

Robust balanced
optimization
Ficker A, Spieksma F, Woeginger G.

KBI_1802

Robust Balanced Optimization ∗

Annette M.C. Ficker
KU Leuven, Centre for Operations Research and Business Statistics

e-mail: annette.ficker@kuleuven.be

Frits C.R. Spieksma
Eindhoven University of Technology, Department of Mathematics and Computer Science

e-mail: f.c.r.spieksma@tue.nl

Gerhard J. Woeginger
RWTH Aachen, Lehrstuhl für Informatik 1

e-mail: woeginger@cs.rwth-aachen.de

Abstract

An instance of a balanced optimization problem with vector costs con-
sists of a ground set X, a cost vector for every element of X, and a sy-
stem of feasible subsets over X. The goal is to find a feasible subset that
minimizes the so-called imbalance of values in every coordinate of the un-
derlying vector costs. Balanced optimization problems with vector costs
are equivalent to the robust optimization version of balanced optimiza-
tion problems under the min-max criterion. We regard these problems as
a family of optimization problems; one particular member of this family
is the known balanced assignment problem.

We investigate the complexity and approximability of robust balanced
optimization problems in a fairly general setting. We identify a large
family of problems that admit a 2-approximation in polynomial time, and
we show that for many problems in this family this approximation factor 2
is best-possible (unless P=NP). We pay special attention to the balanced
assignment problem with vector costs and show that this problem is NP-
hard even in the highly restricted case of sum costs. We conclude by
performing computational experiments for this problem.

Keywords: balanced optimization, assignment problem, computational
complexity, approximation.

1 Introduction

We investigate balanced optimization problems with vector costs; alternatively,
these problems can be described as the robust optimization version of balanced

∗A preliminary version of this work has appeared in the Proceedings of the 14th Inter-
national Workshop on Approximation and Online Algorithms (WAOA 2016), 92–102. This
research has been supported by the Netherlands Organisation for Scientific Research (NWO)
under Grant 639.033.403, by BSIK Grant 03018 (BRICKS: Basic Research in Informatics for
Creating the Knowledge Society), and by the Interuniversity Attraction Poles Programme
initiated by the Belgian Science Policy Office.

1

optimization problems. We see this set of problems as a family of optimization
problems. We will give the details of this family later, for now we concentrate
on a particular problem in this family: the balanced assignment problem with
vector costs.

In the balanced assignment problem (Martello et al., 1984), we are given an
n× n matrix C with real entries c(i, j) for 1 ≤ i, j ≤ n. An assignment A is a
set of n matrix entries that contains exactly one entry from every row and every
column. The imbalance of assignment A is given by

max
(i,j)∈A

c(i, j)− min
(i,j)∈A

c(i, j),

and the goal is to find an assignment that minimizes the imbalance. In a gene-
ralization of this problem, the entries c(i, j) are not real scalars but real vectors
c(i, j) of dimension d; that is

c(i, j) = (c1(i, j), c2(i, j), . . . , cd(i, j)), for 1 ≤ i, j ≤ n.

The imbalance in the k-th coordinate of assignment A (with 1 ≤ k ≤ d) is

∆k(A) = max
(i,j)∈A

ck(i, j)− min
(i,j)∈A

ck(i, j),

and the imbalance of assignment A is finally given by

∆max(A) = max
k

∆k(A).

The objective in the balanced assignment problem with vector costs is to find
an assignment A that minimizes the imbalance ∆max(A). Note that for d = 1
we recover the traditional balanced assignment problem.

Balanced optimization problems with vector costs are closely connected to
robust optimization (see Section 1.1 for a literature review). Robust optimiza-
tion is a methodology to deal with uncertainty in a problem’s coefficients; in
the case of discrete scenario’s we receive a set of scenario’s S, in which each
scenario k ∈ S represents a possible realization of the coefficients. One popu-
lar objective in robust optimization is the min-max criterion where we aim to
construct a best possible solution in a worst case scenario. Let us argue that,
in case of a discrete set of scenario’s and using the min-max criterion, robust
optimization of balanced optimization problems is, in fact, identical to balanced
optimization with vector costs. Consider the robust optimization version of the
balanced assignment problem, where cost ck(i, j) is the cost for assigning i to
j in scenario k ∈ S, for 1 ≤ i, j ≤ n. Observe that finding the best balanced
assignment for the worst scenario in S (i.e., using the min-max criterion) is
equivalent to solving the balanced assignment problem with vector costs (with
dimension d = |S|). Thus, under the min-max criterion, balanced optimization
with vector costs is identical to robust balanced optimization.

Also, there are practical applications of balanced optimization problems with
vector costs documented in the literature. For instance, Kamura and Nakamori
(2014) sketch an industrial problem in the manufacturing of glass lenses that
gives rise to a (specially structured) balanced assignment problem with vector
costs; see Section 5 for more details on this.

2

1.1 Related literature

On the one hand, there is a stream of literature dealing with robust optimization
for traditional (i.e., not balanced) combinatorial optimization problems. On the
other hand, there is a stream of literature dealing with balanced optimization
problems with scalar costs. Let us first, without attempting to survey the field,
consider work in robust optimization for combinatorial optimization problems.

An early contribution is the work by Kouvelis and Yu (1997) who survey
the state of the art until 1997. Ben-Tal and Nemirovski (1998) show that for
convex optimization problems, the concept of using an ellipsoidal set to model
uncertainty, still allows for efficiently solvable optimization problems. This work
is extended in Ben-Tal and Nemirovski (1999, 2000), and Ben-Tal et al. (2006).
Bertsimas and Sim (2003) show that robust versions of many combinatorial
optimization problems (including matching and shortest path) can still be effi-
ciently solved. Here, uncertainty is modeled by specifying an interval for each of
the cost-coefficients. Another option is to model uncertainty by using settings
where a discrete number of scenario’s is given (e.g., Aissi et al. (2005)); clearly,
the resulting problems are no easier than their deterministic counterparts.

In particular, the robust assignment problem under a fixed number of sce-
narios is investigated in Deineko and Woeginger (2006); they show that this
problem is equivalent to the exact perfect matching problem (whose complexity
is an open problem). Poss (2014) shows how dynamic programming can be used
to solve a general model for robust combinatorial optimization, where instead
of allowing a fixed number of coefficients to deviate from their nominal values,
a budget of uncertainty is introduced. Wiesemann et al. (2014) take robust
optimization further by developing distributionally robust optimization, a set-
ting where the probability distribution generating data belongs to a so-called
ambiguity set. Particular applications of robust optimization are described in
Ben-Tal et al. (2005) (logistics), Koster et al. (2013) and Lee et al. (2012) (net-
work design).

Summarizing, there is a wealth of work on robust optimization for combi-
natorial optimization problems; for an overview of these results we refer to the
surveys and books by Aissi et al. (2009), Bertsimas et al. (2011), Ben-Tal et al.
(2009), Gabrel et al. (2014) and Gorissen et al. (2015). As far as we are aware,
robust versions of balanced combinatorial optimization problems have not been
investigated.

Let us now consider work on balanced optimization problems with scalar costs.
Martello et al. (1984) introduce a framework containing many balanced opti-
mization problems with scalar costs, and present an algorithm to solve these
problems. If the existence of a feasible solution can be decided in polynomial
time, the corresponding algorithm is a polynomial time algorithm. We now
discuss some of these problems in more detail.

In the balanced version of the shortest path problem, we are given a directed
graph G = (V,E), two nodes s and t, and scalar costs on the edges. The goal is
to find a path from s to t that minimizes the difference between the largest and
the smallest edge cost along the path. Turner (2012) generalizes this problem to
finding a path that minimizes the difference between the k1-th largest and the
k2-th smallest edge cost, and shows that this problem is solvable in polynomial
time. Cappanera and Scutellà (2005) discuss other balanced path problems.

3

Their goal is to identify p (arc-disjoint or node disjoint) paths from s to t, such
that the difference between the length of longest path and the length of the
shortest path is minimal. These problems are NP-hard, even for p = 2.

In the balanced version of the minimum cut problem, we are given an un-
directed graph G = (V,E), two nodes s and t, and scalar costs on the edges.
The goal is to find a cut that minimizes the difference between the largest and
the smallest cost of edges in the cut. Katoh and Iwano (1994) construct an
algorithm for this problem with running time O (MST (|V |, |E|) + |V | log |V |),
where MST (|V |, |E|) denotes the running time for computing the minimum and
maximum spanning trees in a graph G = (V,E).

In the balanced version of the spanning tree problem, we are given a graph
G = (V,E) and scalar costs on the edges. The goal is to find a spanning tree that
minimizes the difference between the largest and the smallest edge cost in the
spanning tree. Camerini et al. (1986) and Galil and Schieber (1988) construct
algorithms for this problem, with running times O(|E| · |V |) and O(|E| log |V |)
respectively.

In the balanced version of the traveling salesman problem, we are given a
graph G = (V,E) and scalar costs on the edges. The goal is to find a Hamil-
tonion cycle that minimizes the difference between the largest and the smallest
edge cost in the cycle. This problem is obviously NP-hard, and Larusic and
Punnen (2011) discuss several heuristics for it. Kinable et al. (2017) discuss
a related problem, called the equitable traveling salesman problem, where the
goal is to find a Hamiltonian cycle in which the difference between the cost of
its two matchings is minimal.

Another interesting problem in this area is the balanced version of linear
programming. Here we are given a system of linear constraints (Ax = b and
x ≥ 0) and costs associated with each real variable xi. The goal is to minimize
the difference between the largest non-zero cost cixi and the smallest non-zero
cost cjxj . Ahuja (1997) presents a polynomial time algorithm for this problem.
Balanced optimization problems with an additional linear constraint are treated
in Punnen and Nair (1999).

Finally, an example of an optimization problem featuring vector costs is
described by Dokka et al. (2014); we stress however that the objective in the
underlying multi-index assignment problem is quite different from minimizing
imbalance.

1.2 Our Results

We derive a variety of results on the complexity and approximability of balanced
optimization problems with vector costs:

• First, we describe a framework for balanced optimization problems that
takes vector costs into account, thereby extending the work of Martello
et al. (1984); see Section 2.

• Every problem in our framework (i) is solvable in polynomial time if the
dimension d is fixed (see Section 3.1), and (ii) allows a polynomial time
2-approximation algorithm (see Section 3.2).

• For several problems in the framework (among which assignment, spanning
tree, s,t-cut, connecting path and Horn-SAT), we prove that the existence

4

of an approximation algorithm with approximation ratio strictly better
than 2 implies P = NP (see Section 4). Note that these results pinpoint
the strongest achievable approximation ratio for these problems (under
P 6= NP).

• For one problem in our framework (2SAT) we prove that it is actually
solvable in polynomial time (see Section 4.7). Thus, not all problems in
the framework are NP -hard.

• For a special case of the balanced assignment problem with vector costs,
namely that problem with vector sum costs, we prove that the existence
of a polynomial time approximation algorithm with approximation ratio
below 4

3 implies P = NP ; see Section 5.

• We perform extensive computational experiments, investigating the com-
putational behavior of an integer programming formulation and 2-
approximation algorithms on different classes of instances of the robust
balanced assignment problem in Section 6.

2 The Framework

Throughout this paper, we consider a family of optimization problems that are
built around a finite ground set X and a system F of feasible subsets over X.
(The system F is usually not listed explicitly, but given implicitly in terms of a
combinatorial description or in terms of an oracle.) We will only consider pro-
blems in this framework, for which the following feasibility oracle (as introduced
by Martello et al. (1984)) can be performed in time polynomially bounded in
the size of X: “Given a subset Y ⊆ X, does Y contain a feasible subset from
F? And if yes, returns a feasible subset of Y from F .” Here are some concrete
examples of problems that fit this framework:

q-Uniform Set System. For a given ground set X, a subset Y ⊆ X is feasible
if it contains at least q elements of X.

Linear Assignment. The ground set X are the elements of an n × n square
matrix. A subset Y ⊆ X is feasible if it contains n elements that cover
each row and each column of the given matrix.

Spanning Tree. The ground set X consists of the edges of an undirected graph
G = (V,X). A subset Y ⊆ X is feasible if the subgraph (V, Y) contains a
spanning tree of G.

s, t-Cut. The ground set X consists of the edges of an undirected graph G =
(V,X) with s, t ∈ V . A subset Y ⊆ X is feasible if it contains an s, t-cut;
in other words, the subgraph (V,E \Y) contains no path connecting s and
t.

Connecting Path. The ground set X consists of the edges of a directed graph
G = (V,X) with s, t ∈ V . A subset Y ⊆ X is feasible if the subgraph
(V, Y) contains a path connecting s and t.

5

2SAT, Horn-SAT. The ground set X consists of all literals both positive
and negated of an expression in conjunctive normal form, i.e. X =
{x1, x̄1, . . . , xn, x̄n}. A subset Y ⊆ X is feasible if there exists a feasi-
ble assignment with the literals in Y . An assignment is feasible if each
literal is set to either TRUE or FALSE (either x or x̄ is in Y), such that
all clauses in the expression are satisfied.

Here is an example of a problem that does NOT fall under this framework
(unless P=NP):

Hamiltonicity. The ground set X consists of the edges of an undirected graph
G = (V,X). A subset Y ⊆ X is feasible if the subgraph (V, Y) contains a
Hamiltonian cycle.

We will study so-called robust balanced versions of the problems in the fra-
mework. For this, we generalize the terminology introduced in Section 1 in the
following way. Besides the ground set X and the system F of feasible subsets,
we introduce a cost function c : X → Rd that assigns to every element x ∈ X a
corresponding d-dimensional real vector c(x); the d coordinates of vector c(x)
will be denoted c1(x), . . . , cd(x). For a subset Y ⊆ X, its imbalance in the k-th
coordinate (1 ≤ k ≤ d) is defined as:

∆k(Y) = max
y∈Y

ck(y) − min
y∈Y

ck(y).

In other words, this imbalance measures the difference in cost between the
largest and smallest value in the k-th coordinate. The imbalance of subset
Y is finally defined as

∆max(Y) = max
1≤k≤d

∆k(Y). (1)

The goal in a robust balanced optimization problem is to find a feasible set Y
that minimizes the imbalance ∆max(Y). In the sequel, the term “the robust ba-
lanced optimization problem” refers to an arbitrary problem in our framework.

3 Algorithms for Robust Balanced Optimiza-
tion Problems

In this section we give three algorithms that are applicable to any problem in our
general framework. The first algorithm solves the problem in polynomial time
when the dimension d of the cost-vectors is fixed (Section 3.1). The second and
third algorithm both yield a 2-approximation in polynomial time (Section 3.2).
We remind the reader that we only consider problems for which the feasibility
oracle can be performed in polynomial time. Throughout this section we use
n := |X|.

3.1 Fixed Dimension

We first explain informally the idea behind Algorithm 1; this algorithm genera-
lizes an algorithm presented in Martello et al. (1984).

6

Recall that a solution to a robust balanced optimization problem consists
of some subset of elements of ground set X, each equipped with a cost vector.
Now, suppose we would know the smallest value in each coordinate of an optimal
solution and its imbalance, without necessarily knowing the elements in the
optimal solution. Note that in each coordinate the highest value of the solution
is bounded by the sum of the lowest value and the imbalance. This allows
us to construct a subset Y ⊆ X consisting of elements whose cost-vectors, in
every coordinate, lie between the smallest and highest value. Next, applying
the feasibility oracle to Y gives us an optimum solution.

Of course, we are not given these values. However, one pair of elements of
the ground set allows us to guess the imbalance of an optimal solution. And if
the dimension d of the cost-vectors is fixed, it is sufficient to try all possibilities
for the lowest value of each coordinate in an optimum solution, as is argued in
Theorem 3.1.

Algorithm 1

1: Sol :=∞
2: for each x, y ∈ X let ∆ := ∆max({x, y}) do
3: for each x1 ∈ X let min1 := c1(x1) do

4:
...

5: for each xd ∈ X let mind := cd(xd) do
6: Y := X
7: for each z ∈ X do
8: if ∃k such that ck(z) < mink or ck(z) > mink +∆ then
9: Y := Y \ {z}

10: if Y contains a feasible solution then
11: Sol := min{Sol,∆}
12: Output Sol.

To explain line 2, observe that ∆max(·) is defined in (1); further, notice that
line 10 is a call to the feasibility oracle.

Theorem 3.1. Algorithm 1 solves the robust balanced optimization problem in
polynomial time, when the dimension d of the cost-vectors is fixed.

Proof. Consider an optimal solution with value OPT . This value is determined
by two elements from X, and hence, since Algorithm 1 enumerates over all pairs
x, y ∈ X, there is a pair x, y with ∆max({x, y}) = OPT . Next, by trying out all
possibilities for the smallest value in each component k (captured in mink, see
lines 3-5), we are guaranteed to find a solution with value ∆max({x, y}) if one
exists. Hence, Algorithm 1 is exact.

Regarding the complexity of Algorithm 1: for each pair of elements, we
consider nd possibilities for the smallest value in component k (k = 1, . . . , d),
and we check for each element in X whether the values of the corresponding
cost-vector satisfy the resulting bounds. For the resulting set of elements, we call
the feasibility oracle to check whether there exists a feasible solution. Since, by
definition, the oracle runs in polynomial time, Algorithm 1 runs in polynomial
time (for a fixed d).

7

Observe that Algorithm 1 solves the familiar balanced spanning tree, balanced
assignment, balanced path, balanced cut problem which all arise when d = 1.

3.2 Approximation Algorithms

When the dimension d of the cost-vectors is part of the input, the problem
becomes more difficult. Simply trying all possibilities for the lowest value of
each coordinate now results in an exponential time algorithm. Instead, we
consider every pair of elements of the ground set as a guess for all coordinates
at the same time. More in particular, we will only consider elements from the
ground set that, in every coordinate, do not differ more than ∆max({x1, x2}) in
some coordinate from either x1 or x2. Recall that ∆max({x1, x2}) refers to the
largest difference over the coordinates between elements x1, x2 ∈ X. Doing so
gives us a 2-approximation, even when the dimension d of the cost-vectors is
part of the input.

Algorithm 2

1: for each pair x1, x2 in ground set X do
2: ∆ := ∆max({x1, x2})
3: Y := X
4: for each x ∈ X do
5: if maxk |ck(x1)− ck(x)| > ∆ or maxk |ck(x2)− ck(x)| > ∆ then
6: Y := Y \ {x}
7: if Y contains a feasible solution then
8: Sol(x1, x2) := ∆max(Y)

9: Sol := minx1,x2 Sol(x1, x2)
10: Output Sol.

Theorem 3.2. Algorithm 2 is a 2-approximation algorithm for the balanced
vector-cost problem.

Proof. Let OPT denote the imbalance of an optimal solution. By trying out
all possible element pairs x1 and x2 from the ground set, we will certainly find
the two elements in the optimal solution that determine the objective value; in
other words, ∆max({x1, x2}) = OPT .

We remove all elements y from the ground set that satisfy ∆max({y, x1}) > ∆
or ∆max({y, x2}) > ∆; note that these removed elements can never show up in
an optimal solution that contains x1 and x2 and that has imbalance ∆. Clearly,
∆max(Y) is determined by two of its elements, say y1 and y2. In other words,
there exist y1, y2,∈ Y such that

∆max(Y) = ∆max({y1, y2}) ≤ ∆max({y1, x1}) + ∆max({y2, x1}) ≤ 2∆.

Clearly, this procedure runs in polynomial time: checking whether an element
x ∈ X needs to be removed can be done in O(d) time, and we need to perform
the feasibility oracle O(n2) times.

Notice that this algorithm also applies to problems for which the feasibility
oracle is not solvable in polynomial time. More precisely, let f(n) denote the

8

running time of the feasibility oracle. The running time of Algorithm 2 equals
O
(
n3 · d+ n2 · f(n)

)
.

Algorithm 2 compares each element of the ground set with both x1 and x2.
However, in order to obtain a 2-approximation, it is in fact sufficient to com-
pare only with x1 (or only with x2). Using that, we sketch an alternative
2-approximation algorithm, where, for each element x ∈ X, we create a set Sx

containing at most n possible imbalance values. We then use binary search to
find the smallest imbalance for which there still exists a feasible solution, among
elements that are not too far from x. It is not difficult to see that the resulting
algorithm is also a 2-approximation algorithm.

Algorithm 3

1: Sol :=∞
2: for each x ∈ X do
3: set Sx := ∅
4: for each y ∈ X do
5: Sx = Sx ∪ {∆max({x, y})}
6: Sort Sx in nondecreasing order
7: while Binary Search on Sx do
8: select ∆ ∈ Sx

9: Y := X
10: for each y ∈ X do
11: if ∆max({x, y}) > ∆ then
12: Y := Y \ {y}
13: if Y contains a feasible solution then
14: if ∆ < Sol then
15: Sol := ∆
16: select ∆′ ∈ Sx with ∆′ < ∆ according to the Binary Search
17: else select ∆′ ∈ Sx with ∆′ > ∆ according to the Binary Search

18: Output Sol.

Notice that this algorithm, compared to Algorithm 2, requires less running time,
namely O

(
n2 · d+ n log n · f(n)

)
, where f(n) denotes the running time of the

feasibility oracle.

4 The Complexity of Robust Balanced Optimi-
zation Problems

Many balanced optimization problems with scalar costs are known to be solva-
ble in polynomial time (see the discussion in Section 1.1): q-Uniform Set Sys-
tems, the Linear Assignment problem, the Spanning Tree problem, the s, t-Cut
problem, the Connecting Path problem, Horn-SAT and 2SAT. In this section
we discuss the complexity of each of these problems in the case when vector
costs are given. We show that each of these problems, except robust balanced
2SAT, becomes NP-hard, and that the existence of a polynomial-time (2 − ε)-
approximation algorithm for each of the mentioned problems, except robust

9

balanced 2SAT, implies P=NP. We also show that robust balanced 2SAT is in
fact solvable in polynomial time, which shows that not all interesting problems
in the framework are NP-hard (Section 4.7).

There are three problems, well-known to be NP-complete, that we use in our
reductions.

Problem: INDEPENDENT SET (IS)

Instance: A graph G = (V,E) with vertex set V = {v1, . . . , vn} and
edge set E = {e1, . . . , em}; an integer z.

Question: Does there exist a subset I ⊆ V with |I| = z, such that
the vertices in I do not span any edges in G?

Problem: 3-COLORING

Instance: A graph G = (V,E) with vertex set V = {v1, . . . , vn} and
edge set E = {e1, . . . , em}.
Question: Does there exist a 3-coloring f : V → {1, 2, 3}, such that
all edges (u, v) ∈ E satisfy f(u) 6= f(v)?

Problem: 3SAT

Instance: Set U of variables, collection C of clauses over U such that
each clause in C contains at most 3 literals.

Question: Does there exist a satisfying truth assignment for C?

4.1 Robust Balanced q-Uniform Set Systems

Let us first consider the robust balanced q-Uniform Set System problem. Given
a ground set X and an integer q, the robust balanced q-Uniform Set System
problem asks for q elements from set X with minimal imbalance.

Theorem 4.1. The robust balanced q-Uniform Set System problem is NP-hard.

Proof. Given an instance of IS represented by a given graph G = (V,E) and an
integer z, we construct an instance of robust balanced q-Uniform Set System
as follows. The ground set X coincides with the vertex set V of the graph
G. A subset Y ⊆ X is feasible if and only if it contains q := z elements.
For the definition of the vector costs of X, we turn G into a directed graph
by first choosing some ordering of the vertices in V , and next orienting every
edge from the incident vertex with smaller index (source) to the incident vertex
with larger index (target). The dimension of the vectors is d := |E| = m, and
every coordinate k corresponds to a unique edge ek in E, 1 ≤ k ≤ m. Let us
now define cost-vector c(vj) = (c1(vj), c2(vj), . . . , cd(vj)) corresponding to each
vertex vj ∈ V . For each vj ∈ V and k ∈ {1, . . . ,m}:

ck(vj) :=

 1 if vertex vj is the source of the oriented edge ek;
−1 if vertex vj is the target of the oriented edge ek;
0 otherwise.

This specifies the corresponding instance of the robust balanced q-uniform
set system, see Figure 1 for an illustration. We claim that there exists a feasible

10

subset Y ⊆ X with |Y | = z and ∆max(Y) ≤ 1 if and only if the considered
instance of IS has answer YES.

Assume that there exists a feasible subset Y ⊆ X with |Y | = z and
∆max(Y) ≤ 1. Suppose for the sake of contradiction that the vertex set corre-
sponding to Y would span some edge ek ∈ E. Then, in the k-th coordinate, the
cost-vector of the source vertex of ek is −1, and the cost-vector of the target
vertex of ek is +1. Hence ∆max(Y) ≥ 2. This contradiction shows that Y is a
z-element independent set in G.

Next assume that the IS instance has answer YES and let I be the correspon-
ding certificate. Thus |I| = z and in none of the coordinates, the vectors c(y)
with y ∈ I take the value +1 and −1. This yields the desired ∆max(I) ≤ 1.

Corollary 4.1. The robust balanced q-Uniform Set System problem does not
allow a polynomial time approximation algorithm with worst case guarantee
strictly better than 2 (unless P=NP).

Proof. This is implied by the proof of Theorem 4.1. Indeed, a polynomial time
approximation algorithm with a worst case guarantee strictly better than 2,
would allow us to distinguish the instances with imbalance at most 1 from the
instances with imbalance at least 2.

Instance of IS

v1 v2

v3 v4

e1

e2
e3

e4

Corresponding instance q-Uniform Set System

c(v1) = (1, 1, 0, 0)

c(v2) = (−1, 0, 1, 0)

c(v3) = (0, 0, 0, 1)

c(v4) = (0,−1,−1,−1)

Figure 1: Illustration of the construction of an instance of the robust balanced
q-uniform set system

4.2 Robust Balanced Linear Assignment

Given a square matrix C, where each entry is a d-dimensional vector, the ro-
bust balanced assignment problem asks for an assignment in C minimizing the
imbalance.

Theorem 4.2. The robust balanced assignment problem is NP-hard.

Proof. Given an instance of IS represented by a given graph G = (V,E) and an
integer z, we construct an instance of the robust balanced assignment problem
as follows. Each vertex vi ∈ V will correspond to a row a := i in the matrix C
(1 ≤ i ≤ n). The ground set X coincides with the elements of an n× n matrix
C. A subset Y ⊆ X is feasible if it contains n elements that cover each row and
each column of matrix C.

11

For the definition of the cost-vectors of X, we turn G into a directed graph
by orienting every edge from the incident vertex with smaller index (source) to
the incident vertex with larger index (target).

Let us now define the cost-vectors c(a, b), 1 ≤ a, b ≤ n; the dimension of each
cost-vector equals the number of edges in E, that is d := m. We distinguish
between entries in the first z columns of C, and entries in the last n− z entries
of C as follows:

• For each b ≤ z, we set for each k = 1, . . . ,m, a = 1, . . . , n:

ck(a, b) :=

 1 if vertex va is the source of edge ek;
−1 if vertex va is the target of edge ek;
0 otherwise.


• For each b ≥ z + 1, we set: c(a, b) := 0, for each a = 1, . . . , n.

This describes the instance of the robust balanced assignment problem. We
now argue equivalence between the existence of an independent set in G of size
z, and an assignment in the matrix C with imbalance at most 1.

Suppose the matrix C admits an assignment with imbalance at most 1.
Consider the selected entries in the first z columns of C, and consider the corre-
sponding set of rows. Since each row corresponds to a vertex in V , this gives us
a set of vertices. We claim that this set of vertices is an independent set, since
there can be no coordinate in the cost-vectors that corresponds to the selected
entries where both a +1 and a −1 figures (since the imbalance is at most 1).
Thus, there is no arc that goes from one vertex in the set to another vertex in
the set, or in other words, we have an independent set of size z.

Now, assume there is an independent set I of size z in the graph G. We
propose the following assignment: consider a vertex in I: choose as entry, the
corresponding row, and a column with index b ≤ z. The remaining entries are
chosen arbitrarily to complete the assignment. Since we have an independent
set, the imbalance can be at most 1.

Corollary 4.2. The robust balanced assignment problem does not allow a poly-
nomial time approximation algorithm with worst case guarantee strictly better
than 2 (unless P=NP).

4.3 Robust Balanced Spanning Tree

Given a graph with a cost-vector for each edge, the robust balanced spanning
tree problem asks for a spanning tree in this graph minimizing the imbalance.

Theorem 4.3. The robust balanced spanning tree problem is NP-hard.

Proof. Given an instance of IS represented by a given graph G = (V,E) and
an integer z, we construct an instance of the robust balanced spanning tree
problem, represented by a graph H = (V ′, E′), as follows. Notice that the
ground set X will coincide with the set of edges E′.

For the definition of the cost-vectors of X, we turn G into a directed graph
by orienting every edge from the incident vertex with smaller index (source) to
the incident vertex with larger index (target).

12

v1 vn. . .

. . .
z1 zz

Figure 2: Construction of graph H = (V ′, E′)

The graph H has a node for each vi ∈ V , i ∈ {1, . . . , n} plus z additional
nodes. The latter set of nodes is referred to as Z, i.e. V ′ = V ∪ Z. There is an
edge from v1 to every other vi ∈ V , and there is an edge from every vi ∈ V to
each vertex in Z. The latter set of edges shall be referred to as E′Z . (see also
fig. 2).

Let us now specify the cost-vector for each edge in E′; the dimension of each
cost-vector is |E|+ |E′Z | = m+n · z. A coordinate corresponds to a unique edge
ek ∈ E if k ≤ m or a unique edge dk ∈ E′Z if k > m. There are three cases.

• For each v1, vi ∈ V \ {v1}, we set c(v1, vi) := 0.

• For each vi ∈ V and zj ∈ Z we set, for each k ≤ m:

ck(vi, zj) :=


1 if vertex vi is the source of edge ek ∈ E;

−1 if vertex vi is the target of edge ek ∈ E;

0 otherwise.

• For each vi ∈ V and zj ∈ Z we set, for each k > m:

ck(vi, zj) :=


1 if edge dk = (vi, zj);

−1 if edge dk = (vi, z`) for z` ∈ Z and j 6= `;

0 otherwise.

We now argue equivalence between existence of an independent set in G of
size z and a spanning tree in H with imbalance at most 1.

Suppose that graph H contains a spanning tree with imbalance at most 1.
Then every vertex in Z is connected to at least one vertex vi ∈ V ′. It is not
possible that one vertex vi ∈ V ′ is connected to two distinct vertices in Z,
because there can be no coordinate k > m in the cost-vectors that attains both
a +1 and a -1. This gives us a set of at least z different vertices vi. In G, no edge
exists between any two vertices in this set, since there can be no coordinate in
the cost-vectors that attains both a +1 and a -1. Thus, we have an independent
set of size at least z.

Now assume that there is an independent set I of size z in graph G. We
propose the following spanning tree: consider a vertex in Z, select the edge
connecting it with a vertex vi ∈ I (that hasn’t been chosen yet). We also select
the edges between v1 and each vi ∈ G. Since we have an independent set, the
imbalance is at most one.

13

s

v11 v1n

t
. . .

vz1

...

vzn

...
...

...

e11 e1t

e1n

Figure 3: Construction of graph H = (V ′, E′)

Corollary 4.3. The robust balanced spanning tree problem does not allow a
polynomial time approximation algorithm with worst case guarantee strictly
better than 2 (unless P=NP).

4.4 Robust Balanced s, t-Cut

Given a graph with a cost-vector for each edge, and two nodes s and t, the
robust balanced s, t-cut problem asks for a cut in this graph separating s and t
that minimizes the imbalance.

Theorem 4.4. The robust balanced s, t-cut problem is NP-hard.

Proof. Given an instance of IS represented by a given graph G = (V,E) and
an integer z, we construct an instance of the robust balanced s, t-cut problem,
represented by a graph H = (V ′, E′), as follows. Notice that the ground set X
will coincide with the set E′.

The node set V ′ contains two nodes s, t, and for each vi ∈ V , there is a
layer, layer i, containing z nodes in V ′, (i ∈ {1, . . . , n}). The z nodes in layer i
are denoted by v1i , v

2
i , . . . , v

z
i (i ∈ {1, . . . , n}). There is an edge eji between vji−1

and vji (i ∈ {2, . . . , n}) for each j = 1, . . . , z. There is an edge ej1 from s to each

node in the first layer, i.e., ej1 = {s, vj1} ∈ E′ for each j = 1, . . . , z. And finally,

there is an edge ejt from each node in the last layer to t, i.e., ejt = {vjn, t} ∈ E′
for each j = 1, . . . , z. Notice that the resulting graph H contains z node-disjoint
paths from s to t. (see also fig. 3). Hence, any cut separating s from t will
contain at least z edges.

Let us now specify the cost-vector for each edge in E′; the dimension of each
cost-vector is |E|+ |E′| = m+ (n+ 1) · z. A coordinate corresponds to a unique
edge ek ∈ E if k ≤ m or a unique edge dk ∈ E′ if k ≥ m+ 1.

The vector cost c(eji) of an edge eji ∈ E′ for i ∈ {1, . . . , n}, j = 1, . . . , z is
defined as follows,

• for each k ≤ m:

ck(eji) :=


1 if vertex vi is the source of edge ek;

−1 if vertex vi is the target of edge ek;

0 otherwise.

14

• for each k ≥ m+ 1:

ck(eji) :=



1 if edge eji equals edge dk;

−1 if edge dk enters node vj` for ` ∈ {1, . . . , n}, k 6= i;

−1 if edge dk enters node v`i for ` ∈ {1, . . . , z}, ` 6= j;

−1 if edge dk enters node t;

0 otherwise.

The vector cost c(ejt) of edge ejt ∈ E′, for j = 1, . . . , z is defined as follows,

• for each k ≤ m we have ck(ejt) = 0.

• for each k ≥ m+ 1:

ck(ejt) :=


1 if edge ejt equals edge dk;

−1 if edge dk enters node t, dk 6= ejt ;

0 otherwise.

We now argue equivalence between existence of an independent set in G of
size z and an s, t-cut in H with imbalance at most 1.

Suppose that graph H contains an s, t-cut C with imbalance at most 1. Since
we have z parallel paths in H, we know that |C| ≥ z. The cost vectors of the
edges in H are constructed in such a way that (i) choosing two edges from an
s, t-path in H in the cut, would lead to imbalance at least 2, (ii) choosing two
edges from the same layer (edges eji and ej` , with j 6= `) in H would lead to
imbalance at least 2 and (iii) choosing two edges of which one contains node t,
would lead to imbalance at least 2. It follows that C cannot contain two edges
from the same path, neither can it contain two edges of the same layer, nor can
it contain an edge entering node t. Hence, cut C consists of exactly z edges eji ,
each associated with a distinct vi ∈ V . It is a fact that the corresponding set of
vertices in G is an independent set in G, since there can be no edge connecting
any of these z vertices, because there is no coordinate k ≤ m in the cost-vectors
that attains both a +1 and a -1.

Now assume that there is an independent set I of size z in graph G. Without
loss of generality we may rename the nodes such that I = {v1, . . . , vz}. We select
edges ejj (j ∈ {1, . . . , z}) to be in the cut. This is indeed a s, t-cut, because we
take exactly one edge from each parallel path. Since these z edges are associated
with distinct nodes (in V) and correspond to a single edge from every path in
H, the imbalance is at most one.

Corollary 4.4. The robust balanced s, t-cut problem does not allow a polynomial
time approximation algorithm with worst case guarantee strictly better than 2
(unless P=NP).

4.5 Robust Balanced Connecting Path

Given a graph with a cost-vector for each edge, and two nodes s and t, the
robust balanced connecting path problem asks for a path connecting s and t
that minimizes the imbalance.

15

s

v1 vn

t
. . .

Figure 4: Construction of graph H = (V ′, A)

Theorem 4.5. The robust balanced connecting path problem is NP-hard.

Proof. Given an instance of 3-COLORING represented by a graph G = (V,E),
we construct an instance of the robust balanced connecting path problem, re-
presented by a graph H = (V ′, A), as follows. Notice that the ground set X
will coincide with the set A.

First, we turn G into a directed graph by first choosing some ordering of
the vertices in V , and next orienting every edge from the incident vertex with
smaller index (source) to the incident vertex with larger index (target). Next,
the graph H has a node s, a node t, and for each vi ∈ V (i ∈ {1, . . . , n}), there
is a layer of three nodes, called the top node, the middle node, and the bottom
node in H. There is an arc from each node in layer i to each node in layer i+ 1,
(1 ≤ i ≤ n− 1). Node s is connected to each node of layer 1, and each node of
layer n is connected to node t. There are no other arcs (see also fig. 4).

Let us now specify the cost-vector that corresponds to each arc a ∈ A; there
are three coordinates corresponding to each edge ek ∈ E, hence, its dimension
equals 3m. The vector-cost c(a) of an arc a ∈ A is defined as follows:

• For an arc a entering a top node in layer i (1 ≤ i ≤ |V |) for k = 1, . . . ,m

c3k−2(a) :=


1 if edge vi is the target of oriented edge ek;

−1 if edge vi is the source of oriented edge ek;

0 otherwise.

c3k−1(a) = 0.

c3k(a) = 0.

• For an arc a entering a middle node in layer i (1 ≤ i ≤ |V |) for k = 1, . . . ,m

c3k−1(a) :=


1 if edge vi is the target of oriented edge ek;

−1 if edge vi is the source of oriented edge ek;

0 otherwise.

c3k−2(a) = 0.

c3k(a) = 0.

• For an arc a entering a bottom node in layer i (1 ≤ i ≤ |V |) for k = 1, . . . ,m

c3k(a) :=


1 if edge vi is the target of oriented edge ek;

−1 if edge vi is the source of oriented edge ek;

0 otherwise.

16

c3k−2(a) = 0.

c3k−1(a) = 0.

• For an arc a entering node t,

c(a) = 0.

We claim that there exists a path between s and t in the graph H with
imbalance at most 1 if and only if the graph G is 3-colorable.

Assume that there exists a path between s and t in the graph H with imba-
lance at most 1. Note that the path contains exactly one node from each level i,
1 ≤ i ≤ n. We color the nodes as follows: if the path contains the top (middle,
bottom) node of level i we color node vi with color 1 (2, 3) (1 ≤ i ≤ |V |). The
imbalance of this path is at most 1, hence no coordinate contains a +1 and a
−1. Thus no two nodes adjacent in H receive the same color. Hence, the graph
is 3-colorable.

Next assume that the graph G is 3-colorable. Then the color of each node
in G determines which node in each layer is in the path from s to t: specifically
if node vi is colored with color 1 (2, 3) then the top (middle, bottom) node
of layer i is in the path from s to t (1 ≤ i ≤ |V |). Observe that specifying
the nodes that are in the path P gives us the corresponding cost-vectors, and
moreover, since the coloring of G is such that no edge connects two vertices with
the same color, there is no coordinate where there is a +1 and a -1. This yields
the desired ∆max(P) ≤ 1.

Corollary 4.5. The robust balanced connecting path problem does not allow
a polynomial time approximation algorithm with worst case guarantee strictly
better than 2 (unless P=NP).

4.6 Robust Balanced Horn-SAT

Given a set of literals X with vector-costs and a set of clauses C ′, where each
clause contains at most 1 positive literal, the robust balanced Horn-SAT problem
asks to find a satisfying truth assignment which minimizes the imbalance.

Theorem 4.6. The robust balanced Horn-SAT problem is NP-hard.

Proof. Given an instance of 3SAT represented by a set of variables U =
{u1, . . . , un} and a set of clauses C = {c1, . . . , cm}, we construct an instance
of the robust balanced Horn-SAT problem as follows. The ground set X con-
tains 4 literals for each variable ui ∈ U , called xi, x̄i, yi and ȳi. For each cj ∈ C
we create a clause c′j ∈ C ′ as follows. If ūi ∈ cj (1 ≤ i ≤ n, 1 ≤ j ≤ m) then
we have x̄i ∈ c′j , and if ui ∈ cj then we have ȳi ∈ c′j . For example a clause
(u1 ∨ ū2 ∨ u3) becomes clause (ȳ1 ∨ x̄2 ∨ ȳ3). Note that all clauses c′ ∈ C ′ only
contain negative literals, hence we have an instance of Horn-SAT.

Let us now define the cost-vectors for every element in the ground set. The
dimension of the vector costs for X is d = 2n and for every k (1 ≤ k ≤ n)
coordinate k corresponds to a literal ui and coordinate n + k corresponds to
literal ūi. We distinguish 4 cases, one case for each literal corresponding to
variable ui (1 ≤ i ≤ n).

17

• For literal xi, we set for each k = 1, . . . , 2n:

ck(xi) :=

{
1 if literal xi corresponds to literal ui i.e. k = i;
0 otherwise.

}
• For literal yi, we set for each k = 1, . . . , 2n:

ck(yi) :=

{
−1 if literal yi corresponds to literal ui i.e. k = i;
0 otherwise.

}
• For literal x̄i, we set for each k = 1, . . . , 2n:

ck(x̄i) :=

{
1 if literal x̄i corresponds to literal ūi i.e. k = n+ i;
0 otherwise.

}
• For literal ȳi, we set for each k = 1, . . . , 2n:

ck(ȳi) :=

{
−1 if literal ȳi corresponds to literal ūi i.e. k = n+ i;
0 otherwise.

}
This describes the instance of robust balanced Horn-SAT. We now argue

equivalence between the existence of satisfying truth assignment of 3SAT with
a satisfying truth assignment for Horn-SAT with imbalance at most 1.

Suppose we have a satisfying truth assignment for 3SAT. If ui ∈ U is set
TRUE, then we set xi TRUE and yi FALSE. If ui ∈ U is set FALSE, then we
set xi FALSE and yi TRUE. Clearly the imbalance of this assignment is 1, as xi
and yi aren’t simultaneously TRUE or simultaneously FALSE. We now argue
that this indeed is a satisfying truth assignment for the Horn-SAT instance. Let
us consider a clause cj ∈ C and let variable ui be the variable whose assignment
satisfies clause cj . If ui occurs positive and ui is TRUE, i.e. ui ∈ cj , then we
know that ȳi ∈ c′j and yj is FALSE. That implies that clause c′j ∈ C ′ is also
satisfied. If ui occurs negative and ui is FALSE, i.e. ūi ∈ cj , then we know that
x̄i ∈ c′j and xi is FALSE. That too implies that clause c′j ∈ C ′ is also satisfied.

Suppose we have a satisfying truth assignment for Horn-SAT with imbalance
at most 1. Then we know that xi and yi aren’t simultaneously TRUE or simul-
taneously FALSE. If xi is TRUE and yi is FALSE then we set ui ∈ U TRUE.
If xi is FALSE and yi is TRUE then we set ui ∈ U FALSE. We now argue
that this indeed is a satisfying truth assignment for the 3SAT instance. Let us
consider a clause c′j ∈ C ′, note that it only contains negated variables, x or y.
Let variable xi be the variable whose assignment satisfies clause c′j ., i.e x̄i ∈ c′j
and xi is FALSE. Then we know that ūi ∈ cj and ui is FALSE. That implies
that clause cj ∈ C is satisfied. Let variable yi be the variable whose assignment
satisfies clause c′j ., i.e ȳi ∈ c′j and yi is FALSE. Then we know that ui ∈ cj and
ui is TRUE. That too implies that clause cj ∈ C is satisfied.

Corollary 4.6. The robust balanced Horn-SAT problem does not allow a poly-
nomial time approximation algorithm with worst case guarantee strictly better
than 2 (unless P=NP).

18

4.7 Robust Balanced 2SAT

Recall that an instance of the robust balanced 2SAT problem consists of
i) an expression C in conjunctive normal form, where each clause consists of

at most two literals, and
ii) a cost-vector for each positive literal and each negative literal.
The objective is to find a satisfying truth assignment with minimal imba-

lance. We show that this problem, unlike the previous problems, is easy.

Theorem 4.7. The robust balanced 2SAT problem is solvable in polynomial
time.

Proof. First, we prove that we can decide in polynomial time whether a solution
with imbalance ∆ exists. Consider the cost-vectors of each pair of elements x1,
x2 ∈ X. If there is a coordinate in which these two vectors differ more than
∆, then these two elements cannot occur together in a solution with imbalance
∆. Thus, for each such pair x1, x2 ∈ X we add to the current expression C
the clause (x̄1 ∨ x̄2). (Notice that the negation of a negated literal results in a
positive literal, i.e. x̄ = x.)

Observe that this procedure ensures that the resulting instance is also a 2SAT
instance, with a size polynomial in the input, and that each feasible solution to
this new instance is a feasible solution to the original problem with imbalance
at most ∆.

We know that the imbalance ∆ of any feasible solution is defined by two
elements of the ground set X. That gives us at most O(n2) distinct possible
values for ∆ (one for each pair of elements). The lowest value of ∆ for which
there exists a truth assignment is the value of an optimal solution.

5 A Special Case of the Robust Balanced Assig-
nment Problem: Sum Costs

Kamura and Nakamori (2014) consider a highly structured special case of the
robust balanced assignment problem: the cost-vector for every matrix entry
c(a, b) is the sum of two d-dimensional cost-vectors c(a) and c(b). We call this
setting the robust balanced assignment problem with sum costs. The resulting
problem remains NP-hard, as witnessed by the following result.

Theorem 5.1. The robust balanced assignment problem with sum costs is NP-
hard.

Proof. We modify the hardness construction used in the proof of Theorem 4.2
as follows. Given an instance of IS represented by a given graph G = (V,E) and
integer z, we construct an instance of the robust balanced assignment problem
with sum costs as follows. There is an (n+ z)× (n+ z) matrix C, the entries of
which are the elements of the ground set X. Each vertex vi ∈ V will correspond
to a row a := i and column b := i in the matrix C (1 ≤ i ≤ n). The other z rows
a := n+ j and z columns b := n+ j in the matrix C (1 ≤ j ≤ z) are referred to
as dummy rows, columns respectively.

We need to specify a d-dimensional cost-vector c(a), for each row a of C, as
well as a d-dimensional cost-vector c(b) for each column b of C. The dimension
of each cost-vector equals the number of edges in G plus 1, i.e., d := m+ 1.

19

For the definition of the vector costs, we turn G into a directed graph by
orienting every edge from the incident vertex with smaller index (source) to the
incident vertex with larger index (target). Let us first define the cost-vectors
c(a) for each row a, 1 ≤ a ≤ n+ z. There are two cases:

• For each a ≤ n, we set for each k = 1, . . . ,m+ 1:

ck(a) :=


1 if vertex va is the source of edge ek;

−1 if vertex va is the target of edge ek;

0 otherwise.

• For n+ 1 ≤ a ≤ n+ z, we set for each k = 1, . . . ,m+ 1:

ck(a) :=

{
0 if k ≤ m;

1 otherwise.

Let us now define the cost-vectors c(b) for each column b, 1 ≤ b ≤ n + z.
There are two cases:

• For each b ≤ n, we set for each k = 1, . . . ,m+ 1:

ck(b) :=


−1/2 if vertex vb is the source of edge ek;

1/2 if vertex vb is the target of edge ek;

−1 if k = m+ 1;

0 otherwise.

• For each n+ 1 ≤ b ≤ n+ z, we set c(b) := 0.

The resulting matrix C can be represented as follows;

C =



1 . . . n n+ 1 . . . n+ z

1
... C1 C2

n
n+ 1
... C3 C4

n+ z


.

We now show that the existence of an IS with size z implies the existence of
a solution with imbalance at most 3

2 , whereas the non-existence of a size z
independent set leads to assignments with imbalance at least 2.

Let us first assume that there is an independent set with size z. We construct
the following assignment. Consider a vertex in V . There are two possibilities.
If this vertex is in the independent set, choose as entry in C, the corresponding
row a (a ≤ n), and any column b ≥ n + 1 (notice that the resulting entry is in

20

block C2). Using the definition of the cost vectors given in the construction, we
find that:

ck(a, b) :=


1 if vertex va is the source of edge ek;

−1 if vertex va is the target of edge ek;

0 otherwise.

If this vertex is not in the independent set, then choose as entry the correspon-
ding row a (a ≤ n), and the same column, i.e., b = a (notice that the resulting
entry is in block C1). We find that:

ck(a, a) :=


1/2 if vertex va is the source of edge ek;

−1/2 if vertex va is the target of edge ek;

−1 k = m+ 1

0 otherwise.

We also choose the following entries for each of the dummy rows: the z columns
(each representing a vertex) that have not yet been used (the resulting entries
are in block C3). Then, we have:

ck(a, b) :=


−1/2 if vertex vb is the source of edge ek;

1/2 if vertex vb is the target of edge ek;

0 otherwise.

This specifies the assignment. Observe that for these selected entries it is
true that the corresponding cost vectors have, in no coordinate, a +1 and a -1;
hence, the imbalance is at most 3

2 .
Suppose no size z independent set exists. We claim that any assignment has

imbalance ≥ 2. First suppose that the assignment uses an entry in block C4 of
matrix C. Since (w.l.o.g.) z < n any assignment also uses entries in block C1.
But then the last coordinate of the selected vectors leads to an imbalance ≥ 2.
Now, suppose no entries from block C4 are chosen. Then, since one entry in
each of the last z columns must be chosen, z entries are chosen from block C2.
Consider the z vertices that correspond to the rows of these entries. Since the
set of vertices is not an independent set, there exists an edge ek between two of
these vertices. Hence, the imbalance ≥ 2.

Notice that this construction does not completely close the gap between the fac-
tor of 2 achieved by the approximation algorithms, and what might be achieved
by any polynomial time algorithm. We can only state:

Corollary 5.1. The robust balanced assignment problem with sum costs does
not allow a polynomial time approximation algorithm with worst case guarantee
strictly better than 4

3 (unless P=NP).

Remark 1: Corollary 5.1 leaves open the possibility that Algorithm 2
and/or Algorithm 3 have a better approximation ratio for the robust balan-
ced assignment problem with sum costs. For Algorithm 3 however, this is not
the case, as is shown by the following instance.

21

Suppose we have n = 3, and we have row costs a1 = (−1,−2), a2 = (−1,−1)
and a3 = (0,−1) and column costs b1 = (1, 1), b2 = (2, 2), and b3 = (0, 0). The
resulting cost matrix C is as follows.

(0,-1) (1,0) (-1,-2)
(0,0) (1,1) (-1,-1)
(1,0) (2,1) (0,-1)

Since it is not difficult to see that a solution with value 0 does not exist,
it follows that the solution consisting of the elements {(1, 2), (2, 1), (3, 3)} with
respective cost-vectors {(1, 0), (0, 0), (0,−1)} (which has value (or imbalance)
1), is an optimal solution.

Let us now run Algorithm 3 on this instance. We show that for any x ∈ X,
with an imbalance of 1, the algorithm can return a feasible solution with value
equal to 2. First, notice that for c(x) ∈ {(−1,−2), (−1,−1), (1, 1), (2, 1)} no
feasible solution exists when the elements that differ more than 1 from c(x)
in a component, are removed. Next, for c(x) = (0,−1) the algorithm can
select c(1, 2) = (1, 0), c(2, 3) = (−1,−1) and c(3, 1) = (1, 0), resulting in a
solution with value 2. Finally, for c(x) ∈ {(0, 0), (1, 0)} the algorithm can select
c(1, 1) = (0,−1), c(2, 2) = (1, 1) and c(3, 3) = (0,−1), again leading to a
solution with value 2.

Hence, Algorithm 3 can return a solution with imbalance 2, which is twice
the optimum.

Remark 2: Given the application described in Kamura and Nakamori (2014),
one could be interested in the robust balanced 3-dimensional assignment pro-
blem. In this problem, we are given three sets of vectors, say a set A, B and C.
Then, the ground set X consists of triples, each consisting of a vector from A,
a vector from B, and a vector from C, and the cost vector corresponding to an
element from X is nothing else but the sum of the three vectors. Although this
problem does not fall in our framework (the feasibility question is NP-hard), one
might wonder about the approximability of this robust balanced 3-dimensional
assignment problem. We point out, however, that no constant-factor approxi-
mation algorithm can exist (unless P=NP), even when d = 1.

Theorem 5.2. The robust balanced 3-dimensional assignment problem does
not allow a polynomial time constant-factor approximation algorithm (unless
P=NP), even when d = 1.

Proof. There is a straightforward reduction from Numerical 3-Dimensional
Matching. Recall that in Numerical 3-Dimensional Matching we are given
disjoint sets W , Y and Z, each containing n elements and a cost c(a) for each
a ∈ W ∪ Y ∪ Z and a bound b. The goal is to select n pairwise disjoint triples
from W × Y × Z, referred to as M , such that for each of the selected triples,
(w, y, z), it holds that c(w) + c(y) + c(z) = b.

By having an element in A (B, C), for each element in W (Y , Z) an equi-
valent instance of the robust balanced 3-dimensional assignment problem ari-
ses. Notice that the imbalance in this instance is 0 if and only if there ex-
ists a set of triples M such that for each triple (w, y, z) in M it holds that
c(w) + c(y) + c(z) = b. Distinguishing in polynomial time whether the imba-
lance is 0 or not would imply P = NP .

22

6 Computational Experiments for the Robust
Balanced Assignment Problem

In this section we describe a computational experiment for the robust balanced
assignment problem. Recall that in this problem, we are given a square matrix
C, in which each entry is a d-dimensional vector, and we are interested in
finding an optimum robust balanced assignment, i.e., in finding an assignment
in C minimizing the imbalance (see Section 1).

6.1 MIP Formulation

The following formulation is given by Kamura and Nakamori (2014), and uses
parameters ck(i, j), each of which refers to the k-th coordinate of vector c(i, j) in
matrix C. Further, binary variables x(i, j) indicate whether or not the solution
contains entry (i, j), 1 ≤ i, j ≤ n, real variables uk and `k denote the respectively
largest and smallest value in dimension k of a selected entry (1 ≤ k ≤ d), and
the real variable t captures the objective function value.

minimize t (2a)

subject to

n∑
i=1

xi,j = 1 j = 1, . . . , n, (2b)

n∑
j=1

xi,j = 1 i = 1, . . . , n, (2c)

ck(i, j) · xi,j ≤ uk i, j = 1, . . . , n;∀k, (2d)

`k ≤ ck(i, j) · xi,j +M(1− xi,j) i, j = 1, . . . , n;∀k (2e)

uk − `k ≤ t k = 1, . . . , d, (2f)

xi,j ∈ {0, 1} i, j = 1, . . . , n, (2g)

uk, `k, t ≥ 0 k = 1, . . . , d. (2h)

Constraints (2b) and (2c) ensure that an assignment in matrix C is found.
Further, constraints (2d) and (2e) imply that the variables uk and `k receive
their intended values, and constraint (2f) together with the objective function
(2a) ensure that t equals the minimum imbalance.

6.2 Construction of Data-sets

We have created three classes of instances of the robust balanced assignment
problem. In Class 1, we construct instances by drawing each individual cost-
coefficient from a particular probability distribution; instances of Classes 2 and
3 feature scenario’s, where the k-th component of each cost-vector corresponds
to scenario k, k = 1, . . . , d. Let us now describe the three classes in more detail.
Class 1

To generate instances of Class 1, we vary the following three parameters:

• n, the number of rows (or columns) of matrix C. We use n ∈ {10, 20}.

• d, the length of each cost-vector. We use d ∈ {2, 100, 300}.

23

• g, the probability distribution from which the
cost-coefficients are generated. We use g ∈
{U(0, 100), U(0, 1000), N(50; 1), N(50; 10), N(500; 1), N(500; 10)}.

(Here U(a, b) stands for a discrete uniform distribution between a and b, while
N(a; b) stands for a normal distribution with mean a and standard deviation
b). This gives 2 × 3 × 6 = 36 types of instances of Class 1. For each of these
types, we have generated 10 instances, leading to a total of 360 instances of
Class 1. Solving instances of Class 1 allows us to assess how difficult in practice
these instances are, depending upon the various parameters. We study the
performance of the MIP-formulation, and Algorithms 2 and 3, both in terms of
solution quality and running times.
Class 2

Instances of Class 2 are based on the instances of Class 1 as follows. For
each instance of Class 1 we construct an instance of Class 2 by rearranging the
cost-coefficients of each cost-vector in the following way. Given a cost-vector, we
sort the cost-coefficients by their distance to the mean (of the probability distri-
bution we generate from) in an increasing way. Thus, after this rearrangement
it holds that the larger the difference with the mean, the greater the index of the
resulting component. The idea behind this construction is to investigate a set of
scenario’s, where the first scenario can be seen as the most “average” scenario,
and the last scenario is the most “extreme” scenario; in between, the scenario’s
become more variable with their index. Clearly, we have 360 instances of Class
2.

Solving instances of Class 2 allows us to see whether this concept of scenario’s
ranging from average to extreme has an impact on the relative solution times
of our methods. It is also interesting to see how the optima, as well as the
computation times, compare to those found for Class 1.
Class 3

As in Class 2 instances, we use the idea of scenario’s to generate instances
of Class 3. Now however, we generate the cost-coefficients of a cost-vector from
distinct distributions whose variance increases with the component of the vector.
More concrete, we vary the following parameters

• n, the number of rows (or columns) of matrix C. We use n ∈ {10, 20}.

• d, the length of each cost-vector. We use d ∈ {2, 100, 300}.

• gk,d, the probability distribution from which cost-coefficient k, for vector-
length d, is generated from (k = 1, . . . , d). For each d ∈ {2, 100, 300}, we
use the following four collections of probability distributions.

– U(
⌈
50− 50k

d

⌉
,
⌊
50 + 50k

d

⌋
),

– U(
⌈
500− 500k

d

⌉
,
⌊
500 + 500k

d

⌋
),

– N(50; 50k
3d), and

– N(500; 500k
3d).

Observe that, for each of these collections, the standard deviation increases
with the component index k. For instance, in case of the second collection
of probability distributions, with d = 300, the first component is drawn
from U(499, 501), while the last component is drawn from U(0, 1000),

24

and the components in between come from a uniform distribution whose
standard deviation stepwise increases.

Solving instances of Class 3 allows us to see whether the idea of different
scenario’s coming from different distributions leads to other instances in terms
of solvability.

We have used R 3.1.1 to generate the data.

6.3 Details of Implementation

The MIP and both approximation algorithms are implemented using (free) pro-
gramming language Julia 0.5.1, together with notebook environment Jupyter
(IJulia). We also use package JuMP for Mathematical Optimization (for more
information see Dunning et al. (2017)) together with CPLEX 12.7.0 as the sol-
ver. Implementing both the MIP and the approximation algorithms in Julia
enables us to use a consistent concept of running time to compare. Experi-
ments are run on a laptop with Intel Core i7-4800MQ CPU @2.70GHz and
16GB RAM.

All instances and the Julia Notebooks are available online at
https://github.com/AFicker/RobustBalancedAssignment.

For implementing the MIP formulation we have to choose an M that is suf-
ficiently large (see constraints (2e)). If the data from an instance is from a
Uniform distribution U(0, x), we set M = x+ 1, which is greater than the lar-
gest possible value. If the data from an instance is from a Normal distribution,
we do not know what the largest possible value can be. Hence we look for the
highest number h occurring in the data-set and set M = h+ 1.

For both approximation algorithms we have to implement the feasibility oracle.
For the robust balanced assignment problem this means solving a max-weight
assignment restricted to the entries of C that have remained in the set Y (see
Section 3.2). We do this by creating a n× n matrix O, setting the entry o(i, j)
in O equal to 1 if element (i, j) ∈ Y , and 0 if otherwise. We then solve the
max-weight assignment problem as an IP using a call to CPLEX from Julia
to solve this instance. If the optimal solution has value n, then Y contains a
feasible assignment, otherwise Y does not. Moreover, in case Y allows a feasible
assignment, instead of setting Sol(x1, x2) := ∆max(Y), we set Sol(x1, x2) equal
to the value of the assignment found by the feasibility oracle (since we have an
actual solution at our disposal).

Recall that both approximation algorithms are valid for any robust balanced
optimization problem; we now describe a modification that we employ in order
to tailor both algorithms for the robust balanced assignment problem.

Consider Line 1 in Algorithm 2: selecting a pair of elements to compute a
bound/guess on the solution value, and consider Line 3 in Algorithm 3: selecting
a second element to compute a bound on the solution value. Since we only need
to check those pairs of entries that can actually occur together in a feasible
assignment, we do not select pairs of elements from the ground set that either
occur in the same row or in the same column.

25

6.4 Results

Hereunder we present five tables to present our computational results. Tables 1
and 2 contain the results of instances belonging to class 1, tables 3 and 4 show
the results of instances belonging to class 2, and Table 5 shows the results of
instances belonging to class 3. Each table consists of several multicolumns.
One multi-column corresponds to the instances generated from one probability
distribution, and contains the results for the MIP, Algorithms 2 and 3. For each
of these we show: the computing time in seconds (time), the solution value that
was found (Sol), the coordinate in which this solution value is attained (argk)
and for Algorithms 2 and 3 we show the gap compared to the solution found by
the MIP.

Recall that each entry is the average over 10 instances. Also note that we
interrupted Cplex after one hour of computing time; in that case we report the
number of instances (out of 10) that were solved within 3600 seconds and the
data of the best found solution. Hence it is possible that there are instances
for which the MIP did not find the best possible solution. There is exactly one
instance out of 960 for which Algorithm 2 found a better solution than MIP
(Algorithm 3 never did), namely for Class 1, U(0,1000), n = 20, d = 300 the
sixth instance.

Let us first consider the MIP. All instances with n = 10 are solved fast; there
is, however, a clear dependence on d. Instances with n = 10 and d = 300 take
on average 60 seconds to solve. For n = 20, instances with d = 100 are often not
solved to optimality by the MIP, and, except for instances of Class 2, instances
with n = 20 and d = 300 cannot be solved within 3600 seconds.

Of course, the approximation algorithms fare better than the MIP in terms
of computation times: each of them always finds a solution within 3600 seconds.
It is also clear that (except for the smallest instances), Algorithm 3 is an order
of magnitude faster than Algorithm 2. This speedup becomes more pronounced
as the instance becomes larger. For the largest instances, Algorithm 3 still finds
a feasible solution within, approximately, 80 seconds, while Algorithm 2 may
need more than 2000 seconds.

When we turn to the quality of the solutions found by the approximation
algorithms, it is clear that these solutions are much better than the worst-case
bound may suggest. Algorithm 2 produces, on average, better solutions than
Algorithm 3: for the instances generated by a uniform distribution, Algorithm 2
(Algorithm 3) finds solution within 7% (12%) of the optimum value, while Al-
gorithm 2 (Algorithm 3) finds solution within 14% (21%) of the optimum value
for instances generated by the normal distribution. Here, it is also clear that,
for both algorithms, performance degrades mildly with n, and, perhaps surpri-
singly, performance for instances with either d = 2 or d = 300 is better than for
instances with d = 100.

One interesting observation concerns instances of Class 2 (tables 3 and 4):
these are much easier than the instances of the other classes. Not only are the
running times small, even the instances with n = 20 and d = 300 are solved
within 1000 seconds by the MIP (an exception is the running time of Algo-
rithm 2 for U(0, 100), n = 20, d = 300), also the quality of the solutions of the
approximation algorithms is remarkably good: in particular, Algorithm 2 finds
for the instances with mean 50 (Table 3) solutions within 1% of the optimum;

26

for instances with mean 500 (see Table 4) this percentage becomes 5%. A pos-
sible explanation for this phenomenon can be found in the component for which
the maximum imbalance is attained (argk): due to the way these instances were
generated, it is not surprising to see that this value approaches d. The same
phenomenon, to a lesser extent, is present in the instances of Class 3 (Table 5).

We summarize our findings as follows:

• Solving large instances (n > 20, d > 100) of the robust balanced assign-
ment problem exactly, using a mixed integer programming formulation is
a challenge.

• The approximation algorithms offer a trade-off in terms of quality of so-
lution found, and running time needed; in particular, Algorithm 3 finds
quickly solutions of reasonable quality.

• Structure present in the instances helps, both in terms of quality and
running time, as witnessed by the instances of Class 2.

Table 1: Results Class 1, distributions with mean 50
U(0,100) N(50,1) N(50,10)

MIP Alg2 Alg3 MIP Alg2 Alg3 MIP Alg2 Alg3
n10 d2 time 0.08 0.56 0.59 0.10 0.40 0.56 0.09 0.45 0.54

Sol 38.40 38.70 39.40 1.03 1.04 1.10 11.03 11.05 11.61
argk 1.65 1.55 1.45 1.60 1.40 1.70 1.70 1.70 1.60
gap(%) 0.78 2.60 0.26 6.48 0.12 5.22

n10 d100 time 6.58 11.12 1.03 8.98 9.66 1.30 8.97 11.15 1.31
Sol 94.10 95.30 96.70 3.93 4.05 4.32 39.69 41.61 43.28
argk 41.43 57.67 46.15 48.60 60.40 55.30 39.00 51.10 54.00
gap(%) 1.28 2.76 3.09 9.87 4.83 9.03

n10 d300 time 49.12 24.19 1.93 73.34 26.72 2.65 59.81 24.77 2.66
Sol 97.40 98.00 98.80 4.48 4.68 4.90 44.90 46.33 48.42
argk 212.98 157.12 148.72 173.40 102.80 89.60 183.50 172.40 151.70
gap(%) 0.62 1.44 4.38 9.31 3.18 7.82

n20 d2 time 0.34 16.69 10.74 0.46 15.02 2.69 0.49 15.02 4.87
Sol 31.40 32.10 33.70 0.94 0.96 1.01 9.03 9.22 9.77
argk 1.30 1.35 1.45 1.30 1.50 1.70 1.70 1.70 1.40
gap(%) 2.23 7.32 2.09 7.64 2.12 8.29

n20 d100 time *(9) 793.39 13.21 *(2) 876.10 21.44 *(8) 873.56 21.95
Sol 95.00 98.00 98.70 4.00 4.43 4.70 40.38 44.59 47.04
argk 52.36 46.11 52.07 51.90 61.70 62.10 27.50 52.70 48.20
gap(%) 3.16 3.89 10.61 17.36 10.44 16.49

n20 d300 time *(0) 1623.0 26.53 *(0) 2088.4 50.85 *(0) 2091.7 51.49
Sol 98.30 99.00 99.80 4.67 5.05 5.17 46.80 50.17 51.62
argk 142.55 143.78 153.02 180.10 174.10 178.10 147.60 129.90 158.70
gap(%) 0.71 1.53 8.20 10.73 7.20 10.31

*number of solved instances within 3600 seconds.

7 Conclusion

We introduce the notion of balanced optimization problems with vector costs,
and show its equivalence to robust balanced optimization problems. We propose
a framework that generalizes the one introduced by Martello et al. (1984). We
provide a polynomial time algorithm when the dimension d is fixed, and we
describe two 2-approximation algorithms for each problem in our framework.
Further, we give results for a number of problems in the framework: we settle

27

Table 2: Results Class 1, distributions with mean 500
U(0,1000) N(500,1) N(500,10)

MIP Alg2 Alg3 MIP Alg2 Alg3 MIP Alg2 Alg3
n10 d2 time 0.07 0.53 0.59 0.11 0.46 0.65 0.10 0.52 0.66

Sol 393.70 395.20 409.90 1.06 1.07 1.10 11.35 11.42 11.83
argk 1.40 1.30 1.40 1.40 1.50 1.40 1.90 1.70 1.40
gap(%) 0.38 4.11 1.04 3.97 0.59 4.16

n10 d100 time 12.01 11.07 1.39 8.70 11.09 1.63 8.32 11.38 1.85
Sol 936.20 947.60 959.30 3.96 4.13 4.32 39.69 41.42 43.50
argk 66.15 52.23 61.70 60.00 57.30 40.10 51.60 58.30 43.30
gap(%) 1.22 2.47 4.31 9.08 4.36 9.60

n10 d300 time 66.50 24.61 2.80 69.12 25.57 3.03 69.27 26.11 3.59
Sol 964.60 972.40 979.20 4.47 4.65 4.84 45.25 47.06 48.44
argk 153.41 191.95 156.43 149.00 149.40 112.20 134.30 196.90 186.40
gap(%) 0.81 1.51 3.98 8.16 4.00 7.05

n20 d2 time 0.40 11.81 7.73 0.51 11.25 3.09 0.46 10.23 5.16
Sol 312.30 315.10 343.30 0.91 0.93 0.99 8.72 8.84 9.20
argk 1.45 1.55 1.50 1.50 1.40 1.40 1.40 1.40 1.30
gap(%) 0.90 9.93 2.80 9.63 1.33 5.46

n20 d100 time *(2) 847.48 21.74 *(8) 881.41 29.10 *(9) 884.40 29.71
Sol 942.00 967.90 977.40 4.02 4.47 4.71 40.10 44.68 46.74
argk 46.03 56.60 42.80 69.20 35.90 58.70 46.80 47.00 56.10
gap(%) 2.75 3.76 11.22 17.40 11.41 16.56

n20 d300 time *(0) 1885.3 48.09 *(0) 2079.4 73.12 *(0) 2062.7 77.28
Sol 978.10 984.30 988.90 4.69 5.02 5.26 46.86 50.44 52.14
argk 160.88 164.45 175.72 124.60 163.70 153.60 181.60 97.50 142.40
gap(%) 0.63 1.10 7.06 12.00 7.64 11.28

*number of solved instances within 3600 seconds.

Table 3: Results Class 2, distributions with mean 50
U(0,100) N(50,1) N(50,10)

MIP Alg2 Alg3 MIP Alg2 Alg3 MIP Alg2 Alg3
n10 d2 time 0.09 0.36 0.59 0.10 0.34 0.55 0.12 0.44 0.57

Sol 29.90 30.20 30.40 0.94 0.94 0.97 9.63 9.74 10.00
argk 1.40 1.30 1.40 1.60 1.60 1.40 1.20 1.50 1.40
gap(%) 1.00 1.67 0.05 3.12 1.12 3.82

n10 d100 time 2.39 5.29 0.95 5.89 2.82 1.34 6.63 2.77 1.31
Sol 98.50 98.50 98.50 4.60 4.60 4.65 46.24 46.25 46.62
argk 97.75 98.25 98.43 98.90 98.80 98.90 98.50 98.60 98.50
gap(%) 0.00 0.00 0.00 1.24 0.02 0.81

n10 d300 time 10.31 39.39 1.17 49.03 7.71 2.70 44.37 8.45 2.73
Sol 100.00 100.00 100.00 5.40 5.41 5.43 54.35 54.39 54.70
argk 296.13 296.61 296.61 298.50 298.70 298.80 298.80 298.80 298.70
gap(%) 0.00 0.00 0.08 0.61 0.06 0.64

n20 d2 time 0.29 12.67 7.39 0.44 9.38 7.13 0.41 7.90 7.03
Sol 22.80 23.00 24.10 0.71 0.72 0.76 7.10 7.18 7.77
argk 1.45 1.55 1.75 1.30 1.30 1.50 1.70 1.60 1.60
gap(%) 0.88 5.70 0.95 7.78 1.05 9.41

n20 d100 time 90.36 147.11 12.63 146.10 108.74 22.56 145.66 106.51 22.34
Sol 98.00 98.00 98.00 4.39 4.39 4.52 44.15 44.21 45.23
argk 97.82 97.51 97.48 98.30 98.40 98.30 98.40 98.40 98.00
gap(%) 0.00 0.00 0.14 3.04 0.14 2.45

n20 d300 time 84.71 2176.28 17.02 880.78 325.49 53.04 660.09 320.78 53.00
Sol 100.00 100.00 100.00 5.22 5.22 5.33 51.98 52.02 53.12
argk 295.94 295.99 295.99 298.30 298.30 298.50 298.20 298.10 298.30
gap(%) 0.00 0.00 0.09 2.10 0.09 2.19

28

Table 4: Results Class 2, distributions with mean 500
U(0,1000) N(500,1) N(500,10)

MIP Alg2 Alg3 MIP Alg2 Alg3 MIP Alg2 Alg3
n10 d2 time 0.07 0.30 0.61 0.10 0.36 0.58 0.12 0.39 0.54

Sol 274.20 275.10 279.20 0.86 0.89 0.91 9.49 9.52 9.81
argk 1.50 1.60 1.40 1.80 1.60 1.50 1.40 1.40 1.30
gap(%) 0.33 1.82 2.78 5.72 0.29 3.35

n10 d100 time 4.57 2.15 1.32 4.54 2.48 1.35 6.45 2.94 1.30
Sol 977.10 977.10 978.20 4.55 4.55 4.58 46.68 46.77 47.38
argk 99.05 98.75 98.75 98.50 98.50 98.40 98.80 98.80 98.80
gap(%) 0.00 0.11 0.00 0.78 0.20 1.51

n10 d300 time 34.46 6.49 2.39 39.62 7.78 2.77 46.00 8.99 2.69
Sol 993.00 993.00 993.10 5.37 5.37 5.40 55.07 55.11 55.54
argk 298.55 298.50 298.50 298.50 298.60 298.40 298.90 298.90 298.90
gap(%) 0.00 0.01 0.01 0.48 0.07 0.84

n20 d2 time 0.40 10.06 7.67 0.45 9.41 6.93 0.47 8.82 7.09
Sol 233.60 236.60 253.90 0.71 0.74 0.76 6.95 7.09 7.27
argk 1.40 1.30 1.50 1.40 1.40 1.50 1.50 1.70 1.40
gap(%) 1.28 8.69 3.82 6.86 2.05 4.73

n20 d100 time 181.51 94.59 19.21 153.03 105.61 21.98 116.54 100.81 22.30
Sol 972.40 972.40 973.50 4.39 4.40 4.53 43.78 43.79 45.04
argk 98.25 98.30 97.95 98.20 98.20 97.80 98.50 98.50 98.20
gap(%) 0.00 0.11 0.02 3.04 0.02 2.87

n20 d300 time 855.57 289.24 37.43 731.45 309.28 52.92 630.81 331.84 52.69
Sol 990.90 991.00 991.40 5.19 5.20 5.31 52.29 52.32 53.13
argk 297.83 298.15 297.80 298.30 298.30 297.90 298.40 298.40 298.10
gap(%) 0.01 0.05 0.03 2.20 0.06 1.60

Table 5: Results Class 3
U(0,100) U(0,1000) N(50,.) N(500,.)

MIP Alg2 Alg3 MIP Alg2 Alg3 MIP Alg2 Alg3 MIP Alg2 Alg3
n10 d2 time 0.09 0.48 0.60 0.09 0.52 0.60 0.11 0.41 0.66 0.10 0.48 0.70

Sol 27.30 27.30 28.60 278.30 279.80 289.20 12.72 12.87 13.62 138.40 142.49 144.90
argk 1.50 1.65 1.60 1.70 1.70 1.50 1.30 1.30 1.30 1.60 1.60 1.70
gap(%) 0.0 4.76 0.54 3.92 1.17 7.09 2.96 4.69

n10 d100 time 5.76 7.99 1.08 6.61 7.37 1.35 6.95 8.48 1.98 6.54 8.70 1.90
Sol 76.20 78.50 80.40 761.80 774.20 803.20 47.84 49.20 52.93 477.34 496.99 518.87
argk 86.68 91.95 92.62 87.80 88.60 94.20 86.60 91.90 79.20 83.80 83.90 82.30
gap(%) 3.02 5.51 1.63 5.43 2.84 10.63 4.12 8.70

n10 d300 time 40.18 17.04 1.94 52.17 17.93 2.61 56.70 23.29 4.41 62.77 21.77 3.72
Sol 83.40 85.00 87.90 837.60 848.80 872.40 57.39 59.69 63.26 565.64 585.05 616.51
argk 282.71 281.28 286.37 278.95 281.80 287.80 271.50 282.70 265.50 264.50 266.00 270.60
gap(%) 1.92 5.40 1.34 4.15 4.00 10.22 3.43 8.99

n20 d2 time 0.35 16.48 7.11 0.40 12.20 7.46 0.43 10.96 9.50 0.47 9.52 9.25
Sol 22.20 22.30 24.00 222.00 223.70 232.80 10.88 11.01 11.97 104.06 105.67 110.60
argk 1.60 1.55 1.55 1.50 1.55 1.55 1.60 1.60 1.70 1.80 1.40 1.50
gap(%) 0.48 8.11 0.77 4.86 1.13 10.00 1.55 6.28

n20 d100 time 1155.9 571.98 14.01 906.52 599.53 21.46 741.16 731.24 30.97 824.02 737.70 29.97
Sol 76.10 80.90 85.00 758.30 801.30 835.30 47.50 53.30 57.27 475.08 536.97 570.32
argk 90.37 89.63 94.17 87.45 90.60 92.00 82.80 79.60 90.10 88.10 87.40 89.50
gap(%) 6.31 11.70 5.67 10.15 12.21 20.58 13.03 20.05

n20 d300 time *(0) 1347.4 29.57 *(0) 1521.4 48.55 *(1) 1895.6 70.99 *(0) 1766.8 71.32
Sol 85.40 88.20 90.60 850.50 881.00 903.80 58.37 64.09 67.46 588.40 641.77 683.70
argk 282.12 287.64 289.94 279.48 285.05 287.35 275.20 267.50 267.40 276.10 269.90 272.40
gap(%) 3.28 6.09 3.59 6.27 9.81 15.99 9.07 16.2

*number of solved instances within 3600 seconds.

29

their complexity, and for many of them the existence of a polynomial time (2−
ε)-approximation algorithm implies P=NP. Finally, we provide computational
evidence for the quality of the approximation algorithms applied to the robust
balanced assignment problem.

Acknowledgements We thank Marc Goerigk for interesting discussions on the
relation between balanced optimization problems with vector costs and robust
optimization. We are also indebted to the reviewers whose remarks led to a
significant speedup of some of the algorithms in this work.

References

Ahuja, R. (1997), ‘The balanced linear programming problem’, European Jour-
nal of Operational Research 101(1), 29–38.

Aissi, H., Bazgan, C. and Vanderpooten, D. (2005), ‘Complexity of the min–
max and min–max regret assignment problems’, Operations Research Letters
33(6), 634–640.

Aissi, H., Bazgan, C. and Vanderpooten, D. (2009), ‘Min–max and min–max
regret versions of combinatorial optimization problems: A survey’, European
Journal of Operational Research 197(2), 427 – 438.

Ben-Tal, A., Boyd, S. and Nemirovski, A. (2006), ‘Extending scope of robust op-
timization: Comprehensive robust counterparts of uncertain problems’, Mat-
hematical Programming 107(1-2), 63–89.

Ben-Tal, A., El Ghaoui, L. and Nemirovski, A. (2009), Robust optimization,
Princeton University Press.

Ben-Tal, A., Golany, B., Nemirovski, A. and Vial, J.-P. (2005), ‘Retailer-supplier
flexible commitments contracts: A robust optimization approach’, Manufac-
turing & Service Operations Management 7(3), 248–271.

Ben-Tal, A. and Nemirovski, A. (1998), ‘Robust convex optimization’, Mathe-
matics of Operations Research 23(4), 769–805.

Ben-Tal, A. and Nemirovski, A. (1999), ‘Robust solutions of uncertain linear
programs’, Operations Research Letters 25(1), 1–13.

Ben-Tal, A. and Nemirovski, A. (2000), ‘Robust solutions of linear program-
ming problems contaminated with uncertain data’, Mathematical Program-
ming 88(3), 411–424.

Bertsimas, D., Brown, D. B. and Caramanis, C. (2011), ‘Theory and applicati-
ons of robust optimization’, SIAM Review 53(3), 464 – 501.

Bertsimas, D. and Sim, M. (2003), ‘Robust discrete optimization and network
flows’, Mathematical Programming 98(1), 49 – 71.

Camerini, P., Maffioli, F., Martello, S. and Toth, P. (1986), ‘Most and least
uniform spanning trees’, Discrete Applied Mathematics 15(2-3), 181 – 197.

30

Cappanera, P. and Scutellà, M. (2005), ‘Balanced paths in acyclic networks:
Tractable cases and related approaches’, Networks 45(2), 104–111.

Deineko, V. and Woeginger, G. (2006), ‘On the robust assignment problem
under a fixed number of cost scenarios’, Operations Research Letters 34, 175
– 179.

Dokka, T., Crama, Y. and Spieksma, F. (2014), ‘Multi-dimensional vector as-
signment problems’, Discrete Optimization 14, 111 – 125.

Dunning, I., Huchette, J. and Lubin, M. (2017), ‘Jump: A modeling language
for mathematical optimization’, SIAM Review 59(2), 295–320.

Gabrel, V., Murat, C. and Thiele, A. (2014), ‘Recent advances in robust optimi-
zation: An overview’, European Journal of Operational Research 235(3), 471
– 483.

Galil, Z. and Schieber, B. (1988), ‘On finding most uniform spanning trees’,
Discrete Applied Mathematics 20(2), 173 – 175.

Gorissen, B. L., Yanıkoğlu, İ. and den Hertog, D. (2015), ‘A practical guide to
robust optimization’, OMEGA 53, 124–137.

Kamura, Y. and Nakamori, M. (2014), Modified balanced assignment problem in
vector case: System construction problem, in ‘2014 International Conference
on Computational Science and Computational Intelligence (CSCI)’, Vol. 2,
IEEE, pp. 52–56.

Katoh, N. and Iwano, K. (1994), ‘Efficient algorithms for minimum range cut
problems’, Networks 24(7), 395–407.

Kinable, J., Smeulders, B., Delcour, E. and Spieksma, F. (2017), ‘Exact algo-
rithms for the equitable traveling salesman problem’, European Journal of
Operational Research 261(2), 475–485.

Koster, A. M., Kutschka, M. and Raack, C. (2013), ‘Robust network design:
Formulations, valid inequalities, and computations’, Networks 61(2), 128–
149.

Kouvelis, P. and Yu, G. (1997), Robust discrete optimization and its applications,
Kluwer Academic Publishers, Norwell, Massachusets.

Larusic, J. and Punnen, A. (2011), ‘The balanced traveling salesman problem’,
Computers & Operations Research 38(5), 868–875.

Lee, C., Lee, K., Park, K. and Park, S. (2012), ‘Branch-and-price-and-cut ap-
proach to the robust network design problem without flow bifurcations’, Ope-
rations Research 60(3), 604–610.

Martello, S., Pulleyblank, W., Toth, P. and De Werra, D. (1984), ‘Balanced
optimization problems’, Operations Research Letters 3(5), 275–278.

Poss, M. (2014), ‘Robust combinatorial optimization with variable cost uncer-
tainty’, European Journal of Operational Research 237, 836–845.

31

Punnen, A. and Nair, K. (1999), ‘Constrained balanced optimization problems’,
Computers & Mathematics with Applications 37(9), 157–163.

Turner, L. (2012), ‘Variants of shortest path problems’, Algorithmic Operations
Research 6(2), 91–104.

Wiesemann, W., Kuhn, D. and Sim, M. (2014), ‘Distributionally robust convex
optimization’, Operations Research 62(6), 1358–1376.

32

FACULTY OF ECONOMICS AND BUSINESS
Naamsestraat 69 bus 3500

3000 LEUVEN, BELGIË
tel. + 32 16 32 66 12
fax + 32 16 32 67 91

info@econ.kuleuven.be
www.econ.kuleuven.be

	KBI_1802
	KBI-RobusedBalancedOptimization
	Introduction
	Related literature
	Our Results

	The Framework
	Algorithms for Robust Balanced Optimization Problems
	Fixed Dimension
	Approximation Algorithms

	The Complexity of Robust Balanced Optimization Problems
	Robust Balanced q-Uniform Set Systems
	Robust Balanced Linear Assignment
	Robust Balanced Spanning Tree
	Robust Balanced s,t-Cut
	Robust Balanced Connecting Path
	Robust Balanced Horn-SAT
	Robust Balanced 2SAT

	A Special Case of the Robust Balanced Assignment Problem: Sum Costs
	Computational Experiments for the Robust Balanced Assignment Problem
	MIP Formulation
	Construction of Data-sets
	Details of Implementation
	Results

	Conclusion

