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Abstract— Objective: The purpose of this paper is to propose an 

optimal control problem formulation to estimate subject-specific 

Hill model muscle-tendon (MT-) parameters of the knee joint 

actuators by optimizing the fit between experimental and model-

based knee moments. Additionally, this paper aims at determining 

which sets of functional motions contain the necessary information 

to identify the MT-parameters. Methods: The optimal control and 

parameter estimation problem underlying the MT-parameter 

estimation is solved for subject-specific MT-parameters via direct 

collocation using an electromyography-driven musculoskeletal 

model. The sets of motions containing sufficient information to 

identify the MT-parameters are determined by evaluating knee 

moments simulated based on subject-specific MT-parameters 

against experimental moments. Results: The MT-parameter 

estimation problem was solved in about 30 CPU minutes. MT-

parameters could be identified from only seven of the 62 

investigated sets of motions, underlining the importance of the 

experimental protocol. Using subject-specific MT-parameters 

instead of more common linearly scaled MT-parameters improved 

the fit between inverse dynamics moments and simulated moments 

by about 30 % in terms of the coefficient of determination (from 

𝟎. 𝟓𝟕 ± 𝟎. 𝟐𝟎 to 𝟎. 𝟕𝟒 ± 𝟎. 𝟏𝟒) and by about 26 % in terms of the 

root mean square error (from 𝟏𝟓. 𝟗𝟖 ± 𝟔. 𝟖𝟓 𝐍𝐦 to 𝟏𝟏. 𝟖𝟓 ±
𝟒. 𝟏𝟐 𝐍𝐦). In particular, subject-specific MT-parameters of the 

knee flexors were very different from linearly scaled MT-

parameters. Conclusion: We introduced a computationally 

efficient optimal control problem formulation and provided 

guidelines for designing an experimental protocol to estimate 

subject-specific MT-parameters improving the accuracy of motion 

simulations. Significance: The proposed formulation opens new 

perspectives for subject-specific musculoskeletal modeling, which 

might be beneficial for simulating and understanding pathological 

motions. 

 
Index Terms—Hill model, Musculoskeletal modeling, Optimal 

control, Parameter estimation, Parameter identification 

I. INTRODUCTION 

uman motions can be simulated using musculoskeletal 

models that reproduce the muscle-tendon (MT-) force 

distribution and translate it into skeletal motions. The MT-force 

distribution is calculated from the MT-dynamics that comprise 

activation and contraction dynamics describing the nonlinear 

relations between muscle excitation and muscle activation and 

between muscle activation and MT-force respectively. The 

contraction dynamics can be represented by the Hill model [1] 

that defines the force generating capacity of a MT-actuator 

based on five MT-parameters: the maximal isometric muscle 

force 𝐹𝑚
max, the optimal muscle fiber length 𝑙𝑚

opt
, the tendon 

slack length 𝑙𝑡
𝑠, the maximal muscle fiber velocity 𝑣𝑚

max, and the 

optimal pennation angle 𝛼opt. The MT-parameters are difficult 

to estimate from in vivo measurements and are mostly compiled 

from cadaver studies [2]–[4]. Different methods then exist to 

scale these generic parameters based on the subject’s 

anthropometry. Although linear scaling is common, scaling 

methods that preserve the muscle operating range, such as 

proposed by Winby et al. [5] and recently generalized by 

Modenese et al. [6], have been shown to be more accurate. Yet 

the MT-properties are known to vary with age, gender, and 

activity level [7], [8]. They are hence subject-specific and 

cannot be truly estimated based on anthropometrical 

dimensions only. In this study, we therefore rely on a functional 

approach (i.e. based on experimental angle-moment 

relationships) to estimate subject-specific MT-parameters. In 

particular, we focus on the estimation of 𝑙𝑡
𝑠 and 𝑙𝑚

opt
 as joint 

moment simulations are most sensitive to those two MT-

parameters [9]–[12]. 

The overall approach to estimate subject-specific parameters 

based on a functional approach is to minimize the difference 

between experimental and model-based joint moments by 

optimizing the parameters. Such an approach was used to 

determine subject-specific torque-angle-angular velocity 

relationships [13] and subject-specific MT-parameters. In the 

second case, we can distinguish approaches based on maximal 

and sub-maximal muscle contraction that rely on angle-moment 

relationships measured during isometric dynamometry [14]–

[16] and functional motions [17], [18] respectively. Isometric 

dynamometry, however, has several limitations, restricting its 

use for estimating MT-parameters. First, a complete and large 

set of measurements is difficult to obtain, since it requires many 

maximal voluntary contractions leading to a lengthy protocol 

and requiring substantial effort from the test subject which may 

cause fatigue [15], [16]. Second, maximal muscle contraction is 

practically never reached [19], limiting the applicability of such 

approaches as illustrated by Wesseling et al. [20]. For these 

reasons, we selected a sub-maximal contraction-based approach 

to estimate subject-specific MT-parameters. Such an approach 
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allows the collection of a rich experimental dataset with 

standard motion capture equipment. Although muscle 

excitation is a priori unknown in sub-maximal contraction-

based approaches, electromyography (EMG) provides a muscle 

excitation estimate that can drive musculoskeletal models to 

simulate joint moments during functional motions (e.g. EMG-

driven models of the knee [17], [21]). In this study, we use an 

EMG-driven model to estimate MT-parameters by optimizing 

the fit between experimental and model-based joint moments. 

Since the MT-parameter dependent relationship between EMG 

and joint moments is dynamic, solving the corresponding 

optimization problem requires the transcription of an infinite-

dimensional problem into a finite-dimensional approximation. 

Estimating the MT-parameters using this approach therefore 

corresponds to solving an optimal control and parameter 

estimation problem, also referred to as an optimal estimation 

problem [22]. 

The formulation of the MT-parameter estimation problem 

influences the convergence and efficiency of the numerical 

optimization. Numerically efficient formulations of the MT-

parameter estimation problem were introduced [15], [16], but 

only for methods based on maximal contraction-based 

approaches that do not include the MT-dynamics. When 

considering the MT-dynamics for consistency with muscle 

physiology, the problem becomes challenging to solve due to 

the nonlinearity and stiffness of the dynamic equations. A 

suitable numerical method is therefore required to solve the 

underlying complex system of differential equations. Direct 

collocation methods have recently become increasingly popular 

for the numerical solution of optimal control problems and were 

used in several human motion simulation studies [23]–[25]. A 

direct collocation method implicitly takes the system dynamics 

into account by parametrizing both controls and states, defining 

a sparse and thus tractable nonlinear programming problem 

(NLP). Collocation methods are often more computationally 

efficient than, for example, shooting methods that rely on 

explicit integration of the dynamic equations [17], [18], [26]. 

The first aim of this study is to use, for the first time, a direct 

collocation method to estimate subject-specific MT-

parameters, relying on a robust and computationally efficient 

formulation of the optimal estimation problem [25]. 

In particular, this study seeks to estimate subject-specific 

MT-parameters that represent the subject’s MT-properties 

rather than optimize the fit with the experimental data for a set 

of motions. This is an important requirement when using the 

subject-specific models in predictive “what if” scenarios that 

differ from the experimental conditions. Since the information 

in the experimental dataset determines whether the MT-

parameters can be accurately estimated, a careful selection of 

the experimental dataset is required. When the dataset contains 

insufficient information, the experimental data can be fitted 

with high precision while the estimated parameters are 

inaccurate and hence result in unreliable predictions for 

motions that were not included in the dataset. This phenomenon 

is known as overfitting [27]. We thus want to select 

experimental datasets that can identify the MT-parameters and 

hence provide valid MT-parameter estimates. The second aim 

of this study is therefore to investigate the identifiability of the 

MT-parameters based on different sets of motions. To this end, 

the accuracy of knee moment simulations based on subject-

specific MT-parameters estimated from various sets of motions 

was evaluated. 

 In this study, novelty is twofold. First, an optimal estimation 

problem is formulated to efficiently estimate subject-specific 

MT-parameters of the knee actuators based on an EMG-driven 

model. Second, the identifiability of the MT-parameters based 

on different sets of motions is studied to provide valuable 

information regarding the experimental datasets needed for 

their estimation. 

II. METHODS 

A. Experimental data 

Eight healthy volunteers (four males and four females, age 

29.8 ±  3.9 years, height 176 ±  6.6 cm, and weight 69.6 ±
 6.0 kg) gave informed consent to participate in the study 

approved by the Ethics Committee at UZ Leuven (Belgium). 

Each subject was instrumented with 65 retro-reflective skin-

mounted markers, corresponding to an extended plug-in-gait 

marker set, whose three-dimensional locations were recorded 

(100 Hz) using a ten-camera motion capture system (Vicon, 

Oxford, UK) during six functional motions: gait, squat, stair 

descent, stair ascent, sit-to-stand-to-sit, and squat jump. The 

motions were chosen as they (i) encompass a wide range of 

contractile conditions, (ii) require large knee moments (up to 

∼100 Nm), (iii) require a large range of knee angles (∼-2° to 

100° knee flexion), (iv) reflect various MT-force distributions 

and (v) are easily achievable in practice. In particular, the squat 

jump motion was included as it requires higher muscle 

activation. The wide variety of motions was intended to provide 

a dataset with sufficient information to estimate MT-parameters 

that truly represent the subject’s MT-properties rather than only 

reproduce the experimental data. Ground reaction forces (GRF) 

and EMG data were recorded (1000 Hz) using force plates 

(AMTI, Watertown, USA) and wireless EMG acquisition 

systems (ZeroWire EMG Aurion, Milano, Italy) respectively. 

GRF were low-pass filtered (10 Hz) using a fourth-order 

Butterworth filter. EMG data were collected from six muscle 

groups of each leg (Table 1) and were processed by band-bass 

filtering (20-400 Hz), full-wave rectification, and low-pass 

filtering (10 Hz) using a fourth-order Butterworth filter. EMG 

data were also collected during maximum voluntary contraction 

(MVC) trials and processed using the same protocol. To 

robustly determine the maximal EMG values, a centered 

moving average with a 50 ms time window was applied to the 

processed EMG data of both functional motions and MVC 

trials. The resulting peak values were then used to normalize 

the EMG envelopes [28]. Based on the quality of the 

normalized EMG envelopes, 11 experimental datasets (seven 

left and four right legs) were selected. 

B. Musculoskeletal model and data processing 

The experimental data were processed in OpenSim 3.2 [29] 

based on the gait2392 musculoskeletal model containing 20 
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segments and 23 degrees of freedom (DOFs) [2]. The marker-

based knee axis of this model was replaced by a functional axis, 

estimated based on knee flexion-extension measurements [30]. 

Each knee joint was actuated by 12 MT-actuators (𝑁 =  12): 

eight flexors (biceps femoris long head (BFLH), biceps femoris 

short head (BFSH), sartorius (SA), gastrocnemius lateralis 

(GL), gastrocnemius medialis (GM), semimembranosus (SM), 

semitendinosus (ST), and gracilis (GR)) and four extensors 

(rectus femoris (RF), vastus intermedius (VI), vastus lateralis 

(VL), and vastus medialis (VM)).  

The musculoskeletal model was scaled to the subject’s 

anthropometry using OpenSim’s scale tool based on marker 

information collected during a static trial. This process included 

linear scaling of 𝑙𝑡
𝑠 and 𝑙𝑚

opt
 using a scale factor computed as the 

ratio of the corresponding MT-actuator’s length before and 

after scaling. This approach therefore preserves the ratio 𝑙𝑚
opt

 to 

𝑙𝑡
𝑠. For each functional motion, joint kinematics and moments 

were calculated based on marker trajectories and GRF by 

successively applying a Kalman smoothing algorithm for 

inverse kinematics [31] and an inverse dynamics (ID) analysis 

via OpenSim. Only knee flexion-extension moments were 

further considered. MT-lengths and moment arms were 

computed as a function of the joint kinematics using OpenSim’s 

muscle analysis tool. The EMG envelopes were assigned to the 

model’s knee actuators as described in Table 1. Hamstring 

lateralis EMG drove both BFLH and BFSH. Hamstring 

medialis EMG drove SM and ST [18] as well as SA and GR. 

GM EMG drove both GM and GL, whilst the input of VI was 

estimated as the average of VL and VM EMG [17], [18]. An 

electromechanical delay of 40 ms was introduced by time-

shifting the EMG envelopes [27]. 

The MT-dynamics, comprising activation and contraction 

dynamics, were described by two nonlinear first-order 

differential equations relating the control, muscle excitation, to 

the states, neural excitation and normalized muscle fiber length. 

Activation dynamics were defined based on Thelen [32], [33]: 

 𝑟 =  𝑓𝑎(𝑒) (1) 

where 𝑓𝑎 describes the transformation from muscle excitation 𝑒 

to neural excitation 𝑟. This equation was augmented with the 

EMG-to-activation relationship [17], [27] relating neural 

excitation 𝑟 to muscle activation 𝑎: 

 𝑎 =  
𝑒𝐴𝑟 − 1

𝑒𝐴 − 1
, (2) 

where 𝐴 is a nonlinear shape factor. Contraction dynamics were 

described by the Hill model [1] that defines the MT-actuator as 

a tendon in series with a pennate muscle. The tendon is modeled 

as a nonlinear spring of length 𝑙𝑡 and the muscle, of length 𝑙𝑚 

with pennation angle α, consists of a contractile element (CE) 

in parallel with a passive element (PE) (Fig. 1). The MT-force 

𝐹mt was given by: 

 𝐹mt =  𝐹𝑡(𝑙𝑡) = 𝐹𝑚(𝑎, 𝑙𝑚 , 𝑣̃𝑚) cos 𝛼 (3) 

where 𝐹𝑡 is tendon force, which is a function of the 

normalized tendon length 𝑙𝑡 = 𝑙𝑡 𝑙𝑡
𝑠⁄ , and 𝐹𝑚 is muscle force, 

which is a function of muscle activation 𝑎, normalized muscle 

fiber length 𝑙𝑚 = 𝑙𝑚 𝑙𝑚
opt⁄  and normalized muscle fiber velocity 

𝑣̃𝑚 = 𝑣𝑚 𝑣𝑚
max⁄  (see supplementary materials for more details). 

C. Optimal estimation of subject-specific MT-parameters 

The overall process to solve the optimal estimation problem 

for subject-specific MT-parameters is outlined in Fig. 2a. 

1) Multiple-phase optimal estimation problem  

The subject-specific MT-parameters were estimated based 

on different sets of motions, later referred to as calibration sets. 

Each calibration set represents a possible combination amongst 

the six motions. There exist thus 63 (∑ 6! 𝑖! (6 − 𝑖)!⁄6
i=1 ) possible 

calibration sets. For each of these sets, a multiple-phase optimal 

estimation problem with each phase corresponding to a motion 

was solved for subject-specific MT-parameters. For example, 

the calibration set consisting of gait and squat results in a 2-

phase optimal estimation problem (phase 1: gait and phase 2: 

squat) which is solved for the corresponding subject-specific 

MT-parameters. Solving the optimal estimation problem 

consisted in determining the controls, states and static 

parameters (defined in subsection 2) satisfying the constraints 

imposing the MT-dynamics (subsection 3), the boundary 

conditions (subsection 4), and the path constraints (subsection 

5), while optimizing a cost functional (subsection 6).  

2) Static parameters 

𝑙𝑡
𝑠 and 𝑙𝑚

opt
 of eight (𝐽 = 8) knee actuators (four flexors: 

BFLH, GL, GM, SM and four extensors: RF, VI, VL, VM) were 

Fig. 1.  Schematic representation of the Hill model [1]. The MT-actuator, of 

length 𝑙𝑚𝑡, comprises a tendon in series with a pennate muscle. The tendon is 

modeled as a nonlinear spring of length 𝑙𝑡. The muscle, of length 𝑙𝑚, consists of 
a contractile element (CE) parallel to a passive element (PE). The pennation 

angle α is the angle between the orientation of the muscle fibers and the tendon. 

TABLE I 

ASSIGNMENT OF EMG ENVELOPES TO THE MODEL’S KNEE ACTUATORS 

Experimental EMG envelopes Model’s knee actuators 

Hamstring lateralis 
Biceps femoris long head (BFLH) 
Biceps femoris short head (BFSH) 

Gastrocnemius lateralis 
Gastrocnemius lateralis (GL) 

Gastrocnemius medialis (GM) 

Hamstring medialis 

Semimembranosus (SM) 
Semitendinosus (ST) 

Sartorius (SA) 

Gracilis (GR) 

Rectus femoris Rectus femoris (RF) 

Average(vastus lateralis, vastus 

medialis) 
Vastus intermedius (VI) 

Vastus lateralis Vastus lateralis (VL) 

Vastus medialis Vastus medialis (VM) 
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estimated based on a sensitivity analysis [11]. Values from the 

linearly scaled models were assigned to the other MT-

parameters.  

For each knee actuator 𝑗 (𝑗 = 1, … , 𝐽), physiologically 

feasible combinations [𝑙𝑚,𝑗

opt
, 𝑙𝑡,𝑗

𝑠 ] were defined to constrain the 

search space of the optimal estimation problem as described by 

Van Campen et al. [16]. Furthermore, to improve the numerical 

condition of the problem, the ratio 𝑙𝑡,𝑗
𝑠 𝑙𝑚,𝑗

opt
⁄  and a parameter δ𝑗 

were used as static parameters instead of 𝑙𝑡,𝑗
𝑠  and 𝑙𝑚,𝑗

opt
. The 

parameter δ𝑗 determines the deviation from the first-order 

regression of the physiologically feasible combinations [1 𝑙𝑚,𝑗
opt⁄ , 

𝑙𝑡,𝑗
𝑠 𝑙𝑚,𝑗

opt
⁄  ] defined by: 

  
1

𝑙𝑚,𝑗
opt − 𝐶1,𝑗

𝑙𝑡,𝑗
𝑠

𝑙𝑚,𝑗
opt − 𝐶2,𝑗 = δ𝑗 , (4) 

where 𝐶1,𝑗 and 𝐶2,𝑗 are the regression coefficients [16] (see 

supplementary materials for more details). 

A single nonlinear shape factor 𝐴 (2) for all muscles was 

added to the set of static parameters. 

3) Constraints imposing the MT-dynamics 

The MT-dynamics were formulated as described by De 

Groote et al. [25]. Activation dynamics were imposed using 

muscle excitation 𝑒 and neural excitation 𝑟 as respectively 

control and state. Contraction dynamics were imposed using 

normalized muscle fiber length 𝑙𝑚 as state and introducing 𝑢𝑣, 

the scaled time derivative of 𝑙𝑚, as a new control simplifying 

the dynamic equations: 

 
𝑑𝑙𝑚

𝑑𝑡
=  

𝑣𝑚
max

𝑙𝑚
opt 𝑢𝑣, (5) 

where 𝑣𝑚
max 𝑙𝑚

opt⁄  is a scaling factor that converts 𝑢𝑣 into 𝑣̃𝑚. 

The nonlinear equations describing the contraction dynamics 

were then imposed as algebraic constraints in their implicit 

form, simplifying their evaluation. Efficiency and robustness of 

this implicit formulation of the contraction dynamics was 

previously demonstrated [25]. 

4) Boundary conditions 

States 𝒙(𝑡) = [𝑟𝑗 , 𝑙𝑚,𝑗], controls 𝒖(𝑡) = [𝑒𝑗 , 𝑢𝑣,𝑗] and static 

parameters 𝒑 = [𝑙𝑡,𝑗
𝑠 𝑙𝑚,𝑗

opt
⁄ , δ𝑗, 𝐴] were bounded by: 

 0 ≤  𝑟𝑗 , 𝑒𝑗  ≤ 1, (6) 

 0.4 ≤ 𝑙𝑚,𝑗 ≤ 1.6, (7) 

 −1 ≤  𝑢𝑣,𝑗 ≤ 1, (8) 

 (
𝑙𝑡,𝑗

𝑠

𝑙𝑚,𝑗
opt)

min

≤
𝑙𝑡,𝑗

𝑠

𝑙𝑚,𝑗
opt ≤ (

𝑙𝑡,𝑗
𝑠

𝑙𝑚,𝑗
opt)

max

, (9) 

 δ𝑗
min ≤ δ𝑗 ≤ δ𝑗

max, (10) 

Fig. 2.  (a) Flow chart illustrating the process used to estimate the subject-specific MT-parameters. The optimal estimation problem underlying the MT-

parameter estimation is solved for the states x(t) (defining the MT-force 𝐹𝑚𝑡) , controls u(t), and static parameters p that minimize the difference between ID- 
and EMG-driven model-based (EDM-) moments. A parameter transformation is applied to extract the subject-specific MT-parameters from the static 

parameters. (b) Flow chart illustrating the process used to select the calibration sets that are suitable (i.e. contain sufficient information) to identify the MT-

parameters. 𝑘 = 1, … ,6 represents the functional motions. 
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 −3 < 𝐴 < 0. (11) 

Constraints (6-8) were based on the definition of the Hill model 

[1], (9-10) followed from the definition of the physiologically 

feasible combinations and (11) was imposed to limit the 

variation of the nonlinear shape factor 𝐴 in the EMG-to-

activation relationship [17], [27]. 

5) Path constraints 

Additional path constraints were introduced: 

 −0.01 ≤ 𝑒𝑗 − 𝐸𝑀𝐺𝑗 ≤ 0.01, (12) 

 0.9 ≤
𝑙𝑚,VI

opt

𝑙𝑚,VL
opt ,

𝑙𝑚,VI
opt

𝑙𝑚,VM
opt ,

𝑙𝑚,VL
opt

𝑙𝑚,VM
opt ≤ 1.1 , (13) 

 0.9 ≤
𝑙𝑚,GM

opt

𝑙𝑚,GL
opt ≤ 1.1. (14) 

Non-zero bounds were chosen in (12) to allow for small 

deviations from the measured EMG signals in order to 

compensate for measurement errors. Only small deviations 

were permitted to limit the redundancy (a better fit between 

simulated and ID-moments can be obtained by optimizing 

either muscle excitation or MT-parameters). Constraints (13-

14) were anatomically-informed and respectively enforced that 

optimal muscle fiber lengths of the three vasti and both 

gastrocnemii were in the same range [16]. 

6) Cost functional 

The multiple-phase optimal estimation problem was solved 

by determining, in each phase, the controls 𝒖(𝑡), states 𝒙(𝑡) and 

phase-independent static parameters 𝒑 that minimize the cost 

functional: 

 𝐿 = ∫ (𝑀𝐼𝐷(𝑡) − 𝑀𝐸𝐷𝑀(𝒖(𝑡), 𝒙(𝑡), 𝒑))
2

𝑑𝑡,
𝑡𝑓

𝑡𝑖

 (15) 

where 𝑡 is the time, 𝑡𝑖 and 𝑡𝑓 are the initial and final time, 𝑀𝐼𝐷 

represents the ID-moments, and 𝑀𝐸𝐷𝑀 represents the EMG-

driven model-based (EDM-) moments given by: 

 𝑀𝐸𝐷𝑀 =  ∑ 𝑑𝑗(𝑡)𝐹𝑡,𝑗
𝐽
𝑗=1

(𝒖(𝑡), 𝒙(𝑡), 𝒑) +  𝑓, (16) 

where 𝑑𝑗 is the moment arm of knee actuator 𝑗. The contribution 

to the knee moments of the four (𝐵 = 4) knee actuators whose 

MT-parameters were not estimated was pre-computed: 

 𝑓 = ∑ 𝑑𝑏(𝑡)𝐹𝑡,b(𝐸𝑀𝐺(𝑡))𝐵
b=1 , (17) 

where 𝐹𝑡,𝑏 was obtained by forward integration of the MT-

dynamic equations using the EMG envelope as control.  

Finally, to penalize deviation of muscle excitation from the 

EMG envelope, a penalty function 𝜑 was appended to the cost 

functional: 

 𝜑 = 𝑤 ∫ ∑(𝑒𝑗 − 𝐸𝑀𝐺𝑗)
2

𝑑𝑡

𝐽

𝑗=1

𝑡𝑓

𝑡𝑖

, (18) 

where 𝑤 = 1000 is a parameter that weights the penalty 

function against the other term in the cost functional. 

7) Computational solution 

The optimal estimation problem was solved numerically via 

direct collocation using GPOPS-II optimal control software 

[34]. The problem was solved on a mesh of 100 intervals per 

motion using third-order Legendre-Gauss-Radau collocation. 

The interior point solver IPOPT [35] was used to solve the 

resulting NLP using second-order derivative information. The 

derivatives required by the NLP solver were provided by the 

open-source automatic differentiation software ADiGator [36].  

8) Initial guess 

To decrease the probability of finding local optima as a 

consequence of using a gradient-based method, the optimal 

estimation problem was solved using two initial guesses of 

static parameters. The first initial guess was based on a pre-

computed hot start whereas the second initial guess was 

arbitrary (see supplementary materials for more details). The 

solution resulting in the smallest value of the cost functional 

was then selected.  

D. MT-parameter identification 

MT-parameters were estimated from each calibration set 

resulting in 63 estimates of subject-specific MT-parameters per 

dataset. The motions belonging to the calibration sets will be 

referred to as calibration motions and the remaining motions as 

validation motions. For example, when MT-parameters are 

estimated based on experimental data from gait and squat, the 

calibration motions are gait and squat and the validation 

motions are stair ascent, stair descent, sit-to-stand-to-sit and 

squat jump. 

Knee moments (EDM-moments) were computed via forward 

integration of the MT-dynamic equations using the EMG 

envelopes as controls for all motions and for the 63 MT-

parameter estimates. Two metrics were used to evaluate the 

goodness of fit between ID- and EDM-moments: the coefficient 

of determination (𝑅²) and the root mean square error (RMSE).  

The calibration set containing all six motions was chosen as 

reference calibration set and we refer to the corresponding MT-

parameter estimate and EDM-moments as respectively 

reference MT-parameters and reference EDM-moments. The 

reference MT-parameters minimize the difference between ID- 

and EDM-moments over all motions, resulting in the best 

overall fit but not in the best fit for each individual motion. 

The identifiability of the MT-parameters from different 

calibration sets was assessed by comparing the coefficients of 

determination calculated between ID- and EDM-moments 

(𝑅sim
2 ) to the ones calculated between ID- and reference EDM-

moments (𝑅ref
2 ). Calibration sets for which 𝑅sim

2  were similar to 

𝑅ref
2  for all motions were considered suitable to identify the 

MT-parameters. The process for selecting the calibration sets 

that were suitable to identify the MT-parameters is outlined in 

Fig. 2b. The similarity between 𝑅sim
2  and 𝑅ref

2  was evaluated 

based on two criteria: 1) the sum of the positive deviations (i.e. 

if 𝑅ref
2  − 𝑅sim

2 > 0) over all motions was limited to 0.3 and 2) 

a deviation (𝑅ref
2 − 𝑅sim

2 ) larger than 0.15 was not allowed for 

any individual motion. These criteria were chosen to limit the 

overall deviation from reference EDM-moments as well as the 

deviation for each individual motion. This second criterion was 

especially important to prevent overfitting characterized by a 
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good fit for the calibration motions but large deviations for 

validation motions. In total, subject-specific MT-parameters 

estimated from 62 calibration sets were investigated and 

compared to the reference MT-parameters. Calibration sets that 

were suitable across all 11 datasets were selected. The other 

calibration sets did not result in valid MT-parameter estimates 

as they failed to reproduce the joint moments for the validation 

motions. 

The subject-specific MT-parameters were then compared to 

(i) the reference MT-parameters, (ii) the linearly scaled MT-

parameters obtained from OpenSim’s scale tool, and (iii) the 

nonlinearly scaled MT-parameters computed using an 

anthropometric algorithm recently proposed by Modenese et al. 

[6] (see supplementary materials for more details regarding the 

implementation of the algorithm). 

III. RESULTS  

Seven of the 62 investigated calibration sets satisfied both 

criteria across all 11 datasets and were thus suitable to identify 

the MT-parameters (calibration sets A-G in Table 2). Gait and 

sit-to-stand-to-sit were part of all (7/7) suitable calibration sets 

followed by squat jump (6/7), squat and stair ascent (4/7), and 

stair descent (3/7).  

EMG-driven simulations based on subject-specific MT-

parameters yielded more accurate knee moment predictions 

than simulations based on anthropometry-based scaled MT-

parameters (Table 3). The fits between ID- and EDM-moments 

improved from 0.57 ± 0.20 to 0.74 ± 0.14 in terms of 𝑅² and 

15.98 ± 6.85 Nm to 11.85 ± 4.12 Nm in terms of RMSE 

using subject-specific MT-parameters rather than linearly 

scaled MT-parameters. These results are averaged over all six 

motions, 11 datasets and, for subject-specific MT-parameters, 

seven suitable calibration sets. Similar observations hold when 

comparing to the nonlinearly scaled MT-parameters for which 

the fits were 0.57 ± 0.21 in terms of 𝑅² and 15.99 ± 6.94 Nm 

in terms of RMSE when averaged over all six motions and 11 

datasets.  

Although the subject-specific MT-parameters estimated 

from the seven suitable calibration sets were not identical, they 

closely resembled the reference MT-parameters estimated from 

all motions. For 𝑙𝑡
𝑠 and 𝑙𝑚

opt
, the largest averaged deviations 

were observed for BFLH (4.5 %) and RF (6.3 %) respectively. 

Compared to linearly scaled MT-parameters, subject-specific 𝑙𝑡
𝑠 

of the flexors were smaller (averaged ratio 82.1 ± 10.2 %), 

subject-specific 𝑙𝑚
opt

 of the flexors were larger (averaged ratio 

143.0 ± 25.8 %) and subject-specific 𝑙𝑡
𝑠 and 𝑙𝑚

opt
 of the 

extensors were relatively comparable. Linearly scaled MT-

parameters were thus comparable to subject-specific MT-

parameters for the extensors, in particular the vasti, but not for 

the flexors. Similar observations hold when comparing subject-

specific MT-parameters to nonlinearly scaled MT-parameters. 

All ratios are averaged over all seven suitable calibration sets 

and 11 datasets. Detailed numbers of those analyses are 

presented in the supplementary materials (Tables S4-S5). 

Between 17 and 41 computation (CPU) minutes were 

required to solve the optimal estimation problem from both 

initial guesses for the suitable calibration sets (Table 2). 

IV. DISCUSSION 

First, we presented an optimal control problem formulation 

to estimate subject-specific MT-parameters of the knee 

actuators based on an EMG-driven model (EDM). Second, we 

identified several datasets containing the necessary information 

to estimate MT-parameters of the knee actuators. 

The use of subject-specific MT-parameters rather than 

anthropometry-based scaled MT-parameters improved the fit 

between ID- and EDM-moments for all motions (see Table 3 

and example Fig. 3). This suggests that the experimental 

approach developed in this study results in more accurate MT-

parameter estimates than its anthropometric counterparts, 

underlining its importance for human motion simulation studies 

where subject-specificity is required.  

The optimal estimation problem was solved via direct 

collocation in about 30 CPU minutes (Table 2). Direct 

comparison with the literature is difficult, since the CPU time 

largely depends on the number of optimization parameters and 

is often not reported. Using direct collocation methods 

nevertheless typically results in shorter CPU times than other 

approaches such as direct shooting or genetic algorithms. 

Sartori et al. [18], for example, needed more than 20 CPU hours  

to estimate parameters of 34 muscles using a shooting approach 

with a simulated annealing algorithm.  

To test the robustness of our results against the initial guess, 

we performed all computations using two different sets of initial 

static parameters: a pre-computed hot start and an arbitrary 

guess. The most optimal solution was then selected. The two 

initial guesses were very different (see Table S1 supplementary 

materials for details). Nevertheless, optimal cost function 

values were very similar (average ratio hot start to arbitrary 

guess 101.12 ± 5.45 %), indicating that the hot start did not 

outperform the arbitrary guess. The influence of the initial 

guess on the MT-parameter estimates was also, on average, 

limited although larger variabilities were observed for the 

tendon slack length of the BFLH and the optimal muscle fiber 

lengths (see Table S3 supplementary materials for details). 

These differences underline the need for multiple initial 

guesses. Future work may consider the use of a second arbitrary 

TABLE II 

SUITABLE CALIBRATION SETS FOR IDENTIFYING THE MT-PARAMETERS  

Calibration 

sets 

Calibration motions 
CPU 

time 
(mean) Gait Squat 

Stair 

descent 

Stair 

ascent 

Sit-to-

stand-
to-sit 

Squat 

jump 

A x    x x 17min 

B x x   x x 26min 

C x   x x x 22min 

D x x x x x  34min 

E x x x  x x 41min 

F x x  x x x 37min 

G x  x x x x 31min 

Reference x x x x x x 53min 

Calibration sets A-G satisfied both criteria to identify the MT-parameters of 
the knee actuators for all 11 datasets. The CPU time, averaged over all 11 

datasets, required to solve the optimal estimation problem from both initial 

guesses of static parameters is given for the different suitable calibration sets. 
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guess instead of the hot start to avoid the associated 

computational costs.  

The variability of subject-specific tendon slack length 

estimates of the biceps femoris long head and subject-specific 

optimal muscle fiber length estimates of the rectus femoris 

among the seven suitable calibration sets was rather high. 

Further analysis nonetheless showed that these parameters had 

a relatively low effect on the knee moments. Therefore, we 

consider to keep those parameters constant in future work. 

Overall, subject-specific MT-parameters were comparable to 

anthropometry-based scaled MT-parameters for the extensors, 

in particular the vasti, but not for the flexors (see example Fig. 

4). Further analysis showed that anthropometry-based scaled 

MT-parameters of the flexors, in particular the gastrocnemii 

and the semimembranosus, were often outside the range of 

physiologically feasible combinations of MT-parameters, 

which might provide insight in why anthropometry-based 

scaled MT-parameters resulted in worse moment simulations. 

Two explanations may explain why these MT-parameters are 

outside this range. First, the physiologically feasible 

combinations may be inappropriately defined. Their definition 

relied on the assumption that muscles can actively generate 

force at maximal and minimal MT-lengths encountered across 

the functional motions. These MT-lengths may however 

correspond to positions where the muscle cannot actively 

produce force, invalidating the approach. Second, an 

anthropometry-based scaling of the MT-parameters may not be 

suitable for some muscles. Delp and Zajac [37] reported that 

muscle forces developed by ankle plantarflexors, such as the 

gastrocnemii, are extremely sensitive to changes in tendon 

Fig. 3.  Comparison between ID- (thick black) and EDM-moments simulated based on subject-specific MT-parameters (light grey) and linearly scaled MT-
parameters (dark grey). This representative example from one dataset shows how the use of subject-specific MT-parameters, estimated from a suitable calibration 

set (top, calibration motions: gait, sit-to-stand-to-sit, squat jump), improves moment predictions for validation motions: squat, stair descent, stair ascent (bottom). 

Using subject-specific MT-parameters (in bold) instead of linearly scaled MT-parameters (between brackets) results in larger R² and smaller RMSE for all 
motions. 

TABLE III 

SUMMARY OF R² AND RMSE BETWEEN ID- AND EDM-MOMENTS 

MT-parameters Metric 
Gait 

Mean ± std 
Squat 

Mean ± std 
Stair descent 

Mean ± std 
Stair ascent 

Mean ± std 

Sit-to-stand-

to-sit 

Mean ± std 

Squat jump 

Mean ± std 

Subject-
specific 

Calibration 
set A 

R² 0.66 ± 0.10 0.80 ± 0.13 0.71 ± 0.17 0.79 ± 0.08 0.79 ± 0.08 0.65 ± 0.13 

RMSE (Nm) 11.64 ± 2.64 11.12 ± 4.17 12.38 ± 3.96 11.17 ± 2.42 9.03 ± 1.89 16.70 ± 4.62 

Calibration 

set B 

R² 0.66 ± 0.11 0.83 ± 0.12 0.73 ± 0.18 0.76 ± 0.10 0.77 ± 0.09 0.66 ± 0.12 

RMSE (Nm) 11.60 ± 2.72 10.33 ± 4.23 11.84 ± 3.89 11.78 ± 2.72 9.53 ± 2.21 16.55 ± 4.82 

Calibration 

set C 

R² 0.66 ± 0.12 0.80 ± 0.13 0.73 ± 0.17 0.81 ± 0.08 0.80 ± 0.08 0.65 ± 0.13 

RMSE (Nm) 11.64 ± 2.85 11.15 ± 4.29 12.00 ± 3.92 10.69 ± 2.48 8.97 ± 1.86 16.70 ± 4.60 

Calibration 
set D 

R² 0.67 ± 0.11 0.82 ± 0.10 0.73 ± 0.20 0.83 ± 0.07 0.80 ± 0.08 0.59 ± 0.16 

RMSE (Nm) 11.57 ± 2.64 10.52 ± 3.52 11.71 ± 3.92 10.12 ± 2.35 8.82 ± 2.07 18.09 ± 5.55 

Calibration 

set E 

R² 0.66 ± 0.11 0.82 ± 0.13 0.75 ± 0.18 0.78 ± 0.09 0.78 ± 0.08 0.66 ± 0.12 

RMSE (Nm) 11.67 ± 2.82 10.49 ± 4.38 11.29 ± 3.58 11.46 ± 2.83 9.34 ± 2.09 16.49 ± 4.73 

Calibration 

set F 

R² 0.67 ± 0.11 0.82 ± 0.11 0.70 ± 0.21 0.81 ± 0.08 0.79 ± 0.08 0.65 ± 0.14 

RMSE (Nm) 11.47 ± 2.77 10.50 ± 3.76 12.38 ± 4.19 10.75 ± 2.50 9.22 ± 2.13 16.85 ± 4.81 

Calibration 
set G 

R² 0.66 ± 0.12 0.80 ± 0.13 0.77 ± 0.14 0.81 ± 0.08 0.80 ± 0.09 0.65 ± 0.13 

RMSE (Nm) 11.70 ± 2.82 11.30 ± 4.10 11.14 ± 3.26 10.52 ± 2.25 8.90 ± 1.76 16.72 ± 4.70 

Reference 
R² 0.66 ± 0.12 0.82 ± 0.13 0.74 ± 0.20 0.81 ± 0.08 0.79 ± 0.08 0.65 ± 0.13 

RMSE (Nm) 11.65 ± 2.78 10.63 ± 4.26 11.59 ± 3.91 10.76 ± 2.44 9.08 ± 1.86 16.76 ± 4.79 

Linearly scaled 
R² 0.54 ± 0.11 0.47 ± 0.28 0.71 ± 0.12 0.68 ± 0.12 0.60 ± 0.16 0.40 ± 0.22 

RMSE (Nm) 13.72 ± 3.11 19.96 ± 9.70 12.86 ± 3.31 14.02 ± 3.83 12.92 ± 4.61 22.41 ± 7.77 

Nonlinearly scaled 
R² 0.54 ± 0.11 0.46 ± 0.28 0.71 ± 0.12 0.68 ± 0.12 0.60 ± 0.16 0.41 ± 0.22 

RMSE (Nm) 13.66 ± 3.10 20.12 ± 9.86 12.82 ± 3.31 13.98 ± 3.84 12.98 ± 4.65 22.41 ± 7.97 

A larger R²/smaller RMSE value represents a better fit. EDM-moments are simulated based on subject-specific MT-parameters estimated from the suitable 
calibration sets A-G (Table 2), reference MT-parameters, linearly scaled MT-parameters, and nonlinearly scaled MT-parameters. Distinction is made between 

calibration motions and validation motions (in bold). Results are averaged over all 11 datasets (mean and standard deviation).  
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length. Scaling the MT-parameters of the gastrocnemii based 

on the subject’s anthropometry might therefore have a large 

effect on muscle forces and corresponding muscle fiber lengths, 

which would exclude them from the physiologically feasible 

combinations. The second explanation is more likely than the 

first one based on the increased accuracy of moment 

simulations obtained with subject-specific versus 

anthropometry-based scaled MT-parameters. Future work will 

further investigate both explanations.  

Studying the identifiability of the MT-parameters based on 

different sets of motions allowed us to determine which sets of 

motions contain the necessary information to identify the MT-

parameters. This identifiability study was essential to ensure the 

estimation of parameters that describe the subject’s MT-

properties and could therefore be used in “what if” studies 

where novel motions are predicted or to calculate MT-force 

distributions. The subject-specific MT-parameters were 

estimated and validated using a rich dataset, including a wide 

variety of functional motions. In particular, a validation was 

performed by extrapolating to novel motions (i.e. motions not 

used in the estimation). The estimated subject-specific MT-

parameters are thus expected to be valid for a wide variety of 

motions, including motions that were not included in this study. 

Without such a validation, the use of MT-parameters estimated 

based on functional motions should not be extrapolated to other 

motions and the computed MT-force distributions should be 

interpreted with care. We identified seven sets of motions that 

were suitable to identify the MT-parameters over all datasets 

(Table 2). Information from gait and sit-to-stand-to-sit was 

essential as those motions were part of all suitable calibration 

sets. Their sole combination was however not sufficient for four 

out of eleven datasets. Combining as few as three motions 

(calibration set A: gait, sit-to-stand-to-sit, squat jump) was 

sufficient for all datasets. Performing a squat jump may 

however be difficult in a clinical context (e.g. patients with 

cerebral palsy). In that case, calibration set D, containing all 

motions but squat jump, is a good alternative. All other suitable 

sets of motions were extensions of calibration set A. Although 

adding additional motions to calibration set A resulted in a 

slight increase in accuracy (∼1 %) based on 𝑅² and RMSE, their 

use required on average three times higher CPU times and 

additional time-consuming measurements. These findings 

provide guidelines about which measurements to perform and 

combine to estimate the MT-parameters of the knee actuators. 

A choice can be made based on the subject’s functional abilities 

and the available equipment. Future research should extend this 

study to other motions that are more easily achievable in a 

clinical context and that require no or little equipment. 

The selection of optimization parameters was driven by the 

need to balance accuracy of the model and available 

experimental information. Based on existing sensitivity studies 

[11], [16], [17], only a limited number of MT-parameters was 

optimized. These studies, however, only considered a range of 

parameter values from control subjects. Deviations from this 

range in the presence of musculoskeletal disorders may require 

the inclusion of additional parameters. In patients with muscle 

weakness it may, for example, be necessary to adjust 𝐹𝑚
max 

whereas this is not the case for healthy controls. Estimating a 

different set of parameters necessitates an analysis similar to the 

one presented in this study to determine whether the available 

experimental data contain enough information. A single 

optimization parameter for all muscles was used in the EMG-

to-activation relationship. It is expected that including muscle-

specific shape factors may result in better moment simulations 

[17] as it may better reflect the muscle physiology [38]. This 

would, however, considerably increase the number of 

optimization parameters and thus the risk of overfitting. 

Similarly, a fixed electromechanical delay (40 ms) was 

introduced whereas muscle- and motion-specific 

electromechanical delays are anticipated to result in better 

moment simulations. 

The use of more physiologically correct models is expected 

to result in better moment simulations [17] and may therefore 

increase the MT-parameter estimation accuracy. Future 

research may therefore consider the inclusion of additional 

muscle features such as multiple muscle fiber types to better 

represent the motor unit recruitment strategies [39]. Muscle 

fatigue [40] and history-dependence [41] may also be 

considered. A balance between model complexity and 

numerical aspects is, however, needed to maintain a high 

computational efficiency. The model outcomes also depend on 

the quality of the EMG signals and the number of muscle 

groups from which EMG signals are extracted. On the one 

hand, the quality of the EMG signals is deteriorated by noise 

from cross-talk or movement artifacts and is affected by the 

envelope extraction procedure [42]. On the other hand, the 

collection of EMG signals from more muscle groups is 

expected to better represent the individual muscle contributions 

to the joint moments. In this study, the assignment of EMG 

envelopes to the model’s knee actuators mainly followed 

common practice from the literature [17], [18]. The 

gastrocnemius lateralis EMG was further assumed to drive the 

Fig. 4.  Comparison between subject-specific MT-parameters averaged over the 

seven suitable calibration sets (grey), reference MT-parameters (circles), 
linearly scaled MT-parameters (triangles) and nonlinearly scaled MT-

parameters (stars). This example is given for one representative dataset 

(subject’s height, 175 cm) (see supplementary materials Fig. S3. for other 
datasets). 
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gastrocnemius medialis whereas the hamstring medialis EMG 

was assumed to drive the sartorius and gracilis. The first 

assumption was supported by the fact that the gastrocnemii 

share the same tendon and have a common knee flexion 

function. Experimental data are thus expected to contain 

information about their common function and not about their 

individual muscle contributions to the knee moments. The MT-

parameters of those muscles will thus be estimated to provide 

the expected knee flexion moments. Inaccuracies in the EMG 

envelopes are therefore anticipated to have a small influence on 

this estimation. Regarding the second assumption, the sartorius 

and gracilis have the smallest cross sectional areas among the 

hip and knee muscles [18] and inaccuracies in their EMG 

envelopes are hence expected to have a very limited impact on 

the knee moment predictions. Furthermore, the MT-parameters 

of the sartorius and gracilis were not estimated due to their low 

sensitivity [11]. For those different reasons, we did not consider 

the use of other approaches, such as hybrid EMG-informed 

models [18], [42], to estimate the EMG of those three muscles. 

Overall, we were able to estimate subject-specific MT-

parameters based on surface EMG signals from six muscle 

groups that improved the accuracy of knee moment predictions 

for novel motions. Therefore, EMG-driven models are useful 

even in the absence of EMG data from presumably agonistic 

and smaller muscles.  

Sartori et al. [18] investigated the limitations associated with 

the use of EDMs that constrain MT-actuators to satisfy joint 

moments with respect to a single DOF. They reported 

discrepancies in the MT-force distribution of several bi-

articular muscles (gracilis, semitendinosus, sartorius, rectus 

femoris and both gastrocnemii) when simulated from different 

single-DOF EDMs. Their findings, however, do not affect the 

validity of our results. First, in this study, the gracilis, 

semitendinosus, and sartorius were not included in the 

calibration process because of the low sensitivity of knee 

moments to MT-parameters of those muscles [16]. Second, the 

variations in the MT-force distribution of the rectus femoris 

when estimated from knee- versus hip-based EDMs in the study 

of Sartori et al. [18] might be caused by omitting active 

contributions of psoas and illiacus whose electrical activity 

could not be measured via surface EMG. This omission impacts 

the MT-force distribution of other hip actuators, such as the 

rectus femoris, when simulated using hip-based EDMs and may 

explain the differences with the MT-force distribution obtained 

using knee- based EDMs. Third, as stated above, the 

gastrocnemii have a common knee flexion function and 

experimental data are thus expected to contain information 

about their common function, preventing independent 

estimation of their MT-parameters. Note that, for this reason, 

an additional constraint was imposed in the optimal estimation 

problem (14). Discrepancies in MT-force distribution are 

therefore expected for these two muscles when simulated from 

ankle- versus knee-based EDMs while the combined MT-force 

distribution is anticipated to be similar. Overall, using a model 

that considers a sole DOF is suitable if the MT-parameters are 

selected so that the information needed for their estimation is 

available in the experimental dataset. 

This study has several limitations. First, a sole DOF was 

considered, limiting the number of muscles included in the 

analysis. Extending this research to other DOFs is necessary to 

consider muscles spanning other joints. This nevertheless 

would require an identifiability study to assess whether the 

available experimental data contain enough information to 

estimate the additional parameters. Second, a limited number of 

functional motions was used to estimate and validate the MT-

parameters. Motions not considered in the current study might 

provide more information. In particular, the inclusion of 

maximal isometric contraction trials may be beneficial 

although, as mentioned in the introduction, several limitations 

arise when using isometric dynamometry. Overall, 

combinations of the considered motions were suitable to obtain 

valid estimates of MT-parameters. Third, only sagittal plane 

motions were included in this study. While we could provide 

valid MT-parameters for these motions, extrapolation to 

motions in the other planes should be performed with care. 

Fourth, the approach for computing the moment arms is an 

approximation for bi-articular muscles as contact forces 

between joint and muscles are ignored [43]. This may therefore 

affect the results. In the future, the use of via-point wrapping 

and wrapping system [44] will be considered. Finally, no 

passive motions were included in the experimental datasets. 

Therefore, passive MT-properties cannot be estimated based on 

the proposed dataset. 

V. CONCLUSION 

This study proposed a new and computationally efficient 

optimal control problem formulation to estimate subject-

specific Hill model MT-parameters of the knee actuators based 

on an EMG-driven model. In addition, an identifiability study 

was performed and underlined the importance of the selection 

of experimental data to provide valid estimates of MT-

parameters and to prevent overfitting. Our results demonstrated 

the need to use subject-specific MT-parameters to obtain 

accurate knee moment simulations and highlighted the 

limitations associated with the use of anthropometric 

approaches to scale the MT-parameters of the knee flexors. In 

the future, we will extend this research to patients (e.g. children 

with cerebral palsy), considering their various neuromuscular 

impairments and their diminished abilities to perform certain 

motions. 
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