
Energy Cost of Running Instability Evaluated with 1 

Wearable Trunk Accelerometry 2 

Kurt H. Schütte 
a, b *

, Saint Sackey
 b

, Rachel Venter 
b
, Benedicte Vanwanseele 

a 
3 

aHuman Movement Biomechanics Research Group, Department of Kinesiology, KU Leuven, 4 
Leuven, Belgium. 5 

bMovement Laboratory, Department of Sport Science, Stellenbosch University, Stellenbosch, 6 
Western Cape, South Africa. 7 

K.H.S, R.V and B.V conceived and designed research; K.H.S, S.S and R.V performed experiments; 8 
K.H.S analysed data; K.H.S, S.S, R.V, and B.V interpreted results of experiments; KHS drafted 9 

manuscript; K.H.S prepared figures; K.H.S, S.S, R.V and B.V revised manuscript. K.H.S, S.S, R.V 10 
and B.V approved final manuscript. 11 

 12 

*Corresponding author: 13 

Kurt H. Schütte 14 
Human Movement Biomechanics Research Group 15 

GBDN 02.15 16 
Tervuursevest 101 - box 1501, 3001 Heverlee 17 

KU Leuven 18 
Belgium 19 

kurt.schutte@kuleuven.be 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 

Downloaded from www.physiology.org/journal/jappl by ${individualUser.givenNames} ${individualUser.surname} (134.058.253.056) on February 1, 2018.
Copyright © 2017 American Physiological Society. All rights reserved.



Energy Cost of Running Instability • Schütte et al. 

 

1 

 

ABSTRACT  40 

Maintaining stability under dynamic conditions is an inherent challenge to bipedal 41 

running. This challenge may impose an energetic cost (Ec) thus hampering endurance 42 

running performance, yet the underlying mechanisms are not clear. Wireless tri-axial trunk 43 

accelerometry is a simple tool that could be used to unobtrusively evaluate these mechanisms. 44 

Here, we test a cost of instability hypothesis by examining the contribution of trunk 45 

accelerometry-based measures (tri-axial root mean square, step and stride regularity, and 46 

sample entropy) to inter-individual variance in Ec (kcal.km
-1

) during treadmill running. 47 

Accelerometry and indirect calorimetry data were collected concurrently from 30 recreational 48 

runners (16 men; 14 women) running at their highest steady-state running speed (80.65 ± 49 

5.99% VO2 max). After reducing dimensionality with factor analysis, the effect of dynamic 50 

stability features on Ec was evaluated using hierarchical multiple regression analysis. Three 51 

accelerometry-based measures could explain an additional 10.4% of inter-individual variance 52 

in Ec after controlling for body mass, attributed to anteroposterior stride regularity (5.2%), 53 

anteroposterior RMS ratio (3.2%), and mediolateral sample entropy (2.0%). Our results lend 54 

support to a cost of instability hypothesis, with trunk acceleration waveform signals that are 55 

1) more consistent between strides anteroposterioly, 2) larger in amplitude variability 56 

anteroposterioly, and 3) more complex mediolaterally, are energetically advantageous to 57 

endurance running performance. This study shows that wearable trunk accelerometry is a 58 

useful tool for understanding the Ec of running, and that running stability is important for 59 

economy in recreational runners. 60 
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NEW & NOTEWORTHY 61 

This study evaluates and more directly lends support to a cost of instability hypothesis 62 

between runners. Moreover, this hypothesis was tested using a minimalist setup including a 63 

single tri-axial trunk mounted accelerometer, with potential transferability to biomechanical 64 

and performance analyses in typical outdoor settings.  65 

KEYWORDS 66 

Wearable technology; trunk accelerometer; energy cost; running instability; running economy 67 

GLOSSARY 68 

AP  anteroposterior  

BLa  blood lactate 

BMI  body mass index  

CPU  central processing unit 

CoM  center of mass 

Ec  energetic cost 

g  acceleration due to gravity 

HR  heart rate  

ML  mediolateral 

OBLA  onset of blood lactate accumulation 

RER  respiratory exchange ratio 

RMS  root mean square 

VOBLA  highest treadmill velocity prior to OBLA  

VO2  oxygen consumption  

VO2 max  maximal aerobic power 

Vpeak  peak treadmill speed  

VT  vertical 

  69 
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INTRODUCTION  70 

Running economy is widely accepted as a key determinant of endurance running 71 

performance. Running economy is also a complex, multifactorial phenomenon with numerous 72 

anthropometrical, demographic i.e. age- sex- and ethnic-related, physiological, 73 

biomechanical, and neuromuscular determining factors (5, 23, 28). Of these factors, 74 

establishing a biomechanical basis to running economy continues to be of interest to 75 

researchers and coaches. For example, using biomechanical principles such as drafting, lighter 76 

shoes, and course elevation drop has recently been proposed as quantifiable strategies needed 77 

to reduce energy cost and break the two-hour marathon barrier (17). A biomechanical basis 78 

for running economy is also intuitive from a running ‘technique’ standpoint. Although the 79 

majority (~80%) of running economy is determined by the cost to support body mass (4), a 80 

most recent review has revealed that superior running economy has its strongest direct links to 81 

running technique characteristics such as less leg extension at toe-off, larger stride angles, 82 

alignment of the ground reaction force and leg axis, and low activation of the lower limb 83 

muscles (28). 84 

Despite the plethora of studies examining biomechanical or running ‘technique’ links to 85 

economy (4, 14, 22, 30, 34, 37, 46, 51), the upper extremity with respect to trunk control  or 86 

dynamic postural stability has been largely ignored. Evolutionary theory suggests that while 87 

structural adaptations have allowed humans to have a more stable and less energetically costly 88 

running gait, human running remains unwieldly and prone to instability (9, 25). Indeed, trunk 89 

control has been identified as a critical component of locomotor efficiency (38). During 90 

ground contact a runner must activate muscles sufficiently to ensure adequate stability while 91 

also maintaining forward momentum (14). Electromyography has demonstrated that during 92 
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human running, the back extensors activate early to control forward momentum during 93 

impact, while abdominal obliques’ actively decelerate the thorax during second half of stance 94 

(35). The increased activation of these trunk muscles could help explain earlier findings 95 

relating trunk lean to running economy (51). For example, aside from a comprehensive set 96 

running gait characteristics, Williams and Cavanagh (51) showed that a group of distance 97 

runners with the best running economy exhibited greater mean forward trunk lean relative to 98 

the vertical compared to runners with middle and least economical groups (51). Other 99 

previous work indicates that larger horizontal plane lumbo-pelvic motion while running 100 

relates to augmented activity of both abdominal and the superficial multifidi muscles (38). 101 

Therefore, it is plausible that various characteristics of dynamic stability or trunk kinematics 102 

in 3D could influence the activation levels of these stabilizing muscles as well as running 103 

economy. 104 

The effects of upper extremity posture on walking and running economy has been 105 

indirectly assessed by removing stability (2, 3, 48). For example, instability induced by 106 

supressing arm swing increases energetic cost (Ec) by 7.7% and 7.6% while walking (48) and 107 

running (3) respectively. The maintenance of lateral balance i.e. additional step width 108 

variability has been a primary yet refuted mechanism for this increase (3), reasoned that other 109 

unknown aspects of dynamic stability could account for this increased energetic cost. 110 

Alternative explanations may include compensatory strategies in torso rotation or increases in 111 

the free moment in the horizontal plane (3). Moreover, dynamic instability as reflected by 112 

larger lateral and horizontal total excursions or exacerbated accelerations of the CoM could 113 

also account for increased energy cost without arm swing (15). 114 
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Wearable trunk accelerometers provide a new level of analysis for dynamic stability of 115 

human locomotion. Accelerometers have improved from an accuracy, sensitivity, and 116 

computing power standpoint and have enabled more sophisticated analyses of motion. When 117 

mounted to the lower trunk, accelerometry unobtrusively estimates CoM motion and thus 118 

allows for several aspects of dynamic stability to be captured. These stability aspects, whether 119 

it function vertically i.e. body weight support, mediolaterally i.e. side-to-side balance control, 120 

or anteroposterioly i.e. braking and propulsion could more directly test various biomechanical 121 

hypotheses underpinning running economy. To the knowledge of the authors only two studies 122 

(26, 49) and one pilot study (32) have previously used trunk accelerometry-based measures to 123 

estimate energy expenditure while running. Unfortunately, these studies (26, 49) did not 124 

investigate submaximal running economy specifically, by including running intensities 125 

beyond aerobic i.e. ranging to maximal aerobic capacity in their regression analyses. 126 

Additionally, these studies either did not assess (32, 49) or did not delineate (26) inter-subject 127 

variations in running economy. Therefore, it remains unclear which trunk-accelerometry 128 

based aspects of dynamic stability may be economically favourable for endurance running. 129 

Several linear and non-linear stability aspects are worthy of investigation. 130 

Firstly, higher amplitudes or variations of trunk accelerations expressed as the acceleration 131 

root mean square (RMS) could reflect excessive changes in momentum that are energetically 132 

wasteful (14). Vertically, this is plausible since runners with poor economy often demonstrate 133 

larger vertical oscillation of the pelvis (12) and CoM (12, 46, 51), which may translate to 134 

larger vertical accelerations. Horizontally, this is plausible since coordination patterns of the 135 

pelvis and spinal segments during running function to minimize both ML and AP changes in 136 

momentum (35, 38). Indeed, Folland et al.,(12) recently found that runners with greater 137 

minimum AP horizontal velocity of the pelvis i.e. more deceleration/braking were more 138 
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energetically costly. Poor trunk coordination could therefore increase energetic cost via larger 139 

changes in horizontal momentum (15). In partial support, trunk accelerations in the ML and 140 

AP direction have shown to increase due to running induced fatigue (24, 40).  141 

Secondly, the dominant autocorrelations of acceleration waveforms could empirically test 142 

whether the ability to maintain a global consistency either between steps or strides are 143 

influential on economy. Step regularity indicates bilateral (a)symmetry and could evaluate the 144 

notion that as occurring in cars, dynamic asymmetries could generate a higher energetic cost 145 

to travel a given distance (43). Stride regularity indicates consistency between strides, and 146 

sticking with the car analogy, inconsistencies thereof could be synonymous to a driver rapidly 147 

and/or more frequently applying accelerations i.e. “gas-brake-gas” that result in increased fuel 148 

consumption. 149 

Thirdly, the sample entropy of trunk accelerations accounts for the complexity of the trunk 150 

acceleration signal waveform and could assess whether overall fluidity of a runner’s gait 151 

pattern is related to economy (1). Sample entropy is a non-linear measure that might be 152 

sensitive enough detect movement efficiencies masked by linear measures such as the RMS. 153 

Here, we test a cost of instability hypothesis that proposes a link between a runner’s 154 

stability and running economy, and that this link can be assessed using measures derived from 155 

wearable tri-axial trunk accelerometry. Specifically, we hypothesize that runners running with 156 

less deviations in CoM motion such as 1) less amplitude variability (RMS); 2) higher 157 

symmetry; 3) higher consistency; and 4) less complexity have a running gait that is 158 

energetically advantageous. We experimentally evaluate these hypotheses using simple and 159 

non-linear measures including 1) the RMS; 2) inter-step 3) inter-stride regularity, and 4) the 160 

sample entropy of waveforms of each acceleration axis (vertical, ML, AP), each of which 161 
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express unique aspects of dynamic stability during running. Additionally, since low-pass 162 

filtering of acceleration waveform is a common, yet often questioned pre-processing 163 

approach, we further assessed whether leaving accelerations unfiltered prior to calculating 164 

stability measures would explain more inter-individual variance in Ec.  165 

METHODS 166 

Subjects. Thirty recreational to moderately trained runners including 16 men and 14 167 

women (aged 19-26 years with running experience of 5 - 10 years) volunteered to be part of 168 

this study. To be included in the study runners had to be running regularly (2 – 4 sessions per 169 

week; 15 – 40 km/week) and have prior experience with treadmill running. All subjects were 170 

screened to have no known history of metabolic, neurological, cardiovascular disease, or 171 

surgery to the back or lower limbs, and were symptom-free of any lower extremity injury for 172 

at least six months prior to the study. All runners provided written informed consent prior to 173 

participation in accordance with the Declaration of Helsinki. The local ethics committee of 174 

Stellenbosch University approved the study (# SU-HSD-002032). 175 

Incremental treadmill running speed test. Subjects were asked to refrain from alcohol, 176 

caffeine, and vigorous physical activity for 24 h before the session. They were also instructed 177 

not to consume any food or drink, other than water, during the 90 min before the testing 178 

session. All subjects indicated “excellent” as their self-reported motivation for exercise testing 179 

on the day. Subjects performed a maximal incremental running test to exhaustion at 1% slope 180 

on a motorized treadmill (Saturn h/p/cosmos, Nussdorf-Traunstein, Germany), starting at a 181 

running speed of 2.22 m•s
-1

 or 2.5 m•s
-1

 depending on individual comfort and previous 182 

experience. A warm-up of four minutes’ equivalent to starting speed was first provided, after 183 
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which treadmill speed was increased discontinuously in increments of 0.42 m•s
-1 

every four 184 

minutes interspersed by a one-minute rest until volitional exhaustion. This protocol was 185 

chosen based on pilot data that suggested four-minute intervals were sufficient to 186 

accommodate to each steady-state while also covering broader range of sub-maximal running 187 

speeds. Participants could run in their own relatively new (within three months of use) 188 

conventional shod running shoes. Treadmill gradient was maintained at 1% throughout 189 

submaximal assessments to reflect the energetic cost of outdoor running [22]. All tests were 190 

performed under similar laboratory conditions (20 – 25 ° C, 50 – 60% relative humidity at 191 

130m of altitude). Rating of perceived exertion scores on a 6 – 20 point scale (8), as well as 192 

blood capillary samples from the finger (obtained with BLa concentrations using a portable 193 

lactate analyzer ; Lactate Pro 2 LT-1730, Japan) were obtained immediately after each stage. 194 

Heart rate (HR) was recorded by a heart rate monitor (Cosmed Quark CPET, Rome, Italy). 195 

Participants were fitted with an adjustable safety harness during the entire treadmill test. 196 

Runners were considered to have achieved VO2 max when at least two of the following 197 

criteria are fulfilled: 1) A plateau in the VO2, defined as an increase of less than 1.5 198 

ml•kg•min
-1

 in two consecutive workloads; 2) respiratory quotient (R- value) > 1.15); 3) 199 

maximal heart rate value (HR max) > 95% of the age-predicted maximum (220 - age); and 4) 200 

rating of perceived exertion (RPE) ≥ 19 on the 6-20 Borg scale. Additionally, peak treadmill 201 

speed (Vpeak; in m•s
-1

) was calculated as follows, taking every second into account: 202 

Vpeak = completed full intensity (m•s
-1

) + [(seconds at final speedx240s
-1

) x 0.42 m•s
-1

] 203 

Running economy assessment. Pulmonary gas exchange was recorded through-out the 204 

incremental test using a breath-by-breath metabolic analyser (Cosmed Quark CPET, Rome, 205 

Italy). Gas analysers were calibrated before each session to 16% O2, 4% CO2 balance N2 and 206 
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the turbine flow meter is calibrated with a 3L calibration syringe before each test. VO2 data 207 

collected from the last two minutes of each stage were checked for steady-state. Specifically, 208 

linear regressions were performed on the final two minutes of each speed increment to 209 

determine whether the VO2 profile was not statistically different (p < 0.05) from the 210 

horizontal flat line. In other words, no additional rise in the slow component of VO2 was to be 211 

detected during steady-state. VOBLA was determined using this VO2 criterion in addition to the 212 

highest stage which elicited a post-stage BLa below the onset of blood lactate accumulation 213 

(OBLA; BLa < 4mmol•L
-1

) (Fig. 1).  214 

[FIGURE 1] 215 

VO2, VCO2 and RER were averaged during the final minute of VOBLA. Updated nonprotein 216 

respiratory equations were used to estimate substrate use (grams•min
-1

) and the relative 217 

energy derived from fat and carbohydrate was calculated by multiplying by 9.75 and 4.07 218 

respectively (19). Running economy was defined as gross absolute Ec (expressed as joules per 219 

meter), quantified as the sum of these values to reflect the mean energy content of the 220 

metabolized substrates during moderate to high-intensity exercise (19). This definition was 221 

chosen firstly to account for variations in substrate use when running at submaximal speeds 222 

i.e. energetic, rather than oxygen cost (44), and secondly to enable normalization and 223 

comparison between runners with different speed thresholds often determined by individual 224 

training level and/or gender e.g. running at similar relative intensity (different absolute 225 

speeds) rather than at a single fixed speed for all runners (11). Resting metabolic rate was not 226 

subtracted since it cannot be ascertained if resting metabolic demand continues at the same 227 

rate during the running (45).  228 
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Accelerometry-based measures of stability. Tri-axial accelerometry was acquired during 229 

the entire running test using a Shimmer3 wireless device (±16 g range, sampling at 1024 Hz, 230 

16-bit resolution, 0.023 kg weight, Shimmer Sensing, Dublin, Ireland). The accelerometer 231 

was securely positioned over L3 spinous process of the trunk and directly mounted to the skin 232 

using double sided tape and adhesive spray. The accelerometer was securely tightened to 233 

individual comfort provided to minimize movement artefact using additional self-adhesive 234 

bandage (Cipla-Plast, Cipla, South Africa). Tri-axial accelerations signals expressed as g’s 235 

were processed using customized software in MATLAB version 8.3 (The Mathworks Inc. 236 

Natick, MA, USA).  237 

The sensing axis of the accelerometer may not be aligned with the axes of the world-238 

reference orientation while running. Therefore, a trigonometric correction (27) of the dynamic 239 

acceleration signal was performed, a procedure consistently applied to CoM accelerations 240 

during walking (20, 27) and running (21, 26). In this study, calculated deviations of 241 

accelerometer axes were between 4.1 degrees to 12.5 degrees (anterior tilt) and 0.1 to 1.6 242 

degrees (laterolateral tilt) prior to transformation. Accelerometry-based measures were then 243 

computed from the final twenty consecutive steps of acceleration signals at each runner’s 244 

individual VOBLA (Fig. 2). Standardizing acceleration epochs to amount of running steps as 245 

opposed to time windows was done to allow cross study comparison (39, 40).  246 

[FIGURE 2] 247 

Since filtering of body-worn accelerations is a common (40), yet disputed signal 248 

processing approach in terms of potentially eliminating physiologically related signal variance 249 

(36), we additionally assessed the effect of filtering by computing a second set of 250 
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accelerometry-based measures after applying a zero-lag 4th order low-pass Butterworth filter 251 

(cut-off frequency 50 Hz).  252 

Moreover, non-linear measures such as sample entropy can be sensitive to input signal 253 

length (N) (52) which would undesirably influence the outcome. To determine the optimal 254 

amount of continuous running steps required for steady-state sample entropy values, we 255 

performed a basic iteration analysis on VT, ML, and AP sample entropy values on N steps 256 

ranging from six to 160. Twenty steps were chosen as the optimal (minimal) number of steps 257 

required to achieve steady-state sample entropy values, and which appears in the APPENDIX.  258 

Dynamic stability parameters were extracted from each acceleration axis (vertical, ML, 259 

AP) and quantified firstly using both absolute and ratio of each linear acceleration axis root 260 

mean square (RMS) relative to the resultant vector RMS to capture movement variability (26, 261 

42); secondly using step regularity (inter-step symmetry) and stride regularity using the 262 

unbiased autocorrelation procedure, with perfect regularities equivalent to one (27); and 263 

thirdly using sample entropy to capture the waveform predictability, with values typically in 264 

range of 0 to 2 for physiological systems and higher values indicating less periodicity or more 265 

unpredictability (36). Detailed procedures and algorithm inputs for the computation and 266 

extraction of these dynamic stability parameters are the same as previously explained (40). 267 

Spatio-temporal parameters including step frequency (27, 39, 40) and contact time (13, 39) 268 

were additionally computed from vertical trunk accelerations. 269 

Statistics. Sex differences were analysed with a 2-tailed independent t-test.  Factor analysis 270 

was performed to reduce dimensionality and possible multicollinearity of the 17 respective 271 

accelerometry outcome measures. A scree-plot determined the number of extracted factors 272 

(eigenvalues > 1.0). VariMax rotation was used to optimize loadings of variables onto factors, 273 
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and the most representative accelerometry measures were chosen as the measures which 274 

revealed the highest loading per factor. These representative measures were then entered in an 275 

a priori hierarchical multiple regression analysis to explain inter-individual variance in Ec. 276 

Specifically, body mass was entered first as block 1 into the model. Thereafter, block 2 was 277 

entered containing the most representative accelerometry measures from each factor. After the 278 

entry of each block, we evaluated the adjusted R
2
 change to determine the proportion of 279 

additional variance explained and the significance from 0. This sequential order was based on 280 

an a priori hypothesis that the additional variance in Ec could be explained by dynamic 281 

stability and spatio-temporal parameters, after accounting for body mass that is well known as 282 

a primary determinant of running Ec (6). For each block the beta weights for the independent 283 

variables retained in the regression equations and the multiple correlation coefficients are 284 

presented. Beta weights further indicate the relative importance of each variable in explaining 285 

the variance in Ec. All statistical analyses were performed using SPSS (version 20.0; SPSS 286 

Inc, Chicago, IL), and data are reported as mean ± SD. 287 

RESULTS 288 

Descriptive. All tests were terminated by volitional exhaustion, and all subjects achieved 289 

VO2 max by the set criteria. All highest stage steady-state slopes used for Ec analysis had a 290 

gradient < 0.2ml O2•s
-1

 (p >0.05) thus equating to < 24ml O2 increase over the final 2 min of 291 

each stage. Descriptive characteristics and results for endurance markers combined and per 292 

sex are listed in Table 1. Height and mass were significantly greater in men compared to the 293 

women (both p < 0.001). Men also had significantly higher VO2 max, Vpeak and VOBLA (all p < 294 

0.001). However, the relative intensity at which VOBLA occurred was not significantly 295 

different between sexes (p = 0.294) indicating similar running intensity, and thus all 296 
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subsequent analyses with respect to the primary hypothesis pooled both sexes together. Men 297 

had significantly higher absolute Ec, but not when expressed relative to body mass (p = 0.44).  298 

Table 1. Descriptive results for endurance markers and running economy. Values are means ± SD. 
 All runners (n = 30) Males (n = 16) Females (n = 14) 

Descriptive    

Age   21.75 ± 1.40 21.86 ± 1.88 21.64 ± 0.74 

Body mass (kg)     68.18 ± 11.41     74.72 ± 11.24* 61.64 ± 7.19 

Height (m)     1.73 ± 0.08     1.78 ± 0.08*   1.68 ± 0.06 

BMI   22.56 ± 2.48     23.4 ± 2.51* 21.72 ± 2.23 

Endurance markers    

VO2 max (ml•kg-1•min-1)   48.43 ± 6.30   52.17 ± 5.90* 44.70 ± 4.19 

Vpeak (m•s-1)     4.15 ± 0.54     4.50 ± 0.43*   3.80 ± 0.39 

VOBLA (m•s-1)     2.89 ± 0.43     3.09 ± 0.39*   2.67 ± 0.37 

VOBLA (% VO2 max)   80.65 ± 5.99   79.5 ± 5.30 81.79 ± 6.60 

Running economy and RER    

RER   0.95 ± 0.03  0.95 ± 0.03   0.94 ± 0.03 

Ec (J•m-1) 314.59 ± 52.51    341.75 ± 52.89* 287.44 ± 36.69 

Ec relative to body mass (J•kg•m-1)   4.64 ± 0.33  4.56 ± 0.25    4.68 ± 0.42 

* p < 0.05 significantly different between sexes 

 299 

Descriptive statistics for spatio-temporal and dynamic stability accelerometry measures 300 

combined and per sex are listed in Table 2. At VOBLA, men had significantly shorter contact 301 

times (p = 0.016), lower dynamic stability in the ML direction for RMS (p = 0.014), RMS 302 

ratio (p = 0.003), step regularity (p = 0.04) and stride regularity (p = 0.026) as well as higher 303 

dynamic stability in the vertical direction for RMS ratio (p = 0.001).  304 

Table 2. Descriptive results for accelerometry-based dynamic stability measures at VOBLA.  Values are means ± SD. 

 Axis All runners (n = 30) Males (n = 16) Females (n = 14) 

Spatio-temporal     

Stance-time (s) VT   0.21 ± 0.02       0.20 ± 0.02*   0.22 ± 0.02 

Step frequency (steps•min-1) VT 165.24 ± 10.81  168.50 ± 9.44 161.98 ± 11.43 

Dynamic stability     

Acceleration RMS VT   1.22 ± 0.22     1.29 ± 0.29   1.16 ± 0.10 

 ML   0.53 ± 0.14       0.48 ± 0.13*   0.58 ± 0.13 

 AP   0.41 ± 0.09     0.39 ± 0.07   0.43 ± 0.10 

Ratio of acceleration RMS (unitless) VT   0.87 ± 0.05       0.89 ± 0.04*   0.84 ± 0.05 

 ML   0.38 ± 0.09       0.34 ± 0.09*   0.42 ± 0.08 

 AP   0.29 ± 0.05     0.28 ± 0.04   0.31 ± 0.06 

Step regularity (unitless) VT   0.91 ± 0.04     0.92 ± 0.06   0.91 ± 0.02 

 ML   0.74 ± 0.14       0.69 ± 0.16*   0.79 ± 0.09 

 AP   0.72 ± 0.12     0.70 ± 0.13   0.74 ± 0.11 

Stride regularity (unitless) VT   0.92 ± 0.06     0.92 ± 0.08   0.92 ± 0.02 

 ML   0.82 ± 0.09       0.78 ± 0.10*   0.85 ± 0.08 

 AP   0.77 ± 0.11     0.75 ± 0.13   0.79 ± 0.08 

Sample entropy (unitless) VT   0.11 ± 0.03     0.10 ± 0.03   0.11 ± 0.03 

 ML   0.24 ± 0.09     0.27 ± 0.08   0.22 ± 0.09 

 AP   0.27 ± 0.09    0.30 ± 0.10   0.25 ± 0.08 

* p < 0.05 significantly different between sexes 
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 305 

Factor analysis. Five components explained 86.3 % of total variance in unfiltered 306 

accelerometry measures. From the rotated matrix, factor one (eigenvalue (λ) = 5.79, 34.0 % of 307 

variance) included variables relating mainly to step symmetry and stride regularity from all 308 

axes. Factor two (λ = 3.89, 22.9% of variance) comprised mainly of dynamic stability 309 

parameters in the ML direction. Factor three (λ = 2.34, 13.8% of variance) was associated 310 

with variability (RMS) in the AP direction. Factor four (λ = 1.68, 9.9% of variance) was 311 

associated waveform complexity (sample entropy in all directions) with while factor five (λ = 312 

1.01, 5.7% of variance) comprised of spatio-temporal measures. Variables with highest 313 

loading per factor are bolded in Table 3. These five representative accelerometry measures 314 

were therefore assessed for their relationship with Ec. Although not reported here, the total 315 

variance explained in filtered accelerometry measures was like unfiltered (86.05% variance 316 

explained), with the same five measures having the highest loadings per factor. 317 

Table 3. Factor analysis on unfiltered accelerometry-based measures revealed five primary factors (eigenvalues greater 

than one).  
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

Stride regularity AP  

(0.93) 

RMS ML 

(0.94) 

RMS AP 

(0.94) 

Sample entropy ML 

 (0.93) 

Stance time  

(-0.85) 

Step regularity AP 

(0.90) 

RMS ratio ML 

(0.93) 

RMS ratio AP  

(0.87) 

Sample entropy VT 

(0.80) 

Step frequency  

(0.84) 

Stride regularity VT  

(0.84) 

RMS ratio VT 

(-0.84) 
 

Sample entropy AP 

(0.63) 
 

RMS VT 

(-0.84) 

Step regularity ML  

(0.55) 
   

Stride regularity ML 

 (0.68) 
    

Step regularity VT 

(0.67) 
    

Measures (loadings) are sorted from highest to lowest and measures with most representative (highest loading) per factor are bolded. Cross-loadings as 

well as loadings smaller than 0.4 are suppressed for brevity. 

 318 

Hierarchical multiple regression analyses. Three unfiltered accelerometry measures were 319 

retained in the multiple regression after accounting for block one (body mass) which, as 320 

expected, accounted for most of Ec variance (80.8%). Specifically, stride regularity (AP), 321 
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RMS (AP) and sample entropy (ML) significantly (p < 0.05) and independently accounted for 322 

an additional 5.2%, 3.2%, and 2.0% of the variance in Ec respectively. Remaining unfiltered 323 

accelerometry measures including RMS (ML) as well contact time were not retained as 324 

significant predictors (all p > 0.05). The final unfiltered regression model accounted for 325 

91.2% variance in Ec. The spread of the partial regression plots is shown in Fig. 3 B, C, and D 326 

with individual beta coefficients in Table 4. Partial regression plots were generated to more 327 

accurately reflect the scatter of partial correlations (31). For example, the partial regression 328 

plot in Fig. 3 B reflects the individual residuals of Ec (dependent variable) on body mass, 329 

RMS AP and sample entropy ML (remaining explanatory variables) versus individual 330 

residuals of AP stride regularity (target explanatory variable) on body mass, RMS AP and 331 

sample entropy ML (the remaining explanatory variables). Thereafter, individual residuals are 332 

added to the group mean values e.g. of Ec and Stride regularity AP (from Table 1 and 2) on 333 

both axes to aid interpretation of understandable values. When filtered accelerometer 334 

measures were entered in the regression for model two, sample entropy (ML) was no longer 335 

retained in the model as a significant predictor of Ec. The final filtered regression model 336 

accounted for 88.8% of variance in Ec. 337 

[FIGURE 3] 338 

Table 4. Three unfiltered and two filtered accelerometry-based measures were retained in the hierarchical multiple 

regression analyses for explaining inter-individual Ec after controlling for body mass.   

Predictor Axis 
Unique contribution  Overall model 

B SE B β R2 change R2  

Model 1: Unfiltered accelerations     0.912 

  Body mass   ‒ 0.894 0.071 0.810** 0.808 ‒ 

  Stride regularity  AP -29.219 6.852 -0.279** 0.052 ‒ 

  RMS AP -27.981 8.650 -0.199** 0.032 ‒ 

  Sample entropy  ML -20.382 8.464 -0.144* 0.020  

Model 2: Filtered accelerations     0.888 

  Body mass   ‒ 0.892 0.078 0.813** 0.800 ‒ 

  Stride regularity  AP -37.069 10.037 -0.266** 0.045 ‒ 

  RMS AP -30.523 9.673 -0.210** 0.043 ‒ 

β = standardized coefficients; */** p < 0.05 / p < 0.001; constant for multiple regression equations were 53.269 (unfiltered) and 56.935 (filtered) 

 339 
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DISCUSSION 340 

The current study tested a cost of instability hypothesis that proposes a link between 341 

running stability and running Ec using wearable tri-axial trunk accelerometry. Our results lend 342 

support to this cost of instability hypothesis, with three accelerometry stability measures 343 

explaining an additional 10.4% inter-individual variance in Ec over and above that needed to 344 

support body mass (80.8%). Our findings build on limited evidence (3, 9, 25) by suggesting 345 

new dynamic instability mechanisms that imposes an Ec to running which could hamper 346 

endurance performance. 347 

The first determining accelerometry measure, namely stride regularity AP, explained an 348 

additional 5.2% of running economy. The direction of the slope in Fig. 3 B was as expected, 349 

indicating that runners with poor consistency from stride to stride have a more energetically 350 

costly gait. Since this measure is directed anteroposterioly, it could reflect intermittency or 351 

alternate decelerations and accelerations corresponding to braking and propulsive forces, 352 

analogous to alternately applying “gas-brake-gas” while driving a car. The trunk muscles 353 

could be compensating for this instability since they play a critical role by eccentrically 354 

contracting to decelerate lumbo-pelvic motion anteroposteriorly during running (35, 38). 355 

Electromyography assessment evaluating relationships between muscle activity, stability and 356 

economy would help elucidate on the underlying mechanisms. 357 

The second determining accelerometry measure, namely RMS AP, explained a slightly less 358 

but additional 3.2% of running economy.  However, the direction of the slope as shown in 359 

Fig. 3 C is unexpected, since it was hypothesized that runners with higher RMS AP would 360 

have the poorest running economy due to larger changes in momentum. Our data 361 

counterintuitively suggest that higher amplitudes or variability of AP trunk accelerations 362 
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while running is a kinematic adjustment advantageous to economy. On the one hand this 363 

confirms previous paradoxical evidence that greater changes in horizontal velocity of the 364 

CoM were related to better economy in elite female runners (50). On the other hand this 365 

contradicts more recent work (12) showing that endurance runners with smaller minimum AP 366 

horizontal velocity of the pelvis i.e. less deceleration/braking velocity were more energetically 367 

costly. Additionally, Ijmker et al., (18) showed a decrease in Ec, and variability in horizontal 368 

plane trunk accelerations when external balance support was provided during walking. 369 

Notably, the RMS measure used in the current study considers all amplitude variability during 370 

the running step and perhaps more knowledge could be gained from detecting and separately 371 

calculating RMS during breaking and propulsive phases of stance. For example, Chang and 372 

Kram (10) revealed that increases and decreases in propulsive impulses were primarily linked 373 

to costs and savings in Ec when impeding or aiding horizontal forces were externally applied 374 

to the individual. However, Heise et al., (14) revealed that neither braking nor propulsive 375 

impulses showed sensitivity to inter-individual differences in Ec. Therefore, it remains 376 

inconclusive how AP changes in momentum explain economy between runners and further 377 

research is needed.  378 

The third determining measure, namely sample entropy of ML trunk accelerations 379 

explained an additional 2.0% of running economy when accelerations were left unfiltered. 380 

Sample entropy is becoming an increasingly popular complexity measure to capture both 381 

performance-related (32, 40) and pathologically-related (47) non-linear dynamics of human 382 

gait. Unexpectedly, lower sample entropy ML values i.e. less complexity, were related with 383 

costlier running gait (Fig 3. D).  Although, this relationship may be supported from a 384 

dynamical systems perspective, suggesting that a reduction or “freezing” in the interacting 385 

degrees of freedom contributing to ML trunk control of stability is associated with poorer 386 
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movement economy (7). Murray et al., (32) similarly found, in one of their six subjects, a 387 

decrease in sample entropy of ML trunk accelerations to be retained as a determinant of 388 

higher submaximal VO2 with increasing running speed. However, their pilot sample was too 389 

small to conduct inter-individual group statistics, and it is possible that both oxygen 390 

consumption and sample entropy correlates were similarly detecting correlations with intra-391 

individual changes in running speed. Here, for the first time, we show a relationship between 392 

ML sample entropy of movement and Ec of running in a larger sample of runners, while 393 

accounting for running speed effects by expressing running economy per unit distance .  394 

On a technology level, it is often argued that signal waveforms should be left unfiltered 395 

when assessing complexity measures such as sample entropy (36), and our current findings 396 

support this notion. Specifically, sample entropy ML was no longer retained as a significant 397 

predictor of Ec when accelerations were low-pass filtered prior to calculation. This result 398 

suggests that filtering either “washed out” or “masked” some inherent physiological variations 399 

in the signal needed to explain some variance in Ec. Clearly, the choice to filter is important 400 

because in contrast to the other two significant (linear) predictors, this complexity measure is 401 

not robust to low-pass filtering and researchers should carefully consider this approach. 402 

Additionally, based on incremental iteration tests, we recommend that 20 running steps is 403 

optimal for calculating sample entropy measures from both an accuracy and computing stand-404 

point (see APPENDIX).  405 

In terms of generalizability, men displayed some significantly different aspects of dynamic 406 

stability compared to women. For instance, women had higher RMS ML as well as higher 407 

step- and stride- regularity in the ML direction. This sex difference could be attributed partly 408 

to female breast biomechanics since larger ML breast accelerations have translated to larger 409 
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ML trunk displacements and ground reaction forces while running (41). Notwithstanding, 410 

none of the stability measures retained in the regression models showed significant sex 411 

effects. Although not presented here, sex-specific regression models were checked but 412 

retained the same determining stability measures. Therefore, it is possible that relationship 413 

between running stability and Ec is generalizable to both sexes. With respect to the calibre of 414 

our recreational to moderately trained participants, we suggest future studies assess and 415 

extend the generalizability of our findings to more elite distance runners whom are expected 416 

to have superior running stability. Furthermore, it is equally possible that the goal of the 417 

recreational runner might be to increase energy expenditure, rather than save it. Thus, trunk 418 

accelerometry could be proposed as a tool to test paradigms which deliberately attempt to 419 

increase the Ec of instability experimentally through training e.g. irregular surfaces, external 420 

perturbations, or unstable types of footwear.  421 

Implications and future directions. Arguably, explaining an additional 10.4% inter-422 

individual variance in Ec might be considered relatively low. However, the measures 423 

examined in this study were not expected to account for the majority of variance in Ec since 424 

the remaining variance could be attributed to numerous other factors. Nonetheless, using the 425 

final multiple regression equation of unfiltered accelerations, we estimated the energy cost for 426 

the runners using the lowest and highest values of these three accelerometry measures in our 427 

sample while holding body mass constant in the equation (by using group mean value of 428 

68.18 kg). Hypothetically, the runner with poorest of all three stability measures i.e. 51% 429 

lower stride regularity AP, 56% lower RMS AP, and 76% lower sample entropy ML would 430 

correspond to a total additional energy cost of 49% or 125 J•m
-1

 (57.46 J•m
-1

 + 42.15 J•m
-1

 + 431 

25.67 J•m
-1

 respectively) compared to the runner with the best of these three stability 432 

measures (see dotted lines on the x-axis of Fig. 3 B, C, D for visual comparison of maximum 433 
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and minimum). Quantitatively, however, it remains unclear how much this additional 434 

energetic cost would translate to impaired outdoor endurance performance as has been shown 435 

by adding shoe weight (16), but warrants an interesting question for future research. Notably, 436 

other accelerometry measures that loaded together in factor one of the factor analysis 437 

correlated strongly with stride regularity AP. Therefore, these other measures could have been 438 

substituted as inputs in the multiple regression analysis, and shouldn’t necessarily be excluded 439 

from future investigations.  440 

Further interpretation is needed with regards to how a runner could collectively target these 441 

accelerometry measures and apply them to practice. For instance, an immediate question 442 

raised by our findings is why the first two results appear to contradict each other: higher stride 443 

regularity AP implies that higher consistency is good, while higher RMS AP implies higher 444 

amplitude or variability is good for economy. One plausible explanation for our results is that 445 

RMS amplitudes could be influenced by the different individual speeds used, given that 446 

speeds were chosen as relative intensity rather than absolute. However, neither RMS AP nor 447 

the other two retained accelerometry measures were correlated to running individual speed at 448 

VOBLA (a posteriori Pearson’s correlation r values between -0.03 and 0.04; all p > 0.05), 449 

indicating that individual speed was not an influencing factor on the relevant accelerometry 450 

parameters. Since these accelerometry measures were uncorrelated and resided on 451 

independent Factors (see Table 3), they seem to represent different constructs of dynamic 452 

stability. Nevertheless, a combined recommendation for a recreational runner based on these 453 

three measures would be target larger overall acceleration amplitudes (RMS AP), provided 454 

these amplitudes are consistent between strides (stride regularity AP) and are maintained to 455 

produce high complexity in ML control of movement (ML entropy) possibly by exploring 456 

multiple movement strategies. 457 
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The Ec of dynamic instability could be influenced by altering the task from treadmill to 458 

over ground running, especially in self-paced situations. Subject to the laboratory limitations 459 

of this study, stability measures identified here may be used as a potential basis for examining 460 

stability of an individual in relation to Ec in more ecological i.e. over-ground outdoor settings. 461 

In addition, the relationships with stability observed here could be subject to the specific types 462 

of parameters extracted and thus other parameter selections or combinations thereof could 463 

yield different insights in the future.   464 

Using trunk accelerometry as a tool to continuously examine the instability of running 465 

could reveal more about how and when this instability arises at the individual level and how 466 

this instability could be used to predict early decline in uneconomical performance.  As 467 

previously highlighted (29), it is also plausible that running economy could be improved by 468 

training dynamic stability, requiring intervention studies. Indeed, it has been shown that 469 

dynamic postural stability training reduces the level of coactivation needed during functional 470 

tasks (33), which would improve economy. How stability measures change with various types 471 

of endurance training could elucidate further on how runners “self-optimize” their stability 472 

patterns to innately reduce Ec and is a focus of ongoing research. 473 

Conclusions. Our results suggest that male and female recreational runners with lower 474 

stride regularity AP, lower RMS AP, and lower sample entropy ML have a more energetically 475 

costly running gait at similar relative intensities. Stated differently, characteristics of dynamic 476 

stability may be an adaptation to improved endurance running performance. Additionally, 477 

sample entropy ML was no longer retained as a significant predictor of Ec when accelerations 478 

were low-pass filtered prior to calculation, indicating that researchers should carefully 479 

consider this signal processing step when analysing acceleration waveform complexity. 480 
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Overall, targeting these stability characteristics non-invasively and unobtrusively with a 481 

simple accelerometer in real competition settings could be useful for coaches and practitioners 482 

identifying athletes with favourable economy potential. 483 

APPENDIX 484 

Non-linear measures such as sample entropy are known to be sensitive to length of input 485 

signal used (52). Therefore, we computed sample entropy values as a function of number (N) 486 

running steps over averages ranging from six to 160 consecutive running steps (see Fig A1 for 487 

visual example of one participant). We observed that sample entropy values stabilized i.e. less 488 

variable or levelled off from around 20 running steps (range of 16 - 20 in all runners). 489 

Knowing when this biomechanical “steady-state” occurs is useful in two ways. Firstly, 490 

steady-state eliminates the influence of average N steps used on the outcome thus improving 491 

accuracy, and secondly minimizes the computational time, better suited to achieve outputs for 492 

real-time application. 493 

[FIGURE A1] 494 
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 FIGURE CAPTIONS 611 

Figure 1. Representative example of determining the highest sub-maximal steady-state stage for estimating energetic cost 612 

(Ec) of running. Ec was extracted from the final two minutes of stage two (here 2.64 m•s-1), which demonstrated a running 613 

velocity at which 1) the oxygen uptake (VO2) curve was not drifting i.e. statistically significant (p > 0.05) from the horizontal 614 

(flat dashed line shown in steady-state VO2 box), and 2) a post stage blood lactate (BLa) that was less than the velocity 615 

required to elicit onset of blood lactate accumulation (VOBLA; BLa < 4 mmol•L-1), here 2.6 mmol•L-1.  616 

Figure 2. Representative example of tri-axial trunk accelerations extracted for computing dynamic stability measures of 617 

running. Accelerations used for analysis represented the final 20 running steps at VOBLA for each runner (here 2.64 m•s-1 
for 618 

the same female runner as shown in Figure 1). 619 

Figure 3. Three unfiltered accelerometry-based dynamic stability measures contributed significantly and independently 620 

to the inter-individual energetic cost (Ec) of running after controlling for body mass (n = 30). Partial regression plots were 621 

scaled by adding regression-residuals to group mean values (from Table 1 and 2) on both axes to enhance interpretation (31). 622 

Each plot represents the true correlation coefficient for the specific predictor on Ec, while controlling for the remaining three 623 

predictors e.g. in panel B the relationship of stride regularity AP to Ec is shown while controlling for body mass (panel A), 624 

root mean square (RMS) AP (panel C), and sample entropy ML (panel D). Minima and maxima highlight the range of the 625 

spread on each axis (dashed lines). The final regression equation revealed Ec (J•m-1) = 3.740•BM – 122.252•Stride regularity 626 

AP -117.071•RMS AP – 85.279•Sample entropy ML + 222.878. 627 

Fig A1. Non-linear sample entropy values were highly variable when averaged at a low number of steps but stabilized 628 

from around 20 running steps (interval time of 6.9 seconds and 7115 acceleration samples), with a combined computation 629 

time of approximately 0.8 sec on an Intel Core i5 CPU.  630 
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