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Abstract—One of the major problems faced in the urban
environment is the efficient public transportation of people
and goods. Clients make a call to the company to request
a transportation service for people or parcels. A good
transport scheduling will bring better profits to companies
while satisfying people demands and reducing negative social
impact such as traffic jam and pollution. We extend the
work in [10] on a people and parcel share-a-ride taxis
transportation model and propose algorithms to schedule
taxis that exploit prediction on requests in an online scenario.

1. Introduction

The integration of passenger and parcel transportation
has potentially large economical benefits. Such an integra-
tion reduces, for example, the impact of congestion and air
pollution (Lindholm and Behrends [1]). The annual cost of
congestion in the US in terms of lost hours and wasted fuel
was estimated to be $124 billion in 2013 [2]. Private auto-
mobile usage is the dominant transportation mode producing
carbon dioxide emissions [3]. Effective usage of empty car
seats by ride-sharing may represent an important opportunity
to increase occupancy rates, hence substantially increase the
efficiency of urban transportation systems, potentially reduc-
ing the afore mentioned problems. Most ride-sharing models
are based on the well-known Dial-a-Ride Problem [6]. A
Dial-a-Ride Problem (DARP) consists of designing vehicle
routes and schedules for a number of users who request
pickup and drop-off points. The description of the dynamic
Shared-a-Ride Problem (SARP) was proposed recently by Li
et al. [10], [12] explaining the conceptual and mathematical
models in which people and parcels are served by the same
network. In addition, two heuristic algorithms [11], [12] are
proposed to solve this problem.

In this paper, we propose a share-a-ride taxi transporta-
tion model in which people and parcels can share a ride.

Our model alleviates the deficiencies of the model in [10]
by adding some real-world factors. The main contributions
of our new transportation model are as follows:

• We extend the model in [10] by allowing taxi to
travel and stop at a parking after delivering peo-
ple/parcels instead of stopping indefinitely at the last
delivery location. Thus, a set of capacitated parking
places is added in our model.

• In the dynamic setting, Li et al. assume that all
parcel requests are known beforehand. In our model,
the requests of parcels are also dynamic/on-demand.
Moreover, passengers often feel uncomfortable if
they have to go to pick and drop-off some parcels
which are not theirs. Hence, no parcel is picked up
by a taxi that already contains a customer.

• An algorithm for predicting locations of the future
requests is proposed.

• We propose a new anticipatory algorithm for
scheduling taxis exploiting the predicted future re-
quests. The algorithm is experimented on a data
set of real taxis in San Francisco and shown to be
competitive with the one in [10].

The paper is organized as follows. In section 2, the new
model for the static people-parcel share-a-ride (PPSARP)
problem is given. Section 3 details our proposed method for
predicting the location of future requests. Our new antici-
patory method for solving the dynamic version of PPSARP
is described in section 4. The experiments and comparisons
are given in section 5. Section 6 concludes the paper.

2. Static PPSARP problem

The static (i.e all requests are known beforehand) PP-
SARP problem is formulated as follows.

Input.
• A sequence of time points of the planning

tb, tb + 1, . . . , te (e.g. accurate to 1 second)



• n people requests r1, . . . , rn and m parcel requests
rn+1, . . . , rn+m, request ri has pickup and drop-off
points pi, di (∀i = 1, . . . , n+m)

• There are K taxis 1, . . . ,K, each taxi k starts and
terminates at points sk and tk which refer to a
physical depot (∀k = 1, . . . ,K).

• Denote P = {p1, d1, . . . , pn+m, dn+m}, S =
{s1, . . . , sK}, T = {t1, . . . , tK}

• d(p): service duration at point p, ∀p ∈ P
• t(p) and t(p): earliest and latest allowed arrival time

at point p,∀p ∈ P
• There are Q physical parkings 1, . . . , Q, parking q

has capacity c(q). To ease the formulation in which
each route visits each point at most once, we in-
troduce logical points associated with each physical
parking: LP(q) is the set of logical points associated
with parking q (each point of LP(q) refers to the
physical parking (location) q).

• Denote PK the set LP(1) ∪ · · · ∪ LP(Q), and P =
P ∪ S ∪ T ∪ PK

• d(p1, p2): the distance from p1 to p2,∀p1, p2 ∈ P
• t(p1, p2): travel time from p1 to p2,∀p1, p2 ∈ P:

t(p1, p2) = d(p1,p2)
γ , γ is the average speed

Variables.

• x(p): the successor of point p in the routes, ∀v ∈
P \ T

• r(p): the index of taxi (route) containing point
p,∀p ∈ P

• o(p): the order of point p in the route r(p),∀p ∈ P
• l(p): accumulated distance of the route from the start

point of route r(p) to p,∀p ∈ P
• ta(p), td(p): arrival and departure time of taxi at

point p,∀p ∈ P
• b(qi, t) = 1 if there is a taxi at parking qi at time

point t, and b(qi, t) = 0, ∀qi ∈ PK, tb ≤ t ≤ te
otherwise

Constraints.

• (1) x(p) 6= p, ∀p ∈ P \ T
• (2) l(x(p)) = l(p) + d(p, x(p)),∀p ∈ P \ T
• (3) r(p) = r(x(p)),∀p ∈ P \ T
• (4) o(x(p)) = o(p) + 1,∀p ∈ P \ T
• (5) r(pi) = r(di),∀i = 1, . . . , n+m
• (6) o(pi) < o(di),∀i = 1, . . . , n+m
• (7) o(pi) = o(di)− 1,∀i = 1, . . . , n
• (8) ta(x(p)) = td(p) + t(p, x(p)),∀p ∈ P
• (9) td(p) = ta(p) + d(p),∀p ∈ P
• (10) td(p) > ta(p),∀p ∈ PK
• (11) t(p) ≤ ta(p) ∧ ta(p) ≤ t(p)
• (12) b(qi, t) = ta(qi) ≤ t∧ t ≤ td(qi),∀qi ∈ PK, t ∈
{tb, . . . , te}

• (13)
∑
qi∈LP(q) b(qi, t) ≤ c(q),∀q = 1, . . . , Q, t ∈

{tb, . . . , te}

Constraint (1) specifies that the route must go from one
point to another point. Constraint (2) relates the accumulated
distance between two subsequent points on a route. This

constraint also eliminates the existence of subtours. Con-
straint (3) specifies that a point and its successor must be
on the same route. Constraint (4) relates the indices of two
successive points on a route. Constraint (5) states that the
pickup and delivery points must be con the same route and
constraint (6) specifies that the delivery point of a request
must be after the pickup point of that request. Constraint
(7) states that the delivery point of a people request must be
right-after the pickup point. It means that the people request
must be delivery in a direct way without interruption. In
the fashion, passengers do not feel any inconvenience (they
travel like in traditional taxis). Constraints (8)–(10) relates
the arrival and departure times from each point of the routes.
Constraints (12)–(13) present the constraint on the capacity
of parkings.

Objective. The objective of the problem is to maxi-
mize the total benefit. In our model, the passenger requests
are served in a direct way as in traditional taxis (no in-
terruption during the passenger delivery), thus there are no
discounts for passengers. The total benefit is equal to the
total revenue minus the fuel cost (the fuel cost is propor-
tional to the total travel distance). Hence, the objective to
be minimized is the total travel distance: f =

∑K
k=1 l(tk)

3. Request Prediction

We propose a predictive algorithm to determine the best
location to park a taxi when no immediate requests need
to be handled. It estimates the time and location of new
requests based on past information and can also be used to
learn distributions of parcel and people requests.

First, the city is partitioned into a set of n areas -
R = {r1, . . . , rn}. Each 24-hour is binned into P =
{p1, . . . , pm} of m time periods with equal lengths. Let
Z

(d)
ij be the random variable representing the number of

requests coming from area i ∈ R during period pj in day d.
The training data for the request distribution is the observed
values of Z(d)

ij for all periods and areas in a number of past
days.

Since each Z
(d)
ij is discrete and non-negative, it is

assumed that it follows a Poisson distribution, which is
common for count data [13]. Therefore, the probability of
observing k requests is given by:

P (Z
(d)
ij = k;λ) =

e−λλk

k!
(1)

where λ is the parameter (i.e. rate) of the distribution.
To learn the unknown rate of a Poisson distribution from

past observations, we use the maximum likelihood principle
which states that the optimal parameter for a distribution is
the one that maximizes the likelihood of observed data. For
a Poisson variable Z with past observations z1, . . . , zn, the
maximum likelihood estimate for the rates is:

λ∗ =

∑n
i=1 zi
n

(2)



To simplify the problem, we can assume that the rates
only depend on period and area, and hence are fixed over
all days. The optimal rates can be easily computed by:

λ∗ij =

∑D
d=1 Z

(d)
ij

D
(3)

To capture the variations of traffic in different days, an
extra dimension is added to the above model to differentiate
between the seven days of a week. Denote δ(d) as the day
of week for day d. In this model we have a rate λwij for each
triplet of area i, period j, and day of week w. Again, the
optimal rates can be computed as:

λ
∗(w)
ij =

∑
d∈Dw

Z
(d)
ij

|Dw|
(4)

where Dw = {d ∈ {1, . . . , D}|δ(d) = w}.

4. Online PPSARP problem

In online scenarios, information on requests is revealed
online during the plan execution. A control center man-
ages status and locations of taxis, receiving information
on incoming requests and making decisions. Algorithm 1
details the framework for online execution. The time horizon
T contains discrete time points (e.g, 1 second). Line 2
initializes the prediction information in which Pf is the set
of predicted request pickup points in the f th time frame
(∀f = 0, . . . , f ). These points, called popular points, are
taken randomly based on the information from the prediction
method in Section 3. Each day is divided into a sequence of
time frames of equal length (e.g, every 15 minutes). Line 3
updates the queues Q of people and parcel requests arriving
within [T, T + ∆T ]. Line 6 updates status of taxis Lines 7–
13 assign an appropriate taxi for each people/parcel request
in Q and update the itinerary of the taxi. Whenever a request
is received, the algorithm will insert it into the itinerary of a
selected taxi and change this itinerary (i.e., re-order request
points and exchange sub-itineraries with other itineraries),
and finally, use prediction information about requests to
direct the taxi to a chosen parking place.

4.1. Itinerary representation

A schedule sk of a taxi k is represented by a sequence
〈vk0 , rk1 , rk2 , . . . , rklk , pk〉 in which vk0 is the current point,
rk1 , . . . , r

k
lk

are request points (pickup or delivery) and pk
is a parking. A service plan of a taxi k is an itinerary
Ik which consists of a sequence of taxi traversal points
including the points of sk and the road points between any
two consecutive points in sk. Ik also contains information
about arrival time, departure time and action at each point
of the sequence. In this paper, we consider the problem
of large-size realistic road networks. The computation of
shortest paths between two points takes time. Hence, in our
algorithm, we use approximation distances (e.g, the manhat-
tan distance) for deciding the schedule (i.e., the sequence of

1 T ← tb;
2 Initialize Pf ,∀f = 0, f ;
3 Q← receiveRequests(T );
4 T ← T + ∆T ;
5 while T < maxSimulationTime do
6 Update status of taxis;
7 foreach request r ∈ Q do
8 〈k, j〉 ← FindNearestAvailableTaxi(r, T );
9 if 〈k, j〉 6=⊥ then

10 InsertRequest(r, k, j, P );
11 ExchangeImprovement();
12 end
13 end
14 Q← receiveRequests(T );
15 T ← T + ∆T ;
16 end

Algorithm 1: Framework for Online Plan Execution

request points), but the itinerary employs shortest path and
real distance on the road network. We denote:

• l(Ik): the length (number of points) of itinerary Ik
• p(Ik, i): the ith point of the itinerary Ik
• prefix(Ik, i): First i points of Ik
• suffix(Ik, i): Last l(Ik)− i+ 1 points of Ik
• d(u, v): the length of the shortest path from u to v

in the road network
• t(u, v): the minimum travel time along the shortest

path from u to v.
• idx(Ik, p): index of point p in itinerary Ik
• pickup(r): the pickup point of request r
• delivery(r): the delivery point of request r
• pk(Ik): the parking of taxi k.
• For each index i in Ik: ta(Ik, i) and td(Ik, i) is

arrival and departure time of taxi at p(Ik, i)

4.2. Scheduled point indices

When an a request arrives at each time point, the system
performs a decision to reschedule itineraries of taxis. The
decision takes a time ∆. After ∆, the status of a taxi
(e.g., location) changes. When rescheduling, there exists a
minimum index j of Ik, called the scheduled point index,
such that prefix(Ik, j) cannot be changed. In the addition,
if there are people on board, then they must be delivered
before picking up other people as they do not want to share
a ride.

4.3. Schedule Re-optimization

A schedule of a taxi k might be re-optimized by re-
ordering some points of sk. We denote opt(v0, 〈x1, . . . , xk〉)
the function that returns the permutation x∗1, x

∗
2, . . . , x

∗
k

of x1, . . . , xk (in which x1, . . . , xk are request points
and v0 is a road point or a request point) such that
d′(〈v0, x∗1, x∗2, . . . , x∗k〉) is minimal w.r.t. the problem con-
straints. It returns ⊥ if the constraints are violated.



4.4. Itinerary Establishment

With a schedule sk, we denote itinerary(sk) as the
function that computes and returns Ik from sk containing
full information: sequence of points, arrival and departure
times at each point. The path between two consecutive
points of sk is the shortest path on the road network. The
arrival and departure times are computed using the speed
of taxis. The service duration is assumed to be 1 minute
(pickup and delivery).

4.5. Algorithms

We describe in this section the details of algorithms for
making decision of schedule of taxis.

When a new request appears, we find the nearest taxi and
the maximal index of the taxi’s itinerary that can pick up
the new request r. Our algorithm find the nearest point of
suffix(Ik, j) of taxi k which can pick up within the time
window of r (where, j is the scheduled point index of
taxi k at this time point). This is different from what the
available taxis in [11] are defined. Our algorithm lead to a
diversification of the search process.

1 vk0 ← p(Ik, j);
2 I1k ← prefix(Ik, j);
3 i← minimal index such that idx(Ik, r

k
i ) > j;

4 seq← opt(vk0 , 〈rki , . . . , rklk , pickup(r), delivery(r)〉);
5 if seq =⊥ then
6 return Ik;
7 else
8 I2k ← itinerary(seq);
9 pl ← p(I2k , l(I

2
k));

10 (p, pk)←
FindAPopularPointAndParking(pl, td(pl), P );

11 if p 6=⊥ then
12 I3k ← itinerary(pl, p, pk);
13 else
14 I3k ← itinerary(pl, pk);
15 end
16 return I1k :: I2k :: I3k ;
17 end

Algorithm 2: InsertRequest(r, k, j, P )

Algorithm 2 inserts a request r into the itinerary of
taxi k with scheduled point index j. The new itinerary of
taxi k consist of the prefix, suffix, a near popular point
and a new parking. Lines 3–4 of Algorithm 2 compute the
optimized sequence consisting of the suffix part and new
serving points. If no constraint satisfying permutation is
found, the new request is rejected. Lines 10 finds a near
popular point p and the parking pk which is not too far
from p, has the highest score. The so-called near point has
a short unload travel distance (see Algorithm 3). However,
we do not assign a popular point and a neighbourhood of
this point to two taxis. Therefore, either the popular point

and nearest parking or only nearest parking are added into
taxi’s itinerary.

The score of a parking pk at the period f is:

score(f, pk) =
nDT (f, pk)

nPP (f + 1, pk)

where:

• nDT (f, pk): the number of taxis which have de-
parted from the parking up to the current period f .

• nPP (f+1, pk): the number of popular points which
are near the parking from period 0 to f + 1 (the
distance is less than θ2).

The detailed computation is shown in Algorithm 3.
Lines 2–3 in Algoritm 3 find the nearest parking pk∗ and

1 f ← next frame of the frame containing time point t;
2 pk∗ ← argMinpk∈PK(d(p, pk));
3 dk∗ ← d(p, pk∗);
4 pk∗ ←

argMaxpk∈PK(score(pk)|d(pk, p) ≤ θ1 ∗ dk∗);
5 dk∗ ← d(p, pk∗);
6 p∗ ← argMinpp∈Pf

(d(p, pp) + d(pp, pk∗));
7 if d(p, p∗) + d(p∗, pk∗) > θ1 × dk∗ then
8 return (⊥, pk∗);
9 else

10 R← {pp ∈ Pf | d(pp, p∗) ≤ θ2};
11 Pf ← Pf \R;
12 return (p∗, pk∗);
13 end

Algorithm 3: FindAPopularPointAndParking(p, t, P )

the distance from the last point in taxi’s itinerary to the
parking dk∗. Lines 4–5 update the parking pk∗ with the
high score of pk, ∀pk ∈ PK such that the distance is not
greater than θ × dk∗. Line 6 finds a popular point where
the unload distance is minimal. If the total unload travel
distance is less than θ1 × dk∗, the taxi is allowed to go to
the popular point. However, we cannot give some taxis to
the same a popular point. Thus, Lines 10–11 remove some
points in considered popular area (in a circle area has the
radius θ2).
After we establish the itinerary of the taxi, we used a greedy
algorithm to re-organize the remaining requests of all taxis.
In the exchange improvement function, we try to find the
best exchange of the subsequence between two taxis in the
hope of improving the benefit. An example is described in
Figure 1.

5. Experiments

In our work, trace of taxis of San Francisco was used.
For training the prediction model, we use the trace from
07-2005 to 07-2006. For experimenting the algorithms, we
use the trace in 03-2010. The pickup and delivery points
were extracted from the taxi traces. One half of the people



Figure 1. The exchange improvement algorithm.

requests is randomly chosen and converted into parcel re-
quests with relaxed time window. The time call of a request
is specified to be the pickup time subtracting 10 minutes.
The late pickup time is specified to be the pickup time plus
15 minutes. The late delivery time is specified to be the
time call plus the shortest travel time from the pickup to
the delivery plus 30 minutes.

5.1. Simulation design

The simulation is designed to be generic to test the
efficiency of different algorithms and can be extended for
other dynamic VRPs. We experiment with 4 algorithms:

• Our algorithms are PPSARP and PP-
SARP+prediction: PPSARP will direct the taxi
toward a nearby parking, and PPSARP+prediction
will score parkings based on predicted information
and direct the taxi toward the predicted point and
the parking of the highest score.

• The LiSARP is the dynamic algorithm in [10].
Furthermore, we constructed a variation of
LiSARP by combining with the prediction -
(LiSARP+prediction). Based on Li’s model, we
increased the number of parkings for the making
schedule. The taxis are directed to the predicted
point and the parking of the highest score.

5.2. Settings

This parameter setting is as follows, where the passenger
request positions are based on the given taxi traces.

• Road network: San Francisco (from OpenStreetMap
with 131245 nodes and 259792 arcs).

• 34 parkings are randomly chosen based on
GoogleMaps. Parkings capacity is 39 vehicles.

• 1000 taxis: depots are at parkings
• Start working time: 0h
• Terminate working time: 24h
• Speed 40km/h
• θ1 = 1.5
• θ2 = 5km

5.3. Experimental results

Test instances are solved on an Intel(R) Core(TM)
i7-4790 CPU @ 3.660 GHz, CPU 16 GB RAM com-
puter. PPSARP, PPSARP+prediction, LiSARP and LiS-
ARP+prediction were implemented in JAVA. We have two
experiment scripts. For the first script, the system serves all
requests in day. However, time window of parcel requests
has tight restriction. For the second, total served requests
are less but time frame of parcel requests is wider. Each
parcel request is associated with a time window: the lower
bound is drawn uniformly at random from 8:00 - 16:00 h
(accurate to 1 minute), the upper bound equals to 24:00.

5.3.1. Script 1: Tight restriction of parcel requests. The
number of all requests is listed in Table 1.

Day nPeopleRequests nParcelRequests
Day 1 6167 6167
Day 2 5768 5768
Day 3 6646 6646
Day 4 6673 6673
Day 5 7210 7210
Day 6 8229 8229
Day 7 8238 8238
Day 8 5166 5166
Day 9 4147 4147

TABLE 1. THE NUMBER OF ALL REQUESTS IN SCRIPT 1.

Although parcels are all known beforehand, the numbers
of served requests of LiSARP, LiSARP+prediction were
less than those of PPSARP and PPSARP+prediction. Thus,
the total benefits of PPSARP and PPSARP+prediction are
greater than both LiSARP and LiSARP+prediction. The
results are shown in Figure 2.

Figure 2. The total benefit of four planners of the first script.

5.3.2. Script 2: Wider time window script. Table 2
shows the number of all requests (setting time of Script
2). Although this wider time window value is of great
advantage to LiSARP and LiSARP+prediction, their
benefits were still less than the others PPSARP and
PPSARP+prediction (see Figure 3). At a time point, we
only make schedule for a location and re-optimize taxi’s
itinerary. If parcel requests are known beforehand, the
people serving location is inserted to the taxi’s itinerary



Day nPeopleRequests nParcelRequests
Day 1 2352 1366
Day 2 2692 1535
Day 3 2784 1601
Day 4 2600 1517
Day 5 2718 1633
Day 6 2730 1876
Day 7 2760 2037
Day 8 2317 1334
Day 9 895 299

TABLE 2. THE NUMBER OF ALL REQUESTS IN SCRIPT 2.

before we make schedule some suitable parcels for the taxi.

Figure 3. The total benefit of four planners of the second script.

5.3.3. Growth rate of benefit. Figures 4 depicts the ac-
cumulated benefits of all four planners. It can be seen
that, PPSARP and PPSARP+prediction have higher growth
rates. Locally, we see that the benefit of LiSARP and LiS-
ARP+prediction has a declining phase. Globally, LiSARP
and PPSARP without prediction capability often accept new
requests located too far from taxi’s position resulting in
lower growth rates.

Figure 4. the growth rate of four planners (Day 1 of the second script).

6. Conclusion

In this paper, we consider the problem of scheduling
people and parcel sharing a ride with taxis. We extend the
model proposed in [10] by taking into account the reality
that a taxi should go to a specified parking place after de-
livering the last request of its scheduled itinerary. We derive
a model for predicting regions of the road network where

requests are likely to appear in each period. New algorithms
for solving the online people and parcel share a ride problem
are designed utilizing the prediction information. We evalu-
ate our proposed algorithms on data sets extracted from taxi
traces of San Francisco, combined with road network of San
Francisco (from OpenStreetMap.org). Experimental results
show that our algorithms compute better solutions than the
algorithm in [10] in term of total benefits. The results also
confirm the benefit of using prediction information in the
context of dynamic PPSARP.

For future works, we investigate other prediction meth-
ods as well as different approaches for exploiting prediction
information. We also analyse more deeply the successive
and failure cases of prediction.
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