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ABSTRACT
Affective instability, the tendency to experience emotions that fluctuate frequently and intensively
over time, is a core feature of several mental disorders including borderline personality disorder. Cur-
rently, affect is oftenmeasuredwith EcologicalMomentaryAssessment protocols, which yield thepos-
sibility to quantify the instability of affect over time. A number of linear mixed models are proposed
to examine (diagnostic) group differences in affective instability. The models contribute to the exist-
ing literature by estimating simultaneously both the variance and serial dependency component of
affective instability when observations are unequally spaced in time with the serial autocorrelation
(or emotional inertia) declining as a function of the time interval between observations. In addition,
the models can eliminate systematic trends, take between subject differences into account and test
for (diagnostic) group differences in serial autocorrelation, short-term as well as long-term affective
variability. The usefulness of the models is illustrated in a study on diagnostic group differences in
affective instability in the domain of eating disorders. Limitations of the model are that they pertain
to group (and not individual) differences and do not focus explicitly on circadian rhythms or cycles in
affect.

Introduction

Affective instability in humans is the tendency to expe-
rience emotions that fluctuate frequently and intensively
over time. Measurement of the temporal instability of
affect is important in psychology as it is a defining char-
acteristic of several mental disorders including, among
others, mood cycling disorders and borderline person-
ality disorder (American Psychiatric Association, 2013;
Linehan, 1993). For example, in comparison with healthy
controls, individuals with a unipolar mood disorder are
supposed to show less affective instability whereas
individuals with a borderline personality disorder are
supposed to show more affective instability. In psychol-
ogy, affective instability is often quantified using data
obtained by ecological momentary assessment (EMA)
protocols. EMA has many names (e.g., diary studies,
experience sampling, ambulant monitoring) and exists in
many shapes (e.g., time contingent, event contingent, and
so forth) but essentially consists of the intensive repeated
measurements of individuals in their natural circum-
stances at specific moments in time. For an overview of
diary methods, designs, and intensive longitudinal meth-
ods, see Bolger and Laurenceau (2013) and Mehl and
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Conner (2012). An example of a typical data set in EMA
research consists of a number of individuals who reported
on their momentary affect (e.g., I feel sad) at random
occasions during the day for several days contingent on
a signal generated by a smartphone. Originally, the most-
used measure to quantify affective instability in psycho-
logical research was the within-person variance (WPV;
Eid & Diener, 1999; Farmer, Nash, & Dance, 2004; Hoff-
man, 2007; Zeigler-Hill & Abraham, 2006). This measure
simply is the variance of an affective variable of a sub-
ject i (1…i…I) overOi (1…o…Oi) repeated occasions in
time. However, there are a number of problems associated
with the WPV as a quantification of affective instability
as argued by several authors (Ebner-Priemer et al., 2007;
Jahng, Wood, & Trull, 2008; Wang, Hamaker, & Berge-
man, 2012).

In the next sections, we first discuss these problems and
other model requirements that are important in the study
of affective instability together with the existing statisti-
cal models in literature. In addition, we will highlight the
novel contributions and limitations of the linear mixed
models (LMM) we will propose. Next, we will describe a
data set on affective instability in eating disorders. Finally,
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2 K. VANSTEELANDT AND G. VERBEKE

wewill propose an LMM that deals with the problems and
issues discussed in the first section and illustrate it in an
application in the domain of eating disorders. In the dis-
cussion, themerits and limitations of our proposedmodel
in relation to existing models will be discussed.

Model requirements in the study of affective
instability

Problems associatedwith the within-person variance

A first problem with the WPV as an index of affective
instability (Ebner-Priemer et al., 2007; Jahng et al., 2008;
Larsen, 1987; Wang et al., 2012) relates to the fact that
affective instability actually comprises two components:
variability and serial dependency. Failing to distinguish
between the components of affective instability may lead
to confusion of two characteristics of the time series pro-
cess (the repeated measurements of affect over time). To
demonstrate both components of affective instability—
variability and serial autocorrelation—Jahng et al. (2008)
generated a time series of 100 values from an autoregres-
sive process of order 1 with a WPV of 1 and an auto-
correlation of .50. Next, these authors generated a sec-
ond time series simply by rearranging randomly the 100
values of the first series, resulting in the absence of any
serial autocorrelation. It is obvious that both series have
the sameWPVbut different serial autocorrelations.When
we assume that both series are affect scores from two dif-
ferent individuals, theWPV fails to distinguish both series
and fails to detect the differences in affective instability.
Next, Jahng et al. (2008) generated a third time series by
multiplying each value of the first time series by 2, result-
ing in two time series with the same serial autocorrelation
but differentWPVs. In this case, the serial autocorrelation
fails to distinguish both series, but the WPV can detect
the differences in affective instability between individu-
als. These three time series clearly illustrate that both vari-
ability, and serial dependency (or autocorrelation) are dis-
tinctive components of affective instability, andwe aim for
a model that allows one to examine group differences in
affective instability by the estimation of both components.
Moreover, research has proved that it is useful to consider
both components separately as they have different pre-
dictability for health outcomes (Wang et al., 2012). In this
context, Suls, Green, and Hillis (1998) translated serial
autocorrelation into the concept of affective inertia—the
extent to which affect at one particular moment is carried
over to subsequent moments—and several studies have
shown that higher levels of emotional inertia are associ-
ated with more neuroticism, more depression, and lower
psychological adjustment (Brose, Schmiedek, Kova, &
Kuppens, 2015; Koval & Kuppens, 2012; Koval, Kuppens,

Allen, & Sheeber, 2012; Kuppens, Allen, & Sheeber, 2010;
Suls et al., 1998). Note, however, that the model we will
propose is developed to examine (diagnostic) group dif-
ferences in affective instability with the latter being the
dependent variable. As a result, the model is not devel-
oped to predict outcome variables (e.g., health outcomes)
as has been done in these studies.

Models for affective instability, variability, and serial
correlation

The last decade, availability of EMA data has stimulated
the development of new modeling approaches for EMA
data and affect in general (see Bolger & Laurenceau, 2013;
Mehl & Conner, 2012) and affective instability in partic-
ular. For example, Jahng et al. (2008) have proposed to
calculate mean squared successive difference (MSSD) of
successive affective states as an index to quantify affec-
tive instability. Using this index, diagnostic group differ-
ences in MSSDs are modeled using a nonlinear mixed
model with gamma error distribution and log link (for
more details, see Jahng et al., 2008). These authors have
argued that this index is sensitive for both the variabil-
ity and serial autocorrelation of affective instability. How-
ever, the MSSD measure is only an index that is sen-
sitive for variability and serial autocorrelation but does
not allow for the estimation of both components sepa-
rately. Moreover, Wang et al. (2012) have pointed to seri-
ous limitations of the MSSD showing that subjects with
exactly the sameMSSD can be characterized by obviously
different first-order autoregressive (AR) processes. These
authors have proposed an alternative method using a
Bayesian estimation approach thatmodels interindividual
differences in intraindividual variation of affect by sep-
arately considering the variability and temporal depen-
dency component (Wang et al., 2012). In this model,
the stationary time series for different individuals, after
detrending, is modeled using an autoregressive model of
lag k (AR(k)), in which the AR parameters as well as
the error/innovation variances may be subject specific.
These subject-specific parameters can be predicted on the
basis of covariates using a model with log-link function
and gamma distribution. Moreover, this model makes
it possible to predict outcome variables using both the
variability and serial dependency component of affective
instability.

In addition, other models have been proposed that
focus on one of the two components of affective insta-
bility. Heterogeneous mixed models, for example, focus
on the variability component to examine the effect
of covariates on between- and within-subject variance
(Hedeker, Berbaum, & Mermelstein, 2006; Hedeker,
Demirtas, &Mermelstein, 2009; Hedeker,Mermelstein, &
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MULTIVARIATE BEHAVIORAL RESEARCH 3

Demirtas, 2008, 2012; Hoffman, 2007). In these models,
the between-subject and within-subject variance on the
natural logarithm scale can be predicted on the basis of a
linear combination of covariates. Moreover, Hedeker and
colleagues recently extended their approach by allowing
the inclusion of random individual effects permitting the
within-subject variance to vary at the subject level, above
and beyond the influence of covariates on this variance
(Hedeker et al., 2008, 2012). Next, research on emotional
inertia has focused on the serial correlation component
of affective instability (Brose et al., 2015; Koval & Kup-
pens, 2012; Koval et al., 2012; Kuppens et al., 2010; Suls
et al., 1998) and related emotional inertia to outcome vari-
ables. In this research, the serial autocorrelation is exam-
ined using autoregressive multilevel models by regress-
ing affect at one moment in time on affect at the previous
moment in time and relating the autocorrelation param-
eters to covariates.

A somewhat different approach, with focus on within-
person affective dynamics rather than instability, is to
use the differential equation models (Deboeck, 2012;
Oravecz & Tuerlinckx, 2011; Oravecz, Tuerlinckx, & Van-
dekerckhove, 2011; Oud & Jansen, 2000; Voelkle & Oud,
2013), which model variability in affect around a static
or dynamic (changing) equilibrium state. In this con-
text, Oravecz et al. (2011) have proposed a continuous-
time state-space stochastic model with the following key
parameters: (a) a home base, an ideal latent position in
the two-dimensional (valence versus arousal) core affect
space subjects are assumed to be drawn to, (b) variances
and covariances representing fluctuations of individuals
around the home base, and (c) a regulatory process that
governs the strength and direction with which individu-
als return to their home base.

When the research interest is specifically on cycles
such as circadian rhythms in affect (e.g., affect associ-
ated with menstrual cycles), seasonal changes in mood
or more complex time series (than basic AR(1) pro-
cesses) specific models (rather than the LMM with
random effects we will propose) can be considered,
including frequency-domain time series methods, spec-
tral density, Fourier analysis, parametric sinusoidal curve
fitting, or ARMA time series models (Baehr, Revelle, &
Eastman, 2000; Browne & Nesselroade, 2005; Ram et al.,
2005). Finally, in mixture latent Markov models (Crayen,
Eid, Lischetzke, Courvoisier, & Vermunt, 2012; Rijmen,
Vansteelandt, & De Boeck, 2008), affective variability
measured with categorical variables is modeled within
and between days, with stability and change being rep-
resented by transition probabilities between latent affec-
tive states that are measured with multiple observed
indicators.

Contribution of the proposedmodel

In this article, we want to further contribute to these exist-
ing models by proposing an LMM to examine diagnos-
tic group (not individual) differences in the variability
and serial autocorrelation of affective instability when the
data consist of observations that are not equally spaced
in time. Indeed, in EMA data, signals are often gener-
ated at random occasions during the day to avoid antic-
ipation or actor-observer phenomena. The latter means
that subjects’ reports on their affect may change because
they know in advance (or can predict) the moment that
they will have to report on their affect. Consequently,
in EMA data, time intervals between reports are often
unequally spaced. As a result, to estimate the serial auto-
correlation for such data, it is sensible to consider some
kind of time-series covariance structure, where the cor-
relation of the repeated measurements is assumed to be
smaller for observations that are further apart in time
(Littell, Miliken, Stroup, Wolfinger, & Schabenberger,
2006). Moreover, it has been shown that the autoregres-
sive parameter (and error term) in autoregressive mod-
els of order one depend on the length of the time inter-
val (Voelkle & Oud, 2013; Voelkle, Oud, Davidov, &
Schmidt, 2012), and simulation studies (Oravecz & Tuer-
linckx, 2011) show that the true serial correlation is inac-
curately estimated when the length of the time interval
is ignored. As a result, many of the time series covari-
ance structures available are inappropriate because they
assume equal spacing (Littell et al., 2006). In this con-
text, it may be noted that most of the models discussed
in the previous section are only applicable for equally
spaced data. Note that Jahng et al. (2008) were aware
that equal MSSD values based on a different time inter-
val do not have the same meaning, and these authors
have proposed a heuristic adaptation procedure to deal
with the unequally spaced observations over time. How-
ever, as mentioned, the MSSD is an index that is sensitive
for both components of affective instability but does not
allow for the estimation of both components. Further, the
continuous-time state-space stochastic model of Oravecz
et al. (2011) can deal adequately with unequally spaced
measures in time, but this model is developed to model
intraperson affective dynamics and does not focus explic-
itly on the concept of affective instability as, for exam-
ple, used in the Diagnostic and StatisticalManual ofMen-
tal Disorders-V (DSM-V) (American Psychiatric Associ-
ation, 2013).

In addition, the LMM we propose takes a number of
other issues into account that are important in the study of
affective instability. First, it is well known that the variance
of a time series that systematically decreases or increases
over time will overestimate the actual dispersion of scores
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4 K. VANSTEELANDT AND G. VERBEKE

Figure . Between-day andwithin-day instability: (a) Two hypothetical participants (full versus dashed line) who show different between-
day affective variability but the same within-day variability as can be seen after removal of the between-day effect in (b). (c) Two hypo-
thetical participants (full versus dashed line) who show different between-day affective variability and different within-day variability as
can be seen after removal of the between-day effect in (d). BDV= between-day variability; WDV=within-day variability. Time refers to a
number of successive occasions at which affect is assessed; vertical dashed lines indicate a new day.

around the general trend line (Shumway & Stoffer, 2006).
For example, when a linear trend is added to a station-
ary time series, the variance of the obtained times series
is substantially larger than the original stationary time
series. As a result, the estimation of the serial autocorrela-
tion requires a stationary time series without trends. Fail-
ing to remove trendsmay result in the estimation of spuri-
ous high autocorrelations (Shumway& Stoffer, 2006). As a
result, systematic trends should be eliminated before esti-
mating the serial autcorrelation as recognized by many
authors (Jahng et al., 2008; Tennen, Affleck, & Armeli,
2005; Wang et al., 2012; West & Hepworth, 1991).

Second, another consideration in the quantification of
affective instability has to do with the general time frame
(Jahng et al., 2008). Some individuals may be charac-
terized by very short-term instability reflected by hourly
fluctuations within days whereas other subjects may show
a fairly stable affect for several days. For example, a
diagnostic criterion for borderline personality disorder is
affective instability that is due to a marked reactivity of
mood such as intense episodic dysphoria, irritability, or
anxiety usually lasting a few hours and only rarely more
than a few days (American Psychiatric Association, 2013).
On the other hand, in patients with mood disorders,
a major depressive episode is described as a depressed
mood that persists for most of the day, nearly every day,
for at least two consecutive weeks (American Psychi-
atric Association, 2013). In general, we want to point to
the fact that it is useful to make a distinction between

short-term within-day and long-term between-day vari-
ability and that both sources of variability may occur in
all kinds of combinations.

For example, in Figure 1, we see the affective instabil-
ity of several hypothetical individuals withmeasurements
on a pleasure-displeasure valence dimension on 10 occa-
sions during 7 days (each vertical dashed line indicates
a new day). In Figure 1, Panel a, we generated two time
series of two hypothetical individuals with the same vari-
ability and the same serial autocorrelation within days
but added a day effect for the subjects with full line. In
Figure 1, Panel a, it can be seen that both subjects show
a different between-day variability. In Figure 1, Panel b,
however, after removal of the between-day effect, it is clear
that both individuals show the same within-day variabil-
ity. In Figure 1, Panels c and d, we did something similar
but with two hypothetical subjects who differ from one
another in both between-day and within-day variability.
After removal of the between-day effect, it can be seen that
the subject with dashed line shows more within-day vari-
ability. The LMMwe propose wants to further contribute
to the existing literature by taking short-term within-
day and long-term between-day variability into account
as this is not the case in most of the models previously
discussed (for an exception, see Jahng et al., 2008; Rijmen
et al., 2008).

Finally, besides within-day and between-day variabil-
ity, it is also important to take the between-subject
variance into account. When comparing different
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MULTIVARIATE BEHAVIORAL RESEARCH 5

diagnostic groups, variability in subjects’ mean affect
may also differ between diagnostic groups. For example,
between-individual variability may be larger in samples
of individuals with borderline personality disorders than
in healthy controls. Such between-individual differences
may be related to all kinds of known and unknown indi-
vidual characteristics (e.g., gender, age, biological factors)
that are related to affect scores, and such variability
should be taken into account when quantifying affective
instability.

Summarizing, wewant to propose an LMM to examine
diagnostic group differences in affective instability (a) that
allows for the explicit estimation of both the variability
and serial autocorrelation component of affective instabil-
ity, (b) that explicitly models the serial autocorrelation as
a function of the length of the time interval between suc-
cessive observations, and (c) that deals with all remaining
issues mentioned.

Affective instability in eating disorders: Design
and data

To illustrate our models, we will use a data set in the
domain of eating disorders. For reasons that go beyond
the scope of this article (for literature on this topic, see
Corstorphine, Waller, Ohanian, & Baker, 2006; Mayer,
Waller, & Walters, 1998; Vansteelandt et al., 2012; Waller,
Kennerley, & Ohanian, 2007), we will examine whether
three groups of eating disorders differ from one another
in terms of affective instability. The data set consists of 21
patients with anorexia nervosa-restrictive type (AN-RT),
17 patients with anorexia nervosa-binge purging type
(AN-BPT), and 20 patients with bulimia nervosa-binge
purging type (BN-BPT). The study design is an ecolog-
ical momentary assessment (EMA) design with patients
receiving a handheld computer that generated signals at 9
random times a day (one random signal in nine blocks of
90minutes with eachminute in the block having the same
probability of being selected) during a 1-week period (9
signals/day × 7 days = 63 repeated measurements).

Affect is measured in terms of core affective states
(Russell, 2003), which are simple affective states such
as “I feel angry,” or “I feel excited,” and so forth that
are consciously accessible for a subject at any time of
the day (without further reflections on the reasons
why you are in that state). There is a vast amount of
empirical (factor analytical) research on core affect
(e.g., Feldman Barrett & Russell, 1998; Kring, Feldman
Barrett, & Gard, 2003) that revealed that a large part
of the information conveyed in people’s daily affec-
tive experiences can be captured by two dimensions:
first, the valence or pleasure-displeasure dimension,
which varies from one extreme positive pole (e.g.,

ecstasy) over a neutral midpoint to the opposite
negative extreme pole (e.g., agony); second, the
activation-deactivation dimension that varies from
the extreme deactive pole (e.g., sleep) over a neutral
midpoint to the opposite extreme active pole (e.g.,
excitement). At each quadrant of the core affect space,
an emotion word (stressed, sad, elated, or relaxed) was
selected, inspired by the factor analytic research on core
affect (Diener & Emmons, 1984; Russell, 2003; Russell &
Barrett, 1999). These emotion words were translated
into Dutch, and words with very similar meanings (e.g.,
nervous and stressed) were sought. At each signal, par-
ticipants had to report on their momentary affect using
these emotion words (using a 0–4 scale). For reasons of
parsimony, we will restrict the analysis to the valence
dimension. At each signal, two valence scores were
calculated by adding and subtracting affect words with
respectively positive and negative valence. As a result,
all scores have a natural neutral midpoint of 0 and vary
from extreme negative valence (−8) to extreme positive
valence (+8). In this data set, patients had on average
112 (out of 2 × 9 × 7 = 126) valid reports (SD = 18.13,
min = 54, max = 126) on valence. As a result, as is
typical for EMA studies, many repeated measurements
per individual are obtained yielding the possibility to
model variances (see Hedeker et al., 2008, 2012).

Model

In the next section, we will first discuss a LMM to esti-
mate affective instability in one group. Subsequently, we
will discuss how the model can be adapted for different
types of data sets (e.g., data with only one measurement
per signal nested within days, data with end-of-the-day
measurements, and so forth) and what the implications
are for the estimation of affective instability. Finally, in
a third section, we explain how diagnostic group differ-
ences in affective instability can be examined. First and
foremost, however, we want to mention that we have used
the word variability rather loosely until now, referring to
its general meaning as well as to its specific meaning of
variance as mathematically defined. When presenting the
models below, itmay be clear that variability refers to vari-
ance as mathematically defined.

Model to estimate affective instability in one group

We propose an LMM (Verbeke & Molenberghs, 2000) to
model affective instability using EMA data, which allows
for the estimation of both the variance and serial auto-
correlation component of affective instability and which
deals with the other issues previously mentioned. In this
model, Ymsdi is Measurement m (m = 1…m…Msdi)
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6 K. VANSTEELANDT AND G. VERBEKE

of affect variable Y, for example valence, at Signal s
(s = 1…s…Sdi) nested in Day d (d = 1…d…Di) of
Participant i (i = 1…i…I). The measurements m are
considered to be exchangeable items measuring the same
construct at a particular signal. For example, in the data
set described, 58 participants (I = 58 = (21 + 17 + 20))
have two valence measures (Msdi = 2) at 9 random signals
(Sdi = 9) during 7 days (Di = 7). Note that, due to missing
data, the number of measurements may vary over signals,
days, and subjects; the number of signals may vary over
days and subjects; and the number of days may vary over
subjects. The model is a four-level LMM with measure-
ments nestedwithin signals, which are nestedwithin days,
which in turn are nested within participants. The model
can be written as follows:

Ymsdi = β0000 + r000i + r00di + r0sdi + ε(1)msdi + ε(2)msdi,

(1)
with β0000 an overall intercept. A representation of Model
(1) with separate equations for each level is available in
AppendixA.At this point, wewant to emphasize thatDig-
gle, Heagerty, Liang, and Zeger (2002) have clarified that,
theoretically, the total covariance structure of an LMM
likeModel (1) can be decomposed in at least three sources
of random variation: (a) random effects, (b) serial correla-
tion, and (c) measurement error. In the next sections, we
will explain the model by discussing these three sources
of random variation.

Random effects: Between-subject, between-day, and
within-day variance
First, when units—participants, days, and signals—are
randomly sampled from a population, various aspects
of their behavior may show stochastic variation between
these units (e.g., there may be high and low responders
and/or high and low response days). In Model (1), these
random effects are denoted by r000i, r00di, and r0sdi being
respectively subject-specific, day-by-subject-specific, and
signal-by-day-by-subject-specific random effects. These
random effects are all assumed to be normally distributed
withmean zero and variances σ 2

r000i , σ
2
r00di , and σ 2

r0sdi , respec-
tively. Note that these variances are the parameters of
interest in the study of affective instability: σ 2

r000i reflects
between-subject differences in mean affect; σ 2

r00di reflects
the long-term between-day variance; and σ 2

r0sdi reflects the
short-termwithin-day variance. Tomake thismodelmore
comprehensible, a graphical representation of Model (1)
is shown in Figure 2. In this figure, the small black points
represent the data of a hypothetical participant with two
measurements of valence at 10 signals/day for 1 week.
The vertical dashed lines indicate the start of a new day.
The thickest line represents the overall intercept β0000 of
the model; this is the overall population average valence.

The two long horizontal lines indicate subject-specific
mean valence scores (averaged over measurements, sig-
nals, and days) for two participants, which are obtained
by adding/subtracting random subject effects r0001 and
r0002 to/from the overall intercept (indicated by arrows
starting from the overall intercept). The variance of all
these random subject effects r000i is the between-subject
variance (σ 2

r000i). The short straight horizontal lines indi-
cate the day-specific, subject-specific effects (r00di) which
vary over days. They are obtained by adding random day-
by-subject effects (r00di) to the subject-specific long hor-
izontal lines (as indicated by arrows). The variance of
all these random day-by-subject effects is the long-term
between-day variance (σ 2

r00di). Further, a signal-by-day-by-
subject random effect r0sdi is added to predict a partic-
ipant’s valence score at a particular signal on a particu-
lar day. These random signal-by-day-by-subject-specific
effects (r0sdi) are the distances from the small fluctuating
line to the (short) horizontal day-specific lines (at each
separate signal); note that these distances may be larger
or smaller at different signals (indicated by the arrows
for Participant 1 on Day 6). Stated in other words, these
signal-by-day-by-subject random effects are the distances
from affect at a particular signal (averaged over measure-
ments) within a day to the mean affect (averaged over all
measurements and signals) of that day. The variance of
all these random signal-by-day-by-subject effects is the
short-term within-day variance (σ 2

r0sdi). This component
models the variance of affect (averaged over measure-
ments) within a day.

Note at this point that, conditionally on all these ran-
dom effects, there are three theoretical possibilities to
model the remaining residual (or error) variation (Diggle
et al., 2002): First, measurements at the same signal are
perfectly correlated, and measurements at different sig-
nals are less correlated, with the correlation declining as
a function of the time interval. This is a model with serial
correlation but no measurement error (ϵ(1)msdi but not
ϵ(2)msdi in Model (1)). Second, all measurements within a
day of a participant (at the same signal or not) are uncor-
related. This is a model with only measurement error but
no serial autocorrelation (ϵ(2)msdi but not ϵ(1)msdi in Model
(1)). Third, measurements at the same signal are not per-
fectly correlated, and measurements at different signals
are correlated, with the correlation declining as a function
of the time lag. This is a model with both serial correla-
tion andmeasurement error (ϵ(1)msdi and ϵ(2)msdi inModel
(1)). Note that it is common in statistical literature on
LMMs (Diggle et al., 2002; Verbeke&Molenberghs, 2000)
to represent the decomposition of the residual variance—
conditionally on the random effects—in residuals that are
correlated on the one hand and residuals that are inde-
pendent on the other hand by, respectively, ϵ(1)msdi and
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MULTIVARIATE BEHAVIORAL RESEARCH 7

Figure . Graphical representation of Model (). The small black points represent the data of a hypothetical participant’s affect using 
measurements at  signals during  successive days (with days being indicated by the vertical dashed line). The thickest black line (β)
is the overall population average in affect. The arrows r and r indicate subject-specific deviations or random subject effects from
the overall population average in affect for two hypothetical Participants  and  reflecting between-subject variance. The thick horizontal
lines indicate the subject-specific mean affect for these hypothetical Participants. The arrows r and r indicate deviations or random
day-by-subject effects from the subject-specificmeanaffect of Participant  for, respectively, Day  andDay , reflecting long-termbetween-
day variance. The short straight horizontal lines indicate the day-specific, subject-specific mean affect of Participant , which varies over
the  days. r indicates the deviation or random signal-by-day-by-subject effect at Signal  on Day  of Participant  from the subject-
specific, day-specific mean affect of Participant . These distances from the small fluctuating lines to the short straight horizontal lines
reflect the short-term within-day variance. The fact that the small black lines do not fluctuate completely randomly around the short
straight horizontal lines points to the presence of serial autocorrelation within days with a variance τ . The distances from the data points
to the small fluctuating line at the same signal reflect error, and the variance of all these deviations is the error variance.

ϵ(2)msdi as is done inModel (1). In the next sections, wewill
discuss the last model with both the serial correlation and
measurement error.

Serial autocorrelation
We start with the serial correlation, which is a second
source of random variation that is related to time-varying
stochastic processes that are operating within subjects.
This type of stochastic variation results in a correla-
tion between pairs of affect measured at different sig-
nals within the same subject. Typically, the correlation
becomes weaker as the time interval increases, and this
serial correlation is represented in Model (1) by ϵ(1)msdi.
The serial correlation involves two parameters, θ and τ 2,
which will be explained later.

In Figure 2, the serial autocorrelation between valence
scores within days is visualized by the fact that the small

black lines do not fluctuate completely randomly around
the short, straight horizontal day-specific lines but remain
some time below or above these lines (indicating serial
correlation between successive signals). For this serial
autocorrelation, all elements ϵ(1)msdi are normally dis-
tributed with mean zero and variance τ 2, and elements
corresponding to measurements taken on the same Day
d in Participant i (e.g., at signals with timepoints Tsdi and
Ts′di) are allowed to be correlated where the correlation
is modeled as a function g(|Tsdi − Ts′di|) of the time lag
between the measurements. The variance parameter τ 2 is
the variance of the serial autocorrelation (or time series)
and can be interpreted in Figure 2 as the distance that
the small black lines go away from the straight horizon-
tal day-specific lines with larger (smaller) values of τ 2

implying larger (smaller) deviations from the horizontal
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8 K. VANSTEELANDT AND G. VERBEKE

Figure . Shape of the serial autocorrelation as a function of the time lag for the exponential and Gaussian serial autocorrelation for dif-
ferent values of θ .

day-specific lines. Further, Tsdi and Ts′di denote the time
passed since the start of the day (e.g., hours passed since
7:30 a.m.) at Signal s and s′ nested in Day d in Participant
i. Meaningful options for g(.) are an exponential or Gaus-
sian serial autocorrelation (Littell et al., 2006; Verbeke &
Molenberghs, 2000), respectively:

hss′di = exp
(− |Tsdi − Ts′di|

θ

)
(2)

hss′di = exp
(− (Tsdi − Ts′di)2

θ

)
, (3)

with hss′di being the (s, s′) element of a (Sdi × Sdi)-
correlation matrix.

These expressions clearly show that the within-day
serial autocorrelation is a function of the length of the
time interval between successive signals. Consequently,
the unequally spaced observations in time are explicitly
taken into account. In Figure 3, both types of serial auto-
correlation are depicted as a function of the time lag
between signals for different values of θ . In this figure, it
can be seen that θ models the strength of the decrease in
autocorrelation as a function of the time lag between sig-
nals. This parametermay be related to the concept of emo-
tional inertia (Brose et al., 2015; Koval & Kuppens, 2012;
Koval et al., 2012; Kuppens et al., 2010; Suls et al., 1998),
which indicates the extent to which affect at one particu-
lar moment is carried over to subsequent moments. As a
result, higher values of θ imply higher emotional inertia.
Note that the values of θ corresponding to (2) and (3)may
be quite different when estimated using the same data set;

as a result, it is only meaningful to compare both fitted
functions using the same data set.

Further, note that for measurements taken at the same
signal, the time interval is zero, and expressions (2) and
(3) are all one (simply indicating that the serial auto-
correlation of lag zero is one). This implies that in a
model without measurement error (Model (1) without
ϵ(2)msdi), measurements at the same signal are assumed
to be perfectly correlated. This also shows that the serial
correlation operates between successive signals within
days. The serial correlation does not operate between
measurements as measurements occur at the same sig-
nal (and one cannot have a serial correlation as there
is no variation in time). Further, the serial covariance—
the covariance between observations—equals τ 2 multi-
plied by expression (2) and (3). Consequently, the serial
covariance for measurements at the same signal (with
time interval 0) reduces to τ 2, which represents the vari-
ance of the within-day serial autocorrelation. As a result,
the within-day instability can be decomposed into the
short-term within-day variance, σ 2

r0sdi , on the one hand,
and the within-day serial autocorrelation, τ 2, on the other
hand. By comparing both, it can be concluded whether
the within-day instability is dominated by within-day
variance or within-day serial autocorrelation. In other
words, the within-day instability is the amount by which
valence at a particular signal deviates from the aver-
age valence of that specific day. It can be instantaneous
or serially correlated. Instantaneous within-day variance
(also called short-term within-day variance) occurs when
the deviation at a particular signal is not related to the
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MULTIVARIATE BEHAVIORAL RESEARCH 9

deviation at some other signal on the same day. Seri-
ally correlated within-day variance is present when the
deviations at two signals on the same day are corre-
lated with a correlation that decreases with the time
lag between both signals. Our model incorporates both
components. As such, the short-term within-day vari-
ance (σ 2

r0sdi)—the variance of the signal-by-day-by-subject
random effects (r0sdi’s)—is the within-day variance that
does not involve any serial correlation. Conditionally
on this signal-by-day-by-subject random effect (and the
other random effects in the model)—when the short-
term within-day variance is removed—part of the resid-
uals may still show a serial correlation between succes-
sive signals. This is within-day variance that shows a serial
correlation, and this serial correlation is based on a time
series of successive signals that also has a variance, which
is denoted by τ 2. Consequently, both sources of variation
within days—short-term within-day variance and serial
autocorrelation—may coexist with their own particular
variance, respectively σ 2

r0sdi and τ 2. For more information
on this decomposition, we refer the interested reader to
Diggle et al. (2002).

Further, the exponential serial autocorrelation (2) pro-
vides a direct generalization of the first-order autoregres-
sive (AR(1)) structure for unequally spaced data (Lit-
tell et al., 2006) and is equivalent to the power spatial
structure for unequally spaced observations (Bolger &
Laurenceau, 2013; Littell et al., 2006) as follows:

hss′di = ρ|Tsdi−Ts′di|, (4)

where ρ is a scale-dependent parameter with |ρ| < 1. In
terms of (2), ρ = exp

(−1
θ

)
(τ 2 remains the same) and cor-

responds to the serial autocorrelation between two sig-
nals with 1-hour time interval. Finally, it is worth men-
tioning that alternative forms for the serial correlation
are possible. For an overview and extended discussion on
possible forms, see Littell et al. (2006) and Verbeke and
Molenberghs (2000).

Measurement error
Until now, Model (1) with only random effects and the
serial autocorrelation (ϵ(1)msdi) assumes that measure-
ments taken at the same signal are perfectly correlated as
indicated by Equations (2) and (3). This is not realistic for
real data, and therefore, a last source of variation, the so-
calledmeasurement error, is included as themeasurement
process itself may add variation to the data. For exam-
ple, when the same construct is measured twice at the
same signal, one would expect identical values, but some
variability may occur by the measurement process itself,
leading to different measured values. This error ϵ(2)msdi of
Model (1) models the variation betweenmeasurements at

the same signal and is represented in Figure 2 by the dis-
tances from the data points at the same signal to the small
fluctuating line. All these error terms ϵ(2)msdi are inde-
pendent and identically normally distributed with mean
zero and variance σ 2

ε(2)msdi
. This error is assumed indepen-

dent of all other sources of variance (between subjects,
between days, short-term within day) and the serial auto-
correlation. Further, note that the total variation (in the
broad sense of the word) in affect within days consists of
the short-term within-day variance, the serial correlation
between successive signals, and the measurement error
variance.

Finally, it is worth mentioning that in LMMs, the
emphasis is on modeling random effects and their vari-
ances first, with the remaining residual variability in
the data being modeled in terms of serial correlation
and measurement error. Moreover, in the statistical lit-
erature on LMMs, is has been demonstrated that there
is often strong competition between different stochastic
sources such as random effects, serial correlation, and
measurement error. Consequently, variability in one part
of the model may disappear in another part of the model
and vice versa. In addition, research on LMMs (for an
overview, see Chapter 10 in Verbeke & Molenberghs,
2000) has shown that data are often not capable of mak-
ing a distinction between different serial autocorrelation
functions except when many measurements are available
in a very short time interval, which is rarely the case. As a
result, conditionally on the random effects, the remaining
serial correlation can often be modeled by a rather simple
serial autocorrelation (see also Discussion).

As a final note, it is important to realize that when
Model (1) is estimated, not all stochastic individual ele-
ments (r000i, r00di, r0sdi, and ϵ(2)msdi) but only the fixed
regression coefficients and the total variance-covariance
matrix with all variance parameters (including τ 2 and θ)
mentioned previously are estimated. Individual predic-
tions for single participants (conditionally or not on their
history at previous signals) can only be performed post
hoc making use of the total variance-covariance matrix.
For example, individual estimates of the random effects
r000i, r00di, r0sdi are obtained post hoc using empirical
Bayes estimates (Verbeke & Molenberghs, 2000).

To facilitate the presentation of the model, we did not
include systematic trends. However, when such trends
are present, the model can be extended in a straight-
forward way. For example, when systematic trends over
time within days are present, linear (or higher order)
effects for time (e.g., a variable indicating the time passed
since the start of the day) can be added. These effects
can be fixed if the time trends within days are uniformly
present in all subjects or can even be made day specific
and subject specific by including day-by-subject and
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10 K. VANSTEELANDT AND G. VERBEKE

subject-specific random effects. In a similar way,
linear (or higher order terms) for days (e.g., a vari-
able indicating the number of days passed since the
start of the study) may be added to deal with systematic
trends over days (see also the application later). When
these systematic effects are added to the model, the
between-subject variance, the long-term between-days
variance, the short-term within-day variance, the serial
autocorrelation, and measurement error variance can be
quantified after elimination of these trends.

Adaptations ofModel (1) for different types of data

Until now, we have assumed that data are available
with multiple measurements nested within signals nested
within days nested within participants. However, we real-
ize that such data are not always available in EMA stud-
ies. In this section, we discuss which models are avail-
able to analyze three-level data (e.g., multiple signals
nested in multiple days nested in multiple participants)
or two-level data (multiple end-of-day reports nested in
multiple participants) and what the implications are for
the estimation of the different variance components and
serial correlation of the model. We start with some gen-
eral remarks: First, remember that in Model (1) all con-
cepts are defined as follows: The variances of random
effects are called variance components (e.g., between-
subject variance, long-term between-day variance, short-
term within-day variance). Conditionally on these ran-
dom effects, the remaining residual variation may con-
sist of errors that show a serial correlation (ϵ(1)msdi with
a parameter θ and a variance τ 2), and/or independent
errors, called measurement error (ϵ(2)msdi with variance
σ 2

ε(2)msdi
). From amathematical-statistical point of view, the

definition of these concepts is unambiguous. For exam-
ple, in Model (1) and all the models we will discuss,
the notion of measurement error for ϵ(2)msdi and its vari-
ance (σ 2

ε(2)msdi
) is unambiguous as this term prevents that

observations at the same signal/time are perfectly cor-
related. In other words, when ϵ(2)msdi is omitted from a
model, this model assumes that observations at the same
signal/time—whether collected or not—are perfectly cor-
related. As a result, one assumes no measurement error.
However, from a substantive-psychological point of view,
the interpretation of the different parameters of themodel
may vary depending on the data set at hand. For exam-
ple, depending on the data, the serial correlation may
pertain to successive signals for one data set but to suc-
cessive days in another data set. Another example per-
tains to the variance of the measurement error (σ 2

ε(2)msdi
);

in Model (1) σ 2
ε(2)msdi

reflects pure “measurement” error
(using its psychometric meaning), but depending on the
data set at hand, it may also comprise “true” within-day

variation in affect, measurement error, or both (see later).
Therefore, we will label ϵ(2)msdi in this section as indepen-
dent errors (and σ 2

ε(2)msdi
as the variance of the independent

errors) rather that measurement error (or the variance of
the measurement error). Second, note that the estimation
of σ 2

ε(2)msdi
does not necessarily require that multiple mea-

surements at each signal/time are available. Third, in all
the scenarios that will be discussed, the four-level Model
(1) reduces to a three- or two-level model, which results
in the inability to estimate particular random effects and
their variances. Note in this context that the representa-
tion of Model (1) with separate equations for the levels in
Appendix A may be helpful to understand the different
scenarios.

A first scenario is when only onemeasurement per sig-
nal is available with multiple signals nested within days
nested within participants. In this case, Model (1) reduces
to the three-level LMM as follows:

Ysdi = β000 + r00i + r0di + ε(1)sdi + ε(2)sdi, (5)

with all parameters being defined and having distribu-
tions as in Model (1). In this model, the between sub-
ject (σ 2

r00i) and long-term between-day variance (σ 2
r0di) can

still be estimated, but the short-term within-day variance
cannot be estimated anymore. The reason is that it is
impossible to estimate signal-by-day-by-subject-specific
random effects in this three-level model because the vari-
ation in valence scores from one signal to another sig-
nal within days may be due to true short-term within-
day variance (as defined in Model (1)), measurement
error, or both. However, conditionally on the random
effects, it is still possible to estimate the serial correla-
tion (ϵ(1)sdi) and the variance of the independent errors
(σ 2

ε(2)sdi
). As there are different signals within the day, the

serial correlation pertains to successive signals within
days. Moreover, the independent errors ϵ(2)sdi are neces-
sary in this model because a model without this term
would assume that measurements at the same signal (if
they would be present) are perfectly correlated, which
is not realistic for real data. However, given the fact
that the signal-by-day-by-subject random effects and the
independent errors cannot be distinguished anymore, the
variance of the independent errors (ϵ(2)sdi) may com-
prise both true within-day variation in affect from sig-
nal to signal (that is not serially correlated), measurement
error, or both. Therefore, we label σ 2

ε(2)sdi
as the variance

of the independent errors rather than the measurement
variance. In summary, in this model, the total within-day
variation (in the broad sense of theword) containswithin-
day serial correlation, true short-term within-day vari-
ance, andmeasurement error, but the two last two sources
of variance cannot be distinguished anymore.
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MULTIVARIATE BEHAVIORAL RESEARCH 11

A second scenario is when multiple measurements are
available at one signal nested within days within partici-
pants (e.g.,multiplemeasurements of valence at the end of
the day). Note that this data structure is exactly the same
as in the previous scenario but with multiple measure-
ments at one signal instead of one measurement at mul-
tiple signals. In this case, Model (1) reduces again to the
three-level LMM:

Ymdi = β000 + r00i + r0di + ε(1)mdi + ε(2)mdi, (6)

with all parameters being defined and having distribu-
tions as in Model (1). Note that only the subscript for sig-
nal is replaced by a subscript for measurements. In this
model, the between subject (σ 2

r00i) and long-termbetween-
day variance (σ 2

r0di) can be estimated, but the short-term
within-day variance cannot be estimated anymore. The
reason is that we only have one signal per day; as a result,
there is no information on variation in valence scores
between signals within days. Conditionally on these ran-
dom effects, it is still possible to estimate the serial corre-
lation (ϵ(1)mdi) and the independent errors (ϵ(2)mdi). How-
ever, in this case, the serial autocorrelation pertains to suc-
cessive days as there is only one signal per day and suc-
cessive signals consequently pertain to successive days;
the serial autocorrelation does not pertain to succes-
sive measurements as measurements are nested within
the same signal/day and cannot show a serial autocor-
relation (because there is no variation in time for mea-
surements). Finally, note that in this model, the vari-
ance of the independent errors (σ 2

ε(2)mdi
) is measurement

error.
Finally, the last scenario is when only one mea-

surement/signal per day is available as in EMA stud-
ies with end-of-the-day reports. In this case, Model (1)
reduces to the two-level LMM with days nested within
participants:

Ydi = β00 + r0i + ε(1)di + ε(2)di, (7)

with all parameters being defined and having distribu-
tions as in Model (1). In this case, it is possible to esti-
mate a subject-specific random effect (σ 2

r0i) but no day-
by-subject or signal-by-day-by-subject-specific random
effects. As a result, it is not possible anymore to estimate
the long-term between-day and the short-term within-
day variance. For these data, it is impossible to estimate
day-by-subject random effects in this two-level model
because the variation in valence scores from one day to
another day may be due to true long-term between-day
variance (as defined inModel (1)), measurement error, or
both. The signal-by-day-by-subject random effects can-
not be estimated anymore because there are no data on
signals varying within day (as there is only one signal

per day). Conditionally, on these subject-specific ran-
dom effects, it is still possible to estimate the serial cor-
relation (σ 2

ε(1)di
) and independent errors (σ 2

ε(2)di
) of the

model. In this case, the serial correlation pertains to
successive days for the same reason as explained in the
previous scenario. Note that, although there is only one
signal and measurement per day, it is still possible to esti-
mate the independent error variance (ϵ(2)di). Moreover,
the inclusion of the independent errors in the model is
necessary as the serial correlation assumes that observa-
tions at the same day (if they would be present), would be
perfectly correlated, which would be unrealistic for real
data. However, given the fact that the day-by-subject ran-
dom effects and the independent errors cannot be distin-
guished anymore, the variance of the independent errors
(ϵ(2)di) may comprise both true long-term between-day
variance in affect from day to day (that is not serially
correlated) and/or measurement error, but they cannot
be distinguished anymore. As a result, in this model, the
between-subject variance, the serial correlation between
successive days, and the variance of the independent
errors can be estimated, but the true long-term between-
day variance and measurement error cannot be distin-
guished anymore.

As a final remark, note that, depending on the data at
hand, serial correlation structures for equally or unequally
spaced data may be adopted (for more information on
autocorrelation structures, see Littell et al., 2006). From
a practical point of view, it is worth mentioning that
Model (1) and all the models mentioned previously can
be estimated using SASPROCMIXED (SAS Institute Inc.,
2011); annotated SAS-code for Model (1) and the differ-
ent scenarios is available in Supplement 1.

Model to estimate affective instability inmultiple
groups

Up to now, Model (1) allows the estimation of affective
instability in one particular group of subjects. Next, to
examine group differences in affective instability, we are
mainly interested in the following three parameters: (a)
the short-term within-day variance (σ 2

r0sdi), (b) the serial
autocorrelation within days (with parameters τ 2 and θ),
and (c) the long-term between-day variance (σ 2

r00di). The
between-subject variance (σ 2

r000i) is not of direct inter-
est for the analysis of affective instability but should be
included in the model to deal with variability in affect
that is due to differences between participants. For exam-
ple, random subject effects can take into account system-
atic differences in affect between participants that may be
due to (unknown) participant characteristics (e.g., bio-
logical factors). Data on available participant character-
istics can be included as predictors in the model in a
straightforward way, but this does not change the
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12 K. VANSTEELANDT AND G. VERBEKE

methodology (see Supplement 1 to include covariates).
Note that the variance and serial autocorrelation only
model variability in the model that is not explained by
such covariates.

To test the research question whether different
(diagnostic) groups differ from one another in affec-
tive instability, we propose four additional LMMs. These
four models correspond to the fact that each of the vari-
ance parameters and the serial correlation (with its two
parameters) mentioned previously—short-term within-
day variance (σ 2

r0sdi), serial autocorrelation (within days)
(τ 2and θ), between-day variance (σ 2

r00di), and between-
subject variance (σ 2

r000i)—are made group specific. For
example, the model where the short-term within-day
variance σ 2

r0sdi is made group specific can be written as
follows:

Ymsdi = β0000 + r000i + r00di +
G∑

g=1

rg0sdizgmsdi

+ε(1)msdi + ε(2)msdi, (8)

with zgmsdi = 1 if Participant i belongs to Group g
(g=1…g…G), and zgmsdi = 0 otherwise. The random
effects rg0sdi of each group g are assumed to be nor-
mally distributed with variance parameters σ 2

rg0sdi and zero
covariances. All other parameters have the same distribu-
tions and meaning as in Model (1). The other models can
be formalized in a similar way.

To test whether each of these models applies to a data
set at hand, the model with one group and themodel with
more groups are estimated using restricted maximum
likelihood and themodel without andwith group-specific
variance components and/or serial correlation are com-
pared using likelihood ratio tests (Verbeke & Molen-
berghs, 2000). With respect to model selection, it is the-
oretically possible to make all variance components and
the serial correlation group specific in one single model.
When such a model would apply to the data, different
groups would be characterized by (a) different short-term
within-day variance, (b) different serial autocorrelation
within days, (c) different (long-term) between-day vari-
ance, and (d) different between-subject variance. It may
be obvious that this model is very complex and probably
too complex for many data sets. Therefore, we propose
to estimate each of the four additional models separately
and to evaluate them in terms of increase in likelihood
in comparison to the model without a group-specific
component. Then, for the data set at hand, the most
appropriate model with a combination of group-specific
variances and/or serial correlation can be selected.

From a practical viewpoint, it may be noted that these
group-specific models can be estimated using the PROC
MIXED procedure in SAS (SAS Institute Inc., 2011; see

SAS syntax in Supplement 1).With respect to data dimen-
sions, estimation procedures for LMMs can be consid-
ered stable and feasible for moderately sized data sets (in
contrast with generalized LMMs, which yield far more
computational and/or convergence problems; Verbeke &
Molenberghs, 2000). However, it is impossible to give
explicit guidelines in terms of data dimensions as somany
factors play a role. In general, one may bear in mind
that more data are necessary when the model complex-
ity increases and when the measurements are unbalanced
(no fixed time occasions). The reason is that by adding
more random effects into the model, more parameters in
the variance-covariance matrix have to be estimated. For
example, in a two-level model (using fixed measurement
occasions) with random intercepts and slopes, at least
three repeated measurements per participant are neces-
sary since this model has a variance-covariance matrix
with four parameters (variance for intercepts, variance for
slopes, a covariance between them, and an error variance).
Note that numerical problems are mostly related to the
estimation of the variance-covariance structure and not
to the estimation of fixed effects for which a closed-form
solution exists (weighted least squares). Finally, as miss-
ing data are rather the rule than the exception in EMA
research, note that inference for the proposed models is
valid under the assumption of missingness at random
(MAR; Little & Rubin, 2002; Verbeke & Molenberghs,
2000).

Results

To examine systematic trends within days and over days,
Model (1) without serial autocorrelation was estimated
with linear trends for passed hours (since the start of
the day) and passed days (since the start of the study)
as predictors. Results revealed neither a linear effect of
passed hours, F(1, 3,234) = 0.18, p = .67, nor a lin-
ear effect of passed days, F(1, 3,234) = 3.0, p = .08,
and no significant interactions of these variables with
diagnostic group, F(2, 3,234) = 0.58, p = .56, and F(2,
3,234) = 0.17, p = .84, respectively. However, when days
were dummy coded in terms of day of the week (Mon-
day, Tuesday, etc.), results indicated that participants have
significant higher valence scores, and feel consequently
more positively, on weekend days compared to week-
days, F(6, 3,236) = 8.10, p < .0001. More in particular,
pairwise post hoc comparisons revealed (a) that valence
was highest on Saturday, which was significantly differ-
ent from all weekdays, (b) that there were no significant
differences among weekdays, and (c) that Sunday was
significantly different from all weekdays with the excep-
tion of Thursday and Friday. There was no evidence
that this effect was different for the diagnostic groups,
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MULTIVARIATE BEHAVIORAL RESEARCH 13

F(12, 3,236) = 0.45, p = .94. To further check for sys-
tematic trends of valence in the data, an ordinary least
squares (OLS) regression model with diagnosis and the
dummy-coded variable day of the week as predictors
was estimated. Next, locally weighted scatterplot smooth-
ing (LOWESS) was used to plot an average smoothed
lowess curve through the scatterplot of time versus the
residuals of this OLS regression within days. These plots
depicted almost similar horizontal lines with only very
small fluctuations in the different diagnostic groups,
which may be ignored given the large amount of vari-
ability present in the data. In a similar way, we inspected
systematic effect of residuals over days and found no
evidence to include (other) systematic effects of days in
our model. These plots are available as in Supplement 2.
As a result, in all analyses that follow, we have retained
diagnosis and the dummy variables indicating day of
the week and have dropped the other nonsignificant
effects.

For the selection of the serial autocorrelation, we com-
pared Model (1) with the effects mentioned without
serial autocorrelation to the same model with, respec-
tively, an exponential and a Gaussian serial autocorrela-
tion (respectively, Equations 2 and 3). Doing this, draw-
ing on likelihood ratio tests, we opted for a model with
an exponential serial autocorrelation (decrease in −2 log
likelihood = 192.7). Note that a formal test for the inclu-
sion of the serial autocorrelation is not trivial because
the test involves a 0-hypothesis on the boundaries of the
parameter space (τ 2 being zero), implying that standard
test procedures are invalid (formore information, seeDis-
cussion). In this particular case, however, the change in
deviance in so large that the inclusion of a serial autocor-
relation is justified without doubt.

The results of estimating this model revealed that all
three diagnostic groups are, on average, in a neutral
valence state withmean affective states of 0.36 (SE= 0.73)
for AN-BPT, 0.24 (SE = 0.66) for AN-RT, and −0.57 (SE
= 0.68) for BN-BPT. These means are not significantly
different from one another, F(2, 3,236) = 0.53, p = .59.
Moreover, we found a significant effect for day of theweek,
F(6, 3,236)= 8.29, p< .0001, with the same interpretation
as mentioned previously.

Of more interest for our research question, diagnos-
tic group differences in affective instability, are the esti-
mated variance components that are shown in Figure 4,
Panel a. As can be seen in this figure, a large part
of the total variability is related to between-subject
differences (52.90%), indicating that there are large
differences in mean valence between participants. Fur-
ther, it can be seen that the long-term between-day
(6.36%) and short-term within-day variance (10.03%)
are similar in size, but the largest part of the affective

instability is due to the serial autocorrelation within days
(24.02%). As a result, the contribution of the serial auto-
correlation to the within-day instability is about twice the
short-term within-day variance. Finally, the error com-
ponent accounts for 6.69% of the variance. In Figure 5,
Panel a, it can be seen how the serial autocorrelation
decreases as a function of hours between successive sig-
nals (τ 2

Model(1) = 4.02 and θModel (1) = 2.0069). For exam-
ple, the serial correlation between two valence states with
1-hour time interval is .61.

Next, we estimated the four additional models bymak-
ing (a) the short-termwithin-day variance, (b) thewithin-
day serial autocorrelation, (c) the between-day variance,
and (d) the between-subject variance components group
specific. In Table 1, likelihood ratio tests for each of these
fourmodels in comparison withModel (1) with exponen-
tial serial autocorrelation are summarized. There is evi-
dence for group-specific short-term within-day variance
and group-specific within-day serial autocorrelation and,
to a lesser extent, for group-specific between-day vari-
ance.

Next, we estimated a new model for valence with
both group-specific short-term within-day variance
and group-specific within-day serial autocorrelation. As
expected, the three groups of eating disorders differed
from one another in terms of the short-term within-day
variance and within-day serial autocorrelation, χ2(6) =
88.3, p < .0001; the addition of a group-specific between-
day variance did not improve the model anymore, χ2(2)
= 2.7, p = .26. In line with previous results, the three
diagnostic groups did not differ from one another in
mean valence, F(2, 2,782) = 0.54, p = .58. There was also
a significant effect of day of the week, F(6, 3,236) = 8.41,
p < .0001, with the same interpretation as mentioned
previously. In Figure 4, Panel b, the estimated variance
components for this new model are depicted. When we
compare Figure 4, Panel a and Figure 4, Panel b, it can be
seen that the between-subject variance, the between-day
variance, and the error variance are very similar in both
models. In addition, the mean of the group-specific
variance components for both the short-term within-day
variance and the serial autocorrelation (τ 2) are very
similar to the corresponding variance components in
Model (1) (θModel(1) = 2.0069 versus θAN-BPT = 1.6354,
θAN-RT = 3.6865, and θBN-BPT = 2.8269). In addition, in
Figure 4, Panel c, the within-day instability for the three
diagnostic groups is shown, which consists of the sum of
the short-term within-day variance and the part of the
within-day variability that is serial in nature (σ 2

r0sdi + τ 2).
From this figure, it is clear that the group with AN-BPT
shows more within-day instability in comparison with
the other two groups. Further, in Figure 5, Panel b, the
exponential serial autocorrelations of the three groups

D
ow

nl
oa

de
d 

by
 [

K
U

 L
eu

ve
n 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 0

2:
13

 0
2 

Ju
ne

 2
01

6 



14 K. VANSTEELANDT AND G. VERBEKE

Figure . Valence: Variance components in (a) Model () (τ  for serial autocorrelation), and in (b) themodel with group-specific short-term
within-day variance and serial autocorrelation. (c) Group-specific within-day affective instability in three groups of eating disorders. WD
=within days; SAC= serial autocorrelation; AN-BPT= anorexia nervosa-binge purging type; AN-RT= anorexia nervosa-restrictive type;
BN-BPT= bulimia nervosa-binge purging type.

are depicted. As can be seen in this figure, the serial auto-
correlation is clearly lower for the group with AN-BPT
in comparison with the other two groups. As a result,
one could say that the groups with AN-RT and AN-BPT
are characterized by more emotional inertia. The serial
correlation between two valence states with 1-hour time
interval are 0.54, 0.76, 0.70 for the groups with AN-BPT,
AN-RT, and BN-BPT, respectively. To test these findings
more formally, we performed post hoc pairwise compari-
son tests comparingModel (1) with, respectively, a model
with group-specific within-day variance and amodel with
group-specific within-day serial autocorrelation for all
pairs of groups. The results of these analyses are depicted
in Table 2. We can conclude that the group with AN-BPT
shows indeed more within-day affective instability, in
terms of both short-term within day variance and serial
dependency, than the other two groups. The latter two
groups themselves are not significantly different from one
another.

Discussion

A number of LMMs were proposed to examine diagnos-
tic group differences in affective instability. The models
we have proposed have severalmerits in the study of affec-
tive instability. First, a keymotivation for developing these
models was to have a tool for estimating both the vari-
ance and serial autocorrelation component of affective
instability taking unequally spaced measures in time into
account. By doing this, the serial correlation can be inter-
preted in terms of emotional inertia, reflecting the ten-
dency to carry over affective states from one moment to
another (Brose et al., 2015; Koval & Kuppens, 2012; Koval
et al., 2012; Kuppens et al., 2010; Suls et al., 1998). More-
over, themodel yields the opportunity to evaluatewhether
the within-day instability is dominated by variance or
serial autocorrelation. As a result, this model contributes
to the framework of Jahng et al. (2008), who developed an
index that is sensitive for both components but that does
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MULTIVARIATE BEHAVIORAL RESEARCH 15

Figure . Shape of the exponential serial autocorrelation as a function of the time lag in (a) Model (), and in (b) the model with group-
specific short-term within-day variance and group-specific serial autocorrelation (SAR) for valence. AN-BPT = anorexia nervosa-binge
purging type; AN-RT= anorexia nervosa-restrictive type; BN-BPT= bulimia nervosa-binge purging type.

not allow simultaneous estimation of both components.
Wang et al. (2012) also have proposed a method to model
individual differences in intraindividual variability in
affect by separating both variance and temporal depen-
dency, but this model only applies to equally spaced mea-
surements in time.

Note that we did not pay much attention to the nature
of the serial autocorrelation. The reason is that the serial
correlation models only one aspect of the total vari-
ability present in the data with the largest part of the
variability being captured by random effects at several
levels (subjects, days, signals). Indeed, Chi and Rein-
sel (1989) and Verbeke and Molenberghs (2000) have
argued that there is often strong competition between
different stochastic sources such as random effects and
serial autocorrelation. For example, it is often the case in
LMMs that the between-subject variability severely dom-
inates the within-subject variability (as is also the case in

Table . Model () and models with group-specific components:
Valence.

Model
− log

likelihood
Statistical

test p value

Model () with exponential serial
correlation

.

Group-specific between-group
variance

. χ ()= . .

Group-specific between-day
variance

. χ ()= . .

Group-specific within-day variance . χ ()= . <.
Group-specific serial

autocorrelation
. χ ()= . <.

Table . Post hoc pairwise comparisons for affective instability:
Valence.

Model
− log

likelihood
Statistical

test p value

AN-RT versus AN-BPT
Model () with exponential serial
correlation

.

Group-specific within-day variance
(WDV)

. χ ()= . <.

Group-specific serial
autocorrelation (SAC)

. χ ()= . <.

Group-specific WDV+ SAC . χ ()= . <.
AN-RT versus BN-BPT
Model () with exponential serial
correlation

.

Group-specific within-day variance
(WDV)

. χ ()= . 

Group-specific serial
autocorrelation (SAC)

. χ ()= . .

Group-specific WDV+ SAC . χ ()= . .
AN-BPT versus BN-BPT
Model () with exponential serial
correlation

.

Group-specific within-day variance
(WDV)

. χ ()= . <.

Group-specific serial
autocorrelation (SAC)

. χ ()= . <.

Group-specific WDV+ SAC . χ ()= . <.

Note. AN-RT = anorexia nervosa-restrictive type; AN-BPT = anorexia nervosa-
binge purging type; BN-BPT= bulimia nervosa-binge purging type; WDV=
within-day variance; SAC= serial autocorrelation.

our application), which implies that the exact paramet-
ric form of the serial correlation function can hardly be
identified. Moreover, Chi and Reinsel (1989) have
reported that a sufficient number of random effects in a
model with white noise errors may be able to represent
the serial correlations among the measurements taken on
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16 K. VANSTEELANDT AND G. VERBEKE

each individual because serial correlation can be replaced
by very smooth subject-specific functions. Finally, Ver-
beke and Molenberghs (2000) have shown that the pre-
cise characterization of the serial correlation function g(.)
is often extremely difficult in the presence of several ran-
dom effects. These authors have illustrated (Verbeke &
Molenberghs, 2000, see Section 10.3) that observed lon-
gitudinal profiles can often not distinguish between vari-
ous serial autocorrelation functions, not even whenmany
repeated measurements per participant are available. As
such, including a serial autocorrelation, if present, is far
more important than correctly specifying the serial auto-
correlation function (e.g., exponential versus Gaussian).
In practical applications in general, and in our applica-
tion in particular, there is often a large change in likeli-
hood when comparing a model with and without serial
autocorrelation, but the change in likelihood is often sim-
ilar for different types of serial autocorrelations. This can
be explained by the fact that distinguishing exponential
from Gaussian serial correlation functions requires mea-
surements taken very closely in time, a feature that is not
present in our data or in many other similar applications.
As a consequence, the residual variability—after taking
fixed and random effects into account—is often mini-
mal and can be modeled with a rather simple serial auto-
correlation. This also explains why the proposed serial
correlation in the model may be conceived as rather sim-
ple from a time series point of view (Shumway & Stof-
fer, 2006). On the contrary, in time series models, no ran-
dom effects can be included, yielding a situation in which
almost all variability has to be modeled by the residual
component, requiring a serial autocorrelation structure
that is far more complex in terms of lag and/or nature. In
this context, it is worth mentioning that when the nature
of the serial autocorrelation, conditionally on a prespeci-
fied set of random effects, is of primary interest, one may
adopt an approach using so-called fractional polynomials.
This approach is flexible enough to allow various shapes to
model the serial autocorrelation function (Lesaffre, Asefa,
&Verbeke, 1999). However, it is not implemented in stan-
dard software yet, and the optimization of random effects
and serial autocorrelation, as well as ameasurement error,
is computationally very demanding and requires many
repeated observations per participant. As a final remark,
one may note that future research may further confirm
whether the rather simple autocorrelation structures (e.g.,
exponential or Gaussian correlation structures) presented
before capture adequately the serial correlations present
in EMA data as more repeated observations are often
present in such data compared to more traditional lon-
gitudinal data.

The proposed model may also be helpful to answer
questions about the frequency of sampling data in future

EMA protocols on affective instability. For example, in
borderline personality disorders, affect is assumed to
change very abruptly and quickly within hours during
the day whereas in bipolar disorders, patients are already
considered rapid cyclers when they show four or more
different mood episodes during the year (American Psy-
chiatric Association, 2013). Failing to select the adequate
time scale may result in inadequate results; for exam-
ple, sampling very frequently over a short period of time
may incorrectly lead to the conclusion that subjects with
bipolar disorder do not show cycles in mood because the
cycling occurs at a much slower pace and is not detected
in the short time frame that is selected. Although there
is general consensus that research questions should gov-
ern the sampling scheme of an EMA design (for example,
weekly measures, end-of-the-day measurement, or mul-
tiple measurements in 90-minute blocks during the day),
such decisions are often made on intuitive grounds. In
our application, the total variance is decomposed in the
measurement error variance, the short-term within-day
variance, serial autocorrelation, between-day variance,
and between-subject variance. Shiyko and Ram (2011)
have demonstrated that such a variance decomposition
approach using LMMs in EMA-type data is useful to iden-
tify and quantify the relative speed of change processes,
which, in turn, may help make decisions with respect to
sampling frequency in EMA protocols. This is an impor-
tant issue that has important implications for both the
participants’ burden and for researchers’ ability to capture
and study dynamic processes (in affect). Briefly stated,
when the total variance is dominated by within-day vari-
ance and/or serial autocorrelation, one should sample fre-
quently within days; when it is dominated by between-
day variance, one should sample less within days but at
multiple days; when it is equally divided, one should sam-
ple multiple times within days for multiple days (for more
information, see Shiyko & Ram, 2011). In this context, it
is noteworthy that LMMs are very flexible in dealing with
different time scales because levels—signals nested in days
nested in weeks nested in months, and so forth—can eas-
ily be added or omitted in modeling the data as discussed
in the theory section.

However, this research is not without limitations, and
further model developments are still necessary. In this
article, we have focused on the concept of affective insta-
bility and the examination of diagnostic group differ-
ences. A first limitation is that our models are restricted
to the examination of group (or categorical) differences in
affective instability. As such, the variance and serial cor-
relation components are assumed to be the same within
groups. However, one may also be interested in indi-
vidual differences or within-person dynamics in both
the variability and serial autocorrelation component of
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MULTIVARIATE BEHAVIORAL RESEARCH 17

affective instability. One way to examine individual dif-
ferences (e.g., participants’ score on a dimension such
as, for example, depression) in the variability component
of affective instability is to include time-invariant vari-
ables (e.g., a participant’s depression score) as random
subject, random day-by-subject, and/or random signal-
by-day-by-subject effects in the model. In such a model,
it is possible to adjust the estimated between-subject vari-
ance, between-day variance, and/or within-day variance
for the continuous variables of interest. However, test-
ing hypotheses that part of the between-subject between-
day, and/or within-day variance is related to such a time-
invariant predictor is not trivial because such hypothe-
ses test for zero-variance components, which are on the
boundary of the parameter space. In this case, classical
Wald and likelihood ratio tests are invalid, and specific
adapted tests are needed. For example, it has been shown
for some very specific null hypotheses on the bound-
aries that the correct asymptotic null distributions are
often a mixture of chi-square distributions rather than
a single chi-square distribution (see Stram & Lee, 1994,
1995; Verbeke & Molenberghs, 2000). A full discussion
of this issue is beyond the scope of this article, but more
information can be obtained in Ke and Wang (2015);
Morrell (1998); Stoel, Garre, Dolan, and van den Witten-
boer (2006); Stram and Lee (1994, 1995); Verbeke and
Molenberghs (2000).

In addition, as discussed in the introduction, other
models have been proposed to model individual differ-
ences (instead of group differences) in affective instabil-
ity. First, heterogeneous mixed models have been pro-
posed to examine the effect of categorical and continu-
ous covariates on between- and within-subject variance
(but not between-day variance; Hedeker et al., 2008, 2012;
Hoffman, 2007). In addition, Wang et al. (2012) have
proposed a Bayesian estimation approach for equally
spaced data that models interindividual differences in
both components of affective instability. In this model,
the AR parameters as well as the error/innovation vari-
ances may be subject specific and predicted by covari-
ates. Finally, the differential equation model for affec-
tive dynamics (Oravecz et al., 2011) has great appeal
as intraindividual variability and autoregression param-
eters can be estimated for unequally spaced data.
Moreover, all stochastic parameters of the model—
the home base, variance, and regulatory processes
including the serial correlation—can be made subject
specific and related to covariates. Unfortunately, this
model is difficult to implement, cannot be estimated
using standard software, and comes at a considerable
computational cost (Oravecz & Tuerlinckx, 2011). For
example, these authors mention that the computation
time for an EMA data set with 80 participants who report

at 63 signals takes about 75 minutes using parallel com-
puting on a computing node. For a similar data set, esti-
mation time for the models we have proposed is a matter
of minutes on a standard computer.

Another limitation of the proposed models is that they
do not focus on cycles such as circadian rhythms in
affect, affect associated with menstrual cycles, and sea-
sonal changes in mood, which may be present in the data
(Ram et al., 2005). In theory, systematic cycles that are
uniformly present in all participants may be dealt with
in the fixed part of the model, and individual differences
may bemodeled by the inclusion of random effects. In our
application, we found that participants experience more
pleasant feelings during the weekend, in line with liter-
ature (Armeli, Carney, Tennen, Affleck, & O’Neil, 2000;
Vansteelandt, Rijmen, Pieters, Probst, & Vanderlinden,
2007). This effect was modeled by including day of the
week as a dummy variable. As further analyses did not
reveal evidence for cycles, we have opted to model these
effects—as far as theywere present—by the serial autocor-
relation. However, when the focus of the research ques-
tion is explicitly on cycles, one may adopt models that are
especially developed to model them, such as frequency-
domain time series methods including spectral density,
Fourier analysis, parametric sinusoidal curve fitting, or
ARMA time series models (Baehr et al., 2000; Browne
& Nesselroade, 2005; Ram et al., 2005). However, such
cycles may be hard to model as they are typically not
synchronized across persons and may be characterized
by subject-specific frequency, amplitude (minimum and
maximum), and phase. In addition, in their research on
weekly cycles in affect, Ram et al. (2005) concluded that
affect is more likely to be an amalgamation of responses
to a multitude of internal and external factors, and with
all of these factors shifting in both systematic and unsys-
tematic ways over time, underlying cycles (if present) will
likely be obscured.

Finally, affective instability is the dependent variable
in our model, and our model is not developed to pre-
dict outcome on the basis of affective instability in con-
trast with other models. For example, Wang et al. (2012)
have developed a model in which variability and tem-
poral dependency are included as random effects and
that allows one to predict outcome variables using both
components. The results of this study showed that both
components have differential predictability of health out-
comes and, consequently, should be modeled separately.
Also in research on emotional inertia (Brose et al., 2015;
Koval & Kuppens, 2012; Koval et al., 2012; Kuppens
et al., 2010), it has been shown that persons with high
neuroticism, low self-esteem, and depression are char-
acterized by higher levels of emotional inertia (or
higher serial dependency) in both positive and negative
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18 K. VANSTEELANDT AND G. VERBEKE

emotions. However, in some studies (see, for example,
Kuppens et al., 2010), the unequally spaced nature of the
EMA data is simply ignored, which may result in inad-
equate results as discussed previously (see Littell et al.,
2006; Oravecz & Tuerlinckx, 2011; Voelkle & Oud, 2013;
Voelkle et al., 2012).

In general, EMA provides large and complex data, and
there may be a strong competition between systematic
effects and different stochastic sources such as random
effects, serial autocorrelation, and measurement error. As
a result, variability modeled in one part of the model
may disappear in another part of the model and vice
versa. It may be clear that different models focus on dif-
ferent aspects of the data, and the selection of a model
will strongly depend on the research question. We hope
that the proposed models are useful to adequately model
group differences in affective instability using EMA data
and may further stimulate the development of new inten-
sive longitudinal models for EMA data in general and for
the study of affective instability in particular.
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Appendix A:
Model (1) with separate equations for each level

To further clarify the model, Model (1) can be rewritten
by expressing its four levels explicitly:

(a) Measurement level (Level 1):

Ymsdi = β0sdi + ε(1)msdi + ε(2)msdi, (A1)

with β0sdi being the average affect at Signal s on
Day d for Participant i. Furthermore, ϵ(1)msdi rep-
resents the serial autocorrelation, and ϵ(2)msdi the
measurement error.

(b) Short-term within-day (or signal) level (Level 2):

β0sdi = β00di + r0sdi, (A2)

with β00di being the average affect on Day d for
Participant i. r0sdi is a random effect for Sig-
nal s at Day d in Participant i reflecting varia-
tion within days that is normally distributed with
r0sdi ∼ N(0, σ 2

r0sdi ). As a result, σ 2
r0sdi is the short-

term within-day variance.
(c) Between-day level (Level 3)

β00di = β000i + r00di, (A3)

with β000i the average affect of Participant i. r00di is
a day-by-subject-specific random effect reflecting
variation between days that is normally distributed
with r00di ∼ N(0, σ 2

r00di ). At this level, σ 2
r00di is the

long-term between-day variance.
(d) Between-subject level (Level 4)

β000i = β0000 + r000i, (A4)

with β0000 the overall intercept and r000i a ran-
dom subject-specific effect that is normally dis-
tributed with r000i ∼ N(0, σ 2

r000i ). Note that σ 2
r000i is

the between-subject variance.
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