Control-Theoretical Software Adaptation:
A Systematic Literature Review

Stepan Shevtsov, Mihaly Berekmeri, Danny Weyns, Martina Maggio

Abstract—Modern software applications are subject to uncertain operating conditions, such as dynamics in the availability of services
and variations of system goals. Consequently, runtime changes cannot be ignored, but often cannot be predicted at design time.
Control theory has been identified as a principled way of addressing runtime changes and it has been applied successfully to modify
the structure and behavior of software applications. Most of the times, however, the adaptation targeted the resources that the software
has available for execution (CPU, storage, etc.) more than the software application itself. This paper investigates the research efforts
that have been conducted to make software adaptable by modifying the software rather than the resource allocated to its execution.
This paper aims to identify: the focus of research on control-theoretical software adaptation; how software is modeled and what control
mechanisms are used to adapt software; what software qualities and controller guarantees are considered. To that end, we performed
a systematic literature review in which we extracted data from 42 primary studies selected from 1512 papers that resulted from an
automatic search. The results of our investigation show that even though the behavior of software is considered non-linear, research
efforts use linear models to represent it, with some success. Also, the control strategies that are most often considered are classic
control, mostly in the form of Proportional and Integral controllers, and Model Predictive Control. The paper also discusses sensing and
actuating strategies that are prominent for software adaptation and the (often neglected) proof of formal properties. Finally, we distill

open challenges for control-theoretical software adaptation.

Index Terms—Self-Adaptive Software, Control Theory, Software Adaptation.

1 INTRODUCTION

Software applications are, more than ever, forced to deal
with change [1], [2]. The need for continuous availability of
software is forcing developers to consider change as part
of the development process. Software should be able to
execute in conditions that differ from the ones it was initially
designed for, for example because new hardware is available
with respect to what was envisioned at design time [3].
Moreover, software should execute with incomplete knowl-
edge of the execution environment and conditions and face
changing requirements during operation [4]. Consequently,
software engineers are developing new techniques to handle
change at runtime without incurring into penalties and
downtime, giving birth to what is commonly referred to as
software self-adaptation [5], [6].

Different alternative approaches have been proposed
for the design of self-adaptive software, a prominent one
being architecture-based adaptation [7], [8], [9], [10]. In the
architecture-based approach, the software generates and
updates an explicit architectural model of itself and uses
it to reasons about adaptation. Applying classic techniques
like testing and model checking for providing assurances at
runtime is challenging, especially because these techniques
assume the availability of accurate models of the software
behavior. The partial knowledge available at design time
represents a challenge for architecture-based approaches,

e S. Shevtsov is with the Linnaeus University Sweden
E-mail: stepan.shevtsov@Inu.se

e M. Berekmeri is with the Grenoble Institute of Technology France,
D. Weyns is with Katholieke Universiteit Leuven Belgium and Linnaeus
University Sweden, and M. Maggio is with the Lund University Sweden.

Revised manuscript received February 13, 2017

in particular regarding the formal guarantees that can be
provided [11], [12].

Self-adaptive software must deal with change at run-
time, when the knowledge of how to handle this change
becomes available. The software engineer includes mecha-
nisms to handle runtime variations in the software design
and implementation [13]. Most of these mechanisms use
feedback from the software and the environment to adapt
some part of the execution and ensure that the requirements
are met under changing execution conditions. Control the-
ory was identified as a discipline that could offer insight on
the design of adaptation mechanisms with formal guaran-
tees [14], [15], [16], [17].

So far, most research on control-theoretical adaptation
of computing systems focused on controlling lower-level
elements/resources of the technology stack (CPU, storage,
bandwidth, etc.) [18], [19], [20]. With respect to the adapta-
tion of resource allocation, applying control theory to adapt
the software behavior is a more complex problem [21], [22],
[23], due to the difficulty of accurately modeling software,
to the types of requirements and their tradeoffs [24] and
to the need of instrumenting software to obtain sensor
measurements and actuators [25], [26].

Research efforts applying control-theoretical adaptation
to software exist [21], [27], [28], [29]. However, the results of
these efforts are scattered and consequently, there is no clear
view on state of the art. This calls for a consolidation of the
knowledge on the application of control-theoretical princi-
ples to software adaptation. Such knowledge would provide
understanding of the basic engineering principles, including
the software models and the control mechanisms, as well as
the types of achieved goals and provided guarantees.

To systematize the mentioned knowledge, we performed

a systematic literature review, following a well-defined
methodology that identifies, evaluates and interprets the
relevant studies with respect to specific research questions
and topics of interest [30]. In the review, we have analyzed
research results from 41 main conferences and journals in
software/systems engineering, adaptive systems and con-
trol theory, in the period 2000-2016. The focus of the study
is on three different aspects: models, control strategies and
formal guarantees.

More precisely, in software engineering, models typi-
cally rely on architectural concepts, like components and
connectors. In control theory, on the contrary, models are
typically behavioral based — in the case of discrete event
control — and equation-based — for discrete and continuous
time control. One of the crucial topics of this survey is the
role of models in control-theoretical software adaptation.
The second topic this survey focuses on is control structures.
In control theory, a controller structure is chosen based on
the characteristics of the specific problem, like the presence
or absence of model uncertainties or the required speed of
convergence towards goals. Finally, in software engineering,
development time techniques such as code reviews and
model checking are usually coupled with runtime tech-
niques like quantitative verification [31] to provide guar-
antees on the adaptation process. In control theory goals are
usually expressed as setpoints and guarantees are expressed
and obtained at design time, in terms of the ability to reach
the desired objective whenever feasible. Guarantees are
typically given on the model, and their validity is evaluated
against model inaccuracies and parametric uncertainty.

The remainder of this paper is organized as follows:
Section 2 provides information about the specific focus of
the review, Section 4 provides some background on control
theory, Section 5 contains information about related surveys
and efforts, Section 6 discusses the research methodology
used for this survey, Section 7 describes the findings of this
survey. From the analysis, we have derived some insights
that helped us to outline relevant challenges for future
research, that are described in Section 8. Finally, Section 9
discusses threads to validity, Section 10 concludes the paper.

2 Focus OF THE LITERATURE STUDY

This section describes the focus of the conducted literature
review in detail. We distinguish between the software sys-
tem being adapted, discussed in Section 2.1, and the control
technique being applied, described in Section 2.2.

2.1 Software Adaptation

Control-theoretical adaptation was used in a variety of
computing systems [15], [32] with different objectives. This
systematic literature review focuses on software adaptation’.
Software adaptation here refers to the actual adaptation
of a running software application and to the adaptation
throughout the software development live cycle, from re-
quirements to design, construction, testing, deployment,
software maintenance, and evolution. Figure 1 shows the

1. Adaptation refers to actions that lead to change of the software
application, from architecture reconfiguration and component replace-
ment to parameter changes.

Example 1 Example 2 Example 3
o [T
2 . I I
K Domain- WEag | osiois Cloud
= specific oo I transportation G
= application | i , application
2| software | application |
< _ iy ________ai_________| L
3 | |
§| Reusable Workflow , Communication , Software
%‘ middleware engine, I service, I services
| services Load balancer |Planning software!
=l a o _a_________ L
- . | I
© Infrastruc Hypervisor, | Gateways, ! Cloud
B tural Software .
B O I . I infrastructure
S software | drivers |
‘E i b e - e - L
£ Physical | CPU, network, | Robots, | Commodity
5 resources storage, etc. | sensors, etc. hardware

Fig. 1: Typical layering of modern computing systems. The
focus of the review is on the layers marked in grey.

typical layered structure of modern computing systems.
Each layer is illustrated with the example elements from
three domains: webservices, warehouse logistics, and cloud
applications.

The lower part of the infrastructure layer includes phys-
ical resources such as CPU, storage, sensors and cloud
hardware resources. The upper part of this layer incor-
porates infrastructural software; examples are hypervisors,
software drivers, and cloud infrastructure. Adaptation at the
infrastructure layer has been reviewed in the past [32], with
a particular focus on resource provisioning techniques based
on control theory. These approaches typically treat resources
as flows and the control problem is often mapped to flow
regulation [18], [33].

Adaptation of application software and middleware ser-
vices is fundamentally different from adaptation performed
at the infrastructure layer. The differences include:

o Software exhibits three possible adaptation dimen-
sions: requirements, structure, and behavior [24];

o Context, goals and requirements are domain-
dependent and can change during runtime [4], [13];

o There is a necessity to use complex and potentially
multiple system models simultaneously [21], [25];

o The choice of proper sensors and actuators for adapt-
ing software can be challenging [16];

o The design space for the adaptation of software
applications is often multi-dimensional [22], [23];

e Usually, there is a complex interplay between the
qualities that are subject to adaptation on the one
hand and the space of available adaptation options
on the other hand [34].

This review includes studies that apply control to soft-
ware elements, rather than to hardware resources or soft-
ware infrastructure. The grey area in Figure 1 highlights the
focus of this study. The focus avoids cluttered results that
mix models, controllers, goals and guarantees for different
layers of computing systems.

2.2 Control Techniques

The focus of this study is also restricted by the control
techniques used for the adaptation system design. Figure 2

Classic Control Advanced Control

I . .
. State i Optimal Stochastic |
| rupHie Feedback H INIFE Control Control I
=== e ——— B e LT . T ——]
Knowledge-Based Control
— — .
- I Discrete Game/
: Rule Based, Heuristic Mach%ne | Event Queuing
| Fuzzy Learning | Control Theory
Wl e

Fig. 2: Control-theoretical techniques. In grey the techniques
that are considered in this literature review.

shows an extension of the taxonomy of potential control
techniques proposed in [16], [35].

In this literature review, we analyze studies that use
either classic or advanced control theory to adapt soft-
ware systems. This includes the use of Proportional Inte-
gral Derivative (PID) controllers and controllers synthesized
with pole placement or loop shaping techniques, Model
Predictive Control (MPC) regulators, optimal controllers
like Linear Quadratic Regulators (LQG), H, controllers. We
also delve into adaptive and stochastic control.

Despite the fact that knowledge-based control ap-
proaches are usually considered closely related to control-
theoretical ones, the foundations of the two techniques are
quite different. Knowledge-based strategies rely on building
an ontology that is then used to decide what is the best
strategy to achieve a specific goal [36], [37], while purely
control-theoretical approaches rely on models. In the case of
knowledge-based strategies — including fuzzy controllers,
rule-based control, case-based reasoning, heuristics, and
machine learning — the controller cannot rely on cases that
it has not seen during its training phase. Equation-based
models are in nature approximations of reality and the use
of such models comes with the underlying assumption that
the behavior of the system in a point in between observa-
tions can be interpolated based on the data available.

Logical control based on discrete event systems (DES)
is a substantial part of control theory. However, in contrast
to the classic control-theoretic approaches studied in this
survey, the models applied in DES and the type of properties
that can be proven based on these models are substantially
different. In particular, DES relies on transition system
models, such as Petri nets and timed automata [38], [39],
[40]. Assessing the properties of such systems in software
engineering community is performed with different formal
methods and tools (e.g., reachability properties expressed
in a particular logic using model checking). Hence, we
excluded studies that apply DES and related approaches to
realize adaptation. Finally, queuing theory and game theory
have offered, in recent years, a basis for the development
of different adaptation mechanisms [41], [42]. However,
these mechanisms are quite different compared to the basic
control-theoretical approaches and the type of guarantees
that can be provided are different, making it difficult to com-
pare approaches. Notably, studies that combine the use of
queuing models with classic or advanced control strategies
are still in the focus of our review.

Due to their different nature with respect to control-
theoretic adaptation, we exclude knowledge-based, discrete
event, game-theoretic and queuing-based approaches from
this literature study.

3 SELF-ADAPTIVE SYSTEMS BACKGROUND

This section provides a brief background on self-adaptive
systems based on [43]. We start with explaining the princi-
ples and motivation of self-adaption. Then we introduce ba-
sic concepts and illustrate the realization of the adaptation-
specific elements with typical examples from a software
engineering perspective. For additional reading, we refer
the interested reader to [13], [44], [45], [46], [47], [48].

3.1 Principles of Self-adaptation

The term self-adaptation is not precisely defined in the
literature. [5] refers to a self-adaptive system as a system
that “is able to adjust its behavior in response to their
perception of the environment and the system itself”, [14]
adds that “the self prefix indicates that the system decides
autonomously (i.e., without or with minimal interference)
how to adapt or organize to accommodate changes in its
context and environment.” These researchers take the stance
of an external observer and look at a self-adaptive system as
a one that handles changing external conditions and events.

[8] contrasts traditional adaptation mechanisms, such
as exceptions in programming languages and fault-tolerant
protocols, with mechanisms that are realized by means of a
feedback loop to achieve various goals by monitoring and
adapting system behavior at runtime. These authors state
that a design with external feedback loops provide a more
effective engineering solution for self-adaptation compared
to a design with internal mechanisms. Initial evidence for
this statement was provided in [49].

[22] refer in this context to “disciplined split” as a
basic principle of a self-adaptive system, referring to an
explicit separation between a part of the system that deals
with the domain concerns and a part that deals with the
adaptation concerns. Domain concerns relate to the goals
for which the system is built; adaptation concerns relate
to the system itself, i.e.,, the way the system realizes its
goals under changing conditions. These researchers take the
stance of a system engineer and look at self-adaptation from
the perspective of how the system is conceived.

From these two perspectives, [43] identifies two basic
principles that complement one another and determine
what is a self-adaptive system: (1) the external principle:
a self-adaptive system is a system that can handle changes
in its context, the system itself and its goals autonomously
(i.e., without or with minimal human interference), and (2)
the internal principle: a self-adaptive system comprises two
distinct parts: the first part interacts with the environment
and is responsible for the domain concerns (concerns for
which the system is built); the second part interacts with
the first part and is responsible for the adaptation concerns
(concerns about the domain concerns). The first principle
takes the perspective of an external observer who considers
a self-adaptive system as a black box and looks at its interac-
tion with the environment, while the second principle takes
the perspective of the engineer who considers the internals
of a self-adaptive system and looks at its primary structure.

3.2 Conceptual Model of Self-adaptive Software

Figure 3 shows a conceptual model of a self-adaptive soft-
ware system. It consists of four basic elements: environment,

Self-adaptive System
Read

Adaptation

Adaptation
System

Goals

Sense

Adapt

Software
System

Sense

T
l Effect

Environment

Non-controllable software, hardware, network, physical context

Fig. 3: Model of a self-adaptive software system.

software system, adaptation goals, and adaptation system.
These basic elements are abstract and very general, i.e.
they do not depend on a type of deployment, coordination
between system components and the decision-making en-
tity. A wide variety of approaches have been studied and
applied that realize the basic elements in different ways. We
illustrate the realization of the adaptation-specific elements
(adaptation goals and adaptation system) with typical ex-
amples from a software engineering perspective.

Environment refers to the part of the external world with
which the self-adaptive system interacts and in which the
effects of the system will be observed and evaluated. The
environment can include both physical and virtual entities.
As the environment is not under control of the software
engineer, there may be uncertainty in terms of what is
being sensed or what will be the result of effecting actions.
An example of the environment of a robotic system is the
physical environment in which the robots can move, but
also the drivers of the cameras that the robots use to sense
its surrounding.

Software System comprises the application code that
realizes the system goals for the domain at hand. To that
end, the software system senses the environment and can
effect the environment. For example, a robot can plan a
path to perform a transportation task. During its mission, it
can use a camera to detect obstacles, compute an alternative
path if necessary, and steer the vehicle around obstacles to
avoid collisions.

Adaptation Goals are goals of the adaptation system
over the software system; they usually relate to qualities of
the software system. [2] distinguishes between four types of
high-level adaptation goals: self-configuration (i.e., systems
that configure themselves automatically), self-optimization
(systems that continually seek ways to improve their per-
formance or cost), self-healing (systems that detect, diag-
nose, and repair problems resulting from bugs or failures),
and self-protection (systems that defend themselves from
malicious attacks or cascading failures). For example, a
self-optimization goal of a robot may be to ensure that a
particular number of tasks are achieved within a certain
time window under changing operation conditions, e.g., dy-
namic task loads or reduced bandwidth for communication.

Adaptation goals are often expressed in terms of the
uncertainty they have to deal with. Example approaches are
the specification of quality of service goals using probabilis-

4

tic temporal logics [31], and fuzzy goals whose satisfaction
is represented through fuzzy constraints [50]. Adaptation
goals are typically a first-class entities at runtime, enabling
the adaptation system (see below) to reason about the adap-
tation goals during operation.

Self-adaption can support dynamic changes of the adap-
tation goals themselves. Such changes usually require the
involvement of stakeholders. For example, in addition to the
self-optimization goal, a new adaptation goal is dynamically
added to a robot system that can handle the sudden loss of
a power source. Dynamic changes of adaptation goals are
not shown in Figure 3 as they require an evolution of the
self-adaptive system, typically including an update of the
adaptation system and probably also of the software system
itself. An example approach that support dynamic changes
of the adaptation goals is described in [51].

Adaptation System manages the software system. To
that end, the adaptation system comprises adaptation logic
that deals with the adaption goals. To realize the adaptation
goals, the adaptation system senses the environment and the
software system and adapts the latter when necessary. For
example, to achieve the required number of tasks within a
certain time window under peak load, the robots give prior-
ity to particular types of tasks. Conceptually, the adaptation
system may consist of multiple layers where the upper parts
manage the underlying subsystems.

The adaptation logic can be realized with different ap-
proaches. A classic approach applied in software engineer-
ing is to model the adaptation logic in the form of four
components, Monitor, Analyze, Plan, and Execute that share
common Knowledge (often referred to as MAPE-K [2]). The
Monitor acquires data from the managed element and the
environment, and processes this data to update the content
of the Knowledge element accordingly. The Analyze ele-
ment uses the up-to-date knowledge to determine whether
there is a need for adaptation of the managed element.
To that end, the Analyze element uses representations of
the adaptation goals that are available in the Knowledge
element. If adaptation is required, the Plan element puts
together a plan that consists of one or more adaptation
actions. The adaptation plan is then executed by the Execute
element that adapts the managed element accordingly.

A key aspect of self-adaptation is to provide guarantees
for the compliance of the adaption goals of self-adaptive sys-
tems that operate under uncertainty. A pioneering approach
that deals with this challenge is quantitative verification
at runtime. [31] applies this approach in the context of
managing the quality of service in service-based systems.
Extensive research has shown that providing guarantees
for the compliance of the adaption goals with traditional
software engineering approaches (ranging from traditional
testing and sanity checks to model checking) remains a
challenging problem [12]. This is one of the key reasons why
researchers started exploring alternative paradigms such as
the application of control theory to realize self-adaptation.

4 CONTROL THEORY BACKGROUND

This section introduces some background on control theory,
and defines the terminology that will be used for the analy-
sis of the studies. For further reading on control theory, the
reader can refer to [52], [53], [54], [55], [56], [57].

Disturbances

Measured
Output

Control
Signal

Setpoint
—

Error Software

System

Feedback
Controller

(1]
UL

Fig. 4: Block diagram of a feedback control scheme

4.1 Steady state and Transient Phase

In physical systems, when an input is applied to an object,
this object usually reacts to the input. For example, if a
person kicks a ball on a grass field, the force applied to
the ball will make it move until a specific location. If one
measures the position of the ball compared to the initial
position, the signal will show a movement until the ball will
stop (due to friction). The signal has clearly two distinct
behavior. In a first phase (the transient phase), the ball will
move, depending on the applied force. In a second phase,
in absence of other forces, the ball position will settle to one
specific location. This second phase is called steady state. A
system is in steady state when the initial force applied has
vanished its effects and it is in the transient phase while the
effect of the initial force can still be observed. In general,
the output signal of a system in the steady state is not
necessarily a constant. For some systems, for example, the
output can be a cyclic behavior.

As a parallelism with programming, one may think
about a system in steady state as a piece of software, always
repeating the same operations. If something happens in
the software, some other routines can be started, to handle
the interrupt. When these handling routines terminate, the
software can go back to the original state of repeating the
same operations.

4.2 Feedback and Feedforward Control

Figure 4 shows the basic block diagram of a feedback control
scheme, applied to a software system. From left to right,
the Setpoint represents the goal that the adaptation needs to
achieve — typically a non-functional requirement such as a
specific response time or a reliability value. Based on the
value of the desired goal and the corresponding Measured
Output an error is computed that is used by a Feedback
Controller to compute the Control Signal. The control signal
adapts the Software System such that the output gets as close
as possible to the Setpoint. The -1 block indicates that the
value of the feedback signal is inverted, that is, the Error
is computed as: Setpoint + (—MeasuredOutput). During
normal operating conditions the system reaches a steady
state. When the measured output changes due to external
Disturbances, the system enters a transient phase, where the
feedback controller applies an appropriate control signal
to handle the disturbances to bring the system back to
the steady state. Figure 5 shows the basic block diagram
of a feedforward control scheme. A Feedforward Controller
takes into account the Setpoint and the values of external
Disturbances, and produces a Control Signal that compensates
for the disturbances.

To grasp the difference between feedback and feedfor-
ward control, imagine a person driving to a predefined

M Feedforward Disturbances
Controller
antrol Measured
Signal Software OLput)
System

Fig. 5: Block diagram of a feedforward control scheme

destination. Feedforward control is the act of checking a
map beforehand and memorizing it, computing the best
strategy to get to the destination and applying this strategy
when driving. Feedback control is the act of checking a
navigation device that provides the current position and
distance from the destination. A model of the map is still
needed to define the direction, but this model is used during
the navigation to refine the current navigation strategy.

In general, control strategies are developed to counteract
the effect of disturbances on systems. In the case of software
systems, these disturbances may come from the environ-
ment or from the internals of the software itself. The under-
lying assumption for the application of control is the ability
to measure the output of the software behavior that must
be kept under control. A measure of the disturbances, on
the contrary, can be beneficial for the setup of a feedforward
strategy, but is not necessary.

While the main purpose of feedback control has his-
torically been disturbance rejection, the coupling of the
feedforward block and the feedback one has the purpose of
following a setpoint. Setpoint tracking is the other objective
of the application of control.

4.3 Taxonomy of Classic and Advanced Controllers

In the blocks corresponding to feedback and feedforward
controllers, one can implement different control strategies,
ranging from classical control to more advanced techniques.
Over the years, a lot of control techniques have been stud-
ied. The first group of techniques is generally called state-
feedback controllers. These are controllers that use informa-
tion about the state of the system to decide on a control
signal [58]. One of the earliest strategies based on state feed-
back that has been developed is the bang bang controller,
which consists in turning on or off a specific actuator, for
example opening a valve to let water flow or closing it. In
computing systems, this is usually the controller employed
for admission control strategies, where requests are either
admitted or rejected. Other state feedback controllers are
regulators based on Pole Placement, Deadbeat Controllers
and Proportional Integral and Derivative (PID) controllers.
The PID controller is the most common controller and
covers about 90% [58], [59] of the industrial applications
of control. It is based on computing a control signal as a
function of the error between the desired system behavior
and the current system behavior.

The second group of techniques is called optimal control.
In optimal control, the control value is obtained to mini-
mize a cost function, possibly subject to some constraints.
Typically, the objective is to maximize control performance,
given prescribed guarantees [60], [61]. Whenever the cost

function is a quadratic function, and the constraints con-
tain linear first-order dynamic constraints, the problem can
be classified as a Linear Quadratic (LQ) optimal control
problem. A special case is the Linear Quadratic Regulator
(LQR) [62].

A particularly successful heuristic for optimal control
under constraints is Model Predictive Control (MPC) [63],
[64]. MPC predicts the future behavior from the current
system state under a particular control action and selects
the input sequence that minimizes the chosen cost function.
Only the first step of that input sequence is applied and
at the next time step the new system state is determined
and the process repeated, according to receding horizon
principle.

Together with these control strategies, there is Robust
Control [60], which is based on building a control strategy
that makes the system behave in a specific way, despite
variation of involved parameters. In general, robustness to
model inaccuracy is a property of all control strategies, but
there are design techniques to develop controllers that are
specifically aimed at maximizing robustness.

4.4 Composition of Controllers

Controllers can be composed by combining multiple feed-
back and/or feedforward controllers that interact with each
other. For example, the feedback controller block may corre-
spond to one of the following: multiple cascaded controllers;
a hierarchical structure where the control signal is deter-
mined by controllers coupled together; controllers working
in parallel or concurrently. When controllers are composed,
the feedforward control signal is incremental with respect
to any other control signal computed in the system (for
example, from a feedback controller block). If no other
controller is present then the feedforward control signal is
applied directly to the software system. The main goal of
combining feedback and the feedforward controllers is that
the latter can take care of the part of disturbances that can be
modeled, while the former can deal with disturbances that
are not known a priori. The reader interested in composition
schemes can consult [52].

5 RELATED EFFORTS

This literature review is not the first effort in trying to extract
systematic knowledge from the research being conducted
between the two disciplines of software engineering and
control theory.

Most of the survey work on the subfield of adaptive
software focuses on architecture-based adaptation [48], [65],
where MAPE loops are usually considered the main tech-
nique to design an adaptation strategy and can be coupled
with additional knowledge to reason about the software and
the environment.

Motivated by the need for formal guarantees in the
design of self-adaptive systems, researchers started to ex-
plore the application of principles from control theory to
adapt computing systems, introducing the notion of “dy-
namic feedback” [66]. Seminal research in this direction is
documented in the book by Hellerstein et al. [15], which
highlights the potential of control theory for the adaptation

6

of computing systems. As a result, a number of authors have
further investigated the interplay between control theory
and software engineering.

A pioneering article that elaborates on the application of
control theory to software servers to provide guarantees for
adaptation is [18]. Based on that and on subsequent works,
control theory was considered as an approach that can be
used in software engineering for the design of software that
modifies its behavior at runtime providing formal guaran-
tees about the mechanism used for the adaptation and about
the goal satisfaction, whenever possible [14], [16].

While these studies can be useful in understanding
the relationship between software engineering and con-
trol theory, they do not provide a comprehensive in-depth
overview of the state of the art and they focus on adaptation
at all the possible levels — as highlighted by the examples in
Figure 1.

There have been a number of surveys in particular com-
puting domains, for example [67] on mechanisms for per-
formance management of Internet applications and [68] on
quality-driven software adaptation using system properties
derived from control theory to evaluate the usefulness of the
adaptation. These surveys only investigated resource alloca-
tion and admission control, without delving into adaptation
of the software behavior. A recent review of cloud service
selection approaches did not identify any application of
control theory for the adaptation of higher system layers
in the cloud [69].

The work that is closely related to this survey is the
systematic literature review on control-based adaptation of
computing systems realized by Patikirikorala et al. [32]. The
main result of that effort is a taxonomy that captures the
characteristics of target and control systems, together with
the types of validation performed to verify the effectiveness
of the control mechanism. However, [32] does not distin-
guish between control-based adaptation at different layers
of computing systems and treats low-level adaptation mech-
anism similarly to software adaptation. Low- and high-level
adaptation are different in many aspects, the most important
one being probably the availability of adequate physical
models to guide the control design [70]. The analysis of low
and high-level adaptation strategy lead to cluttered results
that mix models, controllers, and guarantees of software
adaptation with resource allocation, admission control, and
hardware adaptation. From the results of this study it is
therefore impossible to grasp the basic underlying princi-
ples that can be used for high-level software adaptation.
Another problem of this survey [32] is the absence of data
about a number of key characteristics and properties that
are inherent to control theory. For example, the authors
only collected data to classify system models based on
their type — black box, first principle, queuing system —,
while other essential model properties like linearity or non-
linearity and discreteness versus continuity were not exam-
ined. The same limitation applies to actuators and controller
purposes — regulatory action, optimal control, disturbance
rejection. The classification of controllers provided by the
authors mixes control-theoretic concepts. For example, PID,
LOR and MPC, which are the controller types, are mixed
with cascaded, decentralized and hierarchical control, which
are approaches to compose multiple controllers of one of

the mentioned types. Finally, the authors of [32] do not
discuss the guarantees provided by the control-theoretical
approaches, while formality is one of the main reasons to
apply control theory [14], [15], [16], [53], [55].

In contrast to existing work, we perform a systematic lit-
erature review investigating control-theoretical adaptation
of application software and middleware services of com-
puting systems. We focus on adaptation based on classical
or advanced control theory. This scope allows us to gain
general insight and explore the use of control theory as
a foundation for the design, analysis and verification of
adaptive software.

6 RESEARCH METHOD

To conduct our systematic literature review, we followed the
guidelines described in [30]. In a first stage, the team defined
a protocol to be used for the review. The protocol includes
(a) research questions, (b) a search string to find relevant
sources, (c) inclusion and exclusion criteria to determine if
a document that was found with the given string is relevant
or not, and (d) relevant venues to be used as data sources. In
the remainder of this section, we discuss these key elements.

Given these elements, we performed two independent
searches in the documents retrieved with the search string
applied to the relevant venues and compared the results and
resolved the ambiguities and discrepancies arisen.

6.1 Research Questions

We first formulated the overall goal of our literature review
using the Goal-Question-Metric approach [71]:

Purpose: Understand and characterize
Issue: the use of control theory
Object: to adapt application software and supporting
middleware services
Viewpoint: from the standpoint of a researcher.

As control-theoretical software adaptation only recently
emerged as a research field and there is currently no good
overview of the field, the primary aim of this review is
to create such an overview.? This overview will enable
researchers to better compare and position specific contri-
butions in the future.

We distilled the overall goal of the literature study in the
following four research questions:

RQ1: What is the current state of research on
control-theoretical adaptation of software at
the application and middleware level?

RQ2: What are the model paradigms used for
control-theoretical adaptation of software?

RQ3: What are the control strategies used for
control-theoretical adaptation of software?

RQ4: What type of goals are achieved with control-

theoretical adaptation of software and what
kind of guarantees are provided?

2. As explained above, control theory has been studied in the context
of computing systems for over a decade mainly focusing on resource
allocation and admission control. Control-theoretical adaptation of
software on the other hand only recently emerged as a research field.

RQ1 aims to provide a general overview of the state of the
art in control-theoretical software adaptation. In particular,
with RQ1 we can get insight in the trends of research on
adapting software using principles from control theory. We
plan to provide a deep understanding of the motivations for
the use of control theory, of the viewpoint taken in its use,
and of the approaches used to assess the effectiveness of the
control approach.

The other questions are aligned with the “three broad
areas of challenges in applying control theory to computing
systems” mentioned by Hellerstein et al. [15, p.24]. These
areas are: constructing models of the target system and
controller, designing the feedback controller, and defining
evaluation criteria to assess the results obtained.

Concretely, we formulated RQ2 to identify the models
used for controlling software and their characteristics. RQ3
is related to the types of controllers and their different use, to
the sensors and actuators applied, and to the methods used
for building controllers. Finally, RQ4 helps us identifying
the methods and metrics used to assess the effectiveness of
the control solution and the guarantees provided.

6.2 Document Sources

To select the sources used for our systematic literature
survey, we followed the same procedure used for other
systematic studies, such as [65], [72]. The procedure starts
with identifying the document sources that are used in
related surveys [16], [32], [65]. The sources are then refined
by consulting with researchers from both the field of control
theory and software engineering.

After following the mentioned procedure, we identified
the main venues for publishing research in control theory,
software engineering and adaptive systems. To ensure high
quality and obtain solid data to answer the research ques-
tions, we excluded a number of venues based on two pa-
rameters: the Australian Research Council (ARC) ranking®
and the H-index*. Most of the included venues have high
ARC rating (A*/A) and an H-index higher than 10. How-
ever, ranking alone is usually not conclusive. Therefore, we
included a number of conferences and journals independent
of their ratings because they are considered important in the
respective communities.

In total, we included 41 venues: 15 journals and 26
conferences. For the journals we included 11 from control
theory (CT), 3 from software/systems engineering (SSE),
and 1 from adaptive systems (AS), see Table 2 for more
detailed information. For the conferences, we included 4
from control theory, 17 from software/systems engineering,
and 5 from adaptive systems, see Table 1.

6.3 Search Strategy

Our search strategy is composed by six different steps.

3. ARC for journals: http://research.unsw.edu.au/excellence-
research-australia-era-outlet-ranking
ARC for conferences: http://103.1.187.206/ core/
4. H-index for journals: http:/ /www.scimagojr.com
For conferences: http:/ /academic.research.microsoft.com/
Control venues: Google Scholar cat. Automation & Control Theory

TABLE 1: Conferences included in the search.

ID Group Venue ARC H-index
ICSE SSE International Conference on Software Engineering A* 118
ICAC SSE International Conference on Autonomic Computing B 32
DAC SSE Design Automation Conference C 73
1ICSM SSE International Conference on Software Maintenance and Evolution A 56
ASE SSE Automated Software Engineering Conference A 44
ESEC SSE European Software Engineering Conference B 44

WADS SSE Workshop on Architecting Dependable Systems n/a 30
VMCAI SSE Verification, Model Checking and Abstract Interpretation B 30
WICSA SSE Working Conference on Software Architecture A 25
CBSE SSE Symposium Component-Based Software Engineering A 21
HASE SSE Symposium on High Assurance Systems Engineering B 19
SEFM SSE Conference on Software Engineering and Formal Methods B 18
ATVA SSE Symposium on Automated Technology for Verification and Analysis A 14
QoSA SSE Conference on the Quality of Software Architectures A 10
ECSA SSE European Conference on Software Architecture n/a 8
FSE SSE International Symposium on the Foundations of Software Engineering A 8
ESEM SSE Symposium on Empirical Software Engineering A n/a
CDC CT Conference on Decision and Control A 45
ACC CT American Control Conference n/a 40
ICARCV CT International Conference on Control, Automation, Robotics and Vision A 11
ECC CT European Control Conference n/a 20
SASO AS Self-Adaptive and Self-Organizing Systems n/a 9
Adaptive AS Adaptive and Self-adaptive Systems and Applications n/a n/a
FeBID AS International Workshop on Feedback Computing n/a n/a
SEAMS AS Software Engineering for Adaptive & Self-Managing Systems n/a n/a
SefSAS AS Software Engineering for Self-Adaptive Systems n/a n/a
TABLE 2: Journals included in the search.
ID Group Journal ARC H-index
TSE SSE Transactions on Software Engineering A* 128
JSS SSE Journal of Systems and Software A 72
TOSEM SSE Transactions on Software Engineering and Methodology A* 59
Automatica CT Automatica A* 85
TAC CT Transactions on Automatic Control A* 82
TCST CT Transactions on Control Systems Technology A 54
IJRNC CT International Journal of Robust and Nonlinear Control A 41
CEP CT Control Engineering Practice B 38
SICON CT SIAM Journal on Control and Optimization A* 36
IJC CT International Journal of Control A 33
CS CT IEEE Control Systems B 24
SCL CT Systems & Control Letters n/a 41
ARC CT Annual reviews in control n/a 27
CTA CT IET Control Theory & Applications B 39

TAAS AS Transactions on Autonomous and Adaptive Systems B 26

The first step is the definition and validation of the
search string to be used for automated search. This pro-
cess started with pilot searches on IEEE Explore and the
ACM Digital Library. We combined different keywords from
software engineering and control theory that are relevant
for our research questions. Based on the pilot searches, we
defined the following search string, that was then applied
to title and abstract.

(control OR controller OR controlling) AND (adaptive
OR self-adaptive OR adaptation OR self- OR autonomic
OR autonomous) [AND (software)]°

To validate the search string, we used a “quasi-gold
standard” [73]. In particular, we manually searched through
the proceedings of three known venues (TAAS, ICAC, and
ICSE) during the past three years and found five studies
that matched the selection criteria (discussed below). Then,
we performed the automatic search in the proceedings of the
same venues, using the search engines of the IEEE and ACM
libraries. We refined the search string until the five studies
were in the search results and the remaining number of the
studies was minimal.

In the second step, we applied an automatic search using
the previously defined search string. We use IEEE Explore,
the ACM Digital Library and Google Scholar®. The search
is performed on the venues described in Section 6.2. For
venues not included in the digital libraries, we manually
downloaded and searched the proceedings. After the auto-
matic search, we collected a total of 1512 papers.

In the third step, two researchers independently read
the abstracts of all studies selected in the previous step
and used the inclusion and exclusion criteria described in
Section 6.4 to filter out irrelevant papers. Of the 1512 papers
selected with the automatic string match, only 161 papers
were advanced to the next stage.

In step four, we read the complete papers to make a final
decision on their inclusion in the review. Conflicts were re-
solved during extensive discussion. We excluded a various
number of papers because they were not relevant, and had
40 studies to analyze at the end of this step. As a fifth step,
we applied snowballing. We checked the references cited by
the selected papers and included them when appropriate.
We increased the number of studies to analyze to 61 papers.

Finally, in the sixth step, we identified and removed
similar versions of the remaining papers. For example, when
we found a conference and a journal version of the same
paper, we kept only the journal version, as it is considered
more complete and accurate. The final list of primary studies
for our literature review consists of the following 42 refer-
ences: [21], [24], [27], [28], [29], [34], [70], [74], [75], [76], [77],
(78], [79], [80], [81], [82], [83], [84], [85], [86], [87], [88], [89],
[90], [91], [92], [93], [94], [95], [96], [97], [98], [99], [100], [101],
[102], [103], [104], [105], [106], [107], [108].

5. The additional keyword “software” is used only for control theory
venues to improve the search results.

6. The reference search string was adjusted to match the search
features provided by different electronic sources (e.g., different field
codes, case sensitivity, syntax of search strings). The search string for
Google Scholar was adjusted to controller adaptive software as the engine
only allows searching on title or full text of papers.

6.4

We determined that a paper is approved for further analysis
only when it satisfies all inclusion criteria and does not
satisfy any of the exclusion criteria. We include studies that:

e Were published from January 2000 to June 2016.
We used 2000 as starting date as adaptive systems
have become subject of active research around that
time [18], [66].

o Discussed the engineering of the adaptation strategy.
The design or the implementation of the adaptation
strategy or its parts must be included in the study.

e Matched the focus of the study, including adaptation
of application software or middleware services, as
shown in Figure 1.

e Applied classic or advanced control theory to design
feedback loops, as shown by the grey area in Fig-
ure 2.

We excluded:

Inclusion and Exclusion Criteria

o Papers written in languages other than English.
o Tutorials, short papers, editorials because they do not
contain sufficient data for our study.

6.5 Assessment of the Presentation Quality

Assessing the quality of the presentation — not necessarily
related to the quality of the research — of the studies is
important for the interpretation of the results.

To assess the presentation quality, we collected six qual-
ity items for each study. The quality items are listed in
Table 3. These items are based on the quality assessment
method for research studies initially described in [109] and
adjusted in [110]. For each quality item we assign a value
of 2 if the authors provide an explicit description, 1 if there
is a general description, and 0 if there is no description at
all. The paper quality assessment score (max 12 points) is
calculated by summing up the scores for every quality item.

6.6 Extracted Data Iltems

Table 4 shows the data items that are extracted to answer
the identified research questions. We here briefly explain
the different items.

e F1-F5: These data items are used for documentation.
For item F4 we additionally group venues into SSE (Soft-
ware/Systems Engineering), CT (Control Theory) and AS
(Adaptive Systems), as shown in Table 1. This data item is
referred as F4.1.

e F6: Presentation quality score (on a total of 12), ob-
tained as described in Section 6.5.

e F7: The engineering perspective taken by the authors
of the study, which can be one of the following options:
(a) SE perspective: The focus of these studies is on applying
adaption to realize some quality requirements. The appli-
cation of control-theoretical principles to adapt software is
not well elaborated. For example, controller guarantees are
not analyzed or the software mathematical model is not
explicitly presented. (b) CT perspective: The focus of these
studies is control theoretical aspects; software is basically
used as an application domain. There is less focus on typical
software engineering aspects. (c) Integrated perspective: These

TABLE 3: Quality items to assess the presentation quality of
the studies.

Q1: Problem definition of the study
2 Explicit problem description

1 General problem description

0 No problem description

Q2: Problem context of the study
2 Explicit problem context supported by references

1 General problem context supported by references

0 No description of the context

Q3: Research design of the study

2 Explicit description of how the research was organized

1 General words about the way the research was organized

0 No description of how the research was organized

Q4: Contributions/results of the study
2 Explicit list of the study contributions

1 General words about the study contributions

0 No description of the study contributions

Q5: Insights derived from the study

2 Explicit list of insights/lessons learned from the study

1 General words about the insights

0 No description of the insights derived from the study

Q6: Limitations of the study
2 Explicit list of the study limitations

1 General words about the study limitations

0 No description of the study limitations

studies employ principles from control theory to solve a
software adaptation problem and exploit its mathematical
foundation to analyze the system behavior and provide
guarantees for quality goals.

e F8: Motivation for using control theory in a soft-
ware system. The initial options are: formal guarantees,
systematic approach, inefficiency of existing approaches.
Additional options are derived during the review.

e F9: Validation setting is one of the following: academic
effort, academic/industry collaboration, industrial effort,
none.

e F10: The assessment approach used in the study. The
initial options are: example application, simulation and dis-
cussion. In addition, we collect data about formal assess-
ment (F10.1) which is one of the following: formal modeling,
formal analysis, or none. By formal modeling we mean
having a formal description of system model/controller,
while formal analysis includes analysis of guarantees.

e F11: Applications domain for which adaptation is
used or evaluated in the study. For example, e-commerce,
tourism, video processing. The concrete application do-
mains are derived during the review.

e F12: A boolean indicating whether the authors state a
general applicability of the proposed approach.

e F13: The system model. Extracted data are divided
into four sub-properties: (F13.1) model type, (F13.2) model

10
TABLE 4: Collected Data items.

Item ID Field Use
F1 Author(s) Documentation
F2 Year Documentation
EF3 Title Documentation
F4 Venue Documentation
F5 Citations per year Documentation
F6 Quality score Documentation
F7 Engineering perspective ~ RQ1
F8 Motivation for CT RQ1
F9 Validation RQ1
F10 Assessment RQ1
F11 Application domain RQ1
F12 Claimed Generality RQ1
F13 System model RQ2
Fl14 Sensors and actuators RQ3
F15 Triggers for adaptation RQ3
F16 Controller type RQ3
F17 Controller purpose RQ3
F18 Guarantees RQ4
F19 Software qualities RQ4
F20 Tradeoffs RQ4

linearity, (F13.3) time framework, (F13.4) model time depen-
dency. For F13.1, a system can be denoted as (a) analytical,
(b) grey box, or (c) black box. In an analytical model, the
system is described by laws governing the behavior of
that system (e.g., a Markov Chain). All model elements
are known at design time (but parameters may change at
runtime). With a grey-box model, the system is not entirely
known, a certain model based on both insight in the system
and experimental data can be constructed. However, the
model has a number of unknown free parameters that are
estimated using system identification. In the black-box case,
the system is considered unknown but can receive input
and produces some output, that in principle comes from
unknown functions. For F13.2, a model can be either (a) lin-
ear or (b) non-linear. In the linear case, the output is directly
proportional to the input. In the non-linear case, this direct
proportionality is not true. F13.3 can be either (a) discrete-
or (b) continuous-time. In a discrete-time model, a system
is modeled using difference equations, while continuous-
time models rely on ordinary differential equations. As for
F13.4, the model can be either (a) time-dependant, or (b)
time-invariant. In the first case, the dependency on time
is explicit. The output o is computed using a function f
that depends on the input ¢, on the state z, and on time ¢,
o(t) = f(i,x,t). In the second case, the model describes the
output at some time advancement, but the relationship does
not contain time o(t) = f(4,x) and depends only on the
state and the input.

e F14: Sensors and actuators. We separate collected data
into: (F14.1) sensors: what is being measured during adap-
tation, (F14.2) actuators: the mechanism affecting software
behavior to achieve the adaptation goals,

Steady-state
Error

1.5 -

aximum
O\ershoot

!
|
|
|
|
~

T

(setpoint) 1

0.5

Transient State : Steady state

0 | 1 | |
0 10 20 30

Time

Fig. 6: Control-Theoretical Guarantees.

o F15: Triggers for adaptation. Can be one of the follow-
ing: stimulations from the environment, changes in require-
ments/goals, changes in the software itself.

e F16: The controller type used in the feedback mecha-
nism. Options include PID, MPC, optimal, and others. In
addition, we collect the data about: (F16.1) adaptivity of
controller: adaptive or non-adaptive, (F16.2) composition
scheme of multiple controllers, if applicable. Options in-
clude cascaded, hierarchical, and others.

¢ F17: The controller purpose with options: optimization,
regulatory functions (setpoint tracking), disturbance rejec-
tion, or a combinations of these purposes [15].

e F18: Formal guarantees provided by the use of control
theory and described in the study. According to [15], control
theory can guarantee four main system qualities: stability,
steady-state error, settling time, and maximum overshoot-
ing. Stability refers to the ability of the system to converge
to a fixed point (as opposed to diverging — for example,
accumulating requests in a buffer). Steady-state error refers
to the difference between the fixed point to which the
system converged to and the desired goal, given to the
controller. The settling time of a controller is a measure of
how quickly the controller is able to reach the fixed point,
when it exists. Finally, the maximum overshoot determines
how much the maximum difference between the measured
value and the objective will be, during the transient phase.
A graphical summary of these properties can be seen in
Figure 6. Additionally to the properties mentioned in [15],
a number of studies discuss the guarantees of systems with
respect to robustness. Robustness is the ability of the system
to return to the steady state in case of model inaccuracies or
perturbations and disturbances.

We also collect data about experimentally verified guar-
antees (F18.1). The difference with the data extracted in F18
(formal guarantees) is that the evidence is based on data that
is collected from experiments.

e F19: Software qualities that are affected by adaptation
and described in the study. We use the specification of
qualities described in the ISO/IEC 9126-1 standard’. Ac-
cording to [65], the software engineering approaches mostly
concentrate on: (a) performance, the ability of the software

7.1SO/1IEC 9126-1 Software Eng. - Product quality - Part 1: Quality-
model, Int. Standard Organisation. (2001)

11

10 F E

studies per year
ot
T
|

0llllllll]
I I I I I I
QQ

¢ & & & O

PP P P

Fig. 7: F2: Number of analyzed primary studies by year.

to achieve a desired value for qualities like throughput and
response time; (b) efficiency, the extent to which the software
uses the appropriate resources under stated conditions and
in a specific context of use; (c) reliability: the capability of
software to maintain its level of performance under stated
conditions for a period of time; (d) other: software qualities
such as scalability, usability, security, and portability.

e F20: Concerns that can be degraded as a consequence
of improving other concerns. This can be one or several
guarantees listed in F18 and/or qualities listed in F19.

7 RESULT ANALYSIS

This section summarizes the data we collected from the
identified 42 studies and presents an analysis of the results.
We use descriptive statistics and plots for presenting the
results. We first present demographics information and pre-
sentation quality assessment. Then, we answer the research
questions stated in Section 6.1 based on the collected data.

7.1 Demographics

Figure 7 shows the frequency of primary studies per year
(item F2).

Although we looked at papers from the past 15.5 years,
we observed that 72% of primary studies were written in
the last 5.5 years. This indicates that there is a growing
interest in research on control-theoretical design of software.
Several authors have argued that one important factor for
this growing interest is the mathematical foundation of
control theory that provides a solid basis for guaranteeing
the adaptation goals under uncertainty [21], [29], [80], [83].

We also sorted studies according to the number of cita-
tions per year (item F5). Table 5 shows the primary studies
with minimum 10 citations per year.

TABLE 5: Studies with minimum 10 citations per year.

Topic Reference Cit./year
Performance Control of Web Server [88] 46.2
Brownout Paradigm [70] 12.5
Push Button Methodology [21] 11.5
DYNAMICO Reference Model [103] 10.7

Our review revealed that the publication of primary
studies is scattered over different venues: 25 studies were
published at software/systems engineering venues, 7
at control theory related venues, 6 at adaptive systems

12

TABLE 6: Limitations reported in the primary studies

Limitations

Primary Studies

Requires specific conditions to function (pre-conditions)

[34], [84], [85], [88], [90], [98], [102], [106]

Requires additional computation resources or tools (redundancy)

[27], [84], [85], [88]

Not applicable in some cases/systems

[29], [34], [80], [84], [88], [90], [97], [98], [102]

External validity: generalising findings requires extra effort

[27], [29], [85], [94], [97]

Complexity of the proposed approach

[85]

Not able to handle new requirements

[24]

venues, and 4 at venues with other subjects. The only
venue that published more than three of the studies was
the Journal of Systems and Software with 6 studies. Having
the majority of studies published at software/systems
engineering venues, we can conclude that there is more
interest in the software/systems engineering community in
exploring the application of principles from control theory
to realize adaptation of software as from the control theory
community in applying novel research results to software
applications.

Key insights from demographics:

e The interest in the research on control-
theoretical adaptation raised significantly in
the last 5.5 years.

e The publication of the primary studies is
scattered over different venues.

7.2 Presentation Quality

The results of presentation quality assessment of the pri-
mary studies (item F6, Figure 8) show that the majority of
the studies provide an in-depth description of the problem
and the problem context, and most studies give a sufficiently
clear description of contributions and insights. However,
many studies do not describe the research design (methods,
different steps, etc.) and lack a discussion of limitations of
the proposed approach. This seems to be a general trend
as similar results have been reported in other secondary
studies and other domains, see e.g., [65], [72]. Nevertheless,
the overall average score of 7.3 out of 12 points indicates
a good quality of reporting in the studies, supporting the

| | |
I [] 0 points B 1 point 102 points

?JJ&JLR

studies

x @ % 6
.»;\0 & é@/g & } 335 o~
& O 2 & & &
& s S 0
QX ol X © &
& & L& v
3 S
X < R
3 g
Q’Q

Fig. 8: F6: Presentation quality scores.

validity of the extracted data and the conclusions derived
from them.

The particular limitations reported in the primary
studies are summarized in Table 6. Notably, most of
the limitations concern the applicability of the proposed
adaptation mechanism (pre-conditions, redundancy,
complexity). Only a few of the primary studies explicitly
report threats to validity of the conducted study, such as
internal validity, construct validity, and external validity.

Key insights from presentation quality:

e Most of the primary studies provide a com-
prehensive description of problem and con-
text, but lack a discussion of research design
and limitations.

7.3 RQ1: Control-Theoretical Software Adaptation

To answer the first research question (what is the current
state of research on control-theoretical adaptation of soft-
ware at the application and middleware level?), we used
data items F7-F12. Figure 9 provides an overview of the
results. The engineering perspective taken in the studies
varied (item F7, Figure 9a). 11 studies took a software en-
gineering perspective. In these studies, particular attention
was given to typical software engineering aspects, such
as software qualities, design, testing, and similar concerns.
The application of control theory to realize adaptation of
software was not well elaborated. For example, guaran-
tees provided by control theory were not analyzed and
the software model and controller structure was not well
defined. 10 studies took a control theoretic perspective. The
focus of these studies contrasts to the software engineering
perspective: attention was given to the formal part of the
adaptation, the studies included an in-depth mathematical
analysis of the model/controller. Software, in this case, was
used as an application domain, typical software engineering
aspects were not well elaborated. The remaining 21 stud-
ies [21], [24], [29], [34], [70], [76], [79], [80], [81], [82], [83],
[88], [92], [94], [96], [98], [99], [104], [105], [106], [107] took
an integrated perspective. These studies employed both
software engineering and control theoretic aspects to realize
adaptation of software.

The motivations to apply principles from control the-
ory for adapting software varied (item F8, Figure 9b). The
main motivations documented in the primary studies were
formal guarantees, maturity (“systematic approach” and
“solid foundation”), and effectiveness of control theory.
These results support the rationale (discussed in Section 7.1)

B ¥ General [0 Not General

10 B

studies

(a) F7: Engineering per- <
spective — F12: Claimed
generality.

(b) F8: Motivation for
using control theory.

13

1
1
1
1
1
1
1
10 1 —
1
1
1
1
1
1
1

(c) F10 Assessment and
F10.1: Formal
Assessment.

(d) F11: Application domain.

Fig. 9: Results for data items required to answer RQ1.

that software engineers are exploring new well-grounded
approaches for engineering self-adaptive software driven by
the need for guarantees. Note that 27% of the studies did
not provide any motivation for applying control theory to
software adaptation. We could not derive any conclusive
data why the authors of these primary studies have not
provided a motivation. Furthermore, there is no dominating
trend in the motivations that are reported in the other stud-
ies (see Figure 9b). The motivations for applying control-
theoretical adaptation of software may be an interesting
topic for further investigation.

Validation of the research (item F9), except two industrial
studies [107], [108], was based on academic efforts. As
research of control-theoretical software adaptation is still
in its early stages, most of the results have not yet found
their way to practice. The most used assessment methods
(item F10, Figure 9c) were example application, followed
by simulation. These results are in line with the results
presented in [32]. In 38 out of 42 primary studies formal
modeling or analysis is conducted (item F10.1, Figure 9c).
This is not surprising and confirms the appreciation of the
formal underpinning of control theory to realize control-
theoretical software adaptation. The concrete types of guar-
antees that are analyzed in the primary studies are discussed
in Section 7.4.

The most popular application domains in the primary
studies (Figure 9d) were web applications (E-commerce)
and video/image processing software. The most used E-
commerce applications were a flight reservation system
described in [83] and the RUBIS benchmark®. Three studies
used general web applications that show static content to
user [88], [89], [90], while one study used recommender
systems [101]. The applications in the video/image pro-
cessing domain can be divided in different groups: object
recognition [27], [91], video streaming [28], [104], video
encoding [21], [81], [105], image/signal processing [78], [86].

Two abstract design/technology paradigms (service-

8. Rice University Bidding System: http:/ /rubis.ow2.org

based system and search engine) were included as six
studies used these paradigms without describing a concrete
application domain, e.g. [92], [93], [97] (Figure 9d between
the dotted and full horizontal lines).

Finally, six studies applied principles from control theory
not directly to adapt a running software application, but
to support software development (Figure 9d). In particular,
these studies applied control theory to calculate the hu-
man resources required for testing a software product [94],
[95], to determine the quality of tests [96], [97], to select
the appropriate types and number of test cases in order
to minimize the number of software defects, to optimally
distribute the development effort between construction and
debugging [98], and to analyze the system lifetime based on
the amount of development effort [99]. These studies may
be especially interesting because they show that control-
theoretical software adaptation is not only applied to end-
products, but can be used in a broader way to adapt soft-
ware artifacts during the development life cycle.

We observed that 18 primary studies stated general
applicability of the proposed approach (item F12). It is
notable that 7 out of 12 studies with software engineering
focus (Figure 9a) proposed a generally applicable frame-
work or methodology. On a contrary, only one study with a
control theory perspective claimed the general applicability
of the proposed approach [86]. These results support the
tendency of research in the control engineering community
to develop specific solutions for concrete problems, while in
the software engineering community it is more common to
aim for generally applicable solutions [8], [9], [10]. One of
the main reasons to build controllers for specific problems
in control theory is that generality comes with a tradeoff:
generality of a controller typically implies some decrease
in performance or robustness objectives [111]. Nevertheless,
control theory offers a number of generic control structures
(or patterns of controllers) and engineering techniques that
enable these control structures to automatically adjust to
specific scenarios [112].

As a side note, it is important to mention that the

TABLE 7: F13: System model.

Behavioral
Model

Specific Model

Primary Studies

Additional Information

Markov model

(78], [79], [96], [97]

Model used for stochastic systems for which future states depend only
on the current state.

Analytical Queuing [28], [80] System is represented as a network of queues, which is evaluated
network analytically.
Custom [27], [91], [93], [98], Custom analytical models used for object recognition [27], [91], software
[99], [107], [108] development process [98], [99], search algorithm [93], ads [107], [108].
Linear model [21], [29], [34], [70], Model of the form: u(k + 1) = a x n(k) + d(k), where u(k + 1) is the
Learned at [74], [75], [76], [77], system output, n(k) is the actuation signal, « is a coefficient, d(k) is a
Runtime (LLR) [81], [82] disturbance acting on the output. u(k + 1) and n(k) are cases-specific;
coefficient « is calculated during system identification based on a series
of experiments [21], [70], [82] or using a controller [34], [81]. In some
cases [21], [82] d(k) is removed from the model, while « is updated
during system operation to cope with system dynamics.
Grey box Hammerstein- [84] Model that combines a non-linear block that captures the system non-
Wiener linear behavior with a linear block responsible for all remaining system
dynamics.
Multi-Model [85] Models of different types that can inter-replace each other during
Switching operation depending on the system goals.
Custom [24], [83], [86], [87], Custom grey-box models used for web server utilization [88], [90],
[88], [90], [94], [95], software testing process [94], [95], resources allocation between software
[101], [105], [106] components [83], [105], recommender system [101], component interac-
tions at the application layer [86], [87].
Black box Custom [89], [100], [104] Models used with the aim to achieve generality of the proposed ap-
proach.
N/A Not specified [92], [102], [103] No specification of the concrete model being used.

14

evidence for the general applicability of the proposed
approaches in most of the primary studies is limited to
the evaluation of a few examples or provided in form of
discussion.

RQ1: Control-Theoretical Software Adaptation

¢ The main motivations to use control theory
in software adaptation are the maturity of
the field and its formal foundation as a basis
to provide guarantees.

e The most used application domains for
control-theoretical software adaptation are
E-commerce and video/image processing.

e Assessment of research contributions is
based on (simple) example applications and
simulations. There is a need for involv-
ing industry partners to evaluate control-
theoretical solutions in practical settings.

e The studies with a software engineering
focus typically propose a generally applica-
ble methodology/framework, while studies
focusing on control theory solve specific
problems.

7.4 RQ2: Software Models

To answer the second research question (what are the model
paradigms used for control-theoretical adaptation of soft-
ware?), we used data item F13, see Figure 10.

We observed that different types of system models are
used, but the dominating type is a linear, time-invariant,

discrete grey-box model that is built using system identifi-
cation techniques. The studies apply linear grey-box models
for three reasons. First, these models can be easily designed,
see for example [21], [79]. Black or grey-box models are
preferred as it is often difficult to create a detailed analytical
model of software since it is not governed by physical
laws. And even if such model can be created, it may be-
come inaccurate after the first software update. Moreover,
the parameters of an analytical model must be updated
at runtime to deal with changing operating conditions.
Second, black or grey-box models offer a generic solution
to system modeling. Whereas at the infrastructural layer
CPU cores, memory and virtual machines can be easily
abstracted for many systems types, at the software level
it is problematic (or challenging) to find general elements
that can be modeled. Each middleware software or each
application has its own technology- and domain-specific
software elements. Third, as stated in [21], [34], although
linear grey-box models are not as accurate as complex non-
linear models at design time, they are more effective at
runtime due to a low level of complexity and a higher
degree of guarantees that can be obtained using them. A
common view on using a linear grey-box model is that as
long as the model captures the general system dynamics, the
inherent non-linearities of the system can be compensated
by endowing the feedback controller with an adaptation or
online model update mechanism [85], [89]. Table 7 provides
an overview of models used in different studies.

Although most studies refer to the complexity of soft-
ware systems and their non-linear behavior, there are only
11 studies that look at software as a non-linear system [78],
[84], [86], [87], [93], [96], [97], [98], [99], [107], [108]. It is

greY box

p
plackboX "ear

. n .
analytica! Olinggy

(a) F13.1: Model type vs F13.2: Model linearity.

15

<

|

30 ‘

20 |

10 |L i ' '

) T ’ time-inya

discrete - Variant
-

continuous time dependent

(b) F13.3: Time framework vs F13.4: Model time
dependency.

Fig. 10: Results for different properties of system models.

Software Utility |
Software Inefficiency |
System Utilization |
Resource Utilization |
Not Specified

studies

(a) F14.1: Sensors.

Component Adaptation |

Parametric Adaptation =

Mode Adaptation =
Archit. Reconfiguration =
Not Specified | 1 1 =
5 10 15
studies

(b) F14.2: Actuators.

Fig. 11: Sensors and Actuators.

notable that most of the non-linear models are analytical
(Figure 10a). An explanation for this is that the identification
of non-linear models is extremely challenging in terms of
engineering effort; and there are almost no tools available to
support the identification of non-linear models [54], [113].

When software applications undergo sudden changes
in their behavior at runtime (for example a component
failure), we observed two types of reactions in the primary
studies: (1) updating model parameters [21], [27], [34], [82],
[94], [95], [97] or even switching the model [85], and (2)
updating parameters of the control law, which means using
adaptive or model predictive control (further discussed
in the following Section). In some cases, an update of the
model may be followed by an update of control law as
well [21], [82], [97]. Other approaches use a separate linear
corrector to compensate for model changes [95], allow
human operators to make a decision [94], or completely
change the control law [27], [85].

RQ2: Software Models

e Linear, time-invariant, discrete grey-box
models are mostly used in control-
theoretical software adaptation.

e Although most of the authors discuss com-
plexity and non-linear behavior of software,
only 11 out of 42 primary studies employed
non-linear models, most of which are ana-
lytical.

o Eight primary studies deal with behavioral
changes at runtime by updating model pa-
rameters.

7.5 RQa3: Control Strategies

To answer the third research question (what are the control
strategies used for control-theoretical adaptation of soft-
ware?), we look at: monitoring mechanisms (sensors), ef-
fecting mechanisms (actuators), triggers for adaptation and
controller types.

Sensors: When extracting data about monitoring mech-
anisms (sensors) and effecting mechanisms (actuators), we
observed that the actual implementation of sensors (for ex-
ample how the values are technically measured) and actua-
tors (for example how the actuation mechanisms implement
changes of the application) are discussed in only 7 of the
42 primary studies [34], [70], [88], [90], [92], [103], [105].
[88], [90] describe how bandwidth and request rate of an
Apache Web server are measured, [70] employs PHP scripts
to control the amount of optional content served to users
and calculate user perceived latency, and [92] compares the
influence of actuator realizations on the output of the target
software.

In the rest of the primary studies, the authors refer to
sensors and actuators as the monitored variables and vari-
ables effecting the application respectively. Consequently,
we analyze only these variables in this literature review
(and refer to them as sensors and actuators), due to the
lack of data concerning the actual implementation of sen-
sors/actuators in the primary studies.

We observed the use of various types of sensors in the
primary studies (item F14.1, Figure 11a and Table 8a). The
sensors can be classified in two main classes: sensors that
monitor the software that is subject of adaptation and sen-
sors that monitor elements that are external to the software
application. We further distinguish two types of sensors
that monitor the software application: those that monitor

16

TABLE 8: Specific sensors and actuators applied in primary studies.

(a) F14.1: Sensors.

(b) F14.2 Actuators.

Sensor Monitored Variable: Primary Studies Actuator Changed Variable: Primary Studies
Type (the variables are representative examples) Type (the variables are representative examples)
Software Software response to requests: [34], [77], [81], [82], Parametric Length of a queue with pending requests: [76]
utility [83], [84], [85], [104] adaptation Degree of video compression: [21]
Probability of correct object recognition: [27], [91] Quality parameters of a filter: [81], [105]
[L;;T [ggfceived latency of application: [70], [74], Parameters to enhance testing quality: [94], [95]
?gi;lf(fl (c)lél]ality and processing speed: [21], [86], Sg ;;faotrif:: t {'g;tj[éf]’s[%g]‘/y Eg;] services: [21], [34], [78], [79],
Profit gained from the application: [9], [102] Distribution of incoming requests: [86], [87]
Software Percentage of software failures: [21], [34], [78], Test case of application: [96], [97]
inefficiency [79], [82] Degree of parallelism to process requests: [104]
Detection of software defect: [95], [96], [97] Number of service instances: [28]
Number of errors in software: [94], [98], [102] Mode change Increment/decrement of content being served:
Resource Energy consumption: [34], [81] 701, 741, [75], [76}, [77]
utilization Cost of using external services: [34] - - — - — - _ _ Change in search strategy: [93]
Bandwidth: [88], [89], [90] Mode switch Video buffering scheme: [88], [89], [90]
CPU usage: [100], [105] Quality of content representation of website: [21]
Memory usage: [100], [104] Operating mode of system: [81], [105]
System Request arrival rate: [77], [86], [88], [89], [90] Preference given to each service level: [80]
utilization ~ Length of requests queue: [28], [76], [77], [80], [87] il‘r:co};i;iegclt;re g;ﬁlﬁ)(:éelﬁsogr ange to handle variations in the

Data to be processed by the system: [101]

Amount of new user registrations: [102]

Modules selected for execution to deal with
changing goals: [102]

software utility and those that monitor software inefficiency.
Sensors that monitor software utility measure the usefulness
of the software to achieve its goals, such as the quality of
video and the profit gained from the software application.
Sensors that monitor software inefficiency measure the lack
of ability of the software to achieve its goals, such as
detection of software defects and errors in the software
application. We also distinguish two types of sensors that
monitor elements external to the software application: those
that monitor resource utilization and those that monitor sys-
tem utilization. The sensors that monitor resource utilization
measure the amount of resources consumed by the software
application to realize its goals, such as energy consumption
and memory usage. Sensors that monitor system utilization
on the other hand measure the degree of load on the
application, for example as the length of request queues or
the request arrival rate. Table 8a lists other examples of the
different types.

The first class of sensors — those that monitor software
utility and software inefficiency — are specific to control-
theoretical software adaptation. These sensors have to be
implemented by the software application or middleware
services, for example using supporting functionality (frame-
work API, component model, programming abstractions,
and similar ones) or through a dedicated software interface.
The second class — sensors that monitor elements that are
external to the software application — are conventional types
of sensors that are commonly used in control-based adapta-
tion of computing systems at lower levels of the technology
stack (physical resources and infrastructural software).

Control-theoretical software adaptation requires two
types of sensors that respectively monitor the software
application and the execution environment. These corre-
spond to the types of sensors that are typically required for
architecture-based adaptation of application software. Two
studies that elaborate on this are [103] and [10].

Actuators: As for the actuators, we observed that the
studies use a wide variety of effecting mechanisms to
realise adaptation (item F14.2, Figure 11b and Table 8b).
We identified four main types of actuators that operate at
different levels of granularity: parametric, component, and
mode adaptation, and architecture reconfiguration.

Parametric adaptation refers to changing the values of
variables of the application software or middleware ser-
vices. These types of actuators are typically domain-specific;
examples are the degree of video compression and the
length of a queue with pending requests that need to be
processed. Component adaptation refers to changes at the
level of software components, such as the load of services
and the degree of parallelism that components process re-
quests. Mode adaptation refers to a variation in the mode
of operation, which can be either mode change or mode
switch. An example of a mode change is an increment
in the quality of content that is being served by a video
application; an example of mode switch is an alteration
of the buffering schema of a video application. Finally,
architecture reconfiguration refers to a runtime adaptation
of the architectural structure or behavior of the application.
We only observed two instances of this type of effecting
mechanism: changing components to handle variations in

17

27 |- [0 Software Utility ll B Software Inefficiency |l N System Utilization f Bl Resource Utilization ||
24 n
21 |- T
2 18 |- n
;§ 15 |- .
7 12 1
#* 9 7 =
3 7 7 t ; L 7 ’ 77 n
0 A A . 24 A . .
T T \‘ T T T ‘\
+ & S e] ™
NS <" o & &‘& & & & &
O@QS \@8- ¢$ V P ¥ $ & Qé\
9 ¥ <° & ¢ ¥
& &
< &\&
Fig. 12: Relation between F14.1 Sensors and F13 System model.
| | | | | | | | |
0o Component Adaptation 0l B Parametric Adaptation BB Mode Adaptation 01 Architecture Reconfiguration
14 n
12 n
£ 10 8
Ei 8| i
- 6 - i
4 - .
2+ -
(N -
+ + \ & & e % \ “
~° & & i & S & &
O@ & &* W & ¢ & & &
D W éo g e’& z/be
< <

Fig. 13: Relation between F14.2 Actuators and F13 System model.

the task load and selecting modules for execution to deal
with changing goals.

As the actuators directly effect the application software
and/or middleware services, they are all specific to control-
theoretical software adaptation. Similar to the implementa-
tion of sensors, actuators can be implemented by supporting
functionality (framework API, component model, and sim-
ilar) or through a dedicated software interface. A particular
aspect of effecting mechanisms is ensuring locality and
consistency of the software adaptation. This means adapting
the system properly without stopping or disturbing the
operation of the parts of the system unaffected by the
adaptation, which is more challenging for coarse-grained
types of adaptations, such as architecture reconfigurations.
A typical approach to handle this is by adapting the system
or parts of it in quiescent states [114]. We noticed that
consistency of adaptation is to a large extent ignored in the
primary studies of the survey. A related aspect of effecting
mechanisms is that some adaptations may require more
invasive changes, such as a partial or even complete reboot
of the software system. Such kinds of adaptations are critical
for controllers with a short adaptation period. A possible
approach to address this aspect is suggested in one primary
study that takes a software engineering perspective [90]. In
this study, the authors encourage engineers to make sensors
and actuators modifiable at runtime. Two other primary
studies address this aspect by taking into account the con-
troller overhead [89], [105]; a fourth study deals with it by

minimizing the number of system reconfigurations [104].

We also checked whether there are any correlations
between sensors/actuators and the system model (Figures
12 and 13). The analysis results give some indication that
software utility sensors are the dominating type of sensors
used, in particular for linear grey-box and time invariant
models. Resource utilization is not used in analytical and
non-linear models. Parametric adaptation and component
adaptation are the dominating type of used actuators. Para-
metric adaptation is particularly preferred in analytical and
continuous models; component adaption is the preferred
actuator for discrete, time invariant models. However, as
the figures show, the data for both sensors and actuators is
scattered over different model elements, so it is difficult to
derive clear conclusions.

Finally, we gathered data about the triggers for
adaptation (item F15). In 36 out of 42 primary studies
adaptation is triggered by changes in the environment. In
29 primary studies adaptation is also triggered by changes
in requirements. Only 11 studies present experiments with
changing requirement at runtime [21], [27], [29], [34], [78],
[79], [81], [82], [93], [100], [104], and only a single study [27]
supports removing or adding new requirements on the fly.
Finally, in 7 studies, adaptation is triggered by changes
in the software itself. These studies are mainly related to
software development and testing, where software is often
the only source that provides feedback.

18
TABLE 9: F16 Controller type.

Controller Specific Controller Primary Studies Additional Information
Category
PID Proportional- [21], [29], [70], [74], A classical controller that is easy to implement and tune. Consists of 3 compo-
integral [75], [76], [77], [79], nents (P, I, D) responsible for different controller characteristics [53]. In 13 out
[82], [85], [88], [89], of 18 studies, PID controllers are also adaptive as it helps to compensate for
[90] inaccuracy and errors in the system model [21], [70], [79]
Proportional- [93], [102]
integral-derivative
Proportional [80], [94].
Integral [92], [107]
MPC Model predictive [24], [83], [84], [95], Controller that uses a system model to predict its future behavior and selects
[104], [105], [106] adaptation actions that minimize the cost for achieving this behavior. MPC

was used to optimally deal with multiple requirements in primary studies from
different domains.

Limited lookahead [28], [86], [87] Controller that is conceptually similar to MPC: creates a set of future system
(LLC) states up to a certain horizon and selects a trajectory between these states such
that its cost is minimal.
Feed- Pure feedforward [101] Controller that computes adaptation actions based on the system model; the
forward system output is not taken into account, i.e., there is no feedback.
Feedback+ [74] Applied in a single study, where feedforward and feedback controllers are paired
feedfoward and compared to other types of controllers.
Optimal Custom optimal [96], [97] The goal of this controller is to minimize/maximize a cost function subject to

certain constrains, e.g. maximize performance using a pool of limited resources.
This controller was used in the context of software testing.

Bang-bang [98], [99] This controller is also known as on-off controller because the control signal can
take only two values, e.g., 0 or 1. This controller was used in the context of
software development.

Deadbeat Deadbeat [34], [74], [81] Controller created using a pole placement technique [15], [53]. Although being
less robust to disturbances than PID, this controller has a very low settling time
and limited overshooting.

|
‘ 0 0o B EMPC & LLC BB Optimal [B Deadbeat ‘
14 | |
12 |- |
g 10 |- |
e 8 -
g

2 6| i
4 - I N
2 7 2 ' 7 .
it = [Al I |

| * Y s <! e o' . 3

° O aC e? G s oW Ao o0

5y ¥ e v A 5C N S ae®
G G P o v ot o o

Fig. 14: Relation between F16 Controller type and F13 System model.

Fig. 15: F16: Controller type and F16.1: Adaptivity. Fig. 16: F17: Controller purpose

Controllers: The results for the data extracted for con-
troller types (item F16, Table 9) shows that 5 types of con-
trollers have been used for control-theoretical adaptation in
the primary studies. The dominant type of controller is the
PID controller (50% of the primary studies). While being the
most applied type of controller in the primary studies, it is
less dominant as in industrial practice where PID controllers
are used in around 90% of the control applications. MPC is
used in 26% of the primary studies. MPC is the preferable
choice for systems with multiple objectives. Other types of
controllers used are Feedforward (5%), Optimal (10%) and
Deadbeat (8%). Table 9 gives additional information about
the controller types with examples how they are used in
primary studies. It is notable that 4 primary studies do
not specify a concrete controller, but instead refer to “any
kind of feedback mechanism that makes a software fulfill
its requirements” [78], [91], [100], [103]. We also underline a
specific case of adaptation, where multiple feedback loops
at different levels of computing systems interact with each
other to address the adaptation goals. This case mostly
occurred in primary studies that apply hierarchical control
(e.g., [75], [76], [86], [87]), where a higher level controller
of a software application provided goals for lower level
controllers that manage resources such as CPU and memory.

Regarding the adaptivity of controllers (Figure 15), in
13 out of 18 studies, PID controllers are also adaptive as
it helps to compensate for errors that may result from the
linearizion in the modeling phase [21], [70], [79]. The other
types of controllers used in the primary studies are mostly
non-adaptive.

The data extracted for Controller purpose (item F17,
Figure 16) shows that PID is the preferred solution for regu-
latory control (setpoint tracking) and disturbance rejection.
However, PID controllers do not scale easily, so their use
is typically limited to single-input, single-output systems.
The need to support adaptation for multiple objectives (for
example: performance and failure rate), while functioning
under constraints (like resource limitations) or requiring the
system to optimize for some parameter (like minimizing
the operational cost), led to the use of model predictive
and optimal control [83], [105]. A well-known drawback of
optimal controllers is that they are sensitive to modeling
errors and runtime disturbances. This can be also observed
in Figure 16 where optimal controllers are used solely for
optimization purpose.

An interesting topic for analysis are possible correlations
between controller types and system models. We observed the
following tendencies (Figure 14):

e 15 out of 17 primary studies use PID controllers with
linear models. In addition to the complexity of building
or identifying non-linear models, PID is not very effec-
tive in controlling processes that are non-linear and time-
invariant [115, p.52]. A common practice from industrial
control is combining a complex controller with a simple
linear time-invariant model, and this approach seems to be
adopted for software adaptation as well.

e All 10 studies with MPC controllers use discrete time-
invariant models, 8 of which are grey-box models. The mo-
tivation for using discrete time-invariant models is similar
to the use of linear models combined with PID control:
it is a simple model to work with. Hence, it is preferred

19

over complex non-linear or adaptive models. The motiva-
tion to combine grey-box models with MPC is based on
the adaptation requirements of the software systems under
study, which often have multiple inputs and outputs. As
it is challenging to build a model of such systems without
identification, a grey-box model is a preferred choice.

e The 4 primary studies focusing on optimal control
used non-linear time-invariant analytical models. The mo-
tivations for using optimal control are similar to MPC, so
it is not surprising to see a preference for time-invariant
models. Nevertheless, the fact that all 4 studies use non-
linear analytical models is surprising, and it worthwhile to
see whether future studies will confirm this trend.

Finally, we looked at the composition of multiple controllers
into a single feedback mechanism. The extracted data yields
the following insights:

o Six of the primary studies apply hierarchical control. In
4 of these studies [75], [76], [86], [87], a high-level controller
solves global software adaptation tasks and provides input
for controllers at a second level that solve intermediate tasks
and provide input for controllers of lower level that solve
local adaptation tasks. A reversed two-level hierarchical
control approach is studied in [29], [82], where multiple con-
trollers at the top level provide inputs to a single controller
at the bottom level.

e Two studies apply switching control [27], [85], where
different control laws interchange with one another, de-
pending on the actual software adaptation tasks.

e Two studies apply cascaded control [34], [81], where
the output signal of a high level controller becomes an input
for a lower level controller.

e Finally, one study applies cooperative control [104],
where multiple controllers work in parallel, contributing to
achieve a global software adaptation task.

RQ3: Control Strategies

o Software adaptation requires specific sensors
for measuring software utility and software
inefficiency (along with conventional sensors
to measure elements at lower levels of the
technology stack and environment).

e The actuators directly effect the application
software and/or middleware services, hence
they that are all software-adaptation specific.
Consistency of adaptation is largely ignored in
the primary studies.

e PID and MPC are the dominating types of
controllers used in software adaptation. The
use of PID (50% of studies) is not as dominant
as in current industrial practice.

o Studies using PID control, prefer to combine
this with linear models, while studies that
use MPC control prefer discrete time-invariant
grey-box models.

e PID control is mostly used for regulatory func-
tions and disturbance rejection in single-input,
single-output systems. MPC and optimal con-
trol is mostly used to achieve optimality in
systems with multiple goals.

20

TABLE 10: F18 Formal guarantees and F18.1 Experimentally verified guarantees

Guarantee | Formally Achieved by Verified Measured by
Analyzed Experiment.
Stability [70], [78], [80] Keeping the pole of the controller in a certain | [83], [84] Ability of the system to achieve its goals. [102]
[21], [29], [34], interval. A notable exception is [80] that ana- | [85], [86] measures stability as the number of system
[82] lyzes routing probabilities for network nodes. | [97], [102] reconfigurations that occur during adaptation.
Settling [21],[29], [34], Analyzing the pole of the controller. [77], [102] The time required to reach the setpoint after a
time [70], [78], [80], [83], [84] goal change.
[82] [85], [108]
Overshoot [29], [34], [80], Keeping the pole of the controller in a certain [83], [84], Spikes in the system output for different adap-
[82] interval. [85], [108] tation options.
Steady- [29], [82] Analysing the output equation of the system. [77], [83], Oscillations in the response time of the soft-

state error [84], [85] ware for different adaptation options.

Robustness | [21],[29],[70], Analyzing the feedback loop transfer func- [80], [108] Deviations in the system output under
[78], [82] tion. disturbances.

Optimality | [34], [95],[96], Mathematically solving an optimization prob- | [104] The tasks completed and the resources used by
[98], [99] lem. the software for different adaptation options.

Cost of [28], [104] Analyzing a separate cost function. [81], [89], The the amount of resources consumed by the

control [90], [105] adaptation mechanism to achieve the goals.

7.6 RQ4: Goals and Guarantees

To answer research question four (what type of goals are
achieved with control-theoretical adaptation of software and
what kind of guarantees are provided?) we used data items
F18-F20. The data extracted for software qualities (item F19,
Figure 17) shows that the primary focus is on performance,
efficiency, reliability, and business value’® of the application.

The data extracted for guarantees (item F18) shows that
13 studies provide formal guarantees for required properties
(item F18), while 13 primary studies provide empirical
evidence for guarantees of required properties (item F18.1).
Table 10 provides an overview of the different types of
guarantees. Each type is illustrated with examples from
studies that provide formal guarantees and studies that
provide empirical evidence for guarantees.

The extracted data for quality tradeoffs (item F20) shows
that most of the primary studies do not mention any trade-
offs. Only 3 primary studies consider tradeoffs between
software qualities, namely, performance versus accuracy or
reliability [86], [98], [101]. Seven studies discuss the tuning
of a controller to trade different guarantees, typically robust-
ness for settling time [21], [29], [70], [77], [78], [80], [102].

9. Business value refers to the profit earned with the application.

8,
T
&
£
|
OAIII
T

=
o

20 30 40

studies

Fig. 17: F19 Software qualities.

An interesting topic of analysis is the correlation between
software qualities and achieved guarantees. Unfortunately, most
studies do not provide a clear description of how the
software qualities (adaptation goals) relate to the analyzed
guarantees. Hence, we had to infer this information:

e Stability indirectly relates to all software qualities
that are subject of adaptation and shows the ability of an
adaptation mechanism to converge to the goals. However,
guarantees for stability are different for different qualities;
e.g. lack of stability for a performance goal may imply
fluctuations in the throughput of the software application,
while lack of stability for a security goal may imply periods
with higher vulnerability of the system.

e Settling time is also related to all qualities to be
satisfied by the adaptation and shows the time it takes
for an adaptation mechanism to bring measured quality
properties close to their goals. It is generally acknowledged
that the settling time should not be too small as this would
compromise stability /robustness, but not too big as this de-
creases the quality being satisfied [70], [102]. Notably, 7 out
of 11 primary studies discussing settling time guarantees are
concerned with performance, in particular response time.

e Similarly, overshooting relates to all software qualities
that are subject of adaptation and shows how the mea-
sured output exceeds the goal during the transient phase.
Guarantees for overshoot have a different interpretation for
different qualities, e.g., having overshoots on the system
response time leads to violation of performance quality.
Avoiding overshooting avoids penalties on the respective
software qualities [34].

e Steady-state error relates to all software qualities that
are subject of adaptation as well. It shows how big is the
amplitude of oscillations of measured output around the
setpoint during steady state. For example, in [77] the authors
calculate the steady-state error as the mean of the absolute
error on a response time requirement. The authors conclude
that a higher steady-state error decreases performance.

e Robustness relates to reliability in all primary studies
that analyze this property. Indeed, the amount of distur-

Fig. 18: F16: Controller type vs F19: Software qualities.

bance the system can withstand directly influences its relia-
bility. One approach to analyze this relation is by adding
white noise to the system inputs [21]. Having a more
robust software can enhance performance by maintaining
low latencies, or increase business value by serving more
advertisements on web sites [80].

e Optimality is another control property that relates to
any type of software quality. Examples in the primary stud-
ies are performance [96], security [34], reliability [98], and
business value [99]. Lack of optimality implies that there
are no guarantees that the adaptation mechanism achieves
the most favorable output for the software quality under
consideration.

e Control cost and overhead relates to efficiency in 6 pri-
mary studies that analyze these properties. In these studies
the authors look at resources that are spent on satisfying
the adaptation goals and on performing adaptation actions.
In two cases, controller cost affects system performance as
well [81], [104].

To conclude, we look at a number of additional
correlations between guarantees and other data items.
Correlating the main motivations for control-theoretical
software adaptation (item F8) with guarantees shows that
7 of 10 primary studies that stated “formal guarantees” as
a main motivation also provide formal guarantees. When
correlating software qualities to sensors (item F14, see also
Figure 11a), we obtained the following results: the most
frequently used sensors for measuring performance — the
primary software quality that is subject of adaptation —
are of the software utility and system utilization type.
Reliability on the other hand is measured by sensors
of the software inefficiency type, efficiency is measured
by either resource or system utilization, while business
value correlates to software utility and resource utilization.
Comparing software qualities with controller types (Figure
18), we observe that PID is the dominating type of controller
used for all qualities considered in software adaptation,
except for accuracy, for which MPC controllers are mostly
used. On the other hand, performance is handled by all
types of controllers that are applied in software adaptation.

21

RQ4: Control Guarantees

e Research of software adaptation is primarily
focused on software qualities and does not
exploit the full potential of control theoretical
guarantees.

e Software performance, efficiency, and reliabil-
ity are the most frequently applied adaptation
goals. Business value is an emerging quality
goal for software adaptation.

e Most of the primary studies do not provide a
tradeoff analysis of system qualities or guar-
anties.

e Robustness, optimality, and cost are commonly
analyzed properties, together with classical
control-theoretical guarantees like stability and
settling time.

e Guarantees for required properties are pro-
vided either by means of formal analysis or by
collecting empirical evidence.

e The relation between software qualities and
control theoretic guarantees remains largely
implicit. We inferred that stability, settling
time, overshooting, steady-state error and op-
timality relate to all quality properties, while
robustness relates to reliability, control cost and
overhead relate to efficiency.

8 DISCUSSION

In this Section, we reflect on the results of the survey
focusing on two topics: comparison with the results of the
surveys of Patikirikorala et al. [32] and Brun et al. [14], and
open challenges for future research in control-theoretical
software adaptation.

8.1 Comparison with Patikirikorala et al. [32].

Before we compare the results of our survey with results
reported in [32], it is important to emphasis that the scope
of the survey of Patikirikorala et al. [32] is different from
our survey: while we concentrate on the adaptation of
software, in particular application software and middleware
services, [32] does not distinguish between control-based
adaptation at different layers of computing systems. Fur-
thermore, a large part of the results of our survey cannot be
compared since [32] does not consider important aspects of
control-based adaptation, including model properties such
as model linearity, time framework, model time depen-
dencies, actuators, controller purpose, guarantees, among
others items that we collected and analyzed.

Nevertheless, we can compare the following:

1) Model type. The ratio between black-box plus grey-
box models and analytical models in our survey is similar
with the results of [32] (about 65/35). However, a notable
distinction concerning model type is that [32] does not dis-
tinguish between black-box and grey-box models. As shown
in our review, the difference is very relevant. In our survey,
black-box models are used rarely (3 studies compared to
23 studies that use grey-box models) and, in most cases,
black-box models are used as a part of generic frameworks.
As for types of analytical models, [32] reports that almost

half of the analytical models are queuing network models.
Our survey, on the other hand, found that different types of
analytical models are used, with only 2 of 11 studies using
queuing networks.

2) Sensors (referred as “performance variables” in [32]).
The most frequently used types of sensors reported in [32]
are response time, resource utilization and system utiliza-
tion, and “hit or miss ratio.” Resource utilization and system
utilization directly map to the same sensor types in our sur-
vey. Response time and “hit or miss ratio” fit under sensor
types software utility/inefficiency in our survey. However,
other sensor variables specific to software adaptation, as
listed in Table 8a are not reported in [32].

3) Controller type. As [32] classified controllers together
with composition schemes, the reported results are hard to
compare with the results of our literature review. However,
we can still see that PID controllers are the dominant type
of controllers that emerged in both surveys. On the other
hand, MPC was much more used in primary studies of
our survey compared to [32]. Optimal control (see LQR
in [32]) and feedforward control were used in a small
number of analyzed studies in both surveys. As for the
controller composition schemes, both our review and [32]
found studies that use hierarchical, cascaded, and switching
control. However, the number of such studies was relatively
low in both surveys.

4) Controller adaptivity and composition scheme. In our
survey, adaptive controllers were used in almost 50% of
the primary studies, while [32] reported only 15% for
this data item. Explaining such a mismatch is not diffi-
cult because [32] classified adaptive controllers in a sepa-
rate group, without identifying which types of controllers
(PID/MPC/etc.) were adaptive.

5) Assessment Approach. The ratio of studies that used ex-
ample applications and simulation as assessment approach
compared to other assessment approaches is approximately
equal in both our survey and [32]. As a side note, [32] refers
to example application as “case study with a test bed.”
According to our observations, almost none of the primary
studies applies a scientifically valid case study approach,
but rather provide results of one or two adaptation scenar-
ios. Moreover, some of the studies justify their approach
only with discussion.

6) Application Domain. Although [32] does not specify
the precise application domains (e.g., middleware, data
storage, and virtual machine are technologies rather than
application domains), the authors noted that many analyzed
approaches deal with managing web/application servers. In
our review we observed a similar trend with studies from
the e-commerce domain, where content was optimized on
the server side of the application. It is also notable that
RuBIS was one of the most used benchmark in both surveys.

8.2 Comparison with Brun et al. [14].

Although the article by Brun et al. [14] is not based on a
systematic analysis of the state of the art and has a broader
focus as this systematic literature review, we can find a
number of commonalities and differences compared to the
results of our review.

22

[14] discusses the role of feedback loops in self-adaptive
systems in general and from a control engineering perspec-
tive in particular. The authors state that a key reason for
using feedback control is to reduce the effects of uncertainty
which appear in different forms as disturbances or noise in
variables or imperfections in the models of the environment
used to design the controller. The main motivations for
applying control theory to software adaption derived from
the primary studies of our review are formal guarantees, the
maturity of the field of control theory, and the effectiveness
of control theory. Inline with [14], uncertainty is a basic
underlying reason for applying self-adaptation, however,
our survey provides concrete arguments why authors have
applied control theory to realise adaptation.

The part of [14] that focusses on control theory in par-
ticular is on adaptive control. The authors discuss Model
Identification Adaptive Control (MIAC) and Model Ref-
erence Adaptive Control (MRAC) that can be considered
as two reference models of how adaptive control can be
realised. As explained above, the results of our review show
that roughly half of the primary studies apply adaptive
control. Rather than providing information about what kind
of reference model has been used to realise adaptive control,
the review results pinpoint: (i) which types of controllers
are used in adaptive control, with PID being the dominant
type; and (ii) which adaptation techniques are used, which
include updating model parameters or switching the model,
updating parameters of the control law or changing the law,
and involving human operators to make a decision. Some of
these approaches realise structural changes that go beyond
adaptive control as in MIAC and MRAC.

[14] does not consider many aspects that we studied
in our systematic literature review (which was not the
particular aim of [14]). These aspects including the formal
guarantees that can be provided by applying control theory
to software adaptation, system models and their properties,
the types of sensors and actuators used, concrete controller
types and purposes, and the link between controller prop-
erties and software qualities.

8.3 Challenges for Future Research

To conclude, we outline a number of challenges that we
identified during data analysis and answering the research
questions. We clarified particular challenges for software
engineers, for control engineers, and for both.

System models. The review results show that re-
searchers prefer to work with simple linear time-invariant
discrete models. This contrasts with the inherent complexity
and non-linear nature of software stated in most of the
primary studies. One challenging aspect of linear time-
invariant discrete models is their ineffectiveness when the
software application is subject to drastic disturbances (for
example a sudden change in available resources, or software
components that fail). The common solution to handle such
situations as used in the primary studies is changing model
and/or the controller parameters online. While this solution
has shown great potential in traditional control applications,
there is a need for substantial evidence to demonstrate its
usefulness for handling adaptation of software applications,
which is a particular challenge for software engineers.

23

TABLE 11: Software qualities versus control theoretic guarantees

Control Guarantee Quality Note
Properties
Stability All, Guarantees on the ability of the system to converge to the goals. This connection is one-
indirectly directional, i.e., a system can be stable without goals, but a goal cannot be achieved in an
unstable system. Different interpretation for different qualities.
Settling time All Guarantees on time it takes to bring measured quality property close to its goal. Settling time
should not be too small (for stability /robustness) but also not be too high (decrease of quality).
Overshoot All Guarantees on the degree the measured output exceeds the goal in transient phase. Different
interpretation for different qualities.
Steady-state error All Guarantees on the amplitude of oscillations of measured output around the setpoint during
steady state. Different interpretation for different qualities.
Robustness Reliability Guarantees on the amount of disturbance a system can withstand; relates directly to reliability
of the system.
Optimality All Guarantees that the system reaches the most favourable output for the given quality.
Control cost and overhead Efficiency Guarantees on the resources used for satisfying goals and performing adaptation actions.

Complementary to that, an important challenge for soft-
ware engineers to apply control-theoretical adaptation is to
create a mathematical model of the software. [78] suggests
exploring known analytical models used in control theory
(such as Markov models and queuing networks) to fill
the semantic gap between architecture-based and control-
based adaptation of software. Along this line, [80] outlines a
general control design methodology for queuing networks.
Currently there is little research on using non-linear or
continuous models to deal with adaptation of software. It
would be interesting to investigate whether such models
would work better, however, they are complex to build
and require sufficient background in control theory. Conse-
quently, software engineers may involve control engineers
when tackling this challenge.

As for the model type, grey-box models were applied in
almost 60% of the software systems of the primary studies.
As these models reflect only particular parameters of the
system, an open question is: how to choose the system pa-
rameters to be modeled and what techniques to use in order
to identify those parameters? One generally applicable grey-
box model was found during this review, see the LLR model
in Table 7. However, most of the grey/black-box models
used in the primary studies were developed to handle a
specific case. Both software and control engineers should
devote more efforts on identifying generic grey/black-box
models for different types of software systems.

Sensors and actuators. The review results show that
software adaptation requires new types of software sen-
sors, as well as actuators that have a direct effect on the
application software. We observed that in systems where
actuation time is critical, the authors suggest taking the cost
for adaptation into account when designing the adaptation
mechanism. While we were able to provide a broad classifi-
cation of the types of sensors and actuators used in software
adaptation, there is currently no clear view on how sensing
and actuating of software for control-theoretical adaptation
can be supported in a systematic way, both from an architec-
ture and implementation point of view. Hence, challenging
questions both for software and control engineers are: (a)
how to translate software qualities, such as security and
resilience, to setpoints? (b) what sensors could be used to

measure particular software qualities? (c) how to translate
controller outputs to actuators that effect the software? (d)
how to ensure locality and consistency of adaptation, how
to support quiescence for control-theoretical adaptation of
software?

Controllers. We observed that the choice of particular
controllers depends on the problem at hand. For software
with a single adaptation goal, adaptive PI controller is the
preferred choice in the primary studies. For software with
multiple adaptation goals preference is given to MPC and
optimal controllers. However, several aspects regarding the
choice of controllers remain open for further research. Open
questions both for software and control engineers include:
Are the current solutions scalable to real-world systems?
Or even stronger: for what types of real software systems
are controllers applicable? What are appropriate controllers
to deal with priorities and tradeoffs among quality goals
in software adaptation? What controllers are suitable for
handling uncertainties in software systems that can only
be resolved at runtime? Can we utilize the reusability and
portability techniques from software engineering to design
reusable controllers?

Guarantees for adaptation goals. Our review shows
that control-theoretical software adaptation is concerned
with addressing typical software goals, in particular per-
formance, efficiency, and reliability. As modern software
systems often need to be designed with partial knowledge,
providing guarantees is essential. However, we observe that
formal analysis of guarantees is poorly exploited in most
of the primary studies. One challenging aspect of software
adaptation that we tried to address in this literature review
is connecting software qualities to control theoretical guar-
antees. Table 11 summarizes the results. As most authors do
not provide an explicit connection between control theoretic
guarantees and quality properties, it would be interesting
to further investigate this connection with future primary
studies. Such study would benefit from joint efforts of soft-
ware and control engineers. An open challenge that comes
from the implicit connection between software qualities to
control theoretical properties is to select the proper control
techniques in order to satisfy the quality properties specified
by the stakeholders.

9 THREATS TO VALIDITY

To increase the quality and soundness of the review results,
we followed a systematic approach. However, we point to
possible threats to validity.

Internal validity: the extent to which a causal conclusion
based on a study is warranted. The topic of this litera-
ture review lays at the intersection of two very different
disciplines: control theory and software engineering. The
disciplines have a different culture and use different vocab-
ulary. Even the term “adaptive” has a different meaning in
these two communities (see clarification in the introduction
of the paper). To address this threat, the research team
involved in this survey was balanced with an equal number
of researchers from both disciplines. The researchers had
comparable experience and worked closely together during
all phases of the review process. In addition, our particular
focus was on software adaptation that uses classical or
advanced control techniques. Deciding whether a study
should be included or not, was not always straightforward,
in particular regarding the adaption of software at applica-
tion and middleware level, and inclusion of some areas of
control theory, such as discrete event control. To mitigate
this threat, the decision on study inclusion was always
based on agreement between at least two researcher that
independently checked the papers. In case of disagreement,
a third researcher was consulted and after discussion, a
decision was made in consensus.

External validity: the extent to which the findings can
be generalized to all control-theoretical software adapta-
tion research. We acknowledge that limiting the automatic
search to selected venues and applying an automatic search
strategy using a selection of search engines, we may have
missed some primary studies. To preempt this threat, we
took several measures. First, during the selection of the
venues we followed a thorough process in which the review
team worked closely together and consulted with experts
of the two disciplines to crosscheck and identify missed
target venues. In this process, we followed an inclusive
policy, without compromising on the expected quality of
primary studies. Second, we started the search process with
pilot searches to define and tune the search string, cross-
checked the data using both general-purpose and scientific
search engines, actively involved expertise of colleagues in
the selection process when needed. Thirdly, we performed
snowballing to find potentially missed material.

Construct validity: the extent to which we obtained the
right measure and whether we defined the right scope in
relation to what is considered research on software adap-
tation. The definition of control-theoretical software adapta-
tion we used in this survey (see Section 2) may be biased and
the list of extracted data items (Section 6.6) may be incom-
plete. Regarding the scope on software (application software
and middleware services), we relied on well-established
insights from the field of software engineering. Regarding
the scope of adaptation mechanisms, we acknowledge that
there is not a general consensus on what is considered
control-based adaptation. Our choice to limit the scope to
classic and advanced control theory is motivated by the
very different nature of realising adaptation with other
related paradigms. To address this threat, we consulted

24

with researchers from both software engineering and control
theory domains, as well as utilized experience of related
surveys, such as [32]. Finally, there may be threat regarding
the quality of reporting of studies that may have affected
both the selection of papers and the extraction of data. To
anticipate this threat, we extracted data about the quality
of reporting. We found out that many primary studies
reported only results from successful experiments and did
not acknowledge threats to validity. Hence, our review
may not show particular limitations of control-theoretical
software adaptation. But in general, the reporting quality of
the primary studies was good, which provides a basis to
make conclusions about the validity of extracted data.

Reliability: extent to which we can ensure that our
results are the same if our study would be conducted
again. The researchers involved in this survey may have
been biased when collecting and analyzing data of studies.
To address this threat, the team defined a detailed proto-
col [116] for the survey that provides an explanation of the
survey goals, the data items that are collected, the analysis
performed, and the techniques applied to classify results.
In particular, data extraction and analysis was done by
two researchers in parallel and further discussed in case of
differences in opinions to increase confidence. Nevertheless,
the background and experience of the researchers may have
created some bias, and introduced some level of subjectivity
in some cases. This threat is also related to conclusion
validity, which is concerned with the ability to replicate the
same findings.

10 CONCLUSION

In this paper, we reported the results of a systematic liter-
ature review that aimed to shed light on the use of control
theory as a paradigm for designing adaptive software. The
study results show that control-theoretical software adapta-
tion research is still in a preliminary stage. The number of
studies is still low, but we observe a rapid growing interest
in the field over the last years. We also found a number
of studies where control theory was applied to the software
artifacts in the development life cycle, which indicates about
the research interest in a broader use of control theory for
self-adaptation.

Despite software is usually considered highly non-linear,
the majority of the studies use simple linear models. Most
of the studies evaluated their work with simple applications
or simulations. This raises questions about how well the
current approaches, in particular with simple linear models,
will scale to real-world applications, or whether other ap-
proaches need to be explored. To achieve the quality goals
of software applications, these goals have to be translated
into control goals (setpoints). Furthermore, to adapt the
software and measure the effects of the controller actions,
the software applications need to be instrumented with
sensors and actuators. There is currently no clear view on
how this translation can be done in a systematic manner and
how sensors and actuators for control-theoretical software
adaptation can be realized in an effective way. Finally, the
key driver to explore control-theoretical software adaptation
reported in the studies is the formal underpinning of control
theory as a basis to provide guarantees for adaptation goals.

This survey shows that classic controller guarantees are
poorly exploited when engineering control-based solutions.
Explicitly linking control theoretic guarantees to software
qualities is a challenging topic for future research.

To conclude, we would like to emphasize that research

on control-theoretical software adaptation is situated at
the crossing of two disciplines: software engineering and
control theory. Traditionally, these disciplines operate in dif-
ferent worlds, but progress in these fields requires that both
disciplines take an open position to one another. Without the
joint effort of researchers from both disciplines this survey
would not have been possible. We hope that the outcome of
this joint effort may be a stimulus for new research in this
exciting area.

REFERENCES

(1]

(2]
(3]

(4]

(5]

6]

(71

(8]

(9]

[10]

[11]

[12]

P. Oreizyy, N. Medvidovic, and R. N. Taylor, “Runtime
software adaptation: Framework, approaches, and styles,” in
Companion of the 30th International Conference on Software
Engineering, ser. ICSE Companion '08. New York, NY,
USA: ACM, 2008, pp. 899-910. [Online]. Available: http:
//doi.acm.org/10.1145/1370175.1370181

J. Kephart and D. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41-50, Jan 2003.

C. Imes, D. H. K. Kim, M. Maggio, and H. Hoffmann,
“POET: a portable approach to minimizing energy under
soft real-time constraints,” in 2Ist IEEE Real-Time and
Embedded Technology and Applications Symposium, Seattle, WA,
USA, April 13-16, 2015, 2015, pp. 75-86. [Online]. Available:
http://dx.doi.org/10.1109/RTAS.2015.7108419

V. E. S. Souza, A. Lapouchnian, and]J. Mylopoulos,
“(Requirement) evolution requirements for adaptive systems,”
in Proceedings of the 7th International Symposium on Software En-
gineering for Adaptive and Self-Managing Systems, ser. SEAMS "12.
Piscataway, NJ, USA: IEEE Press, 2012, pp. 155-164. [Online].
Available: http://dl.acm.org/citation.cfm?id=2666795.2666820

B. H. Cheng, R. de Lemos, and et al.,, “Software engineering
for self-adaptive systems: A research roadmap,” B. H. Cheng,
R. de Lemos, H. Giese, P. Inverardi, and J. Magee, Eds. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 1-26. [Online]. Available:
http:/ /dx.doi.org/10.1007 /978-3-642-02161-9_1

R. de Lemos et al, “Software engineering for self-adaptive
systems: A second research roadmap,” in Software Engineering for
Self-Adaptive Systems II, ser. Lecture Notes in Computer Science,
R. de Lemos, H. Giese, H. Muller, and M. Shaw, Eds. Springer
Berlin Heidelberg, 2013, vol. 7475, pp. 1-32. [Online]. Available:
http://dx.doi.org/10.1007 /978-3-642-35813-5_1

P. Oreizy, N. Medvidovic, and R. Taylor, “Architecture-based
runtime software evolution,” in 20th International Conference on
Software Engineering, 1998.

D. Garlan, S. Cheng, A. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-based self-adaptation with reusable in-
frastructure,” Computer, vol. 37, no. 10, 2004.

J. Kramer and J. Magee, “Self-managed systems: An architectural
challenge,” in Future of Software Engineering, 2007.

D. Weyns, S. Malek, and]. Andersson, “FORMS: Unifying
Reference Model for Formal Specification of Distributed
Self-adaptive Systems,” ACM Trans. Auton. Adapt. Syst.,
vol. 7, no. 1, pp. 8:1-8:61, May 2012. [Online]. Available:
http://doi.acm.org/10.1145/2168260.2168268

R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola,
“Self-adaptive software needs quantitative verification at
runtime,” Commun. ACM, vol. 55, no. 9, pp. 69-77, Sep.
2012. [Online]. Available: http://doi.acm.org/10.1145/2330667.
2330686

D. Weyns, N. Bencomo, R. Calinescu,]. Cdamara,
C. Ghezzi, V. Grassi, L. Grunske, P. Inverardi, J].-M.
Jezequel, S. Malek, R. Mirandola, M. Mori, and G. Tam-
burrelli, “Perpetual Assurances in Self-Adaptive Systems,”
Software Engineering for Self-Adaptive Systems: Assurances
(Dagstuhl Seminar 13511), 2014. [Online]. Available: http:
/ /homepage.Inu.se/staff/daweaa/papers/2015Dagstuhl.pdf

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

25

M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape
and research challenges,” ACM Trans. Auton. Adapt. Syst.,
vol. 4, no. 2, pp. 14:1-14:42, May 2009. [Online]. Available:
http://doi.acm.org/10.1145/1516533.1516538

Y. Brun, G. Marzo Serugendo, C. Gacek, H. Giese, H. Kienle,
M. Litoiu, H. Miiller, M. Pezze, and M. Shaw, “Software
engineering for self-adaptive systems,” B. H. Cheng, R. Lemos,
H. Giese, P. Inverardi, and]. Magee, Eds. Berlin, Heidelberg:
Springer-Verlag, 2009, ch. Engineering Self-Adaptive Systems
Through Feedback Loops, pp. 48-70. [Online]. Available:
http://dx.doi.org/10.1007 /978-3-642-02161-9_3

J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback
Control of Computing Systems. John Wiley & Sons, 2004.

A. Filieri, M. Maggio, K. Angelopoulos, N. D’Ippolito,
I. Gerostathopoulos, A. Hempel, H. Hoffmann, P. Jamshidi,
E. Kalyvianaki, C. Klein, F Krikava, S. Misailovic,
V. Papadopoulos, Alessandro, S. Ray, M. Sharifloo, Amir,
S. Shevtsov, M. Ujma, and T. Vogel, “Software Engineering
Meets Control Theory,” in Proceedings of the 10th International
Symposium on Software Engineering for Adaptive and Self-
Managing Systems, Firenze, Italy, May 2015. [Online]. Available:
https:/ /hal.inria.fr/hal-01119461

X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant,
P. Padala, and K. Shin, “What does control theory bring
to systems research?” SIGOPS Oper. Syst. Rev., vol. 43,
no. 1, pp. 62-69, Jan. 2009. [Online]. Available: http:
//doi.acm.org/10.1145/1496909.1496922

T. Abdelzaher, J. Stankovic, C. Lu, R. Zhang, and Y. Lu, “Feedback
performance control in software services,” Control Systems, IEEE,
vol. 23, no. 3, pp. 74-90, June 2003.

Y. Diao, N. Gandhi, J. Hellerstein, S. Parekh, and D. Tilbury, “Us-
ing MIMO feedback control to enforce policies for interrelated
metrics with application to the apache web server,” in Network
Operations and Management Symposium, 2002. NOMS 2002. 2002
IEEE/IFIP, 2002, pp. 219-234.

X. Zhu, Z. Wang, and S. Singhal, “Utility-driven workload
management using nested control design,” in American Control
Conference, 2006, June 2006.

A. Filieri, H. Hoffmann, and M. Maggio, “Automated design
of self-adaptive software with control-theoretical formal guaran-
tees,” in Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE 2014. ACM, 2014, pp. 299-310.

J. Andersson, R. de Lemos, S. Malek, and D. Weyns, “Modeling
dimensions of self-adaptive software systems,” in Software
Engineering for Self-Adaptive Systems, B. H. C. Cheng, R. de Lemos,
H. Giese, P. Inverardi, and]. Magee, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 27-47. [Online]. Available:
http://dx.doi.org/10.1007 /978-3-642-02161-9_2

Y. Brun, R. Desmarais, K. Geihs, M. Litoiu, A. Lopes,
M. Shaw, and M. Smit, “A design space for self-adaptive
systems,” in Software Engineering for Self-Adaptive Systems II:
International Seminar, Dagstuhl Castle, Germany, October 24-
29, 2010 Revised Selected and Invited Papers, R. de Lemos,
H. Giese, H. A. Miiller, and M. Shaw, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 33-50. [Online]. Available:
http://dx.doi.org/10.1007 /978-3-642-35813-5_2

K. Angelopoulos, A. V. Papadopoulos, and]. Mylopoulos,
“Adaptive predictive control for software systems,” in Proceed-
ings of the 1st International Workshop on Control Theory for Software
Engineering, ser. CTSE 2015. ACM, 2015, pp. 17-21.

K.-Y. Cai, J. Cangussu, R. A. DeCarlo, and A. Mathur, “An
overview of software cybernetics,” in Software Technology and
Engineering Practice, 2003. Eleventh Annual International Workshop
on, Sept 2003, pp. 77-86.

H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller,
and A. Agarwal, “Application heartbeats: A generic interface
for specifying program performance and goals in autonomous
computing environments,” in Proceedings of the 7th International
Conference on Autonomic Computing, ser. ICAC "10. New
York, NY, USA: ACM, 2010, pp. 79-88. [Online]. Available:
http://doi.acm.org/10.1145/1809049.1809065

Y. A. Eracar and M. M. Kokar, “An architecture for software
that adapts to changes in requirements,” Journal of Systems and
Software, vol. 50, pp. 200-0, 1998.

V. Bhat, M. Parashar, H. Liu, M. Khandekar, N. Kandasamy,
and S. Abdelwahed, “Enabling self-managing applications using
model-based online control strategies,” in Proceedings of the 2006

[29]

[30]

[31]

[32]

(33]

[34]

(35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

(43]

[44]

[45]

IEEE International Conference on Autonomic Computing, ser. ICAC
'06, 2006, pp. 15-24.

S. Shevtsov and D. Weyns, “Keep it SIMPLEX: Satisfying multiple
goals with guarantees in control-based self-adaptive systems,” in
Proceedings of the 2016 11th Joint Meeting on Foundations of Software
Engineering, ser. FSE 2016. New York, NY, USA: ACM, 2016.

B. Kitchenham and S. Charters, “Guidelines for performing
Systematic Literature Reviews in Software Engineering,” Keele
University and Durham University Joint Report, Tech. Rep. EBSE
2007-001, 2007.

R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and
G. Tamburrelli, “Dynamic QoS management and optimization in
service-based systems,” IEEE Trans. Softw. Eng., vol. 37, no. 3,
2011.

T. Patikirikorala, A. Colman, J. Han, and L. Wang, “A systematic
survey on the design of self-adaptive software systems using con-
trol engineering approaches,” in Software Engineering for Adaptive
and Self-Managing Systems (SEAMS), 2012 ICSE Workshop on, June
2012, pp. 33-42.

G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni, “Elastic
scheduling for flexible workload management,” IEEE Trans.
Comput., vol. 51, no. 3, pp. 289-302, Mar. 2002. [Online].
Available: http:/ /dx.doi.org/10.1109/12.990127

A. Filieri, H. Hoffmann, and M. Maggio, “Automated
multi-objective control for self-adaptive software design,” in
Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ser. ESEC/FSE 2015. New York,
NY, USA: ACM, 2015, pp. 13-24. [Online]. Available: http:
//doi.acm.org/10.1145/2786805.2786833

M. Maggio, H. Hoffmann, A. V. Papadopoulos,]J. Panerati,
M. D. Santambrogio, A. Agarwal, and A. Leva, “Comparison
of decision-making strategies for self-optimization in autonomic
computing systems,” ACM Trans. Auton. Adapt. Syst., vol. 7,
no. 4, pp. 36:1-36:32, Dec. 2012. [Online]. Available: http:
//doi.acm.org/10.1145/2382570.2382572

P. Jamshidi, A. Ahmad, and C. Pahl, “Autonomic resource pro-
visioning for cloud-based software,” in Proceedings of the 9th
International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, ser. SEAMS 2014. New York, NY, USA:
ACM, 2014, pp. 95-104.

P. Jamshidi, A. M. Sharifloo, C. Pahl, A. Metzger, and G. Estrada,
“Self-learning cloud controllers: Fuzzy g-learning for knowledge
evolution,” CoRR, vol. abs/1507.00567, 2015.

Y. Wang, H. K. Cho, H. Liao, A. Nazeem, T. P. Kelly, S. Lafortune,
S. Mahlke, and S. A. Reveliotis, “Supervisory control of software
execution for failure avoidance: Experience from the gadara
project,” IFAC Proceedings Volumes, vol. 43, no. 12, pp. 259 —
266, 2010, 10th IFAC Workshop on Discrete Event Systems.
[Online]. Available: //www.sciencedirect.com/science/article/
pii/S1474667015324666

A. Girault and E. Rutten, “Automating the addition of fault
tolerance with discrete controller synthesis,” Form. Methods Syst.
Des., vol. 35, no. 2, pp. 190225, Oct. 2009. [Online]. Available:
http:/ /dx.doi.org/10.1007 /s10703-009-0084-y

L. Nahabedian, V. Braberman, N. D’Ippolito, S. Honiden,
J. Kramer, K. Tei, and S. Uchitel, “Assured and correct
dynamic update of controllers,” in Proceedings of the 11th
International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, ser. SEAMS ’16. New York,
NY, USA: ACM, 2016, pp. 96-107. [Online]. Available:
http://doi.acm.org/10.1145/2897053.2897056

S. Geetha, V. Ramalakshmi, S. Bhuvaneeswari, and B. RameshKu-
mar, “Evaluation of the performance analysis in fuzzy queueing
theory,” in 2016 International Conference on Computing Technologies
and Intelligent Data Engineering (ICCTIDE’16), Jan 2016, pp. 1-5.
M. Maggio, E. Bini, G. Chasparis, and K.-E. Arzén, “A game-
theoretic resource manager for rt applications,” in 25th Euromicro
Conference on Real-Time Systems, July 2013, pp. 57-66.

D. Weyns, “Software Engineering of Self-Adaptive Systems: An
Organised Tour and Future Challenges,” in Handbook of Software
Engineering, K. Kyo Chul Kang and S. Cha, Eds. Springer, 2017.
B. Cheng, R. de Lemos, P. Inverardi, and J. Magee, Eds., Software
Engineering for Self-Adaptive Systems I. Lecture Notes in Com-
puter Science vol. 5225, Springer Verlag, 2009.

R. de Lemos, H. Giese, H. Mller, and M. Shaw, Eds., Software En-
gineering for Self-Adaptive Systems 1I. Lecture Notes in Computer
Science vol. 7475, Springer Verlag, 2013.

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]
[56]
[57]
(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

26

N. Bencomo, R. France, B. Cheng, and U. Amann, Eds., Models at
Runtime. Lecture Notes in Computer Science vol. 8378, Springer
Verlag, 2014.

S. Dobson, S. Denazis, A. Fernandez, D. Gaiti, E. Gelenbe,
F. Massacci, P. Nixon, F. Saffre, N. Schmidt, and F. Zambonelli,
“A survey of autonomic communications,” ACM Trans. Auton.
Adapt. Syst., vol. 1, no. 2, pp. 223-259, Dec. 2006. [Online].
Available: http://doi.acm.org/10.1145/1186778.1186782

M. C. Huebscher and J. A. McCann, “A survey of autonomic
computing - degrees, models, and applications,” ACM Comput.
Surv., vol. 40, no. 3, pp. 7:1-7:28, Aug. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1380584.1380585

D. Weyns, M. U. Iftikhar, and]J. Soderlund, “Do external
feedback loops improve the design of self-adaptive systems?
a controlled experiment,” in Proceedings of the 8th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems, ser. SEAMS ’13. Piscataway, NJ, USA: IEEE Press,
2013, pp. 3-12. [Online]. Available: http://dl.acm.org/ citation.
cfm?id=2487336.2487341

L. Baresi, L. Pasquale, and P. Spoletini, “Fuzzy goals for
requirements-driven adaptation,” in Proceedings of the 2010 18th
IEEE International Requirements Engineering Conference, ser. RE "10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 125-
134. [Online]. Available: http://dx.doi.org/10.1109/RE.2010.25
M. U. Iftikhar and D. Weyns, “ActivFORMS: Active formal
models for self-adaptation,” in Proceedings of the 9th International
Symposium on Software Engineering for Adaptive and Self-
Managing Systems, ser. SEAMS 2014. New York, NY,
USA: ACM, 2014, pp. 125-134. [Online]. Available: http:
//doi.acm.org/10.1145/2593929.2593944

W. Levine, The Control Systems Handbook, Second Edition: Control
System Advanced Methods, Second Edition, ser. Electrical Engineer-
ing Handbook. Taylor and Francis, 2010.

K.J. Astr6m and R. M. Murray, Feedback Systems: An Introduction
for Scientists and Engineers. ~ Princeton, NJ, USA: Princeton
University Press, 2008.

M. Krstic, P. V. Kokotovic, and I. Kanellakopoulos, Nonlinear and
Adaptive Control Design, 1st ed. New York, NY, USA: John Wiley
& Sons, Inc., 1995.

K. Ogata, Modern Control Engineering, 4th ed.
River, NJ, USA: Prentice Hall PTR, 2001.

L. Ljung, System Identification: Theory for the User.
River, NJ, USA: Prentice-Hall, Inc., 1986.

B. C. Kuo and F. Golnaraghi, Automatic Control Systems, 8th ed.
New York, NY, USA: John Wiley & Sons, Inc., 2002.

B. Wittenmark, K. Astrém, and K.-E. Arzén, “Computer control:
An overview,” Tech. Rep., 2002.

K. Astrom and T. Hagglund, Advanced PID control. Research
Triangle Park, NC 27709: ISA-The Instrumentation, Systems, and
Automation Society, 2006.

M. Morari and E. Zafiriou, Robust Process Control. Prentice
Hall, Englewood Cliffs, 1989. [Online]. Available: http:
/ /www.google.se/books?id=HEcbgfyZEFoC

K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1996.

S. Skogestad and I. Postlethwaite, Multivariable feedback control:
analysis and design. Wiley New York, 2007, vol. 2. [Online].
Available: http:/ /www.nt.ntnu.no/ users/skoge/book/

J. Maciejowski, Predictive control: with constraints. Pearson edu-
cation, 2002.

E. Camacho and C. Alba, Model Predictive Control, ser. Advanced
Textbooks in Control and Signal Processing. ~Springer London,
2013.

D. Weyns and T. Ahmad, “Claims and evidence for architecture-
based self-adaptation: A systematic literature review,” in
Proceedings of the 7th European Conference on Software Architecture,
ser. ECSA’13. Berlin, Heidelberg: Springer-Verlag, 2013,
pp- 249-265. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-39031-9_22

P. C. Diniz and M. C. Rinard, “Dynamic feedback: An effective
technique for adaptive computing,” in Proceedings of the ACM
SIGPLAN 1997 Conference on Programming Language Design and
Implementation, ser. PLDI '97. New York, NY, USA: ACM, 1997,
pp- 71-84.

J. Guitart, J. Torres, and E. Ayguad, “A survey on
performance management for internet applications,” Concurrency

Upper Saddle

Upper Saddle

[68]

[69]

[70]

[71]

[72]

[73]

(74]

[75]

[76]

[77]

[78]

[79]

[80]

(81]

(82]

[83]

[84]

and Computation: Practice and Experience, vol. 22, no. 1, pp. 68-106,
2010. [Online]. Available: http://dx.doi.org/10.1002/cpe.1470
N. M. Villegas, H. A. Miller, G. Tamura, L. Duchien,
and R. Casallas, “A framework for evaluating quality-
driven self-adaptive software systems,” in Proceedings of
the 6th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, ser. SEAMS ’11. New
York, NY, USA: ACM, 2011, pp. 80-89. [Online]. Available:
http://doi.acm.org/10.1145/1988008.1988020

L. Sun, H. Dong, F. K. Hussain, O. K. Hussain, and E. Chang,
“Cloud service selection: State-of-the-art and future research
directions,” Journal of Network and Computer Applications, vol. 45,
pp. 134 - 150, 2014.

C. Klein, M. Maggio, K.-E. Arzén, and E. Hernandez-Rodriguez,
“Brownout: Building more robust cloud applications,” in Proceed-
ings of the 36th International Conference on Software Engineering, ser.
ICSE 2014. ACM, 2014, pp. 700-711.

V. R. Basili, G. Caldiera, and H. D. Rombach, “The goal question
metric approach,” in Encyclopedia of Software Engineering. Wiley,

M. Galster, D. Weyns, D. Tofan, B. Michalik, and P. Avgeriou,
“Variability in software systems: A systematic literature review,”
Software Engineering, IEEE Transactions on, vol. 40, no. 3, pp. 282—
306, March 2014.

H. Zhang and M. Ali Babar, “On searching relevant
studies in software engineering,” in Proceedings of the
14th International Conference on Evaluation and Assessment in
Software Engineering, ser. EASE’10. Swinton, UK, UK: British
Computer Society, 2010, pp. 111-120. [Online]. Available:
http:/ /dl.acm.org/citation.cfm?id=2227057.2227071

M. Maggio, C. Klein, and K.-E. Arzén, “Control strategies for
predictable brownouts in cloud computing,” in IFAC Proceedings
Volumes, vol. 47, no. 3, 2014, pp. 689 — 694.

J. Durango, M. Dellkrantz, M. Maggio, C. Klein, A. Papadopou-
los, F. Hernandez-Rodriguez, E. Elmroth, and K.-E. Arzen,
“Control-theoretical load-balancing for cloud applications with
brownout,” in Decision and Control (CDC), 2014 IEEE 53rd Annual
Conference on, Dec 2014, pp. 5320-5327.

C. Klein, A. Papadopoulos, M. Dellkrantz, J. Durango, M. Mag-
gio, K.-E. Arzen, F. Hernandez-Rodriguez, and E. Elmroth, “Im-
proving cloud service resilience using brownout-aware load-
balancing,” in Reliable Distributed Systems (SRDS), 2014 IEEE 33rd
International Symposium on, Oct 2014, pp. 31-40.

D. Desmeurs, C. Klein, A. Papadopoulos, and]. Tordsson,
“Event-driven application brownout: Reconciling high utilization
and low tail response times,” in Cloud and Autonomic Computing
(ICCAC), 2015 International Conference on, Sept 2015, pp. 1-12.

A. Filieri, C. Ghezzi, A. Leva, and M. Magio, “Self-adaptive
software meets control theory: A preliminary approach sup-
porting reliability requirements,” in Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engi-
neering, ser. ASE’11. IEEE Computer Society, 2011, pp. 283-292.
A. Filieri, C. Ghezzi, A. Leva, and M. Maggio, “Reliability-driven
dynamic binding via feedback control,” in Proceedings of the 7th
International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, ser. SEAMS "12. Piscataway, NJ, USA:
IEEE Press, 2012, pp. 43-52.

D. Arcelli, V. Cortellessa, A. Filieri, and A. Leva, “Control theory
for model-based performance-driven software adaptation,” in
Proceedings of the 11th International ACM SIGSOFT Conference on
Quality of Software Architectures, ser. QoSA ’15. New York, NY,
USA: ACM, 2015, pp. 11-20.

H. Hoffmann, “CoAdapt: Predictable behavior for accuracy-
aware applications running on power-aware systems,” in Real-
Time Systems (ECRTS), 2014 26th Euromicro Conference on, July
2014, pp. 223-232.

S. Shevtsov, M. U. Iftikhar, and D. Weyns, “SImCA vs Activ-
FORMS: Comparing control- and architecture-based adaptation
on the tas exemplar,” in Proceedings of the 1st International Work-
shop on Control Theory for Software Engineering, ser. CTSE 2015.
New York, NY, USA: ACM, 2015, pp. 1-8.

T. Patikirikorala, L. Wang, and A. Colman, “Towards optimal per-
formance and resource management in web systems via model
predictive control,” in Australian Control Conference (AUCC), 2011,
pp. 469-474.

T. Patikirikorala, L. Wang, A. Colman, and]. Han,
“Hammerstein-wiener nonlinear model based predictive control

(85]

[86]

(871

[88]

(89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

27

for relative QoS performance and resource management of soft-
ware systems,” Control Engineering Practice, vol. 20, no. 1, pp. 49
- 61, 2012.

T. Patikirikorala, A. Colman,]. Han, and L. Wang, “An
evaluation of multi-model self-managing control schemes for
adaptive performance management of software systems,” Journal
of Systems and Software, vol. 85, no. 12, pp. 2678 — 2696,
2012, self-Adaptive Systems. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0164121212001628

S. Abdelwahed, N. Kandasamy, and S. Neema, “Online control
for self-management in computing systems,” in Real-Time and
Embedded Technology and Applications Symposium, 2004. Proceed-
ings. RTAS 2004. 10th IEEE, May 2004, pp. 368-375.

N. Kandasamy, S. Abdelwahed, and M. Khandekar, “A hier-
archical optimization framework for autonomic performance
management of distributed computing systems,” in Distributed
Computing Systems, 2006. ICDCS 2006. 26th IEEE International
Conference on, 2006, pp. 9-9.

T. F. Abdelzaher, K. G. Shin, and N. Bhatti, “Performance guaran-
tees for web server end-systems: A control-theoretical approach,”
IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 1, pp. 80-96, 2002.
E. Kiikava, P. Collet, and R. Rouvoy, “Integrating adaptation
mechanisms using control theory centric architecture models: A
case study,” in 11th International Conference on Autonomic Comput-
ing (ICAC 14). Philadelphia, PA: USENIX Association, Jun. 2014,
pp- 25-32.

F. Ktikava, P. Collet, and R. B. France, “Actress: Domain-specific
modeling of self-adaptive software architectures,” in Proceedings
of the 29th Annual ACM Symposium on Applied Computing, ser. SAC
"14. ACM, 2014, pp. 391-398.

M. M. Kokar, K. Baclawski, and Y. A. Eracar, “Control
theory-based foundations of self-controlling software,” IEEE
Intelligent Systems, vol. 14, no. 3, pp. 37-45, May 1999. [Online].
Available: http:/ /dx.doi.org/10.1109/5254.769883

N. Fescioglu-Unver and M. M. Kokar, “Self controlling tabu
search algorithm for the quadratic assignment problem,” Com-
puters and Industrial Engineering, vol. 60, no. 2, pp. 310 — 319,
2011.

Y. A. Eracar and M. M. Kokar, “Self-control of the time complexity
of a constraint satisfaction problem solver program.” Journal of
Systems and Software, vol. 85, no. 12, pp. 2697-2706, 2012.

J. Cangussu, A. Mathur, and R. DeCarlo, “Feedback control of
the software test process through measurements of software
reliability,” in 12th International Symposium on Software Reliability
Engineering, ISSRE, Nov 2001, pp. 232-241.

S. D. Miller, R. A. DeCarlo, A. P. Mathur, and J. W. Cangussu, “A
control-theoretic approach to the management of the software
system test phase.” Journal of Systems and Software, vol. 79, no. 11,
pp. 1486-1503, 2006.

K.-Y. Cai, Y.-C. Li, and W.-Y. Ning, “Optimal software testing
in the setting of controlled markov chains,” European Journal of
Operational Research, vol. 162, no. 2, pp. 552 — 579, 2005.

K.-Y. Cai, B. Gu, H. Hu, and Y.-C. Li, “Adaptive software testing
with fixed-memory feedback,” Journal of Systems and Software,
vol. 80, no. 8, pp. 1328 — 1348, 2007.

Y. Ji, V. S. Mookerjee, and S. P. Sethi, “Optimal software develop-
ment: A control theoretic approach,” Information Systems Research,
vol. 16, no. 3, pp. 292-306, 2005.

Y. Ji, S. Kumar, V. S. Mookerjee, S. P. Sethi, and D. Yeh, “Optimal
enhancement and lifetime of software systems: A control the-
oretic analysis,” Production and Operations Management, vol. 20,
no. 6, pp. 889-904, 2011.

J. W. Cangussu, K. Cooper, and C. Li, “A control theory based
framework for dynamic adaptable systems,” in Proceedings of the
2004 ACM Symposium on Applied Computing, ser. SAC '04. New
York, NY, USA: ACM, 2004, pp. 1546-1553. [Online]. Available:
http:/ /doi.acm.org/10.1145/967900.968209

V. Zanardi and L. Capra, “Dynamic updating of online recom-
mender systems via feed-forward controllers,” in Proceedings of
the 6th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, ser. SEAMS "11. New York, NY, USA:
ACM, 2011, pp. 11-19.

X. Peng, B. Chen, Y. Yu, and W. Zhao, “Self-tuning of
software systems through dynamic quality tradeoff and
value-based feedback control loop,” Journal of Systems and
Software, vol. 85, no. 12, pp. 2707 — 2719, 2012, self-Adaptive

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

Systems. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S016412121200132X

N. Villegas, G. Tamura, H. Miiller, L. Duchien, and R. Casallas,
“DYNAMICO: A reference model for governing control objec-
tives and context relevance in self-adaptive software systems,”
in Software Engineering for Self-Adaptive Systems II, ser. Lecture
Notes in Computer Science, R. de Lemos, H. Giese, H. Miiller,
and M. Shaw, Eds. Springer Berlin Heidelberg, 2013, vol. 7475,
pp- 265-293.

G. Mencagli, M. Vanneschi, and E. Vespa, “A cooperative pre-
dictive control approach to improve the reconfiguration stability
of adaptive distributed parallel applications,” ACM Trans. Auton.
Adapt. Syst., vol. 9, no. 1, pp. 2:1-2:27, 2014.

G. Cao and A. A. Ravindran, “Energy efficient soft real-time
computing through cross-layer predictive control,” in 9th Inter-
national Workshop on Feedback Computing (Feedback Computing 14).
Philadelphia, PA: USENIX Association, 2014.

K. Angelopoulos, A. V. Papadopoulos, V. E. Silva Souza, and
J. Mylopoulos, “Model predictive control for software systems
with CobRA,” in Proceedings of the 11th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems,
ser. SEAMS ’16. New York, NY, USA: ACM, 2016, pp.
35-46. [Online]. Available: http://doi.acm.org/10.1145/2897053.
2897054

N. Karlsson and J. Zhang, “Applications of feedback control in
online advertising,” in 2013 American Control Conference, June
2013, pp. 6008-6013.

“Control problems in online advertising and benefits of random-
ized bidding strategies,” vol. 30, 2016, pp. 31 — 49, 15th European
Control Conference, ECC16.

T. Dyba and T. Dingseyr, “Empirical studies of agile
software development: A systematic review,” Inf. Softw. Technol.,
vol. 50, no. 9-10, pp. 833-859, Aug. 2008. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2008.01.006

D. Weyns, M. Iftikhar, S. Malek, and J. Andersson, “Claims
and supporting evidence for self-adaptive systems: A literature
study,” in Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), 2012 ICSE Workshop on, June 2012, pp. 89-98.
O. Garpinger, T. Hagglund, and K. J. Astrém, “Performance and
robustness trade-offs in PID control,” Journal of Process Control,
vol. 24, no. 5, pp. 568 — 577, 2014. [Online]. Available: //www.
sciencedirect.com/science/article/pii/S0959152414000730

K. J. Astrém, T. Hégglund, C. C. Hang, and W. K. Ho,
“Automatic tuning and adaptation for PID controllers - a

[113]

[114]

[115]

[116]

28

survey,” Control Engineering Practice, vol. 1, no. 4, pp. 699 —
714, 1993. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/096706619391394C

M. French, E. Rogers, and C. Szepesvari, Performance of Nonlinear
Approximate Adaptive Controllers. New York, NY, USA: John
Wiley & Sons, Inc., 2002.

J. Kramer and]J. Magee, “The evolving philosophers problem:
Dynamic change management,” IEEE Transactions on Software
Engineering, vol. 16, no. 11, 1990.

P. Zhang, Advanced Industrial Control Technology. Elsevier Science,
2010.

S. Shevtsov, M. Berekmeri, D. Weyns, and M. Maggio, The
literature review supporting material. [Online]. Available: https:
/ / people.cs kuleuven.be/danny.weyns/material /2016TSE/

Stepan Shevtsov is a doctoral student at the Depart-
ment of Computer Science of Linnaeus University,
Sweden. His main focus is on engineering self-
adaptive software systems using principles from
control theory.

Mihaly Berekmeri received his PhD in Automatics
from the University of Grenoble, France in 2015.
His research focuses on the development of control-
theoretical tools for Big Data, distributed computing
systems and cloud services.

Danny Weyns is a professor at the Department of
Computer Science of the Katholieke Universiteit
Leuven, Belgium and part time affiliated with Lin-
naeus University, Sweden. His main research in-
terest is in software engineering of self-adaptive
systems.

Martina Maggio is an assistant professor in the
. Department of Automatic Control, Lund University,
. Sweden. Her main research topic is the application
| of control theory to the design and implementation
of computing systems.

