and T ∈ B(L2(M)), and such that ϕ|M = τ (see e.g. [AP16, Proposition
10.2.5]). Such a state is called a hypertrace for M and is the analogue of a
left-invariant mean on a group. One can easily show that a countable discrete
group Γ is amenable if and only if L(Γ) is amenable (see e.g. [AP16, Chapter
10]). Even more, when Γ is a non-amenable group, the group von Neumann
algebra L(Γ) has no amenable direct summand.

In [Co75], Connes showed that a separable II1 factor is amenable if and only if it
is hyperfinite, meaning that there is an increasing sequence of finite dimensional
von Neumann subalgebras Mn ⊂M such that M = (

⋃
n∈NMn)′′. It has been

known since the work of Murray and von Neumann [MvN43] that there is a
unique hyperfinite II1 factor, which is usually denoted by R. So by the work
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of Connes, there is a unique separable amenable II1 factor. In particular, any
amenable icc groups give rise to the same group von Neumann algebra and
any free ergodic pmp actions of amenable groups give rise to the same crossed
product von Neumann algebra.

As for countable groups, there are many equivalent definitions of amenability
for von Neumann algebras. We will mention one very useful characterization,
which involves bimodules. Recall that a group Γ is amenable if and only if the
trivial representation of Γ is weakly contained in the left regular representation
of Γ (see e.g. [BO08, Theorem 2.6.8]). The following is the analogue in the
setting of tracial von Neumann algebras.

Proposition 2.10 ([Po86, Theorem 3.1.2]). A tracial von Neumann algebra
(M, τ) is amenable if and only if the trivial M-bimodule L2(M) is weakly
contained in the coarse M -bimodule L2(M)⊗ L2(M).

In [OP07, Section 2.2], the concept of relative amenability was introduced. The
definition makes use of Jones’ basic construction: Given a tracial von Neumann
algebra (M, τ) and a von Neumann subalgebra N ⊂ M , we can consider the
orthogonal projection eN : L2(M) → L2(N). The Jones basic construction
〈M, eN 〉 is defined as the von Neumann algebra inside B(L2(M)) generated by
M and eN . Equivalently, 〈M, eN 〉 equals the commutant of the right N -action
on L2(M), i.e., 〈M, eN 〉 = B(L2(M)) ∩ (Nop)′.

Let Q ⊂ (M, τ) be a von Neumann subalgebra and p ∈ M a projection.
Following [OP07, Definition 2.2], we say that a von Neumann subalgebra
P ⊂ pMp is amenable relative to Q inside M if there exists a positive functional
ϕ on p〈M, eQ〉p that is P -central and satisfies ϕ|pMp = τ . By definition, we
have that P is amenable if and only if P is amenable relative to C1 inside M .
The following proposition states a few equivalent characterizations of relative
amenability in terms of bimodules.

Proposition 2.11 ([OP07, Theorem 2.1], [PV11, Proposition 2.4]). Let (M, τ)
be a tracial von Neumann algebra, let p ∈M be a projection and let P ⊂ pMp,
Q ⊂M be von Neumann subalgebras. The following are equivalent.

• P is amenable relative to Q inside M .

• pMpL
2(pMp)P is weakly contained in pMp(pL2(M)⊗Q L2(M)p)P .

• pMpL
2(pMp)P is weakly contained in pMp(pL2(M) ⊗Q K)P for some

Q-P -bimodule K.

• There exists a net (ξi)i∈I in pL2(M)⊗QL2(M)p such that 〈xξi, ξi〉 → τ(x)
for all x ∈ pMp and ‖aξi − ξia‖2 → 0 for all a ∈ P .
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By combining Propositions 2.10 and 2.11, we see that when Q is amenable, then
P is amenable relative to Q if and only if P is amenable. Indeed, this follows
from the fact that the M -bimodule L2(M)⊗Q L2(M) is weakly contained in
the coarse M -bimodule, when Q is amenable.

We say that P is strongly non-amenable relative to Q if Pq is non-amenable
relative to Q for every nonzero projection q ∈ P ′ ∩ pMp. Note that in that case,
also p0Pp0 is strongly non-amenable relative to Q for all nonzero projections
p0 ∈ P (see [DHI16, Lemma 2.6.2]).

2.4 Popa’s intertwining-by-bimodules

A general technique in the theory of II1 factors is to try to “locate” certain
subalgebras of a given II1 factor M . The strongest way to obtain this is to show
that one subalgebra A ⊂M can be unitarily conjugated into another subalgebra
B ⊂ M , in the sense that uAu∗ ⊂ B for some u ∈ U(M). Note that in this
case, H = u∗L2(B) is an A-B-subbimodule of L2(M) with dim−B(H) <∞ (in
fact dim−B(H) = 1). Such a bimodule is called an intertwining bimodule of
A into B. Having an intertwining bimodule is in general much weaker than
unitary conjugacy. However, Popa showed in [Po03] that the existence of an
intertwining bimodule of A into B exactly means that a corner of A can be
conjugated into a corner of B via a partial isometry. This is made precise in
the following theorem.

Theorem 2.12 ([Po03, Theorem 2.1 and Corollary 2.3]). Let (M, τ) be a
tracial von Neumann algebra. Let p, q ∈M be projections and let P ⊂ pMp and
Q ⊂ qMq be von Neumann subalgebras. The following are equivalent.

(1) There exists a nonzero P -Q-subbimodule H ⊂ pL2(M)q with dim−Q(H) <
∞.

(2) There exist nonzero projections p0 ∈ P and q0 ∈ Q, a normal unital
∗-homomorphism θ : p0Pp0 → q0Qq0 and a nonzero partial isometry
v ∈ p0Mq0 such that xv = vθ(x) for all x ∈ p0Pp0.

(3) There exists a nonzero projection r ∈ Mn(C) ⊗ Q, a normal unital ∗-
homomorphism θ : P → r(Mn(C)⊗Q)r and a nonzero partial isometry
v ∈M1,n(C)⊗ pMq such that xv = vθ(x) for all x ∈ P .

(4) There is no net of unitaries wi ∈ U(P ) satisfying ‖EQ(x∗wiy)‖2 → 0 for
all x, y ∈ pMq. Here, EQ denotes the unique trace-preserving conditional
expectation of M onto Q.
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If one of the four equivalent conditions from Theorem 2.12 holds, then we say
that P intertwines into Q inside M and we denote this by P ≺M Q, or simply
P ≺ Q if there is no doubt about the ambient von Neumann algebra M .

When P and Q are Cartan subalgebras of a II1 factor M , then the intertwining
criterion P ≺ Q is equivalent with a true unitary conjugacy of P and Q.
Therefore, Theorem 2.12 is extremely useful for proving unitary conjugacy of
Cartan subalgebras.

Theorem 2.13 ([Po01, Theorem A.1]). Let M be a II1 factor and let P,Q ⊂M
be Cartan subalgebras. Then P ≺M Q if and only if P and Q are unitarily
conjugate.

The intertwining relation ≺ is not transitive. For example, if M is diffuse then
M ≺M⊕C M ⊕ C and M ⊕ C ≺M⊕C C but M ⊀M⊕C C. However, there is
a stronger notion, called full intertwining, for which we do have transitivity.
Given von Neumann subalgebras P ⊂ pMp and Q ⊂ qMq, we say that P fully
intertwines into Q and write P ≺fM Q if Pp0 ≺M Q for all nonzero projections
p0 ∈ P ′ ∩ pMp. It is not hard to show that if A,B,C ⊂ M are (possibly
non-unital) subalgebras, then A ≺fM B and B ≺fM C implies A ≺fM C. Also,
A ≺M B and B ≺fM C implies A ≺M C (see [Va07, Lemma 3.7] for a proof of
these facts).

Note that a tracial von Neumann algebra M is atomic if and only if M ≺f C1,
and M is diffuse if and only if M ⊀ C1.

We are particularly interested in the case where M is a crossed product M =
A o Γ by a trace-preserving action Γ y (A, τ). Given a subset F ⊂ Γ, we
denote by PF the orthogonal projection of L2(M) onto the closed linear span
of {aug | a ∈ A, g ∈ F}, where {ug}g∈Γ denote the canonical unitaries in L(Γ).
By [Va10, Lemma 2.5], a von Neumann subalgebra P ⊂ pMp satisfies P ≺fM A
if and only if for every ε > 0, there exists a finite subset F ⊂ Γ such that

‖x− PF (x)‖2 ≤ ‖x‖ε for all x ∈ P .

We also need the following elementary lemma.

Lemma 2.14. Let Γ y (A, τ) be a trace-preserving action and put M = AoΓ.
If P ⊂ M is a diffuse von Neumann subalgebra such that P ≺f A, then
P ⊀ L(Γ).

Proof. Let ε > 0 be given and assume P ≺f A. As explained above, we can
take a finite set F ⊂ Γ such that ‖u−PF (u)‖2 ≤ ε

2 for all u ∈ U(P ). Moreover,
since P is diffuse, we can choose a net of unitaries (wi) ⊂ U(P ) tending to 0
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weakly. We will prove that ‖EL(Γ)(xwiy)‖2 → 0 for all x, y ∈M , meaning that
P ⊀ L(Γ). Note that it suffices to consider x, y ∈ (A)1.

Take x, y ∈ (A)1. Write wi =
∑
g∈Γ(wi)gug with (wi)g ∈ A. Then,

‖EL(Γ)(PF (xwiy))‖22 =
∑
g∈F
|τ(x(wi)gσg(y))|2 → 0

since wi → 0 weakly. Take i0 large enough such that

‖EL(Γ)(PF (xwiy))‖2 ≤
ε

2 for all i ≥ i0 .

Since PF is A-bimodular, we have that

‖EL(Γ)(PF (xwiy))− EL(Γ)(xwiy)‖2 ≤ ‖PF (xwiy)− xwiy‖2

= ‖x(PF (wi)− wi)y‖2 ≤
ε

2
for all i. We conclude that ‖EL(Γ)(xwiy)‖2 ≤ ε for all i ≥ i0.

On the level of group von Neumann algebras, the notion of intertwining-by-
bimodules simply translates into the following finite index criterion.

Lemma 2.15. Let Γ be a countable discrete group and let Λ1,Λ2 < Γ be
subgroups. Then, L(Λ1) ≺L(Γ) L(Λ2) if and only if there exists g ∈ Γ such that
[Λ1 : Λ1 ∩ gΛ2g

−1] <∞.

Proof. Assume that [Λ1 : Λ1 ∩ gΛ2g
−1] <∞ for some g ∈ Γ. Then {g−1sgΛ2 |

s ∈ Λ1} is a finite subset of Γ/Λ2 and hence

H := span {`2(sΛ2) | s ∈ g−1Λ1g}

is a L(g−1Λ1g)-L(Λ2)-subbimodule of `2(Γ) with finite right L(Λ2)-dimension.
This means that L(g−1Λ1g) ≺L(Γ) L(Λ2). Since L(g−1Λ1g) = u∗gL(Λ1)ug, we
then also have that L(Λ1) ≺L(Γ) L(Λ2).

Conversely, assume that [Λ1 : Λ1 ∩ gΛ2g
−1] =∞ for all g ∈ Γ. Given any finite

subset F ⊂ Γ, we claim that there exists an s ∈ Λ1 such that s /∈ gΛ2h for all
g, h ∈ F . Indeed, assume that this is not the case. Then

Λ1 ⊂
⋃

g,h∈F

gΛ2h =
⋃

g,h∈F

(gΛ2g
−1)gh.

By [Ne54, Lemma 4.1], this contradicts the fact that gΛ2g
−1 ∩ Λ1 has infinite

index in Λ1 for all g ∈ Γ.
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Let I be the directed set consisting of all finite subsets of Γ, ordered by inclusion.
Given F ∈ I, we define uF := us ∈ L(Λ1) where s ∈ Λ1 is an element such that
s /∈

⋃
g,h∈F gΛ2h. This gives us a net (ui)i∈I of unitaries in L(Λ1) such that

‖EL(Λ2)(xuiy)‖2 → 0 for all x, y ∈ L(Γ).

By Theorem 2.12, this means that L(Λ1) ⊀L(Γ) L(Λ2).

We end this section with the following elementary result, which shows the
relationship between relative amenability and intertwining-by-bimodules.

Proposition 2.16. Let (M, τ) be a tracial von Neumann algebra and
Q,P1, P2 ⊂ M be von Neumann subalgebras with P1 ⊂ P2. Assume that
Q is strongly non-amenable relative to P1. Then the following holds.

(1) If Q ≺M P2, there exist projections q ∈ Q, p ∈ P2, a nonzero partial
isometry v ∈ qMp and a normal unital ∗-homomorphism θ : qQq → pP2p
such that xv = vθ(x) for all x ∈ qQq and such that, inside P2, we have
that θ(qQq) is non-amenable relative to P1.

(2) We have Q 6≺M P1.

Proof. (1) Assume that Q ≺ P2. By Theorem 2.12, we can take projections
q ∈ Q, p ∈ P2, a nonzero partial isometry v ∈ qMp and a normal unital ∗-
homomorphism θ : qQq → pP2p such that xv = vθ(x) for all x ∈ qQq. Assume
that θ(qQq) is amenable relative to P1 inside P2. We can then take a positive
functional ϕ on p〈P2, eP1〉p that is θ(qQq)-central and satisfies ϕ|pP2p = τ .
Denote by eP2 the orthogonal projection of L2(M) onto L2(P2). Observe that
eP2〈M, eP1〉eP2 = 〈P2, eP1〉. We can then define the positive functional ω on
q〈M, eP1〉q given by

ω(T ) = ϕ(eP2v
∗TveP2) for all T ∈ q〈M, eP1〉q .

By construction, ω is qQq-central and ω(x) = τ(v∗xv) for all x ∈ qMq. Writing
q0 = vv∗, we have q0 ∈ (Q′∩M)q and it follows that qQqq0 is amenable relative
to P1. This contradicts the strong non-amenability of Q relative to P1.

Finally, note that (2) follows from (1) by taking P1 = P2.

2.5 Mixing properties

Recall that a unitary representation π : Γ→ U(H) of a countable discrete group Γ
is said to be weakly mixing if {0} is the only finite-dimensional subrepresentation.
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This is equivalent with the existence of a sequence (gn)n∈N ⊂ Γ such that
〈π(gn)ξ, η〉 → 0 for all ξ, η ∈ H. The representation π is called mixing if this
limit holds for any sequence (gn)n∈N ⊂ Γ with gn →∞ (in the sense that gn
escapes all finite subsets of Γ). The following proposition is classical, see for
example [Pe11, Proposition 1.5.6].

Proposition 2.17. Let π : Γ → U(H) be a unitary representation. The
following are equivalent.

• π is weakly mixing.

• The representation π ⊗ π contains no nonzero invariant vectors.

• The representation π ⊗ ρ contains no nonzero invariant vectors for any
(finite-dimensional) unitary representation ρ : Γ→ U(K).

Similar notions of mixing and weak mixing exist for group actions Γ y (X,µ)
and for bimodules NHM of tracial von Neumann algebras N and M .

Definition 2.18. A pmp action Γ y (X,µ) is called

• weakly mixing if for any ε > 0 and any finite collection of measurable
subsets A1, . . . , An ⊂ X, there exists a g ∈ Γ such that

|µ(Ai ∩ gAj)− µ(Ai)µ(Aj)| < ε for all i, j = 1, . . . , n;

• mixing if for any measurable subsets A,B ⊂ X and any sequence gn ∈ Γ
with gn →∞, we have that

µ(A ∩ gnB)→ µ(A)µ(B) as n→∞.

It is clear from the definition that a weakly mixing action is in particular
ergodic. More generally, we can define (weak) mixing for trace-preserving
actions Γ y (B, τ) in an analogous way.

Definition 2.19. Let Γ y (B, τ) be a trace-preserving action on a tracial von
Neumann algebra (B, τ). The action is called

• weakly mixing if for every finite set a1, . . . , an ∈ B and every ε > 0, there
exists g ∈ Γ such that

|τ(aiσg(aj))− τ(ai)τ(aj)| < ε for all i, j = 1, . . . , n;
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• mixing if for every a, b ∈ B and every sequence gn ∈ Γ with gn →∞, we
have that

τ(aσgn(b))→ τ(a)τ(b) as n→∞.

When Γ y (X,µ) is a pmp action, we have that Γ y X is (weakly) mixing if
and only if Γ y L∞(X) is (weakly) mixing. The following proposition states
some equivalent formulations of being weakly mixing.

Proposition 2.20 ([Va06, Proposition D.2]). Let σ : Γ y (B, τ) be a trace-
preserving action. The following are equivalent.

(i) The action σ is weakly mixing.

(ii) C1 is the only finite-dimensional invariant subspace of B.

(iii) The associated unitary representation of Γ on L2(B)	C1 is weakly mixing.

(iv) The diagonal action Γ y B ⊗B : g · (a⊗ b) = σg(a)⊗ σg(b) is ergodic.

Example 2.21. Given a countable group Γ and a standard probability space
(X,µ), we can form the Bernoulli action Γ y (X,µ)Γ given by g · (xs)s∈Γ =
(xgs)s∈Γ. More generally, given any action Γ y I on a countable set I, the
generalized Bernoulli action Γ y (X,µ)I is given by g · (xi)i∈I = (xg·i)i∈I . It
is a classical result that the generalized Bernoulli action Γ y (X,µ)I is weakly
mixing if and only if the action Γ y I has infinite orbits (see [PV06, Proposition
2.3 and Lemma 2.4]).

When σ : Γ y (B, τ) is a trace-preserving action that globally preserves a von
Neumann subalgebra B0 ⊂ B, we have that the subspace B	B0 is also globally
preserved. Even though B	B0 is not a subalgebra, we still say that σ restricts
to an action of Γ on B 	B0. We say that this action is weakly mixing if the
associated unitary representation of Γ on L2(B) 	 L2(B0) is weakly mixing.
Exactly as in the proof of Proposition 2.20, it can be shown that Γ y B 	B0
is weakly mixing if and only if B 	B0 contains no nontrivial finite-dimensional
Γ-invariant subspace. For completeness, we provide a proof of this fact.

Proposition 2.22. Let σ : Γ y (B, τ) be a trace-preserving action that globally
preserves a von Neumann subalgebra B0 ⊂ B. The following are equivalent.

(i) σ : Γ y B 	B0 is weakly mixing.

(ii) B 	B0 contains no nontrivial finite-dimensional Γ-invariant subspaces.

(iii) The diagonal action Γ y (B ⊗B)	 (B0 ⊗B0) is ergodic.
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Proof. (i) ⇒ (ii) is clear from the definition.

To show (ii) ⇒ (iii), suppose that x ∈ B ⊗B is a Γ-invariant element. Denote
by ι the canonical embedding B → L2(B). Given ξ, η ∈ L2(B), we denote by
ωξ,η the vector functional on B given by ωξ,η(a) = 〈aξ, η〉. Define a Hilbert-
Schmidt operator T : L2(B)→ L2(B) by Tξ = ι((id⊗ ωι(1),ξ)(x)). Then TT ∗
is a trace-class operator that commutes with the unitary representation of Γ
on L2(B) associated with σ. So, any spectral projection of TT ∗ has finite rank
and still commutes with σ. Since the image of T is contained in ι(B), we obtain
using (ii) that x ∈ B0⊗B. By symmetry, we also obtain x ∈ B⊗B0 and hence
x ∈ B0 ⊗B0. So, (B ⊗B)	 (B0 ⊗B0) has no Γ-invariant vectors.

To show (iii) ⇒ (i), assume that σ : Γ y B 	B0 is not weakly mixing. Then
there exists ε > 0 and b1, . . . , bn ∈ B 	B0 such that

n∑
i,j=1

|τ(σg(bi)b∗j )|2 ≥ ε for all g ∈ Γ.

Define x =
∑n
i=1 bi ⊗ b∗i ∈ (B ⊗B)	 (B0 ⊗B0). Let x1 ∈ B ⊗B be the unique

element of minimal 2-norm in the weakly closed convex hull of {(σg ⊗ σg)(x) |
g ∈ Γ}. Note that x1 ∈ (B ⊗B)	 (B0 ⊗B0). For any g ∈ Γ, we have that

τ((σg ⊗ σg)(x)x∗) =
n∑

i,j=1
|τ(σg(bi)b∗j )|2 ≥ ε.

It follows that τ(x1x
∗) ≥ ε and hence x1 6= 0. By uniqueness of x1, we also

have that x1 is (σg ⊗ σg)g∈Γ-invariant. This contradicts (iii).

Given a tracial crossed product M = Ao Γ and given a subgroup Λ < Γ, we
will often consider the conjugation action {Adug}g∈Λ on M . This action has
an obvious non weakly mixing part, which we can describe as follows. We
denote by vCΓ(Λ) the virtual centralizer of Λ inside Γ, i.e., vCΓ(Λ) consists of
all elements s ∈ Γ that commute with a finite index subgroup of Λ. Let A0 ⊂ A
be the von Neumann subalgebra generated by the set of all a ∈ A such that
{σs(a) | s ∈ Λ} spans a finite-dimensional subspace of A. Note that vCΓ(Λ) is a
subgroup that normalizes A0. Now, it is clear that the action {Adus}s∈Λ is not
weakly mixing on neither A0 nor vCΓ(Λ). The following lemma shows that the
crossed product A0 o vCΓ(Λ) ⊂M is the only non weakly mixing part of M .

Lemma 2.23. Let σ : Γ y (A, τ) be a trace-preserving action and put M =
A o Γ. Fix a subgroup Λ < Γ and let K := vCΓ(Λ) be its virtual centralizer.
Let A0 ⊂ A be as above, i.e., A0 is generated by the set of all a ∈ A such that
span{σs(a) | s ∈ Λ} is finite-dimensional. Then the unitary representation
{Adus}s∈Λ is weakly mixing on L2(M)	 L2(A0 oK).
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Proof. Let H = L2(M)	 L2(A0 oK) and recall that L2(M) = L2(A)⊗ `2(Γ).
Put

H1 = L2(A)⊗ (`2(Γ)	 `2(K)), H2 = L2(A	A0)⊗ `2(Γ).

Then H1 and H2 are closed subspaces of H that are invariant under the
representation {Adus}s∈Λ, and such that H = spanH1 ∪ H2. It is enough
to show that {Adus}s∈Λ is weakly mixing on H1 and H2 since then, any
finite-dimensional invariant subspace F ⊂ H satisfies F ⊂ H⊥1 ∩H⊥2 = {0}.

To prove that {Adus}s∈Λ is weakly mixing on H2, it suffices to show that
the representation {σs}s∈Λ is weakly mixing on L2(A	A0). By construction,
A	A0 contains no nonzero finite-dimensional {σs}s∈Λ-invariant subspace. By
Proposition 2.22, this exactly means that the representation {σs}s∈Λ is weakly
mixing on L2(A	A0).

To prove that {Adus}s∈Λ is weakly mixing on H2, it suffices to show that
{Adus}s∈Λ is weakly mixing on `2(Γ − K). But this follows from [PV06,
Lemma 2.4] since {sgs−1 | s ∈ Λ} is infinite whenever g ∈ Γ−K.

Note that it in particular follows from Lemma 2.23 that the conjugation action
Γ y L(Γ) is weakly mixing if and only if Γ is icc.

Finally, we introduce the notion of a (weakly) mixing bimodule. Let (M, τ) be
a tracial von Neumann algebra and let A,B ⊂M be von Neumann subalgebras.
Popa’s non-intertwinability condition (see Theorem 2.12) saying that B 6≺M A
is equivalent with the existence of a net of unitaries bi ∈ U(B) such that
limi ‖EA(xbiy)‖2 = 0 for all x, y ∈M , can be viewed as a weak mixing condition
for the B-A-bimodule BL

2(M)A (cf. the notions of relative (weak) mixing in
[Po05, Definition 2.9]). This then naturally lead to the notions of mixing and
weakly mixing bimodules in [PS12].

Recall from Section 2.2 the notion of left and right bounded vectors in a B-A-
bimodule H, as well as the A-valued inner product 〈ξ, η〉A for right bounded
vectors ξ, η ∈ H.

Definition 2.24 ([PS12]). Let (A, τ) and (B, τ) be tracial von Neumann
algebras and BHA a B-A-bimodule.

(1) BHA is called left weakly mixing if there exists a net of unitaries bi ∈ U(B)
such that for all right bounded vectors ξ, η ∈ H, we have

lim
i
‖〈biξ, η〉A‖2 = 0 .
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(2) BHA is called left mixing if every net bi ∈ U(B) tending to 0 weakly
satisfies

lim
n
‖〈biξ, η〉A‖2 = 0

for all right bounded vectors ξ, η ∈ H.

We similarly define the notions of right (weak) mixing. When AHA is a symmetric
A-bimodule in the sense of Definition 5.4, left (weak) mixing is equivalent with
right (weak) mixing and we simply refer to these properties as (weak) mixing.

Example 2.25. If π : Γ→ U(K) is a weakly mixing group representation, then
the associated L(Γ)-bimodule H = `2(Γ) ⊗K is left weakly mixing. Indeed,
if (gn)n∈N ⊂ Γ is a sequence such that 〈π(gn)ξ, η〉 → 0 for all ξ, η ∈ K, then
ugn ∈ L(Γ) is a sequence of unitaries witnessing the left weak mixing of H.

In [Po03, Section 2], Popa proved that the intertwining relation B ≺M A is
equivalent with the existence of a nonzero B-A-subbimodule of L2(M) having
finite right A-dimension (see Theorem 2.12). In the same way, one gets the
following characterization of weakly mixing bimodules. For details, see [PS12]
and [Bo14, Theorem A.2.2].

Proposition 2.26 ([Po03, PS12, Bo14]). Let (A, τ) and (B, τ) be tracial von
Neumann algebras and BHA a B-A-bimodule. The following are equivalent.

(1) BHA is left weakly mixing.

(2) {0} is the only B-A-subbimodule of BHA of finite A-dimension.

(3) B(H ⊗A H)B has no nonzero B-central vectors.

(4) B(H ⊗A K)B has no nonzero B-central vectors for any A-B-bimodule K.

2.6 (Relative) strong solidity and class Crss

In the study of non-amenable II1 factors, it is natural to consider different kinds
of indecomposability properties. One such property is primeness, which means
that a given II1 factor cannot be written as a nontrivial tensor product. More
precisely, a II1 factor M is called prime if any tensor product decomposition
M = M1 ⊗M2 forces either M1 or M2 to be finite-dimensional. A similar
property is the impossibility of writingM as a crossed product or more generally
as L(R) for some equivalence relation R. Recall from Theorem 2.4 that this
exactly amounts to M not having a Cartan subalgebra. Therefore, absence of
Cartan subalgebras can also be seen as an indecomposability property.
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In [Oz03], Ozawa discovered a new property that generalizes primeness. This
property was called solidity and is defined as follows. A von Neumann algebra
M is called solid if the relative commutant A′ ∩M is amenable for any diffuse
von Neumann subalgebra A ⊂M . It is clear from the definition that any solid
von Neumann algebra is also prime. Ozawa proved that the group von Neumann
algebra L(Γ) is solid for any nonelementary hyperbolic group Γ, in particular
for any free group Fn with n ≥ 2.

The strongest indecomposability property for von Neumann algebras is strong
solidity, which was introduced by Ozawa and Popa in [OP07].

Definition 2.27 ([OP07]). Let (M, τ) be a diffuse tracial von Neumann algebra.
We say that M is strongly solid if for any diffuse amenable von Neumann
subalgebra A ⊂M , the normalizer NM (A)′′ = {u ∈ U(M) | uAu∗ = A}′′ stays
amenable.

Note that, as the name suggests, strong solidity implies solidity. Indeed, if
A ⊂M is a diffuse von Neumann subalgebra, then A contains a diffuse amenable
von Neumann subalgebra B ⊂ A. Since A′ ∩M ⊂ NM (B)′′, it follows that
strong solidity of M implies solidity of M . It is immediate that strong solidity
also implies absence of Cartan subalgebras for non-amenable von Neumann
algebras M . Therefore, strong solidity is a very interesting property and has
become a key concept in the context of Popa’s deformation/rigidity theory.

Ozawa and Popa showed that the free group factors L(Fn) with n ≥ 2
are strongly solid, thereby generalizing previous results by Voiculescu [Vo95]
(absence of Cartan), Ge [Ge98] (primeness) and Ozawa [Oz03] (solidity). In
fact, they showed an even stronger property: for every free ergodic profinite3

action Fn y X, the crossed product M = L∞(X)oFn is strongly solid relative
to L∞(X) in the following sense. For any diffuse amenable subalgebra A ⊂M ,
either NM (A)′′ stays amenable or A ≺ L∞(X). The results of Ozawa and
Popa were generalized by Popa and Vaes in [PV11, PV12], and they obtained
the following remarkably strong result. For any trace-preserving action of a
hyperbolic group Γ on a tracial von Neumann algebra B, the associated crossed
productM = BoΓ is strongly solid relative to B, i.e., for any diffuse subalgebra
A ⊂M that is amenable relative to B, either NM (A)′′ stays amenable relative
to B or A ≺M B. This led to the notion of relative strong solidity, which is
defined as follows.

Definition 2.28. A group Γ is called relatively strongly solid if for any tracial
crossed product M = P oΓ and any von Neumann subalgebra Q ⊂ pMp that is

3An action Γ y X is called profinite if L∞(X) is a limit of an increasing sequence of
finite-dimensional Γ-invariant subalgebras of L∞(X).
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amenable relative to P , we have that either Q ≺ P or the normalizer NpMp(Q)′′
stays amenable relative to P .

As in [CIK13, Definition 2.7], we denote by Crss the class of all non-amenable
relatively strongly solid groups. The class Crss is quite large. Indeed, by [PV11,
Theorem 1.6], all weakly amenable groups that admit a proper 1-cocycle into
an orthogonal representation weakly contained in the regular representation
belong to Crss. In particular, the free groups Fn with 2 ≤ n ≤ ∞ belong to
Crss and more generally, all free products Λ1 ∗ Λ2 of amenable groups Λ1,Λ2
with |Λ1| ≥ 2 and |Λ2| ≥ 3 belong to Crss. By [PV12, Theorem 1.4], all weakly
amenable, non-amenable, bi-exact groups belong to Crss and thus Crss contains
all nonelementary hyperbolic groups.

Lemma 2.29. Let Γ be a group in Crss and M = P o Γ any tracial crossed
product. If Q1, Q2 ⊂ pMp are commuting von Neumann subalgebras, then either
Q1 ≺M P or Q2 is amenable relative to P .

Proof. Assume that Q1 6≺M P . By [BO08, Corollary F.14], there exists a diffuse
abelian von Neumann subalgebra A ⊂ Q1 such that A ⊀M P . Because Γ ∈ Crss,
we get that NpMp(A)′′ is amenable relative to P . Since Q2 ⊂ NpMp(A)′′, also
Q2 is amenable relative to P .

From Lemma 2.29, it follows that for groups Γ in Crss, the centralizer CΓ(L)
of an infinite subgroup L < Γ is amenable. So, torsion-free groups Γ in Crss
have the property that CΓ(g) is amenable for every g 6= e. As a consequence,
torsion-free groups Γ in Crss are icc and even have the property that every non-
amenable subgroup L < Γ is relatively icc in the sense that {hgh−1 | h ∈ L}
is an infinite set for every g ∈ Γ, g 6= e. Finally note that torsion-free groups
Γ in Crss have no nontrivial amenable normal subgroups. In particular, every
nontrivial normal subgroup of Γ is relatively icc.
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Counterexamples to C-rigidity

Recall from the introduction the notion of C-rigidity.

Definition 3.1 ([PV11, Definition 1.4]). A countable group Γ is called C-rigid
if for any free ergodic pmp action Γ y (X,µ), the associated crossed product
L∞(X)o Γ has a unique Cartan subalgebra up to unitary conjugacy.

In [PV11], Popa and Vaes gave the first examples of C-rigid groups. In fact,
they provided a rather large class of C-rigid groups, including free groups Fn
with n ≥ 2. Since then, more and more groups have been shown to be C-rigid.
On the other hand, there are not a lot of counterexamples to C-rigidity. So far,
all known counterexamples have an infinite amenable almost normal subgroup.

Definition 3.2. Let Γ be a countable discrete group. A subgroup Λ < Γ is
called almost normal if gΛg−1 ∩ Λ has finite index in Λ for all g ∈ Γ.

It is immediate from the definition that a subgroup Λ < Γ is almost normal
if and only if the left translation action Λ y Γ/Λ has finite orbits. A typical
example of a group with an almost normal subgroup is the Baumslag-Solitar
group BS(n,m) = 〈a, b | banb−1 = am〉 with n,m ∈ Z\{0}, where the subgroup
generated by a is almost normal.

In this chapter, we will prove that any group with an infinite abelian almost
normal subgroup is non-C-rigid, up to taking the quotient by a finite normal
subgroup (this work is unpublished). The proof is inspired by [PV09, Example
5.8], where it is shown that any semidirect product group HoG with H infinite
abelian is non-C-rigid.

39
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Theorem 3.3. Let Γ be a countable discrete group with an infinite abelian
almost normal subgroup Λ, and let F =

⋂
g∈Γ gΛg−1.

(1) If F is infinite, then Γ is non-C-rigid.

(2) If F is finite, then Γ/F is non-C-rigid.

It is a natural question to ask whether Γ/F being C-rigid implies that Γ itself
is C-rigid, when F < Γ is a finite normal subgroup. This is related to the
question whether C-rigidity passes to finite index restrictions/extensions, in the
following sense. Given a finite index inclusion of II1 factors N ⊂M , is it true
that N has a unique Cartan subalgebra if and only if M has a unique Cartan
subalgebra? A priori, there is no reason why such stability properties should
hold true. For instance, if N ⊂M is a finite index inclusion of II1 factors and
if A ⊂ N is a Cartan subalgebra, there is no reason why A should also be a
Cartan subalgebra of M . In order to get better stability properties, the notion
of Cs-rigidity was introduced in [PV11] (based on work of Ozawa and Popa in
[OP07]). Recall that a subfactor N ⊂ M is said to be of finite index if the
Jones index [M : N ] = dim−N L2(M) is finite.

Definition 3.4 ([OP07, Proposition 4.12], [PV11, Definition 1.4]). A group Γ
is called Cs-rigid if for any free ergodic pmp action Γ y (X,µ), the II1 factor
M = L∞(X)o Γ has the following property:

(a) Every MASA A ⊂M whose normalizer NM (A)′′ is a finite index subfactor
of M , is unitarily conjugate to L∞(X).

Clearly, any Cs-rigid group is also C-rigid. In [OP07, Proposition 4.12], it was
proved that the property (a) of Definition 3.4 above is stable under amplifications
and under finite index restrictions/extensions of II1 factors.

In [VV14], another strengthening of C-rigidity was introduced, called class C,
this time being stable under group extensions and commensurability1. In order
to define class C, we first need the notion of a virtual core subalgebra. This
plays the role of a generalized Cartan subalgebra in the definition of class C.

Definition 3.5 ([VV14]). A von Neumann subalgebra A ⊂ M is called a
virtual core subalgebra if A′ ∩M = Z(A) and if the inclusion NM (A)′′ ⊂M has
essentially finite index, in the sense of Definition 5.26.

Definition 3.6 ([VV14, Definition 4.2]). An infinite group Γ is said to belong
to class C if for every trace-preserving cocycle action Γ y (B, τ) and every
amenable virtual core subalgebra A ⊂ p(B o Γ)p, we have that A ≺ B.

1Two groups are called commensurable if they contain isomorphic finite index subgroups.
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Here, a cocycle action is a map α : Γ → Aut(B) together with a 2-cocycle
v : Γ× Γ→ U(B) such that

αe = id, αg ◦ αh = Ad vg,h ◦ αgh,

vg,e = ve,g = 1, vg,hvgh,k = αg(vh,k)vg,hk, g, h, k ∈ Γ.

So far, all known examples of C-rigid groups are also in class C and we have no
tools to distinguish between the notions of C-rigidity, Cs-rigidity and class C.
Indeed, all tools currently available are insensitive to finite index issues.

Using the notion of class C, we get a nicer formulation of Theorem 3.3. We
leave it as an open question whether the same conclusion holds for Cs-rigidity
or even C-rigidity.
Corollary 3.7. If Γ is a countable group containing an infinite, abelian, almost
normal subgroup, then Γ is not in class C.

Proof. Using Theorem 3.3, it is enough to show that if Γ is in class C, then Γ/F
is also in class C for any finite normal subgroup F < Γ.

Assume that Γ is in class C and let F < Γ be a finite normal subgroup. Let
Γ/F y (B, τ) be an arbitrary cocycle action and put M = B o (Γ/F ). By
composing with the quotient map, we can lift this to a cocycle action of Γ
on (B, τ). Put N = B o Γ. Now, z := 1

|F |
∑
h∈F uh ∈ B o Γ is a central

projection in N , and we have that z(B o Γ) ∼= B o (Γ/F ) via the isomorphism
z(bug) 7→ bugF .

Let A ⊂ pMp be a virtual core subalgebra. Since M ∼= zN , A can be seen as a
virtual core subalgebra of zpNp. Since Γ is in class C, it follows that A ≺N B
and equivalently A ≺M B.

In the rest of this chapter, we will prove Theorem 3.3. This is done by
constructing an explicit free ergodic pmp action Γ/F y X such that the
crossed product L∞(X) o (Γ/F ) has two Cartan subalgebras that are not
unitarily conjugate. The action Γ/F y X will be constructed explicitly as a
certain co-induced action.

3.1 Co-induced actions

Let G be a locally compact second countable group and let H be an open
subgroup of G such that H acts on a probability space (X,µ). We can “co-
induce” this H-action to an action of G as follows.
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Note that the quotient H\G is countable since H is an open subgroup of G.
Choose a section θ : H\G → G such that θ(H) = e and let r : G → H be the
unique map satisfying g = r(g)θ(Hg). Note that r(e) = e and r(hg) = hr(g) for
h ∈ H, g ∈ G. We define Ω: H\G×G→ H by Ω(Ht, g) = r(t)−1r(tg). Then
Ω is a 1-cocycle for the action Gy H\G, in the sense that

Ω(Ht, gh) = Ω(Ht, g)Ω(Htg, h), g, h, t ∈ G.

A different choice of section θ gives rise to a cocycle cohomologous with Ω.

The formula

(g · x)Ht = Ω(Ht, g) · xHtg, x = (xHt)t∈θ(H\G) ∈ XH\G

then gives a well-defined action of G on XH\G called the co-induced action of
H y X to G. It is independent of the choice of section, in the sense that a
different choice of section leads to a conjugate action.

It is clear that the co-induced action Gy XH\G is pmp whenever H y X is
pmp. In the case where G is a countable discrete group, the following well-known
lemma gives sufficient conditions for when Gy XH\G is free and ergodic (even
weakly mixing).

Lemma 3.8. Let Γ be a countable discrete group with Λ < Γ a subgroup of
infinite index, and let Λ y (X,µ) be a pmp action on a standard probability
space. Then the co-induced action Γ y XΛ\Γ is weakly mixing. If the action
Λ y X is free, then Γ y XΛ\Γ is also free.

Proof. Let A1, . . . , An ⊂ XΛ\Γ be Borel sets and let ε > 0. We have to find a
g ∈ Γ such that

|ν(Ai ∩ gAj)− ν(Ai)ν(Aj)| < ε, i, j = 1, . . . , n, (3.1)

where ν denotes the product measure on XΛ\Γ. We will first assume that the
Ai’s are product sets, i.e., Ai =

∏
t∈Λ\ΓA

t
i where Ati = X for cofinitely many

t. So, we have a finite subset F ⊂ Λ\Γ such that Ati = X for all t /∈ F and all
i = 1, . . . , n.

Note that gAj =
∏
t∈Λ\Γ Ω(t, g) ·Atgj . Since Λ\Γ is infinite, there exists g ∈ Γ

such that tg /∈ F for all t ∈ F . Then ν(Ai ∩ gAj) = ν(Ai)ν(Aj) for all
i, j = 1, . . . , n, proving (3.1) in the case where the Ai’s are product sets. In the
general case, we simply approximate the Ai’s with product sets, so we conclude
that the co-induced action Γ y XΛ\Γ is weakly mixing.
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Assume next that Λ y X is free. Denote by Fix(g) the set of fixed points for
g ∈ Γ, i.e., the set of x ∈ XΛ\Γ such that g · x = x. For g ∈ Γ \ {e}, we have

Fix(g) = {(xt)t∈Λ\Γ | Ω(t, g) · xtg = xt for all t}

⊂ {(xt)t∈Λ\Γ | xΛg = Ω(Λ, g)−1 · xΛ}.

If g ∈ Λ, then this is a null-set by freeness of the action Λ y X. If g /∈ Λ, then
this is a null-set by Fubini’s Theorem. We conclude that the action Γ y XΛ\Γ

is free.

We can also define co-induced actions in the more general setting of tracial
von Neumann algebras. Assume that Λ < Γ are countable groups and that
Λ y (A, τ) is a trace-preserving action. Let AΛ\Γ =

⊗
t∈Λ\Γ(A, τ) denote the

infinite tensor product and let πt : A→ AΛ\Γ, t ∈ Λ\Γ, denote the embedding
as the t’th tensor factor. Then, the co-induced action Γ y AΛ\Γ is defined by

g · πΛt(a) = πΛtg−1(Ω(Λt, g−1)−1 · a), a ∈ A, g ∈ Γ,

where Ω: Λ\Γ× Γ→ Λ denotes the cocycle defined above. As in the proof of
Lemma 3.8, one sees that the co-induced action Γ y AΛ\Γ is weakly mixing
whenever Λ has infinite index in Γ.

3.2 Proof of Theorem 3.3

Let Λ < Γ be an infinite abelian almost normal subgroup. Given a free ergodic
pmp action Γ y X, we denote by L∞(X)Λ the subalgebra of Λ-invariant
functions inside L∞(X). Note that A = L∞(X)Λ∨L(Λ) is an abelian subalgebra
ofM = L∞(X)oΓ. The following proposition gives a criterion for when A ⊂M
is a MASA.

Proposition 3.9. Let Λ < Γ be an abelian almost normal subgroup and let
Γ y X be a free ergodic pmp action. Take a standard probability space (Y, ν)
and a surjective Borel map π : X → Y such that L∞(Y ) ∼= L∞(X)Λ and such
that the inclusion ι : L∞(Y ) ↪→ L∞(X) is given by ι(f)(x) = f(π(x)).

Assume that π(g · x) 6= π(x) for all g ∈ Γ − Λ and for almost every x ∈ X.
Then, A := L∞(X)Λ ∨ L(Λ) is a MASA of M := L∞(X)o Γ.

Proof. Let b ∈ A′ ∩M and let b =
∑
g∈Γ bgug with bg ∈ L∞(X) be its Fourier

decomposition. Then fbg = (g · f)bg for all f ∈ L∞(X)Λ and all g ∈ Γ. Hence
1Ugf = 1Ug(g · f) where Ug denotes the set Ug = {x ∈ X | bg(x) 6= 0}. We
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need to show that µ(Ug) = 0 for g /∈ Λ. By our assumption that π(g · x) 6= π(x)
almost everywhere, we may replace Ug with the set

{x ∈ X | bg(x) 6= 0, π(x) 6= π(g−1 · x)}.

Take a separating sequence of non-negligible Borel sets (Vn)n∈N ⊂ Y , i.e., for
any x 6= y in Y , there exists n ∈ N such that x ∈ Vn and y /∈ Vn. Put
Ṽn = π−1(Vn) ⊂ X. Then Ṽn is a non-negligible and Λ-invariant subset of
X. Moreover, for any x ∈ Ug, we can find n ∈ N such that π(x) ∈ Vn and
π(g−1 · x) /∈ Vn, i.e., x ∈ Ṽn ∩ (g · Ṽn)c. Hence

Ug =
⋃
n∈N

Ug ∩ Ṽn ∩ (g · Ṽn)c.

In order to show that µ(Ug) = 0, it therefore suffices to show that µ(Ug ∩
Ṽn ∩ (g · Ṽn)c) = 0 for all n. Above, we saw that 1Ugf = 1Ug(g · f) for all
Λ-invariant functions f ∈ L∞(X)Λ. Since 1

Ṽn
is Λ-invariant for all n, it follows

that 1
Ug∩Ṽn

= 1
Ug∩g·Ṽn

. Hence, µ(Ug ∩ Ṽn ∩ (g · Ṽn)c) = 0 for all n so that
µ(Ug) = 0.

We conclude that bg = 0 for all g ∈ Γ− Λ. Moreover, bg is Λ-invariant for all
g ∈ Λ since ∑

g∈Λ

bgug = b = uhbu
∗
h =

∑
g∈Λ

(h · bg)ug, h ∈ Λ.

Hence, b ∈ A and thus A′ ∩M ⊂ A. This means that A is maximal abelian.

We will prove the two statements (1) and (2) of Theorem 3.3 separately, using
Proposition 3.9.

To prove (1), assume that F :=
⋂
g∈Γ gΛg−1 is infinite. By replacing Λ with F ,

we may assume that Λ is an infinite abelian normal subgroup of Γ. We will also
assume that Λ has infinite index in Γ since otherwise, Γ would be an amenable
group, which is already known to be non-C-rigid.

Let K be a compact second countable abelian group into which Λ embeds
densely and assume that the conjugation action α : Γ y Λ, αg(s) = gsg−1,
extends to an action on K. For example, this can be obtained by considering
the embedding ι : Λ ↪→ TΛ̂ given by ι(s) = (ω(s))

ω∈Λ̂ and letting K = ι(Λ). We
will consider the action Γ y KΓ/Λ co-induced from the left translation action
Λ y K. This action is free, ergodic and pmp by Lemma 3.8.

Put X = KΓ/Λ. Since Λ is a normal subgroup of Γ, we can consider Λ as
a subgroup of X via the embedding Λ ↪→ KΓ/Λ given by g 7→ (tgt−1)t∈Γ/Λ.
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Let Λ denote the closure of Λ inside X under this embedding. Note that
Λ = {x ∈ X | xΛt = αt(xΛ) for all t ∈ Γ}, where α denotes the extension of the
conjugation action of Γ on Λ. Now, the restricted action Λ y X is simply given
by left multiplication of Λ, and the set of Λ-invariant functions in L∞(X) is
equal to L∞(X/Λ).

In order to apply Proposition 3.9, we need to show that the quotient map
π : X → X/Λ satisfies π(g · x) 6= π(x) almost everywhere for all g ∈ Γ− Λ. So,
for fixed g ∈ Γ− Λ, we need to show that

µ({x ∈ X | (g · x)x−1 ∈ Λ}) = 0.

Note that (g · x)x−1 ∈ Λ if and only if

Ω(Λt, g)xΛtg(xΛt)−1 = αt(Ω(Λ, g)xΛg(xΛ)−1) for all t ∈ Γ.

By Fubini’s theorem, it follows that {x ∈ X | (g ·x)x−1 ∈ Λ} is indeed a null-set.

Using Proposition 3.9, we conclude that A := L∞(X)Λ ∨ L(Λ) is a MASA in
M := L∞(X)o Γ.

Next, we will show that A ⊂M is regular. Since Λ is a normal subgroup of Γ, we
clearly have that ug normalizes A for all g ∈ Γ. Moreover, L∞(X) is generated
by the characters on the group X = KΓ/Λ so it is enough to check that these
normalize A. When ω is a character on KΓ/Λ, we have that h · ω = ω(h−1)ω
for all h ∈ Λ, since Λ acts by left multiplication on KΓ/Λ. Hence,

ωuhω
∗ = ω(h · ω∗)uh = ω(h)uh ∈ A for all h ∈ Λ.

We conclude that A is a Cartan subalgebra.

That A is not unitarily conjugate to the canonical Cartan subalgebra L∞(X)
follows from the fact that Λ is infinite. Indeed, let hn ∈ Λ be a sequence tending
to infinity. For fixed g ∈ Γ, we then have EL∞(X)(uhnug) = 0 for n so large
that hn escapes {g−1}. Thus it follows from Popa’s intertwining-by-bimodules
theorem, Theorem 2.12, that A ⊀ L∞(X). Since A and L∞(X) are Cartan
subalgebras, this means that they are not unitarily conjugate, by Theorem 2.13.

This finishes the proof of Theorem 3.3 (1).

To prove (2), assume instead that F =
⋂
g∈Γ gΛg−1 is finite. Again, we will

assume that Λ has infinite index in Γ. In order to construct an action Γ/F y X
satisfying the assumption of Proposition 3.9, we will work with the relative
profinite completion of Γ with respect to Λ. This is a construction introduced in
[Sc80] that generalizes the notion of a quotient group by a normal subgroup to
the case of an almost normal subgroup. We start by recalling this construction.
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Denote by Sym(Λ\Γ) the group of all permutations of the countable set Λ\Γ
endowed with the topology of pointwise convergence. We have a homomorphism
π : Γ→ Sym(Λ\Γ) induced by right multiplication on Λ\Γ. Note that ker(π) =⋂
g∈Γ gΛg−1 = F . Let G denote the closure of π(Γ) inside Sym(Λ\Γ) and let

K denote the closure of π(Λ). Then G is a locally compact group called the
relative profinite completion of Γ with respect to Λ. Note that if Λ is a normal
subgroup of Γ, then kerπ = Λ so that K = {e} and G ∼= Γ/Λ. However, since
we assumed that F is finite, we have that kerπ 6= Λ so that K is nontrivial.

Lemma 3.10 ([Sc80]). Let K < G be as above. Then K is a compact, open,
almost normal subgroup of G. Moreover, the map Λ\Γ → K\G given by
Λg 7→ Kπ(g) is a bijection.

Proof. Let λn ∈ Λ be any sequence and let {x1, . . . , xk} ⊂ Λ\Γ be a finite set.
Since the right action Λ y Λ\Γ has finite orbits, the set {π(λn)x1}n∈N is finite.
So, we can choose y1 ∈ Λ\Γ such that N1 := {n ∈ N | π(λn)x1 = y1} is an
infinite set. Inductively, we get y1, . . . , yk ∈ Λ\Γ and an infinite set Nk ⊂ N
such that π(λn)xi = yi for all i = 1, . . . , k and all n ∈ Nk. This means that
the sequence (π(λn))n∈N has an accumulation point. We conclude that π(Λ) is
precompact and hence K is compact.

Next, note that for ϕ ∈ G, we have that ϕ ∈ K if and only if ϕ(Λ) = Λ. Hence
K is open inside G. It now follows that K ∩ gKg−1 is an open subgroup of the
compact group K for all g ∈ G, hence of finite index. This means that K is
almost normal in G.

Finally, we show that the map Λ\Γ→ K\G : Λg 7→ Kπ(g) is bijective. Assume
that Kπ(g) = Kπ(h) for g, h ∈ Γ. Then π(gh−1)(Λ) = Λ so that Λg = Λh.
Thus, the map Λg 7→ Kπ(g) is injective. To show surjectivity, let ϕ ∈ G be
arbitrary and take a sequence (gn)n∈N ⊂ Γ such that π(gn) → ϕ. Since K is
open, we have that π(gn)ϕ−1 ∈ K for n large enough. But this means that
Kϕ = Kπ(gn).

We will consider the action of Γ on X := KΛ\Γ co-induced from the translation
action Λ y K given by λ · k = π(λ)k, λ ∈ Λ, k ∈ K. This is an ergodic pmp
action by Lemma 3.8, but not necessarily free since π need not be injective.
However, as in the proof of Lemma 3.8, we see that if Fix(g) has positive
measure, then g must belong to kerπ = F . So, by taking the quotient with the
finite normal subgroup F , we get a free ergodic pmp action Γ/F y X. Note
that Γ/F still has an infinite abelian almost normal subgroup, namely Λ/F . So,
we may replace Γ with Γ/F and assume that F is trivial so that Γ y X is a
free ergodic pmp action.
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Put M = L∞(X)o Γ and let A ⊂M be the subalgebra generated by L(Λ) and
the Λ-invariant functions L∞(X)Λ, as in Proposition 3.9. We will show that A
is a Cartan subalgebra of M that is not unitarily conjugate with L∞(X).

In order to show that A is a Cartan subalgebra, we will also consider the
action Gy KK\G co-induced from the left translation action K y K. Since
Λ\Γ = K\G via the bijection Λg 7→ Kπ(g), we get that the action of Γ on KΛ\Γ

is just the composition of π : Γ→ G and the co-induced action Gy KK\G, i.e.,

g · x = π(g) · x for g ∈ Γ, x ∈ KΛ\Γ = KK\G.

We first show that the co-induced action Gy KK\G is free, in the sense that
{x ∈ KK\G | StabG(x) = {e}} has measure 1. Here, StabG(x) denotes the
stabilizer subgroup of G, i.e.,

StabG(x) := {g ∈ G | g · x = x}.

Lemma 3.11. The action Gy KK\G, co-induced from the translation action
K y K, is free.

Proof. Let θ : K\G→ G be a section with θ(K) = e and let r : G→ K be the
unique map satisfying g = r(g)θ(Kg). Let Ω: K\G×G→ K be the associated
1-cocycle. Recall that the co-induced action is defined by the formula

(g · x)Kt = Ω(Kt, g) · xKtg, g ∈ G, x = (xKt)t∈K\G ∈ KK\G.

Clearly, K y KK\G is free since (k · x)K = kxK for k ∈ K, x ∈ KK\G. We
proceed by showing that the action is free on every right coset, i.e., that the set
Ug := {x ∈ KK\G | g · x ∈ K · x} has measure zero for all g ∈ G−K.

Fix g ∈ G−K. First, note that if g ·x = k ·x for some k ∈ K, then k is uniquely
determined from g and x by the formula k = (g · x)Kx−1

K = r(g)xKgx−1
K . Hence

Ug = {x ∈ KK\G | xKx−1
Kgr(g)−1g · x = x}.

To show that this set has measure zero, we will consider the sets

Uk,` = {x ∈ KK\G | xK = k, xKg = ` and k`−1r(g)−1g · x = x}

for fixed k, ` ∈ K. To show that Ug has measure zero, it is by Fubini’s Theorem
enough to show that Uk,` has measure zero for all k, ` ∈ K, when considered as
a subset of KK\G−{K,Kg}.

Fix k, ` ∈ K and put h = k`−1r(g)−1g. Note that Kh = Kg. If x ∈ Uk,`, then

xKt = (h · x)Kt = Ω(Kt, h)xKth for all t ∈ G.
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In particular, xKh2 = Ω(Kh, h)−1` which means that the Kh2 coordinate is
completely determined for all x ∈ Uk,`. Thus if Kh2 /∈ {K,Kg}, we get that
Uk,` ⊂ KK\G−{K,Kg} has measure zero as wanted.

It remains to check what happens if Kh2 ∈ {K,Kg}. Clearly, we cannot have
that Kh2 = Kh since h /∈ K, so we assume that h2 ∈ K. Fix t ∈ G such that
Kt /∈ {K,Kg}. Then also Kth /∈ {K,Kg} since Kg = Kh = Kh−1. Note that
Uk,` ⊂ {x | xKt = Ω(Kt, h)xKth}. This is a null-set in KK\G−{K,Kg} since
both Kth and Kt do not belong to {K,Kg}. If Kt = Kth, then Ω(Kt, h) 6= e,
so that Uk,` is even empty in this case.

We conclude that Ug is indeed a null-set. To finish the proof, we simply note
that

{x ∈ KK\G | StabG(x) 6= {e}} =
⋃

Kg∈K\G

{x | StabG(x) ∩Kg 6= {e}}

=
⋃

Kg∈K\G

Ug.

Since K\G is countable, we conclude that the action Gy KK\G is free.

The following folklore lemma is a key ingredient in our argument. It states that
we can identify the action K y KK\G with a translation action K y K × Y .
A complete proof can be found in [MRV13].

Lemma 3.12 ([MRV13, Lemma 10]). Let K be a compact second countable
group and let K y (X,µ) be a free pmp action on a standard probability space
(X,µ). Denote by m the Haar measure on K. There exists a standard probability
space (Y, η) and a Borel isomorphism

θ : K × Y → {x ∈ X | StabK(x) = {e}},

such that θ∗(m × η) = µ and such that θ(kh, y) = k · θ(h, y) for all k, h ∈ K,
y ∈ Y .

Using this identification, we can identify the Λ-invariant functions of L∞(KK\G)
with 1K ⊗ L∞(Y ). Denote by pY : K × Y → Y the projection onto the Y -
coordinate. In order to apply Proposition 3.9, we need to show that the map
ρ := pY ◦ θ−1 satisfies ρ(g · x) 6= ρ(x) for all g ∈ Γ− Λ and almost all x ∈ X.

Fix g ∈ Γ− Λ and put X0 = {x ∈ X | StabK(x) = {e}}. Given x ∈ X0, write
θ−1(x) = (k, y) and θ−1(g · x) = (k̃, ỹ) with k, k̃ ∈ K and y, ỹ ∈ Y . If y = ỹ,
then kk̃−1π(g−1) · x = x. Since g /∈ Λ, this implies that stabG(x) 6= {e}. So, we
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have shown that

{x ∈ X0 | ρ(g · x) = ρ(x)} ⊂ {x ∈ X | stabG(x) 6= {e}}.

Since the action G y X is free, by Lemma 3.11, it follows that {x ∈ X |
ρ(g · x) = ρ(x)} is a null-set. So, Γ y X satisfies the assumption in Proposition
3.9 and we conclude that A ⊂M is a MASA.

Next, we show that A ⊂M is regular. Since A is a MASA, it is enough to show
that the quasi-normalizer of A generates M , by [PS03, Theorem 2.7].

The quasi-normalizer QNM (A) of A insideM is defined to be the set of elements
x ∈M for which there exist finitely many elements x1, . . . , xn, y1, . . . , ym ∈M
such that

xA ⊂
n∑
i=1

Axi and Ax ⊂
m∑
j=1

yjA.

The fact that Λ is an almost normal subgroup of Γ easily implies that ug ∈
QNM (A), as shown in the following lemma.

Lemma 3.13. For every g ∈ Γ, we have that ug ∈ QNM (A).

Proof. Fix g ∈ Γ. Since Λ is almost normal, there exist finitely many elements
g1, . . . , gn ∈ Γ such that gΛ ⊂

⋃n
i=1 Λgi. Then

ugA ⊂
n∑
i=1

AugiL
∞(X)Λ =

n∑
i=1

AL∞(X)giΛg
−1
i ugi .

By Lemma 3.14, we also have (fj)mj=1 ⊂ L∞(X) such that

L∞(X)giΛg
−1
i
∩Λ ⊂

m∑
j=1

L∞(X)Λfj for all i = 1, . . . , n.

It follows that we have a finite set of elements x1, . . . , xN ∈ M such that
ugA ⊂

∑N
i=1Axi. Similarly, one finds a finite set of elements y1, . . . , yk ∈ M

such that Aug ⊂
∑k
j=1 yjA.

Lemma 3.14. Let Γ y (X,µ) be a free pmp action of a countable group Γ on
a standard probability space X. Assume that Λ < Γ is a normal subgroup of
finite index. Then L∞(X)Γ has finite index in L∞(X)Λ, in the sense that there
exist finitely many functions (fi)ni=1 ⊂ L∞(X)Λ such that

L∞(X)Λ ⊂
n∑
i=1

L∞(X)Γfi.
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Proof. Since Λ is a normal subgroup of Γ, we have an action of Γ/Λ on L∞(X)Λ.
Write L∞(X)Λ = L∞(Y ) for some standard probability space Y . Since Γ/Λ is
finite, we can partition Y into finitely many Borel sets Y1, . . . , Yn ⊂ Y such that
each Yi contains exactly one element from each orbit of the action Γ/Λ y Y .

We claim that the functions fi = 1Yi ∈ L∞(Y ), i = 1, . . . , n, will do the job.
Indeed, for any Borel subset B ⊂ Y , we have that

1B =
n∑
i=1

1B∩Yi =
n∑
i=1

1Γ·(B∩Yi)∩Yi ∈
n∑
i=1

L∞(Y )Γfi.

Since L∞(Y ) ∼= L∞(X)Λ and L∞(Y )Γ ∼= L∞(X)Γ, this finishes the proof.

Lemma 3.15. The subalgebra A ⊂M is regular.

Proof. Since A ⊂M is a MASA, we have that NM (A)′′ = QNM (A)′′ by [PS03,
Theorem 2.7]. It follows from Lemma 3.13 that ug ∈ NM (A)′′.

Using the identification KΛ\Γ ∼= K × Y from Lemma 3.12 and using the fact
that L∞(K) is generated by the characters on K, we see that L∞(KΛ\Γ) ∼=
L∞(K × Y ) is generated by the unitaries ω of the form

ω(k, y) = χ(k)f(y), k ∈ K, y ∈ Y,

where χ is a character on K and f is a unitary in L∞(Y ). These unitaries
normalize A since

ωuhω
∗ = ω(h · ω∗)uh = χ(h)uh for all h ∈ Λ.

So, we have that L∞(KΛ\Γ) ⊂ NM (A)′′. We conclude that NM (A)′′ = M .

We have now shown that A ⊂ M is a Cartan subalgebra. Exactly as in the
proof of (1), we see that A is not unitarily conjugate with L∞(X). This finishes
the proof of Theorem 3.3.



Chapter 4

A class of II1 factors with
exactly two group measure
space decompositions

This chapter is based on my joint publication with Stefaan Vaes [KV15], in
which we construct examples of II1 factors with a prescribed number of group
measure space decompositions. As stated in the introduction, we will here prove
Theorem A.

Theorem A. (1) For every integer n ≥ 0, there exist II1 factors M that have
exactly 2n group measure space Cartan subalgebras up to unitary conjugacy.

(2) For every integer n ≥ 1, there exist II1 factors M that have exactly n group
measure space Cartan subalgebras up to conjugacy by an automorphism of
M .

The II1 factors M in Theorem A are concretely constructed as follows. Let Γ
be any torsion-free nonelementary hyperbolic group and let β : Γ y (A0, τ0)
be any trace-preserving action on the amenable von Neumann algebra (A0, τ0)
with A0 6= C1 and Kerβ 6= {e}. We denote by (A0, τ0)Γ, or simply AΓ

0 ,
the infinite tensor product

⊗
Γ(A0, τ0) as defined in Section 2.1.6. We then

define (A, τ) = (A0, τ0)Γ and consider the action σ : Γ × Γ y (A, τ) given by
σ(g,h)(πk(a)) = πgkh−1(βh(a)) for all g, h, k ∈ Γ and a ∈ A0, where πk : A0 → A
denotes the embedding as the k’th tensor factor. Note that σ can be seen as
the co-induced action of β : Γ y A0 to Γ× Γ, when viewing Γ as the diagonal
subgroup of Γ× Γ.
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Our main result describes exactly all group measure space Cartan subalgebras
of the crossed product M = AΓ

0 o (Γ× Γ).

Theorem 4.1. Let M = AΓ
0 o (Γ× Γ) be as above. Up to unitary conjugacy,

all group measure space Cartan subalgebras B ⊂ M are of the form B = BΓ
0

where B0 ⊂ A0 is a group measure space Cartan subalgebra of A0 with the
following two properties: βg(B0) = B0 for all g ∈ Γ and A0 can be decomposed
as A0 = B0 o Λ0 with βg(Λ0) = Λ0 for all g ∈ Γ.

In Section 4.4, we actually prove a more general and more precise result, see
Theorem 4.7. In Section 4.5, we give concrete examples and computations, thus
proving Theorem A (see Theorem 4.24).

Our method relies on a technique of [PV09], using the so-called dual coaction
that is associated to a group measure space decomposition. Given a II1 factor
M as in Theorem 4.1 and an arbitrary group measure space decomposition
M = B o Λ, we can associate a dual coaction, i.e., a normal ∗-homomorphism
∆: M →M ⊗M given by ∆(bvs) = bvs⊗ vs for all b ∈ B, s ∈ Λ. By classifying
all possible such embeddings ∆: M →M ⊗M in terms of the initial structure
of M = AΓ

0 o (Γ × Γ), we are able to relate the “mysterious” decomposition
M = B o Λ with the “original” decomposition M = AΓ

0 o (Γ× Γ). This allows
us to classify all possible group measure space decompositions M = B o Λ.

Let us give a brief outline of the proof of Theorem 4.1. Given a II1 factor M
as in Theorem 4.1 and given the dual coaction ∆: M → M ⊗M associated
with an arbitrary group measure space decomposition M = B o Λ, Popa’s key
methods of malleability [Po03] and spectral gap rigidity [Po06b] for Bernoulli
actions allow to prove that ∆(L(Γ × Γ)) can be unitarily conjugated into
M ⊗ L(Γ × Γ). An ultrapower technique of [Io11], in combination with the
transfer-of-rigidity principle of [PV09], then shows that the “mysterious” group
Λ must contain two commuting non-amenable subgroups Λ1,Λ2. Note here that
the same combination of [Io11] and [PV09] was used in [CdSS15] to prove that
if Γ1,Γ2 are nonelementary hyperbolic groups and L(Γ1 × Γ2) ∼= L(Λ), then Λ
must be a direct product of two non-amenable groups. Once we know that Λ
contains two commuting non-amenable subgroups Λ1,Λ2, we use a combination
of methods from [Io10] and [IPV10] to prove that Λ1Λ2 ⊂ Γ × Γ. From that
point on, it is not so hard any more to entirely unravel the structure of B
and Λ. Throughout these arguments, we repeatedly use the crucial dichotomy
theorem of [PV11, PV12] saying that hyperbolic groups Γ are relatively strongly
solid: in arbitrary tracial crossed products M = P o Γ, if a von Neumann
subalgebra Q ⊂M is amenable relative to P , then either Q embeds into P , or
the normalizer of Q stays amenable relative to P .
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4.1 Properties of the dual coaction

Let M = B o Λ be any tracial crossed product von Neumann algebra and
denote by {vs}s∈Λ the canonical unitaries. To such a crossed product, we can
associate a normal ∗-homomorphism ∆: M →M ⊗M called the dual coaction,
defined by ∆(bvs) = bvs ⊗ vs for all b ∈ B and s ∈ Λ.

The following elementary lemma states that the only subalgebras A ⊂ B o Λ
that are invariant under ∆ are the ones coming from the crossed product
decomposition.

Lemma 4.2. A von Neumann subalgebra A ⊂ BoΛ satisfies ∆(A) ⊂ A⊗A if
and only if A = B0 o Λ0 for some von Neumann subalgebra B0 ⊂ B and some
subgroup Λ0 < Λ that leaves B0 globally invariant.

Proof. Let a ∈ A and write a =
∑
s∈Λ asvs with as ∈ B. Fix s ∈ Λ such that

as 6= 0 and define the normal linear functional ω on B o Λ by ω(x) = τ(xv∗sa∗s).
Then (ω ⊗ 1)∆(a) = ‖as‖22 vs. Since ∆(a) ∈ A ⊗ A, it follows that vs ∈ A.
Similarly, we define a linear functional ρ on B o Λ by ρ(x) = τ(xv∗s). Then
(1⊗ ρ)∆(a) = asvs ∈ A and it follows that as ∈ A. Since this holds for all s, we
conclude that A = B0 o Λ0 where B0 = A ∩B and Λ0 = {s ∈ Λ | vs ∈ A}.

The proof of the next result is almost identical to the proof of [IPV10, Lemma
7.2(4)]. For the convenience of the reader, we provide all details.

Proposition 4.3. Assume that (B, τ) is amenable. If Q ⊂ M is a von
Neumann subalgebra without amenable direct summand, then ∆(Q) is strongly
non-amenable relative to M ⊗ 1.

Proof. We first prove that the (M ⊗M)-M -bimodule

M⊗M
(
L2(M ⊗M) ⊗

M⊗1
L2(M ⊗M)

)
∆(M)

is weakly contained in the coarse (M ⊗M)-M -bimodule. Denoting by σ : M ⊗
M → M ⊗M the flip automorphism, this bimodule is isomorphic with the
(M ⊗M)-M -bimodule

M⊗ML
2(M ⊗M ⊗M)(id⊗σ)(∆(M)⊗1) .

So, it suffices to prove that the M -M -bimodule M⊗1L
2(M ⊗M)∆(M) is weakly

contained in the coarse M -M -bimodule. Noting that this M -M -bimodule is
isomorphic with a multiple of the M -M -bimodule M

(
L2(M)⊗B L2(M)

)
M
, the

result follows from the amenability of B.
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Assume now that ∆(Q)q is amenable relative to M ⊗ 1 for some nonzero
projection q ∈ ∆(Q)′ ∩M ⊗M . By the bimodule characterization of relative
amenability (see Proposition 2.11), this means that qL2(M ⊗M)q is weakly
contained in qL2(M ⊗M)⊗M⊗1 L

2(M ⊗M)q as q(M ⊗M)q-∆(Q)q-bimodules.

Take z ∈ Q such that ∆(z) is the support projection of E∆(Q)(q). Then z is a
nonzero central projection in Q. We will prove that Qz is amenable and thereby
reach a contradiction.

Clearly, ∆ embeds the trivial Qz-bimodule into the ∆(Q)-bimodule L2(∆(Qz)).
By Lemma 2.9 (2), it follows that the trivial Qz-bimodule is contained in

∆(Q)qL
2(M ⊗M)q∆(Q).

By our relative amenability assumption and the fact that q ≤ ∆(z), it follows
that the trivial Qz-bimodule is weakly contained in

∆(Q)(∆(z)L2(M ⊗M)⊗M⊗1 L
2(M ⊗M)∆(z))∆(Q).

By the first part of the proof, this bimodule is weakly contained in

∆(Q)(∆(z)L2(M ⊗M)⊗ L2(M)z)Q,

which is weakly contained in the coarse Qz-bimodule by Lemma 2.9 (1).

We conclude that the trivial Qz-bimodule is weakly contained in the coarse
Qz-bimodule and hence Qz is amenable.

4.2 Transfer of rigidity

Fix a trace-preserving action Λ y (B, τ) of a countable discrete group Λ and
put M = B o Λ. We denote by {vs}s∈Λ the canonical unitaries in L(Λ) ⊂M .
Whenever G is a family of subgroups of Λ, we say that a subset F ⊂ Λ is small
relative to G if F is contained in a finite union of subsets of the form gΣh where
g, h ∈ Λ and Σ ∈ G (see [BO08, Definition 15.1.1]).

Following the transfer of rigidity principle from [PV09, Section 3], we prove the
following theorem.

Theorem 4.4. Let Λ y (B, τ) be a trace-preserving action and put M = BoΛ.
Let ∆: M → M ⊗ M be the dual coaction given by ∆(bvs) = bvs ⊗ vs for
b ∈ B, s ∈ Λ. Let G be a family of subgroups of Λ. Let P,Q ⊂ M be two von
Neumann subalgebras satisfying

(1) ∆(P ) ≺M⊗M M ⊗Q,
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(2) P ⊀M B o Σ for all Σ ∈ G.

Then there exists a finite set x1, . . . , xn ∈M and a δ > 0 such that the following
holds: whenever F ⊂ Λ is small relative to G, there exists an element sF ∈ Λ−F
such that

n∑
i,k=1

‖EQ (xivsF x∗k) ‖22 ≥ δ .

Proof. Since ∆(P ) ≺M⊗M M ⊗Q, we can find a finite set x1, . . . , xn ∈M and
ρ > 0 such that

n∑
i,k=1

‖EM⊗Q ((1⊗ xi)∆(w)(1⊗ x∗k)) ‖22 ≥ ρ for all w ∈ U(P ) .

Given a subset F ⊂ Λ, we denote by PF the orthogonal projection of L2(M)
onto the closed linear span of {bvs | b ∈ B, s ∈ F}. Since P ⊀M B o Σ for all
Σ ∈ G, it follows from [Va10, Lemma 2.4] that there exists a net of unitaries
(wj)j∈J ⊂ U(P ) such that ‖PF (wj)‖2 → 0 for any set F ⊂ Λ that is small
relative to G. For each j ∈ J , write wj =

∑
s∈Λ w

j
svs with wjs ∈ B and compute

n∑
i,k=1

‖EM⊗Q ((1⊗ xi)∆(wj)(1⊗ x∗k)) ‖22 =
n∑

i,k=1

∥∥∥∥∥∑
s∈Λ

wjsvs ⊗ EQ(xivsx∗k)
∥∥∥∥∥

2

2

=
n∑

i,k=1

∑
s∈Λ

‖wjs‖22 ‖EQ(xivsx∗k)‖22 .

We now claim that the conclusion of the theorem holds with δ = ρ
2 . Indeed,

assume for contradiction that there exists a subset F ⊂ Λ that is small relative
to G such that

n∑
i,k=1

‖EQ (xivsx∗k) ‖22 < δ for all s ∈ Λ− F .

Put K = max{‖xi‖2‖x∗k‖22 | i, k = 1, . . . , n} and choose j0 ∈ J such that
‖PF (wj)‖22 =

∑
s∈F ‖wjs‖22 <

ρ
4Kn2 for all j ≥ j0. We then get for j ≥ j0

ρ ≤
∑
s∈Λ

n∑
i,k=1

‖wjs‖22 ‖EQ(xivsx∗k)‖22

≤ n2K
∑
s∈F
‖wjs‖22 +

∑
s∈Λ−F

‖wjs‖22 δ <
ρ

4 + ρ

2 ,

which is a contradiction.
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4.3 Embeddings of group von Neumann algebras

Following [Io10, Section 4] and [IPV10, Section 3], we define the height hΓ of
an element in a group von Neumann algebra L(Γ) as the absolute value of the
largest Fourier coefficient, i.e.,

hΓ(x) = sup
g∈Γ
|τ(xu∗g)| for x ∈ L(Γ) .

Whenever G ⊂ L(Γ), we write

hΓ(G) = inf{hΓ(x) | x ∈ G} .

In the following, we will view Γ as a subgroup of U(L(Γ)) by identifying Γ with
the canonical unitaries {ug}g∈Γ ⊂ L(Γ). Note that hΓ(Γ) = 1.

When Γ is an icc group and Λ is a countable group such that L(Λ) = L(Γ)
with hΓ(Λ) > 0, it was proven in [IPV10, Theorem 3.1] that there exists a
unitary u ∈ L(Γ) such that uTΛu∗ = TΓ. We need the following generalization.
For this, recall that a unitary representation is said to be weakly mixing if
{0} is the only finite-dimensional subrepresentation. Also recall the equivalent
characterizations of weak mixing from Proposition 2.17.

Theorem 4.5. Let Γ be a countable group and p ∈ L(Γ) a projection. Assume
that G ⊂ U(pL(Γ)p) is a subgroup satisfying the following properties.

(1) The unitary representation {Ad v}v∈G on L2(pL(Γ)p 	 Cp) is weakly
mixing.

(2) If g ∈ Γ and g 6= e, then G′′ 6≺ L(CΓ(g)).

(3) We have hΓ(G) > 0.

Then p = 1 and there exists a unitary u ∈ L(Γ) such that uGu∗ ⊂ TΓ.

Proof. Write M = L(Γ) and denote by ∆: M → M ⊗M : ∆(ug) = ug ⊗ ug
the comultiplication on L(Γ). We first prove that the unitary representation
on L2(∆(p)(M ⊗M)∆(p)	∆(Cp)) given by {Ad ∆(v)}v∈G is weakly mixing.
To prove this, assume that H ⊂ L2(∆(p)(M ⊗M)∆(p)) is a finite-dimensional
subspace satisfying ∆(v)H∆(v∗) = H for all v ∈ G. Writing P = G′′, it follows
that the closed linear span of H∆(pMp) is a ∆(P )-∆(pMp)-subbimodule of
L2(∆(p)(M ⊗M)∆(p)) that has finite right dimension. By [IPV10, Proposition
7.2] (using that P 6≺ L(CΓ(g)) for g 6= e), we get that H ⊂ ∆(L2(pMp)). Since
the unitary representation {Ad v}v∈G on L2(pMp	 Cp) is weakly mixing, we
conclude that H ⊂ C∆(p).
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Using the Fourier decomposition v =
∑
g∈Γ(v)gug, we get for every v ∈ G that

τ((v ⊗∆(v))(∆(v)∗ ⊗ v∗)) =
∑
g∈Γ
|(v)g|4 ≥ hΓ(v)4 ≥ hΓ(G)4 .

Defining X ∈M ⊗M ⊗M as the element of minimal ‖ · ‖2 in the weakly closed
convex hull of {(v ⊗∆(v))(∆(v)∗ ⊗ v∗) | v ∈ G}, we get that τ(X) ≥ hΓ(G)4,
so that X is nonzero, and that (v ⊗∆(v))X = X(∆(v)⊗ v) for all v ∈ G. Also
note that (p⊗∆(p))X = X = X(∆(p)⊗ p). By the weak mixing of both Ad v
and Ad ∆(v), it follows that XX∗ is multiple of p⊗∆(p) and that X∗X is a
multiple of ∆(p)⊗ p. We may thus assume that

XX∗ = p⊗∆(p) and X∗X = ∆(p)⊗ p .

Define Y = (1 ⊗ X)(X ⊗ 1). Note that Y ∈ M ⊗M ⊗M ⊗M is a partial
isometry with Y Y ∗ = p⊗ p⊗∆(p) and Y ∗Y = ∆(p)⊗ p⊗ p. Also,

Y = (v ⊗ v ⊗∆(v))Y (∆(v)∗ ⊗ v∗ ⊗ v∗) for all v ∈ G .

Since Y is nonzero, it follows that the unitary representation ξ 7→ (v⊗ v)ξ∆(v∗)
of G on the Hilbert space (p ⊗ p)L2(M ⊗M)∆(p) is not weakly mixing. We
thus find a finite-dimensional irreducible representation ω : G → U(Cn) and a
nonzero Z ∈Mn,1(C)⊗ (p⊗ p)L2(M ⊗M)∆(p) satisfying

(ω(v)⊗ v ⊗ v)Z = Z∆(v) for all v ∈ G .

By the weak mixing of Ad v and Ad ∆(v) and the irreducibility of ω, it follows
that ZZ∗ is a multiple of 1 ⊗ p ⊗ p and that Z∗Z is a multiple of ∆(p). So,
we may assume that ZZ∗ = 1 ⊗ p ⊗ p and that Z∗Z = ∆(p). It follows that
Z∗(Mn(C) ⊗ p ⊗ p)Z is an n2-dimensional globally {Ad ∆(v)}v∈G-invariant
subspace of ∆(p)(M ⊗M)∆(p). Again by weak mixing, this implies that n = 1.
But then, since τ(ZZ∗) = τ(Z∗Z), we also get that p = 1. So, Z ∈M ⊗M is a
unitary operator and ω : G → T is a character satisfying ω(v)(v ⊗ v)Z = Z∆(v)
for all v ∈ G.

Denoting by σ : M ⊗M →M ⊗M the flip map and using that σ ◦∆ = ∆, it
follows that Zσ(Z)∗ commutes with all v ⊗ v, v ∈ G. By weak mixing, Zσ(Z)∗
is a multiple of 1. Using that (∆⊗ id) ◦∆ = (id⊗∆) ◦∆, we similarly find that
(Z ⊗ 1)(∆⊗ id)(Z) is a multiple of (1⊗ Z)(id⊗∆)(Z). By [IPV10, Theorem
3.3], there exists a unitary u ∈M such that Z = (u∗ ⊗ u∗)∆(u). But then,

∆(uvu∗) = ω(v)uvu∗ ⊗ uvu∗ for all v ∈ G .

By [IPV10, Lemma 7.1], this means that uvu∗ ∈ TΓ for every v ∈ G.
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We end this section with some easy observations regarding the height hΓ. Note
that we can also define the height inside an amplification of a group von
Neumann algebra L(Γ)n := Mn(C)⊗ L(Γ) by the formula

hnΓ([xij ]ni,j=1) = max
i,j=1,...,n

hΓ(xij), xij ∈ L(Γ),

where we identify elements of L(Γ)n with n× n-matrices over L(Γ).

The following lemma shows that the property of having height bounded away
from zero is preserved under conjugacy by a partial isometry.

Lemma 4.6. Let v ∈ M1,n(C)⊗ L(Γ) be a nonzero partial isometry and put
p = vv∗ ∈ L(Γ). Given a bounded subset G ⊂ pL(Γ)p, we have that hΓ(G) > 0
if and only if hnΓ(v∗Gv) > 0.

Proof. Assume that there is a sequence (xk)k∈N ⊂ G such that hΓ(xk) → 0.
Since G is bounded, we may assume that ‖xk‖ ≤ 1 for all k.

Write v = (v1, . . . , vn) with vi ∈ L(Γ) and let vi =
∑
g∈Γ(vi)gug be the

Fourier decompositions. We also write xk in its Fourier decomposition xk =∑
g∈Γ(xk)gug. Then,

v∗xkv =
n∑

i,j=1
v∗i xkvj ⊗ eij =

n∑
i,j=1

∑
s,g,h∈Γ

(vi)g(xk)gsh−1(vj)hus ⊗ eij

and hence

hnΓ(v∗xkv) = max
i,j=1,...,n

sup
s∈Γ

∣∣∣ ∑
g,h∈Γ

(vi)g(xk)gsh−1(vj)h
∣∣∣.

Let ε > 0 be given and choose a finite set F ⊂ Γ such that
∑
g/∈F |(vi)g|2 ≤ ε2

9
for all i, j = 1, . . . , n. Then choose N ∈ N such that hΓ(xk) < ε

3|F |2 for k ≥ N .
For any s ∈ Γ and any i, j ∈ {1, . . . , n}, we have∣∣∣ ∑

g,h∈Γ
(vi)g(xk)g−1sh(vj)h

∣∣∣ ≤ ∑
g,h∈F

hΓ(xk) +
∣∣∣ ∑
g/∈F,h∈Γ

(vi)g(xk)g−1sh(vj)h
∣∣∣

+
∣∣∣ ∑
g∈F,h/∈F

(vi)g(xk)g−1sh(vj)h
∣∣∣. (4.1)

We claim that each of the three terms occurring in this expression are smaller
than ε

3 when k ≥ N . This is clear for the first term, by our choice of N . For
the second term, note that

∑
g/∈F,h∈Γ (vi)g(xk)g−1sh(vj)h is a Fourier coefficient
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of the element (1− PF )(v∗i )xkvj , where PF ∈ B(`2(Γ)) denotes the orthogonal
projection onto the linear span of {ug | g ∈ F}. Therefore,∣∣∣ ∑

g/∈F,h∈Γ

(vi)g(xk)g−1sh(vj)h
∣∣∣ ≤ ‖(1− PF )(v∗i )xkvj‖2 ≤

ε

3‖xk‖‖vj‖ ≤
ε

3 .

Similarly, one shows that the third term in (4.1) is smaller than ε
3 . From (4.1),

it now follows that

hnΓ(v∗xkv) = max
i,j=1,...,n

sup
s∈Γ

∣∣∣ ∑
g,h∈Γ

(vi)g(xk)g−1sh(vj)h
∣∣∣ ≤ ε for k ≥ N.

We conclude that hnΓ(v∗Gv) > 0 implies hΓ(G) > 0. The other implication is
shown analogously, using that v(v∗Gv)v∗ = pGp = G.

4.4 Proof of Theorem 4.1

Theorem 4.1 is an immediate consequence of the more general Theorem 4.7 that
we prove in this section. In order to make our statements entirely explicit, we
define a group measure space (gms) decomposition of a tracial von Neumann
algebra (M, τ) to be any pair (B,Λ) where B ⊂M is a maximal abelian von
Neumann subalgebra and Λ ⊂ U(M) is a subgroup normalizing B such that
M = (B ∪ Λ)′′ and EB(v) = 0 for all v ∈ Λ \ {1}. This of course amounts to
writing M = B o Λ for some free and trace-preserving action Λ y (B, τ).

We then say that two gms decompositions (Bi,Λi), i = 0, 1, of M are

• identical if B0 = B1 and TΛ0 = TΛ1;

• unitarily conjugate if there exists a unitary u ∈ U(M) such that uB0u
∗ =

B1 and uTΛ0u
∗ = TΛ1;

• conjugate by an automorphism if there exists an automorphism θ ∈
Aut(M) such that θ(B0) = B1 and θ(TΛ0) = TΛ1.

Recall from Section 2.6 the class Crss consisting of all non-amenable relatively
strongly solid groups.

Theorem 4.7. Let Γ be a torsion-free group in the class Crss. Let (A0, τ0)
be any amenable tracial von Neumann algebra with A0 6= C1 and β : Γ y
(A0, τ0) any trace-preserving action such that Kerβ is a nontrivial subgroup of
Γ. Define (A, τ) = (A0, τ0)Γ and denote by πk : A0 → A the embedding as the
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k’th tensor factor. Define the action σ : Γ×Γ y (A, τ) given by σ(g,h)(πk(a)) =
πgkh−1(βh(a)) for all g, k, h ∈ Γ and a ∈ A0. Denote M = Ao (Γ× Γ).

Up to unitary conjugacy, all gms decompositions of M are given as M = B o Λ
with B = BΓ

0 and Λ = Λ(Γ)
0 o(Γ×Γ) where A0 = B0oΛ0 is a gms decomposition

of A0 satisfying βg(B0) = B0 and βg(Λ0) = Λ0 for all g ∈ Γ.

Moreover, the gms decompositions of M associated with (B0,Λ0) and (B1,Λ1)
are

(1) unitarily conjugate iff (B0,Λ0) is identical to (B1,Λ1);

(2) conjugate by an automorphism of M iff there exists a trace-preserving
automorphism θ0 : A0 → A0 and an automorphism ϕ ∈ Aut(Γ) such that
θ0(B0) = B1, θ0(TΛ0) = TΛ1 and θ0 ◦ βg = βϕ(g) ◦ θ0 for all g ∈ Γ.

In Proposition 4.20 at the end of this section, we discuss when the Cartan
subalgebras B = BΓ

0 are unitarily conjugate and when they are conjugate by
an automorphism of M .

First, let us show that the decompositions M = B o Λ arising from β-invariant
gms decompositions of A0 as in Theorem 4.7 are indeed gms decompositions of
M .

Proposition 4.8. Let M = A o (Γ × Γ) be as in Theorem 4.7 and let A0 =
B0oΛ0 be a gms decomposition of A0 satisfying βg(B0) = B0 and βg(Λ0) = Λ0

for all g ∈ Γ. Put B = BΓ
0 and Λ = Λ(Γ)

0 o (Γ× Γ). Then M = B oΛ is a gms
decomposition of M .

Proof. Assume that (B0,Λ0) is a gms decomposition of A0 satisfying βg(B0) =
B0 and βg(Λ0) = Λ0 for all g ∈ Γ. Then, {βg}g∈Γ defines an action of Γ
by automorphisms of the group Λ0. We can co-induce this to the action of
Γ× Γ by automorphisms of the direct sum group Λ(Γ)

0 given by (g, h) · πk(v) =
πgkh−1(βh(v)) for all g, h, k ∈ Γ and v ∈ Λ0, where πk : Λ0 → Λ(Γ)

0 denotes the
embedding as the k’th direct summand. PuttingB := BΓ

0 and Λ := Λ(Γ)
0 o(Γ×Γ),

we have found the crossed product decomposition M = B o Λ. It remains to
check that the action σ : Λ y B is free. So, we need to show that for all b ∈ B
and all s ∈ Λ \ {e}, we have that

bx = σs(x)b for all x ∈ B ⇒ b = 0. (4.2)

To prove this, let s = (si)i∈Γ(g, h) ∈ Λ \ {e}, where (si)i∈Γ ∈ Λ(Γ)
0 and (g, h) ∈

Γ × Γ. Since Λ0 y B0 is free, clearly also Λ(Γ)
0 y BΓ

0 is free. So, if s ∈ Λ(Γ)
0
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we are done. Assume therefore that (g, h) 6= (e, e) and let b ∈ B \ {0}. Let
0 < ε < ‖b‖2

2 and choose a finite set F ⊂ Γ and b0 ∈ BF0 such that ‖b− b0‖2 < ε.
Assume that bx = σs(x)b for all x ∈ B. Then ‖b0x− σs(x)b0‖2 ≤ 2ε‖x‖ for all
x ∈ B. Let t ∈ Γ be such that t /∈ F ∪ g−1Fh and such that t 6= gth−1. We can
do this because Γ is icc and either g 6= e or h 6= e. Put x = πt(u) ∈ B, where
u ∈ U(B0) is a unitary with τ(u) = 0. Then

‖b0x− σs(x)b0‖2 = ‖b0‖2‖πt(u)− πgth−1(sgth−1 · βg(u))‖2

= 2‖b0‖2 ≥ 2(‖b‖2 − ε) > 2ε,

a contradiction. Hence (4.2) holds and the action σ : Λ y B is free.

In the rest of this section, we prove Theorem 4.7. So, we fix a group Γ
and an action σ : Γ × Γ y A as in the formulation of the theorem. We put
M = Ao (Γ× Γ).

We first prove the following lemma, which allows us to control commuting non-
amenable subalgebras of M . The proof relies on Popa’s spectral gap rigidity
for Bernoulli actions, generalized to the setting of co-induced actions such as σ.
We provide a full proof of these generalizations in Appendix A.

Lemma 4.9. Let (N, τ) be a tracial factor and let Q1, Q2 ⊂ N ⊗ M be
commuting von Neumann subalgebras that are strongly non-amenable relative to
N ⊗ 1. Then Q1 ∨Q2 can be unitarily conjugated into N ⊗ L(Γ× Γ).

Proof. Since A is amenable, we get that Q1 and Q2 are strongly non-amenable
relative to N ⊗ (A o L) whenever L < Γ × Γ is an amenable subgroup. For
every g ∈ Γ, we denote by Stab g ⊂ Γ× Γ the stabilizer of g under the left-right
translation action Γ× Γ y Γ. We also write Stab{g, h} = Stab g ∩ Stabh.

We start by proving that Q2 6≺ N ⊗ (A o Stab g) for all g ∈ Γ. Assume the
contrary. Whenever h 6= g, the group Stab{g, h} ∼= CΓ(h−1g) is amenable
since Γ is torsion-free and in class Crss. By Proposition 2.16 it follows that,
Q2 6≺ N⊗(AoStab{g, h}). Also by Proposition 2.16, along with [Va07, Remark
3.8], we can take projections q ∈ Q2 and p ∈ N ⊗ (AoStab g), a nonzero partial
isometry v ∈ q(N ⊗M)p and a normal unital ∗-homomorphism

θ : qQ2q → p(N ⊗ (Ao Stab g))p

such that xv = vθ(x) for all x ∈ qQ2q and such that, inside N ⊗ (Ao Stab g),
we have that θ(qQ2q) is non-amenable relative to N ⊗ A and we have that
θ(qQ2q) 6≺ N ⊗ (Ao Stab{g, h}) whenever h 6= g.
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Write P := θ(qQ2q)′∩p(N⊗M)p. By Lemma A.4, P ⊂ p(N⊗(AoStab g))p. In
particular, v∗v ∈ p(N ⊗ (Ao Stab g))p and we may assume that v∗v = p. Since
Stab g ∼= Γ, we have Stab g ∈ Crss and Lemma 2.29 implies that P ≺ N ⊗ A.
Conjugating with v and writing e = vv∗ ∈ (Q′2 ∩ (N ⊗M))q, we find that
e(Q′2 ∩ (N ⊗ M))e ≺ N ⊗ A. Since Q1 ⊂ Q′2 ∩ (N ⊗ M), it follows that
Q1 ≺ N ⊗A. By Proposition 2.16, this contradicts the strong non-amenability
of Q1 relative to N ⊗ A. So, we have proved that Q2 6≺ N ⊗ (Ao Stab g) for
all g ∈ Γ.

Since Q1 is strongly non-amenable relative to N ⊗A and since Q2 6≺ N ⊗ (Ao
Stab g) for all g ∈ Γ, it follows from Theorem A.2 that u∗Q2u ⊂ N ⊗ L(Γ× Γ)
for some unitary u ∈ N ⊗M . Since u∗Q2u 6≺ N ⊗ L(Stab g) for all g ∈ Γ, it
follows from Lemma A.4 that also u∗Q1u ⊂ N ⊗ L(Γ× Γ). This concludes the
proof of the lemma.

We now also fix a gms decomposition M = B o Λ. We view Λ as a subgroup of
U(M) and denote by ∆: M →M ⊗M the associated dual coaction given by
∆(b) = b⊗ 1 for all b ∈ B and ∆(v) = v ⊗ v for all v ∈ Λ.

Lemma 4.10. Writing Q1 = L(Γ × {e}) and Q2 = L({e} × Γ), we have
∆(Q2) ≺M⊗M M ⊗Qi for either i = 1 or i = 2.

Proof. By Proposition 4.3, ∆(Q1) and ∆(Q2) are strongly non-amenable relative
to M ⊗ 1. So by Lemma 4.9, we can take a unitary v ∈M ⊗M such that

v∗∆(Q1 ∨Q2)v ⊂M ⊗ L(Γ× Γ) .

We therefore have the two commuting subalgebras v∗∆(Q1)v and v∗∆(Q2)v
inside M ⊗ L(Γ× Γ). If v∗∆(Q1)v was amenable relative to both M ⊗Q1 and
M ⊗Q2, then it would be amenable relative to M ⊗ 1 by [PV11, Proposition
2.7], which is not the case. Hence v∗∆(Q1)v is non-amenable relative to either
M ⊗ Q1 or M ⊗ Q2. Assuming that v∗∆(Q1)v is non-amenable relative to
M ⊗Q1, Lemma 2.29 implies that ∆(Q2) ≺M ⊗Q1.

In the following three lemmas, we prove that Λ contains two commuting non-
amenable subgroups Λ1,Λ2 < Λ. The idea is as follows. Lemma 4.10 shows
that essentially, ∆(Q1) ⊂M ⊗Qi and ∆(Q2) ⊂M ⊗Qj , for {i, j} = {1, 2}. If
we assume that these inclusions literally hold, then the same argument as in the
proof of Lemma 4.2 gives two subgroups Λ1,Λ2 < Λ such that Q1 ⊂ BoΛ1 and
Q2 ⊂ B oΛ2. Then Λ1 and Λ2 are non-amenable and commute. Unfortunately,
this simple argument completely breaks down if we merely have an intertwining
as in Lemma 4.10 instead of a literal inclusion.
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The method that we use to produce such commuting subgroups is taken from
[Io11] and our proofs of Lemmas 4.11, 4.12 and 4.13 are very similar to the proof
of [Io11, Theorem 3.1]. The same method was also used in [CdSS15, Theorem
3.3]. For completeness, we provide all details.

Combining Lemma 4.10 with our transfer of rigidity theorem (Theorem 4.4),
we get the following.

Lemma 4.11. Denote by G the family of all amenable subgroups of Λ. For
either i = 1 or i = 2, there exists a finite set x1, . . . , xn ∈M and a δ > 0 such
that the following holds: whenever F ⊂ Λ is small relative to G, we can find an
element vF ∈ Λ− F such that

n∑
k,j=1

‖EQi(xkvFx∗j )‖22 ≥ δ .

Lemma 4.12. There exists a decreasing sequence of non-amenable subgroups
Λn < Λ such that Qi ≺M B o (

⋃
n CΛ(Λn)) for either i = 1 or i = 2, where

CΛ(Λn) denotes the centralizer of Λn inside Λ.

Proof. As in Lemma 4.11, we let G denote the family of all amenable subgroups
of Λ. We denote by I the set of subsets of Λ that are small relative to G.
We order I by inclusion and choose a cofinal ultrafilter U on I, meaning that
{S ∈ I | S ⊃ S0} ∈ U for all S0 ∈ I. Consider the ultrapower von Neumann
algebra MU and the ultrapower group ΛU . Every v = (vF )F∈I ∈ ΛU can be
viewed as a unitary in MU and as explained at the end of Section 2.1.6, ΛU and
BU are in crossed product position inside MU .

Assume without loss of generality that i = 1 in Lemma 4.11 and denote by
v = (vF )F∈I the element of ΛU that we found in Lemma 4.11. Denote by K ⊂
L2(MU ) the closed linear span of MvM and by PK the orthogonal projection
from L2(MU ) onto K. Put Σ = Λ ∩ vΛv−1. We claim that Q2 ≺M B o Σ.

Assume the contrary. This means that we can find a sequence of unitaries
an ∈ U(Q2) such that ‖EBoΣ(xany)‖2 → 0 for any x, y ∈ M . We prove that
〈anξa∗n, η〉 → 0 as n → ∞ for all ξ, η ∈ K. For this, it suffices to prove that
〈anxvx′a∗n, yvy′〉 → 0 for all x, x′, y, y′ ∈M . First, note that for all z ∈M , we
have EM (v∗zv) = EM (v∗EBoΣ(z)v) by definition of the subgroup Σ. Hence

|〈anxvx′a∗n, yvy′〉| = |τ(EM (v∗y∗anxv)x′a∗ny′∗)|

= |τ(EM (v∗EBoΣ(y∗anx)v)x′a∗ny′∗)|

≤ ‖x′‖‖y′‖‖EBoΣ(y∗anx)‖2 → 0
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as wanted.

Next, Lemma 4.11 provides a finite set L ⊂M such that∑
x,y∈L

‖EQU1 (xvy∗)‖22 6= 0.

In particular, we can take x, y ∈ L such that EQU1 (xvy∗) 6= 0. Put ξ =
PK(EQU1 (xvy∗)). We claim that ξ 6= 0. Since EQU1 (xvy∗) 6= 0, we get that
‖xvy∗ − EQU1 (xvy∗)‖2 < ‖xvy∗‖2. Since xvy∗ ∈ K, it follows that

‖xvy∗ − ξ‖2 = ‖PK(xvy∗ − EQU1 (xvy∗))‖2 < ‖xvy∗‖2.
Hence ξ 6= 0.

Since K is an M -bimodule and since Q1 commutes with Q2, we have that
aξ = ξa for all a ∈ Q2. In particular, 〈anξa∗n, ξ〉 = ‖ξ‖22 > 0 in contradiction
with the fact that 〈anξa∗n, ξ〉 → 0. This proves that Q2 ≺M B o Σ.

It remains to show that there exists a decreasing sequence of subgroups Λn < Λ
such that for all n we have Λn /∈ G, and such that Σ =

⋃
n CΛ(Λn). For every

T ⊂ I, we denote by ΛT the subgroup of Λ generated by {vF v−1
F ′ | F, F ′ ∈ T }.

An element w ∈ Λ belongs to Σ if and only if there exists a T ∈ U such that w
commutes with ΛT . Enumerating Σ = {w1, w2, . . .}, choose Sn ∈ U such that
wn commutes with ΛSn . Then put Tn := S1 ∩ . . . ∩ Sn ∈ U . By construction,
Σ =

⋃
n CΛ(ΛTn). It remains to prove that ΛT /∈ G for all T ∈ U .

Fix T ∈ U and assume that ΛT ∈ G. For fixed F ′ ∈ T , we have that
{vF | F ∈ T } ⊂ ΛT vF ′ . So, F1 := {vF | F ∈ T } is small relative to G.
Define T ′ ⊂ I by T ′ = {F ∈ I | F1 ⊂ F}. Since U is a cofinal ultrafilter
and T ∈ U , we get T ∩ T ′ 6= ∅. So we can take F ∈ T with F1 ⊂ F . Then,
vF ∈ Λ−F ⊂ Λ−F1 but also vF ∈ F1. This being absurd, we have shown that
ΛT /∈ G for all T ∈ U .

Lemma 4.13. There exist two commuting non-amenable subgroups Λ1 and
Λ2 inside Λ. Moreover, whenever Λ1,Λ2 < Λ are commuting non-amenable
subgroups, L(Λ1Λ2) can be unitarily conjugated into L(Γ× Γ).

Proof. From Lemma 4.12, we find a decreasing sequence of non-amenable
subgroups Λn < Λ such that Qi ≺M B o (

⋃
n CΛ(Λn)) for either i = 1 or i = 2.

Since Qi has no amenable direct summand, we get that the group
⋃
n CΛ(Λn)

is non-amenable. It follows that CΛ(Λn) is non-amenable for some n ∈ N. Then
Λ1 := Λn and Λ2 := CΛ(Λn) are commuting non-amenable subgroups of Λ.

Whenever Λ1,Λ2 < Λ are commuting non-amenable subgroups, it follows from
Lemma 4.9 applied to N = C1 that L(Λ1) ∨ L(Λ2) can be unitarily conjugated
into L(Γ× Γ).
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From now on, we fix commuting non-amenable subgroups Λ1,Λ2 < Λ. By
Lemma 4.13, after a unitary conjugacy, we may assume that L(Λ1Λ2) ⊂ L(Γ×Γ).

Lemma 4.14. If N ⊂ L(Γ× Γ) is an amenable von Neumann subalgebra such
that the normalizer NL(Γ×Γ)(N)′′ contains L(Λ1Λ2), then N is atomic. Also,
L(Λ1Λ2)′ ∩ L(Γ× Γ) is atomic.

Proof. Using [Va10, Proposition 2.6], we find a projection q in the center of the
normalizer of N such that Nq ≺f L(Γ)⊗ 1 and N(1− q) ⊀ L(Γ)⊗ 1.

Assume for contradiction that q 6= 1. Since N(1 − q) ⊀ L(Γ) ⊗ 1 and since
Γ ∈ Crss, it follows that L(Λi)(1− q) is amenable relative to L(Γ)⊗ 1 for both
i = 1, 2. It then follows from [PV11, Proposition 2.7] that L(Λ1)(1− q) is non-
amenable relative to 1⊗ L(Γ), hence L(Λ2)(1− q) ≺ 1⊗ L(Γ) by Lemma 2.29.
By Proposition 2.16, we get a nonzero projection q0 ≤ 1− q that commutes with
L(Λ2) such that L(Λ2)q0 is amenable relative to 1⊗L(Γ). But since L(Λ2)q0 is
also amenable relative to L(Γ)⊗ 1, it follows from [PV11, Proposition 2.7] that
L(Λ2)q0 is amenable relative to C1, hence a contradiction.

We conclude that q = 1 so that N ≺f L(Γ) ⊗ 1. By symmetry, we also
get that N ≺f 1 ⊗ L(Γ). By [DHI16, Lemma 2.8], it follows that N ≺f
(L(Γ)⊗ 1) ∩ (1⊗ L(Γ)) = C1 so that N is atomic.

To prove that L(Λ1Λ2)′ ∩ L(Γ × Γ) is atomic, it suffices to prove that every
abelian von Neumann subalgebra D ⊂ L(Λ1Λ2)′∩L(Γ×Γ) is atomic, by [BO08,
Corollary F.14]. But then D is amenable and its normalizer contains L(Λ1Λ2),
so that D is indeed atomic.

The proof of the following lemma is essentially contained in the proof of [OP03,
Proposition 12]. It roughly states that after a unitary conjugacy, L(Λ1) ⊂
L(Γ)⊗1 and L(Λ2) ⊂ 1⊗L(Γ), up to amplifications and up to switching around
Λ1 and Λ2.

Lemma 4.15. For every minimal projection e ∈ L(Λ1Λ2)′ ∩ L(Γ× Γ), there
exist projections p ∈Mn(C)⊗ L(Γ), q ∈ L(Γ)⊗Mm(C) and a partial isometry
u ∈Mn,1(C)⊗ L(Γ× Γ)⊗Mm,1(C) such that u∗u = e, uu∗ = p⊗ q and such
that either

uL(Λ1)u∗ ⊂ p(Mn(C)⊗ L(Γ))p⊗ q and uL(Λ2)u∗ ⊂ p⊗ q(L(Γ)⊗Mm(C))q,

or

uL(Λ1)u∗ ⊂ p⊗ q(L(Γ)⊗Mm(C))q and uL(Λ2)u∗ ⊂ p(Mn(C)⊗ L(Γ))p⊗ q.
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Proof. By [PV11, Proposition 2.7], L(Λ2)e is non-amenable relative to either
L(Γ)⊗ 1 or 1⊗L(Γ). Assume that L(Λ2)e is non-amenable relative to L(Γ)⊗ 1.
By Lemma 2.29, L(Λ1)e ≺ L(Γ)⊗ 1. Take a projection p ∈Mn(C)⊗ L(Γ), a
nonzero partial isometry v ∈ (p⊗ 1)(Mn,1(C)⊗L(Γ× Γ))e and a unital normal
∗-homomorphism θ : L(Λ1)→ p(Mn(C)⊗ L(Γ))p such that

(θ(x)⊗ 1)v = vx for all x ∈ L(Λ1) .

Since Γ ∈ Crss and Λ1 is non-amenable, the relative commutant θ(L(Λ1))′ ∩
p(Mn(C)⊗L(Γ))p is atomic. Cutting with a minimal projection, we may assume
that this relative commutant equals Cp.

Write P := L(Λ1)′ ∩ L(Γ × Γ) and note that v∗v, e ∈ P with v∗v ≤ e. Since
L(Λ2) ⊂ P , we have that Z(P ) ⊂ L(Λ1Λ2)′ ∩ L(Γ × Γ). It follows that
Z(P )e = Ce. So, ePe is a II1 factor and we can take partial isometries
v1, . . . , vm ∈ ePe with viv

∗
i ≤ v∗v for all i and

∑m
i=1 v

∗
i vi = e. Define u ∈

Mn,1(C)⊗ L(Γ× Γ)⊗Mm,1(C) given by u =
∑m
i=1 vvi ⊗ ei1.

Since vPv∗ commutes with θ(L(Λ1)) ⊗ 1, we have vPv∗ ⊂ p ⊗ L(Γ) and
we can define the normal ∗-homomorphism η : v∗vPv∗v → L(Γ) such that
vyv∗ = p⊗ η(y) for all y ∈ v∗vPv∗v. By construction, u∗u = e and uu∗ = p⊗ q
where q ∈ L(Γ) ⊗Mm(C) is the projection given by q =

∑m
i=1 η(viv∗i ) ⊗ eii.

Defining the ∗-homomorphism

η̃ : ePe→ q(L(Γ)⊗Mm(C))q : η̃(y) =
m∑

i,j=1
η(viyv∗j )⊗ eij

and using that L(Λ2)e ⊂ ePe, we get that

uL(Λ1)u∗ = θ(L(Λ1))⊗ q and uL(Λ2)u∗ = p⊗ η̃(L(Λ2)e) .

This concludes the proof of the lemma.

Recall from Section 4.3 the notion of height of an element in a group von
Neumann algebra (here, L(Γ×Γ)), as well as the height of a subset of Ł(Γ×Γ).
The proof of the following lemma is very similar to the proof of [Io10, Theorem
4.1].

Lemma 4.16. For every projection p ∈ L(Λ1Λ2)′ ∩ L(Γ × Γ), we have that
hΓ×Γ(Λ1Λ2p) > 0.

Proof. It suffices to prove that hΓ×Γ(Λ1Λ2p) > 0 for all minimal projections
p ∈ L(Λ1Λ2)′ ∩ L(Γ × Γ). Indeed, if p ∈ L(Λ1Λ2)′ ∩ L(Γ × Γ) is an arbitrary
projection, then we find a minimal projection p0 ≤ p since L(Λ1Λ2)′ ∩ L(Γ× Γ)



PROOF OF THEOREM 4.1 67

is atomic. If hΓ×Γ(Λ1Λ2p0) > 0 then it follows from Lemma 4.6 that also
hΓ×Γ(Λ1Λ2p) > 0.

So, we fix a minimal projection p ∈ L(Λ1Λ2)′ ∩ L(Γ× Γ). Using the conjugacy
of Lemma 4.15 along with Lemma 4.6, we see that the heights of Λ1p and Λ2p
do not interact, so that it suffices to prove that hΓ×Γ(Λip) > 0 for i = 1, 2. By
symmetry, it is enough to prove this for i = 1.

Assume for contradiction that hΓ×Γ(Λ1p) = 0. Take a sequence vn ∈ Λ1 such
that hΓ×Γ(vnp)→ 0. For every finite subset S ⊂ Γ× Γ, we denote by PS the
orthogonal projection of L2(M) onto the linear span of L2(A)ug, g ∈ S. We
claim that for every sequence of unitaries wn ∈ L(Γ×Γ), every a ∈M	L(Γ×Γ)
and every finite subset S ⊂ Γ× Γ, we have that

lim
n
‖PS(pvnawn)‖2 = 0 .

Since PS(x) =
∑
g∈S EA(xu∗g)ug, it suffices to prove that ‖EA(pvnawn)‖2 → 0

for all a ∈ M 	 L(Γ × Γ). Every such a can be approximated by a linear
combination of elements of the form a0ug with a0 ∈ A 	 C1 and g ∈ Γ × Γ.
So, we may assume that a ∈ A	 C1. Such an element a can be approximated
by a linear combination of elementary tensors, so that we may assume that
a =

⊗
i∈G ai for some finite nonempty subset G ⊂ Γ and elements ai ∈ A0	C1.

Note that σg(a) ⊥ σh(a) whenever g, h ∈ Γ× Γ and g · G 6= h · G (where we use
the left-right translation action of Γ× Γ on Γ). We also assume that ‖a‖ ≤ 1.

Let ε > 0. By Lemma 4.15, we have that either L(Λ1)p ≺f L(Γ) ⊗ 1 or
L(Λ1)p ≺f 1⊗ L(Γ). So, we can take a finite subset F0 ⊂ Γ such that, writing
F = Γ× F0 ∪ F0 × Γ, we have ‖pv − PF (pv)‖2 ≤ ε for all v ∈ Λ1. Then,

‖EA(pvnawn)− EA(PF (pvn)awn)‖2 ≤ ε

for all n, so that in order to prove the claim, it suffices to prove that
‖EA(PF (pvn)awn)‖2 → 0. Put κ = 2|F0||G|2. Note that for every h ∈ Γ × Γ,
the set {g ∈ F | g · G = h · G} contains at most κ elements. Using the Fourier
decomposition for elements in L(Γ× Γ), we have

EA(PF (pvn)awn) =
∑
g∈F

(pvn)g (wn)g−1 σg(a) .

Thus, for all h ∈ Γ× Γ, we have

|〈EA(PF (pvn)awn), σh(a)〉| ≤ κhΓ×Γ(pvn) .
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But then, using the Cauchy-Schwarz inequality, we get that

‖EA(PF (pvn)awn)‖22 ≤
∑
h∈F

|〈EA(PF (pvn)awn) , (pvn)h (wn)h−1 σh(a)〉|

≤ κhΓ×Γ(pvn)
∑

h∈Γ×Γ
|(pvn)h| |(wn)h−1 |

≤ κhΓ×Γ(pvn) ‖pvn‖2 ‖wn‖2 ≤ κhΓ×Γ(pvn)→ 0 .

So, the claim is proved.

Put δ = ‖p‖2/4. Because Γ ∈ Crss and B ⊂ M is a Cartan subalgebra, we
have that B ≺f A. By Lemma 2.14, we have B 6≺ L(Γ× Γ) and we can take a
unitary b ∈ U(B) such that ‖EL(Γ×Γ)(b)‖2 ≤ δ. Since B ≺f A, we can take a
finite subset S ⊂ Γ× Γ such that ‖pd− PS(pd)‖2 ≤ δ for all d ∈ U(B) (using
[Va10, Lemma 2.3]). For every n, we have that vnbv∗n ∈ U(B). Therefore,

‖pvnbv∗n − PS(pvnbv∗n)‖2 ≤ δ

for all n. Since ‖EL(Γ×Γ)(b)‖2 ≤ δ, writing b1 = b− EL(Γ×Γ)(b), we get

‖PS(pvnbv∗n)− PS(pvnb1v∗n)‖2 ≤ δ .

By the claim above, we can fix n large enough such that ‖PS(pvnb1v∗n)‖2 ≤ δ.
It follows that

‖p‖2 = ‖pvnbv∗n‖2 ≤ 3δ < ‖p‖2 ,

which is absurd. So, we have shown that hΓ×Γ(pΛ1) > 0 and the lemma is
proved.

Having height bounded away from zero as in Lemma 4.16 allows us to deduce
that Λ1Λ2 sits as a subgroup of Γ× Γ, up to unitary conjugacy.

Lemma 4.17. There exists a unitary u ∈ L(Γ × Γ) such that uΛ1Λ2u
∗ ⊂

T(Γ× Γ). Also, the unitary representation {Ad v}v∈Λ1Λ2 is weakly mixing on
L2(M)	 C1.

Proof. Write Λ0 = Λ1Λ2. Denote the action of Λ on B by γv(b) = vbv∗ for all
v ∈ Λ, b ∈ B. Define K < Λ as the virtual centralizer of Λ0 inside Λ, i.e., K
consists of all v ∈ Λ such that the set {wvw−1 | w ∈ Λ0} is finite. Equivalently,
K consists of the elements that commute with a finite index subgroup of Λ0.
Define B0 ⊂ B as the von Neumann algebra generated by the unital ∗-algebra
consisting of all b ∈ B such that {γv(b) | v ∈ Λ0} spans a finite-dimensional
subspace of B. Note that B0 is globally invariant under γv, v ∈ K. Viewing
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M as the crossed product M = B o Λ, we have by construction that the
unitary representation {Ad v}v∈Λ0 is weakly mixing on L2(M)	 L2(B0 oK)
(see Lemma 2.23).

For every g ∈ Γ, define Stab g < Γ × Γ to be the stabilizer of g under the
left-right action Γ× Γ y Γ. We have L(Λ0) ⊂ L(Γ× Γ) and L(Λ0) 6≺ L(Stab g)
for all g ∈ Γ, since Stab g ∼= Γ is in class Crss. Since B0 oK quasi-normalizes
L(Λ0), Lemma A.4 yields B0 o K ⊂ L(Γ × Γ). By definition of K, we can
take a decreasing sequence of finite index subgroups Λ0,n < Λ0 such that
K =

⋃
n CΛ(Λ0,n). It follows from Lemma 4.14 that L(K) is contained in a

hyperfinite von Neumann algebra. So, K is amenable and thus also B0 oK
is amenable. Since B0 oK is normalized by Λ0, it follows from Lemma 4.14
that B0 oK is atomic. So, K is a finite group and B0 is atomic. We can then
take a minimal projection p ∈ B0 oK and finite index subgroups Λ3 < Λ1 and
Λ4 < Λ2 such that p commutes with Λ3Λ4.

Lemmas 4.14, 4.15 and 4.16 apply to the commuting non-amenable subgroups
Λ3,Λ4 < Λ. So, by Lemma 4.16, we get that hΓ×Γ(pΛ3Λ4) > 0. By construction,
the unitary representation {Ad v}v∈Λ3Λ4 is weakly mixing on pL(Γ× Γ)p	 Cp.
For every g ∈ Γ× Γ with g 6= e, the centralizer CΓ×Γ(g) is either amenable or
of the form Γ × L or L × Γ with L < Γ amenable, because Γ is torsion-free
and in class Crss (see end of Section 2.6). Therefore, L(Λ3Λ4) 6≺ L(CΓ×Γ(g)) for
all g 6= e. It then first follows from Theorem 4.5 that p = 1, so that we could
have taken Λ3 = Λ1 and Λ4 = Λ2, and then also that there exists a unitary
u ∈ L(Γ× Γ) such that uΛ1Λ2u

∗ ⊂ T(Γ× Γ).

Since we also proved that B0 o K = C1, it follows as well that the unitary
representation {Ad v}v∈Λ1Λ2 is weakly mixing on L2(M)	 C1.

Lemma 4.18. Whenever Λ2 ⊂ T({e} × Γ) is a non-amenable subgroup, we
have M ∩ Λ′2 = L(Γ)⊗ 1.

Proof. Define Γ2 < Γ such that TΛ2 = T({e} × Γ2). Then Γ2 is non-amenable
andM ∩Λ′2 = M ∩L({e}×Γ2)′. Since Γ is torsion-free and in class Crss, we even
have that Γ2 < Γ is relatively icc. HenceM∩L({e}×Γ2)′ ⊂ Ao(Γ×{e}). Since
the action {e} × Γ2 y A is weakly mixing, it follows that M ∩ L({e} × Γ2)′ ⊂
L(Γ× {e}). So, M ∩ Λ′2 ⊂ L(Γ)⊗ 1 and the converse inclusion is obvious.

Lemma 4.19. There exist commuting subgroups H1, H2 < Λ and a unitary
u ∈M such that Λi < Hi for i = 1, 2 and uTH1H2u

∗ = T(Γ× Γ).

Proof. By Lemma 4.17, after a unitary conjugacy, we may assume that Λ1,Λ2 <
Λ are commuting non-amenable subgroups with Λ1Λ2 ⊂ T(Γ× Γ). By Lemma
4.15, we have that L(Λ1) ≺ L(Γ)⊗ 1 and L(Λ2) ≺ 1⊗ L(Γ), after exchanging
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Λ1 and Λ2 if needed. This means that Λ1 ⊂ T(Γ× F ) and Λ2 ⊂ T(F × Γ) for
some finite subset F ⊂ Γ, by Lemma 2.15. Since Γ is torsion-free, it follows
that Λ1 ⊂ T(Γ× {e}) and Λ2 ⊂ T({e} × Γ).

Denote by {γv}v∈Λ the action of Λ on B. Define H1 < Λ as the virtual
centralizer of Λ2 inside Λ. So, H1 consists of all v ∈ Λ that commute with a
finite index subgroup of Λ2. Similarly, define B1 as the von Neumann algebra
generated by the ∗-algebra consisting of all b ∈ B such that γv(b) = b for all
v in a finite index subgroup of Λ2. Since finite index subgroups of Λ2 are
non-amenable, it follows from Lemma 4.18 that B1 oH1 ⊂ L(Γ)⊗ 1. We also
find that

L(Γ)⊗ 1 ⊂ L(Λ2)′ ∩ (B o Λ) ⊂ B1 oH1 .

So, B1 oH1 = L(Γ) ⊗ 1. In particular, the subgroups H1,Λ2 < Λ commute.
Because Γ ∈ Crss and B1 ⊂ L(Γ) ⊗ 1 is normalized by H1, it follows that B1
is atomic. Since Λ1 < H1, the unitaries v ∈ Λ1Λ2 normalize B1. By Lemma
4.17, they induce a weakly mixing action on B1. Since B1 is atomic, this forces
B1 = C1. We conclude that L(H1) = L(Γ)⊗ 1.

We now apply Lemmas 4.14, 4.15 and 4.16 to the commuting non-amenable
subgroups H1,Λ2 < Λ. We conclude that hΓ(H1) > 0. Since L(H1) = L(Γ)⊗ 1,
the group H1 is icc. So, the action {Ad v}v∈H1 on L(Γ) is weakly mixing. Since
for g 6= e, the group CΓ(g) is amenable, also L(H1) 6≺ L(CΓ(g)). So, by Theorem
4.5, there exists a unitary u1 ∈ L(Γ) such that (u1⊗ 1)H1(u∗1⊗ 1) = T(Γ×{e}).

Applying the same reasoning as above to the virtual centralizer of H1 inside Λ,
we find a subgroup H2 < Λ, containing Λ2 and commuting with H1, and we
find a unitary u2 ∈ L(Γ) such that (1 ⊗ u2)H2(1 ⊗ u∗2) ⊂ T({e} o Γ). So, we
get that

(u1 ⊗ u2)H1H2(u∗1 ⊗ u∗2) = T(Γ× Γ) .

Finally, we are ready to prove Theorem 4.7. As mentioned above, Theorem 4.1
is a direct consequence of Theorem 4.7.

Proof of Theorem 4.7. We already showed in Proposition 4.8 that any β-
invariant gms decomposition A0 = B0 o Λ0 of A0 gives rise to a gms
decomposition M = BΓ

0 o (Λ(Γ)
0 o (Γ × Γ)) of M . We now show that all

gms decompositions are of this form.

Assume that (B,Λ) is an arbitrary gms decomposition ofM . By Lemma 4.19 and
after a unitary conjugacy, we have Γ× Γ ⊂ TΛ. Denoting by ∆: M →M ⊗M
the dual coaction associated with (B,Λ) and given by ∆(b) = b ⊗ 1 for all
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b ∈ B and ∆(v) = v⊗ v for all v ∈ Λ, this means that ∆(u(g,h)) is a multiple of
u(g,h) ⊗ u(g,h) for all (g, h) ∈ Γ× Γ.

Denote A0,e := πe(A0) ⊂ A and observe that A0,e commutes with all u(g,g),
g ∈ Kerβ. Then, ∆(A0,e) commutes with all u(g,g) ⊗ u(g,g), g ∈ Kerβ. Since Γ
is a torsion-free group in Crss, the nontrivial normal subgroup Kerβ < Γ must be
non-amenable and thus relatively icc. It follows that the unitary representation
{Adu(g,g)}g∈Ker β is weakly mixing on L2(M) 	 L2(A0,e). This implies that
∆(A0,e) ⊂ A0,e ⊗A0,e.

By Lemma 4.2, we get a crossed product decomposition A0 = B0 o Λ0 such
that πe(B0) = B ∩ A0,e and πe(Λ0) = Λ ∩ A0,e. For every g ∈ Γ, we have
that u(g,g) ∈ TΛ. So, u(g,g) normalizes both B and A0,e, so that βg(B0) = B0.
Also, u(g,g) normalizes both Λ and A0,e, so that βg(Λ0) = Λ0. For every g ∈ Γ,
we have that u(g,e) ∈ TΛ so that u(g,e) normalizes B and Λ. It follows that
πg(B0) ⊂ B and πg(Λ0) ⊂ Λ for all g ∈ Γ. We conclude that

BΓ
0 ⊂ B and Λ(Γ)

0 o (Γ× Γ) ⊂ TΛ . (4.3)

Since A0 is generated by B0 and Λ0, we get that M is generated by BΓ
0 and

Λ(Γ)
0 o (Γ × Γ). Since M is also the crossed product of B and Λ, it follows

from (4.3) that BΓ
0 = B and TΛ(Γ)

0 o (Γ × Γ) = TΛ. In particular, B0 ⊂ A0
must be maximal abelian. So, (B0,Λ0) is a gms decomposition of A0 that
is {βg}g∈Γ-invariant, while the gms decomposition (B,Λ) of M is unitarily
conjugate to the gms decomposition associated with (B0,Λ0).

It remains to prove statements (1) and (2). Take {βg}g∈Γ-invariant gms
decompositions (B0,Λ0) and (B1,Λ1) of A0. Denote by (B,Λ) and (B′,Λ′) the
associated gms decompositions of M .

To prove (1), assume that u ∈ M is a unitary satisfying uBu∗ = B′ and
uTΛu∗ = TΛ′. It follows that for all g ∈ Γ × Γ, we have uugu∗ ∈ U(A)uϕ(g)
where ϕ ∈ Aut(Γ × Γ). Write u =

∑
h∈Γ×Γ ahuh with ah ∈ A for the Fourier

decomposition of u. It follows that {ϕ(g)−1hg | g ∈ Γ × Γ} is a finite set
whenever ah 6= 0. Since Γ× Γ is icc, it follows that ah can only be nonzero for
one h ∈ Γ× Γ. So u is of the form u = ahuh. Since uh normalizes both B and
Λ, we may replace u with uu∗h so that u ∈ U(A).

For each g ∈ Γ, we define Eg : A → A0 by Eg(x) = π−1
g (Eπg(A0)(x)), x ∈ A.

Let (gn)n∈N be a sequence in Γ that tends to infinity, and let b ∈ B0. Since
(πgn(b))n∈N is a asymptotically central in A, we get that

B1 3 Egn(uπgn(b)u∗)→ b ,
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hence B0 ⊂ B1. By symmetry, it follows that B0 = B1. Similarly, we see
that TΛ0 = TΛ1 so we conclude that (B0,Λ0) and (B1,Λ1) are identical gms
decompositions of A0.

To prove (2), assume that θ ∈ Aut(M) is an automorphism satisfying θ(B) = B′

and θ(TΛ) = TΛ′. Define the commuting subgroups Λ1,Λ2 < Λ′ such that
θ(T(Γ× {e})) = TΛ1 and θ(T({e} × Γ)) = TΛ2. Applying Lemma 4.19 to the
gms decomposition (B′,Λ′) of M and these commuting subgroups Λ1,Λ2 < Λ′,
we find commuting subgroups H1, H2 < Λ′ and a unitary u ∈ M such that
Λi < Hi for i = 1, 2 and uTH1H2u

∗ = T(Γ × Γ). Since Γ × {e} and {e} × Γ
are each other’s centralizer inside Λ and since θ(TΛ) = TΛ′, we must have that
Λi = Hi for i = 1, 2.

Writing θ1 = Adu ◦ θ, we have proved that θ1(T(Γ × Γ)) = T(Γ × Γ). This
equality induces an automorphism of Γ×Γ. Since Γ is a torsion-free group in Crss,
all automorphisms of Γ× Γ are either of the form (g, h) 7→ (ϕ1(g), ϕ2(h)) or of
the form (g, h) 7→ (ϕ1(h), ϕ2(g)) for some automorphisms ϕi ∈ Aut(Γ). Indeed,
ϕ(Γ× {e}) and ϕ({e} × Γ) are commuting non-amenable subgroups of Γ× Γ.
Since Γ is in Crss, it follows that ϕ(Γ×{e}) ≺ L(Γ)⊗1 or ϕ(Γ×{e}) ≺ 1⊗L(Γ).
In the first case, we get by Lemma 2.15 that ϕ(Γ×{e}) ⊂ T(Γ×F ) for some finite
subset F ⊂ Γ. Since Γ is torsion-free, it follows that ϕ(Γ× {e}) ⊂ T(Γ× {e}).
In the second case, we get instead that ϕ(Γ × {e}) ⊂ T({e} × Γ). Reasoning
similarly with ϕ({e} × Γ), we see that ϕ has the desired form.

The formulas ζ(u(g,h)) = u(h,g) and ζ(πk(a)) = πk−1(βk(a)) for all g, h, k ∈ Γ
and a ∈ A0 define an automorphism ζ ∈ Aut(M) satisfying ζ(B′) = B′ and
ζ(Λ′) = Λ′. So composing θ with ζ if necessary, we may assume that we have
ϕ1, ϕ2 ∈ Aut(Γ) such that θ1(u(g,h)) ∈ Tu(ϕ1(g),ϕ2(h)) for all g, h ∈ Γ. We still
have that the gms decompositions (θ1(B), θ1(Λ)) and (B′,Λ′) ofM are unitarily
conjugate.

Because u(g,g) commutes with πe(A0) for all g ∈ Kerβ, the unitary
representation on L2(M)	 C1 given by {Adu(ϕ1(g),ϕ2(g))}g∈Ker β is not weakly
mixing. There thus exists a k ∈ Γ such that ϕ1(g)k = kϕ2(g) for all g in a finite
index subgroup of Kerβ. So after replacing θ1 by (Adu(e,k))◦θ1, we may assume
that ϕ1(g) = ϕ2(g) for all g in a finite index subgroup of Kerβ. Let K < Kerβ
denote this finite index subgroup, i.e., K = {g ∈ Kerβ | ϕ1(g) = ϕ2(g)}.

We now show that in fact, K = Kerβ. Assume that this is not the case. Then
there exists g ∈ Kerβ such that ϕ1(g) 6= ϕ2(g). Since Kerβ < Γ is relatively
icc and since K < Kerβ has finite index, we have that the set

{ϕ1(h)(ϕ1(g)ϕ2(g)−1)ϕ1(h)−1 | h ∈ K} = {ϕ1(hgh−1)ϕ2(hg−1h−1) | h ∈ K}
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is infinite. On the other hand, for h, k ∈ K we have that

ϕ1(hgh−1)ϕ2(hg−1h−1) = ϕ1(kgk−1)ϕ2(kg−1k−1) ⇔

ϕ1(kg−1k−1hgh−1) = ϕ2(kg−1k−1hgh−1) ⇔

ϕ1(g−1k−1hg) = ϕ2(g−1k−1hg) ⇔

g−1k−1hg ∈ K ⇔

g−1hgK = g−1kgK.

Since K < Kerβ has finite index, we have reached a contradiction. We conclude
that K = Kerβ, i.e., ϕ1(g) = ϕ2(g) for all g ∈ Kerβ. Since Kerβ is a normal
subgroup of Γ, it follows that ϕ1(k)ϕ2(k)−1 commutes with ϕ1(g) for all k ∈ Γ
and g ∈ Kerβ. Using again that Kerβ is relatively icc, it follows that ϕ1 = ϕ2
and we denote this automorphism by ϕ.

Taking the commutant of the unitaries u(g,g), g ∈ Kerβ, it follows that
θ1(πe(A0)) = πe(A0). We define the automorphism θ0 ∈ Aut(A0) such that
θ1◦πe = πe◦θ0. Since θ1(u(g,g)) ∈ Tu(ϕ(g),ϕ(g)) and since πe◦βg = Adu(g,g)◦πe,
we get that θ0 ◦βg = βϕ(g) ◦ θ0 for all g ∈ Γ. It follows that (θ0(B0), θ0(Λ0)) is a
{βg}g∈Γ-invariant gms decomposition of A0. The associated gms decomposition
of M is (θ1(B), θ1(Λ)). This gms decomposition of M is unitarily conjugate
with the gms decomposition (B′,Λ′). It then follows from (1) that θ0(B0) = B1
and θ0(TΛ0) = TΛ1.

We finally prove a criterion for when the possible gms Cartan subalgebras of M
are conjugate.

Proposition 4.20. Under the same hypotheses and with the same notations
as in Theorem 4.7, if (B0,Λ0) and (B1,Λ1) are {βg}g∈Γ-invariant gms
decompositions of A0, then the associated Cartan subalgebras of M given by BΓ

0
and BΓ

1 are

(1) unitarily conjugate iff B0 = B1 ;

(2) conjugate by an automorphism of M iff there exists a trace-preserving
automorphism θ0 : A0 → A0 and an automorphism ϕ ∈ Aut(Γ) such that
θ0(B0) = B1 and θ0 ◦ βg = βϕ(g) ◦ θ0 for all g ∈ Γ.

Proof. To prove (1), it suffices to prove that BΓ
0 6≺ BΓ

1 if B0 6= B1. Take a
unitary u ∈ U(B0) such that u 6∈ B1. Then ‖EB1(u)‖2 < 1. Let {g1, g2, . . .}
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be an enumeration of Γ and define the sequence of unitaries (wn) ⊂ U(BΓ
0 ) by

wn = πgn+1(u)πgn+2(u) · · · πg2n(u). We will show that

‖EBΓ
1
(xwny)‖2 → 0 for all x, y ∈M, (4.4)

so that BΓ
0 ⊀ BΓ

1 . It is enough to prove this for x = au(g,h) and y = bu(s,t) with
g, h, s, t ∈ Γ and a, b ∈ A. Moreover, we may assume that a, b ∈ πF (AF0 ) for
some finite subset F ⊂ Γ. If (g, h) 6= (s, t)−1, we have that ‖EBΓ

1
(xwny)‖2 = 0

for all n, so we assume that (g, h) = (s, t)−1. Then

‖EBΓ
1
(xwny)‖2 = ‖EBΓ

1
(aσ(g,h)(wn)σ(g,h)(b))‖2.

Choose n0 so large that gn does not belong to the finite set F ∪ g−1Fh for
n ≥ n0. For n ≥ n0, we then have that

‖EBΓ
1
(aσ(g,h)(wn)σ(g,h)(b))‖2 = ‖EBΓ

1
(aσ(g,h)(b))‖2‖EBΓ

1
(σ(g,h)(wn))‖2

≤ ‖a‖‖b‖‖EB1(βh(u))‖n2 → 0,

since ‖EB1(βh(u))‖2 < 1. So, (4.4) holds and this finishes the proof of (1).

To prove (2), denote by (B,Λ) and (B′,Λ′) the gms decompositions of M
associated with (B0,Λ0) and (B1,Λ1). Assume that θ ∈ Aut(M) satisfies
θ(B) = B′. Then, (B′, θ(Λ)) is a gms decomposition of M . By Theorem 4.7,
(B′, θ(Λ)) is unitarily conjugate with the gms decomposition associated with
a {βg}g∈Γ-invariant gms decomposition (B2,Λ2) of A0. By (1), we must have
B2 = B1. So the gms decompositions associated with (B0,Λ0) and (B1,Λ2)
are conjugate by an automorphism of M . By Theorem 4.7(2) there exists an
automorphism θ0 ∈ Aut(A0) as in (2).

4.5 Examples of II1 factors with a prescribed num-
ber of group measure space decompositions

For every amenable tracial von Neumann algebra (A0, τ0) and for every trace-
preserving action of Γ = F∞ on (A0, τ0) with nontrivial kernel, Theorem
4.7 gives a complete description of all gms decompositions of the II1 factor
M = AΓ

0 o (Γ× Γ) in terms of the Γ-invariant gms decompositions of A0.

In this section, we construct a family of examples where these Γ-invariant gms
decompositions of A0 can be explicitly determined. In particular, this gives
a proof of Theorem A. We will construct A0 of the form A0 = L∞(K) oH1
where H1 is a countable abelian group and H1 ↪→ K is an embedding of H1 as
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a dense subgroup of the compact second countable group K. Note that we can
equally view K as Ĥ2 where H2 is a countable abelian group and the embedding
H1 ↪→ Ĥ2 is given by a bicharacter Ω: H1 ×H2 → T that is non-degenerate: if
g ∈ H1 and Ω(g, h) = 1 for all h ∈ H2, then g = e ; if h ∈ H2 and Ω(g, h) = 1
for all g ∈ H1, then h = e.

We consider the crossed product L∞(Ĥ2)oH1 associated with the left translation
action of H1 on Ĥ2. We can then view L∞(Ĥ2) oH1 as being generated by
the group von Neumann algebras L(H1) and L(H2) ∼= L∞(Ĥ2), with canonical
unitaries {ug}g∈H1 and {uh}h∈H2 satisfying uguh = Ω(g, h)uhug for all g ∈ H1,
h ∈ H2.

Given a subset S ⊂ H1, we define S⊥ < H2 to be the orthogonal complement
with respect to Ω, i.e., the set of elements h ∈ H2 such that Ω(g, h) = 1 for
all g ∈ S. Similarly, we define T⊥ < H1 when T ⊂ H2. We call a direct sum
decomposition H1 = S1 ⊕ T1 admissible if the closures of S1, T1 in Ĥ2 give a
direct sum decomposition of Ĥ2.

Lemma 4.21. H1 = S1 ⊕ T1 is admissible if and only if there exists a direct
sum decomposition H2 = S2 ⊕ T2 satisfying S1 = S⊥2 , S2 = S⊥1 , T2 = T⊥1 and
T1 = T⊥2 .

Proof. Assume that H1 = S1 ⊕ T1 is admissible. Since H2 = ̂̂
H2 and since

Ĥ2 = S1 ⊕ T1, we have that H2 = S2 ⊕ T2 where S2 := T̂1 and T2 := Ŝ1. Note
that

S2 = {h2 ∈ H2 | ϕ(h2) = 1 for all ϕ ∈ S1}

= {h2 ∈ H2 | Ω(s1, h2) = 1 for all s1 ∈ S1} = S⊥1 ,

and similarly T2 = T⊥1 . Moreover, since Ĥ2 = S1 ⊕ T1 we have that S⊥2 =
(S⊥1 )⊥ = S1 ∩H1 = S1 and similarly T⊥2 = T1.

For the converse, assume instead that H2 = S2 ⊕ T2 with S1 = S⊥2 , S2 = S⊥1 ,
T2 = T⊥1 and T1 = T⊥2 . If ϕ ∈ S1 ∩ T1, we have that ϕ(h2) = 1 for all
h2 ∈ S⊥1 = S2 and all h2 ∈ T⊥1 = T2. Since H2 = S2 ⊕ T2, this implies
that ϕ = 1. So, Ĥ2 = S1 ⊕ T1 and thus the decomposition H1 = S1 ⊕ T1 is
admissible.

Proposition 4.22. Let L1, L2 be torsion-free abelian groups and L1 ↪→ L̂2 a
dense embedding. Put Γ0 = SL(3,Z) and Hi = L3

i . Consider the natural action
of Γ0 on the direct sum embedding H1 ↪→ Ĥ2, defining the trace-preserving
action {βg}g∈Γ0 of Γ0 on A0 = L∞(Ĥ2)oH1.
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Whenever L1 = P1 ⊕ Q1 is an admissible direct sum decomposition with
corresponding L2 = P2 ⊕ Q2, put Si = P 3

i , Ti = Q3
i and define B0 =

L(S1) ∨ L(S2), Λ0 = T1T2.

Then (B0,Λ0) is a {βg}g∈Γ0-invariant gms decomposition of A0. Every
{βg}g∈Γ0-invariant gms decomposition of A0 is of this form for a unique
admissible direct sum decomposition L1 = P1 ⊕Q1.

Proof. Let L1 = P1 ⊕Q1 be an admissible direct sum decomposition, and let
B0 = L(S1) ∨ L(S2) and Λ0 = T1T2 be as above. We clearly have a crossed
product decomposition A0 = B0 o Λ0 satisfying βg(B0) = B0, βg(Λ0) = Λ0 for
all g ∈ Γ0. Using the relation uguh = Ω(g, h)uhug for g ∈ H1, h ∈ H2 and the
fact that S1 = S⊥2 , S2 = S⊥1 , we also get that B0 ⊂ A0 is maximal abelian. So,
(B0,Λ0) is a {βg}g∈Γ0-invariant gms decomposition of A0.

Conversely, let (B0,Λ0) be an arbitrary {βg}g∈Γ0 -invariant gms decomposition
of A0. Define the subgroup Γ1 < Γ0 as

Γ1 = Γ0 ∩

1 ∗ ∗
0 ∗ ∗
0 ∗ ∗


We also put H(1)

1 = L1 ⊕ 0⊕ 0. Because L1 is torsion-free, the following holds.

• a · g = g for all a ∈ Γ1 and g ∈ H(1)
1 .

• Γ1 · g is infinite for all g ∈ H1 \H(1)
1 .

• ΓT1 · h is infinite for all h ∈ H2 \ {0}, where ΓT1 denotes the transpose of Γ1.

From these observations, it follows that L(H(1)
1 ) is equal to the algebra of

Γ1-invariant elements in A0 and that L(H(1)
1 ) is also equal to the algebra of

elements in A0 that are fixed by some finite index subgroup of Γ1. Since both
B0 and Λ0 are globally Γ0-invariant, it follows that L(H(1)

1 ) = B
(1)
0 oΛ(1)

0 where
Λ(1)

0 < Λ0 denotes the subgroup of elements that are fixed by a finite index
subgroup of Γ1 and B(1)

0 ⊂ B0 denotes the von Neumann subalgebra generated
by elements that are fixed by a finite index subgroup of Γ1.

We similarly consider H(2)
1 = 0⊕ L1 ⊕ 0 and H(3)

1 = 0⊕ 0⊕ L1. We conclude
that L(H(i)

1 ) = B
(i)
0 oΛ(i)

0 for all i = 1, 2, 3. The subgroups H(1)
1 , H

(2)
1 and H(3)

1
generate H1 and H1 is abelian. So, “everything” commutes and we conclude
that L(H1) = B1oΛ1 for some von Neumann subalgebra B1 ⊂ B0 and subgroup
Λ1 < Λ0. A similar reasoning applies to L∞(Ĥ2) = L(H2) and we get that
L(H2) = B2 o Λ2 for B2 ⊂ B0 and Λ2 < Λ0.
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Since L(H1)L(H2) is ‖ · ‖2-dense in A0 and L(H1) ∩ L(H2) = C1, we get that
Λ1Λ2 = Λ0 = Λ2Λ1 and Λ1 ∩ Λ2 = {e}. It then follows that for all bi ∈ Bi and
si ∈ Λi, i = 1, 2, we have that EB0(b1vs1b2vs2) equals zero unless s1 = e and
s2 = e, in which case, we get b1b2. We conclude that B1B2 is ‖ · ‖2-dense in
B0.

For every x ∈ L(Hi) and g ∈ Hi, we denote by (x)g = τ(xu∗g) the g-th Fourier
coefficient of x. Comparing Fourier decompositions, we get for all xi ∈ L(Hi)
that

x1x2 = x2x1 iff Ω(g, h) = 1 whenever g ∈ H1, h ∈ H2, (x1)g 6= 0, (x2)h 6= 0 .
(4.5)

Since Bi ⊂ L(Hi) and since B1, B2 commute, we obtain from (4.5) subgroups
Si ⊂ Hi such that Ω(g, h) = 1 for all g ∈ S1, h ∈ S2 and such that Bi ⊂ L(Si).
Since B1B2 is dense in B0, it follows that B0 ⊂ L(S1) ∨ L(S2). Since L(S1) ∨
L(S2) is abelian andB0 is maximal abelian, we conclude that B0 = L(S1)∨L(S2).
Thus, Bi = L(Si) for i = 1, 2. When g ∈ S⊥2 , the unitary ug commutes with
L(S2), but also with L(S1) because L(S1) = B1 ⊂ L(H1) and L(H1) is abelian.
Since B0 is maximal abelian, we get that g ∈ S1. So, S1 = S⊥2 and similarly
S2 = S⊥1 .

The next step of the proof is to show that Λ0 is abelian, i.e., that Λ1 and Λ2
are commuting subgroups of Λ0. Put Ti = Hi/Si. Since S1 = S⊥2 and S2 = S⊥1 ,
we have the canonical dense embeddings T1 ↪→ Ŝ2 and T2 ↪→ Ŝ1. Viewing
L∞(Ŝ1 × Ŝ2) = L(S1) ∨ L(S2) as a Cartan subalgebra of A0, the associated
equivalence relation is given by the orbits of the action

T1 × T2 y Ŝ1 × Ŝ2 : (g, h) · (y, z) = (h · y, g · z) ,

where the actions on the right, namely T1 y Ŝ2 and T2 y Ŝ1, are given by
translation. Indeed, the automorphisms induced by the normalizing unitaries
{ug}g∈H1 and {uh}h∈H2 of L∞(Ŝ1 × Ŝ2) are exactly given by the above action.
But viewing B0 = L(S1) ∨ L(S2), the same equivalence relation is given by
the orbits of the action Λ0 y Ŝ1 × Ŝ2. So, we have an orbit equivalence
Φ: Ŝ1×Ŝ2 → Ŝ1×Ŝ2 satisfying Φ((T1×T2)·x) = Λ0·Φ(x) for x ∈ Ŝ1×Ŝ2. To such
an orbit equivalence, we can associate a 1-cocycle ω : (T1×T2)× (Ŝ1× Ŝ2)→ Λ0
defined by the formula

Φ(t · x) = ω(t, x) · Φ(x) for t ∈ T1 × T2, x ∈ Ŝ1 × Ŝ2.

The 1-cocycle relation for ω states that

ω(t1t2, x) = ω(t1, t2 · x)ω(t2, x) for t1, t2 ∈ T1 × T2, x ∈ Ŝ1 × Ŝ2.

By construction (see also [Si55, Lemma 2.2 and Corollary 2.3]), for all g ∈ H1,
h ∈ H2 and s ∈ Λ0, the support of the Fourier coefficient EB0(v∗suguh) is the
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projection in L∞(Ŝ1 × Ŝ2) given by the set

{(y, z) ∈ Ŝ1 × Ŝ2 | ω((gS1, hS2), (y, z)) = s} .

Since L(H1) = B1 o Λ1, we get for all g ∈ T1 that the projection given by the
set

{(y, z) ∈ Ŝ1 × Ŝ2 | ω((g, e), (y, z)) = s}

belongs to B1 for all s ∈ Λ0 and is zero for s /∈ Λ1. This means that the map
(y, z) 7→ ω((g, e), (y, z)) only depends on the first variable and takes values in
Λ1 a.e. Reasoning similarly for h ∈ T2, we find ωi : Ti × Ŝi → Λi such that

ω((g, e), (y, z)) = ω1(g, y) and ω((e, h), (y, z)) = ω2(h, z) a.e.

Writing (g, h) = (g, e)(e, h) and (g, h) = (e, h)(g, e), the 1-cocycle relation for ω
implies that

ω1(g, h · y)ω2(h, z) = ω2(h, g · z)ω1(g, y) (4.6)

for all g ∈ T1, h ∈ T2 and a.e. y ∈ Ŝ1, z ∈ Ŝ2.

Define the subgroup G1 < Λ1 by

G1 = {s ∈ Λ1 | ∀t ∈ Λ2, tst
−1 ∈ Λ1} .

Similarly, define G2 < Λ2. Note that G1 and G2 are normal subgroups of Λ0
since Λ0 = Λ1Λ2. Since Λ1 ∩ Λ2 = {e}, we also have that G1 and G2 commute.
Rewriting (4.6) as

ω1(g, y)ω2(h, z) = ω2(h, g · z)ω1(g, h−1 · y) ,

we find that for all g ∈ T1, h ∈ T2 and a.e. y, y′ ∈ Ŝ1, z ∈ Ŝ2,

ω2(h, z)−1 ω1(g, y′)−1 ω1(g, y)ω2(h, z) ∈ Λ1 .

Since L(H2) = B2oΛ2, the essential range of ω2 equals Λ2. It thus follows that

ω1(g, y′)−1 ω1(g, y) ∈ G1

for all g ∈ T1 and a.e. y, y′ ∈ Ŝ1. For every g ∈ T1, we choose δ1(g) ∈ Λ1
such that ω1(g, y) = δ1(g) on a non-negligible set of y ∈ Ŝ1. We conclude
that ω1(g, y) = δ1(g)µ1(g, y) with µ1(g, y) ∈ G1 a.e. We similarly decompose
ω2(h, z) = δ2(h)µ2(h, z).

With these decompositions of ω1 and ω2 and using that G1, G2 are commuting
normal subgroups of Λ0, it follows from (4.6) that for all g ∈ T1, h ∈ T2,
the commutator δ2(h)−1δ1(g)−1δ2(h)δ1(g) belongs to G1G2, so that it can be
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uniquely written as η1(g, h)η2(g, h)−1 with ηi(g, h) ∈ Gi. It then follows from
(4.6) that

µ1(g, h · y) = δ2(h) η1(g, h)µ1(g, y) δ2(h)−1 , (4.7)

µ2(h, g · z) = δ1(g) η2(g, h)µ2(h, z) δ1(g)−1 ,

almost everywhere. Since S1 < H1 is torsion-free, Ŝ1 has no finite quotients
and thus no proper closed finite index subgroups. It follows that finite index
subgroups of T2 act ergodically on Ŝ1. We claim that for every g ∈ T1, the map
y 7→ µ1(g, y) is essentially constant. To prove this claim, fix g ∈ T1 and denote
ξ : Ŝ1 → G1 : ξ(y) = µ1(g, y). For every h ∈ T2, define the permutation

ρh : G1 → G1 : ρh(s) = δ2(h) η1(g, h) s δ2(h)−1 .

So, (4.7) says that ξ(h · y) = ρh(ξ(y)) for all h ∈ T2 and a.e. y ∈ Ŝ1. Defining
V1 ⊂ G1 as the essential range of ξ, it follows that {ρh}h∈T2 is an action of T2 on
V1. The push forward via ξ of the Haar measure on Ŝ1 is a {ρh}h∈T2 -invariant
probability measure on the countable set V1 and has full support. It follows
that all orbits of the action {ρh}h∈T2 on V1 are finite. Choosing s ∈ V1, the
set ξ−1({s}) ⊂ Ŝ1 is non-negligible and globally invariant under a finite index
subgroup of T2. It follows that ξ(y) = s for a.e. y ∈ Ŝ1, thus proving the claim.

Similarly, for every h ∈ T2, the map z 7→ µ2(h, z) is essentially constant. So
we have proved that ω1(g, y) = δ1(g) and ω2(h, z) = δ2(h) a.e. But then, (4.6)
implies that Λ1 and Λ2 commute, so that Λ0 is an abelian group.

Since A0 is a factor, BΛ0
0 = C1 and thus L(Λ0) ⊂ A0 is maximal abelian.

Since L(Λ0) = L(Λ1) ∨ L(Λ2) with L(Λi) ⊂ L(Hi), the same reasoning as with
Bi ⊂ L(Hi), using (4.5), gives us subgroups Ti ⊂ Hi such that L(Λi) = L(Ti)
and T1 = T⊥2 , T2 = T⊥1 . Since L(Hi) = Bi o Λi with Bi = L(Si) and
L(Λi) = L(Ti), we get that Hi = Si ⊕ Ti.

So far, we have proved that B0 = L(S1) ∨ L(S2) and L(Λ0) = L(T1) ∨ L(T2).
In any crossed product B0 o Λ0 by a faithful action, the only unitaries in
L(Λ0) that normalize B0 are the multiples of the canonical unitaries {vs}s∈Λ.
Therefore, TT1T2 = TΛ0. We have thus proved that the gms decomposition
(B0,Λ0) is identical to the gms decomposition (L(S1) ∨ L(S2), T1T2).

Since Λ0, H1 and H2 are globally {βg}g∈Γ0-invariant, it follows that Ti is a
globally SL(3,Z)-invariant subgroup of Hi. Thus, Ti = Q3

i for some subgroup
Qi < Li. Since B0, H1 and H2 are globally Γ0-invariant, it follows in the same
way that Si = P 3

i for some subgroups Pi < Li. Then, Li = Pi ⊕ Qi and
P1, P2, as well as Q1, Q2, are each other’s orthogonal complement under Ω. So,
L1 = P1 ⊕Q1 is an admissible direct sum decomposition.
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We now combine Proposition 4.22 with Theorem 4.7 and Proposition 4.20. We
fix once and for all Γ = F∞, Γ0 = SL(3,Z) and a surjective homomorphism
β : Γ � Γ0 so that the automorphism g 7→ (g−1)T of Γ0 lifts to an automorphism
of Γ. An obvious way to do this is by enumerating Γ0 = {g0, g1, . . .} and defining
β : Γ→ Γ0 by β(si) = gi for i ≥ 0, where (si)i∈N are free generators of Γ. Note
that Kerβ is automatically nontrivial.

We also fix countable abelian torsion-free groups L1, L2 and a dense embedding
L1 ↪→ L̂2. Put Hi = L3

i and let Γ act on H1 ↪→ Ĥ2 through β. Then define
A0 = L∞(Ĥ2) o H1 together with the natural action β : Γ y (A0, τ0). Put
(A, τ) = (A0, τ0)Γ with the action Γ × Γ y (A, τ) given by (g, h) · πk(a) =
πgkh−1(βh(a)) for all g, h, k ∈ Γ, a ∈ A0. Write M = Ao (Γ× Γ).

We call an automorphism of L1 admissible if it extends to a continuous
automorphism of L̂2. We call an isomorphism θ : L1 → L2 admissible if it
extends to a continuous isomorphism L̂2 → L̂1.

Theorem 4.23. Whenever L1 = P1 ⊕ Q1 is an admissible direct sum
decomposition with corresponding L2 = P2 ⊕ Q2, we define B(P1, Q1) :=
(L(P 3

1 ) ∨ L(P 3
2 ))Γ and Λ(P1, Q1) = (Q3

1 ⊕Q3
2)(Γ) o (Γ× Γ).

• Every B(P1, Q1),Λ(P1, Q1) gives a gms decomposition of M .

• Every gms decomposition of M is unitarily conjugate with a B(P1, Q1),
Λ(P1, Q1) for a unique admissible direct sum decomposition L1 = P1⊕Q1.

• Let L1 = P1 ⊕ Q1 and L1 = P ′1 ⊕ Q′1 be two admissible direct sum
decompositions with associated gms decompositions (B,Λ) and (B′,Λ′).

– (B,Λ) and (B′,Λ′) are conjugate by an automorphism of M if and
only if there exists an admissible automorphism θ : L1 → L1 with
θ(P1) = P ′1, θ(Q1) = Q′1, or an admissible isomorphism θ : L1 → L2
with θ(P1) = P ′2, θ(Q1) = Q′2.

– The Cartan subalgebras B and B′ are unitarily conjugate if and only
if P1 = P ′1.

– The Cartan subalgebras B and B′ are conjugate by an automorphism
of M if and only if there exists an admissible automorphism θ : L1 →
L1 with θ(P1) = P ′1 or an admissible isomorphism θ : L1 → L2 with
θ(P1) = P ′2.

Proof. Because of Proposition 4.22, Theorem 4.7 and Proposition 4.20, it only
remains to describe all automorphisms ψ : A0 → A0 that normalize the action
β : Γ y A0. This action β is defined through the quotient homomorphism
Γ � Γ0. Every automorphism of Γ0 = SL(3,Z) is, up to an inner automorphism,
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either the identity or g 7→ (g−1)T (see [HR51]). So, we only need to describe all
automorphisms ψ : A0 → A0 satisfying either ψ ◦ βg = βg ◦ ψ for all g ∈ Γ0, or
ψ ◦ βg = β(g−1)T ◦ ψ.

In the first case, reasoning as in the first paragraphs of the proof of Proposition
4.22, we get that ψ(L(Hi)) = L(Hi) for i = 1, 2. So, for every g ∈ H1, ψ(ug)
is a unitary in L(H1) that normalizes L(H2). This forces ψ(ug) ∈ TH1 and
we conclude that ψ(TH1) = TH1. Similarly, ψ(TH2) = TH2. In the second
case, we obtain in the same way that ψ(TH1) = TH2 and ψ(TH2) = TH1. The
further analysis is analogous in both cases and we only give the details of the
first case.

We find automorphisms θi : Hi → Hi such that ψ(ug) ∈ Tuθi(g) for all i = 1, 2
and g ∈ Hi. Since θ1 commutes with the action of SL(3,Z) on H1, we get that
θ1 = θ3 for some automorphism θ : L1 → L1. Similarly, we get an automorphism
η : L2 → L2 such that θ2 = η3. Because ψ is an automorphism of A0, it follows
that Ω(g, h) = Ω(θ(g), η(h)) for g ∈ L1, h ∈ L2. This means that the dual
automorphism η̂ : L̂2 → L̂2 extends θ and hence θ : L1 → L1 is an admissible
automorphism. It follows that ψ maps the gms decomposition associated with
L1 = P1 ⊕Q1 to the gms decomposition associated with L1 = θ(P1)⊕ θ(Q1).
This concludes the proof of the theorem.

The following concrete examples provide a proof of Theorem A.

Theorem 4.24. Consider the following two embeddings πi : Zn ↪→ T2n, for
n ≥ 1.

• π1(k) = (αk1
1 , α

k1
2 , . . . , α

kn
2n−1, α

kn
2n) for rationally independent irrational

angles αj ∈ T.

• π2(k) = (αk1 , βk1 , . . . , αkn , βkn) for rationally independent irrational
angles α, β ∈ T.

Applying Theorem 4.23 to the embeddings π1 and π2, we obtain

• a II1 factor M that has exactly 2n gms decompositions up to unitary
conjugacy, and with the associated 2n Cartan subalgebras not conjugate
by an automorphism of M ;

• a II1 factor M that has exactly n+ 1 gms decompositions up to conjugacy
by an automorphism ofM , and with the associated n+1 Cartan subalgebras
not conjugate by an automorphism of M .

Proof. Whenever F ⊂ {1, . . . , n}, we have the direct sum decomposition Zn =
P (F)⊕ P (Fc) where P (F) = {x ∈ Zn | ∀i 6∈ F , xi = 0}.
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In the case of π1, these are exactly all the admissible direct sum decompositions
of Zn. Also, the only admissible automorphisms of Zn are the ones of the form
(x1, . . . , xn) 7→ (ε1x1, . . . , εnxn) with εi = ±1. Since Zn 6∼= Z2n, there are no
isomorphisms “exchanging L1 and L2”. So, we get 2n gms Cartan subalgebras
and these are all not conjugate by an automorphism.

In the case of π2, all direct sum decompositions and all automorphisms of
Zn are admissible. For every direct sum decomposition Zn = P1 ⊕Q1, there
exists a unique k ∈ {0, . . . , n} and an automorphism θ ∈ GL(n,Z) such that
θ(P1) = P ({1, . . . , k}) and θ(Q1) = P ({k + 1, . . . , n}). Again, there are no
isomorphisms exchanging L1 and L2. So, the n+ 1 direct sum decompositions
Zn = P ({1, . . . , k})⊕P ({k+1, . . . , n}), 0 ≤ k ≤ n, exactly give the possible gms
decompositions of M up to conjugacy by an automorphism of M . When k 6= k′,
there is no isomorphism θ ∈ GL(n,Z) with θ(P ({1, . . . , k})) = P ({1, . . . , k′}).
Therefore, the n + 1 associated Cartan subalgebras are not conjugate by an
automorphism.

Remark 4.25. In this remark, we show that the number of gms decompositions
(up to unitary conjugacy) of the II1 factors produced by Theorem 4.23 is always
either infinite or a power of 2.

When L1, L2 are torsion-free abelian groups and L1 ↪→ L̂2 is a dense embedding,
then the set of admissible homomorphisms L1 → L1 is a ring R that is torsion-
free as an additive group. The admissible direct sum decompositions of L1 are
in bijective correspondence with the idempotents of R. Indeed, any idempotent
ϕ ∈ R gives rise to an admissible direct sum decomposition L1 = P ⊕ Q by
letting P = ϕ(L1) and Q = (1− ϕ)(L1). Conversely, any admissible direct sum
decomposition L1 = P⊕Q gives rise to an idempotent admissible homomorphism
ϕ : L1 → L1 given by ϕ(p, q) = (p, 0) for p ∈ P , q ∈ Q. Given ϕ ∈ R, we will
use the notation ϕ⊥ := 1− ϕ ∈ R.

As a torsion-free ring, R either has infinitely many idempotents, or finitely
many that are all central. To see this, assume that p ∈ R is a non-central
idempotent. Take x ∈ R such that px 6= xp. Note that px = pxp+ pxp⊥ and
xp = pxp+ p⊥xp. Since px 6= xp, we have that either pxp⊥ 6= 0 or p⊥xp 6= 0.
Assume without loss of generality that pxp⊥ 6= 0. For any n ∈ N, we put
pn = p + npxp⊥ ∈ R. It is easy to check that pn is an idempotent for all n.
Since R is torsion-free, all pn are different so that R contains infinitely many
idempotents.

So, if R has finitely many idempotents then they are all central. In that
case, there exists a central idempotent that is minimal with respect to the
order relation p ≤ q ⇔ pq = p. Let {pi}ni=1 be a maximal family of minimal
central idempotents. By maximality, we have that

∑n
i=1 pi = 1. Given any
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idempotent p ∈ R, we therefore have p =
∑n
i=1 ppi and ppi ∈ {0, pi} for all

i by minimality of pi. It follows that there are 2n idempotents in R, namely
{
∑n
i=1 εipi | εi ∈ {0, 1} ∀i}. We conclude that the number of idempotents in R

is either infinite or a power of 2.

Remark 4.26. Still in the context of Theorem 4.23, we call a subgroup P1 < L1
admissible if L1 ∩ P1 = P1, where P1 denotes the closure of P1 inside L̂2. Note
that P1 < L1 is admissible if and only if there exists a subgroup P2 < L2 such
that P2 = P⊥1 and P1 = P⊥2 . Whenever P1 < L1 is an admissible subgroup,
we define B(P1) := (L(P 3

1 ) ∨ L(P 3
2 ))Γ. It is easy to check that all B(P1) are

Cartan subalgebras of M and that B(P1) is unitarily conjugate with B(P ′1) if
and only if P1 = P ′1.

Also note that an admissible subgroup P1 < L1 cannot necessarily be
complemented into an admissible direct sum decomposition L1 = P1 ⊕Q1. In
such a case, B(P1) is a Cartan subalgebra ofM that is not of group measure space
type. It is highly plausible that these B(P1) describe all Cartan subalgebras of
M up to unitary conjugacy. We could however not prove this because all our
techniques make use of the dual coaction associated with a gms decomposition
of M .





Chapter 5

Thin II1 factors with no
Cartan subalgebras

In this chapter, which is based on my joint article [KV16] with Stefaan Vaes, we
prove Theorem B from the introduction, in which we find examples of s-thin II1
factors that have no Cartan subalgebras. Recall that the s-thin approximation
property, as stated in the introduction, was introduced by Popa in search of
an intrinsic characterization for a II1 factor to have a Cartan subalgebra. In
[Po16], Popa showed that a II1 factor M is s-thin if and only if M admits an
s-MASA. We will use this as the definition of s-thinness.

Definition 5.1. Let A be a MASA in a II1 factor M . Then A ⊂M is called
an s-MASA if the A-bimodule AL2(M)A is cyclic, i.e., if there exists a vector
ξ ∈ L2(M) such that AξA spans a dense subspace of L2(M).

We say that M is s-thin if M contains an s-MASA.

When a II1 factor is s-thin, we can think of it as being “thin” relative to its
abelian subalgebras. This is closely related to the notion of being thin defined in
[GP98], where the thinness is measured relative to the hyperfinite subalgebras
of a given II1 factor.

Note that a MASA A ⊂M is an s-MASA if and only if the abelian von Neumann
subalgebra A ∨ JAJ ⊂ B(L2(M)) is a MASA, where J denotes the canonical
involution on L2(M) (see for instance [AP16, Theorem 3.1.4]).

Using the Feldman-Moore theorem, Theorem 2.4, It is easy to see that a
separable Cartan subalgebra is also an s-MASA (see [FM75, Proposition 2.9])

85
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and therefore, any separable II1 factor that admits a Cartan subalgebra is also
s-thin. The converse implication was left as a question by Popa in [Po16], and
was the motivation for our work. The following is our main theorem.

Theorem 5.2. There exist non-amenable s-thin II1 factors that are strongly
solid.

Recall from Section 2.6 the notion of strong solidity, which is a stronger property
than absence of Cartan subalgebras.

Our examples of II1 factors are given by Shlyakhtenko’s construction of A-
valued semicircular systems (see [Sh97] and Section 5.1 below), generalizing
Voiculescu’s free Gaussian functor [Vo83]. The data for this construction consists
of a tracial von Neumann algebra (A, τ) and a symmetric A-bimodule AHA,
where the symmetry is given by an anti-unitary operator J : H → H satisfying
J2 = 1 and J(a · ξ · b) = b∗ · Jξ · a∗. The construction produces a tracial von
Neumann algebra M containing A such that AL2(M)A can be identified with
the full Fock space

L2(A)⊕
⊕
n≥1

(
H ⊗A · · · ⊗A H︸ ︷︷ ︸

n times

)
.

We refer to Section 5.1 for further details on this construction.

In the same way as the free Gaussian functor transforms direct sums of real
Hilbert spaces into free products of von Neumann algebras, the construction
of [Sh97] transforms direct sums of A-bimodules into free products that are
amalgamated over A. Therefore, the deformation/rigidity results and methods
for amalgamated free products introduced in [IPP05, Io12], and in particular
Popa’s s-malleable deformation obtained by “doubling and rotating” the A-
bimodule, can be applied and yield the following result, proved in Corollaries
5.14 and 5.22 below (see Theorem 5.21 for the most general statement).

Theorem 5.3. Let (A, τ) be a tracial von Neumann algebra and let M be the
von Neumann algebra associated with a symmetric A-bimodule AHA. Assume
that AHA is weakly mixing (Definition 2.24) and that the left action of A on H
is faithful. Then, M has no Cartan subalgebra. If moreover AHA is mixing and
A is amenable, then M is strongly solid.

In the particular case where A is diffuse abelian and the bimodule AHA is
weakly mixing, we have that A ⊂ M is a singular MASA. As explained in
the introduction, interesting examples arise by taking A = L∞(K,µ) where K
is a second countable compact group with Haar probability measure µ. Any
symmetric probability measure ν on K gives rise to a symmetric A-bimodule
Hν (see Section 5.5), and when ν satisfies certain special properties, the von
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Neumann algebra Mν associated with Hν is a strongly solid II1 factor that
contains A as an s-MASA (see Proposition 5.47 for the precise statement). In
Theorem 5.49, we construct a compact group K and a probability measure ν
on K satisfying these “special” properties. As a consequence, we obtain the
first examples of s-thin II1 factors that have no Cartan subalgebras, proving
our main theorem (Theorem 5.2).

As we explain in Remark 5.11, the so-called free Bogoljubov crossed products
L(F∞)oG associated with an (infinite-dimensional) orthogonal representation
of a countable group G can be written as the von Neumann algebra associated
with a symmetric A-bimodule where A = L(G). Therefore, our Theorem 5.3 is
a generalization of similar results proved in [Ho12b] for free Bogoljubov crossed
products. Although free Bogoljubov crossed products M = L(F∞)oG with G
abelian provide examples of MASAs L(G) ⊂M with interesting properties (see
[HS09, Ho12a]), L(G) ⊂M can never be an s-MASA (see Remark 5.48).

The point of view of A-valued semicircular systems is more flexible and even offers
advantages in the study of free Bogoljubov crossed products M = L(F∞)oG.
Indeed, in Corollary 5.24, we prove that these II1 factorsM never have a Cartan
subalgebra, while in [Ho12b], this could only be proved for special classes of
orthogonal representations.

In Theorem 5.19, we prove several maximal amenability results for the inclusion
A ⊂M associated with a symmetric A-bimodule (H,J). The study of maximal
amenable von Neumann subalgebras was originally motivated by a question of
Kadison from the 1960s: is any self-adjoint element in a II1 factor M contained
in a hyperfinite II1 factor? This question was answered in the negative by
Popa in [Po83]. He showed that the von Neumann subalgebra of a free group
factor L(Fn), n ≥ 2, generated by one of the free generators of Fn, is maximal
amenable. This provided the first example of a maximal amenable subalgebra
that is also abelian. Using the same approach, known as Popa’s asymptotic
orthogonality, many more maximal amenability results have been obtained since
[Po83]. Recently, new methods for proving maximal amenability results were
developed in [BC14, BH16], based on the study of centralizers of states. By
combining the methods of [Po83, BH16], we prove in Theorem 5.19 among
other things that A ⊂ M is maximal amenable whenever A is amenable and
H is weakly mixing, where M is the von Neumann algebra associated with a
symmetric A-bimodule (H,J). Again, these results generalize [Ho12a, Ho12b]
where the same was proved for free Bogoljubov crossed products.

Finally, we have added a section about property Gamma, Section 5.6, which
did not appear in [KV16]. The definition of property Gamma goes back to
the work of Murray and von Neumann, [MvN43], and was originally used
to distinguish the hyperfinite II1 factor R from the free group factors L(Fn),
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n ≥ 2. A separable II1 factor M is said to have property Gamma if there
exists a nontrivial central sequence in M , i.e., a bounded sequence an ∈ M
with ‖anx − xan‖2 → 0 for all x ∈ M , such that an is not asymptotically
scalar. When M is the von Neumann algebra associated with some symmetric
A-bimodule (H,J) that is weakly mixing, we show that all central sequences of
M asymptotically lie in A (see Theorem 5.55), and this allows us to characterize
when M has property Gamma. Similar results were proved in [Ho12b] for
free Bogoljubov crossed products and our proof uses the same methods. In
particular, when M = Mν arises from a symmetric probability measure ν on a
compact group K as in Section 5.5, we will characterize when Mν has property
Gamma in terms of the measure ν.

5.1 Shlyakhtenko’s A-valued semicircular systems

We first recall Voiculescu’s free Gaussian functor from the category of real
Hilbert spaces to the category of tracial von Neumann algebras. Let HR be a
real Hilbert space and let H be its complexification. The full Fock space of H
is defined as

F(H) = CΩ⊕
∞⊕
n=1

H⊗n .

The unit vector Ω is called the vacuum vector . Given a vector ξ ∈ H, we define
the left creation operator `(ξ) ∈ B(F(H)) by

`(ξ)(Ω) = ξ and `(ξ)(ξ1 ⊗ · · · ⊗ ξn) = ξ ⊗ ξ1 ⊗ · · · ⊗ ξn .

Put
Γ(HR)′′ := {`(ξ) + `(ξ)∗ | ξ ∈ HR}′′ .

In the literature, the notation Γ(HR) is used to denote the C∗-algebra generated
by the operators `(ξ) + `(ξ)∗ for ξ ∈ HR.

The von Neumann algebra Γ(HR)′′ is equipped with the faithful trace given by
τ(·) = 〈·Ω,Ω〉. In [Vo83], it is proved that the operator X = `(ξ) + `(ξ)∗ has a
semicircular distribution with respect to the trace τ , in the sense that

τ(Xn) = 2
πR2

∫ R

−R
tn
√
R2 − t2 dt for all n ∈ N,

where R = ‖X‖, and it is proved that Γ(HR)′′ ∼= L(FdimHR). By the functoriality
of the construction, any orthogonal transformation u of HR gives rise to an
automorphism αu of Γ(HR)′′ satisfying αu(`(ξ) + `(ξ)∗) = `(uξ) + `(uξ)∗ for
all ξ ∈ HR. So, every orthogonal representation π : G→ O(HR) of a countable



SHLYAKHTENKO’S A-VALUED SEMICIRCULAR SYSTEMS 89

group G gives rise to the free Bogoljubov action σπ : G y Γ(HR)′′ given by
σπ(g) = απ(g) for all g ∈ G.

In [Sh97], Shlyakhtenko introduced a generalization of Voiculescu’s free Gaussian
functor, this time being a functor from the category of symmetric A-bimodules
(where A is any von Neumann algebra) to the category of von Neumann algebras
containing A. We will here repeat this construction in the case where A is a
tracial von Neumann algebra.

Definition 5.4. Let (A, τ) be a tracial von Neumann algebra. A symmetric A-
bimodule (H,J) is an A-bimodule AHA equipped with an anti-unitary operator
J : H → H such that J2 = 1 and

J(a · ξ · b) = b∗ · Jξ · a∗, ∀ a, b ∈ A .

Note that the complexification of a real Hilbert space can be seen as a symmetric
C-bimodule, where the symmetry J is given by complex conjugation.

Let (A, τ) be a tracial von Neumann algebra and let (H,J) be a symmetric
A-bimodule. We denote by H⊗nA the n-fold Connes tensor product H ⊗AH ⊗A
· · · ⊗A H. The full Fock space of the A-bimodule AHA is defined by

FA(H) = L2(A)⊕
∞⊕
n=1

H⊗
n
A . (5.1)

We denote by H the set of left and right A-bounded vectors in H, as defined
in Section 2.2. Since A is a tracial von Neumann algebra, H is dense in H.
Given a right bounded vector ξ ∈ H, we define the left creation operator `(ξ)
on FA(H) analogously to the case where A = C by

`(ξ)(a) = ξa, a ∈ A ,

`(ξ)(ξ1 ⊗A . . .⊗A ξn) = ξ ⊗A ξ1 ⊗A . . .⊗A ξn, ξi ∈ H .

Note that a`(ξ) = `(aξ) and `(ξ)a = `(ξa) for a ∈ A and that the adjoint map
`(ξ)∗ satisfies

`(ξ)∗(a) = 0 for all a ∈ L2(A) ,

`(ξ)∗(ξ1 ⊗A . . .⊗A ξn) = 〈ξ, ξ1〉A ξ2 ⊗A . . .⊗A ξn for ξi ∈ H .

We also have a right creation operator r(ξ) on FA(H) defined by

r(ξ)(a) = aξ, a ∈ A ,

r(ξ)(ξ1 ⊗A . . .⊗A ξn) = ξ1 ⊗A . . .⊗A ξn ⊗A ξ, ξi ∈ H .
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Definition 5.5. Given a tracial von Neumann algebra (A, τ) and a symmetric
A-bimodule (H,J), we consider the full Fock space FA(H) given by (5.1) and
define

Γ(H,J,A, τ)′′ := A ∨ {`(ξ) + `(ξ)∗ | ξ ∈ H, Jξ = ξ}′′ ⊂ B(FA(H)) ,

where A ⊂ B(FA(H)) is given by the left action on FA(H). We also have

Γ(H,J,A, τ)′′ = A ∨ {`(ξ) + `(Jξ)∗ | ξ ∈ H}′′ .

We denote by Ω the vacuum vector in FA(H) given by Ω = 1A ∈ L2(A). We
define τ as the vector state on M = Γ(H,J,A, τ)′′ given by the vacuum vector
Ω. Whenever n ≥ 1 and ξ1, . . . , ξn ∈ H, we define the Wick product as in
[HR10, Lemma 3.2] by

W (ξ1, . . . , ξn) =
n∑
i=0

`(ξ1) · · · `(ξi)`(Jξi+1)∗ · · · `(Jξn)∗ . (5.2)

As in [HR10, Lemma 3.2], we get the following lemma.

Lemma 5.6. For n ≥ 1 and ξ1, . . . , ξn ∈ H, we have that W (ξ1, . . . , ξn) ∈M
and

W (ξ1, . . . , ξn)Ω = ξ1 ⊗A · · · ⊗A ξn .

Moreover, the set of Wick products W (ξ1, . . . , ξn) with n ≥ 1 and ξi ∈ H,
together with A, spans an SOT-dense ∗-subalgebra of M .

Proof. Since `(ξ)∗Ω = 0 for any ξ ∈ H, it is clear that W (ξ1, . . . , ξn)Ω =
ξ1 ⊗A ⊗ · · · ⊗A ξn. We prove by induction on n that W (ξ1, . . . , ξn) ∈M .

For n = 1, we have W (ξ1) = `(ξ1) + `(Jξ1)∗ ∈ M . Next, assume that
W (ξ1, . . . , ξk) ∈M for all k ≤ n. A direct computation shows that

W (ξ0)W (ξ1, . . . , ξn) = W (ξ0, ξ1, . . . , ξn) + 〈Jξ0, ξ1〉AW (ξ2, . . . , ξn).

So, by induction hypothesis

W (ξ0, . . . , ξn) = W (ξ0)W (ξ1, . . . , ξn)− 〈Jξ0, ξ1〉AW (ξ2, . . . , ξn) ∈M.

To prove the final statement, let M0 be the linear span of {W (ξ1, . . . , ξn) | n ≥
1, ξi ∈ H} ∪A. Since M is generated by M0, it is enough to show that M0 is a
∗-subalgebra. We have that

W (ξ1, . . . , ξn)∗ = W (Jξn, . . . , Jξ1),



SHLYAKHTENKO’S A-VALUED SEMICIRCULAR SYSTEMS 91

so that M0 is closed under taking the adjoint. Moreover, assuming that m ≤ n,
we have that

W (ξ1, . . . , ξn)W (η1, . . . , ηm) =
m∑
i=0

W (ξ1, . . . , ξn−iai, η1+i, . . . , ηm) ∈M0,

where ai = `(Jξn−i+1)∗ · · · `(Jξn)∗`(η1) · · · `(ηi) ∈ A for i = 1, . . . ,m and
a0 = 1. So, M0 is an SOT-dense ∗-subalgebra of M .

Proposition 5.7 ([Sh97]). The state τ(·) = 〈·Ω,Ω〉 defined above is a faithful
trace on M .

Proof. Define J : FA(H)→ FA(H) by J (a) = a∗ for a ∈ A and

J (ξ1 ⊗A · · · ⊗A ξn) = Jξn ⊗A · · · ⊗A Jξ1

for ξ1, . . . , ξn ∈ H. Then J is an anti-unitary map satisfying J 2 = 1. One
easily checks that J `(ξ)J = r(Jξ) for all ξ ∈ H and that J aJ is just right
multiplication by a∗ on FA(H). This implies that JMJ commutes with M .
Indeed, for ξ, η ∈ H with Jξ = ξ and Jη = η, we have 〈ξ, aη〉A = A〈ξa, η〉 since

〈Jr(ξa)∗r(η)Jx, y〉 = 〈r(ξa)y∗, r(η)x∗〉 = 〈y∗ξa, x∗η〉 = 〈J(x∗η), J(y∗ξa)〉

= 〈ηx, a∗ξy〉 = 〈`(ξ)∗`(aη)x, y〉 ,

for all x, y ∈ A. It follows that

(`(ξ)∗r(η) + `(ξ)r(η)∗)(a) = 〈ξ, aη〉A = A〈ξa, η〉 = (r(η)∗`(ξ) + r(η)`(ξ)∗)(a),

for all a ∈ A. Since `(ξ) and r(η)∗ clearly commute when restricted to FA(H)	
L2(A), it follows that `(ξ) + `(ξ)∗ commutes with r(η) + r(η)∗. We conclude
that M commutes with JMJ .

Next, we show that J (xΩ) = x∗Ω for all x ∈M . This clearly holds for x ∈ A
so it suffices to prove it for x of the form x = W (ξ1, . . . , ξn) with ξi ∈ H. We
have

J (W (ξ1, . . . , ξn)Ω) = J (ξ1 ⊗A · · · ⊗A ξn) = Jξn ⊗A · · · ⊗A Jξ1

= W (Jξn, . . . , Jξ1)Ω = W (ξ1, . . . , ξn)∗Ω .

We now get that

τ(xy) = 〈xyΩ,Ω〉 = 〈xJ (y∗Ω),Ω〉 = 〈xJ y∗JΩ,Ω〉 = 〈J y∗J xΩ,Ω〉

= 〈xΩ,J yJΩ〉 = 〈xΩ, y∗Ω〉 = 〈yxΩ,Ω〉 = τ(yx) ,
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for all x, y ∈M and hence τ is a trace.

It follows from Lemma 5.6 that Ω ∈ FA(H) is a cyclic vector for both M and
JMJ . Hence Ω is also separating for M and it follows that τ is faithful.

By construction, we have that L2(M) ∼= FA(H) as A-bimodules.

In [Sh97], Shlyakhtenko used the terminology A-valued semicircular system for
the family {`(ξ) + `(ξ)∗ | ξ ∈ H, Jξ = ξ}, as an analogue to the free Gaussian
functor case, where the operator `(ξ) + `(ξ)∗ has a semicircular distribution
with respect to τ .

Remark 5.8. In the original article [Sh97], Shlyakhtenko used a seemingly
different setup to define the von Neumann algebras Γ(H,J,A, τ)′′. Instead of
using a symmetric A-bimodule (H,J) as input, he used a system of completely
positive maps on A. More precisely, to any von Neumann algebra A and any
set of linear maps ϕij : A → A, i, j ∈ I such that a 7→ (ϕij(a))i,j∈I : A →
A⊗B(`2(I)) is normal and completely positive, Shlyakhtenko associated a von
Neumann algebra Φ(A,ϕ). Let us briefly explain how a symmetric A-bimodule
(H,J) gives rise to such a system of maps (ϕij)i,j∈I in the case where A is
tracial.

Let (ξi)i∈I be a maximal family of symmetric unit vectors such that the A-
subbimodules AξiA are all pairwise orthogonal. We then obtain the desired
system of maps (ϕij)i,j∈I by letting ϕij : A → A be the linear map given by
ϕij(a) = `(ξi)∗a`(ξj) = 〈ξi, aξj〉A. It is easy to check that our construction of
Γ(H,J,A, τ)′′ coincides with Shlyakhtenko’s construction of Φ(A,ϕ). Moreover,
[Sh97, Lemma 2.2] shows that any such system (ϕij)i,j∈I gives rise to an A-
bimodule H spanned by vectors ξi ∈ H satisfying 〈ξi, aξj〉A = ϕij(a). Note
however that Shlyakhtenko’s construction also works when A is non-tracial. In
this case, the associated von Neumann algebra Φ(A,ϕ) is of type III.

Example 5.9. (1) When H = L2(A) is the trivial A-bimodule with J(a) = a∗,
we simply get

Γ(H,J,A, τ)′′ = A⊗ L∞[0, 1] .

Indeed, A commutes with `(1A) + `(1A)∗ and they together generate
Γ(H,J,A, τ)′′. It is not hard to see that `(1A) has the same ∗-distribution
as a free creation operator from the free Gaussian functor. Hence, the
operator `(1A) + `(1A)∗ has a semicircular ∗-distribution and in particular,
it generates a von Neumann algebra isomorphic with L∞[0, 1]. It is also easy
to see that `(1A) + `(1A)∗ is independent from A with respect to τ , so that
{`(1A) + `(1A)∗}′′ and A are in tensor product position with each other.
From this example, we see that Γ(H,J,A, τ)′′ is not always a factor.



SHLYAKHTENKO’S A-VALUED SEMICIRCULAR SYSTEMS 93

(2) When H = L2(A)⊗L2(A) is the coarse A-bimodule with J(a⊗ b) = b∗⊗a∗,
we get (see [Sh97, Example 3.3])

Γ(H,J,A, τ)′′ = (A, τ) ∗ L∞[0, 1] .

This example shows that the construction of Γ(H,J,A, τ)′′ may depend on
the trace on A. Indeed, if A = C2 we can consider the trace τδ for any
δ ∈ (0, 1) given by τδ(a, b) = δa + (1 − δ)b, a, b ∈ C. By [Dy92, Lemma
1.6], we have that L(Z) ∗ (A, τδ) = L(F1+2δ(1−δ)), the interpolated free
group factor. It is wide open whether the interpolated free group factors
are all isomorphic. So at least, there is no obvious isomorphism between
Γ(H,J,A, τδ1)′′ and Γ(H,J,A, τδ2)′′ for δ1 6= δ2. In Example 5.12, we shall
actually see that even the factoriality of Γ(H,J,A, τ)′′ may depend on the
choice of the trace τ . For a general factoriality criterion for Γ(H,J,A, τ)′′,
see Theorem 5.21.

Note that the construction of Γ(H,J,A, τ)′′ is functorial in the following sense.
If U ∈ U(H) is a unitary operator that is A-bimodular and commutes with J ,
then U defines a trace-preserving automorphism of M = Γ(H,J,A, τ)′′ in the
following way. Since U is A-bimodular, we can define a unitary Un on H⊗nA by
Un(ξ1 ⊗A · · · ⊗A ξn) = Uξ1 ⊗A · · · ⊗A Uξn. The direct sum of these unitaries
(and the identity on L2(A)) then gives an A-bimodular unitary operator on
FA(H), which we will still denote by U . Note that U`(ξ)U∗ = `(Uξ) for all
ξ ∈ H. Since U commutes with J , it follows that UMU∗ = M so that AdU
defines an automorphism of M .

Recall that for Voiculescu’s free Gaussian functor, we have that the direct sum
of Hilbert spaces translates into the free product of von Neumann algebras, in
the sense that Γ(H1 ⊕H2)′′ = Γ(H1)′′ ∗ Γ(H2)′′. In the setting of A-bimodules
in general, we instead get the amalgamated free product over A as stated in
the following proposition.

Proposition 5.10 ([Sh97, Proposition 2.17]). Let (H1, J1) and (H2, J2) be
symmetric A-bimodules. Put H = H1 ⊕H2 and J = J1 ⊕ J2. Then

Γ(H,J,A, τ)′′ ∼= Γ(H1, J1, A, τ)′′ ∗A Γ(H2, J2, A, τ)′′ ,

with respect to the unique trace-preserving conditional expectation onto A.

Remark 5.11. As we recalled in the beginning of this section, to every
orthogonal representation π : G → O(KR) of a countable group G on a real
Hilbert space KR is associated the free Bogoljubov action σπ : G y Γ(KR)′′.
Write A = L(G) and equip A with its canonical tracial state τ . Denote by K
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the complexification of KR and define the symmetric A-bimodule AHA given by

H = `2(G)⊗K with ug · (δh ⊗ ξ) · uk = δghk ⊗ π(g)ξ

and J(δh ⊗ ξ) = δh−1 ⊗ π(h−1)ξ
(5.3)

where (δg)g∈G denotes the canonical orthonormal basis of `2(G). We then have
a canonical trace-preserving isomorphism

Γ(KR)′′ oσπ G ∼= Γ(H,J,A, τ)′′

that maps L(G) onto A identically and W (ξ1, . . . , ξn) with ξi ∈ KR onto
W (δe ⊗ ξ1, . . . , δe ⊗ ξn).

Example 5.12. This final example illustrates that even the factoriality of
Γ(H,J,A, τ)′′ may depend on the choice of τ . Take A = C2, α ∈ Aut(A) the flip
automorphism and H = C2 with A-bimodule structure given by a ·ξ ·b = α(a)ξb.
Define J : H → H by J(a) = α(a)∗. For every 0 < δ < 1, denote by τδ the trace
on A given by τδ(a, b) = δa+ (1− δ)b. By symmetry, it suffices to consider the
case 0 < δ ≤ 1/2. For any δ, when A is equipped with the trace τδ, the n-fold
tensor power H⊗nA can be identified with C2 with the bimodule structure given
by

a · ξ · b =
{
aξb if n is even,
α(a)ξb if n is odd.

Denote by `δ the left creation operator `(1A) with respect to the trace τδ. When
we represent `δ on the Hilbert space

⊕
n≥0C2 via the identification above, we

get that
`δ = ` λ(D−1/2) ,

where ` denotes the shift operator on
⊕

n≥0 C2, λ denotes the left A-action and
D = (δ, 1− δ) is the Radon-Nikodym derivative between τδ and the usual inner
product on C2.

Put
Mδ := Γ(H,J,A, τδ)′′ = λ(A) ∨ {`δ + `∗δ}′′.

We still denote by τδ the canonical trace on Mδ. Note that M = λ(A) ∨ {Sδ}′′,
where Sδ = `λ(∆−1/4) + `∗λ(∆1/4) and ∆ = Dα(D)−1 = (δ/(1− δ), (1− δ)/δ).
Indeed, we have that

Sδλ(α(D−1/4)D−1/4) = `δ + `∗δ .

Note also that Sδ = S∗δ . Denoting by e = (1, 0) and f = (0, 1) the minimal
projections in A, we have that Sδe = fSδ.
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Next, we calculate the possible eigenvalues of Sδ. Given ξ =
⊕

n≥0 ξn ∈⊕
n≥0 C2, we have that

Sδ(ξ) =
∞⊕
n=1

αn−1(∆−1/4)ξn−1 +
∞⊕
n=0

αn+1(∆1/4)ξn+1. (5.4)

Assume that ξ ∈ ker(Sδ). Using (5.4) coordinate-wise, we get

α(∆1/4)ξ1 = 0,

αn−1(∆−1/4)ξn−1 + αn+1(∆1/4)ξn+1 = 0 for n ≥ 1.

It follows that ξn = 0 for all n odd and that ξ2k = (−1)k∆−k/2ξ0 for all k ≥ 0.
Writing ξ0 = (ξ01, ξ02) ∈ C2, we thus get

‖ξ‖2 =
∞∑
k=0
‖∆−k/2ξ0‖2 = |ξ01|2

∞∑
n=0

(
1− δ
δ

)k
+ |ξ02|2

∞∑
n=0

(
δ

1− δ

)k
.

If δ = 1/2, both of the sums above are divergent and hence ξ01 = ξ02 = 0. So,
kerS1/2 = {0} in this case. If δ < 1

2 , we get that the first sum in the expression
above diverges while the second sum converges. This forces ξ01 = 0 and we get
that kerSδ has dimension 1.

Next, assume that ξ is an eigenvector for Sδ, with eigenvalue λ 6= 0. Again,
using (5.4) coordinate-wise yields

∆−1/4ξ1 = λξ0,

∆−1/4ξn−1 + ∆1/4ξn+1 = λξn for n odd,

∆1/4ξn−1 + ∆−1/4ξn+1 = λξn for n even.

It follows that ξn = anξ0 where an ∈ C2 is defined recursively by

an = ∆(−1)n+1/4λan−1 −∆(−1)n+1/2an−2, n ≥ 2.

Assume without loss of generality that the first coordinate of ξ0 is nonzero.
Letting bn ∈ C denote the first coordinate of an, we get that bn satisfies the
following recurrence relation

bn = λ

(
δ

1− δ

)(−1)n+1/4
bn−1 −

(
δ

1− δ

)(−1)n+1/2
bn−2.

One can show that this recurrence relation is not stable so that in particular,
bn does not converge to zero. Thus

‖ξ‖2 =
∞∑
n=0
‖anξ0‖2 ≥

∞∑
n=0
|bnξ01|2 =∞,
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a contradiction. We conclude that Sδ has no eigenvalue different from zero, for
all 0 < δ ≤ 1

2 . This means that Sδ is diffuse on the orthogonal complement of
kerSδ.

We have now shown the following: When δ = 1/2, the operator Sδ is non-
singular and diffuse; When 0 < δ < 1/2, the kernel of Sδ has dimension 1 and
Sδ is diffuse on its orthogonal complement. We denote by zδ the projection onto
the kernel of Sδ. Using the description of kerSδ from the computations above,
we get that zδ is a minimal and central projection in Mδ with τδ(zδ) = 1− 2δ.
We conclude that there is a trace-preserving ∗-isomorphism

(Mδ, τδ) ∼= M2(C)⊗B︸ ︷︷ ︸
δ(Tr⊗τ0)

⊕ C︸︷︷︸
1−2δ

(5.5)

where (B, τ0) is a diffuse abelian von Neumann algebra with normal faithful
tracial state τ0 and where we emphasized the choice of trace at the right hand
side. Under the isomorphism (5.5), we have that

e 7→ (e11⊗ 1)⊕ 0 , f 7→ (e22⊗ 1)⊕ 1 , Sδ 7→ ((e12 + e21)⊗ b)⊕ 0 , zδ 7→ 0⊕ 1

where b ∈ B is a positive non-singular element generating B.

Next, taking H ⊕H and J ⊕ J , it follows from Proposition 5.10 that

Mδ := Γ(H ⊕H,J ⊕ J,A, τδ)′′ = Mδ ∗AMδ ,

where we used at the right hand side the amalgamated free product with respect
to the unique τδ-preserving conditional expectations, which we will denote by
EA. We denote with superscripts (1) and (2) the elements of Mδ viewed in the
first, resp. second copy of Mδ in the amalgamated free product. Note that
f (1) = f (2) and that, denoting this projection as f , we get that fM (1)

δ f and
fM

(2)
δ f are free inside fMδf . Indeed, this follows from the fact that M (1)

δ and
M

(2)
δ are free with respect to EA and that EA(x) = τδ(x)f for any x ∈ fM (i)

δ f ,
i = 1, 2. It now follows from [Vo86] that the projection z := z

(1)
δ ∧z

(2)
δ is nonzero

if and only if δ < 1/3. We also have that z is a minimal central projection in
Mδ.

By [IPP05, Theorem 1.2.1], using that B(i) is diffuse, we have that

(B(i))′ ∩ (1− z(i)
δ )Mδ(1− z(i)

δ ) ⊂M (i)
δ (1− z(i)

δ ), i = 1, 2. (5.6)

Also note that (1− z(1)
δ ) ∨ (1− z(2)

δ ) = 1− z. We claim that

(B(1) ∨B(2))′ ∩Mδ(1− z) = A(1− z). (5.7)
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Indeed, let x ∈ (B(1) ∨ B(2))′ ∩ Mδ(1 − z). By (5.6), we have that xi :=
x(1 − z(i)

δ ) ∈ M
(i)
δ (1 − z(i)

δ ) for both i = 1, 2. By assumption, x commutes
with b1b2 for any unitaries b1 ∈ U(B(1)) and b2 ∈ U(B(2)). It follows that
b∗1x1b1 = b2x2b

∗
2 ∈ A(1 − z). Thus xi ∈ A(1 − z) for both i = 1, 2 and since

(1− z(1)
δ ) ∨ (1− z(2)

δ ) = 1− z, it follows that x ∈ A(1− z).

By (5.7), Z(Mδ)(1− z) ⊂ A(1− z). Since aSδ = Sδα(a) for a ∈ A, this implies
that Z(Mδ)(1− z) = C(1− z). Hence

Z(Mδ) = Cz + C(1− z).

We conclude that Γ(H⊕H,J⊕J,A, τδ)′′ is a factor if and only if 1/3 ≤ δ ≤ 2/3.

5.2 Normalizers and (relative) strong solidity

The main result of this section is the following relative strong solidity theorem
for A-valued semicircular systems. In the special case of free Bogoljubov crossed
products (see Remark 5.11), this result was proven in [Ho12b, Theorem B]. As
explained in the introduction, the A-valued semicircular systems fit perfectly
into Popa’s deformation/rigidity theory. The proof of Theorem 5.13 therefore
follows closely [IPP05, HS09, HR10, Io12, Ho12b], using in the same way Popa’s
s-malleable deformation given by “doubling and rotating” the initial A-bimodule
AHA (see below).

Theorem 5.13. Let (A, τ) be a tracial von Neumann algebra and (H,J) a
symmetric A-bimodule. Put M = Γ(H,J,A, τ)′′. Let q ∈ M be a projection
and B ⊂ qMq a von Neumann subalgebra. If B is amenable relative to A,
then at least one of the following statements holds: B ≺M A or NM (B)′′ stays
amenable relative to A.

As a consequence of Theorem 5.13, we get the following strong solidity theorem.

Corollary 5.14. Let (A, τ) be a tracial von Neumann algebra and (H,J) a
symmetric A-bimodule. Put M = Γ(H,J,A, τ)′′. Assume that AHA is mixing.
If B ⊂M is a diffuse von Neumann subalgebra that is amenable relative to A,
then NM (B)′′ stays amenable relative to A.

So if A is amenable and AHA is mixing, we get that M is strongly solid.

Proof. Let P := NM (B)′′. Since B ∨ (B′ ∩M) ⊂ P , we have P ′ ∩M = Z(P ).
Therefore, there exists a largest projection z ∈ Z(P ) such that Pz ≺f A.
In particular, Pz is amenable relative to A. It remains to prove that also
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P (1− z) is amenable relative to A. Note that by maximality of z, we have that
P (1− z) ⊀ A.

Put z0 = 1 − z. Since the bimodule AHA is mixing, the inclusion A ⊂ M is
mixing in the sense of [Po03, Proof of Theorem 3.1] and [Io12, Definition 9.2].
Since Nz0Mz0(Bz0)′′ = Pz0, since Bz0 is diffuse and since Pz0 6≺M A, it follows
from [Io12, Lemma 9.4] that Bz0 6≺M A. It then follows from Theorem 5.13
that Pz0 is amenable relative to A.

To prove Theorem 5.13, we fix a tracial von Neumann algebra (A, τ) and a
symmetric A-bimodule (H,J). Put M = Γ(H,J,A, τ)′′ as in Definition 5.5.
Recall that L2(M) = FA(H) = L2(A)⊕

⊕∞
n=1H

⊗nA .

We construct as follows an s-malleable deformation of M in the sense of [Po03].
Put

M = Γ(H ⊕H,J ⊕ J,A, τ)′′ .

By Proposition 5.10, we have M = M ∗A M . We denote by π1 and π2 the
two canonical embeddings of M into M. When no embedding is explicitly
mentioned, we will always consider M ⊂M via the embedding π1.

Let Ut ∈ U(H ⊕H), t ∈ R, be the rotation with angle t, i.e.,

Ut(ξ, η) = (cos(t)ξ − sin(t)η, sin(t)ξ + cos(t)η) for ξ, η ∈ H .

Since the construction of Γ(H,J,A, τ)′′ is functorial, this gives rise to an
automorphism θt := AdUt ∈ Aut(M). Note that θπ/2 ◦ π1 = π2.

Define β ∈ U(H) by β(ξ, η) = (ξ,−η) for ξ, η ∈ H. Again by functoriality, we
have that β defines an automorphism ofM. Now, β satisfies β(x) = x for all
x ∈ π1(M), β2 = id and β ◦ θt = θ−t ◦ β for all t. Hence (M, (θt)t∈R) is an
s-malleable deformation of M .

The following two lemmas are the key ingredients in the proof of Theorem 5.13.

Lemma 5.15. Let q ∈ M be a projection and P ⊂ qMq a von Neumann
subalgebra. If θt(P ) ≺M πi(M) for some i ∈ {1, 2} and some t ∈ (0, π2 ), then
P ≺M A.

Lemma 5.16. Let q ∈ M be a projection and P ⊂ qMq a von Neumann
subalgebra. If θt(P ) is amenable relative to A insideM for all t ∈ (0, π2 ), then
P is amenable relative to A inside M .

Before proving Lemma 5.15 and Lemma 5.16, we first show how Theorem 5.13
follows from these two lemmas.
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Proof of Theorem 5.13. Put P = NqMq(B)′′. We apply [Va13, Theorem A] to
the subalgebra θt(B) ⊂ M ∗A M for a fixed t ∈ (0, π2 ). Note that θt(B) is
normalized by θt(P ). So, we get that one of the following holds:

(1) θt(B) ≺M A.

(2) θt(P ) ≺M πi(M) for some i ∈ {1, 2}.

(3) θt(P ) is amenable relative to A insideM.

If 1 or 2 holds, it follows by Lemma 5.15 that B ≺M A. So, if we assume that
B ⊀M A, we get that θt(P ) is amenable relative to A insideM for all t ∈ (0, π2 ).
It then follows from Lemma 5.16 that P = NqMq(B)′′ is amenable relative to
A inside M .

Proof of Lemma 5.15

We now turn to the proof of Lemma 5.15. We first give a sketch of the proof.
For each k ∈ N, we let pk ∈ B(L2M) denote the projection onto H⊗kA . Given
a von Neumann subalgebra P ⊂ qMq, we first show that if θt(P ) ≺M πi(M)
for some i ∈ {1, 2} and some t ∈ (0, π2 ), then P has “bounded tensor length”,
in the sense that there exists k ∈ N and δ > 0 such that ‖

∑k
i=0 pi(a)‖2 ≥ δ

for all a ∈ U(P ) (see Lemma 5.18). Next, we reason exactly as in the proof
of [Po03, Theorem 4.1]. Since θt converges uniformly to id on the unit ball of
pi(M) for any fixed i ∈ N, we get a t ∈ (0, π2 ) and a nonzero partial isometry
v ∈M such that θt(a)v = va for all a ∈ U(P ). Using the automorphism β, we
can even obtain t = π/2, i.e., π2(a)v = vπ1(a) for all a ∈ U(P ). Using results
of [IPP05] on amalgamated free product von Neumann algebras, this implies
that P ≺M A.

For simplicity, we put Mi = πi(M) ⊂M for i ∈ {1, 2}. Note that

L2(M1) = L2(A)⊕
∞⊕
k=1

(H ⊕ 0)⊗
k
A , L2(M2) = L2(A)⊕

∞⊕
k=1

(0⊕H)⊗
k
A ,

as subspaces of L2(M) = FA(H ⊕ H). Denote by eMi
∈ B(L2(M)) the

projection onto L2(Mi).

Lemma 5.17. If µn ∈ L2(M1) is a bounded net of vectors such that
limn→∞ ‖pk(µn)‖ = 0 for all k ≥ 0, then for all i = 1, 2, 0 < t < π

2 , integers
a, b, c, d ≥ 0 and vectors ξi, ηi, γi, ρi ∈ H ⊕H, we have

‖eMi
(`(ξ1) · · · `(ξa)`(ηb)∗ · · · `(η1)∗r(γc) · · · r(γ1)r(ρ1)∗ · · · r(ρd)∗Utµn)‖ → 0 ,

as n→∞.
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Proof. Fix t ∈ (0, π2 ) and define δ1 = cos t and δ2 = sin t. Define the operator
Zi ∈ B(L2M) for i = 1, 2 by

Zi =
⊕
e≥b+d

δe−b−di (U⊗
b
A

t ⊗A 1⊗
(e−b−d)
A ⊗A U

⊗dA
t ) .

Denote p≥κ =
∑∞
i=κ pi and p<κ =

∑k−1
i=0 pi. When κ ≥ b+d, we have ‖Zip≥κ‖ =

δκ−b−di . Since limn ‖p<κ(µn)‖ = 0 for every κ, we get that limn ‖Zi(µn)‖ = 0.
So, it suffices to prove that

eMi
(`(ξ1) · · · `(ξa)`(ηb)∗ · · · `(η1)∗r(γc) · · · r(γ1)r(ρ1)∗ · · · r(ρd)∗Utp≥b+d(µ))

= `(qiξ1) · · · `(qiξa)`(ηb)∗ · · · `(η1)∗r(qiγc) · · · r(qiγ1)r(ρ1)∗ · · · r(ρd)∗Zi(µ)

for all µ ∈ L2(M1), where q1 and q2 denote the orthogonal projections of H⊕H
onto H ⊕ 0 and 0 ⊕H, respectively. It is sufficient to check this formula for
µ = µ1⊗A · · · ⊗A µe with µi ∈ H⊕ 0 and e ≥ b+ d, where it follows by a direct
computation. Indeed, let x = `(ηb)∗ · · · `(η1)∗(Utµ1 ⊗A · · · ⊗A Utµb) ∈ A and
y = r(ρ1)∗ · · · r(ρd)∗(Utµe−d+1 ⊗A · · · ⊗A Utµe) ∈ A. Then

eMi
(`(ξ1) · · · `(ξa)`(ηb)∗ · · · `(η1)∗r(γc) · · · r(γ1)r(ρ1)∗ · · · r(ρd)∗Ut(µ))

= eMi(ξ1 ⊗ · · · ⊗ ξa ⊗ x · Utµb+1 ⊗ · · · ⊗ Utµe−d · y ⊗ γ1 ⊗ · · · ⊗ γc)

= qiξ1 ⊗ · · · ⊗ qiξa ⊗ xδiµb+1 ⊗ · · · ⊗ δiµe−dy ⊗ qiγ1 ⊗ · · · ⊗ qiγc

= `(qiξ1) · · · `(qiξa)`(ηb)∗ · · · `(η1)∗r(qiγc) · · · r(qiγ1)r(ρ1)∗ · · · r(ρd)∗Zi(µ).

Lemma 5.18. If an ∈ M is a bounded net with limn ‖pk(an)‖2 = 0 for all
k ≥ 0, then

lim
n→∞

‖EMi
(xθt(an)y)‖2 = 0 ,

for all i ∈ {1, 2}, 0 < t < π
2 and x, y ∈M.

Proof. It suffices to take x = W (ξ1, . . . , ξk) and y = W (η1, . . . , ηm) with ξi, ηi ∈
H ⊕ H (as defined in Section 5.1), since these elements span a ‖ · ‖2-dense
subspace ofM	A. Then,

EMi
(xθt(an)y) = eMi

(xJy∗JUt(anΩ))

=
k∑
s=0

m∑
r=0

eMi
(`(ξ1) · · · `(ξs)`(Jξs+1)∗ · · · `(Jξk)∗

r(ηm) · · · r(ηr+1)r(Jηr)∗ · · · r(Jη1)∗Ut(anΩ)) ,
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and the result now follows from Lemma 5.17.

We are now ready to finish the proof of Lemma 5.15.

Proof of Lemma 5.15. Assume that θt(P ) ≺ Mi for some i ∈ {1, 2} and t ∈
(0, π2 ). Without loss of generality, we assume that i = 1. By Lemma 5.18, we
get a δ > 0 and κ > 0 such that ‖

∑κ
j=0 pj(a)‖22 ≥ 2δ for all a ∈ U(P ). Note

that 〈Ut(pi(a)), pj(a)〉 = 0 if i 6= j and that 〈Ut(pi(a)), pi(a)〉 = cos(t)i‖pi(a)‖22.
Choose t0 ∈ (0, π2 ) such that cos(t0)i ≥ 1/2 for all i = 0, . . . , κ. Note that we
may choose t0 of the form t0 = π/2n. For all a ∈ U(P ), we then have

τ(θt0(a)a∗) = 〈Ut0(a), a〉 =
∞∑

i,j=0
〈Ut0(pi(a)), pj(a)〉 =

∞∑
i=0

cos(t0)i‖pi(a)‖22

≥
κ∑
i=0

cos(t0)i‖pi(a)‖22 ≥
1
22δ = δ .

Let v be the unique element of minimal 2-norm in the weakly closed convex
hull of {θt0(a)a∗ | a ∈ U(P )}. Then v ∈ M and θt0(a)v = va for all a ∈ U(P ).
Moreover, v 6= 0 since τ(v) ≥ δ.

Put w1 = θt0(vβ(v∗)). Then w1 satisfies w1a = θ2t0(a)w1 for all a ∈ U(P ).
However, we do not know yet that w1 is nonzero. Assuming that P ⊀M A, we
have from Proposition 5.10 and [IPP05, Theorem 1.2.1] that P ′ ∩ qMq ⊂ qMq,
hence v∗v ∈ qMq. Thus

w∗1w1 = θt0(β(v)v∗vβ(v∗)) = θt0(β(vv∗)) 6= 0 .

By iterating this process, we obtain w = wn−1 6= 0 such that wa = θπ/2(a)w,
i.e., wπ1(a) = π2(a)w for all a ∈ P . This means that P ≺M M2. As in [Ho07,
Claim 5.3], this is incompatible with our assumption P 6≺M A. So it follows
that P ≺M A and the lemma is proved.

Proof of Lemma 5.16

Proof. Let P ⊂ qMq and assume that θt(P ) is amenable relative to A inM
for all t ∈ (0, π2 ). As in the proof of [Io12, Theorem 5.1] (and [Va13, Theorem
3.4]), we let I be the set of all quadruples i = (X,Y, δ, t) where X ⊂ M and
Y ⊂ U(P ) are finite subsets, δ ∈ (0, 1) and t ∈ (0, π2 ). Then I is a directed
set when equipped with the ordering (X,Y, δ, t) ≤ (X ′, Y ′, δ′, t′) if and only if
X ⊂ X ′, Y ⊂ Y ′, δ′ ≤ δ and t′ ≤ t.
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By [OP07, Theorem 2.1], we can for each i = (X,Y, δ, t) ∈ I choose a vector
ξi ∈ θt(q)L2(M)⊗A L2(M)θt(q) such that ‖ξi‖2 ≤ 1 and

|〈xξi, ξi〉 − τ(xθt(q))| ≤ δ for all x ∈ X or x = (θt(y)− y)∗(θt(y)− y), y ∈ Y,

‖θt(y)ξi − ξiθt(y)‖2 ≤ δ for all y ∈ Y .

Moreover, we may assume that ξi satisfies 〈xξi, ξi〉 = 〈ξix, ξi〉 for all x ∈ M
and i ∈ I.

We now prove that the qMq-P -bimodule qMqL
2(qMq)P is weakly contained in

qMq(qL2(M)⊗A L2(M)q)P . By Lemma 2.8, it suffices to show that

lim
i
〈xξi, ξi〉 = τ(x) for every x ∈ qMq ,

lim
i
‖yξi − ξiy‖2 = 0 for every y ∈ P .

(5.8)

Let y ∈ U(P ) and ε > 0 be given. Choose t > 0 small enough so that
‖θt(y)− y‖2 ≤ ε√

18 . We have

‖yξi − ξiy‖2 ≤ ‖(y − θt(y))ξi‖2 + ‖θt(y)ξi − ξiθt(y)‖2 + ‖ξi(θt(y)− y)‖2

for any i ∈ I. Moreover, for i ≥ ({0}, {y}, ε218 , t) we have

‖(y − θt(y))ξi‖22 = 〈(θt(y)− y)∗(θt(y)− y)ξi, ξi〉

≤ ‖(θt(y)− y)θt(q)‖22 + ε2

18 ≤
ε2

9 .

Similarly, we get that ‖ξi(θt(y)−y)‖2 ≤ ε
3 . Thus, we conclude that ‖yξi−ξiy‖2 ≤

ε for i ≥ ({0}, {y}, ε218 , t) and so the second assertion of (5.8) holds true. The
first assertion is proved similarly, using that ‖θt(q)− q‖2 → 0 as t→ 0.

By Proposition 5.10, we haveM = M1∗AM2. Under our identificationM = M1,
we claim that ML2(M)A ∼= M(L2(M)⊗A K)A for some A-bimodule AKA. To
see this, note that

EM1(x1 · · ·x2m+1) = 0,

whenever m ≥ 1, x1, x2m+1 ∈ M1, x2j ∈ M2 	 A and x2j+1 ∈ M1 	 A for all
j = 1, . . . ,m− 1. Also, L2(M	M1) is the closed linear span of such elements.
It follows that

L2(M	M1) ∼=
⊕
m≥1

L2(M1)⊗AL2(M2	A)⊗A · · ·⊗AL2(M2	A)⊗AL2(M1),
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where the tensor product on the right hand side should be understood as an
alternating tensor product between L2(M2 	A) and L2(M1 	A), with 2m+ 1
tensor factors in total. So, letting

K =
⊕
m≥1

L2(M2 	A)⊗A · · · ⊗A L2(M2 	A)⊗A L2(M1)⊕ L2(A),

it follows that ML2(M)A ∼= M(L2(M)⊗A K)A as claimed.

We conclude that the bimodule qMqL
2(qMq)P is weakly contained in

qMq(qL2(M)⊗A (K ⊗A L2(M)q))P . It then follows from Proposition 2.11 that
P is amenable relative to A insideM . This finishes the proof of Lemma 5.16.

5.3 Maximal amenability

Fix a tracial von Neumann algebra (A, τ) and a symmetric Hilbert A-bimodule
AHA with symmetry J : H → H. Denote by M = Γ(H,J,A, τ)′′ the associated
von Neumann algebra with faithful normal tracial state τ . We prove the following
maximal amenability property by combining Popa’s asymptotic orthogonality
[Po83] with the method of [BH16]. In the special case of free Bogoljubov crossed
products (see Remark 5.11), part 3 of Theorem 5.19 was proved in [Ho12b,
Theorem D].

Theorem 5.19. Assume that AHA is weakly mixing. Then the following
properties hold.

(1) Z(M) = {a ∈ Z(A) | aξ = ξa for all ξ ∈ H}.

(2) If B ⊂ M is a von Neumann subalgebra that is amenable relative to A
inside M and if the bimodule B ∩ AHA is left weakly mixing, then B ⊂ A.

(3) A von Neumann subalgebra of M that properly contains A is not amenable
relative to A inside M . If the A-bimodule AHA is faithful1, then M has no
amenable direct summand. If A is amenable, then A ⊂M is a maximal
amenable subalgebra.

Proof. As above, identify

L2(M) = L2(A)⊕
⊕
n≥1

H⊗
n
A

1A P -Q-bimodule PHQ is called faithful if the ∗-homomorphisms P → B(H) and Qop →
B(H) are faithful.
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and denote by H ⊂ H the subspace of vectors that are both left and right
bounded.

1. Since AHA is weakly mixing, it follows from Proposition 2.26 that the n-
fold tensor products H⊗nA (with n ≥ 1) have no A-central vectors. Therefore,
A′ ∩M = Z(A). Looking at the commutator of a ∈ Z(A) and `(ξ) + `(Jξ)∗,
the conclusion follows.

2. Since B is amenable relative to A inside M , we can fix a B-central state
ω ∈ 〈M, eA〉∗ such that ω|M = τ .

Claim I. For every ξ ∈ H and every ε > 0, there exists a projection p ∈ A such
that τ(1− p) < ε and such that

ω(`(ξp)`(ξp)∗) < ε .

To prove this claim, fix ξ ∈ H and ε > 0. Define a =
√
〈ξ, ξ〉A and denote by

q ∈ A the support projection of a. Take a projection q1 ∈ qAq that commutes
with a, such that τ(q−q1) < ε/2 and such that aq1 is invertible in q1Aq1. Denote
by b ∈ q1Aq1 this inverse and define η = ξb. By construction, `(η)∗`(η) = q1
and ξq1 = ηa.

Pick a positive integer N such that 2−N < ε/(2‖a‖2). Put κ = 2N . Then pick
δ > 0 such that δ < ε/(κ2‖a‖2). We start by constructing unitary operators
v1, . . . , vκ ∈ U(A ∩B) and a projection q2 ∈ q1Aq1 such that τ(q1 − q2) < ε/2
and such that the vectors ηi = viη satisfy

‖q2〈ηi, ηj〉A q2‖ < δ whenever i 6= j (5.9)

(and where we indeed use the operator norm at the left hand side of (5.9)).

We put e0 = q1 and v1 = 1. Denoting by (ai)i∈I the net of unitaries in B ∩A
witnessing the left weak mixing of B ∩ AHA, we get that limi ‖〈η, aiη〉A‖2 = 0.
Let ri ∈ q1Aq1 be the spectral projection of 〈η, aiη〉∗A〈η, aiη〉A associated with
the interval [0, δ2]. Then (ri)i∈I is a net of projections such that

τ(q1 − ri) ≤ δ−2τ(〈η, aiη〉∗A〈η, aiη〉A)→ 0

and
‖〈η, aiη〉A ri‖2 = ‖ri〈η, aiη〉∗A〈η, aiη〉Ari‖ < δ2 for every i.

Take i large enough such that τ(q1 − ri) < ε/4 and define e1 := ri and v2 := ai.
We have now constructed v1, v2. Inductively, we double the length of the
sequence, until we arrive at v1, . . . , vκ. After k steps, we have constructed
the projections e1 ≥ · · · ≥ ek and unitaries v1, . . . , v2k in U(B ∩ A) such that
τ(ej−1 − ej) < 2−j−1ε and such that the vectors ηi = viη satisfy

‖ek 〈ηi, ηj〉A ek‖ < δ whenever i 6= j .
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As in the first step, we can pick a unitary a ∈ U(B ∩ A) and a projection
ek+1 ∈ ekAek such that τ(ek − ek+1) < 2−k−2ε and such that

‖ek+1 〈ηi, aηj〉A ek+1‖ < δ

for all i, j ∈ {1, . . . , 2k}. It now suffices to put v2k+i = avi for all i = 1, . . . , 2k.
We have doubled our sequence. We continue for N steps and put q2 = eN . So,
(5.9) is proved.

Put µi = ηiq2 = viηq2. Define Pi = `(µi)`(µi)∗ and note that Pi = viP1v
∗
i . Also

note that Pi is a projection since η was chosen such that P1 is a projection. By
construction, ‖PiPj‖ < δ whenever i 6= j. Writing P =

∑κ
i=1 Pi it follows that

‖P 2−P‖ < κ2δ. Since P is a positive operator, we conclude that ‖P‖ < 1+κ2δ.
Since ω is B-central and vi ∈ B for all i, we get that

κω(P1) =
κ∑
i=1

ω(Pi) = ω(P ) ≤ ‖P‖ < 1 + κ2δ .

Therefore, ω(P1) < κ−1 + κδ < ‖a‖−2ε.

Since q1 and a commute, the right support of (q1 − q2)a is smaller than q1,
hence it is a projection of the form q1− p0 where p0 ∈ q1Aq1. Since the left and
right supports of an element have the same trace and since the left support of
(q1 − q2)a is smaller than q1 − q2, we have that τ(q1 − p0) ≤ τ(q1 − q2) < ε/2.
By construction, q1ap0 = q2ap0. Since p0 ≤ q1 and η = ηq1, it follows that

ξp0 = ξq1p0 = ηap0 = ηq1ap0 = ηq2ap0 .

Define the projection p ∈ A given by p = (1 − q) + p0. Since ξ(1 − q) = 0,
we still have ξp = ηq2ap0. Because 1 − p = (q − q1) + (q1 − p0), we get that
τ(1− p) < ε. Finally,

ω(`(ξp)`(ξp)∗) = ω(`(ηq2) ap0a
∗ `(ηq2)∗) ≤ ‖a‖2 ω(`(ηq2)`(ηq2)∗)

= ‖a‖2 ω(P1) < ε .

So, we have proven Claim I.

Claim II. For every ξ ∈ H and every ε > 0, there exists a projection p ∈ A
such that τ(1− p) < ε and such that ω(`(ξp)`(ξp)∗) = 0.

For every integer k ≥ 1, Claim I gives a projection pk ∈ A with τ(1−pk) < 2−kε
and ω(`(ξpk)`(ξpk)∗) < 1/k. Defining p =

∧
k pk, we get that τ(1− p) < ε and,

for every k ≥ 1,

ω(`(ξp)`(ξp)∗) = ω(`(ξ)p`(ξ)∗) ≤ ω(`(ξ)pk`(ξ)∗) = ω(`(ξpk)`(ξpk)∗) < 1/k .
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So, ω(`(ξp)`(ξp)∗) = 0 and claim II is proved.

We can now conclude the proof of 2. Denote by EA : M → A and EB : M → B
the unique trace-preserving conditional expectations. It is sufficient to prove that
EB◦EA = EB . So we have to prove that EB(x) = 0 for all x ∈M	A. Using the
Wick products defined in (5.2), it suffices to prove that EB(W (ξ1, . . . , ξk)) = 0
for all k ≥ 1 and all ξ1, . . . , ξk ∈ H.

Since ω is B-central and ω|M = τ , there is a unique conditional expectation
Φ: 〈M, eA〉 → B such that Φ|M = EB and ω = τ ◦ Φ. Indeed, given T ∈
〈M, eA〉+, we define a positive linear functional ωT on B by ωT (x) = ω(Tx).
For b ∈ B+, we have

|ωT (b)|2 = |ω(b1/2Tb1/2)|2 ≤ ω(b1/2T 2b1/2)ω(b) ≤ ‖T‖2ω(b)2 = ‖T‖2τ(b)2.

By the Radon-Nikodym Theorem, there exists a unique element Φ(T ) ∈ B+
such that ω(Tb) = τ(Φ(T )b) for b ∈ B. Extending Φ to all of 〈M, eA〉 gives a
conditional expectation Φ: 〈M, eA〉 → B such that Φ|M = EB and ω = τ ◦ Φ.

We first consider k ≥ 2 and ξ1, . . . , ξk ∈ H. By Claim II, we can take sequences
of projections pn, qn ∈ A such that pn → 1 and qn → 1 strongly and

Φ(`(ξ1pn)`(ξ1pn)∗) = 0 = Φ(`(J(ξk)qn)`(J(ξk)qn)∗)

for all n. Then also Φ(`(ξ1pn)T ) = 0 = Φ(T`(J(ξk)qn)∗) for all n and all
T ∈ 〈M, eA〉, by the Cauchy-Schwarz inequality. We conclude that

EB(W (ξ1pn, ξ2, . . . , ξk−1, qnξk)) = Φ(W (ξ1pn, ξ2, . . . , ξk−1, qnξk)) = 0

for all n. Since EB is normal, it follows that EB(W (ξ1, . . . , ξk)) = 0.

We next consider the case k = 1. So it remains to prove that EB(`(ξ)+`(Jξ)∗) =
0 for all ξ ∈ H. For this, it is sufficient to prove that Φ(`(ξ)) = 0 for all ξ ∈ H.
By Claim II and reasoning as above, we find a sequence of projections pn ∈ A
such that pn → 1 strongly and Φ(`(ξpn)T ) = 0 for all n and all T ∈ 〈M, eA〉.
In particular, we can take T = 1 and get that Φ(`(ξ)pn) = 0 for all n. Write
en = 1− pn. Using the Cauchy-Schwarz inequality, we get

Φ(`(ξ))∗Φ(`(ξ)) = Φ(`(ξ)en)∗Φ(`(ξ)en) ≤ ‖`(ξ)‖2 Φ(en) = ‖`(ξ)‖2EB(en) .

Since EB(en)→ 0 strongly, we conclude that Φ(`(ξ)) = 0. This concludes the
proof of 2.

3. It follows from 2 that a von Neumann subalgebra of M properly containing
A is not amenable relative to A and thus, not amenable itself. Whenever
H 6= {0}, we have A 6= M and we conclude that M is not amenable. By 1, any
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direct summand of M is given as the von Neumann algebra associated with
the symmetric weakly mixing Az-bimodule Hz where z ∈ Z(A) is a nonzero
central projection satisfying ξz = zξ for all ξ ∈ H. If AHA is faithful, we have
Hz 6= {0} and it follows that this direct summand is not amenable. The final
statement is an immediate consequence of 2.

5.4 Absence of Cartan subalgebras

In this section, we give a complete description of the structure of the von
Neumann algebra M = Γ(H,J,A, τ)′′ associated with an arbitrary symmetric
A-bimodule (H,J).2 We describe the trivial direct summands of M and then
prove that the remaining direct summand never has a Cartan subalgebra and
describe its center (see Theorem 5.21). In all interesting cases, there are no trivial
direct summands and this allows us to prove absence of Cartan subalgebras
whenever H is a weakly mixing A-bimodule (Corollary 5.22), when A is a II1
factor and H is not the trivial bimodule nor the bimodule given by a period 2
automorphism of A (Corollary 5.23), and finally for arbitrary free Bogoljubov
crossed products (Corollary 5.24). This last result improves [Ho12b, Corollary
C].

To prove our general structure theorem, we need the following terminology. Fix
a separable tracial von Neumann algebra (A, τ). We say that an A-bimodule
H is given by a partial automorphism if one of the following two equivalent
conditions holds.

• The commutant of the right A-action on H equals the left A-action, and
vice versa.

• There exists a projection e ∈ B(`2(N))⊗A, a central projection z ∈ Z(A)
and a normal surjective ∗-isomorphism α : Az → e(B(`2(N))⊗A)e such
that AHA ∼= e(`2(N) ⊗ L2(A)) with the bimodule structure given by
a · ξ · b = α(a)ξb.

If (H,J) is a symmetric A-bimodule that is given by a partial automorphism,
then Γ(H,J,A, τ)′′ is “trivial”, in the sense that it is essentially equal to A. We
can compute this using the methods of Example 5.12.

Proposition 5.20. Let (A, τ) be a separable tracial von Neumann algebra and
(H,J) a symmetric A-bimodule such that H is given by a partial automorphism
of A. Put M = Γ(H,J,A, τ)′′. Then M contains a subalgebra N of index 2 (in

2For simplicity, we will in this section restrict ourselves to the case where A is a separable
von Neumann algebra.
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the sense that N is fixed by an order 2 automorphism of M) such that N is a
direct sum of a corner of A and a corner of A⊗ L∞[0, 1].

Proof. Let σ : Z/2Z y H denote the action given by σ(1)(ξ) = −ξ for ξ ∈
H. Clearly σ commutes with J and with the left and right A-actions. By
functoriality, we get an action σ : Z/2Z y M satisfying σ(1)W (ξ1, . . . , ξn) =
(−1)nW (ξ1, . . . , ξn) for ξ1, . . . , ξn ∈ H. Let

N = A ∨ {W (ξ1, . . . , ξn) | n even, ξ1, . . . , ξn ∈ H}′′ ⊂M,

and note that N equals the subalgebra of M that is fixed under σ. So, N is an
index 2 subalgebra of M .

Let α : Az → p(B(`2N)⊗A)p be an isomorphism such thatH = p(`2(N)⊗L2(A))
with A-bimodular actions given by a·ξ ·b = α(a)ξb. We then have thatH⊗AH =
L2(p(B(`2N)⊗A)p) with A-bimodular actions given by a · ξ · b = α(a)ξα(b). So,
α gives an isomorphism between H ⊗A H and the trivial Az-bimodule. Since
H is symmetric, we have that H ∼= H and hence H ⊗A H is isomorphic with
the trivial Az-bimodule. Let Φ: H ⊗A H → L2(A)z denote this isomorphism.

Let ξ0 = Φ−1(z) ∈ H ⊗A H. Since ξ0 is a left and right bounded vector in
L2(M), there is a unique element S ∈M such that SΩ = ξ0. Note that S ∈ N ,
S is self-adjoint and S commutes with A. We claim that N = A∨{S}′′. Indeed,
since Aξ0A = H ⊗A H, we have that W (ξ1, ξ2) ∈ A ∨ {S}′′ for any ξ1, ξ2 ∈ H.
Inductively, it follows that W (ξ1, . . . , ξ2k) ∈ A∨{S}′′ for any k ∈ N and ξi ∈ H,
and thus N ⊂ A ∨ {S}′′. The reverse inclusion is trivial.

Write {S}′′ = L∞(X,µ), where µ is the spectral measure of S. By decomposing
µ into its continuous and atomic parts, we get that {S}′′ ∼= L∞[0, 1]⊕

⊕
i∈I C,

where I is a set indexing the atoms of µ. Let z0 ∈ {S}′′ denote the projection
onto the continuous part and let (zi)i∈I denote the projections onto the atoms.
Then

N = A ∨ {S}′′ ∼= L∞[0, 1]⊗Az0 ⊕
⊕
i∈I

Azi.

Fix a symmetric A-bimodule (H,J) and denote M = Γ(H,J,A, τ)′′. Then,
M has two trivial direct summands. First denote by z0 ∈ Z(A) the largest
projection such that z0H = {0}. Then, z0 ∈ Z(M) and Mz0 = Az0. Next,
there is a largest projection z1 ∈ Z(A)(1− z0) such that z1H = Hz1 and such
that the A-bimodule Hz1 is given by a partial automorphism of A (see Lemma
5.40 for details). Again z1 ∈ Z(M) and Mz1 is essentially equal to a corner of
A, up to amplifications and an index 2 extension (see Proposition 5.20).
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Writing z2 = 1− (z0 + z1), we thus get that

M = Az0 ⊕ Γ(Hz1, J, Az1, τ)′′ ⊕ Γ(Hz2, J, Az2, τ)′′

and only the third direct summand is “interesting and nontrivial”. By Lemma
5.40, the symmetric Az2-bimodule Hz2 is completely nontrivial in the following
sense: the left action of Az2 on H is faithful and there are no nonzero projections
e, f ∈ Z(A)z2 such that eH = Hf and such that eH is given by a partial
automorphism of Az2. So it suffices to describe the structure of the von
Neumann algebra associated with an arbitrary completely nontrivial symmetric
A-bimodule.

We denote by dim−A(K) the right A-dimension of a right Hilbert A-module
K. Recall that the value of dim−A(K) depends on the choice of the trace τ .
We similarly define dimA−(K) for a left Hilbert A-module K. As in (5.10), for
every A-bimodule H, there is a unique element ∆`

H in the extended positive part
of Z(A) characterized by τ(∆`

He) = dim−A(eH) for every projection e ∈ Z(A).

Theorem 5.21. Let (A, τ) be a separable tracial von Neumann algebra and
(H,J) a completely nontrivial symmetric A-bimodule. WriteM = Γ(H,J,A, τ)′′.
There is a canonical central projection q ∈ Z(M) (which most of the time is
zero) such that the following holds.

(a) No direct summand of M(1− q) is amenable relative to A(1− q).

(b) No direct summand of M(1− q) admits a Cartan subalgebra.

(c) Mq = Aq and the support of EA(1− q) equals 1.

(d) Defining C := {a ∈ Z(A) | aξ = ξa for all ξ ∈ H}, we get that Z(M) =
Z(A)q + C(1− q).

Moreover, we have that EA(q) = Z(∆`
H), where Z : (0,+∞)→ R is the positive

function given by Z(t) = 1− t when t ∈ (0, 1) and Z(t) = 0 when t ≥ 1.

Corollary 5.22. Let (A, τ) be a separable tracial von Neumann algebra and
(H,J) a symmetric A-bimodule. Put M = Γ(H,J,A, τ)′′. If AHA is weakly
mixing and faithful, then no direct summand of M has a Cartan subalgebra and
Z(M) = {a ∈ Z(A) | aξ = ξa for all ξ ∈ H}.

Proof. Let z ∈ Z(A) be a nonzero central projection. Since zH 6= {0} and zH
is still left weakly mixing as an A-bimodule, we have that dim−A(zH) = +∞
and that zH is not given by a partial automorphism of A. So the conclusions
follow from Theorem 5.21.
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When A is a II1 factor, the results of Theorem 5.21 can be formulated more
easily as follows.

Corollary 5.23. Let A be a separable II1 factor with its unique tracial state τ
and let (H,J) be a symmetric A-bimodule. Denote M = Γ(H,J,A, τ)′′. Unless
H is zero or H is the trivial A-bimodule or H is the symmetric A-bimodule
associated with a period 2 outer automorphism of A, the following holds: M is
a factor, M is not amenable relative to A, and M has no Cartan subalgebra.

Proof. Since A is a II1 factor, the only symmetric A-bimodules given by a partial
automorphism of A are the trivial A-bimodule and the A-bimodule given by α ∈
Aut(A) with α ◦ α being inner. Indeed, assume that α : A→ e(B(`2(N))⊗A)e
is a ∗-isomorphism and H = e(`2(N)⊗ L2(A)) with A-bimodular actions given
by a · ξ · b = α(a)ξb. By [AP16, Proposition 12.1.5] and since H is symmetric,
we have that

(Tr⊗τ)(e) = dim−A(H) = dimA−(H) = 1
(Tr⊗τ)(e) ,

and hence (Tr⊗τ)(e) = 1. It follows that H = L2(A) and that α : A → A
is a ∗-isomorphism. Since H is symmetric, we must have that α2 is an inner
automorphism of A.

When a symmetric A-bimodule H is not given by a partial automorphism of A,
we have that dim−A(H) > 1. So, Z(∆`

H) = 0, where Z : (0,∞)→ R denotes the
function defined in Theorem 5.21. The conclusion now follows from Theorem
5.21.

We finally deduce that free Bogoljubov crossed products never have a Cartan
subalgebra. In [Ho12b, Corollary C], this was proven under extra assumptions
on the underlying orthogonal representation.

Corollary 5.24. Let G be an arbitrary countable group and π : G → O(KR)
an orthogonal representation of G with dim(KR) ≥ 2. Denote by σπ : G y
Γ(KR)′′ ∼= L(FdimKR) the associated free Bogoljubov action with crossed product
M := Γ(KR)′′ oσπ G (see Remark 5.11). Then no direct summand of M has
a Cartan subalgebra. Also, M is a factor if and only if π(g) 6= 1 for every
g ∈ G \ {e} that has a finite conjugacy class.

Proof. Write A = L(G) with its canonical tracial state τ . By Remark 5.11, we
can view M = Γ(H,J,A, τ)′′ where the symmetric A-bimodule (H,J) is given
by (5.3). Denote by K the complexification of KR. Observe that H ∼= `2(G)⊗K
with bimodule structure a · ξ · b = α(a)ξb, where α : L(G)→ L(G)⊗ B(K) is
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given by α(ug) = ug ⊗ π(g) for all g ∈ G. Since (τ ⊗ id)α(a) = τ(a)1 for all
a ∈ L(G), it follows that ∆`

H = dim(KR) 1.

The left and right actions of A on H are faithful. Since H⊗AH can be identified
with the bimodule associated with the representation π ⊗ π, the center valued
dimension of H ⊗A H as a left A-module equals dim(KR)2 1. It follows from
Lemma 5.39 below that H is completely nontrivial. Since dimKR > 1, it
follows from Theorem 5.21 that no direct summand of M has a Cartan and
that Z(M) = {a ∈ Z(A) | aξ = ξa for all ξ ∈ H}.

Let a ∈ Z(A) be such that aξ = ξa for all ξ ∈ H. By writing a =
∑
g∈Γ agug

for the Fourier decomposition of a and using that a commutes with δe ⊗ η for
all η ∈ K, we get ∑

g∈G
agδg ⊗ η =

∑
g∈G

agδg ⊗ π(g)η, η ∈ K.

It follows that π(g) = 1 for any g ∈ G that appears with nonzero coefficient in
the Fourier decomposition of a. But since a ∈ Z(A), the only group elements
that appear in the Fourier decomposition are the ones with finite conjugacy class.
It follows thatM is a factor whenever π(g) 6= 1 for every g ∈ G\{e} with a finite
conjugacy class. Conversely, assume that π(g) = 1 for some g ∈ G \ {e} with a
finite conjugacy class F = {hgh−1 | h ∈ G}. Then the element a =

∑
g∈F ug is

a nontrivial central element of M . We conclude that M is a factor if and only
if π(g) 6= 1 for every g ∈ G \ {e} that has a finite conjugacy class.

Before proving Theorem 5.21, we will first introduce some general notions for
bimodules and prove some technical lemmas.

5.4.1 Preliminaries on bimodules

Let (A, τ) be a tracial von Neumann algebra and denote by Ẑ(A) the extended
positive part of Z(A), i.e., when we identify Z(A) = L∞(X,µ), then Ẑ(A)
consists of all measurable functions f : X → [0,+∞] up to identification of
functions that are equal almost everywhere.

Whenever (B, τ) and (A, τ) are tracial von Neumann algebras and H is a B-
A-bimodule, we denote by ∆`

H ∈ Ẑ(B) the unique element in the extended
positive part of Z(B) characterized by

τ(∆`
He) = dim−A(eH) for all projections e ∈ Z(B) . (5.10)
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Writing H ∼= p(`2(I)⊗L2(A)) with the bimodule action given by b·ξ ·a = α(b)ξa
where α : B → p(B(`2(I)) ⊗ A)p is a normal ∗-homomorphism, we get that
τ(∆`

H · ) = (Tr⊗τ)α( · ) and this also allows to construct ∆`
H .

By symmetry, we can also define ∆r
H ∈ Ẑ(A) characterized by the formula

τ(∆r
He) = dimB−(He) for every projection e ∈ Z(A).

Recall that a right Hilbert A-module K is finitely generated if and only if
K ∼= p(Cn ⊗ L2(A)) for some n ∈ N and some projection p ∈Mn(C)⊗A. Any
finitely generated right A-module K admits a Pimsner-Popa basis, i.e., right
bounded elements ξ1, . . . , ξn ∈ K such that

ξ =
n∑
i=1

ξi 〈ξi, ξ〉A (5.11)

for all right bounded elements ξ ∈ K. Indeed, identifying K with p(Cn⊗L2(A)),
this amounts to letting ξi = p(ei ⊗ 1A) where {ei}ni=1 denotes the canonical
basis of Cn. We denote by tK ∈ K ⊗A K the associated vector given by

tK :=
n∑
i=1

ξi ⊗A ξi . (5.12)

Lemma 5.25. Let K be an A-bimodule that is finitely generated as a right
A-module. Choose a Pimsner-Popa basis {ξi}ni=1 ⊂ K and let tK ∈ K ⊗A K
be the associated vector defined in (5.12). Then tK is an A-central vector and
〈tK , tK〉A = ∆`

K . If ∆`
K is bounded, i.e., ∆`

K ∈ Z(B), then ξi is also left
bounded for each i.

Proof. Giving a Pimsner-Popa basis {ξk}nk=1 for the right Hilbert A-module K
is the same as defining a right A-linear unitary operator θ : e(Cn⊗L2(A))→ K
for some projection e ∈ An := Mn(C)⊗A, with ξk = θ(e(ek ⊗ 1)). Define the
faithful normal ∗-homomorphism α : A→ eAne such that θ(α(a)ξ) = aθ(ξ) for
all a ∈ A and ξ ∈ e(Cn ⊗ L2(A)).

For a ∈ A, we now have that

atK =
n∑

i,j=1
ξj · α(a)ji ⊗A ξi =

n∑
i,j=1

ξj ⊗A ξi · α(a∗)ij = tKa,
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so that tK is A-central. Moreover, for x, y ∈ A,

〈`(tK)∗`(tK)x, y〉2 =
n∑

i,j=1
〈ξi ⊗A ξi · x, ξj ⊗A ξj · y〉

=
∑
i,j

〈α(x∗)(ei ⊗ 1), 〈ξi, ξj〉A · α(y∗)(ej ⊗ 1)〉

=
∑
i

〈α(y∗)(ei ⊗ 1), α(x∗)(ei ⊗ 1)〉

= (Tr⊗τ)(α(xy∗)) = 〈∆`
Kx, y〉2,

which means that 〈tK , tK〉A = ∆`
K .

Finally, assume that ∆`
K is bounded. Define the vector ξ ∈ Cn ⊗K given by

ξ =
n∑
k=1

ek ⊗ ξk .

Then, bξ = ξα(b) for all b ∈ A and, in particular, ξ ∈ (Cn ⊗K)e.

Define the normal positive functional ω : A → C : ω(a) = 〈aξ, ξ〉. Then ω is
A-central, so we find ∆ ∈ L1(Z(A))+ such that ω(a) = τ(a∆) for all a ∈ A.
But for all projections q ∈ A, we have

τ(q∆) = ω(q) = 〈qξ, ξ〉 = 〈ξα(q), ξ〉 = (Tr⊗τ)(α(q)) = dim−A(qK) .

This means that ∆ = ∆`
K . Since ∆`

K is bounded, we get that

n∑
i=1
‖aξi‖2 = ‖aξ‖2 = τ(a∗a∆`

K) ≤ ‖∆`
K‖ ‖a‖22 for all a ∈ A,

which implies that the vectors ξk ∈ H are left A-bounded.

Recall that the A-dimension of a left or a right A-module depends on the choice
of trace on A. Therefore, a better way to keep track of the dimension of an
A-module in the case where A is not a factor, is to consider the center valued
dimension, which is defined as follows. Let L be a right A-module. Then we
may identify L with p(`2(I) ⊗ L2(A)) for some projection p ∈ B(`2(I)) ⊗ A.
The center valued right A-dimension of L is defined by

zdim−A(L) = (Tr⊗EZ(A))(p) ∈ Ẑ(A),
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where EZ(A) denotes the conditional expectation of A onto its center Z(A).
Similarly, if L is a left A-module, we can define the center valued left A-dimension
denoted by zdimA−(L). We have that L is finitely generated as a right (resp.
left) Hilbert A-module if and only if zdim−A(L) (resp. zdimA−(L)) is bounded
(see [AP16, Proposition 9.3.2]).

Note that the definition of the center valued dimension is independent of the
trace τ on A since EZ(A) is intrinsic. Moreover, the center valued dimension
is a complete invariant for left/right A-modules: two left/right A-modules are
isomorphic if and only if they have the same center valued left/right A-dimension
(see [AP16, Section 9.3]).

We will also need the notion of essentially finite index for inclusions of tracial
von Neumann algebras. Given a tracial von Neumann algebra (Q, τ) and a von
Neumann subalgebra P ⊂ Q, the Jones index of the inclusion P ⊂ Q is defined
to be [Q : P ] := dim−P L2(Q). Note that the value of [Q : P ] is not canonical
since it depends on τ . Therefore, when we speak about a finite index inclusion,
it will always be with respect to a certain trace. In [Va07, Appendix A], Vaes
introduced a broader notion of a finite index inclusion, which is independent of
the choice of trace.

Definition 5.26 ([Va07, Definition A.2]). A von Neumann subalgebra P of a
tracial von Neumann algebra (Q, τ) is said to be of essentially finite index if
there exist projections q ∈ P ′ ∩Q arbitrarily close to 1 such that Pq ⊂ qQq has
finite Jones index.

Proposition 5.27 ([Va07, Proposition A.2]). Let P be a von Neumann
subalgebra of (Q, τ). The following are equivalent.

(1) P is of essentially finite index in Q.

(2) qQq ≺qQq Pq for every nonzero projection q ∈ P ′ ∩Q.

(3) There exists a projection q ∈ P ′ ∩Q arbitrarily close to 1 and there exist
finitely many elements y1, . . . , yn ∈ Qq such that

xq =
n∑
i=1

yiEP (y∗i x) for all x ∈ Q.

5.4.2 Relative diffuse subalgebras

In this subsection, we will introduce the notion of a relative diffuse subalgebra
and we will provide a structural characterization of being relative diffuse. Our
goal is to prove Lemma 5.38, in which the setup is as follows: B ⊂ (M, τ) is a
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von Neumann subalgebra of a separable tracial von Neumann algebraM , S ∈M
is a self-adjoint operator that commutes with B, and D = {S}′′ ∨B ⊂M . For
simplicity, we will only consider this specific setup.

We start by considering the abelian case. Let A ⊂ D be an inclusion of
abelian von Neumann algebras and write A = L∞(Y, ν) and D = L∞(X,µ).
Such an inclusion ι : L∞(Y, ν)→ L∞(X,µ) amounts to a surjective Borel map
π : (X,µ)→ (Y, ν) satisfying ν = π∗µ and ι(f) = f ◦π for all f ∈ L∞(Y, ν) (see
for instance [AP16, Theorem 3.3.4]).

A Borel map π : (X,µ)→ (Y, ν) satisfying π∗µ = ν is called a factor map. It is
a classical result in measure theory that such a factor map π : (X,µ)→ (Y, ν)
gives rise to a disintegration of µ, as stated in the following theorem. For a
proof, we refer to [Bo07, Theorem 10.4.14].

Theorem 5.28 (The Disintegration Theorem). Let (X,µ) and (Y, ν) be
standard probability spaces, and let π : X → Y be a factor map. There exists
a disintegration of µ with respect to π, i.e., a family of probability measures
{µy}y∈Y on X such that

(1) µy is supported on the fiber π−1({y}) for all y ∈ Y ;

(2) the map y 7→ µy is a Borel map in the following sense: for each Borel set
B ⊂ X, the map y 7→ µy(B) is Borel;

(3) we have that µ =
∫
Y
µy dν(y). More precisely, for any measurable function

f : X → [0,∞],∫
X

f(x) dµ(x) =
∫
Y

∫
π−1({y})

f(x) dµy(x)dν(y).

Moreover, the disintegration of µ is unique in the following sense: if {µ′y}y∈Y is
another disintegration of µ with respect to π, then µy = µ′y ν-almost everywhere.

Definition 5.29. Let (X,µ) and (Y, ν) be standard probability spaces and
let π : (X,µ) → (Y, ν) be a factor map. Let {µy}y∈Y be the associated
disintegration of µ. We say that the factor map π is diffuse if µy is non-atomic
for almost all y ∈ Y .

If A = L∞(Y, ν) ⊂ L∞(X,µ) = D is an inclusion of abelian von Neumann
algebras, then we say that D is diffuse relative to A (or that A ⊂ D is relatively
diffuse) if the associated factor map π : (X,µ)→ (Y, ν) is diffuse.

Example 5.30. Let (Y, ν) be a standard probability space and let (X,µ) =
([0, 1] × Y, λ × ν), where λ denotes the Lebesgue measure on [0, 1]. We then
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have a factor map pY : [0, 1] × Y → Y given by pY (x, y) = y. Note that this
is exactly the factor map associated with the canonical inclusion L∞(Y, ν) ⊂
L∞[0, 1] ⊗ L∞(Y, ν). The disintegration of µ associated with the factor map
pY is trivial, in the sense that µy = λ× δy for all y. Therefore, pY is called the
trivial diffuse factor map.

It is a folklore result that any diffuse factor map π : (X,µ)→ (Y, ν) is trivial, in
the sense that there is a measure space isomorphism θ : (X,µ)→ ([0, 1]×Y, λ×ν)
such that pY ◦ θ = π. As a corollary, we get that any relatively diffuse inclusion
A ⊂ D of abelian von Neumann algebras is isomorphic with the canonical
inclusion A ⊂ L∞[0, 1] ⊗ A. Since I was unable to find a reference for these
facts, I will here provide a full proof.

Recall that any non-atomic standard probability space (X,µ) is isomorphic
with ([0, 1], λ), where λ denotes the Lebesgue measure. So, if π : (X,µ) →
(Y, ν) is a diffuse factor map, we get a family of measure space isomorphisms
θy : (X,µy)→ ([0, 1], λ). In the following, we will show that these isomorphisms
θy can be chosen in a uniform way so that θ : (X,µ)→ ([0, 1]× Y, λ× ν) given
by θ(x) = (θπ(x)(x), π(x)) defines an isomorphism with the trivial factor map.

Lemma 5.31 ([Ke95, Theorem 17.41]). Let µ be any non-atomic probability
measure on [0, 1] and let λ denote the Lebesgue measure. Define

gµ : [0, 1]→ [0, 1] : gµ(x) = µ([0, x]),

and let Nµ ⊂ [0, 1] be the set of y for which g−1
µ ({y}) contains more than

one point. Then Nµ is countable, in particular λ(Nµ) = 0, and letting Wµ =
g−1
µ (Nµ), we have that

gµ : [0, 1] \Wµ → [0, 1] \Nµ

is continuous, bijective and satisfies (gµ)∗(µ) = λ.

Proof. Because µ has no atoms, we have that gµ is continuous. Moreover, gµ is
increasing and satisfies gµ(0) = 0 and gµ(1) = 1. It follows that gµ is surjective.
So, for each y ∈ [0, 1], the preimage g−1

µ ({y}) is a closed interval, and all of
these intervals are pairwise disjoint. There can be only countably many disjoint
closed intervals with a positive length inside [0, 1]. So, it follows that Nµ is
countable.

Since gµ : [0, 1] → [0, 1] is surjective, also the restriction gµ : [0, 1] \ Wµ →
[0, 1] \Nµ is surjective. To show that it is injective, assume that x1 < x2 and
gµ(x1) = gµ(x2). Then µ([x1, x2]) = 0 and gµ(x) = gµ(x1) for all x ∈ [x1, x2].
It follows that gµ(x1) ∈ Nµ and hence x1 ∈Wµ.
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Finally, when y ∈ [0, 1] \ Nµ, write y = gµ(x) for some x ∈ [0, 1] \Wµ. Note
that g−1

µ ([0, y]) = [0, x]. Thus,

((gµ)∗µ)([0, y]) = µ([0, x]) = gµ(x) = y = λ([0, y]).

So, (gµ)∗µ = λ.

Proposition 5.32. Let (X,µ) and (Y, ν) be standard probability spaces and
let π : X → Y be a diffuse factor map. Then π is isomorphic with the trivial
diffuse factor map pY : ([0, 1]× Y, λ× ν)→ (Y, ν).

Proof. Define Z ⊂ X × Y by Z = {(x, π(x)) | x ∈ X}. Then Z is a Borel set,
being the graph of the Borel map π, and it is isomorphic with X. Let {µy}y∈Y
be the disintegration of µ with respect to π and define the probability measure
γ on X × Y by

γ(A) =
∫
Y

µy(Ay) dν(y), A ⊂ X × Y Borel,

where Ay denotes the fiber Ay = {x ∈ X | (x, y) ∈ A}. Note that γ(Z) = 1.

We may assume that X = [0, 1]. By Lemma 5.31, we have continuous bijections
gµy : X \Wµy → X \Nµy such that (gµy)∗µy = λ. Moreover, gµy is given by
gµy(x) = µy([0, x]). Note that (x, y) 7→ µy([0, x]) is a Borel map by [Ke95,
Theorem 17.25].

Define the Borel map θ : X × Y → X × Y given by θ(x, y) = (µy([0, x]), y).
With the notation Nµy from Lemma 5.31, put

N = {(a, y) ∈ X × Y | a ∈ Nµy} = {(a, y) ∈ X × Y | λ(g−1
µy ({a})) > 0}.

We claim that N is a Borel set. Indeed, define the set

V = {(y, a, x) ∈ Y ×X ×X | gµy (x) = a}.

Note that V is Borel, being the graph of the Borel map (x, y) 7→ gµy(x). By
[Ke95, Theorem 17.25], the map (y, a) 7→ λ(V(y,a)) is Borel. It follows that

N = {(a, y) ∈ X × Y | λ(V(y,a)) > 0}

is indeed a Borel set.

Put W = θ−1(N). Then W = {(x, y) ∈ X × Y | x ∈Wµy}, so that

γ(W ) =
∫
Y

µy(Wµy ) dν(y) = 0.

Now, θ : (X×Y ) \W → (X×Y ) \N is a bijection because this holds fiber wise.
Moreover, θ∗γ = λ× ν. So, under the isomorphism X ∼= Z ⊂ X × Y , we have
that θ : X → [0, 1]×Y is a measure space isomorphism satisfying π = pY ◦θ.
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Proposition 5.33. Let A ⊂ D be an inclusion of separable abelian von
Neumann algebras. The following are equivalent.

(i) D is diffuse relative to A.

(ii) There is an isomorphism Φ: D → L∞[0, 1]⊗ A satisfying Φ(a) = 1⊗ a
for all a ∈ A.

(iii) There exists a unitary u ∈ D such that EA(uk) = 0 for all k ∈ Z \ {0}
and such that {u}′′ ∨A = D.

(iv) D ⊀D A.

Proof. The equivalence (i) ⇔ (ii) follows directly from Proposition 5.32.

(ii) ⇒ (iii): Assume that D ∼= L∞[0, 1]⊗A. Pick a Haar unitary u0 ∈ L∞[0, 1],
i.e., τ(uk0) = 0 for all k ∈ Z \ {0}. Letting u = u0 ⊗ 1A ∈ U(D), we get the
desired unitary.

(iii) ⇒ (ii): Let u ∈ U(D) be a unitary as in the statement of (iii). Note that
u generates a diffuse von Neumann subalgebra of D that is in tensor product
position with A. So, D = {u}′′ ∨A ∼= L∞[0, 1]⊗A and this isomorphism is the
identity on A.

(ii) ⇒ (iv): This is a consequence of Popa’s intertwining-by-bimodules theorem,
Theorem 2.12.

(iv) ⇒ (i): Write A = L∞(Y, ν) and D = L∞(X,µ), and let µ =
∫
Y
µy dν(y)

be the disintegration of µ associated with the inclusion A ⊂ D. If D is not
diffuse relative to A, then we find a set Y0 ⊂ Y of positive measure such
that µy has an atom for all y ∈ Y0. Assume first that there is a Borel map
f : Y0 → X such that f(y) is an atom of µy for all y ∈ Y0. Since f is injective,
the image X0 := {f(y) | y ∈ Y0} is a Borel set, by [Ke95, Corollary 15.2]. Then
p := 1X0 ∈ L∞(X,µ) is a nonzero projection such that

pL∞(X,µ) = L∞(X0, µ) ∼= L∞(Y0, ν),

via the isomorphism π∗ : L∞(Y0, ν)→ L∞(X0, µ) induced by π. In particular,
D ≺D A.

It remains to show that the Borel map f from above does indeed exist. By
[Ke95, Theorem 17.25], we have that the map x 7→ µπ(x)({x}) is a Borel map
from X to R. In particular, the set

X0 := {x ∈ X | µπ(x)({x}) > 0}
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is Borel. Now, the map π : X0 → Y0 is a surjective countable-to-one Borel map
and hence it has a Borel cross-section f : Y0 → X0 by [Bo07, Theorem 6.9.6].
This gives us the desired map f .

We now turn to the non-commutative case, in the setting of Lemma 5.38. Let
M be a separable tracial von Neumann algebra, let B ⊂M be a von Neumann
subalgebra and let S ∈M be a self-adjoint operator commuting with B. Put
D = B ∨ {S}′′.

We first show that the subalgebras B and Z(B) ∨ {S}′′ of D form a so-called
commuting square, which is a notion due to Popa [Po83]. Two von Neumann
subalgebras Q1, Q2 of a tracial von Neumann algebra (M, τ) are said to form
a commuting square if EQ1 ◦ EQ2 = EQ2 ◦ EQ1 , where EQi denotes the unique
τ -preserving conditional expectation of M onto Qi. In that case, we have that
EQ1 ◦ EQ2 = EQ1∩Q2 .

Lemma 5.34. The von Neumann subalgebras B and Z(B) ∨ {S}′′ form a
commuting square inside D, with B ∩ (Z(B) ∨ {S}′′) = Z(B).

Proof. For any a ∈ Z(B)∨{S}′′, we have that b 7→ τ(ba) is a trace on B. Since
EZ(B) is preserved by any trace on B, it follows that τ(ba) = τ(EZ(B)(b)a) for
all b ∈ B and all a ∈ Z(B)∨ {S}′′. This means that EZ(B)∨{S}′′(b) = EZ(B)(b)
for all b ∈ B. Thus, EZ(B)∨{S}′′ ◦ EB = EZ(B).

Letting eB, eZ(B) and eZ(B)∨{S}′′ denote the associated Jones projections in
B(L2(M)), we now have that eZ(B)∨{S}′′ eB = eZ(B). Taking the adjoint, also
eBeZ(B)∨{S}′′ = eZ(B). Restricting to M yields EB ◦EZ(B)∨{S}′′ = EZ(B).

Definition 5.35. Let B ⊂ D be as above. We say that D is diffuse relative to
B if the abelian inclusion Z(B) ⊂ Z(B) ∨ {S}′′ is relatively diffuse.

Because of the commuting square property, we get the following characterizations
of relative diffuseness, motivating Definition 5.35 above.

Proposition 5.36. Let B ⊂ D be as above. The following are equivalent.

(i) D is diffuse relative to B.

(ii) D ⊀D B.

(iii) The D-bimodule L2(D)⊗B L2(D) contains no nonzero D-central vectors.

(iv) For any B-D-bimodule K, the D-bimodule L2(D) ⊗B K contains no
nonzero D-central vectors.
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Proof. Note that D ⊀D B exactly means that DL2(D)B is left weakly mixing.
By Proposition 2.26, we get that (ii) ⇔ (iii) ⇔ (iv).

(i) ⇒ (ii): Assume that D is diffuse relative to B. By Proposition 5.33, this
means that {S}′′ ∨ Z(B) ∼= L∞[0, 1] ⊗ Z(B) via an isomorphism that is the
identity on Z(B). Let un ∈ L∞[0, 1] be a sequence of unitaries tending to
0 weakly. Then wn := un ⊗ 1B ∈ D is a sequence of unitaries such that
‖EZ(B)(xwny)‖2 → 0 for all x, y ∈ {S}′′ ∨ Z(B). Since B and {S}′′ ∨ Z(B)
form a commuting square, it follows that ‖EB(xwny)‖2 → 0 for all x, y ∈ D.
Indeed, it is enough to show this for x, y ∈ {S}′′. In that case, we have that
xwny ∈ Z(B) ∨ {S}′′ and hence

‖EB(xwny)‖2 = ‖(EB ◦ EZ(B)∨{S}′′)(xwny)‖2 = ‖EZ(B)(xwny)‖2 → 0.

By Popa’s intertwining-by-bimodules theorem, Theorem 2.12, this means that
D ⊀D B.

(ii)⇒ (i): Assume that D is not diffuse relative to B, i.e., D0 := Z(B)∨{S}′′ is
not diffuse relative to Z(B). By Proposition 5.33, this means thatD0 ≺D0 Z(B).
In fact, we proved the following stronger property in the proof of Proposition
5.33: there exist nonzero projections z ∈ Z(B) and p ∈ D0z such that the linear
map α : D0p→ Z(B)z given by α(x) = EZ(B)z(x)EZ(B)z(p)−1 for x ∈ D0p is a
∗-isomorphism. Since D0 and B form a commuting square inside D = D0 ∨B,
with B ∩ D0 = Z(B), it follows that the linear map α̃ : Dp → Bz given by
α̃(x) = EBz(x)EBz(p)−1 is a ∗-isomorphism extending α. Also note that
α̃(xb) = α̃(x)b for x ∈ D and b ∈ B. In particular, the D-B-bimodule L2(D)p
has right B-dimension equal to τ(z), and thus D ≺D B.

We finish this subsection with two lemmas that will be needed in the proof of
Theorem 5.21.

Lemma 5.37. Let Φ: D → B be a conditional expectation of the form Φ(x) =
EB(xa) for some positive element a ∈ Z(B) ∨ {S}′′. If D is diffuse relative to
B, then there exists a unitary u ∈ U(Z(B) ∨ {S}′′) such that Φ(uk) = 0 for all
k ∈ Z \ {0}.

Proof. Assume first that B = L∞(Y, ν) and D = L∞(X,µ) are abelian. Let
{µy}y∈Y be the disintegration of µ associated with the factor map π : X → Y
coming from the inclusion B ⊂ D. Note that Φ is given by

Φ(d)(y) =
∫
X

d(x)a(x) dµy(x), d ∈ D.

Since Φ is a conditional expectation, we have that Φ(1) = 1 and hence∫
X
a(x) dµy(x) = 1 for ν-almost all y ∈ Y . It follows that π : (X, aµ)→ (Y, ν)
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is a factor map and that y 7→ aµy is the associated disintegration of aµ. By
Proposition 5.32, we get a measure space isomorphism θ : (X, aµ)→ ([0, 1]×
Y, λ×ν) such that pY ◦θ = π. This induces a ∗-isomorphism θ̃ : D → L∞[0, 1]⊗B
satisfying θ̃(Φ(f)) = EB(θ̃(f)) for f ∈ D, where EB : L∞[0, 1]⊗B → B denotes
the usual trace-preserving conditional expectation. Let w ∈ L∞[0, 1] be a Haar
unitary and put u = θ̃−1(w ⊗ 1B) ∈ D. Then,

θ̃ ◦ Φ(uk) = EB(wk ⊗ 1B) = τ(wk)1B = 0, k ∈ Z \ {0}.

This finishes the proof in the abelian case.

If B is not abelian, notice that since B andD0 := Z(B)∨{S}′′ form a commuting
square inside D, we have that Φ(x) = EB(xa) = EZ(B)(xa) for all x ∈ D0. By
applying the first part of the proof to the abelian inclusion Z(B) ⊂ D0, we find
a unitary u ∈ D0 such that Φ(uk) = 0 for all k ∈ Z \ {0}.

Lemma 5.38. Let (A, τ) be a separable tracial von Neumann algebra and (H,J)
a symmetric A-bimodule. Write M = Γ(H,J,A, τ)′′. Let p ∈ A be a projection
and B ⊂ pAp a von Neumann subalgebra such that B′ ∩ pAp = Z(B). Let
K ⊂ pH be a B-A-subbimodule that is finitely generated as a right Hilbert
A-module. Assume that ∆`

K is bounded and satisfies ∆`
K ≥ p, as B-A-bimodule.

Let (ξk)nk=1 be a Pimsner-Popa basis for K as a right A-module. Then the
vectors ξk are also left A-bounded and using the notation of (5.2), we define
S ∈ pMp given by

S :=
n∑
k=1

W (ξk, J(ξk)) . (5.13)

Then S ∈ B′ ∩ pMp, S is self-adjoint and the von Neumann algebra D :=
{S}′′ ∨B is diffuse relative to B.

Proof. Giving a Pimsner-Popa basis (ξk)nk=1 for the right Hilbert A-module K
is the same as defining a right A-linear unitary operator θ : e(Cn⊗L2(A))→ K
for some projection e ∈ An := Mn(C)⊗A, with ξk = θ(e(ek ⊗ 1)). Define the
faithful normal ∗-homomorphism α : B → eAne such that θ(α(b)ξ) = bθ(ξ) for
all b ∈ B and ξ ∈ e(Cn ⊗ L2(A)). View Cn ⊗ K as a B-An-subbimodule of
Cn ⊗ pH. Define the vector ξ ∈ Cn ⊗K given by

ξ =
n∑
k=1

ek ⊗ ξk .

Then, bξ = ξα(b) for all b ∈ B and, in particular, ξ ∈ (Cn ⊗K)e.

Define the normal positive functional ω : pAp→ C : ω(a) = 〈aξ, ξ〉. Since ω is B-
central and B′ ∩ pAp = Z(B), we find ∆ ∈ L1(Z(B))+ such that ω(a) = τ(a∆)



122 THIN II1 FACTORS WITH NO CARTAN SUBALGEBRAS

for all a ∈ pAp. As in the proof of Lemma 5.25, we have that ∆ = ∆`
K and that

the vectors ξk ∈ H are left A-bounded.

So, the vectors ξk are both left and right A-bounded and thus the operator S
given by (5.13) is a well-defined element of pMp. Since

S =
n∑
k=1

(
`(ξk)`(J(ξk)) + `(ξk)`(ξk)∗ + `(J(ξk))∗`(ξk)∗

)
,

we get that S = S∗. From this formula, we also get that S commutes with B.
Put S1 := ∆ + S. Since ∆ ∈ Z(B), it suffices to prove that {S1}′′ ∨B is diffuse
relative to B.

Write A1 = pAp and A2 = eAne. Equip A1 and A2 with the non-normalized
traces given by restricting τ to A1 and Tr⊗τ to A2. View ξ as a vector in the
A1-A2-bimodule L := (Cn ⊗ pH)e and note that

〈ξ, ξ〉A2 = e , A1〈ξ, ξ〉 = ∆ .

Write L′ := e(Cn ⊗ Hp), view L′ as an A2-A1-bimodule and note that the
anti-unitary operator

J1 : L→ L′ : J1
( n∑
k=1

ek ⊗ µk
)

=
n∑
k=1

ek ⊗ J(µk)

satisfies J1(aµb) = b∗J1(µ)a∗ for all µ ∈ L, a ∈ A1 and b ∈ A2. Define ξ′ ∈ L′
given by ξ′ = J1(ξ)∆−1/2. Then ξ′ satisfies the following properties.

〈ξ′, ξ′〉A1 = p , A2〈ξ′, ξ′〉 = α(∆−1) and α(b)ξ′ = ξ′b ∀b ∈ B .

Define the Hilbert spaces

Leven = L2(A1)⊕
∞⊕
m=1

(
L⊗A2 L

′)⊗mA1 ,

Lodd = L′ ⊗A1 Leven =
∞⊕
m=0

(
L′ ⊗A1

(
L⊗A2 L

′)⊗mA1
)
.

Note that Leven is an A1-bimodule, while Lodd is an A2-A1-bimodule. Then,

W := `(ξ′)∆1/2 + `(ξ)∗ (5.14)

is a well-defined bounded operator from Leven to Lodd and W ∗W ∈ B(Leven).
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Using the natural isometry L⊗A2 L
′ ↪→ p(H ⊗A H)p, we define the isometry

V : Leven → pL2(M)p given as the direct sum of the compositions of(
L⊗A2 L

′)⊗mA1 ↪→
(
p(H ⊗A H)p

)⊗mA1 ↪→ p
(
H⊗

2m
A
)
p .

Then V is A1-bimodular and

V W ∗W = S1 V . (5.15)

To compute the ∗-distribution of B ∪{S1} with respect to the trace τ , it is thus
sufficient to compute the ∗-distribution of B ∪ {W ∗W} acting on Leven and
with respect to the vector functional implemented by p ∈ L2(A1) ⊂ Leven.

Define the closed subspaces L0
even ⊂ Leven and L0

odd ⊂ Lodd given as the closed
linear span

L0
even = span{L2(B), (ξ ⊗A2 ξ

′)⊗
m
A1B | m ≥ 1} ,

L0
odd = span{(ξ′ ⊗A1 (ξ ⊗A2 ξ

′)⊗
m
A1 )B | m ≥ 0} .

Since ξ ⊗A2 ξ
′ is a B-central vector and since 〈ξ, ξ〉A2 = e and 〈ξ′, ξ′〉A1 = p,

we find that W (L0
even) ⊂ L0

odd and W ∗(L0
odd) ⊂ L0

even. So to compute the
∗-distribution of B ∪ {W ∗W}, we may restrict B and W ∗W to L0

even.

Consider the full Fock space F(C2) of the 2-dimensional Hilbert space C2,
with creation operators `1 = `(e1) and `2 = `(e2) given by the standard basis
vectors e1, e2 ∈ C2. Denote by η the vector state on B(F(C2)) implemented
by the vacuum vector Ω ∈ F(C2). For every λ ≥ 1, consider the operator
X(λ) ∈ B(F(C2)) given by X(λ) =

√
λ`2 +`∗1. We find that X(λ)∗X(λ) = λy∗y

with y = `2 + λ−1/2`∗1. It then follows from [Sh96, Lemma 4.3 and discussion
after Definition 4.1] that the spectral measure of X(λ)∗X(λ) has no atoms.
Also for every λ ≥ 1, η is a faithful state on {X(λ)∗X(λ)}′′.

Identify Z(B) = L∞(Z, µ) for some standard probability space (Z, µ). View ∆
as a bounded function from Z to [1,+∞) and define Y ∈ B(F(C2))⊗L∞(Z, µ)
given by Y (z) = X(∆(z)). We can view Y as an element of B(F(C2))⊗B acting
on the Hilbert space F(C2)⊗L2(B). Also, η⊗τ is faithful on (1⊗B∪{Y ∗Y })′′.
Define the isometry

U : L0
even → F(C2)⊗ L2(B) : U

(
(ξ ⊗A2 ξ

′)⊗
m
A1 b
)

= (e1 ⊗ e2)⊗m ⊗ b .

By construction, UW ∗W = Y ∗Y U and U is B-bimodular. It follows that
the ∗-distribution of B ∪ {S1} with respect to τ equals the ∗-distribution of
1⊗B∪{Y ∗Y } with respect to η⊗τ . So there is a unique normal ∗-isomorphism

Ψ: (1⊗B ∪ {Y ∗Y })′′ → (B ∪ {S1})′′
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satisfying Ψ(1 ⊗ b) = b for all b ∈ B and Ψ(Y ∗Y ) = S1. Also, τ ◦Ψ = η ⊗ τ .
Since for all z ∈ Z, the spectral measure of Y (z)∗Y (z) has no atoms, we have
that 1⊗B ∨ {Y ∗Y }′′ is diffuse relative to 1⊗B. Hence, B ∨ {S1}′′ is diffuse
relative to B.

5.4.3 Technical lemmas

Recall from the beginning of this section the notion of an A-bimodule given by
a partial automorphism of A.

Lemma 5.39. Let (A, τ) be a separable tracial von Neumann algebra and T
an A-bimodule with left support e. Denote Σ := zdimA−(T ⊗A T ). Then, the
support of Σ equals e and Σ ≥ e. Defining e1 = 1{1}(Σ), the following holds.

(1) Denoting by f1 ∈ Z(A) the right support of e1T , we have that e1T = Tf1
and that the A-bimodule e1T is given by a partial automorphism of A.

(2) When e2 ∈ Z(A)e and f2 ∈ Z(A) are projections such that e2T = Tf2
and such that the A-bimodule e2T is given by a partial automorphism of
A, then e2 ≤ e1.

(3) If e3 ∈ Z(A)e is a projection such that e3T is finitely generated as a right
Hilbert A-module, then the left support of e3T ⊗A T ∩ (te3TA)⊥ equals
e3(1− e1).

Proof. Choose a projection p ∈ B(`2(N)) ⊗ A and a normal unital ∗-
homomorphism α : A → p(B(`2(N)) ⊗ A)p such that T ∼= p(`2(N) ⊗ L2(A))
with the A-bimodule structure given by a · ξ · b = α(a)ξb. Note that e equals
the support of α. Also note that T ⊗A T ∼= L2(p(B(`2(N)) ⊗ A)p) with the
A-bimodule structure given by a · ξ · b = α(a)ξα(b).

Define e0 = 1(0,1](Σ) and denote by f0 ∈ Z(A) the right support of e0T .
Note that (1⊗ f0)p is the central support of α(e0) inside p(B(`2(N))⊗A)p. By
construction, zdimA−(e0T⊗AT ) = e0Σ ≤ e0. It follows that e0T⊗AT is finitely
generated as a left A-module and hence the commutant of the left A-action on
e0T ⊗A T is a finite von Neumann algebra. A fortiori, p(B(`2(N))⊗A)p(1⊗ f0)
is a finite von Neumann algebra. We can thus choose a sequence of projections
qn ∈ Z(A)f0 such that qn → f0 and p(1⊗ qn) has finite trace for all n. Denote
by pn ∈ Z(A)e0 the support of the homomorphism that maps a ∈ Ae0 to
α(a)(1⊗ qn). It follows that pn → e0.

Since the closure of α(Ae0)(1⊗ qn) inside L2(p(B(`2(N))⊗ A)p) has zdimA−
equal to pn, we conclude that Σpn ≥ pn for all n and thus Σe0 ≥ e0. From the
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definition of e0, it then follows that Σe0 = e0 and e0 = e1 (as defined in the
formulation of the lemma), as well as Σ ≥ e and f0 = f1. Since pnΣ = pn for
all n, it also follows that α(Apn)(1⊗ qn) is dense in α(pn)L2(B(`2(N))⊗A)p
for all n, because the orthogonal complement has dimension zero. This means
that α(e1) = (1 ⊗ f1)p and that α : Ae1 → p(B(`2(N)) ⊗ A)p(1 ⊗ f1) is a
surjective ∗-isomorphism. So, e1T = Tf1 and this A-bimodule is given by a
partial automorphism of A.

The first statement of the lemma is now proved. Take e2 ∈ Z(A)e and f2 ∈ Z(A)
as in the second statement of the lemma. It follows that e2T ⊗A T = e2T ⊗A
e2T ∼= e2L

2(A) so that zdimA−(e2T ⊗A T ) = e2. Hence, e2Σ = e2, meaning
that e2 ≤ e1.

Finally take e3 ∈ Z(A) as in the last statement of the lemma. We have
(Tr⊗τ)α(e3) = dim−A(e3T ) < ∞. Under the above isomorphism between
T ⊗A T and L2(p(B(`2(N))⊗A)p), the vector te3T corresponds to α(e3). So we
have to determine the left support z of α(e3)pL2(B(`2(N)) ⊗ A)p ∩ α(Ae3)⊥.
A projection e4 ∈ Z(A)e3 is orthogonal to z if and only if α(Ae4) is dense in
α(e4)pL2(B(`2(N)) ⊗ A)p. This holds if and only if there exists a projection
f4 ∈ Z(A) such that α(e4) = (1⊗ f4)p and α(Ae4) = p(B(`2(N))⊗A)p(1⊗ f4).
Since this is equivalent with e4 ≤ e1, we have proved that z = e3(1− e1).

Lemma 5.40. Let (A, τ) be a separable tracial von Neumann algebra and (H,J)
a symmetric A-bimodule with left (and thus also, right) support e ∈ Z(A). There
is a unique projection e1 ∈ Z(A) such that e1H = He1, the A-bimodule e1H is
given by a partial automorphism of A and the A(e− e1)-bimodule (1− e1)H is
completely nontrivial.

Proof. By Lemma 5.39, we find projections e1, f1 ∈ Z(A)e such that e1H = Hf1,
the A-bimodule e1H is given by a partial automorphism of A and writing
e2 := e − e1, f2 = e − f1, the Ae2-Af2-bimodule e2H = Hf2 is completely
nontrivial. Since H ∼= H, we must have e1 = f1 and e2 = f2. The uniqueness
of e1 also follows from Lemma 5.39.

Lemma 5.41. Let (A, τ) be a separable tracial von Neumann algebra and T an
A-bimodule with left support e ∈ Z(A) and right support f ∈ Z(A). If ∆`

T ≤ e
and ∆r

T ≤ f , then ∆`
T = e, ∆r

T = f and T is given by a partial automorphism
of A.

Proof. Let e0 ∈ Z(A)e be the maximal projection with the following properties:
the right support f0 ∈ Z(A)f of e0T satisfies e0T = Tf0, the A-bimodule e0T
is given by a partial automorphism of A and ∆`

T = e0, ∆r
T = f0. We have to

prove that e0 = e.
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Assume that e0 is strictly smaller than e. Since e0T = Tf0, also f0 is strictly
smaller than f . Denote e1 = e−e0 and f1 = f−f0. Note that e1T = Tf1. Since
dim−A(T ) = τ(∆`

T ) ≤ τ(e) ≤ 1 and similarly dimA−(T ) ≤ 1, it follows from
[PSV15, Proposition 2.3] that there exists a nonzero A-subbimodule K ⊂ e1T
with the following properties: K is finitely generated, both as a left Hilbert
A-module and as a right Hilbert A-module, and denoting by e2 ∈ Z(A)e1
and f2 ∈ Z(A)f1 the left, resp. right, support of K, there is a surjective
∗-isomorphism α : Z(A)f2 → Z(A)e2 such that ξa = α(a)ξ for all ξ ∈ K,
a ∈ Z(A)f2.

Denote by D the Radon-Nikodym derivative between τ ◦ α and τ , so that
τ(b) = τ(α(b)D) for all b ∈ Z(A)f2. By a direct computation, we get that

∆`
K = Dα(zdim−A(K)) and α(∆r

K) = D−1 zdimA−(K) .

In particular, we get that

∆`
K α(∆r

K) = zdimA−(K)α(zdim−A(K)) . (5.16)

By Lemma 5.39 and the computation in the proof of [PSV15, Lemma 2.2], we
have

zdimA−(K)α(zdim−A(K)) = zdimA−(K ⊗A K) ≥ e2 . (5.17)

Since ∆`
K ≤ e2 and ∆r

K ≤ f2, in combination with (5.16), it follows that ∆`
K =

e2 and ∆r
K = f2. From (5.17), we then also get that zdimA−(K ⊗A K) = e2.

By Lemma 5.39, K is given by a partial automorphism of A.

Since e2 ≥ ∆`
e2T

= ∆`
K + ∆`

e2T	K = e2 + ∆`
e2T	K , we conclude that e2T 	K =

{0}. So, e2T = K and e2T is given by a partial automorphism of A. This then
contradicts the maximality of e0.

Lemma 5.42. Let (A, τ) be a separable tracial von Neumann algebra and (H,J)
a symmetric A-bimodule. Write M = Γ(H,J,A, τ)′′.

Let p ∈ A be a projection and B ⊂ pAp a von Neumann subalgebra such that
B′ ∩ pAp = Z(B) and such that NpAp(B)′′ has essentially finite index in pAp.
Let K1 ⊂ pH be a B-A-subbimodule satisfying the following three properties.

(1) K1 is a direct sum of B-A-subbimodules of finite right A-dimension.

(2) The left action of B on K1 is faithful.

(3) The A-bimodule AK1 is left weakly mixing.

Then there exists a diffuse abelian von Neumann subalgebra D ⊂ B′ ∩ pMp that
is in tensor product position with respect to B. More precisely, there exists a
unitary u ∈ B′ ∩ pMp such that EB(uk) = 0 for all k ∈ Z \ {0}.
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Proof. We claim that for every ε > 0, there exists a projection z ∈ Z(B) with
τ(p− z) < ε and a B-A-subbimodule L ⊂ zH such that L is finitely generated
as a right Hilbert A-module and such that ∆`

L is bounded and satisfies ∆`
L ≥ z.

To prove this claim, denote K := AK1 and let (Ki)i∈I be a maximal family
of mutually orthogonal nonzero B-A-subbimodules of pK that are finitely
generated as a right A-module. Denote by R the closed linear span of all Ki.
Whenever u ∈ NpAp(B) and i ∈ I, also uKi is a B-A-subbimodule of pK that
is finitely generated as a right A-module. By the maximality of the family
(Ki)i∈I , we get that uKi ⊂ R. So, uR = R for all u ∈ NpAp(B). Writing
P := NpAp(B)′′, we conclude that R is a P -A-subbimodule of pK.

Since P ⊂ pAp is essentially of finite index and since AKA is left weakly mixing,
Lemma 5.44 says that for every projection q ∈ P , the right A-module qR is
either {0} or of infinite right A-dimension. By the assumptions of the lemma
and the maximality of the family (Ki)i∈I , the left B-action on R is faithful. So
qR 6= {0} and thus dim−A(qR) =∞ for every nonzero projection q ∈ B. This
means that for every nonzero projection q ∈ B,∑

i∈I
τ(q∆`

Ki) =
∑
i∈I

dim−A(qKi) = dim−A(qR) =∞ .

So we can find a projection z ∈ Z(B) and a finite subset I0 ⊂ I such that
τ(p − z) < ε and such that the operator ∆ :=

∑
i∈I0 ∆`

Ki
z is bounded and

satisfies ∆ ≥ z. Defining L =
∑
i∈I0 zKi, the claim is proved.

Combining the claim with Lemma 5.38, we find for every ε > 0, a projection
z ∈ Z(B) with τ(p − z) < ε and a unitary u ∈ (Bz)′ ∩ zMz such that
EB(uk) = 0 for all k ∈ Z \ {0}. So, we find projections zn ∈ Z(B) and unitaries
un ∈ (Bzn)′ ∩ znMzn such that EB(ukn) = 0 for all k ∈ Z \ {0} and such that∨
n zn = p. We can then choose projections z′n ∈ Z(B) with z′n ≤ zn and∑
n z
′
n = p. Defining u =

∑
n unz

′
n, we have found a unitary in B′ ∩ pMp

satisfying EB(uk) = 0 for all k ∈ Z \ {0}. So, the lemma is proved.

Above we also needed the following two lemmas.

Lemma 5.43. Let (N, τ) be a separable tracial von Neumann algebra and
B ⊂ N an abelian von Neumann subalgebra. Assume that D ⊂ B′ ∩ N is
a diffuse abelian von Neumann subalgebra that is in tensor product position
with respect to B. Then there is no nonzero projection q ∈ B′ ∩N satisfying
q(B′ ∩N)q = Bq.

Proof. Put P = B′ ∩N and assume that q ∈ P is a nonzero projection such
that qPq = Bq. Note that B ⊂ Z(P ) because B is abelian. Take a nonzero
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projection z ∈ Z(P ) such that z =
∑n
i=1 viv

∗
i where v1, . . . , vn are partial

isometries in Pq. Note that zq 6= 0 and write p = zq. Then,

Pp = zPq = span{viqPq | i = 1 . . . , n} = span{viB | i = 1, . . . , n} .

So, L2(P )p is finitely generated as a right Hilbert B-module. Define Q = B ∨D
and denote by e ∈ Q the support projection of EQ(p). Then ξ 7→ ξp is an
injective right B-linear map from L2(Q)e to L2(P )p. So also L2(Q)e is finitely
generated as a right Hilbert B-module. Since Q ∼= B ⊗D with D diffuse and
since e is a nonzero projection in Q ∼= B ⊗D, this is absurd.

Lemma 5.44. Let (A, τ) be a separable tracial von Neumann algebra and AKA
an A-bimodule that is left weakly mixing. Let p ∈ A be a projection and P ⊂ pAp
a von Neumann subalgebra that is essentially of finite index (see Definition
5.26). If L ⊂ pK is a P -A-subbimodule and q ∈ P is a projection such that
qL 6= {0}, then the right A-dimension of qL is infinite.

Proof. Assume for contradiction that q ∈ P is a projection such that qL is
nonzero and such that qL has finite right A-dimension.

By Proposition 5.27, since P ⊂ pAp is essentially of finite index, there exist
projections p1 ∈ P ′ ∩ pAp that lie arbitrarily close to p such that Ap1 is finitely
generated as a right Pp1 module. There also exist central projections z ∈ Z(P )
that lie arbitrarily close to p such that Pzq is finitely generated as a right
qPq-module. Indeed, take a projection z ∈ Z(P ) arbitrarily close to the central
support of q such that z =

∑n
i=1 viv

∗
i with partial isometries v1, . . . , vn ∈ Pq.

Then Pzq ⊂
∑n
i=1 vi(qPq) as wanted.

Take such p1 and z with p1zqL 6= {0}. Then Ap1zq is finitely generated as a
right qPq-module. Therefore, the closed linear span of Ap1zqL is a nonzero
A-subbimodule of K having finite right A-dimension. This contradicts the left
weak mixing of AHA.

5.4.4 Proof of Theorem 5.21

Proof of Theorem 5.21. Let K ⊂ H be the maximal left weakly mixing A-
subbimodule of H, i.e., the orthogonal complement of the span of all A-
subbimodules of H having finite right A-dimension. Denote by z0 ∈ Z(A)
the support of the left A-action on K. In the first part of the proof, assuming
z0 6= 0, we show that

(1) Z(M)z0 ⊂ Z(A)z0,
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(2) every M -central state ω on 〈M, eA〉 that is normal on M satisfies ω(z0) =
0.

Note that K ⊂ z0H. Denote by K ⊂ K the dense subspace of vectors that are
both left and right bounded. Define the von Neumann subalgebra N ⊂ z0Mz0
given by

N :=
(
Az0 ∪ {W (ξ, J(µ)) | ξ, µ ∈ K}

)′′
, (5.18)

where we used the notation of (5.2). Then, the linear span of Az0 and elements of
the form W (ξ1, J(µ1), . . . , ξk, J(µk)), k ≥ 1, ξi, µi ∈ K, is a dense ∗-subalgebra
of N .

Whenever K1, . . . ,Kn ⊂ H are A-subbimodules, we denote by concatenation
K1 · · ·Kn the A-subbimodule of L2(M) given by

K1 · · ·Kn := K1 ⊗A · · · ⊗A Kn ⊂ H ⊗A · · · ⊗A H ⊂ L2(M) .

In the same way, we write powers of A-subbimodules and when Ki ⊂ Hki are
A-subbimodules, then K1 · · ·Kn ⊂ Hk1+···+kn is a well-defined A-subbimodule.

Using this notation, note that L2(N) is the direct sum of L2(Az0) and the
spaces Ln := (K J(K))n, n ≥ 1. Since K is a left weakly mixing A-bimodule,
it follows that N ∩ (Az0)′ = Z(A)z0.

We claim that

(3) N 6≺N Az0, meaning that the N -A-bimodule L2(N) is left weakly mixing.

Since N ∩ (Az0)′ = Z(A)z0, to prove this claim, it suffices to show that
dim−A(L2(N)e) = +∞ for every nonzero projection e ∈ Z(A)z0. Since the
left action of Az0 on K is faithful and K is left weakly mixing, we get that
dim−A(K J(K) e) = +∞. So certainly dim−A(L2(N)e) = +∞ and the claim
follows.

Proof of (1). Define the A-subbimodule R ⊂ L2(M) given as

R :=
(
H 	 (K + J(K))

)
⊕
∞⊕
n=0

(H 	K)Hn (H 	 J(K)) .

Since K is left weakly mixing and J(K) is right weakly mixing, all A-
central vectors in L2(M) belong to L2(A) +R. Next note that left and right
multiplication by elements of N induces an N -bimodular unitary operator

L2(N)⊗A R⊗A L2(N)→ NRN ⊂ L2(z0Mz0) .

Since the N -A-bimodule L2(N) is left weakly mixing, it follows that NRN has
no nonzero N -central vectors. Every element x ∈ Z(M)z0 defines a vector in
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L2(z0Mz0) that is both A-central and N -central. By A-centrality, we conclude
that x ∈ Az0 + z0Rz0. In particular, x ∈ L2(N) +NRN . Since x is N -central
and NRN has no nonzero N -central vectors, we get that x ∈ L2(N) and thus,
x ∈ Z(A)z0.

Proof of (2). Denote Leven := L2(N) and define Lodd as the direct sum of
the A-bimodules (K J(K))nK, n ≥ 0. Note that both Leven and Lodd are
N -A-bimodules. The same argument as in the proof of Theorem 5.19, using the
left weak mixing of K, shows that the von Neumann algebras B(Leven)∩ (Aop)′
and B(Lodd) ∩ (Aop)′ admit no N -central states that are normal on N . Note
that we have the following decomposition of L2(z0M) as an N -A-bimodule:

L2(z0M) =
(
Leven ⊗A

(
L2(A)⊕

⊕
n≥0

(H 	K)Hn
))
⊕

(
Lodd ⊗A

(
L2(A)⊕

⊕
n≥0

(H 	 J(K))Hn
))

.

This decomposition induces ∗-homomorphisms from B(Leven) ∩ (Aop)′ and
B(Lodd) ∩ (Aop)′ to B(z0L

2(M)) ∩ (Aop)′ = z0〈M, eA〉z0. So, z0〈M, eA〉z0
admits no N -central state that is normal on N . A fortiori, (2) holds.

Next we define the projection z1 ∈ Z(A)(1− z0) given by

z1 = 1(1,+∞]
(
∆`

(1−z0)H
)
. (5.19)

We also write z = z0 + z1 and z2 = 1− z.

Denote by e′ ∈ Z(A)z1 the maximal projection with the following properties:
the right support f ∈ Z(A) of e′H satisfies e′H = zHf and the A-bimodule
e′H is given by a partial automorphism of A. Define e = z1 − e′.

By the definition of z0, we get that the A-bimodule (1 − z0)H is a sum of
A-bimodules that are finitely generated as a right Hilbert A-module. It then
follows from the definition of z1 that we can choose a projection e1 ∈ Z(A)z1
that lies arbitrarily close to z1 and for which there exists an A-subbimodule
L1 ⊂ z1H with the following properties:

• the left support of L1 equals e1,

• L1 is finitely generated as a right Hilbert A-module,

• ∆`
L1

is bounded and satisfies ∆`
L1
≥ δ1e1 for some real number δ1 > 1.

Denote by e2 the left support of e1(H 	 L1). Making e1 slightly smaller, but
still arbitrarily close to z1, we may assume that e2 is the left support of an
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A-subbimodule L2 ⊂ e1(H 	 L1) with the following properties: L2 is finitely
generated as a right Hilbert A-module and ∆`

L2
is bounded. By construction,

e2 ≤ e1. Since e2L1 and L2 are orthogonal and have the same left support
e2, it follows that for nonzero projections s ∈ Z(A)e2, the A-bimodule sH is
not given by a partial automorphism of A. This means that e2 ≤ e and thus,
e2 ≤ ee1. Define L = L1 + L2. Using notation (5.12), it follows from Lemma
5.39 (1) and (3) that the left support of e2LJ(L)e2 ∩ (te2LA)⊥ equals e2. A
fortiori, the left support of e2LHz ∩ (te2LA)⊥ equals e2.

We put e3 = ee1 − e2. Since e2 is the left support of e1(H 	 L1), we get that
e3H = e3L1 = e3L. Since e3 ≤ e, applying Lemma 5.39 to the A-bimodule zH,
we conclude that the left support of e3LHz∩ (te3HA)⊥ equals e3. Summarizing,
L has the following properties:

• the left support of L equals e1,

• L is finitely generated as a right Hilbert A-module,

• ∆`
L is bounded and satisfies ∆`

L ≥ δe1 for some real number δ > 1,

• the left support of LHz ∩ (tLA)⊥ equals ee1.

Denote by s ∈ Z(A) the left support of LH(z0 + e1) ∩ (tLA)⊥. Since e1 could
be chosen arbitrarily close to z1, it follows that s lies arbitrarily close to e.

We next prove that

(4) Z(M)s ⊂ Z(A)s,

(5) everyM -central state ω on 〈M, eA〉 that is normal onM satisfies ω(s) = 0.

Write ∆ := ∆`
L, choose a Pimsner-Popa basis (ξi)ni=1 for the right Hilbert

A-module L and put

t := tL =
n∑
i=1

ξi ⊗A J(ξi) .

Since ∆ is bounded, the vectors ξi ∈ H are both left and right bounded by
Lemma 5.25.

Denoting by PT the orthogonal projection onto a Hilbert subspace T ⊂ H, the
main properties of t, used throughout the proof, are:

〈t, t〉A = A〈t, t〉 = ∆ , `(ξ)∗t = J(PL(ξ)) and r(ξ)∗t = PL(J(ξ)) ,

for all left and right bounded vectors ξ ∈ H.
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Since the vectors ξi are both left and right bounded, we can define the self-adjoint
element S1 ∈ e1Me1 given by

S1 :=
n∑
i=1

W (ξi, J(ξi)) .

By Lemma 5.38, we have that S1 ∈ e1Me1 ∩ (Ae1)′ and that the von Neumann
algebra D := Ae1 ∨ {S1}′′ is a subalgebra of e1Me1 ∩ (Ae1)′ that is diffuse
relative to Ae1. Using Lemma 5.37, we fix a unitary u ∈ U(D) satisfying
EAe1(uk) = 0 for all k ∈ Z \ {0}.

Defining

Sk :=
n∑

i1,...,ik=1
W (ξi1 , J(ξi1), . . . , ξik , J(ξik)) ,

and denoting by Ω ∈ L2(M) the vacuum vector, we get that

tk := SkΩ = t⊗A · · · ⊗A t︸ ︷︷ ︸
k times

. (5.20)

By induction, we see that Sk ∈ D for all k ≥ 1. With the convention that
S0 = e1, the elements {Sk}k≥0, form a Pimsner-Popa basis for the right A-
module L2(D)A. More precisely, we have that 〈Sk, S`〉A = EA(SkS`) = 0 for
k 6= `, and every element x ∈ D can be written as a ‖ · ‖2-converging sum
x =

∑∞
k=0 Skxk with xk = ∆−kEA(xSk).

Proof of (4). We start by proving that an element x ∈ Z(M)e1 must belong to D.
Define T0 ⊂ H2 as the closure of tA. Note that `(t)`(t)∗∆−1 is the orthogonal
projection of H2 onto T0. Then define T2 := H2 	 T0 and T3 := H3 	 (T0H +
HT0). Observe that L2(e1Me1 	D) is spanned by the D-subbimodules

DHD , DT2D , DT3D , DT2HnT2D with n ≥ 0 . (5.21)

We will prove that each of the D-bimodules in (5.21) is contained in a multiple
of a D-bimodule of the form L2(D)⊗A K for some A-D-bimodule K.

For the first one, DHD, fix a left and right bounded vector µ ∈ H with ‖µ‖ ≤ 1.
Using the notation tk introduced in (5.20), one checks that for k ≥ 1,

SkW (µ)Ω = tk ⊗A µ+ tk−1 ⊗A PL(µ) and

W (µ)SkΩ = µ⊗A tk + PJ(L)(µ)⊗A tk−1 .
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When µ, η ∈ H are left and right bounded vectors, we have 〈tk⊗Aµ, η⊗A tl〉 = 0
if k 6= l, while

〈tk ⊗A µ, η ⊗A tk〉 = 〈`(η)∗(tk ⊗A µ), tk〉

= 〈J(PL(η))⊗A tk−1 ⊗A µ, tk〉

= 〈J(PL(η))⊗A tk−1, r(µ)∗tk〉

= 〈J(PL(η))⊗A tk−1, tk−1 ⊗A PL(J(µ))〉 .

It follows by induction that 〈tk ⊗A µ, η ⊗A tk〉 = 〈(PLJ)2kµ, η〉 for any k ≥ 0.
Thus, for a, b ∈ A,

〈SkaW (µ)bSl,W (µ)〉 =


〈aµb, µ〉 if k = l = 0,
〈a((PLJ)2k + (JPL)2k)µb, µ〉 if k = l ≥ 1,
〈a(PLJ)2(k−1)PLµb, µ〉 if k = l + 1 ≥ 1,
〈aJ(PLJ)2k+1µb, µ〉 if k = l − 1 ≥ 0.

We next claim that

ξ := e1 ⊗A µ⊗A e1 +
∞∑
k=1

(
∆−kSk ⊗A ((PLJ)2k + (JPL)2k)(µ)⊗A ∆−kSk

)

+
∞∑
k=0

(
∆−k−1Sk+1 ⊗A (PLJ)2kPL(µ)⊗A ∆−kSk

+ ∆−kSk ⊗A J(PLJ)2k+1(µ)⊗A ∆−k−1Sk+1

)
is a well-defined element in L2(D) ⊗A H ⊗A L2(D). This follows because
EA(S2

k) = 〈tk, tk〉A = ∆k and thus

‖∆−kSk‖22 = τ(∆−2kS2
k) = τ(∆−k) ≤ δ−k ,

where δ > 1.

By construction,

〈SkaW (µ)bSl,W (µ)〉 = 〈Ska ξ bSl, ξ0〉 ,

where ξ0 = e1 ⊗A µ⊗A e1. This means that the D-bimodule DµD is contained
in L2(D) ⊗A H ⊗A L2(D). Since this holds for any µ ∈ H, we have that the
D-bimodule DHD is contained in a multiple of L2(D)⊗A H ⊗A L2(D).
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Next, we do similar computations for the remaining D-bimodules occurring in
(5.21). Let K ⊂ Hn be one of the A-bimodules T2, T3 or T2H

kT2, k ≥ 1, and
fix a left and right bounded vector µ ∈ K. Then `(t)∗µ = 0 and r(t)∗µ = 0, so
it follows that

SkW (µ)Ω = tk ⊗A µ+ tk−1 ⊗A (PL ⊗ 1⊗(n−1))(µ) and

W (µ)SkΩ = µ⊗A tk + (1⊗(n−1) ⊗ PJ(L))(µ)⊗A tk−1 ,

for k ≥ 1. Note that

〈(PL ⊗ 1⊗(n−1))(µ), t〉 = 〈µ, (PL ⊗ 1⊗(n−1))(t)〉 = 〈µ, t〉 = 0,

and similarly 〈(1⊗(n−1)⊗PJ(L))(µ), t〉 = 0. It follows that SkW (µ) is orthogonal
to W (µ)S` whenever k, ` ≥ 1 except when k = ` = 1. In the remaining cases,
we have that

〈S1W (µ),W (µ)〉 = 〈(PL ⊗ 1⊗(n−1))(µ), µ〉,

〈W (µ)S1,W (µ)〉 = 〈(1⊗(n−1) ⊗ PJ(L))(µ), µ〉,

〈S1W (µ)S1,W (µ)〉 = 〈(PL ⊗ 1⊗(n−2) ⊗ PJ(L))(µ), µ〉.

Define ξ ∈ L2(D)⊗A K ⊗A L2(D) by

ξ = e1 ⊗A µ⊗A e1 + S1∆−1 ⊗A (PL ⊗ 1⊗(n−1))(µ)⊗A e1

+ e1 ⊗A (1⊗(n−1) ⊗ PJ(L))(µ)⊗A S1∆−1

+ S1∆−1 ⊗A (PL ⊗ 1⊗(n−2) ⊗ PJ(L))(µ)⊗A S1∆−1.

By construction,

〈SkaW (µ)S`b,W (µ)〉 = 〈Ska ξ S`b, ξ0〉 for k, ` ≥ 0, a, b ∈ A,

where ξ0 = e1⊗A µ⊗A e1. This means that the D-bimodule DKD is contained
in a multiple of L2(D)⊗A K ⊗A L2(D).

We have thus proved that all D-bimodules in (5.21) are contained in a multiple
of a bimodule of the form L2(D)⊗A K for some A-D-bimodule K. Since D is
diffuse relative to A, it follows from Proposition 5.36 that L2(e1Me1 	D) has
no D-central vectors. In particular, Z(M)e1 ⊂ D.

We are now ready to prove (4). Fix x ∈ Z(M). We have to prove that xs ∈ A.
Because of (1) and the previous paragraphs, we can uniquely decompose x(z0+e1)
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as the ‖ · ‖2-convergent sum

x(z0 + e1) = a0 +
∞∑
k=1

Skak (5.22)

with a0 ∈ A(z0 + e1) and ak ∈ Ae1 for all k ≥ 1. Note that a0 = EA(x)(z0 + e1)
and ak = ∆−kEA(Skx) for all k ≥ 1.

Let now η ∈ LH(z0 + e1)∩ (tA)⊥ be an arbitrary left and right bounded vector.
Note that

η =
n∑
i=1

ξi ⊗A J(ηi) (5.23)

where the vectors ηi ∈ (z0 + e1)H are both left and right bounded. Define

W (η) :=
n∑
i=1

W (ξi, J(ηi))

and note that W (η) ∈ sM(z0 + e1) ⊂ e1M(z0 + e1).

Using that W (η) commutes with x and using the decomposition of x(z0 + e1)
in (5.22), we find that

W (η)xΩ = W (η)(z0 + e1)xΩ = W (η)a0Ω +
∞∑
k=1

W (η)SkakΩ

= ηa0 +
∞∑
k=1

(
η ⊗A tkak + (1⊗ PJ(L))(η)⊗A tk−1ak

)
,

xW (η)Ω = xe1W (η)Ω = a0e1W (η)Ω +
∞∑
k=1

akSkW (η)Ω

= a0η +
∞∑
k=1

(
aktk ⊗A η + aktk−1 ⊗A (PL ⊗ 1)(η)

)

= (a0 + a1)η +
∞∑
k=1

(ak + ak+1)tk ⊗A η .

In this last expression for xW (η)Ω, all terms except (a0 + a1)η are orthogonal
to W (η)xΩ. We conclude that (ak + ak+1)tk ⊗A η = 0 and thus A〈η, η〉(ak +
ak+1) = 0 for all k ≥ 1 and for all choices of η. Since the left support of
LH(z0 + e1) ∩ (tA)⊥ equals s, it follows that (ak + ak+1)s = 0 for all k ≥ 1.
This means that aks = (−1)k−1a1s for all k ≥ 1.
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Since

+∞ > ‖x‖22 ≥
∞∑
k=1
‖Skaks‖22 =

∞∑
k=1

τ(sa∗1∆ka1s) ≥
∞∑
k=1

δk‖a1s‖22 ,

it follows that a1s = 0. So, aks = 0 for all k ≥ 1. From (5.22), it follows that
xs ∈ A, so that (4) is proved.

Proof of (5). Fix an M -central state ω on 〈M, eA〉 that is normal on M . We
have to prove that ω(s) = 0. Recall that we defined T0 ⊂ H2 as the closure
of tA. Consider the following orthogonal decomposition of e1L

2(M) as an
A-bimodule:

e1L
2(M) = V0 ⊕ V1 ⊕ V2 where V0 :=

∞⊕
n=0

T0H
n ,

V1 := L2(Ae1)⊕
∞⊕
n=0

(e1H 	 L)Hn , V2 := L⊕
∞⊕
n=0

(LH 	 T0)Hn .

Denote by Qi ∈ e1〈M, eA〉e1 the projections onto Vi, for i = 0, 1, 2. So,
e1 = Q0 +Q1 +Q2. Also note that the projections Qi commute with A. We
prove below that ω(sQ0) = ω(Q1) = ω(Q2) = 0. Once these statements are
proved, (5) follows.

To prove that ω(Q1) = 0, note that for all µ ∈ V1 and all k ≥ 1, we have that
Skµ = tk ⊗A µ and thus, Skµ is orthogonal to V1. So, for all µ, µ′ ∈ V1 and
d ∈ D, we get that

〈dµ, µ′〉 = 〈EA(d)µ, µ′〉 .
Above we introduced the unitary element u ∈ U(D) satisfying EA(uk) = 0 for
all k ∈ Z \ {0}. It follows that the subspaces ukV1 are all orthogonal. So, the
projections ukQ1u

−k are all orthogonal. By M -centrality, ω takes the same
value on each of these projections. So, ω(Q1) = 0.

To prove that ω(Q2) = 0, we argue similarly. For all µ ∈ V2 and all k ≥ 2, we
have that Skµ = tk ⊗A µ+ tk−1 ⊗A µ and thus, Skµ is orthogonal to V2. On
the other hand, S1µ = t⊗A µ+ µ and here, only t⊗A µ is orthogonal to V2. It
follows that for all µ, µ′ ∈ V2 and d ∈ D,

〈dµ, µ′〉 = 〈Φ(d)µ, µ′〉 ,

where Φ: D → D is the linear map given by Φ(d) = EA(d) + ∆−1EA(dS1).
Notice that Φ(d) = EA(dx) where x = e1 + ∆−1S1 ∈ Z(D) and that Φ(a) = a
for a ∈ Ae1. Moreover, x is a positive element since

∆ + S1 =
n∑
i=1

XiX
∗
i ≥ 0 where Xi = `(ξi) + `(Jξi)∗.
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Since D is diffuse relative to Ae1, Lemma 5.37 now gives us a unitary v ∈ U(D)
such that Φ(vk) = 0 for all k ∈ Z \ {0}. It follows that the subspaces vkV2 are
all orthogonal. As in the previous paragraph, we get that ω(Q2) = 0.

It remains to prove that ω(sQ0) = 0. Fix η ∈ LH(z0 + e1) 	 T0 as in (5.23)
and define

η′ =
n∑
i=1

ηi ⊗A J(ξi) .

Note that η′ ∈ (z0 + e1)H J(L)	T0. From (2), we already know that ω(z0) = 0.
Since e1η

′ ∈ V1 + V2, we also know that ω(`(e1η
′)`(e1η

′)∗) = 0. Both together
imply that ω(`(η′)`(η′)∗) = 0.

For all n ≥ 0 and µ ∈ Hn, we have that

W (η)(η′ ⊗A t⊗A µ) = η ⊗A η′ ⊗A t⊗A µ+
n∑
i=1

`(ξi)`(ηi)∗(η′ ⊗A t⊗A µ)

+ 〈η′, η′〉A (t⊗A µ).

Since

`(t)∗
n∑
i=1

`(ξi)`(ηi)∗η′ =
n∑
i=1

`(J(ξi))∗`(ηi)∗η′ = `(η′)∗η′ = 〈η′, η′〉A

and since the projection Q0 is given by Q0 = ∆−1`(t)`(t)∗, we get that

Q0W (η)(η′ ⊗A t⊗A µ) = 〈η′, η′〉A ∆−1 (t⊗A t⊗A µ) + 〈η′, η′〉A (t⊗A µ)

for all n ≥ 0 and all µ ∈ Hn. This means that

Q0W (η)`(η′⊗A t) = 〈η′, η′〉A
(
∆−1 `(t⊗A t)+`(t)

)
= `(t) 〈η′, η′〉A (1+∆−1`(t)).

Because
‖∆−1`(t)‖2 = ‖∆−2`(t)∗`(t)‖ = ‖∆−1‖ ≤ δ−1 < 1 ,

the operator R := 1 + ∆−1`(t) is invertible. Also note that `(t)`(t)∗ ≤ ‖∆‖1 so
that

`(η′ ⊗A t)`(η′ ⊗A t)∗ ≤ ‖∆‖ `(η′)`(η′)∗ .
So, we find ε > 0 and κ > 0 such that

ε `(t) (〈η′, η′〉A)2 `(t)∗ ≤ `(t) 〈η′, η′〉ARR∗ 〈η′, η′〉A `(t)∗

= Q0W (η)`(η′ ⊗A t)`(η′ ⊗A t)∗W (η)∗Q0

≤ κQ0W (η)`(η′)`(η′)∗W (η)∗Q0 .

(5.24)
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We already proved that ω(`(η′)`(η′)∗) = 0. Since ω is M -central, also

ω(W (η)`(η′)`(η′)∗W (η)∗) = 0 .

Because e1 = Q0 + Q1 + Q2 and ω(Q1) = ω(Q2) = 0, the Cauchy-Schwarz
inequality implies that ω(Y ) = ω(Q0Y ) = ω(Y Q0) for all Y ∈ e1〈M, eA〉e1.
Therefore,

ω
(
Q0W (η)`(η′)`(η′)∗W (η)∗Q0

)
= ω(W (η)`(η′)`(η′)∗W (η)∗) = 0 .

It then follows from (5.24) that

ω
(
(〈η′, η′〉A)2 ∆Q0

)
= 0

for all bounded vectors η′ ∈ (z0 + e1)H J(L) 	 T0. By the Cauchy-Schwarz
inequality and the normality of ω restricted toM , we get that ω(aiQ0)→ ω(aQ0)
whenever ai ∈ A is a bounded sequence such that ‖ai − a‖2 → 0. Since the
right support of the A-bimodule (z0 + e1)H J(L)	 T0 equals s, it follows that
ω(sQ0) = 0. Since we already proved that ω(Q1) = ω(Q2) = 0, it follows that
(5) holds.

Since s lies arbitrarily close to e, it follows from (1)-(2) and (4)-(5) that

(6) Z(M)(z0 + e) ⊂ Z(A)(z0 + e),

(7) every M -central state ω on 〈M, eA〉 that is normal on M satisfies ω(z0 +
e) = 0.

Recall that z = z0 + z1 and z2 = 1− (z0 + z1). Note that ∆`
z2H
≤ z2. We claim

that z2Hz2 = {0}. Denote by e0 ∈ Z(A)z2 the left support of z2Hz2. Note
that by symmetry, e0 also is the right support of z2Hz2. By Lemma 5.41, we
get that ∆`

e0He0
= e0 and that e0He0 is given by a partial automorphism of A.

Since
∆`
e0H = ∆`

e0He0 + ∆`
e0H(1−e0) = e0 + ∆`

e0H(1−e0)

and since ∆`
e0H
≤ e0, we get that e0H(1− e0) = {0}. We conclude that e0H =

He0 = e0He0 and that this A-bimodule is given by a partial automorphism of
A. Since H is assumed to be completely nontrivial, we get that e0 = 0 and the
claim is proved.

Recall that e ∈ Z(A)z1 was defined as e = z1 − e′ where e′ ∈ Z(A)z1 has
the following properties: denoting by f ∈ Z(A) the right support of e′H,
we have that e′H = zHf and that the A-bimodule e′H is given by a partial
automorphism of A. We claim that f ≤ z. To prove this claim, denote f1 := fz2.
If f1 6= 0, we find a nonzero projection e′′ ∈ Z(A)e′ such that e′′H = zHf1 and
such that this A-bimodule is given by a partial automorphism of A. Above,
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we have proved that z2Hz2 = {0}. A fortiori, z2Hf1 = {0}, meaning that
Hf1 = zHf1. But then, e′′H = Hf1, contradicting the complete non-triviality
of H. So, we have proved that f ≤ z.

We next claim that f ≤ z0 + e. To prove this claim, assume that f ′ := fe′

is nonzero. Then, f ′H = fe′H = fzHf ⊂ Hz because f ≤ z. Applying the
symmetry J , it follows that Hf ′ = zHf ′ and thus e′′H = Hf ′ for some nonzero
projection e′′ ∈ Z(A)e′, again contradicting the complete non-triviality of H.
So, we have proved that f ≤ z0 + e.

Since e′H is given by a partial automorphism of A, we can take projections
e′′ ∈ Z(A)e′ arbitrarily close to e′ such that e′′H is finitely generated as a
right Hilbert A-module and ∆`

e′′H is bounded. Denote by f ′ ∈ Z(A)f the right
support of e′′H. Since the right A-action equals the commutant of the left A-
action on e′H, we can for each a ∈ Z(A)e′′ find a unique element α(a) ∈ Z(A)f ′
such that aξ = ξα(a). This gives rise to a ∗-isomorphism α : Z(A)e′′ → Z(A)f ′
satisfying aξ = ξα(a) for all a ∈ Z(A)e′′. Let (γi)ni=1 be a Pimsner-Popa basis
of the right A-module e′′H and define

Ri = `(γi) + `(J(γi))∗ and R =
n∑
i=1

RiR
∗
i = ∆`

e′′H +
n∑
i=1

W (γi, J(γi)) .

Note that Ri ∈ e′′Mf ′ and R ∈ e′′Me′′. Since ∆`
e′′H = e′′∆`

H ≥ e′′, it follows
from Lemma 5.38 that the support projection of R equals e′′.

Let x ∈ Z(M) and using (6), take a ∈ Z(A)(z0 + e) such that (z0 + e)x = a.
Since f ′ ≤ z0 + e, we have f ′x = af ′ and thus

xR =
n∑
i=1

RixR
∗
i =

n∑
i=1

Ri af
′R∗i = α−1(af ′)R .

Since the support projection of R equals e′′, we have proved that Z(M)e′′ ⊂
Z(A)e′′. Since e′′ lies arbitrarily close to e′, together with (6), it follows that

(8) Z(M)z ⊂ Z(A)z.

Next, we will show that

(9) everyM -central state ω on 〈M, eA〉 that is normal onM satisfies ω(z) = 0.

Using (7), it is enough to show that ω(e′) = 0. We do this similarly to the
argument above. With Ri ∈ e′′Mf ′ and R ∈ e′′Me′′ as above, we get by
M -centrality of ω that

ω(R) =
n∑
i=1

ω(R∗iRi) = 0,
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since R∗iRi ∈ f ′Mf ′ and ω(f ′) ≤ ω(z0 + e) = 0. Since e′′ is the support
projection of R, it follows that ω(e′′) = 0 and hence ω(e′) = 0, as e′′ was chosen
arbitrarily close to e′. This finishes the proof of (9).

To prove the first two statements of the theorem, it remains to see what happens
under the projection z2.

Denote ∆2 := ∆`
z2H

. By the definition of z2, we have that ∆2 ≤ z2. Let (µi)i∈I
be a (possibly infinite) Pimsner-Popa basis for the right A-module z2H. Since
∆2 is bounded, we may choose the vectors µi to be left and right bounded. For
the same reason,

s :=
∑
i∈I

µi ⊗A J(µi)

is a well-defined bounded A-central vector in z2HHz2 and the infinite sums

Gn =
∑

i1,...,in

W (µi1 , J(µi1), . . . , µin , J(µin))

are well-defined bounded operators in z2Mz2 ∩ (Az2)′ satisfying

GnΩ = sn := s⊗A · · · ⊗A s︸ ︷︷ ︸
n times

.

By convention, we put G0 = z2. From the definition of Gn, we obtain the
recurrence relation

G1Gn = Gn+1 +Gn + ∆2Gn−1 (5.25)

for all n ≥ 1, and thus Gn+1 = (G1 − 1)Gn −∆2Gn−1 for all n ≥ 1.

Denote by q ∈ z2Mz2 the projection onto the kernel of G1 + ∆2. Although
the sum defining G1 is infinite, the computations in the proof of Lemma 5.38
remain valid and it follows that the kernel of (G1 + ∆2)1{1}(∆2) is reduced to
zero. So, q ≤ 1(0,1)(∆2).

With the convention that s0 = z2Ω, we claim that

qΩ =
∞∑
k=0

(−1)k(z2 −∆2)sk =
∞∑
k=0

(−1)ksk(z2 −∆2) . (5.26)

Because
∞∑
k=0
‖(z2 −∆2)sk‖22 =

∞∑
k=0

τ
(
〈sk, sk〉A (z2 −∆2)2)

=
∞∑
k=0

τ
(
∆k

2(z2 −∆2)2) = τ(z2 −∆2) <∞ ,
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the right hand side of (5.26) is a well-defined element p ∈ L2(z2Mz2) satisfying,
with ‖ · ‖2-convergence,

p =
∞∑
k=0

(−1)k(z2 −∆2)Gk .

Note that p = p∗. Using the recurrence relation (5.25), it follows that (G1 +
∆2)p = 0 and thus p = qp. Taking the adjoint, also p = pq.

On the other hand, because (G1 + ∆2)q = 0, we have G1q = −∆2q. Using the
recurrence relation (5.25), it follows that Gkq = (−1)k∆k

2q for all k ≥ 0. It then
follows that

pq =
∞∑
k=0

(z2 −∆2)∆k
2 q = 1(0,1)(∆2) q = q .

We already proved that pq = p, so that p = q and (5.26) is proved.

From (5.26), we get for all ξ ∈ H that
(`(ξ) + `(J(ξ))∗) qΩ = (`(ξz2) + `(J(ξz2))∗) qΩ = 0 .

So, for all x ∈ M , we have that xq = EA(x)q. Taking the adjoint, also
qx = qEA(x) for all x ∈M . Since q commutes with A, it follows that q ∈ Z(M)
and Mq = Aq. From (5.26), we also get that EA(q) = z2 − ∆2 and thus
EA(q) = Z(∆`

H) where Z : (0,+∞)→ R is defined as in the formulation of the
theorem. So, EA(1 − q) = z + ∆2 and this operator has support equal to 1.
Statement (c) of the theorem is now proved.

We next prove that

(10) Z(M)(z2 − q) ⊂ Z(A)(z2 − q).

Take x ∈ Z(M) and write

xz2Ω =
∞∑
n=0

ζn with ζn ∈ z2H
n .

Using (8), take a ∈ Z(A)z such that xz = a. Also write a0 = EA(xz2) and note
that ζ0 = a0Ω.

Since z2Hz2 = 0, we have z2H = z2Hz and we get, for every ξ ∈ H, that
∞∑
n=0

(
`(ξ)∗ + `(J(ξ))

)
ζn =

(
`(ξ)∗ + `(J(ξ))

)
xz2Ω

= x
(
`(ξ)∗ + `(J(ξ))

)
z2Ω

= xJ(z2ξ) = xz J(z2ξ) = a J(z2ξ) .
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Comparing the components in Hn for all n ≥ 0, we find that

`(ξ)∗ζ1 = 0 , `(ξ)∗ζ2 = a J(ξ)− J(ξ) a0 , `(ξ)∗ζn+1 = −J(ξ)⊗A ζn−1

for all ξ ∈ z2H and all n ≥ 2. Since ζn ∈ z2H
n for all n, it first follows that

ζ1 = 0 and then inductively, that ζn = 0 for all odd n.

Next, we get that ζ2 = sa − sa0, where

sa :=
∑
i∈I

µi ⊗A aJ(µi)

is a well-defined A-central vector in z2H
2z2.

Before continuing the proof, we give another expression for sa. For all µ, µ′ ∈
z2H = z2Hz, we have that W (J(µ), µ′) ∈ zMz. Since xz = a and x ∈ Z(M),
it follows that a commutes with W (J(µ), µ′). This means that

a J(µ)⊗A µ′ = J(µ)⊗A µ′ a for all µ, µ′ ∈ z2H .

It follows that a J(µ)⊗A s = J(µ)⊗A sa for all µ ∈ z2H. Defining the normal
completely positive map ϕ : Az → Az2 given by

ϕ(b) =
∑
i∈I
〈J(µi), b J(µi)〉A for all b ∈ Az ,

we get that ϕ(a) s = ∆2 sa. Since ϕ(z) = ∆2, there is a unique normal
completely positive map ψ : Az → Az2 such that ψ(b)∆2 = ϕ(b) for all b ∈ Az.
We conclude that sa = ψ(a) s = sψ(a).

Writing a1 = ψ(a) − a0, we get that ζ2 = s a1. We then conclude that ζ2n =
(−1)n+1 sn a1 for all n ≥ 1. Define the spectral projection r = 1{1}(∆2). Since

〈ζ2n, ζ2n〉A = a∗1 〈sn, sn〉A a1 = a∗1 ∆n
2 a1 ,

we get that ‖ζ2nr‖ = ‖a1r‖2 for all n. Since
∑
n ‖ζ2nr‖2 < ∞, we conclude

that a1r = 0 and thus xr ∈ A.

Using (5.26), it follows that x(z2 −∆2) = qa1 + a2 for some element a2 ∈ A.
Since xr ∈ A, it follows that x(z2 − q) ∈ A(z2 − q). Since the support of
EA(z2 − q) equals z2, it follows that (10) holds.

Using (8) and (10), to conclude the proof of statement (d), it suffices to prove
that for any a ∈ Z(A), we have a(1− q) ∈ Z(M) if and only if a ∈ C, where
C is defined in the formulation of the theorem. This follows immediately by
expressing the commutation with `(ξ) + `(J(ξ))∗ for all ξ ∈ H and using that(
`(ξ) + `(J(ξ))∗

)
q = 0, as shown above.
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Let ω be an M -central state on 〈M, eA〉 that is normal on M . To conclude
the proof of statement (a), we have to show that ω(1 − q) = 0. By (9),
we already know that ω(z) = 0. With µi ∈ z2H = z2Hz as above, define
yi := `(µi) + `(J(µi))∗. Note that yi ∈ z2Mz and that G1 + ∆2 =

∑
i yiy

∗
i . By

M -centrality and normality of ω on M , and because y∗i yi ∈ zMz, we get that
ω(G1 + ∆2) = 0. So, ω(z2 − q) = 0 since z2 − q is the support projection of
G1 + ∆2. Since we already know that ω(z) = 0, we conclude that ω(1− q) = 0.

It remains to prove statement (b). Assume that s ∈ Z(M)(1− q) is a nonzero
projection and that B ⊂Ms is a Cartan subalgebra. Since NMs(B)′′ = Ms, a
combination of statement (a) and Theorem 5.13 implies that B ≺M A(1− q).
The A-subbimodule z2H = z2Hz of L2(M) has finite right A-dimension equal
to τ(∆2) and realizes a full intertwining of A(z2 − q) into Az. It then follows
that B ≺M Az.

By Theorem 2.12, we can take projections q1 ∈ B, p ∈ Az, a faithful normal
unital ∗-homomorphism θ : Bq1 → pAp and a nonzero partial isometry v ∈ q1Mp
such that bv = vθ(b) for all b ∈ Bq1. Since B ⊂ Ms is maximal abelian, we
may assume that vv∗ = q1. By [Io11, Lemma 1.5], we may assume that
B0 := θ(Bq1) is a maximal abelian subalgebra of pAp. Write q2 = v∗v and note
that q2 ∈ B′0 ∩ pMp. We may assume that the support projection of EA(q2)
equals p.

Since z = z0 + z1, at least one of the projections pz0, pz1 is nonzero. Since we
can cut down everything with the projections z0 and z1, we may assume that
either p ≤ z0 or p ≤ z1.

Proof in the case where p ≤ z0. Recall that we denoted by K ⊂ H
the largest A-subbimodule that is left weakly mixing and that z0 is the left
support of K. First assume that the B0-A-bimodule pK is left weakly mixing.
Define the orthogonal decomposition of the pAp-bimodule pL2(M)p given by
pL2(M)p = U1 ⊕ U2 with

U1 =
∞⊕
n=0

pKHnp and U2 = L2(pAp)⊕
∞⊕
n=0

p(H 	K)Hnp .

We claim that v∗Nq1Mq1(Bq1)v ⊂ U2. To prove this claim, take u ∈
Nq1Mq1(Bq1) and write u∗bu = α(b) for all b ∈ Bq1. Put x = v∗uv and denote
by y the orthogonal projection of x onto U1. Since U1 is a pAp-subbimodule
of pL2(M)p, we get that y is a right pAp-bounded vector in U1 and that
θ(b)y = yθ(α(b)) for all b ∈ Bq. Since the B0-A-bimodule pK is left weakly
mixing, also U1 is left weakly mixing as a B0-pAp-bimodule. So, we can take a
sequence of unitaries bn ∈ U(Bq1) such that limn ‖〈θ(bn)y, y〉pAp‖2 = 0. But,

〈θ(bn)y, y〉pAp = 〈yθ(α(bn)), y〉pAp = θ(α(bn)∗) 〈y, y〉pAp .
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Since θ(α(bn)) is a unitary in B0, we have ‖θ(α(bn)∗) 〈y, y〉pAp‖2 = ‖〈y, y〉pAp‖2
for all n. We conclude that y = 0 and thus v∗uv ∈ U2. Since the linear span of
Nq1Mq1(Bq1) is ‖ · ‖2-dense in q1Mq1, we get that q2Mq2 ⊂ U2.

Again consider the von Neumann subalgebra N ⊂ z0Mz0 introduced in (5.18).
Since

PpL2(N)p(U2) ⊂ L2(pAp) ,

we get that EpNp(q2Mq2) ⊂ pAp. Denote by N0 ⊂ pNp the von Neumann
algebra generated by the subspace EpNp(q2Mq2). So, N0 ⊂ pAp. In particular,
EN (q2) ∈ A, so that EN (q2) = EA(q2) and thus, EN (q2) has support p. By
[Io11, Lemma 1.6] combined with Proposition 5.27, the inclusion N0 ⊂ pNp is
essentially of finite index in the sense of Definition 5.26. A fortiori, pAp ⊂ pNp
is essentially of finite index. This contradicts the left weak mixing of the
N -A-bimodule L2(N) that we obtained in (3).

Next assume that the B0-A-bimodule pK is not left weakly mixing and take
a nonzero B0-A-subbimodule K1 ⊂ pK that is finitely generated as a right
Hilbert A-module. Denote by z′0 ∈ Z(B0) the support projection of the left
action of B0 on K1. Since K1 6= {0}, also z′0 6= 0. Since the support of EA(q2)
equals p, we get that EA(q2z

′
0) = EA(q2)z′0 6= 0. So, q2z

′
0 6= 0 and we can cut

down everything by z′0 and assume that the left B0 action on K1 is faithful.

Put P = NpAp(B0)′′. Whenever u ∈ Nq1Mq1(Bq1) with ubu∗ = α(b) for all
b ∈ Bq1, we have EA(v∗uv)θ(b) = θ(α(b))EA(v∗uv) for all b ∈ Bq1. Since B0 ⊂
pAp is maximal abelian, it follows that EA(v∗uv) ∈ P . So, EA(q2Mq2) ⊂ P .
From [Io11, Lemma 1.6] combined with Proposition 5.27, we conclude that the
inclusion P ⊂ pAp is essentially of finite index in the sense of Definition 5.26. So,
all conditions of Lemma 5.42 are satisfied and we can choose a diffuse abelian
von Neumann subalgebra D ⊂ B′0∩pMp that is in tensor product position with
respect to B0. Since Bq1 ⊂ q1Mq1 is maximal abelian, also B0q2 ⊂ q2Mq2 is
maximal abelian. So, q2(B′0 ∩ pMp)q2 = B0q2, contradicting Lemma 5.43.

Proof in the case where p ≤ z1. As proven above, we can find projections
e1 ∈ Z(A)z1 that lie arbitrarily close to z1 and for which there exists an A-
subbimodule L ⊂ z1H with the following properties: the left support of L
equals e1, L is finitely generated as a right Hilbert A-module, ∆`

L is bounded
and ∆`

L ≥ e1. Taking e1 close enough to z1 and cutting down with e1, we
may assume that p ≤ e1. By Lemma 5.38, we can choose a diffuse abelian von
Neumann subalgebra D ⊂ (Ae1)′ ∩ e1Me1 that is in tensor product position
with respect to Ae1. Then Dp ⊂ B′0∩pMp and Dp is in tensor product position
with respect to B0. Since Dp is diffuse abelian and q2 ∈ B′0∩pMp is a projection
satisfying q2(B′0 ∩ pMp)q2 = B0q2, this again contradicts Lemma 5.43.
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5.5 Compact groups, free subsets, c0 probability
measures and the proof of Theorem B

For every second countable compact group K with Haar probability measure µ
and for every symmetric probability measure ν onK, we consider A = L∞(K,µ),
the A-bimodule Hν = L2(K ×K,µ× ν) with A-actions given by

(F · ξ ·G)(x, y) = F (xy) ξ(x, y)G(x) for all F,G ∈ A and ξ ∈ Hν , (5.27)

and the symmetry Jν : Hν → Hν given by

(Jνξ)(x, y) = ξ(xy, y−1) for all x, y ∈ K . (5.28)

We put Mν = Γ(Hν , Jν , A, µ)′′.

In Proposition 5.47 below, we characterize when the bimodule Hν is mixing
(so that Mν becomes strongly solid by Corollary 5.14) and when A ⊂Mν is an
s-MASA. For the latter, the crucial property will be that the support S of ν
is of the form S = F ∪ F−1 where F ⊂ K is a closed subset that is free in the
following sense.

Definition 5.45. A subset F of a group G is called free if

gε11 · · · gεnn 6= e

for all nontrivial reduced words, i.e., for all n ≥ 1 and all g1, . . . , gn ∈ F ,
ε1, . . . , εn ∈ {±1} satisfying εi = εi+1 whenever 1 ≤ i ≤ n− 1 and gi = gi+1.

On the other hand, the mixing property of Hν will follow from the following c0
condition on the measure ν.

Whenever K is a compact group, we denote by λ : K → U(L2(K)) the left
regular representation. For every probability measure ν on K and every unitary
representation π : K → U(H), we denote

π(ν) =
∫
K

π(x) dν(x) ∈ B(H) .

Definition 5.46. A probability measure ν on a compact group K is said to
be c0 if the operator λ(ν) ∈ B(L2(K)) is compact.

We denote by Irr(K) the set of equivalence classes of the irreducible
representations of K, and we denote by ε ∈ Irr(K) the equivalence class of the
trivial representation. Since the regular representation of K decomposes as the
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direct sum of all irreducible representations π ∈ Irr(K), each appearing with
multiplicity equal to its dimension, we get that a probability measure ν is c0 if
and only if

lim
π∈Irr(K),π→∞

‖π(ν)‖ = 0 ,

i.e., if and only if the map Irr(K)→ R : π 7→ ‖π(ν)‖ is c0. In particular, when
K is an abelian compact group, a probability measure ν on K is c0 if and only
if the Fourier transform of ν is a c0 function on K̂.

Proposition 5.47. Let K be a second countable compact group with Haar
probability measure µ. Put A = L∞(K,µ). Let ν be a symmetric probability
measure on K without atoms. Define the A-bimodule Hν with symmetry Jν by
(5.27) and (5.28). Denote by Mν = Γ(Hν , Jν , A, µ)′′ the associated tracial von
Neumann algebra. Let S be the support of ν, i.e., the smallest closed subset of
K with ν(S) = 1.

(1) The bimodule Hν is weakly mixing, A ⊂Mν is a singular MASA, Mν has
no Cartan subalgebra and A ⊂Mν is a maximal amenable subalgebra.

(2) The von Neumann algebra Mν has no amenable direct summand. The
center Z(Mν) of Mν equals L∞(K/K0) where K0 ⊂ K is the closure of
the subgroup generated by S. So if S topologically generates K, then Mν

is a non-amenable II1 factor.

(3) If S is of the form S = F ∪ F−1 where F ⊂ K is a closed subset that is
free in the sense of Definition 5.45, then A ⊂Mν is an s-MASA.

(4) If ν is c0 in the sense of Definition 5.46, then the bimodule Hν is mixing
and thus Mν is strongly solid.

Proof. 1. Note that

H
⊗nA
ν
∼= L2(K ×K × · · · ×K︸ ︷︷ ︸

n times

, µ× ν × · · · × ν︸ ︷︷ ︸
n times

) (5.29)

with the A-bimodule structure given by

(F · ξ ·G)(x, y1, . . . , yn) = F (xy1 · · · yn) ξ(x, y1, . . . , yn)G(x) .

Indeed, we can define an A-bimodular isometry Φ: H⊗
n
A

ν → L2(K×Kn, µ× νn)
by

Φ(ξ1 ⊗A · · · ⊗A ξn)(x, y1, . . . , yn) =
n∏
i=1

ξi(xy1 · · · yn−i, yn−i+1).
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Define D ⊂ K ×K given by D = {(y, y−1) | y ∈ K}. Since ν has no atoms, we
have (ν × ν)(D) = 0. It then follows that Hν ⊗A Hν has no nonzero A-central
vectors. By Proposition 2.26, the A-bimodule Hν is weakly mixing, so also
L2(Mν)	 L2(A) is a weakly mixing A-bimodule. Let an ∈ U(A) be a sequence
of unitaries such that ‖〈anξ, η〉A‖2 → 0 for all left and right bounded vectors
ξ, η ∈ L2(Mν)	 L2(A). For x ∈ NMν

(A), we have that

‖〈anx, x〉A‖2 = ‖〈x∗anxΩ,Ω〉A‖2 = ‖x∗anx‖2 = 1.

This implies that x ∈ A by the choice of (an)n∈N. So, we have that NMν (A) ⊂ A.
Hence A ⊂Mν is a MASA and this MASA is singular. By Theorem 5.21, Mν

has no Cartan subalgebra. By Theorem 5.19, we get that A ⊂Mν is a maximal
amenable subalgebra.

2. Since Hν is weakly mixing, we get from Theorem 5.19 that Mν has no
amenable direct summand and that Z(Mν) consists of all a ∈ A satisfying
a · ξ = ξ · a for all ξ ∈ Hν . It is then clear that L∞(K/K0) ⊂ Z(Mν). To prove
the converse, fix a ∈ A with a ·ξ = ξ ·a for all ξ ∈ Hν . We find in particular that
a(xy) = a(x) for µ× ν-a.e. (x, y) ∈ K ×K. Let Un be a decreasing sequence of
basic neighborhoods of e in K. Define the functions bn given by

bn(y) = µ(Un)−1
∫
Un
a(xy) dµ(x) .

For every fixed n, the functions bn still satisfy bn(xy) = b(x) for µ × ν-a.e.
(x, y) ∈ K ×K. But the functions bn are continuous. It follows that bn(xy) =
bn(x) for all x ∈ K and all y ∈ S. So, bn ∈ C(K/K0). Since limn ‖bn− a‖1 = 0,
we get that a ∈ L∞(K/K0).

3. Denote by Wn ⊂ (F ∪ F−1)n the subset of reduced words of length n.
Since ν has no atoms, we find that νn(Wn) = 1. Denote by πn : Kn → K
the multiplication map and put Sn := πn(Wn). Since F is free, the subsets
Sn ⊂ K are disjoint. By freeness of F , we also have that the restriction of πn
to Wn is injective. Define the probability measures νn := (πn)∗(νn) and then
η = 1

2δ0 +
∑∞
n=1 2−n−1νn. Using (5.29), we get that H⊗nA ∼= L2(K×Sn, µ×νn)

for all n ≥ 1. Since the Sn ⊂ K are disjoint, it follows that AL
2(Mν)A is

isomorphic with the A-bimodule

L2(K ×K,µ× η) with (F · ξ ·G)(x, y) = F (xy) ξ(x, y)G(x) .

So, AL2(Mν)A is a cyclic bimodule and A ⊂Mν is an s-MASA.

4. Define ξ0 ∈ Hν by ξ0(x, y) = 1 for all x, y ∈ K and note that ξ0 is a cyclic
vector for A(Hν)A. Denote by ϕ : A → A the completely positive map given
by ϕ(a) = 〈ξ0, aξ0〉A. Note that as a function in L∞(K,µ), we have that
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ϕ(a)(x) =
∫
K
a(xy) dν(y) for x ∈ K. To prove that Hν is mixing, it is sufficient

to prove that limn ‖ϕ(an)‖2 = 0 whenever (an) is a bounded sequence in A
that converges weakly to 0. Denoting by ρ : K → L2(K) the right regular
representation, we get that ϕ(a) = ρ(ν)(a) for all a ∈ A ⊂ L2(K). Since ρ(ν)
is a compact operator, we indeed get that limn ‖ρ(ν)(an)‖2 = 0. So, Hν is a
mixing A-bimodule. By Corollary 5.14, Mν is strongly solid.

Remark 5.48. In the special case where K is abelian, we identify L∞(K,µ) =
L(G), with G := K̂ being a countable abelian group. Then the symmetric
L∞(K,µ)-bimodule Hν given by (5.27) and (5.28) is isomorphic with the
symmetric L(G)-bimodule associated, as in Remark 5.11, with the cyclic
orthogonal representation of G with spectral measure ν. In particular, as
in Remark 5.11, the von Neumann algebras Mν = Γ(Hν , Jν , L

∞(K), µ)′′ can
also be realized as a free Bogoljubov crossed product by the countable abelian
group G. In this way, Proposition 5.47 generalizes the results of [HS09, Ho12a].
Note however that for a free Bogoljubov crossed product M = Γ(KR)′′oG with
G abelian, the subalgebra L(G) ⊂ M is never an s-MASA. Indeed, if we let
π : G→ O(KR) be an orthogonal representation, A = L(G) and H = `2(G)⊗K
the associated A-bimodule, then H ⊗A H ∼= `2(G) ⊗K ⊗K is the bimodule
associated with π ⊗ π. Let F ∈ B(H ⊗A H) denote the operator that flips the
two copies of K and view F as an operator on L2(M). Then F commutes with
the left and right A-actions but F /∈ A ∨ JAJ . So, A ∨ JAJ ⊂ B(L2M) is not
maximal abelian and hence A is not an s-MASA. This shows that our more
general construction is essential to prove Theorem B.

For non-abelian compact groups K, we can still view K = Ĝ, but G is no longer
a countable group, rather a discrete Kac algebra. It is then still possible to
identify the II1 factorsM in Proposition 5.47 with a crossed product Γ(KR)′′oG,
where the discrete Kac algebra action of G on Γ(KR)′′ is the free Bogoljubov
action associated in [Va02] with an orthogonal co-representation of the quantum
group G.

The main result of this section says that in certain sufficiently non-abelian
compact groups K, one can find “large” free subsets F ⊂ K, where “large”
means that F carries a non-atomic probability measure that is c0. We conjecture
that the compact Lie groups SO(n), n ≥ 3, admit free subsets carrying a c0
probability measure. For our purposes, it is however sufficient to prove that
these exist in more ad hoc groups.

For every prime number p, denote by Γp the finite group Γp = PGL2(Z/pZ).
The following is the main result of this section. Recall that the support of a
probability measure ν on a compact space K is defined as the smallest closed
subset S ⊂ K with ν(S) = 1.
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Theorem 5.49. There exists a sequence of prime numbers pn tending to
infinity, a closed free subset F ⊂ K :=

∏∞
n=1 Γpn topologically generating K

and a symmetric, non-atomic, c0 probability measure ν on K whose support
equals F ∪ F−1.

We then immediately get:

Proof of Theorem B. Take K and ν as in Theorem 5.49. Denote by Mν the
associated von Neumann algebra with abelian subalgebra A ⊂ Mν as in
Proposition 5.47. By Proposition 5.47, we get that Mν is a non-amenable,
strongly solid II1 factor and that A ⊂Mν is an s-MASA.

Before proving Theorem 5.49, we need some preparation.

The Alon-Roichman theorem [AR92] asserts that the Cayley graph given by a
random and independent choice of k ≥ c(ε) log |G| elements in a finite group
G has expected second eigenvalue at most ε, with the normalization chosen so
that the largest eigenvalue is 1. In [LR04, Theorem 2], a simple proof of that
result was given. The same proofs yields the following result. For completeness,
we provide the argument.

Whenever G is a group, π : G → U(H) is a unitary representation and
g1, . . . , gk ∈ G, we write

π(g1, . . . , gk) := 1
k

k∑
j=1

π(gj) . (5.30)

Lemma 5.50 ([LR04]). Let Gn be a sequence of finite groups and kn a sequence
of positive integers such that kn/ log |Gn| → ∞. For every ε > 0 and for a
uniform and independent choice of kn elements g1, . . . , gkn ∈ Gn, we have that

lim
n→∞

P
(
‖π(g1, . . . , gkn)‖ ≤ ε for all π ∈ Irr(Gn) \ {ε}

)
= 1 .

Proof. Fix a finite group G and a positive integer k. Let g1, . . . , gk be a uniform
and independent choice of elements of G. Denote by λ0 : G→ U(`2(G)	 C1)
the regular representation restricted to `2(G)	 C1. Put d = |G| − 1. Both

T (g1, . . . , gk) = 1
k

k∑
j=1

λ0(gj) + λ0(gj)∗
2 and

S(g1, . . . , gk) = 1
k

k∑
j=1

iλ0(gj)− iλ0(gj)∗
2
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are sums of k independent self-adjoint d× d matrices of norm at most 1 and
having expectation 0. We apply [AW01, Theorem 19] to the independent random
variables

Xj = 2 + λ0(gj) + λ0(gj)∗
4 ,

satisfying 0 ≤ Xj ≤ 1 and having expectation 1/2. We conclude that for every
0 ≤ ε ≤ 1/2,

P
(
‖T (g1, . . . , gk)‖ ≤ ε

)
= P

(
(1− ε)1

2 ≤
1
k

k∑
j=1

Xj ≤ (1 + ε)1
2

)

≥ 1− 2d exp
(
−k ε2

4 log 2
)
.

The same estimate holds for S(g1, . . . , gk). Since λ0(g1, . . . , gk) = T (g1, . . . , gk)−
iS(g1, . . . , gk) and since λ0 is the direct sum of all nontrivial irreducible
representations of G (all appearing with multiplicity equal to their dimension),
we conclude that

P
(
‖π(g1, . . . , gk)‖ ≤ ε for all π ∈ Irr(G) \ {ε}

)
≥ 1− 4|G| exp

(
−k ε2

16 log 2
)
.

Taking G = Gn, k = kn and n → ∞, our assumption that kn/ log |Gn| → ∞
implies that for every fixed ε > 0,

|Gn| exp
(
−kn

ε2

16 log 2
)
→ 0

and thus the lemma follows.

On the other hand, in [GHSSV07] it is proven that random Cayley graphs of
the groups PGL2(Z/pZ) have large girth. More precisely, we say that elements
g1, . . . , gk in a group G satisfy no relation of length ≤ ` if every nontrivial
reduced word of length at most ` with letters from g±1

1 , . . . , g±1
k defines a

nontrivial element in G. The estimates in the proof of [GHSSV07, Lemma 10]
give the following result. Again for completeness, we provide the argument.

Lemma 5.51 ([GHSSV07]). Let pn be a sequence of prime numbers tending to
infinity and let kn be a sequence of positive integers such that log kn/ log pn → 0.
Put Γpn = PGL2(Z/pnZ). For every ` > 0 and for a uniform and independent
choice of kn elements g1, . . . , gkn ∈ Γpn , we have that

lim
n→∞

P
(
g1, . . . , gkn satisfy no relation of length ≤ `

)
= 1 .
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Proof. Let G be a group. A law of length ` in G is a nontrivial element w
in a free group Fn such that w has length ` and w(g1, . . . , gn) = e for all
g1, . . . , gn ∈ G. For example, if G is abelian, the element w = aba−1b−1 of F2
defines a law of length 4 in G. Since the labeling of the generators does not
matter, any law of length ` can be defined by a nontrivial element of Fn with
n ≤ `. In particular, there are only finitely many possible laws of a certain
length `.

Since F∞ ↪→ F2 ↪→ PSL2(Z), the group PSL2(Z) satisfies no law. For every
prime number p, write Γp = PGL2(Z/pZ). Using the quotient maps PSL2(Z)→
PSL2(Z/pZ), we get that a given nontrivial element w ∈ Fn can be a law for at
most finitely many Γp. So, for every ` > 0, we get that Γp satisfies no law of
length ≤ ` for all large enough primes p. (Note that [GHSSV07, Proposition
11] provides a much more precise result.)

Let w = gε1i1 · · · g
ε`
i`

with ij ∈ {1, . . . , k} and εj ∈ {±1} be a reduced word of
length ` in g±1

1 , . . . , g±1
k . Let p be a prime number and assume that w is not a

law of Γp. With the same argument as in the proof of [GHSSV07, Lemma 10],
we now prove that for a uniform and independent choice of g1, . . . , gk ∈ Γp, we
have that

P
(
w(g1, . . . , gk) = e in Γp

)
≤ `

p

(
1 + 1

p− 1
)3k

. (5.31)

Denote Fp = Z/pZ, not to be confused with the free group Fp. Write Gp =
GL2(Fp) ⊂ F 2×2

p . Define the map

W :
(
F 2×2
p

)k → F 2×2
p : W (a1, . . . , ak) = bi1 · · · bi`

where bij = aij when εj = 1 and bij equals the adjunct matrix of aij when
εj = −1. Note that the four components Wst, s, t ∈ {1, 2}, of the map W are
polynomials of degree at most ` in the 4k variables a ∈

(
F 2×2
p

)k. Define the
subset W ⊂

(
F 2×2
p

)k given by

W =
{
a ∈

(
F 2×2
p

)k ∣∣W (a) is a multiple of the identity matrix
}

=
{
a ∈

(
F 2×2
p

)k ∣∣W11(a)−W22(a) = W12(a) = W21(a) = 0
}
.

We also define V =W ∩ (Gp)k and

U = {g ∈ (Γp)k | w(g1, . . . , gk) = e in Γp} .

The quotient map Gp → Γp induces the (p− 1)k-fold covering π : V → U .

The subsetW ⊂ F 4k
p is the solution set of a system of three polynomial equations

of degree at most `. If each of these polynomials is identically zero, we get that
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W = F 4k
p and thus U = (Γp)k. This means that w is a law of Γp, which we

supposed not to be the case. So at least one of the polynomials is not identically
zero. The number of zeros of such a polynomial is bounded above by `p4k−1

(and a better, even optimal, bound can be found in [Se89]). So, |W| ≤ `p4k−1.
Then also |V| ≤ `p4k−1 and because π is a (p− 1)k-fold covering, we find that

|U| ≤ ` (p− 1)−k p4k−1 .

Since |Γp| = (p− 1) p (p+ 1), we conclude that

P
(
w(g1, . . . , gk) = e in Γp

)
= |U|
|Γp|k

≤ `

p
(p− 1)−2k (p+ 1)−k p3k

≤ `

p

(
1 + 1

p− 1
)3k

.

So, (5.31) holds.

Now assume that pn is a sequence of prime numbers and kn are positive integers
such that pn →∞ and log kn/ log pn → 0. For all n large enough, 3kn ≤ pn − 1
and for all n large enough, as we explained in the beginning of the proof, Γpn
has no law of length ≤ `. Since (1 + 1/x)x < 3 for all x > 0 and since there are
less than (2k)`+1 reduced words of length ≤ l in g±1

1 , . . . , g±1
k , we find that for

all n large enough and a uniform, independent choice of g1, . . . , gkn ∈ Γpn , we
have

P
(
g1, . . . , gkn satisfy a relation of length ≤ ` in Γpn

)
≤ (2kn)`+1 3`

pn
.

By our assumption that log kn/ log pn → 0, the right hand side tends to 0 as
n→∞ and the lemma is proved.

Combining Lemmas 5.50 and 5.51, we obtain the following.

Lemma 5.52. For all ε > 0 and all k0, p0, ` ∈ N, there exists a prime number
p ≥ p0, an integer k ≥ k0 and elements g1, . . . , gk ∈ Γp = PGL2(Z/pZ)
generating the group Γp such that

(1) ‖π(g1, . . . , gk)‖ ≤ ε for every nontrivial irreducible representation π ∈
Irr(Γp),

(2) g1, . . . , gk satisfy no relation of length ≤ `.

Proof. Choose any sequence of prime numbers pn tending to infinity. Define
kn = b(log pn)2c. Since |Γpn | = (pn− 1) pn (pn + 1), we get that kn/ log |Γpn | →
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∞. Also, log kn/ log pn → 0. So Lemmas 5.50 and 5.51 apply and for a large
enough choice of n, properties (1) and (2) in the lemma hold for p = pn, k = kn
and a large portion of the kn-tuples (g1, . . . , gkn) ∈ Γknpn .

The first property in the lemma is equivalent with

∥∥∥(1
k

k∑
j=1

λ(gj)
)
`2(Γp)	C1

∥∥∥ ≤ ε ,
where λ : Γp → `2(Γp) is the regular representation. If ε < 1, it then follows in
particular that there are no nonzero functions in `2(Γp)	C1 that are invariant
under all λ(gj), meaning that every element of Γp can be written as a product
of elements in {g1, . . . , gk}. So, we get that g1, . . . , gk generate Γp.

Having proven Lemma 5.52, we are now ready to prove Theorem 5.49.

Proof of Theorem 5.49. As in (5.30), for every finite group G, subset F ⊂ G
and unitary representation π : G→ U(H), we write

π(F ) := 1
|F |

∑
g∈F

π(g) .

For every prime number p, we write Γp = PGL2(Z/pZ). We construct by
induction on n a sequence of prime numbers pn and a generating set

Fn ⊂ Kn :=
n∏
j=1

Γpj

such that, denoting by θn−1 : Kn → Kn−1 the projection onto the first n − 1
coordinates, the following properties hold.

(1) θn−1(Fn) = Fn−1 and the map θn−1 : Fn → Fn−1 is an rn-fold covering
with rn ≥ 2.

(2) If π ∈ Irr(Kn) and π does not factor through θn−1, then ‖π(Fn)‖ ≤ 1/n.

(3) The elements of Fn satisfy no relation of length ≤ n.

Assume that p1, . . . , pn−1 and F1, . . . , Fn−1 have been constructed. We have
to construct pn and Fn. Write k1 = |Fn−1| and put k0 = max{2n+ 1, k1}. By
Lemma 5.52, we can choose k2 > k0, a prime number pn and a subset F ⊂ Γpn
with |F | = k2 such that the elements of F satisfy no relation of length ≤ 3n
and such that ‖π(F )‖ ≤ 1/(4n) for every nontrivial irreducible representation
π of Γpn .
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Write Fn−1 = {g1, . . . , gk1} and F = {h1, . . . , hk2}. Note that we have chosen
k2 > max{2n + 1, k1}. So we can define the subset Fn ⊂ Kn−1 × Γpn = Kn

given by

Fn = {(gi, hihjh−1
i ) | 1 ≤ i ≤ k1 , 1 ≤ j ≤ k2 , i 6= j} .

Note that θn−1(Fn) = Fn−1 and that the map θn−1 : Fn → Fn−1 is a (k2−1)-fold
covering.

Every irreducible representation π ∈ Irr(Kn) that does not factor through θn−1
is of the form π = π1 ⊗ π2 with π1 ∈ Irr(Kn−1) and with π2 being a nontrivial
irreducible representation of Γpn . Note that

π(Fn) = 1
k1

k1∑
i=1

(
π1(gi)⊗ π2(hi)Ti π2(hi)∗

)
,

where
Ti := 1

k2 − 1
∑

1≤j≤k2 , j 6=i
π2(hj) .

For every fixed i ∈ {1, . . . , k1}, we have

Ti = k2

k2 − 1π2(F )− 1
k2 − 1π2(hi) .

Therefore,
‖Ti‖ < 2 ‖π2(F )‖+ 1

2n ≤
1
n
. (5.32)

It then also follows that ‖π(Fn)‖ < 1/n.

We next prove that Fn is a generating set of Kn. Fix i ∈ {1, . . . , k1}. For all
s, t ∈ {1, . . . , k2} with s 6= i and t 6= i, we have

(gi, hihsh−1
i ) (gi, hihth−1

i )−1 = (e, hi hsh−1
t h−1

i ) .

It thus suffices to prove that the set Hi := {hsh−1
t | s, t ∈ {1, . . . , k2} \ {i}}

generates Γpn for each i ∈ {1, . . . , k1}.

Denote by λ0 the regular representation of Γpn restricted to `2(Γpn)	C1. Define

Ri = 1
k2 − 1

∑
1≤j≤k2 , j 6=i

λ0(hj) .

By (5.32), we get that ‖Ri‖ < 1. Then also ‖RiR∗i ‖ < 1. So, there is no nonzero
function in `2(Γpn)	C1 that is invariant under all λ(h), h ∈ Hi. It follows that
each Hi is a generating set of Γpn .
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Denote by ηn : Kn → Γpn the projection onto the last coordinate. If the elements
of Fn satisfy any relation of length ≤ n, applying ηn will give a nontrivial relation
of length ≤ 3n between the elements of F . Since such relations do not exist, we
have proved that the elements of Fn satisfy no relation of length ≤ n.

Define K =
∏∞
n=1 Γpn and still denote by θn : K → Kn the projection onto the

first n coordinates. Define

F = {k ∈ K | θn(k) ∈ Fn for all n ≥ 1} .

Note that F ⊂ K is closed and θn(F ) = Fn. Denoting by 〈F 〉 the subgroup of
K generated by F , we get that θn(〈F 〉) = Kn for all n. So, 〈F 〉 is dense in K,
meaning that F topologically generates K.

Since each map θn−1 : Fn → Fn−1 is an rn-fold covering, there is a unique
probability measure ν0 on K such that (θn)∗(ν0) is the normalized counting
measure on Fn for each n. Since rn ≥ 2 for all n, we have that |Fn| → ∞ and
hence the measure ν0 is non-atomic. Indeed, for any x ∈ K and any n ∈ N, we
have that

ν0({x}) ≤ ν0(θ−1
n ({θn(x)})) = 1

|Fn|
→ 0 .

Note that the support of ν0 equals F . Define the symmetric probability measure
ν on K given by ν(U) = (ν0(U) + ν0(U−1))/2 for all Borel sets U ⊂ K. The
support of ν equals F ∪ F−1. Since λ(ν) = (λ(ν0) + λ(ν0)∗)/2, to conclude
the proof of the theorem, it suffices to prove that F is free and that ν0 is a c0
probability measure.

Let gε11 · · · gεmm be a reduced word of length m with g1, . . . , gm ∈ F . Take n ≥ m
large enough such that θn(gi) 6= θn(gi+1) whenever gi 6= gi+1. We then get that
θn(g1)ε1 · · · θn(gm)εm is a reduced word of length m ≤ n in the elements of Fn.
It follows that

e 6= θn(g1)ε1 · · · θn(gm)εm = θn
(
gε11 · · · gεmm

)
.

So, gε11 · · · gεmm 6= e and we have proven that F is free.

We finally prove that ‖π(ν0)‖ < 1/m for every irreducible representation π of
K that does not factor through θm : K → Km. Since there are only finitely
many irreducible representations that do factor through θm : K → Km, this will
conclude the proof of the theorem. Let π be such an irreducible representation.
There then exists a unique n > m such that π = π0 ◦ θn and π0 is an irreducible
representation of Kn that does not factor through θn−1 : Kn → Kn−1. Since
(θn)∗(ν0) is the counting measure on Fn, get that π(ν0) = π0(Fn) and thus

‖π(ν0)‖ = ‖π0(Fn)‖ ≤ 1
n
<

1
m
.
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5.6 Property Gamma

Given a tracial von Neumann algebra (M, τ), a central sequence for M is a
‖ · ‖-bounded sequence xn ∈M that asymptotically commutes with M in the
sense that

lim
n→∞

‖xny − yxn‖2 = 0 for all y ∈M.

The central sequence (xn)n∈N is said to be trivial if limn→∞ ‖xn−τ(xn)1‖2 = 0.

A separable II1 factor M admits a nontrivial central sequence if and only if
there exists a central sequence consisting of unitaries un ∈ U(M) with τ(un) = 0
for all n (see for instance [AP16, Theorem 15.2.3]). This property is known
as property Gamma and was first introduced by Murray and von Neumann
[MvN43] in order to distinguish between the hyperfinite II1 factor R and the
free group factors L(Fn), n ≥ 2. Historically, this provided the first example of
a non-hyperfinite factor.

A separable II1 factor M is called a full factor if it does not have property
Gamma, i.e., if it has no nontrivial central sequences. Connes showed [Co75]
that being a full factor is equivalent with the following stronger property: the
unitary representation (Adu)u∈U(M) on L2(M)	 C1 given by (Adu)ξ = uξu∗

has spectral gap in the following sense.

Definition 5.53. Let (π,H) be a unitary representation of a group G. We say
that π has spectral gap if it does not weakly contain the trivial representation,
i.e., if π has no almost invariant vectors.

Having nontrivial central sequences can also be expressed in terms of the
ultrapower von Neumann algebra. Indeed, a separable II1 factorM has property
Gamma if and only if M ′ ∩Mω 6= C1 for any free ultrafilter ω on N, where Mω

denotes the von Neumann algebra ultrapower of M with respect to ω. The von
Neumann algebra M ′ ∩Mω is called the central sequence algebra of M (with
respect to ω).

If A ⊂M is a von Neumann subalgebra, we say that a central sequence (xn)n∈N
for M asymptotically lies in A if ‖xn − EA(xn)‖2 → 0 as n → ∞. If every
central sequence ofM asymptotically lies in A, we have thatM ′∩Mω ⊂ A′∩Aω,
for any free ultrafilter ω on N.

Fix a separable tracial von Neumann algebra (A, τ) and a symmetric A-bimodule
(H,J). Put M = Γ(H,J,A, τ)′′. Our goal in this section is to locate the central
sequences of M and in particular find a criterion for when M is a full factor.
Since even factoriality of M is very difficult to characterize in general (see
Theorem 5.21), we will restrict ourselves to the case where H is a weakly mixing
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bimodule. At the end of this section, we will apply this criterion to the factors
Mν that we constructed in Section 5.5, where ν is a symmetric probability
measure on a compact group K.

In the case of free Bogoljubov actions, Houdayer showed the following.

Theorem 5.54 ([Ho12b, Theorem A]). Let G be any countable discrete group
and π : G→ O(HR) any faithful orthogonal representation such that dimHR ≥ 2.

If π(G) is discrete in O(HR) with respect to the strong operator topology, then
Γ(HR)′′ oG is a full factor.

We can rephrase the condition π(G) ⊂ O(HR) being discrete in the following
way: There exists no sequence gn ∈ G with gn →∞ such that

π(gn)ξ → ξ for all ξ ∈ HR.

The natural analogue of this in the setting of symmetric A-bimodules is the
following: There exists no nontrivial sequence of unitaries an ∈ U(A) such that

‖anξa∗n − ξ‖ → 0 for all ξ ∈ H.

We prove that this is indeed a criterion for M being a full factor. The proof is
based on the proof of [Ho12b, Theorem A], as well as techniques from the proof
of Theorem 5.19.

Theorem 5.55. Let (A, τ) be a separable tracial von Neumann algebra and
(H,J) a symmetric A-bimodule. Assume that AHA is faithful and weakly mixing.
Then any central sequence forM asymptotically lies in A and the central sequence
algebra of M is exactly given by

M ′ ∩Mω = {(an) ∈ A′ ∩Aω | lim
n→ω
‖anξ − ξan‖ = 0 for all ξ ∈ H}.

Proof. It is enough to show that M ′∩Mω ⊂ Aω, since the rest of the statement
follows trivially by looking at the commutator of an ∈ A and `(ξ) + `(Jξ)∗ for
ξ ∈ H.

Let (xn)n∈N be a central sequence for M and put yn = xn − EA(xn). We may
assume that supn ‖yn‖ ≤ 1. We first prove the following two claims, analogously
to Claim I and Claim II in the proof of Theorem 5.19.

Claim 1. For any ξ ∈ H and any ε > 0, there exists a projection p ∈ A with
τ(1− p) < ε such that

lim
n→∞

‖`(ξp)`(ξp)∗(yn)‖2 < ε.
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Proof of claim. Put a =
√
〈ξ, ξ〉A ∈ A and let q ∈ A be the support projection

of a. Take a spectral projection q1 ∈ qAq of a such that aq1 is invertible in
q1Aq1 and such that τ(q − q1) < ε/2. Let b ∈ q1Aq1 be its inverse and put
η = ξb. Then `(η)∗`(η) = q1 and ξq1 = ηa.

Pick N ∈ N such that 2−N < 1
3‖a‖

−4ε2 and put κ = 2N . Then choose δ > 0
so small that δ < 1

6‖a‖
−2εκ−3/2. Exactly as in the proof of Theorem 5.19,

we find unitaries v1, . . . , vκ ∈ U(A) and a projection q2 ∈ q1Aq1 such that
τ(q1 − q2) < ε/2 and such that the vectors ηi := viη satisfy

‖q2〈ηi, ηj〉Aq2‖ < δ for all i 6= j.

Put µi = ηiq2 = viηq2 and Pi = `(µi)`(µi)∗. Note that Pi = viP1v
∗
i and that Pi

is a projection for all i. By construction, ‖PiPj‖ < δ whenever i 6= j. Putting
P =

∑κ
i=1 Pi, it follows as in the proof of Theorem 5.19 that ‖P‖ < 1 + κ2δ.

Since yn asymptotically commutes with A and since Pi commutes with the right
A-action, we have that

lim
n→∞

‖Pi(yn)‖2 = lim
n→∞

‖viP1v
∗
i yn‖2 = lim

n→∞
‖viP1ynv

∗
i ‖2 = lim

n→∞
‖P1(yn)‖2

for all i = 1, . . . , κ. Also note that∣∣∣‖∑
i

Pi(yn)‖22 −
∑
i

‖Pi(yn)‖22
∣∣∣ =

∣∣∣∑
i 6=j
〈PiPjyn, yn〉2

∣∣∣ < δκ(κ− 1).

It follows that

lim
n→∞

‖P (yn)‖22 = lim
n→∞

‖
κ∑
i=1

Pi(yn)‖22

≥ lim
n→∞

κ∑
i=1
‖Pi(yn)‖22 − δκ(κ− 1)

= κ lim
n→∞

‖P1(yn)‖22 − δκ(κ− 1).

On the other hand, since ‖P‖ < 1 + κ2δ, we have that ‖P (yn)‖2 < 1 + κ2δ for
all n. Thus,

κ lim
n→∞

‖P1(yn)‖22 − δκ(κ− 1) < (1 + κ2δ)2.

We conclude that

lim
n→∞

‖P1(yn)‖2 <
√

(1 + κ2δ)2

κ
+ δ(κ− 1) ≤ ‖a‖−2ε.
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Since q1 and a commute, the right support of (q1 − q2)a is a projection of the
form q1−p0 where p0 ∈ q1Aq1 is a projection with τ(q1−p0) ≤ τ(q1−q2) < ε/2.
By construction, q1ap0 = q2ap0. Since p0 ≤ q1 and η = ηq1, it follows that

ξp0 = ξq1p0 = ηap0 = ηq1ap0 = ηq2ap0 .

Define the projection p ∈ A given by p = (1 − q) + p0. Since ξ(1 − q) = 0,
we still have ξp = ηq2ap0. Because 1 − p = (q − q1) + (q1 − p0), we get that
τ(1− p) < ε. Finally,

lim
n→∞

‖`(ξp)`(ξp)∗(yn)‖2 = lim
n→∞

‖`(ηq2) ap0a
∗ `(ηq2)∗(yn)‖2

≤ ‖a‖2 lim
n→∞

‖`(ηq2)`(ηq2)∗(yn)‖2

= ‖a‖2 lim
n→∞

‖P1(yn)‖2 < ε.

So, we have proven the claim.

Claim 2. For every ξ ∈ H and ε > 0, there exists a projection p ∈ A with
τ(1− p) < ε such that

lim
n→∞

‖`(ξp)`(ξp)∗(yn)‖2 = 0.

Proof of claim. For every k ∈ N, Claim 1 gives us a projection pk ∈ A such
that τ(1− pk) < 2−kε and

lim
n→∞

‖`(ξpk)`(ξpk)∗(yn)‖2 <
1
k
.

Let p =
∧
k≥1 pk. Then τ(1− p) < ε and for every k ≥ 1, we have that

lim
n→∞

‖`(ξp)`(ξp)∗(yn)‖2 = lim
n→∞

‖`(ξ)p`(ξ)∗(yn)‖2

≤ lim
n→∞

‖`(ξ)pk`(ξ)∗(yn)‖2

= lim
n→∞

‖`(ξpk)`(ξpk)∗(yn)‖2 <
1
k
.

It follows that limn→∞ ‖`(ξp)`(ξp)∗(yn)‖2 = 0 as claimed.

We are now ready to finish the proof of Theorem 5.55, which is done exactly
as in [Ho12b, Proposition 6.1]. Given any right A-submodule L of H and an
integer k ≥ 1, we define

χk(L) = span{ξ1 ⊗A · · · ⊗A ξn | n ≥ k, ξ1 ∈ L} ⊂ FA(H),
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where L denotes the set of left and right A-bounded vectors in L. For simplicity,
we write χ(L) := χ1(L). Given any closed subspace S ⊂ L2(M), we denote by
PS the orthogonal projection onto S.

Let ξ ∈ H be any symmetric vector. By Claim 2, we can take a projection
p ∈ A with τ(1− p) < ε such that

lim
n→∞

‖`(ξp)`(ξp)∗(yn)‖2 = 0.

Put ξ′ = pξp. Note that ξ′ is symmetric and since yn asymptotically
commutes with p, we have that limn→∞ ‖`(ξ′)`(ξ′)∗(yn)‖2 = 0. Using the
polar decomposition [AP16, Lemma 8.4.9], we may write ξ′ = ξ0〈ξ′, ξ′〉1/2A with
ξ0 ∈ H a right bounded vector such that ξ′A = ξ0A and such that 〈ξ0, ξ0〉A is the
range projection of 〈ξ′, ξ′〉1/2A . Note that Pχ(ξ′A) = `(ξ0)`(ξ0)∗. Take a spectral
projection q ∈ pAp of a := 〈ξ′, ξ′〉1/2A lying arbitrarily close to the support of a
such that aq is invertible inside qAq. Then, ξ0q = ξ′b for some b ∈ qAq and thus
Pχ(ξ′qA) = `(ξ′)bb∗`(ξ′)∗. So, after replacing p with a slightly smaller projection
but still arbitrarily close to 1, we may assume that Pχ(ξ′A) = `(ξ′)bb∗`(ξ′)∗.
Since limn→∞ ‖`(ξ′)`(ξ′)∗(yn)‖2 = 0, we get that limn→∞ ‖Pχ(ξ′A)(yn)‖2 = 0.
Since also yn ∈M 	A, it follows that

lim
n→∞

‖yn − Pχ(H	ξ′A)(yn)‖2 = 0. (5.33)

Denote by J : FA(H)→ FA(H) the anti-unitary involution defined in the proof
of Proposition 5.7. Note that

W (ξ′)(χ(H 	 ξ′A)) ⊂ χ2(ξ′A),

JW (ξ′)J (χ(H 	 ξ′A)) ⊂ L2(A)⊕ χ(H 	 ξ′A).

Indeed, for left and right bounded vectors η ∈ H 	 ξ′A and ζ ∈ H⊗kA , k ≥ 0
(note that ζ ∈ A if k = 0), we have that 〈Jξ′, η〉A = 〈ξ′, η〉A = 0 since ξ′ is
symmetric and hence

W (ξ′)(η ⊗A ζ) = ξ′ ⊗A η ⊗A ζ + 〈Jξ′, η〉Aζ = ξ′ ⊗A η ⊗A ζ ∈ χ2(ξ′A),

JW (ξ′)J (η ⊗A ζ) = η ⊗A ζ ⊗A ξ′ + η〈Jζ, ξ′〉A ∈ χ(H 	 ξ′A) if k ≥ 1,

JW (ξ′)J (ηζ) = ηζ ⊗A ξ′ + 〈J(ηζ), ξ′〉A ∈ L2(A)⊕ χ(H 	 ξ′A) if k = 0.

In particular,

W (ξ′)(χ(H 	 ξ′A)) ⊥ H,

W (ξ′)(χ(H 	 ξ′A)) ⊥ JW (ξ′)J (χ(H 	 ξ′A)).



PROPERTY GAMMA 161

For all n ∈ N, we have

W (ξ′)xn − xnW (ξ′) = W (ξ′)(EA(xn) + yn)− JW (ξ′)J (EA(xn) + yn)

= (W (ξ′)EA(xn)− JW (ξ′)JEA(xn)− JW (ξ′)J yn) +W (ξ′)yn.

Thus

‖W (ξ′)xn − xnW (ξ′)‖22

= ‖W (ξ′)EA(xn)− JW (ξ′)JEA(xn)− JW (ξ′)J yn‖22 + ‖W (ξ′)yn‖22

+ 2Re
〈
W (ξ′)EA(xn)− JW (ξ′)JEA(xn)− JW (ξ′)J yn,W (ξ′)yn

〉
.

Using (5.33) along with the orthogonality properties above, we get

〈W (ξ′)EA(xn),W (ξ′)yn〉 = 〈W (ξ′)EA(xn),W (ξ′)(yn − Pχ(H	ξ′A)(yn))〉 → 0,

as n→∞ and similarly

〈JW (ξ′)JEA(xn),W (ξ′)yn〉 → 0 as n→∞,

〈JW (ξ′)J yn,W (ξ′)yn〉 → 0 as n→∞.

Since also ‖W (ξ′)xn−xnW (ξ′)‖2 → 0, we get from the above computation that

‖W (ξ′)EA(xn)− JW (ξ′)JEA(xn)− JW (ξ′)J yn‖2 → 0 and

‖W (ξ′)yn‖2 → 0.

Using (5.33) again, it follows that ‖W (ξ′)Pχ(H	ξ′A)(yn)‖2 → 0. Since
`(ξ′)∗Pχ(H	ξ′A)(yn) = 0, we have that

‖W (ξ′)Pχ(H	ξ′A)(yn)‖2 = ‖ξ′ ⊗A Pχ(H	ξ′A)(yn)‖2

= ‖〈ξ′, ξ′〉1/2A Pχ(H	ξ′A)(yn)‖2.

So, we have that ‖〈ξ′, ξ′〉A Pχ(H	ξ′A)(yn)‖2 → 0. Using (5.33) once more, we
get limn→∞ ‖〈ξ′, ξ′〉A yn‖2 = 0. Recall that ξ′ = pξp and that τ(1 − p) < ε.
Since ε can be chosen arbitrarily small, we have that ‖〈ξ, ξ〉A − 〈ξ′, ξ′〉A‖2 is
arbitrarily small. It follows that limn→∞ ‖〈ξ, ξ〉A yn‖2 = 0.

Since this holds for all symmetric vectors ξ ∈ H and since AHA is faithful, we
conclude that

lim
n→∞

‖xn − EA(xn)‖2 = lim
n→∞

‖yn‖2 = 0.

So, (xn)n∈N is asymptotically contained in A.
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Example 5.56. Let AHA be a weakly mixing symmetric A-bimodule and
assume that M = Γ(H,J,A, τ)′′ is a factor. Then M is a full factor whenever
H contains a nonzero mixing A-subbimodule. Indeed, assume that K ⊂ H
is a mixing A-subbimodule and that M is not a full factor. Since M is a II1
factor, this means that there exists a central sequence consisting of unitaries
(an)n∈N ⊂ U(M) with τ(an) = 0 for all n. After passing to a subsequence if
necessary, we may assume that an converges weakly to some a ∈ M . Then
a ∈ Z(M) = C1. Since τ(a) = 0, it follows that a = 0. So, an → 0 weakly.

Since K is mixing, we now get that ‖〈anξ, η〉A‖2 → 0 for all left and right
bounded vectors ξ, η ∈ K. In particular,

|〈anξ, ξan〉| = |τ(〈anξ, ξan〉A)| = |τ(〈anξ, ξ〉Aan)| ≤ ‖〈anξ, ξ〉A‖2‖an‖2 → 0,

for all ξ ∈ K. Thus,

0 = lim
n
‖anξ − ξan‖2 = lim

n
(‖anξ‖2 + ‖ξan‖2 − 2Re〈anξ, ξan〉) = 2‖ξ‖2,

for all ξ ∈ K, which is a contradiction.

In Section 5.5, we defined the von Neumann algebras Mν = Γ(Hν , Jν , A, τ)′′
associated with a symmetric probability measure ν on a compact second
countable group K. Recall that A = L∞(K,µ), where µ denotes the Haar
measure on K, and that Hν = L2(K×K,µ×ν) with A-bimodular actions given
by (5.27) and symmetry Jν given by (5.28). For the remainder of this section,
we will use Theorem 5.55 to characterize when Mν has property Gamma in
terms of the measure ν.

In Proposition 5.47, we saw thatMν has nontrivial center if and only if ν(K0) = 1
for some closed proper subgroup K0 < K. This is equivalent with the existence
of a nontrivial irreducible representation (π, L) of K and a unit vector ξ ∈ L
such that ν(Kπ,ξ) = 1, where

Kπ,ξ := {x ∈ K | π(x)ξ = ξ}.

Indeed, this follows from the following well-known lemma.

Lemma 5.57. Let K0 be a closed subgroup of a compact second countable
group K. Then K0 6= K if and only if there exists a nontrivial irreducible
representation π of K that has a nonzero K0-invariant vector.

Proof. Given two representations (π1, H1) and (π2, H2) of K, we denote by
C(π1, π2) the intertwiner space, i.e., C(π1, π2) consists of all bounded linear
operators T : H1 → H2 such that Tπ1(x) = π2(x)T for all x ∈ K. Note that a
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representation π of K has a nonzero invariant vector if and only if C(ε, π) 6= {0}.
So, we have to show that K0 = K if and only if C(ε, π|K0) = {0} for all
π ∈ Irr(K) \ {ε}.

By the Frobenius reciprocity theorem, C(ε, π|K0) ∼= C(λK/K0 , π), where
λK/K0 denotes the regular representation of K on L2(K/K0). Note that any
nontrivial irreducible representation (π,H) that is contained in λK/K0 satisfies
C(λK/K0 , π) 6= {0}. Indeed, the projection P : L2(K/K0)→ H is a nontrivial
intertwiner between λK/K0 and π. So, we have that C(ε, π|K0) = {0} for all
π ∈ Irr(K) \ {ε} if and only if λK/K0 is trivial, which holds if and only if
K = K0.

Given a sequence of irreducible representations π = (πn, Ln)n∈N of K and given
a sequence of unit vectors ξ = (ξn)n∈N with ξn ∈ Ln, we define the subgroup

Kπ,ξ := {x ∈ K | lim
n→∞

‖πn(x)ξn − ξn‖ = 0}.

Lemma 5.58. The subgroup Kπ,ξ defined above is Borel. Moreover, if πn →∞,
then Kπ,ξ 6= K.

Proof. We have that Kπ,ξ is Borel since

Kπ,ξ =
∞⋂
k=1

∞⋃
n0=1

∞⋂
n=n0

{x ∈ K | ‖πn(x)ξn − ξn‖ <
1
k
}.

Next, assume that πn →∞. Note that x ∈ Kπ,ξ if and only if 〈πn(x)ξn, ξn〉 → 1.
By the dominated convergence theorem, we have that∫

Kπ,ξ

〈πn(x)ξn, ξn〉dµ(x)→ µ(Kπ,ξ) as n→∞.

But, by the Schur orthogonality relations, we have
∫
K
〈πn(x)ξn, ξn〉dµ(x) = 0

whenever πn 6= 1. Since πn →∞ as n→∞, it follows that Kπ,ξ 6= K.

Above, we saw thatMν has a nontrivial central element if and only if ν(Kπ,ξ) = 1
for a single π ∈ Irr(K) \ {ε} and a single unit vector ξ. In the following
proposition, we will show thatMν has a nontrivial central sequence, i.e. property
Gamma, if and only if ν(Kπ,ξ) = 1 for sequences π = (πn)n∈N and ξ = (ξn)n∈N,
under the assumption that Mν is a factor. We will also show that this condition
is equivalent with the operator λ(ν) not having spectral gap when restricted to
L2(K)	 C1.
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Given a representation π of K and a symmetric probability measure ν on K,
recall that we defined the operator π(ν) by

π(ν) =
∫
K

π(x) dν(x).

Note that π(ν) is a self-adjoint operator with ‖π(ν)‖ ≤ 1. We denote by λ0
the left regular representation of K restricted to L2(K)	 C1. In the following
proposition, the equivalence between (1) and (4) states thatMν is a full factor if
and only if λ0(ν) has a spectral gap, meaning that there exists δ > 0 such that
the spectrum of λ0(ν) is contained in [−1, 1−δ]. Compare this with Proposition
5.47, where we saw that Hν is mixing if and only if λ(ν) is a compact operator.

Theorem 5.59. Let ν be a symmetric non-atomic probability measure on a
compact second countable group K, and let Mν = Γ(Hν , Jν , A, τ)′′ be as defined
above. Assume that the support of ν topologically generates K, i.e., Mν is a
factor. Then the following are equivalent.

(1) Mν has property Gamma.

(2) There exists a sequence of irreducible representations π = (πn)n∈N on K
with πn →∞ and a sequence of unit vectors (ξn)n∈N such that ν(Kπ,ξ) = 1.

(3) For any ε > 0, any δ ∈ (0, 1) and any finite subset F ⊂ Irr(K), there
exists (π, L) ∈ Irr(K)− F and a unit vector ξ0 ∈ L such that

ν({x ∈ K | Re 〈π(x)ξ0, ξ0〉 > 1− ε}) > 1− δ.

(4) The spectrum of λ0(ν) contains 1.

Proof. (2)⇒ (1): For each n, denote by Ln the finite-dimensional Hilbert space
on which πn acts. We will view each Ln as a subspace of L := `2(N). Let
fn : K → L be the map given by fn(k) = πn(k)ξn. Then fn defines an element
in L∞(K)⊗ L ⊂ L2(K)⊗ L for each n with ‖fn‖∞ = 1. Note that

(τ ⊗ id)(fn) =
∫
K

πn(k)ξn dµ(k) = 0 if πn 6= 1,

by the Schur orthogonality relations. So for n so large that πn 6= 1, we have
that fn ∈ (L2(K)	 C1)⊗ L.

Recall that A = L∞(K). Fix an essentially bounded function η ∈ L2(K ×
K,µ× ν) = Hν and note that η ∈ Hν is left and right A-bounded. Using the
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notation fn · η := (r(η)⊗ 1)(fn) and η · fn = (`(η)⊗ 1)(fn), we have that

‖fn · η − η · fn‖2 =
∫
K

∫
K

‖πn(xy)ξn · η(x, y)− η(x, y) · πn(x)ξn‖2 dµ(x) dν(y)

=
∫
K

∫
K

|η(x, y)|2‖πn(x)(πn(y)ξn − ξn)‖2 dµ(x) dν(y)

≤ ‖η‖2∞
∫
K

‖πn(y)ξn − ξn‖2 dν(y).

Since ν(Kπ,ξ) = 1 and since ‖πn(y)ξn − ξn‖ → 0 for all y ∈ Kπ,ξ, we get by
Lebesgue’s dominated convergence theorem that

∫
K
‖πn(y)ξn − ξn‖2 dν(y)→ 0

as n → ∞. So, we have proved that ‖fn · η − η · fn‖ → 0 for all η ∈ Hν with
‖η‖∞ <∞. This means that fn ∈ (L2(Mν)	C1)⊗L asymptotically commutes
with W (η) ∈Mν . Hence, fn asymptotically commutes with the ∗-subalgebra
M0 given by

M0 = span
(
{W (η1, . . . , ηn) | ηi ∈ Hν , ‖ηi‖∞ <∞} ∪A

)
.

Note that M0 is ‖ · ‖2-dense in Mν . Also note that fn is a tracial vector
for all n ∈ N, i.e., 〈xfn, fn〉 = 〈fnx, fn〉 = τ(x) for all x ∈ Mν . Indeed, for
a ∈ A = L∞(K), we have that

〈fna, fn〉 = 〈afn, fn〉 =
∫
K

〈a(x)πn(x)ξn, πn(x)ξn〉dµ(x)

=
∫
K

a(x)‖ξn‖2 dµ(x) = τ(a).

Moreover, when x ∈ Mν 	 A we have that xfn ∈ L2(Mν 	 A) ⊗ L so that
〈xfn, fn〉 = 0. Therefore,

〈xfn, fn〉 = 〈EA(x)fn, fn〉 = τ(EA(x)) = τ(x) for all x ∈Mν ,

and similarly 〈fnx, fn〉 = τ(x).

We can now conclude that fn asymptotically commutes with all of Mν . Indeed,
given x ∈Mν and ε > 0, choose x0 ∈M0 such that ‖x− x0‖2 < ε

3 . Then,

‖xfn − fnx‖2 ≤ ‖(x− x0)fn‖2 + ‖x0fn − fnx0‖2 + ‖fn(x0 − x)‖2

= 2‖x− x0‖2 + ‖x0fn − fnx0‖2.

It follows that ‖xfn − fnx‖2 < ε for n so large that ‖x0fn − fnx0‖2 ≤ ε
3 .
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We have now shown that fn is asymptotically Mν-central. So, the unitary
representation (Adu⊗ 1)u∈U(Mν) on (L2(Mν)	C1)⊗L does not have spectral
gap. Since this is just a multiple of (Adu)u∈U(Mν), we have that (Adu)u∈U(Mν)
on L2(Mν)	 C1 also does not have spectral gap. By [Co75], we conclude that
Mν has property Gamma.

(3) ⇒ (2): Given (3), pick a sequence πn → ∞ in Irr(K) together with a
sequence of unit vectors ξn such that

ν({x ∈ K | Re 〈πn(x)ξn, ξn〉 > 1− 1
n
}) > 1− 2−n.

Define
Kn0 =

⋂
n≥n0

{x ∈ K | Re 〈πn(x)ξn, ξn〉 > 1− 1
n
}.

Then ν(Kn0) > 1−
∑∞
n=n0

2−n = 1− 2−n0+1 and thus ν(
⋃∞
n0=1Kn0) = 1. If

x ∈ Kn0 , then Re 〈πn(x)ξn, ξn〉 > 1− 1
n for n ≥ n0. Then Re 〈πn(x)ξn, ξn〉 → 1

and thus x ∈ Kπ,ξ. So,
⋃∞
n0=1Kn0 ⊂ Kπ,ξ. Since ν(

⋃∞
n0=1Kn0) = 1, we

conclude that ν(Kπ,ξ) = 1.

(1) ⇒ (3): Given π ∈ Irr(K), we denote by Lπ the finite-dimensional Hilbert
space on which π acts and we denote by dπ the dimension of Lπ. Assume that
(3) does not hold. Pick ε > 0 and δ ∈ (0, 1) and F ⊂ Irr(K) finite such that

ν({x ∈ K | Re 〈π(x)ξ, ξ〉 ≤ (1− ε)‖ξ‖2}) ≥ δ for all π /∈ F and ξ ∈ Lπ.

When π ∈ Irr(K), we denote by πij ∈ L∞(K) = A the ij’th matrix coefficient
of π, for i, j ∈ {1, . . . , dπ}, that is, πij(x) = 〈π(x)ej , ei〉 where (ei)i is an
orthonormal basis for Lπ.

By the Peter-Weyl theorem,

{
√
dπ · πij | π ∈ Irr(K), 1 ≤ i, j ≤ dπ}

is an orthonormal basis for L2(K). Since K is compact, we have L∞(K) ⊂
L2(K). Let an ∈ U(L∞(K)) be a sequence of unitaries tending to zero weakly.
Write

an =
∑

π∈Irr(K)

dπ∑
i,j=1

(an)π,i,jπij ,

with coefficients (an)π,i,j = dπ〈an, πij〉 ∈ C. We need to show that (an)n∈N
cannot be a central sequence for Mν . It is enough to show that 〈an · (1⊗1), (1⊗
1) · an〉 does not converge to 1 as n→∞.
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For all π, π′ ∈ Irr(K) and i, j ∈ {1, . . . , dπ} and k, l ∈ {1, . . . , dπ′}, we have that

〈πij · (1⊗ 1), (1⊗ 1) · π′kl〉 =
∫
K

∫
K

πij(xy)π′kl(x) dµ(x) dν(y)

=
dπ∑
s=1

∫
K

πsj(y)
∫
K

πis(x)π′kl(x) dµ(x) dν(y).

By the Peter-Weyl theorem, we have that x 7→ πis(x) and x 7→ π′kl(x) are
orthogonal if π 6= π′. Moreover, x 7→ πis(x) and x 7→ πkl(x) are orthogonal if
i 6= k or if s 6= l. So, if π = π′, we get

〈πij · (1⊗ 1), (1⊗ 1) · πkl〉 = δik

∫
K

πlj(y)
∫
K

πil(x)πil(x) dµ(x) dν(y)

= δik‖πil‖22
∫
K

πlj(y) dν(y) = δik
1
dπ

∫
K

πlj(y) dν(y).

We conclude that

〈πij · (1⊗ 1), (1⊗ 1) · π′kl〉 =
{

0 if π 6= π′ or i 6= k,
1
dπ

∫
K
πlj(y) dν(y) if π = π′ and i = k.

Now,

〈an · (1⊗ 1), (1⊗ 1) · an〉 =
∑

π∈Irr(K)

1
dπ

∑
i,j,l

(an)π,i,j(an)π,i,l
∫
K

πlj(y) dν(y)

=
∑

π∈Irr(K)

dπ∑
i=1

∫
K

〈π(y)ξn(π,i), ξn(π,i)〉dν(y),

where ξn(π,i) =
∑dπ
j=1

1√
dπ

(an)π,i,jej . Note that
∑
π

∑
i ‖ξn(π,i)‖

2 ≤ ‖an‖22 = 1.
Also, since an → 0 weakly, we have that ‖ξn(π,i)‖ → 0 as n→∞ for every fixed
π and i. Let d = maxπ∈F dπ and choose N ∈ N so large that ‖ξn(π,i)‖2 ≤

εδ
2|F |d

for n ≥ N , for all π ∈ F and i = 1, . . . , dπ.

By the choice of F , ε and δ, we have for π /∈ F that∫
K

Re 〈π(y)ξn(π,i), ξn(π,i)〉dν(y) ≤ δ(1− ε)‖ξn(π,i)‖2 + (1− δ)‖ξn(π,i)‖2

= (1− εδ)‖ξn(π,i)‖2.
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Thus, for n ≥ N ,

Re 〈an · (1⊗ 1), (1⊗ 1) · an〉 ≤
∑
π∈F

∑
i

‖ξn(π,i)‖
2 +

∑
π/∈F

∑
i

(1− εδ)‖ξn(π,i)‖2

≤ εδ

2 + (1− εδ) = 1− εδ

2 .

It follows that

lim sup
n→∞

Re 〈an · (1⊗ 1), (1⊗ 1) · an〉 ≤ 1− εδ

2 ,

and thus (an)n∈N cannot be a central sequence for Mν .

By Theorem 5.55, all central sequences of Mν asymptotically belong to A. So,
we conclude that (1) does not hold.

(2)⇒ (4): In the following, we denote by σ(T ) ⊂ C the spectrum of an operator
T . Assume that σ(λ0(ν)) ⊂ [−1, 1− δ] for some δ > 0. Since λ0 decomposes as
the direct sum of all nontrivial irreducible representations of K, each occurring
with multiplicity equal to its dimension, we have that σ(π(ν)) ⊂ [−1, 1− δ] for
all π ∈ Irr(K) \ {ε}. So, we have that 〈π(ν)ξ, ξ〉 ≤ 1− δ for all π and all unit
vectors ξ, which implies that

‖π(ν)ξ − ξ‖2 = 2− 2〈π(ν)ξ, ξ〉 ≥ 2δ.

In particular, there can be no sequences (πn)n∈N and (ξn)n∈N with πn → ∞
such that ν(Kπ,ξ) = 1.

(4) ⇒ (3): Assume that (3) does not hold. We claim that for any sequence
(πn)n∈N in Irr(K) with πn →∞ and any sequence of unit vectors (ξn)n∈N, we
have that ‖πn(ν)ξn − ξn‖ does not converge to 0. Indeed, assume that this is
not the case, i.e., ‖πn(ν)ξn − ξn‖ → 0 for some choice of (πn)n∈N and (ξn)n∈N.
Equivalently, we have that 〈πn(ν)ξn, ξn〉 → 1, i.e.,∫

K

Re 〈πn(x)ξn, ξn〉dν(x)→ 1.

Since also Re 〈πn(x)ξn, ξn〉 ≤ 1 for all x ∈ K, this implies that for any δ > 0,
we have

ν({x ∈ K | Re 〈πn(x)ξn, ξn〉 ≥ 1− δ})→ 1.
This contradicts the fact that (3) does not hold.

We conclude that there exists a finite subset F ⊂ Irr(K) and δ > 0 such that
for any (π, L) /∈ F , we have

‖π(ν)ξ − ξ‖ ≥ δ‖ξ‖ for all ξ ∈ L.



PROPERTY GAMMA 169

Fix (π, L) /∈ F and ξ ∈ L with ‖ξ‖ = 1. Then 〈π(ν)ξ, ξ〉 ≤ 1− δ2

2 and hence

‖π(ν)ξ − (1− λ)ξ‖ ≥ 〈(1− λ)ξ − π(ν)ξ, ξ〉 ≥ δ2

2 − λ,

for all λ ∈ R. It follows that π(ν)− (1− λ)1 is invertible whenever 0 < λ < δ2

2 .
So, σ(π(ν)) ⊂ [−1, 1− δ2

2 ] for all π /∈ F .

Note that any π ∈ Irr(K) \ {ε} satisfies 1 /∈ σ(π(ν)). Indeed, since π is finite-
dimensional, we have that σ(π(ν)) consists of the eigenvalues of π(ν). Since
π is irreducible and since the support of ν topologically generates K, we have
that 1 is not an eigenvalue of π(ν) and hence 1 /∈ σ(π(ν)).

For each π ∈ F , choose δπ > 0 such that σ(π(ν)) ⊂ [−1, 1 − δπ]. With
δ̃ := min({ δ2

2 }∪{δπ}π∈F ), we now have that σ(λ0) ⊂ [−1, 1− δ̃] as wanted.

Note that in the case where K is abelian, we have thatMν has property Gamma
if and only if there exists a sequence of characters ω = (ωn)n∈N ⊂ K̂ with
ωn →∞ such that ν(Kω) = 1, where

Kω = {x ∈ K | ωn(x)→ 1}.

Example 5.60. Even the circle K = T has quite a few such subgroups Kω

that are large enough to carry a non-atomic probability measure. For instance,
consider the characters ωn = 2n2 ∈ Z ∼= K̂. When identifying K with R/Z, the
characters ωn : R/Z→ R/Z are given by ωn(x) = 2n2

x. We denote by d(x,Z)
the distance from a point x ∈ R to Z. Then,

Kω = {x ∈ R/Z | d(2n
2
x,Z)→ 0}.

Define π : {0, 1}N → K by π(λ) =
∑∞
k=1 λk2−k2

. Then,

2n
2
π(λ) =

n∑
k=1

λk2n
2−k2

+
∞∑

k=n+1
λk2n

2−k2
.

Note that the first sum on the right hand side belongs to Z, while the second
sum can be bounded as follows:

∞∑
k=n+1

λk2n
2−k2

=
∞∑

k=n+1
λk2−(k−n)(k+n)

≤
∞∑

k=n+1
λk2−(k+n)

≤ 2−n · 2−n+1 → 0.
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Thus, π({0, 1}N) ⊂ Kω. So, it suffices to find a non-atomic probability measure
supported on π({0, 1}N). But then we can simply take the push-forward under
π of any non-atomic probability measure on the Cantor set {0, 1}N.

Let ν denote such a symmetric non-atomic probability measure that is supported
on Kω. Then the associated von Neumann algebra is a II1 factor by Proposition
5.47, since Kω is dense in K. By Theorem 5.59, Mν has property Gamma.



Chapter 6

Conclusion

Cartan subalgebras play an important role in the classification of II1 factors.
One of the main questions of interest is that of existence and uniqueness of
Cartan subalgebras and more generally, how many Cartan subalgebras a given
II1 factor has. Indeed, the number of Cartan subalgebras of a II1 factor M tells
us in how many ways M decomposes as L(R), the II1 factor associated to an
equivalence relation R.

The group measure space (gms) Cartan subalgebras are the ones arising as
L∞(X) ⊂ L∞(X) o Γ for a free ergodic pmp action Γ y X. By Singer’s
theorem, the number of gms Cartan subalgebras of a II1 factor M tells us in
how many ways M decomposes as a crossed product M = L∞(X) o Γ, up
to orbit equivalence of the actions. In particular, when M has a unique gms
Cartan subalgebra, there is a unique free ergodic pmp action Γ y X up to orbit
equivalence such that M = L∞(X)o Γ. When this action is in fact unique up
to conjugacy, then we say that Γ y X is W∗-superrigid. This means that the
action Γ y X can be completely recovered from the II1 factor L∞(X)o Γ.

Uniqueness of Cartan subalgebras is thus an important step in proving W∗-
superrigidity and is therefore a very desirable property. The first theorem
proving uniqueness of Cartan subalgebras up to unitary conjugacy was obtained
by Ozawa and Popa in their breakthrough article [OP07] and since then, more
and more uniqueness results have been proved. On the other hand, it remains
an open problem to find II1 factors with exactly n Cartan subalgebras, for some
n ≥ 2.

In this thesis, we solved this open problem in the case of gms Cartan subalgebras.
Our main theorem describes all of the gms Cartan subalgebras for a specific
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class of II1 factors. In particular, for any n ≥ 1, we found explicit examples
of II1 factors M with exactly n gms Cartan subalgebras up to conjugacy by
an automorphism of M . This means that M has exactly n crossed product
decompositions up to orbit equivalence of the actions. We proved that this
even holds up to conjugacy of the actions: M has exactly n crossed product
decompositions up to conjugacy of the actions. We were also able to find II1
factors with exactly n gms Cartan subalgebras up to unitary conjugacy but
only in the case where n is a power of 2.

It would be very interesting to find examples of II1 factors for which all Cartan
subalgebras can be determined, not only the ones of group measure space type.
However, one would need an entirely different approach since our proof relies
on the existence of a dual coaction ∆: M → M ⊗M associated to a crossed
product decomposition of M .

In this thesis, we also addressed the question of when a group Γ is C-rigid,
meaning that any crossed product L∞(X)o Γ by a free ergodic pmp action of
Γ has a unique Cartan subalgebra up to unitary conjugacy. It is a big open
problem to characterize the class of C-rigid groups and for this reason, one is
interested in finding interesting counterexamples to C-rigidity. At the moment,
all known counterexamples have an infinite amenable almost normal subgroup.
We showed that all groups with an infinite abelian normal subgroup are non-C-
rigid. Moreover, we showed that all groups Γ with an infinite abelian almost
normal subgroup satisfy a slightly weaker property: There exists a finite normal
subgroup F < Γ such that Γ/F is non-C-rigid. Since C-rigidity is not known to
satisfy any “finite index” stability properties, we were unable to conclude that
Γ itself is non-C-rigid.

It is expected that there are also other counterexamples to C-rigidity, that
is, groups without an infinite abelian almost normal subgroup. It would be
interesting to look for such examples in order to get a better understanding of
C-rigidity.

Finally, we presented new examples of II1 factors without Cartan subalgebras.
The motivation for this work was a question raised by Popa: does there exist s-
thin II1 factors without Cartan subalgebras? The s-thin approximation property
was introduced by Popa in search of an intrinsic criterion for a II1 factor to have
a Cartan subalgebra. We answered Popa’s question affirmatively by finding
concrete examples of s-thin II1 factors that are even strongly solid. In order to
construct these examples, we studied the von Neumann algebras associated with
Shlyakhtenko’s A-valued semicircular systems in the case where A is a tracial von
Neumann algebra. By applying Popa’s deformation/rigidity theory, we proved
general structural properties of such von Neumann algebras, and under certain
conditions, we were able to show that the associated von Neumann algebra
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is a non-amenable, s-thin and strongly solid II1 factor. Concrete examples of
A-valued semicircular systems satisfying these conditions were constructed from
c0 probability measures supported on free subsets of compact groups. We were
able to prove the existence of such measures in an ad hoc way and conjectured
that such measures should also exist on the natural compact groups SO(n) for
n ≥ 3.





Appendix A

Spectral gap rigidity for
co-induced actions

In [Po03, Po04], Popa discovered that all Bernoulli actions Γ y (X,µ) have
a remarkable deformation property: the flip automorphism on X × X can
be continuously deformed into the identity via a one-parameter group of
automorphisms that commute with the Bernoulli action. This property is
called malleability. In combination with certain rigidity properties, this allowed
Popa to prove powerful W∗-rigidity results for Bernoulli crossed products
L∞(X)o Γ. In [Po05], the rigidity is given by Kazhdan’s property (T) of the
group Γ, whereas [Po06b] uses spectral gap rigidity of the Bernoulli action in
the case where Γ is a direct product of two non-amenable groups.

In this appendix, we will show how Popa’s malleability and spectral gap rigidity
(more precisely, the generalization provided in [BV14, Theorems 3.1 and 3.3])
carries over to the case where Γ y (X,µ) is a co-induced action. In fact,
the results carry over almost verbatim but we will nevertheless provide a full
argument for the sake of completeness. In the end of this appendix, we will prove
some useful results for controlling quasi-normalizers inside crossed products
associated with co-induced actions. These results are also direct generalizations
of the same results for Bernoulli actions.

Given a tracial von Neumann algebra (A0, τ0) and a countable set I, we denote
by (A0, τ0)I (or just AI0) the von Neumann algebra tensor product

⊗
I(A0, τ0).

For each i ∈ I, we denote by πi : A0 → AI0 the embedding of A0 as the i’th tensor
factor. When Λ < Γ is a subgroup with a trace-preserving action Λ y (A0, τ0),
we get a co-induced action Γ y (A0, τ0)Λ\Γ as defined in Section 3.1. In this
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appendix, we will view co-induced actions as being actions “build over a set”,
in the following sense.

Definition A.1. Let Γ y I be an action of a countable group Γ on a countable
set I. We say that a trace-preserving action σ : Γ y (A0, τ0)I is built over
Γ y I if it satisfies

σg(πi(A0)) = πg·i(A0) for all g ∈ Γ, i ∈ I .

Assume that Γ y AI0 is an action built over Γ y I. Choose a subset J ⊂ I that
contains exactly one point in every orbit of Γ y I. For every j ∈ J , the group
Stab j globally preserves πj(A0). This defines an action Stab j y A0 that can be
co-induced to an action Γ y A

Γ/ Stab j
0 . The original action Γ y AI0 is conjugate

with the direct product of all these co-induced actions. In particular, co-induced
actions are exactly actions built over a transitive action Γ y I = Γ/Γ0.

A.1 The tensor length deformation

The tensor length deformation is a variant of Popa’s malleable deformation
for Bernoulli crossed products, due to [Io06]. This deformation can be defined
more generally for crossed products coming from co-induced actions (or rather
actions built over Γ y I as defined in Definition A.1) as follows.

Let Γ y I be an action on a countable set I and let σ : Γ y (A0, τ)I be an
action built over Γ y I. Let M = AI0oΓ be the corresponding crossed product.
We can extend the action σ to an action σ̃ : Γ y (A0 ∗ L(Z))I uniquely in such
a way that

σ̃g(πi(b)) = πg·i(b) for all b ∈ L(Z), g ∈ Γ, i ∈ I.

Indeed, for a fixed g ∈ Γ, the automorphism σg of AI0 is the composition of the
shift automorphism πi(a) 7→ πg·i(a) with a certain tensor product automorphism⊗

i∈I σ
i
g with σig ∈ Aut(A0). We can then define σ̃g to be the composition of⊗

i∈I(σig ∗ id) with the same shift automorphism.

Let M̃ = (A0 ∗ L(Z))I o Γ be the crossed product associated with σ̃. Let
u1 ∈ L(Z) be the canonical generating unitary and let h ∈ L(Z) be the self-
adjoint element with spectrum [−π, π] such that u1 = exp(ih). For t ∈ R, we
put ut = exp(ith). Then (ut)t∈R is a one-parameter group of unitaries in L(Z)
with |τ(ut)| < 1 for all t 6= 0.

We still denote by πi the embedding as the i’th tensor factor A0 ∗ L(Z) →
(A0 ∗ L(Z))I for i ∈ I. We can then define automorphisms αt ∈ Aut(M̃), t ∈ R,
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by αt(ug) = ug for g ∈ Γ and αt(πi(x)) = πi(utxu∗t ) for x ∈ A0 ∗ L(Z). Note
that this is well defined since Γ acts trivially on L(Z).

Now, M̃ together with (αt)t∈R is a malleable deformation called the tensor length
deformation. To explain this terminology, consider the completely positive map
ψt : M →M given by ψt = EM ◦αt. Let ρt = |τ(ut)|2 and note that 0 ≤ ρt < 1
for t 6= 0. Whenever a ∈ AI0 is an elementary tensor given by a =

⊗
i∈F ai with

ai ∈ A0 	 C1 and F ⊂ I a finite set, we have

ψt(aug) = ρ
|F |
t aug, t ∈ R, g ∈ Γ.

Note that the tensor length deformation is s-malleable in the sense of [Po06a,
Section 6]. Indeed, we can define an automorphism β ∈ Aut(M̃) by β(x) = x
for x ∈ M and β(πi(u1)) = πi(u∗1) for i ∈ I. This is well defined since Γ acts
trivially on L(Z). By construction, β2 = id and β ◦ αt = α−t ◦ β, meaning that
the deformation (αt)t∈R is s-malleable.

A.2 Spectral gap rigidity

Using the tensor length deformation, Popa’s spectral gap rigidity [Po06b] applies
to actions built over Γ y I. The generalization provided in [BV14, Theorems
3.1 and 3.3] carries over verbatim and this gives the following result. For
completeness, we include a full proof.

Whenever Γ y I and F ⊂ I, we denote by Stab(F ) the subgroup given by
Stab(F ) = {g ∈ Γ | g · i = i for all i ∈ F}, and we denote by Norm(F ) the
subgroup given by Norm(F ) = {g ∈ Γ | g · F = F}.

Theorem A.2. Let Γ y I be an action of an icc group on a countable set.
Assume that Stab{i, j} is amenable for all i, j ∈ I with i 6= j. Let (A0, τ0) be a
tracial von Neumann algebra and (N, τ) a tracial factor. Let Γ y (A0, τ0)I be
an action built over Γ y I and put M = AI0 o Γ.

If P ⊂ N ⊗M is a von Neumann subalgebra that is strongly non-amenable
relative to N ⊗AI0, then the relative commutant Q := P ′ ∩N ⊗M satisfies at
least one of the following properties:

(1) there exists an i ∈ I such that Q ≺ N ⊗ (AI0 o Stab i) ;

(2) there exists a unitary v ∈ N ⊗M such that v∗Qv ⊂ N ⊗ L(Γ).

For the rest of this section, fix M as in Theorem A.2 and let M̃ , (αt)t∈R denote
the tensor length deformation as defined in Section A.1. Me moreover put
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M = N ⊗M and M̃ = N ⊗ M̃ . We will still denote by αt the automorphism
id⊗ αt on M̃.

The first step in the proof of Theorem A.2 is to show that the von Neumann
subalgebra Q is “rigid” in the sense that αt → id uniformly on Q. This is where
spectral gap rigidity comes into play. An M -bimodule MHM is said to have
spectral gap if it does not weakly contain the trivial M -bimodule, i.e., if it has
no almost M -central and almost tracial vectors. In our case, the spectral gap
comes from the bimodule K defined in the following lemma. We show that K
is essentially coarse relative to N ⊗AI0, so that PKP has spectral gap by our
non-amenability assumption on P .

Lemma A.3 ([BV14, Lemma 3.2]). Let MKM ⊂ ML2(M̃ 	 M)M be the
M-subbimodule given by

K = span

x⊗ πF (a)ug

∣∣∣∣∣∣∣
x ∈ N, g ∈ Γ, F ⊂ I, 2 ≤ |F| <∞,
a = ⊗

i∈F
ai with ai ∈ A0 ∗ LZ for all i

and with ai ∈ A0 ∗ LZ	A0 for at
least 2 elements i ∈ F

 .

Put M0 = N ⊗AI0 ⊂M. Then there exists an M0-M-bimodule H such that
MKM is weakly contained in M(L2(M)⊗M0 H)M.

Proof. Let S ⊂ NN denote the set of all sequences (sn)n∈N with sn ∈ N for
which there exists k ∈ N such that sn = 0 for n ≥ k and sn 6= 0 for n < k. Given
such a sequence s ∈ S, we can associate an A0-subbimodule Hs ⊂ L2(A0 ∗ LZ)
given by

Hs = spanA0u
s1
1 (A0 	 C1)us21 (A0 	 C1) · · · (A0 	 C1)usk1 A0,

where k ∈ N is the smallest number such that sn = 0 for all n > k. Then,
L2(A0 ∗ LZ) =

⊕
s∈S Hs as A0-bimodules.

Given a finite subset F ⊂ I with |F| ≥ 2 and nontrivial sequences si ∈ S for
each i ∈ F , we let K(si)i∈F denote theM-subbimodule of K given by

K(si)i∈F = spanM
(
1⊗ πF

(
⊗i∈F Hsi

))
M.

Define the subgroup Λ < Γ given by

Λ := {g ∈ Γ | g · F = F and sg·i = si for all i ∈ F},

and let Q = N ⊗ (AI\F0 o Λ). Note that ugK(si)i∈Fu
∗
g = K(si)i∈F for all g ∈ Λ.

We claim that K(si)i∈F is contained in theM-bimodule

L2(M)⊗Q L2(M̃)⊗Q L2(M).
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To see this, let c, c′ ∈ K(si)i∈F be elements of the form c = 1⊗ πF (⊗i∈Fci) and
c′ = 1⊗πF (⊗i∈Fc′i) with ci, c′i ∈ u

(si)1
1 (A0	C1)u(si)2

1 · · · (A0	C1)u(si)k
1 ⊂ Hsi

for all i ∈ F . One easily checks that

〈xcy, c′〉 = 〈EQ(x)cEQ(y), c′〉 = 〈x⊗Q c⊗Q y, 1⊗Q c′ ⊗Q 1〉

for all x, y ∈M. Since the union of all subsetsMcM with c as above spans a
dense subspace of K(si)i∈F , this implies that K(si)i∈F is contained in L2(M)⊗Q
L2(M̃)⊗Q L2(M), asM-bimodules.

Given two finite subsets F ,F ′ ⊂ I with |F|, |F ′| ≥ 2 and sequences (si)i∈F ,
(s′i)i∈F ′ as above, we have that exactly one of the following conditions holds.

1. There exists g ∈ Γ such that g · F = F ′ and s′g·i = si for all i ∈ F . In this
case, K(s′

i
)i∈F′ = ugK(si)i∈Fu

∗
g so that K(si)i∈F = K(s′

i
)i∈F′ .

2. There exists no such g ∈ Γ. In this case, K(si)i∈F ⊥ K(s′
i
)i∈F′ .

Since the K(si)i∈F ’s moreover span a dense subspace of K, we can choose a
sequence of M-subbimodules Kn ⊂ K of the form Kn = K(sn

i
)i∈Fn for some

Fn and some (sni )i∈Fn , such that K =
⊕

nKn. Writing as above

Λn = {g ∈ Γ | g · Fn = Fn and sng·i = sni for all i ∈ Fn},

Qn = N ⊗ (AI\Fn0 o Λn),

we then have that

K ⊂
⊕
n

L2(M)⊗Qn L2(M̃)⊗Qn L2(M).

Note that Stab(Fn) < Λn is a subgroup of finite index. Since |Fn| ≥ 2, we
have by assumption that Stab(Fn) is amenable. Hence, Λn is also amenable.
It now follows from Lemma [MP03, Proposition 6] that N ⊗ (AI0 o Λn) is
amenable relative to N ⊗ AI0 = M0. In particular, Qn is amenable relative
to M0. By [PV11, Proposition 2.4], this means that ML2(M)Qn is weakly
contained in L2(M)⊗M0L

2(M) for all n ∈ N. So, if we letH =
⊕

n L
2(M)⊗Qn

L2(M̃)⊗QnL2(M) as anM0-M-bimodule, we have that K is weakly contained
in L2(M)⊗M0 H.

Proof of Theorem A.2. Let K be the M-bimodule from Lemma A.3 and let
PK denote the projection of L2(M̃) onto K. We start by proving the following
claim.
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Claim I. If supb∈U(Q) ‖PK(αt(b))‖2 → 0 as t→ 0, then also

sup
b∈U(Q)

‖αt(b)− b‖2 → 0 as t→ 0.

For n ≥ 0, let Hn ⊂ L2(M) be the closed subspace defined by

Hn = span
{
x⊗ πF (a)ug

∣∣∣∣∣ x ∈ N, g ∈ Γ, F ⊂ I, |F| = n,
a = ⊗

i∈F
ai with ai ∈ A0 	 C1 for all i ∈ F

}
,

and let Pn denote the orthogonal projection of L2(M) onto Hn. Note that
L2(M) =

⊕
n≥0Hn. By definition of the tensor length deformation αt, we have

that
‖αt(b)− b‖22 =

∞∑
n=0

2(1− ρnt )‖Pn(b)‖22 for all b ∈ U(Q),

where ρt = |τ(ut)|2.

Exactly as in the proof of [BV14, Theorem 3.1], we get the following formula
for ‖PK(αt(y))‖2 when y ∈M.

‖PK(αt(y))‖22 =
∞∑
n=0

(1− c(t, n))‖Pn(y)‖22 for all y ∈M, (A.1)

where

c(t, n) =
{
ρ2n
t + n(1− ρ2

t )ρ
2(n−1)
t if n ≥ 1,

1 if n = 0.

Note that c(t, n)→ 0 as n→∞ for fixed t > 0, since 0 ≤ ρt < 1.

To prove the claim, assume that supb∈U(Q) ‖PK(αt(b))‖2 → 0 as t→ 0. Given
ε > 0, choose t > 0 such that ‖PK(αt(b))‖2 < ε for all b ∈ U(Q). Then take
n0 ∈ N such that c(t, n) < 1

2 for n ≥ n0. By (A.1), we get that

1
2

∞∑
n=n0

‖Pn(b)‖22 ≤ ‖PK(αt(b))‖22 < ε2 for all b ∈ U(Q).

Moreover, we choose s0 > 0 such that 1− ρns < ε2 for |s| < s0 and 0 ≤ n < n0.
Then, for all b ∈ U(Q) and |s| < s0, we get

‖αs(b)− b‖22 =
∞∑
n=0

2(1− ρns )‖Pn(b)‖22

≤
n0−1∑
n=0

2ε2‖Pn(b)‖22 + 2
∞∑

n=n0

‖Pn(b)‖22 ≤ 2ε2 + 4ε2.
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This proves the claim.

Next, assume for contradiction that supb∈U(Q) ‖αt(b)− b‖2 does not converge
to zero as t → 0. By the claim above, we find ε > 0 and t0 > 0 such that
for every 0 < t < t0, there exists bt ∈ U(Q) with ‖PK(αt(bt))‖2 ≥ ε. Put
ξt = PK(αt(bt)). Using that PK isM-bimodular and that bt ∈ Q = P ′ ∩M,
we get that ‖xξt − ξtx‖2 → 0 as t→ 0 for each fixed x ∈ P . Indeed,

‖xξt − ξtx‖2 ≤ ‖xαt(bt)− αt(bt)x‖2 = ‖α−t(x)bt − btα−t(x)‖2

≤ 2‖α−t(x)− x‖2 + ‖xbt − btx‖2 = 2‖α−t(x)− x‖2 → 0.

We also have that ‖xξt‖2 ≤ ‖x‖2, since bt is a unitary. From Lemma [BV14,
Lemma 2.10], it now follows that there exists a nonzero projection q ∈ P ′ ∩M
such that the qMq-M-bimodule qK is left Pq-amenable. By Lemma A.3, we
have that qK is weakly contained in qL2(M)⊗M0 H so [PV11, Corollary 2.5]
gives that qL2(M)⊗M0 H is left Pq-amenable. But then also qMq(qL2(M))M0

is left Pq-amenable by [PV11, Proposition 2.4.4], which exactly means that Pq
is amenable relative toM0. This contradicts our assumptions on P .

We have now shown that

sup
b∈U(Q)

‖αt(b)− b‖2 → 0 as t→ 0.

To prove Theorem A.2, assume that Q does not satisfy (1), i.e., Q ⊀ N ⊗ (AI0 o
Stab i) for all i ∈ I. We then have to show that Q satisfies (2), i.e., we have
to find a unitary v ∈M such that v∗Qv ⊂ N ⊗ L(Γ). We start by proving the
following claim.

Claim II. There exists a nonzero partial isometry v ∈ M such that vv∗ ∈
Q′ ∩M and v∗Qv ⊂ N ⊗ L(Γ).

Take t > 0 of the form t = 2−n such that ‖αt(b)−b‖2 ≤ 1
2 for all b ∈ U(Q). Then

|τ(bαt(b)∗)| ≥ 7
8 for all b ∈ U(Q). Let y be the unique element of minimal 2-

norm in the weakly closed convex hull of {bαt(b)∗ | b ∈ U(Q)}. Then |τ(y)| ≥ 7
8

so y is nonzero, and byαt(b)∗ = y for all b ∈ U(Q) by uniqueness of y. Letting
w0 ∈ M̃ be the partial isometry from the polar decomposition of y, we get that

xw0 = w0αt(x) for all x ∈ Q.

Using the s-malleability of αt, we can even obtain t = 1 in the equality
above. Indeed, let β ∈ Aut(M̃) be the automorphism defined in Section A.1.
Recall that β2 = id, β(x) = x for x ∈ M and that β ◦ αt = α−t ◦ β. Put
w1 = αt(β(w∗0)w0) ∈ M̃. Since Q ⊀ N ⊗ (AI0 o Stab i) for all i ∈ I, it follows
from Lemma A.4(1) that w0w

∗
0 ∈ M. It follows that w1 is a nonzero partial
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isometry and one easily checks that xw1 = w1α2t(x) for all x ∈ Q. So, we have
doubled t. Since t = 2−n, we can continue inductively in this way and obtain a
nonzero partial isometry w = wn ∈ M̃ such that

xw = wα1(x) for all x ∈ Q. (A.2)

Next, we show that there exists a finite subset F ⊂ I (possibly empty) such
that Q ≺ N ⊗ (AF0 o StabF). Assume that this is not the case. By Theorem
2.12 (and [Va07, Remark 3.3]), this means that there exists a net of unitaries
vn ∈ Q such that

‖EN⊗(AF0 oStabF)(avnb∗)‖2 → 0 for all a, b ∈M and F ⊂ I finite.

From this, we will deduce that

‖EM(xα1(vn)y∗)‖2 → 0 for all x, y ∈ M̃. (A.3)

Let S ⊂ M̃ denote the set of all elements of the form 1N ⊗ πF (⊗i∈Fxi), where
F ⊂ I is finite and xi ∈ (A0 ∗ LZ) 	 A0α1(A0) for all i ∈ F . Note that
span{Mxα1(AI0) | x ∈ S} forms a ‖ ·‖2-dense subalgebra of M̃. So, it is enough
to show (A.3) for x, y ∈ S.

Let x, y ∈ S and write x = 1 ⊗ πF (⊗xi) and y = 1 ⊗ πG(⊗yj) with F ,G ⊂ I
finite subsets and xi, yj ∈ (A0 ∗LZ)	A0α1(A0) for i ∈ F , j ∈ G. We also write
vn =

∑
g∈Γ(vn)gug with (vn)g ∈ N ⊗AI0 =M0 for the Fourier decomposition

of vn. Then

EM(xα1(vn)y∗) =
∑
g∈Γ

EM(xα1((vn)g)σg(y∗)ug)

=
∑
g∈Γ

EM0(xα1((vn)g)σg(y∗))ug.

Note that EM0(xα1((vn)g)σg(y∗)) = 0 if g · G 6= F . So, it is enough to sum
over all g ∈ Γ with g · G = F . Since F is finite, we can take a finite set
{g1, . . . , gk} ⊂ Γ such that {g | g · G = F} is the disjoint union of the sets
Stab(F)gi for i = 1, . . . , k.
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Now,

EM(xα1(vn)y∗) =
k∑
i=1

∑
s∈StabF

EM0(xα1(EN⊗AF0 ((vn)sgi))σsgi(y∗))usgi

=
k∑
i=1

∑
s∈StabF

EM(xα1(EN⊗AF0 ((vn)sgi)us)σgi(y∗))ugi

=
k∑
i=1

EM(xα1(EN⊗(AF0 oStabF)(vnu∗gi))σgi(y
∗))ugi

= EM(xα1(zn)y∗),

where zn =
∑k
i=1EN⊗(AF0 oStabF)(vnu∗gi)ugi . By assumption, we have that

‖zn‖2 → 0 and hence (A.3) follows.

Applying (A.3) to x = y = w, where w is the partial isometry from (A.2), yields

‖EM(wα1(vn)w∗)‖2 = ‖vnEM(ww∗)‖2 = ‖EM(ww∗)‖2 → 0,

contradicting the fact that w 6= 0.

We conclude that there is a finite subset F ⊂ I such that Q ≺ N⊗(AF0 oStabF).
Our assumption that Q ⊀ N ⊗ (AI0 o Stab i) for all i ∈ I implies that F must
be empty. This means that Q ≺ N ⊗ L(Γ).

By Theorem 2.12, there exists a ∗-homomorphism θ : Q→ q(Mn(C)⊗N⊗L(Γ))q
for some n ∈ N and projection q ∈ Mn(C) ⊗ N ⊗ L(Γ), and there exists
a nonzero partial isometry v ∈ M1,n(C) ⊗M such that xv = vθ(x) for all
x ∈ Q. Since Q ⊀ N ⊗ (AI0 o Stab i) for all i ∈ I, we may assume that also
θ(Q) ⊀ N ⊗ L(Stab i), by [Va07, Remark 3.8]. By Lemma A.4 (1), it follows
that

θ(Q)′ ∩ q(Mn(C)⊗M)q ⊂Mn(C)⊗N ⊗ L(Γ).
In particular, v∗v ∈ Mn(C) ⊗ N ⊗ L(Γ). We also have that (Tr⊗τ)(v∗v) =
τ(vv∗) ≤ 1 so since N ⊗ L(Γ) is a II1 factor, we may assume that n = 1. Then
v ∈M does the job: it is a nonzero partial isometry such that vv∗ ∈ Q′ ∩M
and v∗Qv ⊂ N ⊗ L(Γ). This finishes the proof of Claim II.

To get a unitary instead of merely a partial isometry, we use a simple maximality
argument. Let (vj)j∈J ⊂M be a maximal family of nonzero partial isometries
such that vjv∗j ∈ Q′ ∩M are mutually orthogonal and v∗jQvj ⊂ N ⊗ L(Γ) for
all j. By Claim II (applied to Q(1−

∑
j vjv

∗
j )) and by maximality of (vj)j∈J ,

we have that
∑
j vjv

∗
j = 1. Since v∗j vj ∈ N ⊗ L(Γ) and since N ⊗ L(Γ) is a II1
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factor, we can take partial isometries wj ∈ N ⊗ L(Γ) such that wjw∗j = v∗j vj
and such that the projections w∗jwj are mutually orthogonal. It is now easy to
check that u :=

∑
j vjwj is a unitary inM such that u∗Qu ⊂ N ⊗ L(Γ).

A.3 Controlling quasi-normalizers

Recall that for a von Neumann subalgebra P ⊂M , we define QNM (P ) ⊂M
as the set of elements x ∈M for which there exist x1, . . . , xn, y1, . . . , ym ∈M
satisfying

xP ⊂
n∑
i=1

Pxi and Px ⊂
m∑
j=1

yjP .

Then QNM (P ) is a ∗-subalgebra of M containing P . Its weak closure is called
the quasi-normalizer of P inside M .

The following lemma is proved in exactly the same way as [IPV10, Lemma
4.1] and goes back to [Po03, Theorem 3.1]. We will provide a proof, which is
essentially the same as the proof of [Va07, Lemma 4.2].
Lemma A.4. Let A0 ⊂ B0 be tracial von Neumann algebras and let Γ y BI0
be an action built over Γ y I that leaves AI0 globally invariant. Let (N, τ) be
an arbitrary tracial von Neumann algebra and put M = N ⊗ (AI0 o Γ) and
M̃ = N ⊗ (BI0 o Γ).

(1) If P ⊂ pMp is a von Neumann subalgebra such that

P ⊀M N ⊗ (AI0 o Stab i) for all i ∈ I,

then QN
pM̃p

(P ) is contained in pMp.

(2) Fix i0 ∈ I and assume that Q ⊂ q(N ⊗ (AI0oStab i0))q is a von Neumann
subalgebra such that

Q ⊀N⊗(AI0oStab i0) N ⊗ (AI0 o Stab{i0, j}) for all j 6= i0.

Then QN qMq(Q) is contained in q(N ⊗ (AI0 o Stab i0))q.

The proof of Lemma A.4 relies on the following general lemma based on Popa’s
intertwining technique. For a proof, we refer to [Va07].
Lemma A.5 ([Va07, Lemma 4.1]). Let (M, τ) be a tracial von Neumann algebra
and let P ⊂ N ⊂M be von Neumann subalgebras. Assume that there is a net
of unitaries vi ∈ P such that

‖EP (xviy)‖2 → 0 for all x ∈M, y ∈M 	N.
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Then QNM (P )′′ ⊂ N .

Proof of Lemma A.4. To prove (1), assume that P ⊀ N ⊗ (AI0 o Stab i) for all
i ∈ I. By Theorem 2.12 (and [Va07, Remark 3.3]), there exists a net of unitaries
vn ∈ P such that

‖EN⊗(AI0oStab i)(xvny)‖2 → 0 for all x, y ∈ pMp and all i ∈ I.

By Lemma A.5, it is enough to show that

‖EM(avnb)‖2 → 0 for all a ∈ pM̃p, b ∈ pM̃p	 pMp.

We may assume that a and b are of the form a = x ⊗ πF (⊗i∈Fai) and b =
y⊗πG(⊗j∈Gbj) with x, y ∈ N , F ,G ⊂ I finite subsets and ai, bj ∈ B0. Moreover,
we have that bj0 ∈ B0 	A0 for at least one j0 ∈ G.

Write vn =
∑
g∈Γ(vn)gug with (vn)g ∈ N ⊗AI0. Then

‖EM(avnb)‖22 =
∑
g∈Γ
‖EN⊗AI0((x⊗ πF (⊗ai))(vn)g(y ⊗ σg(πG(⊗bj))))‖22.

Note that τ(πF (⊗ai)(vn)gσg(πG(⊗bj))) = 0 if g · j0 /∈ F so it is enough to sum
over the set {g ∈ Γ | g · j0 ∈ F}. Since F is finite, we can take a finite set of
elements g1, . . . , gk ∈ Γ such that {g | g · j0 ∈ F} is the disjoint union of the
sets gs Stab j0 for s = 1, . . . , k. Then

‖EM(avnb)‖22 ≤
k∑
s=1

∑
h∈Stab j0

‖(x⊗ πF (⊗ai))(vn)gsh(y ⊗ σgsh(πG(⊗bj)))‖22

≤
k∑
s=1

∑
h∈Stab j0

‖πF (⊗ai)‖2‖πG(⊗bj)‖2‖x(vn)gshy‖22

= ‖πF (⊗ai)‖2‖πG(⊗bj)‖2
k∑
s=1
‖EN⊗(AI0oStab j0)(xvnu∗gsy)‖22

→ 0.

This concludes the proof of (1).

To prove (2), take instead a net of unitaries vn ∈ U(Q) such that

‖EN⊗(AI0oStab{i0,j}))(xvny)‖2 → 0 for all x, y ∈ N ⊗ (AI0 o Stab i0), j 6= i0.
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Again by Lemma A.5, it suffices to show that

‖EN⊗(AI0oStab i0)(avnb)‖2 → 0 for all a ∈M, b ∈M	 (AI0 o Stab i0).

We may assume that a and b are of the form a = a0ug and b = b0uh where
g, h ∈ Γ and a0 = x⊗πF (⊗i∈Fai), b0 = y⊗πG(⊗j∈Gbj) with x, y ∈ N , F ,G ⊂ I
finite subsets and ai, bj ∈ A0 for all i ∈ F , j ∈ G. Since b is orthogonal to
AI0 o Stab i0, we have that h /∈ Stab i0. Let j0 = h · i0 6= i0.

Writing vn =
∑
k∈Stab i0(vn)kuk with (vn)k ∈ N ⊗AI0, we get

‖EN⊗(AI0oStab i0)(avnb)‖22 =
∑

k∈(Stab i0)∩g−1(Stab i0)h−1

‖a0σg((vn)k)σgk(b0)‖22.

If (Stab i0) ∩ g−1(Stab i0)h−1 = ∅ we are done, so assume that this set is
nonempty. For fixed k0 ∈ (Stab i0) ∩ g−1(Stab i0)h−1, we then have that

(Stab i0) ∩ g−1(Stab i0)h−1 = k0(Stab i0 ∩ h(Stab i0)h−1) ⊂ k0 Stab{i0, j0}.

Hence,

‖EN⊗(AI0oStab i0)(avnb)‖22 ≤
∑

k∈Stab{i0,j0}

‖a0σg((vn)k0k)σgk0k(b0)‖22

≤ ‖a0‖2‖b0‖2
∑

k∈Stab{i0,j0}

‖(vn)k0k‖22

= ‖a0‖2‖b0‖2‖EN⊗(AI0oStab{i0,j0})(vnu
∗
k0

)‖22 → 0.



Bibliography

[Ad88] S. Adams, An equivalence relation that is not freely generated.
Proc. Amer. Math. Soc. 102 (1988), 565-566.

[AW01] R. Ahlswede and A. Winter, Strong converse for identification
via quantum channels. IEEE Trans. Inform. Theory 48 (2002),
569-579.

[AR92] N. Alon and Y. Roichman, Random Cayley graphs and expanders.
Random Structures Algorithms 5 (1994), 271-284.

[AP16] C. Anantharaman and S. Popa, An introduction to II1 factors.
Preliminary version available at http://www.math.ucla.edu/
~popa/Books/IIun-v13.pdf

[Be14] M. Berbec, Superrigidity of group von Neumann algebras.
PhD thesis, KU Leuven, 2014. https://lirias.kuleuven.be/
bitstream/123456789/455284/1/thesis_to_print.pdf

[BV14] M. Berbec and S. Vaes, W∗-superrigidity for group von Neumann
algebras of left-right wreath products. Proc. Lond. Math. Soc. 108
(2014), 1113-1152.

[Bo07] V. Bogachev, Measure Theory, Volume II. Springer-Verlag, 2007.

[Bo12] R. Boutonnet, W∗-superrigidity of mixing Gaussian actions of rigid
groups. Adv. Math. 244 (2013), 69-90.

[Bo14] R. Boutonnet, Several rigidity features of von Neumann algebras.
PhD thesis, École Normale Supérieure de Lyon, 2014. http://tel.
archives-ouvertes.fr/tel-01124349

[BC14] R. Boutonnet and A. Carderi, Maximal amenable von Neumann
subalgebras arising from maximal amenable subgroups. Geom.
Funct. Anal. 25 (2015), 1688-1705.

187

http://www.math.ucla.edu/~popa/Books/IIun-v13.pdf
http://www.math.ucla.edu/~popa/Books/IIun-v13.pdf
https://lirias.kuleuven.be/bitstream/123456789/455284/1/thesis_to_print.pdf
https://lirias.kuleuven.be/bitstream/123456789/455284/1/thesis_to_print.pdf
http://tel.archives-ouvertes.fr/tel-01124349
http://tel.archives-ouvertes.fr/tel-01124349


188 BIBLIOGRAPHY

[BH16] R. Boutonnet and C. Houdayer, Amenable absorption in
amalgamated free product von Neumann algebras. Kyoto J. Math.,
to appear. arXiv:1606.00808

[BHV15] R. Boutonnet, C. Houdayer and S. Vaes, Strong solidity of free
Araki-Woods factors. Amer. J. Math., to appear. arXiv:1512.04820

[BO08] N. P. Brown and N. Ozawa, C∗-algebras and finite-dimensional
approximations. Graduate Studies in Mathematics 88. American
Mathematical Society, Providence, 2008.

[CIK13] I. Chifan, A. Ioana and Y. Kida, W∗-superrigidity for arbitrary
actions of central quotients of braid groups. Math. Ann. 361 (2015),
563-582.

[CP10] I. Chifan and J. Peterson, Some unique group-measure space
decomposition results. Duke Math. J. 162 (2013), 1923-1966.

[CdSS15] I. Chifan, R. de Santiago and T. Sinclair, W∗-rigidity for the von
Neumann algebras of products of hyperbolic groups. Geom. Funct.
Anal. 26 (2016), 136-159.

[CS11] I. Chifan and T. Sinclair, On the structural theory of II1 factors of
negatively curved groups. Ann. Sci. École Norm. Sup. 46 (2013),
1-34.

[Co72] A. Connes, Une classification des facteurs de type III. Ann. Sci.
École Norm. Sup. 6 (1973), 133-252.

[Co75] A. Connes, Classification of injective factors. Ann. of Math. 104
(1976), 73-115.

[CFW81] A. Connes, J. Feldman and B. Weiss, An amenable equivalence
relation is generated by a single transformation. Ergodic Theory
Dynam. Systems 1 (1981), 431-450.

[CJ82] A. Connes and V.F.R. Jones, A II1 factor with two non-conjugate
Cartan subalgebras, Bull. Amer. Math. Soc. 6 (1982), 211-212.

[Di81] J. Dixmier, Von Neumann algebras. North-Holland Mathematical
Library 27, North-Holland Publishing Co., 1981.

[DHI16] D. Drimbe, D. Hoff and A. Ioana, Prime II1 factors arising from
irreducible lattices in products of rank one simple Lie groups. J.
Reine Angew. Math., to appear. arXiv:1611.02209

[Dy92] K. Dykema, Free products of hyperfinite von Neumann algebras
and free dimension. Duke Math. J. 69 (1993), 97-119.

http://arxiv.org/abs/1606.00808
https://arxiv.org/abs/1512.04820
http://arxiv.org/abs/1611.02209


BIBLIOGRAPHY 189

[FM75] J. Feldman and C. C. Moore, Ergodic equivalence relations,
cohomology, and von Neumann algebras. II. Trans. Amer. Math.
Soc. 234 (1977), 289-324, 325-359.

[FV10] P. Fima and S. Vaes, HNN extensions and unique group measure
space decomposition of II1 factors. Trans. Amer. Math. Soc. 364
(2012), 2601-2617.

[GIT16] D. Gaboriau, A. Ioana and R. Tucker-Drob, Cocycle superrigidity
for translation actions of product groups. preprint arXiv:1603.
07616

[GHSSV07] A. Gamburd, S. Hoory, M. Shahshahani, A. Shalev and B. Virág, On
the girth of random Cayley graphs. Random Structures Algorithms
35 (2009), 100-117.

[Ge98] L. Ge, Applications of free entropy to finite von Neumann algebras.
II. Ann. Math. 147, 1 (1998), 143-157.

[GP98] L. Ge and S. Popa, On some decomposition properties for factors
of type II1. Duke Math. J. 94 (1998), 79-101.

[Ho07] C. Houdayer, Construction of type II1 factors with prescribed
countable fundamental group. J. Reine Angew. Math. 634 (2009),
169-207.

[Ho12a] C. Houdayer, A class of II1 factors with an exotic abelian maximal
amenable subalgebra. Trans. Amer. Math. Soc. 366 (2014), 3693-
3707.

[Ho12b] C. Houdayer, Structure of II1 factors arising from free Bogoljubov
actions of arbitrary groups. Adv. Math. 260 (2014), 414-457.

[HI15] C. Houdayer and Y. Isono, Unique prime factorization and
bicentralizer problem for a class of type III factors. Adv. Math. 305
(2017), 402-455.

[HPV10] C. Houdayer, S. Popa and S. Vaes, A class of groups for which every
action is W∗-superrigid. Groups Geom. Dyn. 7 (2013), 577-590.

[HR14] C. Houdayer and S. Raum, Asymptotic structure of free Araki-
Woods factors. Math. Ann. 363 (2015), 237-267.

[HR10] C. Houdayer and É. Ricard, Approximation properties and absence
of Cartan subalgebra for free Araki-Woods factors. Adv. Math. 228
(2011), 764-802.

arXiv:1603.07616
arXiv:1603.07616


190 BIBLIOGRAPHY

[HS09] C. Houdayer and D. Shlyakhtenko, Strongly solid II1 factors with
an exotic MASA. Int. Math. Res. Not. IMRN 6 (2011), 1352-1380.

[HR51] L. K. Hua and I. Reiner, Automorphisms of the unimodular group.
Trans. Amer. Math. Soc. 71 (1951), 331-348.

[Io06] A. Ioana, Rigidity results for wreath product II1 factors. J. Funct.
Anal. 252 (2007), 763-791.

[Io10] A. Ioana, W∗-superrigidity for Bernoulli actions of property (T)
groups. J. Amer. Math. Soc. 24 (2011), 1175-1226.

[Io11] A. Ioana, Uniqueness of the group measure space decomposition
for Popa’s HT factors. Geom. Funct. Anal. 22 (2012), 699-732.

[Io12] A. Ioana, Cartan subalgebras of amalgamated free product II1
factors. Ann. Sci. École Norm. Sup. 48 (2015), 71-130.

[IPP05] A. Ioana, J. Peterson and S. Popa, Amalgamated free products
of weakly rigid factors and calculation of their symmetry groups.
Acta Math. 200 (2008), 85-153.

[IPV10] A. Ioana, S. Popa and S. Vaes, A class of superrigid group von
Neumann algebras. Ann. Math. 178 (2013), 231-286.

[JS97] V. Jones and V. S. Sunder, Introduction to subfactors. London
Mathematical Society Lecture Note Series 234, Cambridge
University Press, Cambridge, 1997.

[Ke95] A. Kechris, Classical Descriptive Set Theory. Graduate texts in
mathematics, 156, Springer-Verlag, 1995.

[KV15] A. Krogager and S. Vaes, A class of II1 factors with exactly two
group measure space decompositions. J. Math. Pures Appl. 108
(2017), 88-110.

[KV16] A. Krogager and S. Vaes, Thin II1 factors with no Cartan
subalgebras. Kyoto J. Math., to appear. arXiv:1611.02138

[LR04] Z. Landau and A. Russell, Random Cayley graphs are expanders: a
simple proof of the Alon-Roichman theorem. Electron. J. Combin.
11 (2004), #R62, 6 pp.

[MRV13] N. Meesschaert, S. Raum and S. Vaes, Stable orbit equivalence of
Bernoulli actions of free groups and isomorphism of some of their
factor actions. Expo. Math. 31 (2013), 274-294.

https://arxiv.org/abs/1611.02138


BIBLIOGRAPHY 191

[MP03] N. Monod and S. Popa, On co-amenability for groups and von
Neumann algebras. C. R. Math. Acad. Sci. Soc. R. Can. 25 (2003),
82-87.

[MvN36] F. J. Murray and J. von Neumann, On rings of operators. Ann.
Math. 37 (1936), 116-229.

[MvN37] F. J. Murray and J. von Neumann, On rings of operators II. Trans.
Amer. Math. Soc. 41 (1937), 208-248.

[MvN43] F. J. Murray and J. von Neumann, Rings of operators IV. Ann.
Math. 44 (1943), 716-808.

[Ne54] B. H. Neumann, Groups covered by permutable subsets. J. London
Math. Soc. 29 (1954), 236-248.

[Oz03] N. Ozawa, Solid von Neumann algebras. Acta Math. 192 (2004),
111-117.

[OP03] N. Ozawa and S. Popa, Some prime factorization results for type
II1 factors. Invent. Math. 156 (2004), 223-234.

[OP07] N. Ozawa and S. Popa, On a class of II1 factors with at most one
Cartan subalgebra I. Ann. Math. 172 (2010), 713-749.

[OP08] N. Ozawa and S. Popa, On a class of II1 factors with at most one
Cartan subalgebra II. Amer. J. Math. 132 (2010), 841-866.

[Pa85] J. Packer, Point spectrum of ergodic abelian group actions and the
corresponding group-measure factors. Pac. J. Math. 119 (1985),
381-405.

[Pe09] J. Peterson, Examples of group actions which are virtually W∗-
superrigid. Preprint. arXiv:1002.1745

[Pe11] J. Peterson, Lecture notes on ergodic theory. https:
//math.vanderbilt.edu/peters10/teaching/Spring2011/
ErgodicTheoryNotes.pdf

[PS12] J. Peterson and T. Sinclair, On cocycle superrigidity for Gaussian
actions. Erg. Th. and Dyn. Sys., 32 (2012), 249-272.

[Po83] S. Popa, Maximal injective subalgebras in factors associated with
free groups. Adv. Math. 50 (1983), 27-48.

[Po86] S. Popa, Correspondences. INCREST preprint No. 56/1986, www.
math.ucla.edu/~popa/preprints.html

https://math.vanderbilt.edu/peters10/teaching/Spring2011/ErgodicTheoryNotes.pdf
https://math.vanderbilt.edu/peters10/teaching/Spring2011/ErgodicTheoryNotes.pdf
https://math.vanderbilt.edu/peters10/teaching/Spring2011/ErgodicTheoryNotes.pdf
www.math.ucla.edu/~popa/preprints.html
www.math.ucla.edu/~popa/preprints.html


192 BIBLIOGRAPHY

[Po93] S. Popa, Markov traces on universal Jones algebras and subfactors
of finite index. Invent. Math. 111 (1993), 375-405.

[Po01] S. Popa, On a class of type II1 factors with Betti numbers invariants.
Ann. of Math. 163 (2006), 809-899.

[Po03] S. Popa, Strong rigidity of II1 factors arising from malleable actions
of w-rigid groups, I. Invent. Math. 165 (2006), 369-408.

[Po04] S. Popa, Strong rigidity of II1 factors arising from malleable actions
of w-rigid groups, II. Invent. Math. 165 (2006), 409-452.

[Po05] S. Popa, Cocycle and orbit equivalence superrigidity for malleable
actions of w-rigid groups. Invent. Math. 170 (2007), 243-295

[Po06a] S. Popa, Deformation and rigidity for group actions and von
Neumann algebras. In Proceedings of the International Congress of
Mathematicians (Madrid, 2006), Vol. I, European Mathematical
Society Publishing House, 2007, 445-477.

[Po06b] S. Popa, On the superrigidity of malleable actions with spectral
gap. J. Amer. Math. Soc. 21 (2008), 981-1000.

[Po16] S. Popa, Constructing MASAs with prescribed properties. Kyoto J.
Math., to appear. arXiv:1610.08945

[PS03] S. Popa and D. Shlyakhtenko, Cartan subalgebras and bimodule
decompositions of II1 factors. Math. Scand. 02 (2003), 93-102.

[PSV15] S. Popa, D. Shlyakhtenko and S. Vaes, Cohomology and L2-Betti
numbers for subfactors and quasi-regular inclusions. Int. Math. Res.
Not. IMRN, to appear. arXiv:1511.07329

[PV06] S. Popa and S. Vaes, Strong rigidity of generalized Bernoulli actions
and computations of their symmetry groups. Adv. Math. 217 (2008),
833-872.

[PV09] S. Popa and S. Vaes, Group measure space decomposition of II1
factors and W∗-superrigidity. Invent. Math. 182 (2010), 371-417.

[PV11] S. Popa and S. Vaes, Unique Cartan decomposition for II1 factors
arising from arbitrary actions of free groups. Acta Math. 212 (2014),
141-198.

[PV12] S. Popa and S. Vaes, Unique Cartan decomposition for II1 factors
arising from arbitrary actions of hyperbolic groups. J. Reine Angew.
Math. 694 (2014), 215-239.

http://arxiv.org/abs/1610.08945
http://arxiv.org/abs/1511.07329


BIBLIOGRAPHY 193

[Pu59] L. Pukánszky, On maximal abelian subrings of factors of type II1.
Canad. J. Math. 12 (1960), 289-296.

[Ro52] V. A. Rokhlin, On the fundamental ideas of measure theory. Amer.
Math. Soc. transl. 71 (1952), 1-54.

[Ru60] W. Rudin, Fourier-Stieltjes transforms of measures on independent
sets. Bull. Amer. Math. Soc. 66 (1960) 199-202.

[Sa56] S. Sakai, A characterization of W∗-algebras. Pacific J. Math. 6
(1956), 763-773.

[Sc80] G. Schlichting, Operationen mit periodischen Stabilisatoren. Arch.
Math. 34 (1980), 97-99.

[Se89] J.-P. Serre, Lettre à M. Tsfasman. In Journées Arithmétiques,
Luminy, 1989. Astérisque 198-200 (1991), 351-353.

[Sh96] D. Shlyakhtenko, Free quasi-free states. Pacific J. Math. 177 (1997),
329-368.

[Sh97] D. Shlyakhtenko, A-valued semicircular systems. J. Funct. Anal.
166 (1999), 1-47.

[Si55] I. M. Singer, Automorphisms of finite factors. Amer. J. Math. 77
(1955), 117-133.

[SV11] A. Speelman and S. Vaes, A class of II1 factors with many non
conjugate Cartan subalgebras. Adv. Math. 231 (2012), 2224-2251.

[Va02] S. Vaes, Strictly outer actions of groups and quantum groups. J.
Reine Angew. Math. 578 (2005), 147-184.

[Va06] S. Vaes, Rigidity results for Bernoulli actions and their von
Neumann algebras [after Sorin Popa]. Séminaire Bourbaki, exposé
961, Asterisque 311 (2007), 237-294.

[Va07] S. Vaes, Explicit computations of all finite index bimodules for
a family of II1 factors. Ann. Sci. École Norm. Sup. 41 (2008),
743-788.

[Va10] S. Vaes, One-cohomology and the uniqueness of the group measure
space decomposition of a II1 factor. Math. Ann. 355 (2013), 611-
696.

[Va13] S. Vaes, Normalizers inside amalgamated free product von Neumann
algebras. Publ. Res. Inst. Math. Sci. 50 (2014), 695-721.



194 BIBLIOGRAPHY

[VV14] S. Vaes and P. Verraedt, Classification of type III Bernoulli crossed
products. Adv. Math. 281 (2015), 296-332.

[Vo83] D. Voiculescu, Symmetries of some reduced free product C∗-
algebras. In Operator algebras and their connections with topology
and ergodic theory (Busteni, 1983), Lecture Notes in Math. 1132,
Springer, Berlin, 1985, pp. 556-588.

[Vo86] D. Voiculescu, Multiplication of certain noncommuting random
variables. J. Operator Theory 18 (1987), 223-235.

[Vo95] D. Voiculescu, The analogues of entropy and of Fischer’s
information measure in free probability theory III: The absence of
Cartan subalgebras. Geom. Funct. Anal. 6 1 (1996), 172-199.

[VDN92] D. Voiculescu, K. Dykema and A. Nica, Free random variables.
CRM Monograph Series 1, Providence, RI, 1992.

[vN29] J. von Neumann, Zur Algebra der Funktionaloperationen und
Theorie der normalen Operatoren. Math. Ann. 102 (1930), 370-
427.

[vN49] J. von Neumann, On Rings of Operators: Reduction theory. Ann.
Math. 50 (1949), 401-485.



List of publications

• A class of II1 factors with exactly two group measure space decompositions.
With Stefaan Vaes. Journal de Mathématiques Pures et Appliquées 108
(2017), 88-110.

• Thin II1 factors with no Cartan subalgebras. With Stefaan Vaes. Kyoto
Journal of Mathematics, to appear.

195





Index

L2(M), 11
M 	A, 20
M+, 11
Aut(M), 15
Crss, 38
Irr(K), 145
NM (A), normalizer, 18
QNM (A), quasi-normalizer, 49, 184
≺, intertwining-by-bimodules, 29
≺f , full intertwining, 29
o, crossed product, 14
∼, equivalence of projections, 12
⊗, tensor product, 19
II1 factor, 12

admissible direct sum decomposition,
75

admissible isomorphism, 80
almost normal subgroup, 39
amalgamated free product, 20
amenability, 26
amplification, 22
atomic von Neumann algebra, 13, 29

Bernoulli action, 33
bimodule, 22
bounded vector, 25

c0 measure, 145
C-rigidity, 39
Cartan subalgebra, 17
center valued dimension, 113
central sequence, 156, 157

co-induced action, 42, 43, 176
coarse bimodule, 23
cocycle action, 41
commutant, 10
conditional expectation, 20
conjugate

conjugate Cartan subalgebras, 3
conjugate gms decompositions, 59
conjugate group actions, 2

Connes tensor product, 26
contragredient bimodule, 22
creation operator, 88, 89

diffuse
diffuse factor map, 115
diffuse von Neumann algebra, 12,

29
dimension of a module, 23
Disintegration Theorem, 115
dual coaction, 53

ergodic action, 14
essentially finite index, 114
extended positive part, 111

factor, 10
factor map, 115
faithful state, 11
Fourier decomposition, 13, 15
free action, 14
free Bogoljubov action, 89, 93, 148
free subset, 145
full factor, 156

197



198 INDEX

full Fock space, 88, 89

gms Cartan subalgebra, 18
gms decomposition, 59
GNS representation, 11
group measure space construction, 14
group von Neumann algebra, 13

height, 56
hyperfinite, 26
hypertrace, 26

icc group, 13
intertwining-by-bimodules, 29

Jones basic construction, 27
Jones index, 23, 114

MASA, 17
mixing

mixing action, 32, 33
mixing bimodule, 36
mixing representation, 32

module, 22

normal
normal ∗-isomorphism, 10
normal state, 11

normalizer, 18

orbit equivalent group actions, 3

Pimsner-Popa basis, 112
pmp action, 14
projection, 11
properly outer action, 15
property Gamma, 156, 164

quasi-normalizer, 49, 184

regular subalgebra, 18
relative amenability, 27
relative diffuse subalgebra, 115, 119
relative profinite completion, 46

relative strong solidity, 37
relatively icc, 38

s-MASA, 85
s-thin, 85
scalar 2-cocycle, 16
semifinite

semifinite von Neumann algebra,
12

semifinite weight, 12
separable von Neumann algebra, 11
solidity, 37
spectral gap

of a bimodule, 178
of a representation, 156

standard probability space, 14
state, 11
strong solidity, 37
support of a measure, 146
symmetric bimodule, 89

trace, 11
trace-preserving action, 15
tracial von Neumann algebra, 11
trivial bimodule, 22

ultrafilter, 20
ultraproduct, 21

vacuum vector, 88, 90
von Neumann algebra, 9

W∗-superrigidity, 2
weak containment, 24
weakly mixing

weakly mixing action, 32
weakly mixing bimodule, 35
weakly mixing representation, 31

weight, 12
Wick product, 90





FACULTY OF SCIENCE
DEPARTMENT OF MATHEMATICS

ANALYSIS SECTION
Celestijnenlaan 200A box 2402

B-3001 Leuven


	Acknowledgments
	Abstract
	Contents
	Introduction
	Preliminaries
	Von Neumann algebras
	Type classification of factors
	Group von Neumann algebras
	The group measure space construction
	II1 factors arising from equivalence relations
	Cartan subalgebras
	Tensor products, amalgamated free products and ultraproducts

	Bimodules
	Amenability and relative amenability
	Popa's intertwining-by-bimodules
	Mixing properties
	(Relative) strong solidity and class Crss

	Counterexamples to C-rigidity
	Co-induced actions
	Proof of Theorem 3.3

	A class of II1 factors with exactly two group measure space decompositions
	Properties of the dual coaction
	Transfer of rigidity
	Embeddings of group von Neumann algebras
	Proof of Theorem 4.1
	Examples of II1 factors with a prescribed number of group measure space decompositions

	Thin II1 factors with no Cartan subalgebras
	Shlyakhtenko's A-valued semicircular systems
	Normalizers and (relative) strong solidity
	Maximal amenability
	Absence of Cartan subalgebras
	Preliminaries on bimodules
	Relative diffuse subalgebras
	Technical lemmas
	Proof of Theorem 5.21

	Compact groups, free subsets, c0 probability measures and the proof of Theorem B
	Property Gamma

	Conclusion
	Spectral gap rigidity for co-induced actions
	The tensor length deformation
	Spectral gap rigidity
	Controlling quasi-normalizers

	Bibliography
	List of publications
	Index

